1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/ManagedStatic.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/Mutex.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Target/TargetInstrInfo.h"
44 #include "llvm/Target/TargetIntrinsicInfo.h"
45 #include "llvm/Target/TargetLowering.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include "llvm/Target/TargetRegisterInfo.h"
49 #include "llvm/Target/TargetSubtargetInfo.h"
50 #include <algorithm>
51 #include <cmath>
52 #include <utility>
53 
54 using namespace llvm;
55 
56 /// makeVTList - Return an instance of the SDVTList struct initialized with the
57 /// specified members.
makeVTList(const EVT * VTs,unsigned NumVTs)58 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59   SDVTList Res = {VTs, NumVTs};
60   return Res;
61 }
62 
63 // Default null implementations of the callbacks.
NodeDeleted(SDNode *,SDNode *)64 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
NodeUpdated(SDNode *)65 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
66 
67 //===----------------------------------------------------------------------===//
68 //                              ConstantFPSDNode Class
69 //===----------------------------------------------------------------------===//
70 
71 /// isExactlyValue - We don't rely on operator== working on double values, as
72 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
73 /// As such, this method can be used to do an exact bit-for-bit comparison of
74 /// two floating point values.
isExactlyValue(const APFloat & V) const75 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
76   return getValueAPF().bitwiseIsEqual(V);
77 }
78 
isValueValidForType(EVT VT,const APFloat & Val)79 bool ConstantFPSDNode::isValueValidForType(EVT VT,
80                                            const APFloat& Val) {
81   assert(VT.isFloatingPoint() && "Can only convert between FP types");
82 
83   // convert modifies in place, so make a copy.
84   APFloat Val2 = APFloat(Val);
85   bool losesInfo;
86   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
87                       APFloat::rmNearestTiesToEven,
88                       &losesInfo);
89   return !losesInfo;
90 }
91 
92 //===----------------------------------------------------------------------===//
93 //                              ISD Namespace
94 //===----------------------------------------------------------------------===//
95 
isConstantSplatVector(const SDNode * N,APInt & SplatVal)96 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
97   auto *BV = dyn_cast<BuildVectorSDNode>(N);
98   if (!BV)
99     return false;
100 
101   APInt SplatUndef;
102   unsigned SplatBitSize;
103   bool HasUndefs;
104   EVT EltVT = N->getValueType(0).getVectorElementType();
105   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs) &&
106          EltVT.getSizeInBits() >= SplatBitSize;
107 }
108 
109 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
110 // specializations of the more general isConstantSplatVector()?
111 
isBuildVectorAllOnes(const SDNode * N)112 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
113   // Look through a bit convert.
114   while (N->getOpcode() == ISD::BITCAST)
115     N = N->getOperand(0).getNode();
116 
117   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
118 
119   unsigned i = 0, e = N->getNumOperands();
120 
121   // Skip over all of the undef values.
122   while (i != e && N->getOperand(i).isUndef())
123     ++i;
124 
125   // Do not accept an all-undef vector.
126   if (i == e) return false;
127 
128   // Do not accept build_vectors that aren't all constants or which have non-~0
129   // elements. We have to be a bit careful here, as the type of the constant
130   // may not be the same as the type of the vector elements due to type
131   // legalization (the elements are promoted to a legal type for the target and
132   // a vector of a type may be legal when the base element type is not).
133   // We only want to check enough bits to cover the vector elements, because
134   // we care if the resultant vector is all ones, not whether the individual
135   // constants are.
136   SDValue NotZero = N->getOperand(i);
137   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
138   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
139     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
140       return false;
141   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
142     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
143       return false;
144   } else
145     return false;
146 
147   // Okay, we have at least one ~0 value, check to see if the rest match or are
148   // undefs. Even with the above element type twiddling, this should be OK, as
149   // the same type legalization should have applied to all the elements.
150   for (++i; i != e; ++i)
151     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
152       return false;
153   return true;
154 }
155 
isBuildVectorAllZeros(const SDNode * N)156 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
157   // Look through a bit convert.
158   while (N->getOpcode() == ISD::BITCAST)
159     N = N->getOperand(0).getNode();
160 
161   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
162 
163   bool IsAllUndef = true;
164   for (const SDValue &Op : N->op_values()) {
165     if (Op.isUndef())
166       continue;
167     IsAllUndef = false;
168     // Do not accept build_vectors that aren't all constants or which have non-0
169     // elements. We have to be a bit careful here, as the type of the constant
170     // may not be the same as the type of the vector elements due to type
171     // legalization (the elements are promoted to a legal type for the target
172     // and a vector of a type may be legal when the base element type is not).
173     // We only want to check enough bits to cover the vector elements, because
174     // we care if the resultant vector is all zeros, not whether the individual
175     // constants are.
176     unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
177     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
178       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
179         return false;
180     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
181       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
182         return false;
183     } else
184       return false;
185   }
186 
187   // Do not accept an all-undef vector.
188   if (IsAllUndef)
189     return false;
190   return true;
191 }
192 
isBuildVectorOfConstantSDNodes(const SDNode * N)193 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
194   if (N->getOpcode() != ISD::BUILD_VECTOR)
195     return false;
196 
197   for (const SDValue &Op : N->op_values()) {
198     if (Op.isUndef())
199       continue;
200     if (!isa<ConstantSDNode>(Op))
201       return false;
202   }
203   return true;
204 }
205 
isBuildVectorOfConstantFPSDNodes(const SDNode * N)206 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
207   if (N->getOpcode() != ISD::BUILD_VECTOR)
208     return false;
209 
210   for (const SDValue &Op : N->op_values()) {
211     if (Op.isUndef())
212       continue;
213     if (!isa<ConstantFPSDNode>(Op))
214       return false;
215   }
216   return true;
217 }
218 
allOperandsUndef(const SDNode * N)219 bool ISD::allOperandsUndef(const SDNode *N) {
220   // Return false if the node has no operands.
221   // This is "logically inconsistent" with the definition of "all" but
222   // is probably the desired behavior.
223   if (N->getNumOperands() == 0)
224     return false;
225 
226   for (const SDValue &Op : N->op_values())
227     if (!Op.isUndef())
228       return false;
229 
230   return true;
231 }
232 
getExtForLoadExtType(bool IsFP,ISD::LoadExtType ExtType)233 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
234   switch (ExtType) {
235   case ISD::EXTLOAD:
236     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
237   case ISD::SEXTLOAD:
238     return ISD::SIGN_EXTEND;
239   case ISD::ZEXTLOAD:
240     return ISD::ZERO_EXTEND;
241   default:
242     break;
243   }
244 
245   llvm_unreachable("Invalid LoadExtType");
246 }
247 
getSetCCSwappedOperands(ISD::CondCode Operation)248 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
249   // To perform this operation, we just need to swap the L and G bits of the
250   // operation.
251   unsigned OldL = (Operation >> 2) & 1;
252   unsigned OldG = (Operation >> 1) & 1;
253   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
254                        (OldL << 1) |       // New G bit
255                        (OldG << 2));       // New L bit.
256 }
257 
getSetCCInverse(ISD::CondCode Op,bool isInteger)258 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
259   unsigned Operation = Op;
260   if (isInteger)
261     Operation ^= 7;   // Flip L, G, E bits, but not U.
262   else
263     Operation ^= 15;  // Flip all of the condition bits.
264 
265   if (Operation > ISD::SETTRUE2)
266     Operation &= ~8;  // Don't let N and U bits get set.
267 
268   return ISD::CondCode(Operation);
269 }
270 
271 
272 /// For an integer comparison, return 1 if the comparison is a signed operation
273 /// and 2 if the result is an unsigned comparison. Return zero if the operation
274 /// does not depend on the sign of the input (setne and seteq).
isSignedOp(ISD::CondCode Opcode)275 static int isSignedOp(ISD::CondCode Opcode) {
276   switch (Opcode) {
277   default: llvm_unreachable("Illegal integer setcc operation!");
278   case ISD::SETEQ:
279   case ISD::SETNE: return 0;
280   case ISD::SETLT:
281   case ISD::SETLE:
282   case ISD::SETGT:
283   case ISD::SETGE: return 1;
284   case ISD::SETULT:
285   case ISD::SETULE:
286   case ISD::SETUGT:
287   case ISD::SETUGE: return 2;
288   }
289 }
290 
getSetCCOrOperation(ISD::CondCode Op1,ISD::CondCode Op2,bool isInteger)291 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
292                                        bool isInteger) {
293   if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
294     // Cannot fold a signed integer setcc with an unsigned integer setcc.
295     return ISD::SETCC_INVALID;
296 
297   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
298 
299   // If the N and U bits get set then the resultant comparison DOES suddenly
300   // care about orderedness, and is true when ordered.
301   if (Op > ISD::SETTRUE2)
302     Op &= ~16;     // Clear the U bit if the N bit is set.
303 
304   // Canonicalize illegal integer setcc's.
305   if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
306     Op = ISD::SETNE;
307 
308   return ISD::CondCode(Op);
309 }
310 
getSetCCAndOperation(ISD::CondCode Op1,ISD::CondCode Op2,bool isInteger)311 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
312                                         bool isInteger) {
313   if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
314     // Cannot fold a signed setcc with an unsigned setcc.
315     return ISD::SETCC_INVALID;
316 
317   // Combine all of the condition bits.
318   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
319 
320   // Canonicalize illegal integer setcc's.
321   if (isInteger) {
322     switch (Result) {
323     default: break;
324     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
325     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
326     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
327     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
328     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
329     }
330   }
331 
332   return Result;
333 }
334 
335 //===----------------------------------------------------------------------===//
336 //                           SDNode Profile Support
337 //===----------------------------------------------------------------------===//
338 
339 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
340 ///
AddNodeIDOpcode(FoldingSetNodeID & ID,unsigned OpC)341 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
342   ID.AddInteger(OpC);
343 }
344 
345 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
346 /// solely with their pointer.
AddNodeIDValueTypes(FoldingSetNodeID & ID,SDVTList VTList)347 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
348   ID.AddPointer(VTList.VTs);
349 }
350 
351 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
352 ///
AddNodeIDOperands(FoldingSetNodeID & ID,ArrayRef<SDValue> Ops)353 static void AddNodeIDOperands(FoldingSetNodeID &ID,
354                               ArrayRef<SDValue> Ops) {
355   for (auto& Op : Ops) {
356     ID.AddPointer(Op.getNode());
357     ID.AddInteger(Op.getResNo());
358   }
359 }
360 
361 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
362 ///
AddNodeIDOperands(FoldingSetNodeID & ID,ArrayRef<SDUse> Ops)363 static void AddNodeIDOperands(FoldingSetNodeID &ID,
364                               ArrayRef<SDUse> Ops) {
365   for (auto& Op : Ops) {
366     ID.AddPointer(Op.getNode());
367     ID.AddInteger(Op.getResNo());
368   }
369 }
370 
AddNodeIDNode(FoldingSetNodeID & ID,unsigned short OpC,SDVTList VTList,ArrayRef<SDValue> OpList)371 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
372                           SDVTList VTList, ArrayRef<SDValue> OpList) {
373   AddNodeIDOpcode(ID, OpC);
374   AddNodeIDValueTypes(ID, VTList);
375   AddNodeIDOperands(ID, OpList);
376 }
377 
378 /// If this is an SDNode with special info, add this info to the NodeID data.
AddNodeIDCustom(FoldingSetNodeID & ID,const SDNode * N)379 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
380   switch (N->getOpcode()) {
381   case ISD::TargetExternalSymbol:
382   case ISD::ExternalSymbol:
383   case ISD::MCSymbol:
384     llvm_unreachable("Should only be used on nodes with operands");
385   default: break;  // Normal nodes don't need extra info.
386   case ISD::TargetConstant:
387   case ISD::Constant: {
388     const ConstantSDNode *C = cast<ConstantSDNode>(N);
389     ID.AddPointer(C->getConstantIntValue());
390     ID.AddBoolean(C->isOpaque());
391     break;
392   }
393   case ISD::TargetConstantFP:
394   case ISD::ConstantFP: {
395     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
396     break;
397   }
398   case ISD::TargetGlobalAddress:
399   case ISD::GlobalAddress:
400   case ISD::TargetGlobalTLSAddress:
401   case ISD::GlobalTLSAddress: {
402     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
403     ID.AddPointer(GA->getGlobal());
404     ID.AddInteger(GA->getOffset());
405     ID.AddInteger(GA->getTargetFlags());
406     ID.AddInteger(GA->getAddressSpace());
407     break;
408   }
409   case ISD::BasicBlock:
410     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
411     break;
412   case ISD::Register:
413     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
414     break;
415   case ISD::RegisterMask:
416     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
417     break;
418   case ISD::SRCVALUE:
419     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
420     break;
421   case ISD::FrameIndex:
422   case ISD::TargetFrameIndex:
423     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
424     break;
425   case ISD::JumpTable:
426   case ISD::TargetJumpTable:
427     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
428     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
429     break;
430   case ISD::ConstantPool:
431   case ISD::TargetConstantPool: {
432     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
433     ID.AddInteger(CP->getAlignment());
434     ID.AddInteger(CP->getOffset());
435     if (CP->isMachineConstantPoolEntry())
436       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
437     else
438       ID.AddPointer(CP->getConstVal());
439     ID.AddInteger(CP->getTargetFlags());
440     break;
441   }
442   case ISD::TargetIndex: {
443     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
444     ID.AddInteger(TI->getIndex());
445     ID.AddInteger(TI->getOffset());
446     ID.AddInteger(TI->getTargetFlags());
447     break;
448   }
449   case ISD::LOAD: {
450     const LoadSDNode *LD = cast<LoadSDNode>(N);
451     ID.AddInteger(LD->getMemoryVT().getRawBits());
452     ID.AddInteger(LD->getRawSubclassData());
453     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
454     break;
455   }
456   case ISD::STORE: {
457     const StoreSDNode *ST = cast<StoreSDNode>(N);
458     ID.AddInteger(ST->getMemoryVT().getRawBits());
459     ID.AddInteger(ST->getRawSubclassData());
460     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
461     break;
462   }
463   case ISD::ATOMIC_CMP_SWAP:
464   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
465   case ISD::ATOMIC_SWAP:
466   case ISD::ATOMIC_LOAD_ADD:
467   case ISD::ATOMIC_LOAD_SUB:
468   case ISD::ATOMIC_LOAD_AND:
469   case ISD::ATOMIC_LOAD_OR:
470   case ISD::ATOMIC_LOAD_XOR:
471   case ISD::ATOMIC_LOAD_NAND:
472   case ISD::ATOMIC_LOAD_MIN:
473   case ISD::ATOMIC_LOAD_MAX:
474   case ISD::ATOMIC_LOAD_UMIN:
475   case ISD::ATOMIC_LOAD_UMAX:
476   case ISD::ATOMIC_LOAD:
477   case ISD::ATOMIC_STORE: {
478     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
479     ID.AddInteger(AT->getMemoryVT().getRawBits());
480     ID.AddInteger(AT->getRawSubclassData());
481     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
482     break;
483   }
484   case ISD::PREFETCH: {
485     const MemSDNode *PF = cast<MemSDNode>(N);
486     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
487     break;
488   }
489   case ISD::VECTOR_SHUFFLE: {
490     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
491     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
492          i != e; ++i)
493       ID.AddInteger(SVN->getMaskElt(i));
494     break;
495   }
496   case ISD::TargetBlockAddress:
497   case ISD::BlockAddress: {
498     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
499     ID.AddPointer(BA->getBlockAddress());
500     ID.AddInteger(BA->getOffset());
501     ID.AddInteger(BA->getTargetFlags());
502     break;
503   }
504   } // end switch (N->getOpcode())
505 
506   // Target specific memory nodes could also have address spaces to check.
