1 /******************************************************************************
2  *
3  *  Copyright (C) 2014 Google, Inc.
4  *
5  *  Licensed under the Apache License, Version 2.0 (the "License");
6  *  you may not use this file except in compliance with the License.
7  *  You may obtain a copy of the License at:
8  *
9  *  http://www.apache.org/licenses/LICENSE-2.0
10  *
11  *  Unless required by applicable law or agreed to in writing, software
12  *  distributed under the License is distributed on an "AS IS" BASIS,
13  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  *  See the License for the specific language governing permissions and
15  *  limitations under the License.
16  *
17  ******************************************************************************/
18 
19 #include "include/bt_target.h"
20 
21 #define LOG_TAG "bt_osi_alarm"
22 
23 #include "osi/include/alarm.h"
24 
25 #include <base/logging.h>
26 #include <errno.h>
27 #include <fcntl.h>
28 #include <inttypes.h>
29 #include <malloc.h>
30 #include <pthread.h>
31 #include <signal.h>
32 #include <string.h>
33 #include <time.h>
34 
35 #include <hardware/bluetooth.h>
36 
37 #include <mutex>
38 
39 #include "osi/include/allocator.h"
40 #include "osi/include/fixed_queue.h"
41 #include "osi/include/list.h"
42 #include "osi/include/log.h"
43 #include "osi/include/osi.h"
44 #include "osi/include/semaphore.h"
45 #include "osi/include/thread.h"
46 #include "osi/include/wakelock.h"
47 
48 // Callback and timer threads should run at RT priority in order to ensure they
49 // meet audio deadlines.  Use this priority for all audio/timer related thread.
50 static const int THREAD_RT_PRIORITY = 1;
51 
52 typedef struct {
53   size_t count;
54   period_ms_t total_ms;
55   period_ms_t max_ms;
56 } stat_t;
57 
58 // Alarm-related information and statistics
59 typedef struct {
60   const char* name;
61   size_t scheduled_count;
62   size_t canceled_count;
63   size_t rescheduled_count;
64   size_t total_updates;
65   period_ms_t last_update_ms;
66   stat_t callback_execution;
67   stat_t overdue_scheduling;
68   stat_t premature_scheduling;
69 } alarm_stats_t;
70 
71 struct alarm_t {
72   // The mutex is held while the callback for this alarm is being executed.
73   // It allows us to release the coarse-grained monitor lock while a
74   // potentially long-running callback is executing. |alarm_cancel| uses this
75   // mutex to provide a guarantee to its caller that the callback will not be
76   // in progress when it returns.
77   std::recursive_mutex* callback_mutex;
78   period_ms_t creation_time;
79   period_ms_t period;
80   period_ms_t deadline;
81   period_ms_t prev_deadline;  // Previous deadline - used for accounting of
82                               // periodic timers
83   bool is_periodic;
84   fixed_queue_t* queue;  // The processing queue to add this alarm to
85   alarm_callback_t callback;
86   void* data;
87   alarm_stats_t stats;
88 };
89 
90 // If the next wakeup time is less than this threshold, we should acquire
91 // a wakelock instead of setting a wake alarm so we're not bouncing in
92 // and out of suspend frequently. This value is externally visible to allow
93 // unit tests to run faster. It should not be modified by production code.
94 int64_t TIMER_INTERVAL_FOR_WAKELOCK_IN_MS = 3000;
95 static const clockid_t CLOCK_ID = CLOCK_BOOTTIME;
96 
97 #if (KERNEL_MISSING_CLOCK_BOOTTIME_ALARM == TRUE)
98 static const clockid_t CLOCK_ID_ALARM = CLOCK_BOOTTIME;
99 #else
100 static const clockid_t CLOCK_ID_ALARM = CLOCK_BOOTTIME_ALARM;
101 #endif
102 
103 // This mutex ensures that the |alarm_set|, |alarm_cancel|, and alarm callback
104 // functions execute serially and not concurrently. As a result, this mutex
105 // also protects the |alarms| list.