507   if (N->isTargetMemoryOpcode())
508     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
509 }
510 
511 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
512 /// data.
AddNodeIDNode(FoldingSetNodeID & ID,const SDNode * N)513 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
514   AddNodeIDOpcode(ID, N->getOpcode());
515   // Add the return value info.
516   AddNodeIDValueTypes(ID, N->getVTList());
517   // Add the operand info.
518   AddNodeIDOperands(ID, N->ops());
519 
520   // Handle SDNode leafs with special info.
521   AddNodeIDCustom(ID, N);
522 }
523 
524 /// encodeMemSDNodeFlags - Generic routine for computing a value for use in
525 /// the CSE map that carries volatility, temporalness, indexing mode, and
526 /// extension/truncation information.
527 ///
528 static inline unsigned
encodeMemSDNodeFlags(int ConvType,ISD::MemIndexedMode AM,bool isVolatile,bool isNonTemporal,bool isInvariant)529 encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
530                      bool isNonTemporal, bool isInvariant) {
531   assert((ConvType & 3) == ConvType &&
532          "ConvType may not require more than 2 bits!");
533   assert((AM & 7) == AM &&
534          "AM may not require more than 3 bits!");
535   return ConvType |
536          (AM << 2) |
537          (isVolatile << 5) |
538          (isNonTemporal << 6) |
539          (isInvariant << 7);
540 }
541 
542 //===----------------------------------------------------------------------===//
543 //                              SelectionDAG Class
544 //===----------------------------------------------------------------------===//
545 
546 /// doNotCSE - Return true if CSE should not be performed for this node.
doNotCSE(SDNode * N)547 static bool doNotCSE(SDNode *N) {
548   if (N->getValueType(0) == MVT::Glue)
549     return true; // Never CSE anything that produces a flag.
550 
551   switch (N->getOpcode()) {
552   default: break;
553   case ISD::HANDLENODE:
554   case ISD::EH_LABEL:
555     return true;   // Never CSE these nodes.
556   }
557 
558   // Check that remaining values produced are not flags.
559   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
560     if (N->getValueType(i) == MVT::Glue)
561       return true; // Never CSE anything that produces a flag.
562 
563   return false;
564 }
565 
566 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
567 /// SelectionDAG.
RemoveDeadNodes()568 void SelectionDAG::RemoveDeadNodes() {
569   // Create a dummy node (which is not added to allnodes), that adds a reference
570   // to the root node, preventing it from being deleted.
571   HandleSDNode Dummy(getRoot());
572 
573   SmallVector<SDNode*, 128> DeadNodes;
574 
575   // Add all obviously-dead nodes to the DeadNodes worklist.
576   for (SDNode &Node : allnodes())
577     if (Node.use_empty())
578       DeadNodes.push_back(&Node);
579 
580   RemoveDeadNodes(DeadNodes);
581 
582   // If the root changed (e.g. it was a dead load, update the root).
583   setRoot(Dummy.getValue());
584 }
585 
586 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
587 /// given list, and any nodes that become unreachable as a result.
RemoveDeadNodes(SmallVectorImpl<SDNode * > & DeadNodes)588 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
589 
590   // Process the worklist, deleting the nodes and adding their uses to the
591   // worklist.
592   while (!DeadNodes.empty()) {
593     SDNode *N = DeadNodes.pop_back_val();
594 
595     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
596       DUL->NodeDeleted(N, nullptr);
597 
598     // Take the node out of the appropriate CSE map.
599     RemoveNodeFromCSEMaps(N);
600 
601     // Next, brutally remove the operand list.  This is safe to do, as there are
602     // no cycles in the graph.
603     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
604       SDUse &Use = *I++;
605       SDNode *Operand = Use.getNode();
606       Use.set(SDValue());
607 
608       // Now that we removed this operand, see if there are no uses of it left.
609       if (Operand->use_empty())
610         DeadNodes.push_back(Operand);
611     }
612 
613     DeallocateNode(N);
614   }
615 }
616 
RemoveDeadNode(SDNode * N)617 void SelectionDAG::RemoveDeadNode(SDNode *N){
618   SmallVector<SDNode*, 16> DeadNodes(1, N);
619 
620   // Create a dummy node that adds a reference to the root node, preventing
621   // it from being deleted.  (This matters if the root is an operand of the
622   // dead node.)
623   HandleSDNode Dummy(getRoot());
624 
625   RemoveDeadNodes(DeadNodes);
626 }
627 
DeleteNode(SDNode * N)628 void SelectionDAG::DeleteNode(SDNode *N) {
629   // First take this out of the appropriate CSE map.
630   RemoveNodeFromCSEMaps(N);
631 
632   // Finally, remove uses due to operands of this node, remove from the
633   // AllNodes list, and delete the node.
634   DeleteNodeNotInCSEMaps(N);
635 }
636 
DeleteNodeNotInCSEMaps(SDNode * N)637 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
638   assert(N->getIterator() != AllNodes.begin() &&
639          "Cannot delete the entry node!");
640   assert(N->use_empty() && "Cannot delete a node that is not dead!");
641 
642   // Drop all of the operands and decrement used node's use counts.
643   N->DropOperands();
644 
645   DeallocateNode(N);
646 }
647 
erase(const SDNode * Node)648 void SDDbgInfo::erase(const SDNode *Node) {
649   DbgValMapType::iterator I = DbgValMap.find(Node);
650   if (I == DbgValMap.end())
651     return;
652   for (auto &Val: I->second)
653     Val->setIsInvalidated();
654   DbgValMap.erase(I);
655 }
656 
DeallocateNode(SDNode * N)657 void SelectionDAG::DeallocateNode(SDNode *N) {
658   // If we have operands, deallocate them.
659   removeOperands(N);
660 
661   // Set the opcode to DELETED_NODE to help catch bugs when node
662   // memory is reallocated.
663   N->NodeType = ISD::DELETED_NODE;
664 
665   NodeAllocator.Deallocate(AllNodes.remove(N));
666 
667   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
668   // them and forget about that node.
669   DbgInfo->erase(N);
670 }
671 
672 #ifndef NDEBUG
673 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
VerifySDNode(SDNode * N)674 static void VerifySDNode(SDNode *N) {
675   switch (N->getOpcode()) {
676   default:
677     break;
678   case ISD::BUILD_PAIR: {
679     EVT VT = N->getValueType(0);
680     assert(N->getNumValues() == 1 && "Too many results!");
681     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
682            "Wrong return type!");
683     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
684     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
685            "Mismatched operand types!");
686     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
687            "Wrong operand type!");
688     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
689            "Wrong return type size");
690     break;
691   }
692   case ISD::BUILD_VECTOR: {
693     assert(N->getNumValues() == 1 && "Too many results!");
694     assert(N->getValueType(0).isVector() && "Wrong return type!");
695     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
696            "Wrong number of operands!");
697     EVT EltVT = N->getValueType(0).getVectorElementType();
698     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
699       assert((I->getValueType() == EltVT ||
700              (EltVT.isInteger() && I->getValueType().isInteger() &&
701               EltVT.bitsLE(I->getValueType()))) &&
702             "Wrong operand type!");
703       assert(I->getValueType() == N->getOperand(0).getValueType() &&
704              "Operands must all have the same type");
705     }
706     break;
707   }
708   }
709 }
710 #endif // NDEBUG
711 
712 /// \brief Insert a newly allocated node into the DAG.
713 ///
714 /// Handles insertion into the all nodes list and CSE map, as well as
715 /// verification and other common operations when a new node is allocated.
InsertNode(SDNode * N)716 void SelectionDAG::InsertNode(SDNode *N) {
717   AllNodes.push_back(N);
718 #ifndef NDEBUG
719   N->PersistentId = NextPersistentId++;
720   VerifySDNode(N);
721 #endif
722 }
723 
724 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
725 /// correspond to it.  This is useful when we're about to delete or repurpose
726 /// the node.  We don't want future request for structurally identical nodes
727 /// to return N anymore.
RemoveNodeFromCSEMaps(SDNode * N)728 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
729   bool Erased = false;
730   switch (N->getOpcode()) {
731   case ISD::HANDLENODE: return false;  // noop.
732   case ISD::CONDCODE:
733     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
734            "Cond code doesn't exist!");
735     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
736     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
737     break;
738   case ISD::ExternalSymbol:
739     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
740     break;
741   case ISD::TargetExternalSymbol: {
742     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
743     Erased = TargetExternalSymbols.erase(
744                std::pair<std::string,unsigned char>(ESN->getSymbol(),
745                                                     ESN->getTargetFlags()));
746     break;
747   }
748   case ISD::MCSymbol: {
749     auto *MCSN = cast<MCSymbolSDNode>(N);
750     Erased = MCSymbols.erase(MCSN->getMCSymbol());
751     break;
752   }
753   case ISD::VALUETYPE: {
754     EVT VT = cast<VTSDNode>(N)->getVT();
755     if (VT.isExtended()) {
756       Erased = ExtendedValueTypeNodes.erase(VT);
757     } else {
758       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
759       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
760     }
761     break;
762   }
763   default:
764     // Remove it from the CSE Map.
765     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
766     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
767     Erased = CSEMap.RemoveNode(N);
768     break;
769   }
770 #ifndef NDEBUG
771   // Verify that the node was actually in one of the CSE maps, unless it has a
772   // flag result (which cannot be CSE'd) or is one of the special cases that are
773   // not subject to CSE.
774   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
775       !N->isMachineOpcode() && !doNotCSE(N)) {
776     N->dump(this);
777     dbgs() << "\n";
778     llvm_unreachable("Node is not in map!");
779   }
780 #endif
781   return Erased;
782 }
783 
784 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
785 /// maps and modified in place. Add it back to the CSE maps, unless an identical
786 /// node already exists, in which case transfer all its users to the existing
787 /// node. This transfer can potentially trigger recursive merging.
788 ///
789 void
AddModifiedNodeToCSEMaps(SDNode * N)790 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
791   // For node types that aren't CSE'd, just act as if no identical node
792   // already exists.
793   if (!doNotCSE(N)) {
794     SDNode *Existing = CSEMap.GetOrInsertNode(N);
795     if (Existing != N) {
796       // If there was already an existing matching node, use ReplaceAllUsesWith
797       // to replace the dead one with the existing one.  This can cause
798       // recursive merging of other unrelated nodes down the line.
799       ReplaceAllUsesWith(N, Existing);
800 
801       // N is now dead. Inform the listeners and delete it.
802       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
803         DUL->NodeDeleted(N, Existing);
804       DeleteNodeNotInCSEMaps(N);
805       return;
806     }
807   }
808 
809   // If the node doesn't already exist, we updated it.  Inform listeners.
810   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
811     DUL->NodeUpdated(N);
812 }
813 
814 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
815 /// were replaced with those specified.  If this node is never memoized,
816 /// return null, otherwise return a pointer to the slot it would take.  If a
817 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,SDValue Op,void * & InsertPos)818 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
819                                            void *&InsertPos) {
820   if (doNotCSE(N))
821     return nullptr;
822 
823   SDValue Ops[] = { Op };
824   FoldingSetNodeID ID;
825   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
826   AddNodeIDCustom(ID, N);
827   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
828   if (Node)
829     if (const SDNodeFlags *Flags = N->getFlags())
830       Node->intersectFlagsWith(Flags);
831   return Node;
832 }
833 
834 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
835 /// were replaced with those specified.  If this node is never memoized,
836 /// return null, otherwise return a pointer to the slot it would take.  If a
837 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,SDValue Op1,SDValue Op2,void * & InsertPos)838 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
839                                            SDValue Op1, SDValue Op2,
840                                            void *&InsertPos) {
841   if (doNotCSE(N))
842     return nullptr;
843 
844   SDValue Ops[] = { Op1, Op2 };
845   FoldingSetNodeID ID;
846   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
847   AddNodeIDCustom(ID, N);
848   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
849   if (Node)
850     if (const SDNodeFlags *Flags = N->getFlags())
851       Node->intersectFlagsWith(Flags);
852   return Node;
853 }
854 
855 
856 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
857 /// were replaced with those specified.  If this node is never memoized,
858 /// return null, otherwise return a pointer to the slot it would take.  If a
859 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,ArrayRef<SDValue> Ops,void * & InsertPos)860 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
861                                            void *&InsertPos) {
862   if (doNotCSE(N))
863     return nullptr;
864 
865   FoldingSetNodeID ID;
866   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
867   AddNodeIDCustom(ID, N);
868   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
869   if (Node)
870     if (const SDNodeFlags *Flags = N->getFlags())
871       Node->intersectFlagsWith(Flags);
872   return Node;
873 }
874 
getEVTAlignment(EVT VT) const875 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
876   Type *Ty = VT == MVT::iPTR ?
877                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
878                    VT.getTypeForEVT(*getContext());
879 
880   return getDataLayout().getABITypeAlignment(Ty);
881 }
882 
883 // EntryNode could meaningfully have debug info if we can find it...