106 static std::mutex alarms_mutex;
107 static list_t* alarms;
108 static timer_t timer;
109 static timer_t wakeup_timer;
110 static bool timer_set;
111 
112 // All alarm callbacks are dispatched from |dispatcher_thread|
113 static thread_t* dispatcher_thread;
114 static bool dispatcher_thread_active;
115 static semaphore_t* alarm_expired;
116 
117 // Default alarm callback thread and queue
118 static thread_t* default_callback_thread;
119 static fixed_queue_t* default_callback_queue;
120 
121 static alarm_t* alarm_new_internal(const char* name, bool is_periodic);
122 static bool lazy_initialize(void);
123 static period_ms_t now(void);
124 static void alarm_set_internal(alarm_t* alarm, period_ms_t period,
125                                alarm_callback_t cb, void* data,
126                                fixed_queue_t* queue);
127 static void alarm_cancel_internal(alarm_t* alarm);
128 static void remove_pending_alarm(alarm_t* alarm);
129 static void schedule_next_instance(alarm_t* alarm);
130 static void reschedule_root_alarm(void);
131 static void alarm_queue_ready(fixed_queue_t* queue, void* context);
132 static void timer_callback(void* data);
133 static void callback_dispatch(void* context);
134 static bool timer_create_internal(const clockid_t clock_id, timer_t* timer);
135 static void update_scheduling_stats(alarm_stats_t* stats, period_ms_t now_ms,
136                                     period_ms_t deadline_ms,
137                                     period_ms_t execution_delta_ms);
138 
update_stat(stat_t * stat,period_ms_t delta)139 static void update_stat(stat_t* stat, period_ms_t delta) {
140   if (stat->max_ms < delta) stat->max_ms = delta;
141   stat->total_ms += delta;
142   stat->count++;
143 }
144 
alarm_new(const char * name)145 alarm_t* alarm_new(const char* name) { return alarm_new_internal(name, false); }
146 
alarm_new_periodic(const char * name)147 alarm_t* alarm_new_periodic(const char* name) {
148   return alarm_new_internal(name, true);
149 }
150 
alarm_new_internal(const char * name,bool is_periodic)151 static alarm_t* alarm_new_internal(const char* name, bool is_periodic) {
152   // Make sure we have a list we can insert alarms into.
153   if (!alarms && !lazy_initialize()) {
154     CHECK(false);  // if initialization failed, we should not continue
155     return NULL;
156   }
157 
158   alarm_t* ret = static_cast<alarm_t*>(osi_calloc(sizeof(alarm_t)));
159 
160   ret->callback_mutex = new std::recursive_mutex;
161   ret->is_periodic = is_periodic;
162   ret->stats.name = osi_strdup(name);
163   // NOTE: The stats were reset by osi_calloc() above
164 
165   return ret;
166 }
167 
alarm_free(alarm_t * alarm)168 void alarm_free(alarm_t* alarm) {
169   if (!alarm) return;
170 
171   alarm_cancel(alarm);
172   delete alarm->callback_mutex;
173   osi_free((void*)alarm->stats.name);
174   osi_free(alarm);
175 }
176 
alarm_get_remaining_ms(const alarm_t * alarm)177 period_ms_t alarm_get_remaining_ms(const alarm_t* alarm) {
178   CHECK(alarm != NULL);
179   period_ms_t remaining_ms = 0;
180   period_ms_t just_now = now();
181 
182   std::lock_guard<std::mutex> lock(alarms_mutex);
183   if (alarm->deadline > just_now) remaining_ms = alarm->deadline - just_now;
184 
185   return remaining_ms;
186 }
187 
alarm_set(alarm_t * alarm,period_ms_t interval_ms,alarm_callback_t cb,void * data)188 void alarm_set(alarm_t* alarm, period_ms_t interval_ms, alarm_callback_t cb,
189                void* data) {
190   alarm_set_on_queue(alarm, interval_ms, cb, data, default_callback_queue);
191 }
192 
alarm_set_on_queue(alarm_t * alarm,period_ms_t interval_ms,alarm_callback_t cb,void * data,fixed_queue_t * queue)193 void alarm_set_on_queue(alarm_t* alarm, period_ms_t interval_ms,
194                         alarm_callback_t cb, void* data, fixed_queue_t* queue) {
195   CHECK(queue != NULL);
196   alarm_set_internal(alarm, interval_ms, cb, data, queue);
197 }
198 
199 // Runs in exclusion with alarm_cancel and timer_callback.