SelectionDAG(const TargetMachine & tm,CodeGenOpt::Level OL)884 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
885     : TM(tm), TSI(nullptr), TLI(nullptr), OptLevel(OL),
886       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
887       Root(getEntryNode()), NewNodesMustHaveLegalTypes(false),
888       UpdateListeners(nullptr) {
889   InsertNode(&EntryNode);
890   DbgInfo = new SDDbgInfo();
891 }
892 
init(MachineFunction & mf)893 void SelectionDAG::init(MachineFunction &mf) {
894   MF = &mf;
895   TLI = getSubtarget().getTargetLowering();
896   TSI = getSubtarget().getSelectionDAGInfo();
897   Context = &mf.getFunction()->getContext();
898 }
899 
~SelectionDAG()900 SelectionDAG::~SelectionDAG() {
901   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
902   allnodes_clear();
903   OperandRecycler.clear(OperandAllocator);
904   delete DbgInfo;
905 }
906 
allnodes_clear()907 void SelectionDAG::allnodes_clear() {
908   assert(&*AllNodes.begin() == &EntryNode);
909   AllNodes.remove(AllNodes.begin());
910   while (!AllNodes.empty())
911     DeallocateNode(&AllNodes.front());
912 #ifndef NDEBUG
913   NextPersistentId = 0;
914 #endif
915 }
916 
GetBinarySDNode(unsigned Opcode,const SDLoc & DL,SDVTList VTs,SDValue N1,SDValue N2,const SDNodeFlags * Flags)917 SDNode *SelectionDAG::GetBinarySDNode(unsigned Opcode, const SDLoc &DL,
918                                       SDVTList VTs, SDValue N1, SDValue N2,
919                                       const SDNodeFlags *Flags) {
920   SDValue Ops[] = {N1, N2};
921 
922   if (isBinOpWithFlags(Opcode)) {
923     // If no flags were passed in, use a default flags object.
924     SDNodeFlags F;
925     if (Flags == nullptr)
926       Flags = &F;
927 
928     auto *FN = newSDNode<BinaryWithFlagsSDNode>(Opcode, DL.getIROrder(),
929                                                 DL.getDebugLoc(), VTs, *Flags);
930     createOperands(FN, Ops);
931 
932     return FN;
933   }
934 
935   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
936   createOperands(N, Ops);
937   return N;
938 }
939 
FindNodeOrInsertPos(const FoldingSetNodeID & ID,void * & InsertPos)940 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
941                                           void *&InsertPos) {
942   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
943   if (N) {
944     switch (N->getOpcode()) {
945     default: break;
946     case ISD::Constant:
947     case ISD::ConstantFP:
948       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
949                        "debug location.  Use another overload.");
950     }
951   }
952   return N;
953 }
954 
FindNodeOrInsertPos(const FoldingSetNodeID & ID,const SDLoc & DL,void * & InsertPos)955 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
956                                           const SDLoc &DL, void *&InsertPos) {
957   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
958   if (N) {
959     switch (N->getOpcode()) {
960     case ISD::Constant:
961     case ISD::ConstantFP:
962       // Erase debug location from the node if the node is used at several
963       // different places. Do not propagate one location to all uses as it
964       // will cause a worse single stepping debugging experience.
965       if (N->getDebugLoc() != DL.getDebugLoc())
966         N->setDebugLoc(DebugLoc());
967       break;
968     default:
969       // When the node's point of use is located earlier in the instruction
970       // sequence than its prior point of use, update its debug info to the
971       // earlier location.
972       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
973         N->setDebugLoc(DL.getDebugLoc());
974       break;
975     }
976   }
977   return N;
978 }
979 
clear()980 void SelectionDAG::clear() {
981   allnodes_clear();
982   OperandRecycler.clear(OperandAllocator);
983   OperandAllocator.Reset();
984   CSEMap.clear();
985 
986   ExtendedValueTypeNodes.clear();
987   ExternalSymbols.clear();
988   TargetExternalSymbols.clear();
989   MCSymbols.clear();
990   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
991             static_cast<CondCodeSDNode*>(nullptr));
992   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
993             static_cast<SDNode*>(nullptr));
994 
995   EntryNode.UseList = nullptr;
996   InsertNode(&EntryNode);
997   Root = getEntryNode();
998   DbgInfo->clear();
999 }
1000 
getAnyExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1001 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1002   return VT.bitsGT(Op.getValueType()) ?
1003     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1004     getNode(ISD::TRUNCATE, DL, VT, Op);
1005 }
1006 
getSExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1007 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1008   return VT.bitsGT(Op.getValueType()) ?
1009     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1010     getNode(ISD::TRUNCATE, DL, VT, Op);
1011 }
1012 
getZExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1013 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1014   return VT.bitsGT(Op.getValueType()) ?
1015     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1016     getNode(ISD::TRUNCATE, DL, VT, Op);
1017 }
1018 
getBoolExtOrTrunc(SDValue Op,const SDLoc & SL,EVT VT,EVT OpVT)1019 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1020                                         EVT OpVT) {
1021   if (VT.bitsLE(Op.getValueType()))
1022     return getNode(ISD::TRUNCATE, SL, VT, Op);
1023 
1024   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1025   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1026 }
1027 
getZeroExtendInReg(SDValue Op,const SDLoc & DL,EVT VT)1028 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1029   assert(!VT.isVector() &&
1030          "getZeroExtendInReg should use the vector element type instead of "
1031          "the vector type!");
1032   if (Op.getValueType() == VT) return Op;
1033   unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1034   APInt Imm = APInt::getLowBitsSet(BitWidth,
1035                                    VT.getSizeInBits());
1036   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1037                  getConstant(Imm, DL, Op.getValueType()));
1038 }
1039 
getAnyExtendVectorInReg(SDValue Op,const SDLoc & DL,EVT VT)1040 SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL,
1041                                               EVT VT) {
1042   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1043   assert(VT.getSizeInBits() == Op.getValueType().getSizeInBits() &&
1044          "The sizes of the input and result must match in order to perform the "
1045          "extend in-register.");
1046   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1047          "The destination vector type must have fewer lanes than the input.");
1048   return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op);
1049 }
1050 
getSignExtendVectorInReg(SDValue Op,const SDLoc & DL,EVT VT)1051 SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL,
1052                                                EVT VT) {
1053   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1054   assert(VT.getSizeInBits() == Op.getValueType().getSizeInBits() &&
1055          "The sizes of the input and result must match in order to perform the "
1056          "extend in-register.");
1057   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1058          "The destination vector type must have fewer lanes than the input.");
1059   return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op);
1060 }
1061 
getZeroExtendVectorInReg(SDValue Op,const SDLoc & DL,EVT VT)1062 SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL,
1063                                                EVT VT) {
1064   assert(VT.isVector() && "This DAG node is restricted to vector types.");
1065   assert(VT.getSizeInBits() == Op.getValueType().getSizeInBits() &&
1066          "The sizes of the input and result must match in order to perform the "
1067          "extend in-register.");
1068   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
1069          "The destination vector type must have fewer lanes than the input.");
1070   return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op);
1071 }
1072 
1073 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1074 ///
getNOT(const SDLoc & DL,SDValue Val,EVT VT)1075 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1076   EVT EltVT = VT.getScalarType();
1077   SDValue NegOne =
1078     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1079   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1080 }
1081 
getLogicalNOT(const SDLoc & DL,SDValue Val,EVT VT)1082 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1083   EVT EltVT = VT.getScalarType();
1084   SDValue TrueValue;
1085   switch (TLI->getBooleanContents(VT)) {
1086     case TargetLowering::ZeroOrOneBooleanContent:
1087     case TargetLowering::UndefinedBooleanContent:
1088       TrueValue = getConstant(1, DL, VT);
1089       break;
1090     case TargetLowering::ZeroOrNegativeOneBooleanContent:
1091       TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL,
1092                               VT);
1093       break;
1094   }
1095   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1096 }
1097 
getConstant(uint64_t Val,const SDLoc & DL,EVT VT,bool isT,bool isO)1098 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1099                                   bool isT, bool isO) {
1100   EVT EltVT = VT.getScalarType();
1101   assert((EltVT.getSizeInBits() >= 64 ||
1102          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1103          "getConstant with a uint64_t value that doesn't fit in the type!");
1104   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1105 }
1106 
getConstant(const APInt & Val,const SDLoc & DL,EVT VT,bool isT,bool isO)1107 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1108                                   bool isT, bool isO) {
1109   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1110 }
1111 
getConstant(const ConstantInt & Val,const SDLoc & DL,EVT VT,bool isT,bool isO)1112 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1113                                   EVT VT, bool isT, bool isO) {
1114   assert(VT.isInteger() && "Cannot create FP integer constant!");
1115 
1116   EVT EltVT = VT.getScalarType();
1117   const ConstantInt *Elt = &Val;
1118 
1119   // In some cases the vector type is legal but the element type is illegal and
1120   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1121   // inserted value (the type does not need to match the vector element type).
1122   // Any extra bits introduced will be truncated away.
1123   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1124       TargetLowering::TypePromoteInteger) {
1125    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1126    APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits());
1127    Elt = ConstantInt::get(*getContext(), NewVal);
1128   }
1129   // In other cases the element type is illegal and needs to be expanded, for
1130   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1131   // the value into n parts and use a vector type with n-times the elements.
1132   // Then bitcast to the type requested.
1133   // Legalizing constants too early makes the DAGCombiner's job harder so we
1134   // only legalize if the DAG tells us we must produce legal types.
1135   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1136            TLI->getTypeAction(*getContext(), EltVT) ==
1137            TargetLowering::TypeExpandInteger) {
1138     const APInt &NewVal = Elt->getValue();
1139     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1140     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1141     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1142     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1143 
1144     // Check the temporary vector is the correct size. If this fails then
1145     // getTypeToTransformTo() probably returned a type whose size (in bits)
1146     // isn't a power-of-2 factor of the requested type size.
1147     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1148 
1149     SmallVector<SDValue, 2> EltParts;
1150     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1151       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1152                                            .trunc(ViaEltSizeInBits), DL,
1153                                      ViaEltVT, isT, isO));
1154     }
1155 
1156     // EltParts is currently in little endian order. If we actually want
1157     // big-endian order then reverse it now.
1158     if (getDataLayout().isBigEndian())
1159       std::reverse(EltParts.begin(), EltParts.end());
1160 
1161     // The elements must be reversed when the element order is different
1162     // to the endianness of the elements (because the BITCAST is itself a
1163     // vector shuffle in this situation). However, we do not need any code to
1164     // perform this reversal because getConstant() is producing a vector
1165     // splat.
1166     // This situation occurs in MIPS MSA.
1167 
1168     SmallVector<SDValue, 8> Ops;
1169     for (unsigned i = 0; i < VT.getVectorNumElements(); ++i)
1170       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1171 
1172     SDValue Result = getNode(ISD::BITCAST, DL, VT,
1173                              getNode(ISD::BUILD_VECTOR, DL, ViaVecVT, Ops));
1174     return Result;
1175   }
1176 
1177   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1178          "APInt size does not match type size!");
1179   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1180   FoldingSetNodeID ID;
1181   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1182   ID.AddPointer(Elt);
1183   ID.AddBoolean(isO);
1184   void *IP = nullptr;
1185   SDNode *N = nullptr;
1186   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1187     if (!VT.isVector())
1188       return SDValue(N, 0);
1189 
1190   if (!N) {
1191     N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT);
1192     CSEMap.InsertNode(N, IP);
1193     InsertNode(N);
1194   }
1195 
1196   SDValue Result(N, 0);
1197   if (VT.isVector())
1198     Result = getSplatBuildVector(VT, DL, Result);
1199   return Result;
1200 }
1201 
getIntPtrConstant(uint64_t Val,const SDLoc & DL,bool isTarget)1202 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1203                                         bool isTarget) {
1204   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1205 }
1206 
getConstantFP(const APFloat & V,const SDLoc & DL,EVT VT,bool isTarget)1207 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1208                                     bool isTarget) {
1209   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1210 }
1211 
getConstantFP(const ConstantFP & V,const SDLoc & DL,EVT VT,bool isTarget)1212 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1213                                     EVT VT, bool isTarget) {
1214   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1215 
1216   EVT EltVT = VT.getScalarType();
1217 
1218   // Do the map lookup using the actual bit pattern for the floating point
1219   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1220   // we don't have issues with SNANs.
1221   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1222   FoldingSetNodeID ID;
1223   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1224   ID.AddPointer(&V);
1225   void *IP = nullptr;
1226   SDNode *N = nullptr;
1227   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1228     if (!VT.isVector())
1229       return SDValue(N, 0);
1230 
1231   if (!N) {
1232     N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT);
1233     CSEMap.InsertNode(N, IP);
1234     InsertNode(N);
1235   }
1236 
1237   SDValue Result(N, 0);
1238   if (VT.isVector())
1239     Result = getSplatBuildVector(VT, DL, Result);
1240   return Result;
1241 }
1242 
getConstantFP(double Val,const SDLoc & DL,EVT VT,bool isTarget)1243 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1244                                     bool isTarget) {
1245   EVT EltVT = VT.getScalarType();
1246   if (EltVT == MVT::f32)
1247     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1248   else if (EltVT == MVT::f64)
1249     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1250   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1251            EltVT == MVT::f16) {
1252     bool Ignored;
1253     APFloat APF = APFloat(Val);
1254     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1255                 &Ignored);
1256     return getConstantFP(APF, DL, VT, isTarget);
1257   } else
1258     llvm_unreachable("Unsupported type in getConstantFP");
1259 }
1260 
getGlobalAddress(const GlobalValue * GV,const SDLoc & DL,EVT VT,int64_t Offset,bool isTargetGA,unsigned char TargetFlags)1261 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1262                                        EVT VT, int64_t Offset, bool isTargetGA,
1263                                        unsigned char TargetFlags) {
1264   assert((TargetFlags == 0 || isTargetGA) &&
1265          "Cannot set target flags on target-independent globals");
1266 
1267   // Truncate (with sign-extension) the offset value to the pointer size.
1268   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1269   if (BitWidth < 64)
1270     Offset = SignExtend64(Offset, BitWidth);
1271 
1272   unsigned Opc;
1273   if (GV->isThreadLocal())
1274     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1275   else
1276     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1277 
1278   FoldingSetNodeID ID;
1279   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1280   ID.AddPointer(GV);
1281   ID.AddInteger(Offset);
1282   ID.AddInteger(TargetFlags);
1283   ID.AddInteger(GV->getType()->getAddressSpace());
1284   void *IP = nullptr;
1285   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1286     return SDValue(E, 0);
1287 
1288   auto *N = newSDNode<GlobalAddressSDNode>(
1289       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1290   CSEMap.InsertNode(N, IP);
1291     InsertNode(N);
1292   return SDValue(N, 0);
1293 }
1294 
getFrameIndex(int FI,EVT VT,bool isTarget)1295 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1296   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1297   FoldingSetNodeID ID;
1298   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1299   ID.AddInteger(FI);
1300   void *IP = nullptr;
1301   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1302     return SDValue(E, 0);
1303 
1304   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1305   CSEMap.InsertNode(N, IP);
1306   InsertNode(N);
1307   return SDValue(N, 0);
1308 }
1309 
getJumpTable(int JTI,EVT VT,bool isTarget,unsigned char TargetFlags)1310 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1311                                    unsigned char TargetFlags) {
1312   assert((TargetFlags == 0 || isTarget) &&
1313          "Cannot set target flags on target-independent jump tables");
1314   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1315   FoldingSetNodeID ID;
1316   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1317   ID.AddInteger(JTI);
1318   ID.AddInteger(TargetFlags);
1319   void *IP = nullptr;
1320   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1321     return SDValue(E, 0);
1322 
1323   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1324   CSEMap.InsertNode(N, IP);
1325   InsertNode(N);
1326   return SDValue(N, 0);
1327 }
1328 
getConstantPool(const Constant * C,EVT VT,unsigned Alignment,int Offset,bool isTarget,unsigned char TargetFlags)1329 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1330                                       unsigned Alignment, int Offset,
1331                                       bool isTarget,
1332                                       unsigned char TargetFlags) {
1333   assert((TargetFlags == 0 || isTarget) &&
1334          "Cannot set target flags on target-independent globals");
1335   if (Alignment == 0)
1336     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1337   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1338   FoldingSetNodeID ID;
1339   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1340   ID.AddInteger(Alignment);
1341   ID.AddInteger(Offset);
1342   ID.AddPointer(C);
1343   ID.AddInteger(TargetFlags);
1344   void *IP = nullptr;
1345   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1346     return SDValue(E, 0);
1347 
1348   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1349                                           TargetFlags);
1350   CSEMap.InsertNode(N, IP);
1351   InsertNode(N);
1352   return SDValue(N, 0);
1353 }
1354 
1355 
getConstantPool(MachineConstantPoolValue * C,EVT VT,unsigned Alignment,int Offset,bool isTarget,unsigned char TargetFlags)1356 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1357                                       unsigned Alignment, int Offset,
1358                                       bool isTarget,
1359                                       unsigned char TargetFlags) {
1360   assert((TargetFlags == 0 || isTarget) &&
1361          "Cannot set target flags on target-independent globals");
1362   if (Alignment == 0)
1363     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1364   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1365   FoldingSetNodeID ID;
1366   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1367   ID.AddInteger(Alignment);
1368   ID.AddInteger(Offset);
1369   C->addSelectionDAGCSEId(ID);
1370   ID.AddInteger(TargetFlags);
1371   void *IP = nullptr;
1372   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1373     return SDValue(E, 0);
1374 
1375   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1376                                           TargetFlags);
1377   CSEMap.InsertNode(N, IP);
1378   InsertNode(N);
1379   return SDValue(N, 0);
1380 }
1381 
getTargetIndex(int Index,EVT VT,int64_t Offset,unsigned char TargetFlags)1382 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1383                                      unsigned char TargetFlags) {
1384   FoldingSetNodeID ID;
1385   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1386   ID.AddInteger(Index);
1387   ID.AddInteger(Offset);
1388   ID.AddInteger(TargetFlags);
1389   void *IP = nullptr;
1390   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1391     return SDValue(E, 0);
1392 
1393   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1394   CSEMap.InsertNode(N, IP);
1395   InsertNode(N);
1396   return SDValue(N, 0);
1397 }
1398 
getBasicBlock(MachineBasicBlock * MBB)1399 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1400   FoldingSetNodeID ID;
1401   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1402   ID.AddPointer(MBB);
1403   void *IP = nullptr;
1404   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1405     return SDValue(E, 0);
1406 
1407   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1408   CSEMap.InsertNode(N, IP);
1409   InsertNode(N);
1410   return SDValue(N, 0);
1411 }
1412 
getValueType(EVT VT)1413 SDValue SelectionDAG::getValueType(EVT VT) {
1414   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1415       ValueTypeNodes.size())
1416     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1417 
1418   SDNode *&N = VT.isExtended() ?
1419     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1420 
1421   if (N) return SDValue(N, 0);
1422   N = newSDNode<VTSDNode>(VT);
1423   InsertNode(N);
1424   return SDValue(N, 0);
1425 }
1426 
getExternalSymbol(const char * Sym,EVT VT)1427 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1428   SDNode *&N = ExternalSymbols[Sym];
1429   if (N) return SDValue(N, 0);
1430   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1431   InsertNode(N);
1432   return SDValue(N, 0);
1433 }
1434 
getMCSymbol(MCSymbol * Sym,EVT VT)1435 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1436   SDNode *&N = MCSymbols[Sym];
1437   if (N)
1438     return SDValue(N, 0);
1439   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1440   InsertNode(N);
1441   return SDValue(N, 0);
1442 }
1443 
getTargetExternalSymbol(const char * Sym,EVT VT,unsigned char TargetFlags)1444 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1445                                               unsigned char TargetFlags) {
1446   SDNode *&N =
1447     TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1448                                                                TargetFlags)];
1449   if (N) return SDValue(N, 0);
1450   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1451   InsertNode(N);
1452   return SDValue(N, 0);
1453 }
1454 
getCondCode(ISD::CondCode Cond)1455 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1456   if ((unsigned)Cond >= CondCodeNodes.size())
1457     CondCodeNodes.resize(Cond+1);
1458 
1459   if (!CondCodeNodes[Cond]) {
1460     auto *N = newSDNode<CondCodeSDNode>(Cond);
1461     CondCodeNodes[Cond] = N;
1462     InsertNode(N);
1463   }
1464 
1465   return SDValue(CondCodeNodes[Cond], 0);
1466 }
1467 
1468 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1469 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
commuteShuffle(SDValue & N1,SDValue & N2,MutableArrayRef<int> M)1470 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1471   std::swap(N1, N2);
1472   ShuffleVectorSDNode::commuteMask(M);
1473 }
1474 
getVectorShuffle(EVT VT,const SDLoc & dl,SDValue N1,SDValue N2,ArrayRef<int> Mask)1475 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1476                                        SDValue N2, ArrayRef<int> Mask) {
1477   assert(VT.getVectorNumElements() == Mask.size() &&
1478            "Must have the same number of vector elements as mask elements!");
1479   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1480          "Invalid VECTOR_SHUFFLE");
1481 
1482   // Canonicalize shuffle undef, undef -> undef
1483   if (N1.isUndef() && N2.isUndef())
1484     return getUNDEF(VT);
1485 
1486   // Validate that all indices in Mask are within the range of the elements
1487   // input to the shuffle.
1488   int NElts = Mask.size();
1489   assert(all_of(Mask, [&](int M) { return M < (NElts * 2); }) &&
1490          "Index out of range");
1491 
1492   // Copy the mask so we can do any needed cleanup.
1493   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1494 
1495   // Canonicalize shuffle v, v -> v, undef
1496   if (N1 == N2) {
1497     N2 = getUNDEF(VT);
1498     for (int i = 0; i != NElts; ++i)
1499       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1500   }
1501 
1502   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1503   if (N1.isUndef())
1504     commuteShuffle(N1, N2, MaskVec);
1505 
1506   // If shuffling a splat, try to blend the splat instead. We do this here so
1507   // that even when this arises during lowering we don't have to re-handle it.
1508   auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1509     BitVector UndefElements;
1510     SDValue Splat = BV->getSplatValue(&UndefElements);
1511     if (!Splat)
1512       return;
1513 
1514     for (int i = 0; i < NElts; ++i) {
1515       if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1516         continue;
1517 
1518       // If this input comes from undef, mark it as such.
1519       if (UndefElements[MaskVec[i] - Offset]) {
1520         MaskVec[i] = -1;
1521         continue;
1522       }
1523 
1524       // If we can blend a non-undef lane, use that instead.
1525       if (!UndefElements[i])
1526         MaskVec[i] = i + Offset;
1527     }
1528   };
1529   if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1530     BlendSplat(N1BV, 0);
1531   if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1532     BlendSplat(N2BV, NElts);
1533 
1534   // Canonicalize all index into lhs, -> shuffle lhs, undef
1535   // Canonicalize all index into rhs, -> shuffle rhs, undef
1536   bool AllLHS = true, AllRHS = true;
1537   bool N2Undef = N2.isUndef();
1538   for (int i = 0; i != NElts; ++i) {
1539     if (MaskVec[i] >= NElts) {
1540       if (N2Undef)
1541         MaskVec[i] = -1;
1542       else
1543         AllLHS = false;
1544     } else if (MaskVec[i] >= 0) {
1545       AllRHS = false;
1546     }
1547   }
1548   if (AllLHS && AllRHS)
1549     return getUNDEF(VT);
1550   if (AllLHS && !N2Undef)
1551     N2 = getUNDEF(VT);
1552   if (AllRHS) {
1553     N1 = getUNDEF(VT);
1554     commuteShuffle(N1, N2, MaskVec);
1555   }
1556   // Reset our undef status after accounting for the mask.
1557   N2Undef = N2.isUndef();
1558   // Re-check whether both sides ended up undef.
1559   if (N1.isUndef() && N2Undef)
1560     return getUNDEF(VT);
1561 
1562   // If Identity shuffle return that node.
1563   bool Identity = true, AllSame = true;
1564   for (int i = 0; i != NElts; ++i) {
1565     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1566     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1567   }
1568   if (Identity && NElts)
1569     return N1;
1570 
1571   // Shuffling a constant splat doesn't change the result.
1572   if (N2Undef) {
1573     SDValue V = N1;
1574 
1575     // Look through any bitcasts. We check that these don't change the number
1576     // (and size) of elements and just changes their types.
1577     while (V.getOpcode() == ISD::BITCAST)
1578       V = V->getOperand(0);
1579 
1580     // A splat should always show up as a build vector node.
1581     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1582       BitVector UndefElements;
1583       SDValue Splat = BV->getSplatValue(&UndefElements);
1584       // If this is a splat of an undef, shuffling it is also undef.
1585       if (Splat && Splat.isUndef())
1586         return getUNDEF(VT);
1587 
1588       bool SameNumElts =
1589           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1590 
1591       // We only have a splat which can skip shuffles if there is a splatted
1592       // value and no undef lanes rearranged by the shuffle.
1593       if (Splat && UndefElements.none()) {
1594         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1595         // number of elements match or the value splatted is a zero constant.
1596         if (SameNumElts)
1597           return N1;
1598         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1599           if (C->isNullValue())
1600             return N1;
1601       }
1602 
1603       // If the shuffle itself creates a splat, build the vector directly.
1604       if (AllSame && SameNumElts) {
1605         EVT BuildVT = BV->getValueType(0);
1606         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1607         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1608 
1609         // We may have jumped through bitcasts, so the type of the
1610         // BUILD_VECTOR may not match the type of the shuffle.
1611         if (BuildVT != VT)
1612           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1613         return NewBV;
1614       }
1615     }
1616   }
1617 
1618   FoldingSetNodeID ID;
1619   SDValue Ops[2] = { N1, N2 };
1620   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1621   for (int i = 0; i != NElts; ++i)
1622     ID.AddInteger(MaskVec[i]);
1623 
1624   void* IP = nullptr;
1625   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1626     return SDValue(E, 0);
1627 
1628   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1629   // SDNode doesn't have access to it.  This memory will be "leaked" when
1630   // the node is deallocated, but recovered when the NodeAllocator is released.
1631   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1632   std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc);
1633 
1634   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1635                                            dl.getDebugLoc(), MaskAlloc);
1636   createOperands(N, Ops);
1637 
1638   CSEMap.InsertNode(N, IP);
1639   InsertNode(N);
1640   return SDValue(N, 0);
1641 }
1642 
getCommutedVectorShuffle(const ShuffleVectorSDNode & SV)1643 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1644   MVT VT = SV.getSimpleValueType(0);
1645   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1646   ShuffleVectorSDNode::commuteMask(MaskVec);
1647 
1648   SDValue Op0 = SV.getOperand(0);
1649   SDValue Op1 = SV.getOperand(1);
1650   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1651 }
1652 
getConvertRndSat(EVT VT,const SDLoc & dl,SDValue Val,SDValue DTy,SDValue STy,SDValue Rnd,SDValue Sat,ISD::CvtCode Code)1653 SDValue SelectionDAG::getConvertRndSat(EVT VT, const SDLoc &dl, SDValue Val,
1654                                        SDValue DTy, SDValue STy, SDValue Rnd,
1655                                        SDValue Sat, ISD::CvtCode Code) {
1656   // If the src and dest types are the same and the conversion is between
1657   // integer types of the same sign or two floats, no conversion is necessary.