alarm_set_internal(alarm_t * alarm,period_ms_t period,alarm_callback_t cb,void * data,fixed_queue_t * queue)200 static void alarm_set_internal(alarm_t* alarm, period_ms_t period,
201                                alarm_callback_t cb, void* data,
202                                fixed_queue_t* queue) {
203   CHECK(alarms != NULL);
204   CHECK(alarm != NULL);
205   CHECK(cb != NULL);
206 
207   std::lock_guard<std::mutex> lock(alarms_mutex);
208 
209   alarm->creation_time = now();
210   alarm->period = period;
211   alarm->queue = queue;
212   alarm->callback = cb;
213   alarm->data = data;
214 
215   schedule_next_instance(alarm);
216   alarm->stats.scheduled_count++;
217 }
218 
alarm_cancel(alarm_t * alarm)219 void alarm_cancel(alarm_t* alarm) {
220   CHECK(alarms != NULL);
221   if (!alarm) return;
222 
223   {
224     std::lock_guard<std::mutex> lock(alarms_mutex);
225     alarm_cancel_internal(alarm);
226   }
227 
228   // If the callback for |alarm| is in progress, wait here until it completes.
229   std::lock_guard<std::recursive_mutex> lock(*alarm->callback_mutex);
230 }
231 
232 // Internal implementation of canceling an alarm.
233 // The caller must hold the |alarms_mutex|
alarm_cancel_internal(alarm_t * alarm)234 static void alarm_cancel_internal(alarm_t* alarm) {
235   bool needs_reschedule =
236       (!list_is_empty(alarms) && list_front(alarms) == alarm);
237 
238   remove_pending_alarm(alarm);
239 
240   alarm->deadline = 0;
241   alarm->prev_deadline = 0;
242   alarm->callback = NULL;
243   alarm->data = NULL;
244   alarm->stats.canceled_count++;
245   alarm->queue = NULL;
246 
247   if (needs_reschedule) reschedule_root_alarm();
248 }
249 
alarm_is_scheduled(const alarm_t * alarm)250 bool alarm_is_scheduled(const alarm_t* alarm) {
251   if ((alarms == NULL) || (alarm == NULL)) return false;
252   return (alarm->callback != NULL);
253 }
254 
alarm_cleanup(void)255 void alarm_cleanup(void) {
256   // If lazy_initialize never ran there is nothing else to do
257   if (!alarms) return;
258 
259   dispatcher_thread_active = false;
260   semaphore_post(alarm_expired);
261   thread_free(dispatcher_thread);
262   dispatcher_thread = NULL;
263 
264   std::lock_guard<std::mutex> lock(alarms_mutex);
265 
266   fixed_queue_free(default_callback_queue, NULL);
267   default_callback_queue = NULL;
268   thread_free(default_callback_thread);
269   default_callback_thread = NULL;
270 
271   timer_delete(wakeup_timer);
272   timer_delete(timer);
273   semaphore_free(alarm_expired);
274   alarm_expired = NULL;
275 
276   list_free(alarms);
277   alarms = NULL;
278 }
279 
lazy_initialize(void)280 static bool lazy_initialize(void) {
281   CHECK(alarms == NULL);
282 
283   // timer_t doesn't have an invalid value so we must track whether
284   // the |timer| variable is valid ourselves.