1658   if (DTy == STy &&
1659       (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1660     return Val;
1661 
1662   FoldingSetNodeID ID;
1663   SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1664   AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), Ops);
1665   void* IP = nullptr;
1666   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1667     return SDValue(E, 0);
1668 
1669   auto *N =
1670       newSDNode<CvtRndSatSDNode>(VT, dl.getIROrder(), dl.getDebugLoc(), Code);
1671   createOperands(N, Ops);
1672 
1673   CSEMap.InsertNode(N, IP);
1674   InsertNode(N);
1675   return SDValue(N, 0);
1676 }
1677 
getRegister(unsigned RegNo,EVT VT)1678 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1679   FoldingSetNodeID ID;
1680   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1681   ID.AddInteger(RegNo);
1682   void *IP = nullptr;
1683   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1684     return SDValue(E, 0);
1685 
1686   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1687   CSEMap.InsertNode(N, IP);
1688   InsertNode(N);
1689   return SDValue(N, 0);
1690 }
1691 
getRegisterMask(const uint32_t * RegMask)1692 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1693   FoldingSetNodeID ID;
1694   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1695   ID.AddPointer(RegMask);
1696   void *IP = nullptr;
1697   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1698     return SDValue(E, 0);
1699 
1700   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1701   CSEMap.InsertNode(N, IP);
1702   InsertNode(N);
1703   return SDValue(N, 0);
1704 }
1705 
getEHLabel(const SDLoc & dl,SDValue Root,MCSymbol * Label)1706 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1707                                  MCSymbol *Label) {
1708   FoldingSetNodeID ID;
1709   SDValue Ops[] = { Root };
1710   AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), Ops);
1711   ID.AddPointer(Label);
1712   void *IP = nullptr;
1713   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1714     return SDValue(E, 0);
1715 
1716   auto *N = newSDNode<EHLabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label);
1717   createOperands(N, Ops);
1718 
1719   CSEMap.InsertNode(N, IP);
1720   InsertNode(N);
1721   return SDValue(N, 0);
1722 }
1723 
getBlockAddress(const BlockAddress * BA,EVT VT,int64_t Offset,bool isTarget,unsigned char TargetFlags)1724 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1725                                       int64_t Offset,
1726                                       bool isTarget,
1727                                       unsigned char TargetFlags) {
1728   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1729 
1730   FoldingSetNodeID ID;
1731   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1732   ID.AddPointer(BA);
1733   ID.AddInteger(Offset);
1734   ID.AddInteger(TargetFlags);
1735   void *IP = nullptr;
1736   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1737     return SDValue(E, 0);
1738 
1739   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1740   CSEMap.InsertNode(N, IP);
1741   InsertNode(N);
1742   return SDValue(N, 0);
1743 }
1744 
getSrcValue(const Value * V)1745 SDValue SelectionDAG::getSrcValue(const Value *V) {
1746   assert((!V || V->getType()->isPointerTy()) &&
1747          "SrcValue is not a pointer?");
1748 
1749   FoldingSetNodeID ID;
1750   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1751   ID.AddPointer(V);
1752 
1753   void *IP = nullptr;
1754   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1755     return SDValue(E, 0);
1756 
1757   auto *N = newSDNode<SrcValueSDNode>(V);
1758   CSEMap.InsertNode(N, IP);
1759   InsertNode(N);
1760   return SDValue(N, 0);
1761 }
1762 
getMDNode(const MDNode * MD)1763 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1764   FoldingSetNodeID ID;
1765   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1766   ID.AddPointer(MD);
1767 
1768   void *IP = nullptr;
1769   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1770     return SDValue(E, 0);
1771 
1772   auto *N = newSDNode<MDNodeSDNode>(MD);
1773   CSEMap.InsertNode(N, IP);
1774   InsertNode(N);
1775   return SDValue(N, 0);
1776 }
1777 
getBitcast(EVT VT,SDValue V)1778 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1779   if (VT == V.getValueType())
1780     return V;
1781 
1782   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1783 }
1784 
getAddrSpaceCast(const SDLoc & dl,EVT VT,SDValue Ptr,unsigned SrcAS,unsigned DestAS)1785 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1786                                        unsigned SrcAS, unsigned DestAS) {
1787   SDValue Ops[] = {Ptr};
1788   FoldingSetNodeID ID;
1789   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1790   ID.AddInteger(SrcAS);
1791   ID.AddInteger(DestAS);
1792 
1793   void *IP = nullptr;
1794   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1795     return SDValue(E, 0);
1796 
1797   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1798                                            VT, SrcAS, DestAS);
1799   createOperands(N, Ops);
1800 
1801   CSEMap.InsertNode(N, IP);
1802   InsertNode(N);
1803   return SDValue(N, 0);
1804 }
1805 
1806 /// getShiftAmountOperand - Return the specified value casted to
1807 /// the target's desired shift amount type.
getShiftAmountOperand(EVT LHSTy,SDValue Op)1808 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1809   EVT OpTy = Op.getValueType();
1810   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1811   if (OpTy == ShTy || OpTy.isVector()) return Op;
1812 
1813   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1814 }
1815 
expandVAArg(SDNode * Node)1816 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1817   SDLoc dl(Node);
1818   const TargetLowering &TLI = getTargetLoweringInfo();
1819   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1820   EVT VT = Node->getValueType(0);
1821   SDValue Tmp1 = Node->getOperand(0);
1822   SDValue Tmp2 = Node->getOperand(1);
1823   unsigned Align = Node->getConstantOperandVal(3);
1824 
1825   SDValue VAListLoad =
1826     getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, Tmp2,
1827             MachinePointerInfo(V), false, false, false, 0);
1828   SDValue VAList = VAListLoad;
1829 
1830   if (Align > TLI.getMinStackArgumentAlignment()) {
1831     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
1832 
1833     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1834                      getConstant(Align - 1, dl, VAList.getValueType()));
1835 
1836     VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1837                      getConstant(-(int64_t)Align, dl, VAList.getValueType()));
1838   }
1839 
1840   // Increment the pointer, VAList, to the next vaarg
1841   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1842                  getConstant(getDataLayout().getTypeAllocSize(
1843                                                VT.getTypeForEVT(*getContext())),
1844                              dl, VAList.getValueType()));
1845   // Store the incremented VAList to the legalized pointer
1846   Tmp1 = getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2,
1847                   MachinePointerInfo(V), false, false, 0);
1848   // Load the actual argument out of the pointer VAList
1849   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo(),
1850                  false, false, false, 0);
1851 }
1852 
expandVACopy(SDNode * Node)1853 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1854   SDLoc dl(Node);
1855   const TargetLowering &TLI = getTargetLoweringInfo();
1856   // This defaults to loading a pointer from the input and storing it to the
1857   // output, returning the chain.
1858   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1859   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1860   SDValue Tmp1 = getLoad(TLI.getPointerTy(getDataLayout()), dl,
1861                          Node->getOperand(0), Node->getOperand(2),
1862                          MachinePointerInfo(VS), false, false, false, 0);
1863   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1864                   MachinePointerInfo(VD), false, false, 0);
1865 }
1866 
CreateStackTemporary(EVT VT,unsigned minAlign)1867 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1868   MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1869   unsigned ByteSize = VT.getStoreSize();
1870   Type *Ty = VT.getTypeForEVT(*getContext());
1871   unsigned StackAlign =
1872       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1873 
1874   int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1875   return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout()));
1876 }
1877 
CreateStackTemporary(EVT VT1,EVT VT2)1878 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1879   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1880   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1881   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1882   const DataLayout &DL = getDataLayout();
1883   unsigned Align =
1884       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1885 
1886   MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1887   int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1888   return getFrameIndex(FrameIdx, TLI->getPointerTy(getDataLayout()));
1889 }
1890 
FoldSetCC(EVT VT,SDValue N1,SDValue N2,ISD::CondCode Cond,const SDLoc & dl)1891 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1892                                 ISD::CondCode Cond, const SDLoc &dl) {
1893   // These setcc operations always fold.
1894   switch (Cond) {
1895   default: break;
1896   case ISD::SETFALSE:
1897   case ISD::SETFALSE2: return getConstant(0, dl, VT);
1898   case ISD::SETTRUE:
1899   case ISD::SETTRUE2: {
1900     TargetLowering::BooleanContent Cnt =
1901         TLI->getBooleanContents(N1->getValueType(0));
1902     return getConstant(
1903         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
1904         VT);
1905   }
1906 
1907   case ISD::SETOEQ:
1908   case ISD::SETOGT:
1909   case ISD::SETOGE:
1910   case ISD::SETOLT:
1911   case ISD::SETOLE:
1912   case ISD::SETONE:
1913   case ISD::SETO:
1914   case ISD::SETUO:
1915   case ISD::SETUEQ:
1916   case ISD::SETUNE:
1917     assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1918     break;
1919   }
1920 
1921   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
1922     const APInt &C2 = N2C->getAPIntValue();
1923     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
1924       const APInt &C1 = N1C->getAPIntValue();
1925 
1926       switch (Cond) {
1927       default: llvm_unreachable("Unknown integer setcc!");
1928       case ISD::SETEQ:  return getConstant(C1 == C2, dl, VT);
1929       case ISD::SETNE:  return getConstant(C1 != C2, dl, VT);
1930       case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT);
1931       case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT);
1932       case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT);
1933       case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT);
1934       case ISD::SETLT:  return getConstant(C1.slt(C2), dl, VT);
1935       case ISD::SETGT:  return getConstant(C1.sgt(C2), dl, VT);
1936       case ISD::SETLE:  return getConstant(C1.sle(C2), dl, VT);
1937       case ISD::SETGE:  return getConstant(C1.sge(C2), dl, VT);
1938       }
1939     }
1940   }
1941   if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) {
1942     if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) {
1943       APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1944       switch (Cond) {
1945       default: break;
1946       case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1947                           return getUNDEF(VT);
1948                         // fall through
1949       case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT);
1950       case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1951                           return getUNDEF(VT);
1952                         // fall through
1953       case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1954                                            R==APFloat::cmpLessThan, dl, VT);
1955       case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1956                           return getUNDEF(VT);
1957                         // fall through
1958       case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT);
1959       case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1960                           return getUNDEF(VT);
1961                         // fall through
1962       case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT);
1963       case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1964                           return getUNDEF(VT);
1965                         // fall through
1966       case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1967                                            R==APFloat::cmpEqual, dl, VT);
1968       case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1969                           return getUNDEF(VT);
1970                         // fall through
1971       case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1972                                            R==APFloat::cmpEqual, dl, VT);
1973       case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, dl, VT);
1974       case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, dl, VT);
1975       case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1976                                            R==APFloat::cmpEqual, dl, VT);
1977       case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT);
1978       case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1979                                            R==APFloat::cmpLessThan, dl, VT);
1980       case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1981                                            R==APFloat::cmpUnordered, dl, VT);
1982       case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT);
1983       case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT);
1984       }
1985     } else {
1986       // Ensure that the constant occurs on the RHS.
1987       ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
1988       MVT CompVT = N1.getValueType().getSimpleVT();
1989       if (!TLI->isCondCodeLegal(SwappedCond, CompVT))
1990         return SDValue();
1991 
1992       return getSetCC(dl, VT, N2, N1, SwappedCond);
1993     }
1994   }
1995 
1996   // Could not fold it.
1997   return SDValue();
1998 }
1999 
2000 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2001 /// use this predicate to simplify operations downstream.
SignBitIsZero(SDValue Op,unsigned Depth) const2002 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2003   // This predicate is not safe for vector operations.
2004   if (Op.getValueType().isVector())
2005     return false;
2006 
2007   unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
2008   return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
2009 }
2010 
2011 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2012 /// this predicate to simplify operations downstream.  Mask is known to be zero
2013 /// for bits that V cannot have.
MaskedValueIsZero(SDValue Op,const APInt & Mask,unsigned Depth) const2014 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
2015                                      unsigned Depth) const {
2016   APInt KnownZero, KnownOne;
2017   computeKnownBits(Op, KnownZero, KnownOne, Depth);
2018   return (KnownZero & Mask) == Mask;
2019 }
2020 
2021 /// Determine which bits of Op are known to be either zero or one and return
2022 /// them in the KnownZero/KnownOne bitsets.
computeKnownBits(SDValue Op,APInt & KnownZero,APInt & KnownOne,unsigned Depth) const2023 void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
2024                                     APInt &KnownOne, unsigned Depth) const {
2025   unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
2026 
2027   KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
2028   if (Depth == 6)
2029     return;  // Limit search depth.
2030 
2031   APInt KnownZero2, KnownOne2;
2032 
2033   switch (Op.getOpcode()) {
2034   case ISD::Constant:
2035     // We know all of the bits for a constant!
2036     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
2037     KnownZero = ~KnownOne;
2038     break;
2039   case ISD::AND:
2040     // If either the LHS or the RHS are Zero, the result is zero.
2041     computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
2042     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
2043 
2044     // Output known-1 bits are only known if set in both the LHS & RHS.
2045     KnownOne &= KnownOne2;
2046     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2047     KnownZero |= KnownZero2;
2048     break;
2049   case ISD::OR:
2050     computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
2051     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
2052 
2053     // Output known-0 bits are only known if clear in both the LHS & RHS.
2054     KnownZero &= KnownZero2;
2055     // Output known-1 are known to be set if set in either the LHS | RHS.
2056     KnownOne |= KnownOne2;
2057     break;
2058   case ISD::XOR: {
2059     computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
2060     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
2061 
2062     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2063     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
2064     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2065     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
2066     KnownZero = KnownZeroOut;
2067     break;
2068   }
2069   case ISD::MUL: {
2070     computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
2071     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
2072 
2073     // If low bits are zero in either operand, output low known-0 bits.
2074     // Also compute a conserative estimate for high known-0 bits.
2075     // More trickiness is possible, but this is sufficient for the
2076     // interesting case of alignment computation.
2077     KnownOne.clearAllBits();
2078     unsigned TrailZ = KnownZero.countTrailingOnes() +
2079                       KnownZero2.countTrailingOnes();
2080     unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
2081                                KnownZero2.countLeadingOnes(),
2082                                BitWidth) - BitWidth;
2083 
2084     TrailZ = std::min(TrailZ, BitWidth);
2085     LeadZ = std::min(LeadZ, BitWidth);
2086     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
2087                 APInt::getHighBitsSet(BitWidth, LeadZ);
2088     break;
2089   }
2090   case ISD::UDIV: {
2091     // For the purposes of computing leading zeros we can conservatively
2092     // treat a udiv as a logical right shift by the power of 2 known to
2093     // be less than the denominator.
2094     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
2095     unsigned LeadZ = KnownZero2.countLeadingOnes();
2096 
2097     KnownOne2.clearAllBits();
2098     KnownZero2.clearAllBits();
2099     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2100     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
2101     if (RHSUnknownLeadingOnes != BitWidth)
2102       LeadZ = std::min(BitWidth,
2103                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
2104 
2105     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
2106     break;
2107   }
2108   case ISD::SELECT:
2109     computeKnownBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1);
2110     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2111 
2112     // Only known if known in both the LHS and RHS.
2113     KnownOne &= KnownOne2;
2114     KnownZero &= KnownZero2;
2115     break;
2116   case ISD::SELECT_CC:
2117     computeKnownBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1);
2118     computeKnownBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1);
2119 
2120     // Only known if known in both the LHS and RHS.
2121     KnownOne &= KnownOne2;
2122     KnownZero &= KnownZero2;
2123     break;
2124   case ISD::SADDO:
2125   case ISD::UADDO:
2126   case ISD::SSUBO:
2127   case ISD::USUBO:
2128   case ISD::SMULO:
2129   case ISD::UMULO:
2130     if (Op.getResNo() != 1)
2131       break;
2132     // The boolean result conforms to getBooleanContents.
2133     // If we know the result of a setcc has the top bits zero, use this info.
2134     // We know that we have an integer-based boolean since these operations
2135     // are only available for integer.
2136     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2137             TargetLowering::ZeroOrOneBooleanContent &&
2138         BitWidth > 1)
2139       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
2140     break;
2141   case ISD::SETCC:
2142     // If we know the result of a setcc has the top bits zero, use this info.
2143     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2144             TargetLowering::ZeroOrOneBooleanContent &&
2145         BitWidth > 1)
2146       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
2147     break;
2148   case ISD::SHL:
2149     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
2150     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2151       unsigned ShAmt = SA->getZExtValue();
2152 
2153       // If the shift count is an invalid immediate, don't do anything.
2154       if (ShAmt >= BitWidth)
2155         break;
2156 
2157       computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2158       KnownZero <<= ShAmt;
2159       KnownOne  <<= ShAmt;
2160       // low bits known zero.
2161       KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
2162     }
2163     break;
2164   case ISD::SRL:
2165     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
2166     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2167       unsigned ShAmt = SA->getZExtValue();
2168 
2169       // If the shift count is an invalid immediate, don't do anything.
2170       if (ShAmt >= BitWidth)
2171         break;
2172 
2173       computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2174       KnownZero = KnownZero.lshr(ShAmt);
2175       KnownOne  = KnownOne.lshr(ShAmt);
2176 
2177       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
2178       KnownZero |= HighBits;  // High bits known zero.
2179     }
2180     break;
2181   case ISD::SRA:
2182     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2183       unsigned ShAmt = SA->getZExtValue();
2184 
2185       // If the shift count is an invalid immediate, don't do anything.
2186       if (ShAmt >= BitWidth)
2187         break;
2188 
2189       // If any of the demanded bits are produced by the sign extension, we also
2190       // demand the input sign bit.
2191       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
2192 
2193       computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2194       KnownZero = KnownZero.lshr(ShAmt);
2195       KnownOne  = KnownOne.lshr(ShAmt);
2196 
2197       // Handle the sign bits.
2198       APInt SignBit = APInt::getSignBit(BitWidth);
2199       SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
2200 
2201       if (KnownZero.intersects(SignBit)) {
2202         KnownZero |= HighBits;  // New bits are known zero.
2203       } else if (KnownOne.intersects(SignBit)) {
2204         KnownOne  |= HighBits;  // New bits are known one.
2205       }
2206     }
2207     break;
2208   case ISD::SIGN_EXTEND_INREG: {
2209     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2210     unsigned EBits = EVT.getScalarType().getSizeInBits();
2211 
2212     // Sign extension.  Compute the demanded bits in the result that are not
2213     // present in the input.
2214     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2215 
2216     APInt InSignBit = APInt::getSignBit(EBits);
2217     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2218 
2219     // If the sign extended bits are demanded, we know that the sign
2220     // bit is demanded.
2221     InSignBit = InSignBit.zext(BitWidth);
2222     if (NewBits.getBoolValue())
2223       InputDemandedBits |= InSignBit;
2224 
2225     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2226     KnownOne &= InputDemandedBits;
2227     KnownZero &= InputDemandedBits;
2228 
2229     // If the sign bit of the input is known set or clear, then we know the
2230     // top bits of the result.
2231     if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
2232       KnownZero |= NewBits;
2233       KnownOne  &= ~NewBits;
2234     } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
2235       KnownOne  |= NewBits;
2236       KnownZero &= ~NewBits;
2237     } else {                              // Input sign bit unknown
2238       KnownZero &= ~NewBits;
2239       KnownOne  &= ~NewBits;
2240     }
2241     break;
2242   }
2243   case ISD::CTTZ:
2244   case ISD::CTTZ_ZERO_UNDEF:
2245   case ISD::CTLZ:
2246   case ISD::CTLZ_ZERO_UNDEF:
2247   case ISD::CTPOP: {
2248     unsigned LowBits = Log2_32(BitWidth)+1;
2249     KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
2250     KnownOne.clearAllBits();
2251     break;
2252   }
2253   case ISD::LOAD: {
2254     LoadSDNode *LD = cast<LoadSDNode>(Op);
2255     // If this is a ZEXTLoad and we are looking at the loaded value.
2256     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2257       EVT VT = LD->getMemoryVT();
2258       unsigned MemBits = VT.getScalarType().getSizeInBits();
2259       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
2260     } else if (const MDNode *Ranges = LD->getRanges()) {
2261       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2262         computeKnownBitsFromRangeMetadata(*Ranges, KnownZero, KnownOne);
2263     }
2264     break;
2265   }
2266   case ISD::ZERO_EXTEND: {
2267     EVT InVT = Op.getOperand(0).getValueType();
2268     unsigned InBits = InVT.getScalarType().getSizeInBits();
2269     APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
2270     KnownZero = KnownZero.trunc(InBits);
2271     KnownOne = KnownOne.trunc(InBits);
2272     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2273     KnownZero = KnownZero.zext(BitWidth);
2274     KnownOne = KnownOne.zext(BitWidth);
2275     KnownZero |= NewBits;
2276     break;
2277   }
2278   case ISD::SIGN_EXTEND: {
2279     EVT InVT = Op.getOperand(0).getValueType();
2280     unsigned InBits = InVT.getScalarType().getSizeInBits();
2281     APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
2282 
2283     KnownZero = KnownZero.trunc(InBits);
2284     KnownOne = KnownOne.trunc(InBits);
2285     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2286 
2287     // Note if the sign bit is known to be zero or one.
2288     bool SignBitKnownZero = KnownZero.isNegative();
2289     bool SignBitKnownOne  = KnownOne.isNegative();
2290 
2291     KnownZero = KnownZero.zext(BitWidth);
2292     KnownOne = KnownOne.zext(BitWidth);
2293 
2294     // If the sign bit is known zero or one, the top bits match.
2295     if (SignBitKnownZero)
2296       KnownZero |= NewBits;
2297     else if (SignBitKnownOne)
2298       KnownOne  |= NewBits;
2299     break;
2300   }
2301   case ISD::ANY_EXTEND: {
2302     EVT InVT = Op.getOperand(0).getValueType();
2303     unsigned InBits = InVT.getScalarType().getSizeInBits();
2304     KnownZero = KnownZero.trunc(InBits);
2305     KnownOne = KnownOne.trunc(InBits);
2306     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2307     KnownZero = KnownZero.zext(BitWidth);
2308     KnownOne = KnownOne.zext(BitWidth);
2309     break;
2310   }
2311   case ISD::TRUNCATE: {
2312     EVT InVT = Op.getOperand(0).getValueType();
2313     unsigned InBits = InVT.getScalarType().getSizeInBits();
2314     KnownZero = KnownZero.zext(InBits);
2315     KnownOne = KnownOne.zext(InBits);
2316     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2317     KnownZero = KnownZero.trunc(BitWidth);
2318     KnownOne = KnownOne.trunc(BitWidth);
2319     break;
2320   }
2321   case ISD::AssertZext: {
2322     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2323     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
2324     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2325     KnownZero |= (~InMask);
2326     KnownOne  &= (~KnownZero);
2327     break;
2328   }
2329   case ISD::FGETSIGN:
2330     // All bits are zero except the low bit.
2331     KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
2332     break;
2333 
2334   case ISD::SUB: {
2335     if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
2336       // We know that the top bits of C-X are clear if X contains less bits
2337       // than C (i.e. no wrap-around can happen).  For example, 20-X is
2338       // positive if we can prove that X is >= 0 and < 16.
2339       if (CLHS->getAPIntValue().isNonNegative()) {
2340         unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2341         // NLZ can't be BitWidth with no sign bit
2342         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2343         computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2344 
2345         // If all of the MaskV bits are known to be zero, then we know the
2346         // output top bits are zero, because we now know that the output is
2347         // from [0-C].
2348         if ((KnownZero2 & MaskV) == MaskV) {
2349           unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2350           // Top bits known zero.
2351           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
2352         }
2353       }
2354     }
2355   }
2356   // fall through
2357   case ISD::ADD:
2358   case ISD::ADDE: {
2359     // Output known-0 bits are known if clear or set in both the low clear bits
2360     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
2361     // low 3 bits clear.
2362     // Output known-0 bits are also known if the top bits of each input are
2363     // known to be clear. For example, if one input has the top 10 bits clear
2364     // and the other has the top 8 bits clear, we know the top 7 bits of the
2365     // output must be clear.
2366     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
2367     unsigned KnownZeroHigh = KnownZero2.countLeadingOnes();
2368     unsigned KnownZeroLow = KnownZero2.countTrailingOnes();
2369 
2370     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2371     KnownZeroHigh = std::min(KnownZeroHigh,
2372                              KnownZero2.countLeadingOnes());
2373     KnownZeroLow = std::min(KnownZeroLow,
2374                             KnownZero2.countTrailingOnes());
2375 
2376     if (Op.getOpcode() == ISD::ADD) {
2377       KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroLow);
2378       if (KnownZeroHigh > 1)
2379         KnownZero |= APInt::getHighBitsSet(BitWidth, KnownZeroHigh - 1);
2380       break;
2381     }
2382 
2383     // With ADDE, a carry bit may be added in, so we can only use this
2384     // information if we know (at least) that the low two bits are clear.  We
2385     // then return to the caller that the low bit is unknown but that other bits
2386     // are known zero.
2387     if (KnownZeroLow >= 2) // ADDE
2388       KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroLow);
2389     break;
2390   }
2391   case ISD::SREM:
2392     if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2393       const APInt &RA = Rem->getAPIntValue().abs();
2394       if (RA.isPowerOf2()) {
2395         APInt LowBits = RA - 1;
2396         computeKnownBits(Op.getOperand(0), KnownZero2,KnownOne2,Depth+1);
2397 
2398         // The low bits of the first operand are unchanged by the srem.
2399         KnownZero = KnownZero2 & LowBits;
2400         KnownOne = KnownOne2 & LowBits;
2401 
2402         // If the first operand is non-negative or has all low bits zero, then
2403         // the upper bits are all zero.
2404         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2405           KnownZero |= ~LowBits;
2406 
2407         // If the first operand is negative and not all low bits are zero, then
2408         // the upper bits are all one.
2409         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2410           KnownOne |= ~LowBits;
2411         assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2412       }
2413     }
2414     break;
2415   case ISD::UREM: {
2416     if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2417       const APInt &RA = Rem->getAPIntValue();
2418       if (RA.isPowerOf2()) {
2419         APInt LowBits = (RA - 1);
2420         computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth + 1);
2421 
2422         // The upper bits are all zero, the lower ones are unchanged.
2423         KnownZero = KnownZero2 | ~LowBits;
2424         KnownOne = KnownOne2 & LowBits;
2425         break;
2426       }
2427     }
2428 
2429     // Since the result is less than or equal to either operand, any leading
2430     // zero bits in either operand must also exist in the result.