285   bool timer_initialized = false;
286   bool wakeup_timer_initialized = false;
287 
288   std::lock_guard<std::mutex> lock(alarms_mutex);
289 
290   alarms = list_new(NULL);
291   if (!alarms) {
292     LOG_ERROR(LOG_TAG, "%s unable to allocate alarm list.", __func__);
293     goto error;
294   }
295 
296   if (!timer_create_internal(CLOCK_ID, &timer)) goto error;
297   timer_initialized = true;
298 
299   if (!timer_create_internal(CLOCK_ID_ALARM, &wakeup_timer)) goto error;
300   wakeup_timer_initialized = true;
301 
302   alarm_expired = semaphore_new(0);
303   if (!alarm_expired) {
304     LOG_ERROR(LOG_TAG, "%s unable to create alarm expired semaphore", __func__);
305     goto error;
306   }
307 
308   default_callback_thread =
309       thread_new_sized("alarm_default_callbacks", SIZE_MAX);
310   if (default_callback_thread == NULL) {
311     LOG_ERROR(LOG_TAG, "%s unable to create default alarm callbacks thread.",
312               __func__);
313     goto error;
314   }
315   thread_set_rt_priority(default_callback_thread, THREAD_RT_PRIORITY);
316   default_callback_queue = fixed_queue_new(SIZE_MAX);
317   if (default_callback_queue == NULL) {
318     LOG_ERROR(LOG_TAG, "%s unable to create default alarm callbacks queue.",
319               __func__);
320     goto error;
321   }
322   alarm_register_processing_queue(default_callback_queue,
323                                   default_callback_thread);
324 
325   dispatcher_thread_active = true;
326   dispatcher_thread = thread_new("alarm_dispatcher");
327   if (!dispatcher_thread) {
328     LOG_ERROR(LOG_TAG, "%s unable to create alarm callback thread.", __func__);
329     goto error;
330   }
331   thread_set_rt_priority(dispatcher_thread, THREAD_RT_PRIORITY);
332   thread_post(dispatcher_thread, callback_dispatch, NULL);
333   return true;
334 
335 error:
336   fixed_queue_free(default_callback_queue, NULL);
337   default_callback_queue = NULL;
338   thread_free(default_callback_thread);
339   default_callback_thread = NULL;
340 
341   thread_free(dispatcher_thread);
342   dispatcher_thread = NULL;
343 
344   dispatcher_thread_active = false;
345 
346   semaphore_free(alarm_expired);
347   alarm_expired = NULL;
348 
349   if (wakeup_timer_initialized) timer_delete(wakeup_timer);
350 
351   if (timer_initialized) timer_delete(timer);
352 
353   list_free(alarms);
354   alarms = NULL;
355 
356   return false;
357 }
358 
now(void)359 static period_ms_t now(void) {
360   CHECK(alarms != NULL);
361 
362   struct timespec ts;
363   if (clock_gettime(CLOCK_ID, &ts) == -1) {
364     LOG_ERROR(LOG_TAG, "%s unable to get current time: %s", __func__,
365               strerror(errno));
366     return 0;
367   }
368 
369   return (ts.tv_sec * 1000LL) + (ts.tv_nsec / 1000000LL);
370 }
371 
372 // Remove alarm from internal alarm list and the processing queue
373 // The caller must hold the |alarms_mutex|
remove_pending_alarm(alarm_t * alarm)374 static void remove_pending_alarm(alarm_t* alarm) {
375   list_remove(alarms, alarm);
376   while (fixed_queue_try_remove_from_queue(alarm->queue, alarm) != NULL) {
377     // Remove all repeated alarm instances from the queue.
378     // NOTE: We are defensive here - we shouldn't have repeated alarm instances
379   }
380 }
381 
382 // Must be called with |alarms_mutex| held
schedule_next_instance(alarm_t * alarm)383 static void schedule_next_instance(alarm_t* alarm) {
384   // If the alarm is currently set and it's at the start of the list,
385   // we'll need to re-schedule since we've adjusted the earliest deadline.
386   bool needs_reschedule =
387       (!list_is_empty(alarms) && list_front(alarms) == alarm);
388   if (alarm->callback) remove_pending_alarm(alarm);
389 
390   // Calculate the next deadline for this alarm
391   period_ms_t just_now = now();
392   period_ms_t ms_into_period = 0;
393   if ((alarm->is_periodic) && (alarm->period != 0))
394     ms_into_period = ((just_now - alarm->creation_time) % alarm->period);
395   alarm->deadline = just_now + (alarm->period - ms_into_period);
396 
397   // Add it into the timer list sorted by deadline (earliest deadline first).
398   if (list_is_empty(alarms) ||
399       ((alarm_t*)list_front(alarms))->deadline > alarm->deadline) {
400     list_prepend(alarms, alarm);
401   } else {
402     for (list_node_t* node = list_begin(alarms); node != list_end(alarms);
403          node = list_next(node)) {
404       list_node_t* next = list_next(node);
405       if (next == list_end(alarms) ||
406           ((alarm_t*)list_node(next))->deadline > alarm->deadline) {
407         list_insert_after(alarms, node, alarm);
408         break;
409       }
410     }
411   }
412 
413   // If the new alarm has the earliest deadline, we need to re-evaluate our
414   // schedule.
415   if (needs_reschedule ||
416       (!list_is_empty(alarms) && list_front(alarms) == alarm)) {
417     reschedule_root_alarm();
418   }
419 }
420 
421 // NOTE: must be called with |alarms_mutex| held
reschedule_root_alarm(void)422 static void reschedule_root_alarm(void) {
423   CHECK(alarms != NULL);
424 
425   const bool timer_was_set = timer_set;
426   alarm_t* next;
427   int64_t next_expiration;
428 
429   // If used in a zeroed state, disarms the timer.
430   struct itimerspec timer_time;
431   memset(&timer_time, 0, sizeof(timer_time));
432 
433   if (list_is_empty(alarms)) goto done;
434 
435   next = static_cast<alarm_t*>(list_front(alarms));
436   next_expiration = next->deadline - now();
437   if (next_expiration < TIMER_INTERVAL_FOR_WAKELOCK_IN_MS) {
438     if (!timer_set) {
439       if (!wakelock_acquire()) {
440         LOG_ERROR(LOG_TAG, "%s unable to acquire wake lock", __func__);
441         goto done;
442       }
443     }
444 
445     timer_time.it_value.tv_sec = (next->deadline / 1000);
446     timer_time.it_value.tv_nsec = (next->deadline % 1000) * 1000000LL;
447 
448     // It is entirely unsafe to call timer_settime(2) with a zeroed timerspec
449     // for timers with *_ALARM clock IDs. Although the man page states that the
450     // timer would be canceled, the current behavior (as of Linux kernel 3.17)
451     // is that the callback is issued immediately. The only way to cancel an
452     // *_ALARM timer is to delete the timer. But unfortunately, deleting and
453     // re-creating a timer is rather expensive; every timer_create(2) spawns a
454     // new thread. So we simply set the timer to fire at the largest possible
455     // time.
456     //
457     // If we've reached this code path, we're going to grab a wake lock and
458     // wait for the next timer to fire. In that case, there's no reason to
459     // have a pending wakeup timer so we simply cancel it.