2431     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2432     computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2433 
2434     uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2435                                 KnownZero2.countLeadingOnes());
2436     KnownOne.clearAllBits();
2437     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
2438     break;
2439   }
2440   case ISD::EXTRACT_ELEMENT: {
2441     computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2442     const unsigned Index =
2443       cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2444     const unsigned BitWidth = Op.getValueType().getSizeInBits();
2445 
2446     // Remove low part of known bits mask
2447     KnownZero = KnownZero.getHiBits(KnownZero.getBitWidth() - Index * BitWidth);
2448     KnownOne = KnownOne.getHiBits(KnownOne.getBitWidth() - Index * BitWidth);
2449 
2450     // Remove high part of known bit mask
2451     KnownZero = KnownZero.trunc(BitWidth);
2452     KnownOne = KnownOne.trunc(BitWidth);
2453     break;
2454   }
2455   case ISD::BSWAP: {
2456     computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
2457     KnownZero = KnownZero2.byteSwap();
2458     KnownOne = KnownOne2.byteSwap();
2459     break;
2460   }
2461   case ISD::SMIN:
2462   case ISD::SMAX:
2463   case ISD::UMIN:
2464   case ISD::UMAX: {
2465     APInt Op0Zero, Op0One;
2466     APInt Op1Zero, Op1One;
2467     computeKnownBits(Op.getOperand(0), Op0Zero, Op0One, Depth);
2468     computeKnownBits(Op.getOperand(1), Op1Zero, Op1One, Depth);
2469 
2470     KnownZero = Op0Zero & Op1Zero;
2471     KnownOne = Op0One & Op1One;
2472     break;
2473   }
2474   case ISD::FrameIndex:
2475   case ISD::TargetFrameIndex:
2476     if (unsigned Align = InferPtrAlignment(Op)) {
2477       // The low bits are known zero if the pointer is aligned.
2478       KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2479       break;
2480     }
2481     break;
2482 
2483   default:
2484     if (Op.getOpcode() < ISD::BUILTIN_OP_END)
2485       break;
2486     // Fallthrough
2487   case ISD::INTRINSIC_WO_CHAIN:
2488   case ISD::INTRINSIC_W_CHAIN:
2489   case ISD::INTRINSIC_VOID:
2490     // Allow the target to implement this method for its nodes.
2491     TLI->computeKnownBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth);
2492     break;
2493   }
2494 
2495   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
2496 }
2497 
isKnownToBeAPowerOfTwo(SDValue Val) const2498 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
2499   // A left-shift of a constant one will have exactly one bit set because
2500   // shifting the bit off the end is undefined.
2501   if (Val.getOpcode() == ISD::SHL) {
2502     auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0));
2503     if (C && C->getAPIntValue() == 1)
2504       return true;
2505   }
2506 
2507   // Similarly, a logical right-shift of a constant sign-bit will have exactly
2508   // one bit set.
2509   if (Val.getOpcode() == ISD::SRL) {
2510     auto *C = dyn_cast<ConstantSDNode>(Val.getOperand(0));
2511     if (C && C->getAPIntValue().isSignBit())
2512       return true;
2513   }
2514 
2515   // More could be done here, though the above checks are enough
2516   // to handle some common cases.
2517 
2518   // Fall back to computeKnownBits to catch other known cases.
2519   EVT OpVT = Val.getValueType();
2520   unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
2521   APInt KnownZero, KnownOne;
2522   computeKnownBits(Val, KnownZero, KnownOne);
2523   return (KnownZero.countPopulation() == BitWidth - 1) &&
2524          (KnownOne.countPopulation() == 1);
2525 }
2526 
ComputeNumSignBits(SDValue Op,unsigned Depth) const2527 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
2528   EVT VT = Op.getValueType();
2529   assert(VT.isInteger() && "Invalid VT!");
2530   unsigned VTBits = VT.getScalarType().getSizeInBits();
2531   unsigned Tmp, Tmp2;
2532   unsigned FirstAnswer = 1;
2533 
2534   if (Depth == 6)
2535     return 1;  // Limit search depth.
2536 
2537   switch (Op.getOpcode()) {
2538   default: break;
2539   case ISD::AssertSext:
2540     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2541     return VTBits-Tmp+1;
2542   case ISD::AssertZext:
2543     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2544     return VTBits-Tmp;
2545 
2546   case ISD::Constant: {
2547     const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2548     return Val.getNumSignBits();
2549   }
2550 
2551   case ISD::SIGN_EXTEND:
2552     Tmp =
2553         VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2554     return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2555 
2556   case ISD::SIGN_EXTEND_INREG:
2557     // Max of the input and what this extends.
2558     Tmp =
2559       cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2560     Tmp = VTBits-Tmp+1;
2561 
2562     Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2563     return std::max(Tmp, Tmp2);
2564 
2565   case ISD::SRA:
2566     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2567     // SRA X, C   -> adds C sign bits.
2568     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2569       Tmp += C->getZExtValue();
2570       if (Tmp > VTBits) Tmp = VTBits;
2571     }
2572     return Tmp;
2573   case ISD::SHL:
2574     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2575       // shl destroys sign bits.
2576       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2577       if (C->getZExtValue() >= VTBits ||      // Bad shift.
2578           C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2579       return Tmp - C->getZExtValue();
2580     }
2581     break;
2582   case ISD::AND:
2583   case ISD::OR:
2584   case ISD::XOR:    // NOT is handled here.
2585     // Logical binary ops preserve the number of sign bits at the worst.
2586     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2587     if (Tmp != 1) {
2588       Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2589       FirstAnswer = std::min(Tmp, Tmp2);
2590       // We computed what we know about the sign bits as our first
2591       // answer. Now proceed to the generic code that uses
2592       // computeKnownBits, and pick whichever answer is better.
2593     }
2594     break;
2595 
2596   case ISD::SELECT:
2597     Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2598     if (Tmp == 1) return 1;  // Early out.
2599     Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2600     return std::min(Tmp, Tmp2);
2601   case ISD::SELECT_CC:
2602     Tmp = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2603     if (Tmp == 1) return 1;  // Early out.
2604     Tmp2 = ComputeNumSignBits(Op.getOperand(3), Depth+1);
2605     return std::min(Tmp, Tmp2);
2606   case ISD::SMIN:
2607   case ISD::SMAX:
2608   case ISD::UMIN:
2609   case ISD::UMAX:
2610     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
2611     if (Tmp == 1)
2612       return 1;  // Early out.
2613     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
2614     return std::min(Tmp, Tmp2);
2615   case ISD::SADDO:
2616   case ISD::UADDO:
2617   case ISD::SSUBO:
2618   case ISD::USUBO:
2619   case ISD::SMULO:
2620   case ISD::UMULO:
2621     if (Op.getResNo() != 1)
2622       break;
2623     // The boolean result conforms to getBooleanContents.  Fall through.
2624     // If setcc returns 0/-1, all bits are sign bits.
2625     // We know that we have an integer-based boolean since these operations
2626     // are only available for integer.
2627     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2628         TargetLowering::ZeroOrNegativeOneBooleanContent)
2629       return VTBits;
2630     break;
2631   case ISD::SETCC:
2632     // If setcc returns 0/-1, all bits are sign bits.
2633     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2634         TargetLowering::ZeroOrNegativeOneBooleanContent)
2635       return VTBits;
2636     break;
2637   case ISD::ROTL:
2638   case ISD::ROTR:
2639     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2640       unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2641 
2642       // Handle rotate right by N like a rotate left by 32-N.
2643       if (Op.getOpcode() == ISD::ROTR)
2644         RotAmt = (VTBits-RotAmt) & (VTBits-1);
2645 
2646       // If we aren't rotating out all of the known-in sign bits, return the
2647       // number that are left.  This handles rotl(sext(x), 1) for example.
2648       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2649       if (Tmp > RotAmt+1) return Tmp-RotAmt;
2650     }
2651     break;
2652   case ISD::ADD:
2653     // Add can have at most one carry bit.  Thus we know that the output
2654     // is, at worst, one more bit than the inputs.
2655     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2656     if (Tmp == 1) return 1;  // Early out.
2657 
2658     // Special case decrementing a value (ADD X, -1):
2659     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2660       if (CRHS->isAllOnesValue()) {
2661         APInt KnownZero, KnownOne;
2662         computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2663 
2664         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2665         // sign bits set.
2666         if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
2667           return VTBits;
2668 
2669         // If we are subtracting one from a positive number, there is no carry
2670         // out of the result.
2671         if (KnownZero.isNegative())
2672           return Tmp;
2673       }
2674 
2675     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2676     if (Tmp2 == 1) return 1;
2677     return std::min(Tmp, Tmp2)-1;
2678 
2679   case ISD::SUB:
2680     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2681     if (Tmp2 == 1) return 1;
2682 
2683     // Handle NEG.
2684     if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2685       if (CLHS->isNullValue()) {
2686         APInt KnownZero, KnownOne;
2687         computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
2688         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2689         // sign bits set.
2690         if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
2691           return VTBits;
2692 
2693         // If the input is known to be positive (the sign bit is known clear),
2694         // the output of the NEG has the same number of sign bits as the input.
2695         if (KnownZero.isNegative())
2696           return Tmp2;
2697 
2698         // Otherwise, we treat this like a SUB.
2699       }
2700 
2701     // Sub can have at most one carry bit.  Thus we know that the output
2702     // is, at worst, one more bit than the inputs.
2703     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2704     if (Tmp == 1) return 1;  // Early out.
2705     return std::min(Tmp, Tmp2)-1;
2706   case ISD::TRUNCATE:
2707     // FIXME: it's tricky to do anything useful for this, but it is an important
2708     // case for targets like X86.
2709     break;
2710   case ISD::EXTRACT_ELEMENT: {
2711     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2712     const int BitWidth = Op.getValueType().getSizeInBits();
2713     const int Items =
2714       Op.getOperand(0).getValueType().getSizeInBits() / BitWidth;
2715 
2716     // Get reverse index (starting from 1), Op1 value indexes elements from
2717     // little end. Sign starts at big end.
2718     const int rIndex = Items - 1 -
2719       cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2720 
2721     // If the sign portion ends in our element the subtraction gives correct
2722     // result. Otherwise it gives either negative or > bitwidth result
2723     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
2724   }
2725   }
2726 
2727   // If we are looking at the loaded value of the SDNode.
2728   if (Op.getResNo() == 0) {
2729     // Handle LOADX separately here. EXTLOAD case will fallthrough.
2730     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
2731       unsigned ExtType = LD->getExtensionType();
2732       switch (ExtType) {
2733         default: break;
2734         case ISD::SEXTLOAD:    // '17' bits known
2735           Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2736           return VTBits-Tmp+1;
2737         case ISD::ZEXTLOAD:    // '16' bits known
2738           Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2739           return VTBits-Tmp;
2740       }
2741     }
2742   }
2743 
2744   // Allow the target to implement this method for its nodes.
2745   if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2746       Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2747       Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2748       Op.getOpcode() == ISD::INTRINSIC_VOID) {
2749     unsigned NumBits = TLI->ComputeNumSignBitsForTargetNode(Op, *this, Depth);
2750     if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2751   }
2752 
2753   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2754   // use this information.
2755   APInt KnownZero, KnownOne;
2756   computeKnownBits(Op, KnownZero, KnownOne, Depth);
2757 
2758   APInt Mask;
2759   if (KnownZero.isNegative()) {        // sign bit is 0
2760     Mask = KnownZero;
2761   } else if (KnownOne.isNegative()) {  // sign bit is 1;
2762     Mask = KnownOne;
2763   } else {
2764     // Nothing known.
2765     return FirstAnswer;
2766   }
2767 
2768   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2769   // the number of identical bits in the top of the input value.
2770   Mask = ~Mask;
2771   Mask <<= Mask.getBitWidth()-VTBits;
2772   // Return # leading zeros.  We use 'min' here in case Val was zero before
2773   // shifting.  We don't want to return '64' as for an i32 "0".
2774   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2775 }
2776 
isBaseWithConstantOffset(SDValue Op) const2777 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
2778   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
2779       !isa<ConstantSDNode>(Op.getOperand(1)))
2780     return false;
2781 
2782   if (Op.getOpcode() == ISD::OR &&
2783       !MaskedValueIsZero(Op.getOperand(0),
2784                      cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
2785     return false;
2786 
2787   return true;
2788 }
2789 
isKnownNeverNaN(SDValue Op) const2790 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2791   // If we're told that NaNs won't happen, assume they won't.
2792   if (getTarget().Options.NoNaNsFPMath)
2793     return true;
2794 
2795   // If the value is a constant, we can obviously see if it is a NaN or not.
2796   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2797     return !C->getValueAPF().isNaN();
2798 
2799   // TODO: Recognize more cases here.
2800 
2801   return false;
2802 }
2803 
isKnownNeverZero(SDValue Op) const2804 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2805   // If the value is a constant, we can obviously see if it is a zero or not.
2806   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2807     return !C->isZero();
2808 
2809   // TODO: Recognize more cases here.
2810   switch (Op.getOpcode()) {
2811   default: break;
2812   case ISD::OR:
2813     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2814       return !C->isNullValue();
2815     break;
2816   }
2817 
2818   return false;
2819 }
2820 
isEqualTo(SDValue A,SDValue B) const2821 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2822   // Check the obvious case.
2823   if (A == B) return true;
2824 
2825   // For for negative and positive zero.
2826   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2827     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2828       if (CA->isZero() && CB->isZero()) return true;
2829 
2830   // Otherwise they may not be equal.
2831   return false;
2832 }
2833 
haveNoCommonBitsSet(SDValue A,SDValue B) const2834 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
2835   assert(A.getValueType() == B.getValueType() &&
2836          "Values must have the same type");
2837   APInt AZero, AOne;
2838   APInt BZero, BOne;
2839   computeKnownBits(A, AZero, AOne);
2840   computeKnownBits(B, BZero, BOne);
2841   return (AZero | BZero).isAllOnesValue();
2842 }
2843 
FoldCONCAT_VECTORS(const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,llvm::SelectionDAG & DAG)2844 static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
2845                                   ArrayRef<SDValue> Ops,
2846                                   llvm::SelectionDAG &DAG) {
2847   if (Ops.size() == 1)
2848     return Ops[0];
2849 
2850   // Concat of UNDEFs is UNDEF.
2851   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
2852     return DAG.getUNDEF(VT);
2853 
2854   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
2855   // simplified to one big BUILD_VECTOR.
2856   // FIXME: Add support for SCALAR_TO_VECTOR as well.
2857   EVT SVT = VT.getScalarType();
2858   SmallVector<SDValue, 16> Elts;
2859   for (SDValue Op : Ops) {
2860     EVT OpVT = Op.getValueType();
2861     if (Op.isUndef())
2862       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
2863     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
2864       Elts.append(Op->op_begin(), Op->op_end());
2865     else
2866       return SDValue();
2867   }
2868 
2869   // BUILD_VECTOR requires all inputs to be of the same type, find the
2870   // maximum type and extend them all.