460     struct itimerspec end_of_time;
461     memset(&end_of_time, 0, sizeof(end_of_time));
462     end_of_time.it_value.tv_sec = (time_t)(1LL << (sizeof(time_t) * 8 - 2));
463     timer_settime(wakeup_timer, TIMER_ABSTIME, &end_of_time, NULL);
464   } else {
465     // WARNING: do not attempt to use relative timers with *_ALARM clock IDs
466     // in kernels before 3.17 unless you have the following patch:
467     // https://lkml.org/lkml/2014/7/7/576
468     struct itimerspec wakeup_time;
469     memset(&wakeup_time, 0, sizeof(wakeup_time));
470 
471     wakeup_time.it_value.tv_sec = (next->deadline / 1000);
472     wakeup_time.it_value.tv_nsec = (next->deadline % 1000) * 1000000LL;
473     if (timer_settime(wakeup_timer, TIMER_ABSTIME, &wakeup_time, NULL) == -1)
474       LOG_ERROR(LOG_TAG, "%s unable to set wakeup timer: %s", __func__,
475                 strerror(errno));
476   }
477 
478 done:
479   timer_set =
480       timer_time.it_value.tv_sec != 0 || timer_time.it_value.tv_nsec != 0;
481   if (timer_was_set && !timer_set) {
482     wakelock_release();
483   }
484 
485   if (timer_settime(timer, TIMER_ABSTIME, &timer_time, NULL) == -1)
486     LOG_ERROR(LOG_TAG, "%s unable to set timer: %s", __func__, strerror(errno));
487 
488   // If next expiration was in the past (e.g. short timer that got context
489   // switched) then the timer might have diarmed itself. Detect this case and
490   // work around it by manually signalling the |alarm_expired| semaphore.
491   //
492   // It is possible that the timer was actually super short (a few
493   // milliseconds) and the timer expired normally before we called
494   // |timer_gettime|. Worst case, |alarm_expired| is signaled twice for that
495   // alarm. Nothing bad should happen in that case though since the callback
496   // dispatch function checks to make sure the timer at the head of the list
497   // actually expired.
498   if (timer_set) {
499     struct itimerspec time_to_expire;
500     timer_gettime(timer, &time_to_expire);
501     if (time_to_expire.it_value.tv_sec == 0 &&
502         time_to_expire.it_value.tv_nsec == 0) {
503       LOG_DEBUG(
504           LOG_TAG,
505           "%s alarm expiration too close for posix timers, switching to guns",
506           __func__);
507       semaphore_post(alarm_expired);
508     }
509   }
510 }
511 
alarm_register_processing_queue(fixed_queue_t * queue,thread_t * thread)512 void alarm_register_processing_queue(fixed_queue_t* queue, thread_t* thread) {
513   CHECK(queue != NULL);
514   CHECK(thread != NULL);
515 
516   fixed_queue_register_dequeue(queue, thread_get_reactor(thread),
517                                alarm_queue_ready, NULL);
518 }
519 
alarm_unregister_processing_queue(fixed_queue_t * queue)520 void alarm_unregister_processing_queue(fixed_queue_t* queue) {
521   CHECK(alarms != NULL);
522   CHECK(queue != NULL);
523 
524   fixed_queue_unregister_dequeue(queue);
525 
526   // Cancel all alarms that are using this queue
527   std::lock_guard<std::mutex> lock(alarms_mutex);
528   for (list_node_t* node = list_begin(alarms); node != list_end(alarms);) {
529     alarm_t* alarm = (alarm_t*)list_node(node);
530     node = list_next(node);
531     // TODO: Each module is responsible for tearing down its alarms; currently,
532     // this is not the case. In the future, this check should be replaced by
533     // an assert.
534     if (alarm->queue == queue) alarm_cancel_internal(alarm);
535   }
536 }
537 
alarm_queue_ready(fixed_queue_t * queue,UNUSED_ATTR void * context)538 static void alarm_queue_ready(fixed_queue_t* queue, UNUSED_ATTR void* context) {
539   CHECK(queue != NULL);
540 
541   std::unique_lock<std::mutex> lock(alarms_mutex);
542   alarm_t* alarm = (alarm_t*)fixed_queue_try_dequeue(queue);
543   if (alarm == NULL) {
544     return;  // The alarm was probably canceled
545   }
546 
547   //
548   // If the alarm is not periodic, we've fully serviced it now, and can reset
549   // some of its internal state. This is useful to distinguish between expired
550   // alarms and active ones.
551   //
552   alarm_callback_t callback = alarm->callback;
553   void* data = alarm->data;
554   period_ms_t deadline = alarm->deadline;
555   if (alarm->is_periodic) {
556     // The periodic alarm has been rescheduled and alarm->deadline has been
557     // updated, hence we need to use the previous deadline.
558     deadline = alarm->prev_deadline;
559   } else {
560     alarm->deadline = 0;
561     alarm->callback = NULL;
562     alarm->data = NULL;
563     alarm->queue = NULL;
564   }
565 
566   std::lock_guard<std::recursive_mutex> cb_lock(*alarm->callback_mutex);
567   lock.unlock();
568 
569   period_ms_t t0 = now();
570   callback(data);
571   period_ms_t t1 = now();
572 
573   // Update the statistics
574   CHECK(t1 >= t0);
575   period_ms_t delta = t1 - t0;
576   update_scheduling_stats(&alarm->stats, t0, deadline, delta);
577 }
578 
579 // Callback function for wake alarms and our posix timer
timer_callback(UNUSED_ATTR void * ptr)580 static void timer_callback(UNUSED_ATTR void* ptr) {
581   semaphore_post(alarm_expired);
582 }
583 
584 // Function running on |dispatcher_thread| that performs the following:
585 //   (1) Receives a signal using |alarm_exired| that the alarm has expired
586 //   (2) Dispatches the alarm callback for processing by the corresponding
587 // thread for that alarm.
callback_dispatch(UNUSED_ATTR void * context)588 static void callback_dispatch(UNUSED_ATTR void* context) {
589   while (true) {
590     semaphore_wait(alarm_expired);
591     if (!dispatcher_thread_active) break;
592 
593     std::lock_guard<std::mutex> lock(alarms_mutex);
594     alarm_t* alarm;
595 
596     // Take into account that the alarm may get cancelled before we get to it.
597     // We're done here if there are no alarms or the alarm at the front is in
598     // the future. Exit right away since there's nothing left to do.
599     if (list_is_empty(alarms) ||
600         (alarm = static_cast<alarm_t*>(list_front(alarms)))->deadline > now()) {
601       reschedule_root_alarm();
602       continue;
603     }
604 
605     list_remove(alarms, alarm);
606 
607     if (alarm->is_periodic) {
608       alarm->prev_deadline = alarm->deadline;
609       schedule_next_instance(alarm);
610       alarm->stats.rescheduled_count++;
611     }
612     reschedule_root_alarm();
613 
614     // Enqueue the alarm for processing
615     fixed_queue_enqueue(alarm->queue, alarm);
616   }
617 
618   LOG_DEBUG(LOG_TAG, "%s Callback thread exited", __func__);
619 }
620 
timer_create_internal(const clockid_t clock_id,timer_t * timer)621 static bool timer_create_internal(const clockid_t clock_id, timer_t* timer) {
622   CHECK(timer != NULL);
623 
624   struct sigevent sigevent;
625   // create timer with RT priority thread
626   pthread_attr_t thread_attr;
627   pthread_attr_init(&thread_attr);
628   pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
629   struct sched_param param;
630   param.sched_priority = THREAD_RT_PRIORITY;
631   pthread_attr_setschedparam(&thread_attr, &param);
632 
633   memset(&sigevent, 0, sizeof(sigevent));
634   sigevent.sigev_notify = SIGEV_THREAD;
635   sigevent.sigev_notify_function = (void (*)(union sigval))timer_callback;
636   sigevent.sigev_notify_attributes = &thread_attr;
637   if (timer_create(clock_id, &sigevent, timer) == -1) {
638     LOG_ERROR(LOG_TAG, "%s unable to create timer with clock %d: %s", __func__,
639               clock_id, strerror(errno));
640     if (clock_id == CLOCK_BOOTTIME_ALARM) {
641       LOG_ERROR(LOG_TAG,
642                 "The kernel might not have support for "
643                 "timer_create(CLOCK_BOOTTIME_ALARM): "
644                 "https://lwn.net/Articles/429925/");
645       LOG_ERROR(LOG_TAG,
646                 "See following patches: "
647                 "https://git.kernel.org/cgit/linux/kernel/git/torvalds/"
648                 "linux.git/log/?qt=grep&q=CLOCK_BOOTTIME_ALARM");
649     }
650     return false;
651   }
652 
653   return true;
654 }
655 
update_scheduling_stats(alarm_stats_t * stats,period_ms_t now_ms,period_ms_t deadline_ms,period_ms_t execution_delta_ms)656 static void update_scheduling_stats(alarm_stats_t* stats, period_ms_t now_ms,
657                                     period_ms_t deadline_ms,
658                                     period_ms_t execution_delta_ms) {
659   stats->total_updates++;
660   stats->last_update_ms = now_ms;
661 
662   update_stat(&stats->callback_execution, execution_delta_ms);
663 
664   if (deadline_ms < now_ms) {
665     // Overdue scheduling
666     period_ms_t delta_ms = now_ms - deadline_ms;
667     update_stat(&stats->overdue_scheduling, delta_ms);
668   } else if (deadline_ms > now_ms) {
669     // Premature scheduling
670     period_ms_t delta_ms = deadline_ms - now_ms;
671     update_stat(&stats->premature_scheduling, delta_ms);
672   }
673 }
674 
dump_stat(int fd,stat_t * stat,const char * description)675 static void dump_stat(int fd, stat_t* stat, const char* description) {
676   period_ms_t average_time_ms = 0;
677   if (stat->count != 0) average_time_ms = stat->total_ms / stat->count;
678 
679   dprintf(fd, "%-51s: %llu / %llu / %llu\n", description,
680           (unsigned long long)stat->total_ms, (unsigned long long)stat->max_ms,
681           (unsigned long long)average_time_ms);
682 }
683 
alarm_debug_dump(int fd)684 void alarm_debug_dump(int fd) {
685   dprintf(fd, "\nBluetooth Alarms Statistics:\n");
686 
687   std::lock_guard<std::mutex> lock(alarms_mutex);
688 
689   if (alarms == NULL) {
690     dprintf(fd, "  None\n");
691     return;
692   }
693 
694   period_ms_t just_now = now();
695 
696   dprintf(fd, "  Total Alarms: %zu\n\n", list_length(alarms));
697 
698   // Dump info for each alarm
699   for (list_node_t* node = list_begin(alarms); node != list_end(alarms);
700        node = list_next(node)) {
701     alarm_t* alarm = (alarm_t*)list_node(node);
702     alarm_stats_t* stats = &alarm->stats;
703 
704     dprintf(fd, "  Alarm : %s (%s)\n", stats->name,
705             (alarm->is_periodic) ? "PERIODIC" : "SINGLE");
706 
707     dprintf(fd, "%-51s: %zu / %zu / %zu / %zu\n",
708             "    Action counts (sched/resched/exec/cancel)",
709             stats->scheduled_count, stats->rescheduled_count,
710             stats->callback_execution.count, stats->canceled_count);
711 
712     dprintf(fd, "%-51s: %zu / %zu\n",
713             "    Deviation counts (overdue/premature)",
714             stats->overdue_scheduling.count, stats->premature_scheduling.count);
715 
716     dprintf(fd, "%-51s: %llu / %llu / %lld\n",
717             "    Time in ms (since creation/interval/remaining)",
718             (unsigned long long)(just_now - alarm->creation_time),
719             (unsigned long long)alarm->period,
720             (long long)(alarm->deadline - just_now));
721 
722     dump_stat(fd, &stats->callback_execution,
723               "    Callback execution time in ms (total/max/avg)");
724 
725     dump_stat(fd, &stats->overdue_scheduling,
726               "    Overdue scheduling time in ms (total/max/avg)");
727 
728     dump_stat(fd, &stats->premature_scheduling,
729               "    Premature scheduling time in ms (total/max/avg)");
730 
731     dprintf(fd, "\n");
732   }
733 }
734