2871   for (SDValue Op : Elts)
2872     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
2873 
2874   if (SVT.bitsGT(VT.getScalarType()))
2875     for (SDValue &Op : Elts)
2876       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
2877                ? DAG.getZExtOrTrunc(Op, DL, SVT)
2878                : DAG.getSExtOrTrunc(Op, DL, SVT);
2879 
2880   return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Elts);
2881 }
2882 
2883 /// Gets or creates the specified node.
getNode(unsigned Opcode,const SDLoc & DL,EVT VT)2884 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
2885   FoldingSetNodeID ID;
2886   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
2887   void *IP = nullptr;
2888   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
2889     return SDValue(E, 0);
2890 
2891   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
2892                               getVTList(VT));
2893   CSEMap.InsertNode(N, IP);
2894 
2895   InsertNode(N);
2896   return SDValue(N, 0);
2897 }
2898 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue Operand)2899 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
2900                               SDValue Operand) {
2901   // Constant fold unary operations with an integer constant operand. Even
2902   // opaque constant will be folded, because the folding of unary operations
2903   // doesn't create new constants with different values. Nevertheless, the
2904   // opaque flag is preserved during folding to prevent future folding with
2905   // other constants.
2906   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
2907     const APInt &Val = C->getAPIntValue();
2908     switch (Opcode) {
2909     default: break;
2910     case ISD::SIGN_EXTEND:
2911       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
2912                          C->isTargetOpcode(), C->isOpaque());
2913     case ISD::ANY_EXTEND:
2914     case ISD::ZERO_EXTEND:
2915     case ISD::TRUNCATE:
2916       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
2917                          C->isTargetOpcode(), C->isOpaque());
2918     case ISD::UINT_TO_FP:
2919     case ISD::SINT_TO_FP: {
2920       APFloat apf(EVTToAPFloatSemantics(VT),
2921                   APInt::getNullValue(VT.getSizeInBits()));
2922       (void)apf.convertFromAPInt(Val,
2923                                  Opcode==ISD::SINT_TO_FP,
2924                                  APFloat::rmNearestTiesToEven);
2925       return getConstantFP(apf, DL, VT);
2926     }
2927     case ISD::BITCAST:
2928       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
2929         return getConstantFP(APFloat(APFloat::IEEEhalf, Val), DL, VT);
2930       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2931         return getConstantFP(APFloat(APFloat::IEEEsingle, Val), DL, VT);
2932       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2933         return getConstantFP(APFloat(APFloat::IEEEdouble, Val), DL, VT);
2934       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
2935         return getConstantFP(APFloat(APFloat::IEEEquad, Val), DL, VT);
2936       break;
2937     case ISD::BSWAP:
2938       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
2939                          C->isOpaque());
2940     case ISD::CTPOP:
2941       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
2942                          C->isOpaque());
2943     case ISD::CTLZ:
2944     case ISD::CTLZ_ZERO_UNDEF:
2945       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
2946                          C->isOpaque());
2947     case ISD::CTTZ:
2948     case ISD::CTTZ_ZERO_UNDEF:
2949       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
2950                          C->isOpaque());
2951     }
2952   }
2953 
2954   // Constant fold unary operations with a floating point constant operand.
2955   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
2956     APFloat V = C->getValueAPF();    // make copy
2957     switch (Opcode) {
2958     case ISD::FNEG:
2959       V.changeSign();
2960       return getConstantFP(V, DL, VT);
2961     case ISD::FABS:
2962       V.clearSign();
2963       return getConstantFP(V, DL, VT);
2964     case ISD::FCEIL: {
2965       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
2966       if (fs == APFloat::opOK || fs == APFloat::opInexact)
2967         return getConstantFP(V, DL, VT);
2968       break;
2969     }
2970     case ISD::FTRUNC: {
2971       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
2972       if (fs == APFloat::opOK || fs == APFloat::opInexact)
2973         return getConstantFP(V, DL, VT);
2974       break;
2975     }
2976     case ISD::FFLOOR: {
2977       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
2978       if (fs == APFloat::opOK || fs == APFloat::opInexact)
2979         return getConstantFP(V, DL, VT);
2980       break;
2981     }
2982     case ISD::FP_EXTEND: {
2983       bool ignored;
2984       // This can return overflow, underflow, or inexact; we don't care.
2985       // FIXME need to be more flexible about rounding mode.
2986       (void)V.convert(EVTToAPFloatSemantics(VT),
2987                       APFloat::rmNearestTiesToEven, &ignored);
2988       return getConstantFP(V, DL, VT);
2989     }
2990     case ISD::FP_TO_SINT:
2991     case ISD::FP_TO_UINT: {
2992       integerPart x[2];
2993       bool ignored;
2994       static_assert(integerPartWidth >= 64, "APFloat parts too small!");
2995       // FIXME need to be more flexible about rounding mode.
2996       APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2997                             Opcode==ISD::FP_TO_SINT,
2998                             APFloat::rmTowardZero, &ignored);
2999       if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
3000         break;
3001       APInt api(VT.getSizeInBits(), x);
3002       return getConstant(api, DL, VT);
3003     }
3004     case ISD::BITCAST:
3005       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
3006         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3007       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
3008         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
3009       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
3010         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
3011       break;
3012     }
3013   }
3014 
3015   // Constant fold unary operations with a vector integer or float operand.
3016   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
3017     if (BV->isConstant()) {
3018       switch (Opcode) {
3019       default:
3020         // FIXME: Entirely reasonable to perform folding of other unary
3021         // operations here as the need arises.
3022         break;
3023       case ISD::FNEG:
3024       case ISD::FABS:
3025       case ISD::FCEIL:
3026       case ISD::FTRUNC:
3027       case ISD::FFLOOR:
3028       case ISD::FP_EXTEND:
3029       case ISD::FP_TO_SINT:
3030       case ISD::FP_TO_UINT:
3031       case ISD::TRUNCATE:
3032       case ISD::UINT_TO_FP:
3033       case ISD::SINT_TO_FP:
3034       case ISD::BSWAP:
3035       case ISD::CTLZ:
3036       case ISD::CTLZ_ZERO_UNDEF:
3037       case ISD::CTTZ:
3038       case ISD::CTTZ_ZERO_UNDEF:
3039       case ISD::CTPOP: {
3040         SDValue Ops = { Operand };
3041         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
3042           return Fold;
3043       }
3044       }
3045     }
3046   }
3047 
3048   unsigned OpOpcode = Operand.getNode()->getOpcode();
3049   switch (Opcode) {
3050   case ISD::TokenFactor:
3051   case ISD::MERGE_VALUES:
3052   case ISD::CONCAT_VECTORS:
3053     return Operand;         // Factor, merge or concat of one node?  No need.
3054   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
3055   case ISD::FP_EXTEND:
3056     assert(VT.isFloatingPoint() &&
3057            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
3058     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
3059     assert((!VT.isVector() ||
3060             VT.getVectorNumElements() ==
3061             Operand.getValueType().getVectorNumElements()) &&
3062            "Vector element count mismatch!");
3063     assert(Operand.getValueType().bitsLT(VT) &&
3064            "Invalid fpext node, dst < src!");
3065     if (Operand.isUndef())
3066       return getUNDEF(VT);
3067     break;
3068   case ISD::SIGN_EXTEND:
3069     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3070            "Invalid SIGN_EXTEND!");
3071     if (Operand.getValueType() == VT) return Operand;   // noop extension
3072     assert((!VT.isVector() ||
3073             VT.getVectorNumElements() ==
3074             Operand.getValueType().getVectorNumElements()) &&
3075            "Vector element count mismatch!");
3076     assert(Operand.getValueType().bitsLT(VT) &&
3077            "Invalid sext node, dst < src!");
3078     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
3079       return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
3080     else if (OpOpcode == ISD::UNDEF)
3081       // sext(undef) = 0, because the top bits will all be the same.
3082       return getConstant(0, DL, VT);
3083     break;
3084   case ISD::ZERO_EXTEND:
3085     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3086            "Invalid ZERO_EXTEND!");
3087     if (Operand.getValueType() == VT) return Operand;   // noop extension
3088     assert((!VT.isVector() ||
3089             VT.getVectorNumElements() ==
3090             Operand.getValueType().getVectorNumElements()) &&
3091            "Vector element count mismatch!");
3092     assert(Operand.getValueType().bitsLT(VT) &&
3093            "Invalid zext node, dst < src!");
3094     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
3095       return getNode(ISD::ZERO_EXTEND, DL, VT,
3096                      Operand.getNode()->getOperand(0));
3097     else if (OpOpcode == ISD::UNDEF)
3098       // zext(undef) = 0, because the top bits will be zero.
3099       return getConstant(0, DL, VT);
3100     break;
3101   case ISD::ANY_EXTEND:
3102     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3103            "Invalid ANY_EXTEND!");
3104     if (Operand.getValueType() == VT) return Operand;   // noop extension
3105     assert((!VT.isVector() ||
3106             VT.getVectorNumElements() ==
3107             Operand.getValueType().getVectorNumElements()) &&
3108            "Vector element count mismatch!");
3109     assert(Operand.getValueType().bitsLT(VT) &&
3110            "Invalid anyext node, dst < src!");
3111 
3112     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
3113         OpOpcode == ISD::ANY_EXTEND)
3114       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
3115       return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
3116     else if (OpOpcode == ISD::UNDEF)
3117       return getUNDEF(VT);
3118 
3119     // (ext (trunx x)) -> x
3120     if (OpOpcode == ISD::TRUNCATE) {
3121       SDValue OpOp = Operand.getNode()->getOperand(0);
3122       if (OpOp.getValueType() == VT)
3123         return OpOp;
3124     }
3125     break;
3126   case ISD::TRUNCATE:
3127     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
3128            "Invalid TRUNCATE!");
3129     if (Operand.getValueType() == VT) return Operand;   // noop truncate
3130     assert((!VT.isVector() ||
3131             VT.getVectorNumElements() ==
3132             Operand.getValueType().getVectorNumElements()) &&
3133            "Vector element count mismatch!");
3134     assert(Operand.getValueType().bitsGT(VT) &&
3135            "Invalid truncate node, src < dst!");
3136     if (OpOpcode == ISD::TRUNCATE)
3137       return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
3138     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
3139         OpOpcode == ISD::ANY_EXTEND) {
3140       // If the source is smaller than the dest, we still need an extend.
3141       if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
3142             .bitsLT(VT.getScalarType()))
3143         return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
3144       if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
3145         return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
3146       return Operand.getNode()->getOperand(0);
3147     }
3148     if (OpOpcode == ISD::UNDEF)
3149       return getUNDEF(VT);
3150     break;
3151   case ISD::BSWAP:
3152     assert(VT.isInteger() && VT == Operand.getValueType() &&
3153            "Invalid BSWAP!");
3154     assert((VT.getScalarSizeInBits() % 16 == 0) &&
3155            "BSWAP types must be a multiple of 16 bits!");
3156     if (OpOpcode == ISD::UNDEF)
3157       return getUNDEF(VT);
3158     break;
3159   case ISD::BITREVERSE:
3160     assert(VT.isInteger() && VT == Operand.getValueType() &&
3161            "Invalid BITREVERSE!");
3162     if (OpOpcode == ISD::UNDEF)
3163       return getUNDEF(VT);
3164     break;
3165   case ISD::BITCAST:
3166     // Basic sanity checking.
3167     assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
3168            && "Cannot BITCAST between types of different sizes!");
3169     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
3170     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
3171       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
3172     if (OpOpcode == ISD::UNDEF)
3173       return getUNDEF(VT);
3174     break;
3175   case ISD::SCALAR_TO_VECTOR:
3176     assert(VT.isVector() && !Operand.getValueType().isVector() &&
3177            (VT.getVectorElementType() == Operand.getValueType() ||
3178             (VT.getVectorElementType().isInteger() &&
3179              Operand.getValueType().isInteger() &&
3180              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
3181            "Illegal SCALAR_TO_VECTOR node!");
3182     if (OpOpcode == ISD::UNDEF)
3183       return getUNDEF(VT);
3184     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
3185     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
3186         isa<ConstantSDNode>(Operand.getOperand(1)) &&
3187         Operand.getConstantOperandVal(1) == 0 &&
3188         Operand.getOperand(0).getValueType() == VT)
3189       return Operand.getOperand(0);
3190     break;
3191   case ISD::FNEG:
3192     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
3193     if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB)
3194       // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags?
3195       return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
3196                        Operand.getNode()->getOperand(0),
3197                        &cast<BinaryWithFlagsSDNode>(Operand.getNode())->Flags);
3198     if (OpOpcode == ISD::FNEG)  // --X -> X
3199       return Operand.getNode()->getOperand(0);
3200     break;
3201   case ISD::FABS:
3202     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
3203       return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
3204     break;
3205   }
3206 
3207   SDNode *N;
3208   SDVTList VTs = getVTList(VT);
3209   SDValue Ops[] = {Operand};
3210   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
3211     FoldingSetNodeID ID;
3212     AddNodeIDNode(ID, Opcode, VTs, Ops);
3213     void *IP = nullptr;
3214     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
3215       return SDValue(E, 0);
3216 
3217     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
3218     createOperands(N, Ops);
3219     CSEMap.InsertNode(N, IP);
3220   } else {
3221     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
3222     createOperands(N, Ops);
3223   }
3224 
3225   InsertNode(N);
3226   return SDValue(N, 0);
3227 }
3228 
FoldValue(unsigned Opcode,const APInt & C1,const APInt & C2)3229 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
3230                                         const APInt &C2) {
3231   switch (Opcode) {
3232   case ISD::ADD:  return std::make_pair(C1 + C2, true);
3233   case ISD::SUB:  return std::make_pair(C1 - C2, true);
3234   case ISD::MUL:  return std::make_pair(C1 * C2, true);
3235   case ISD::AND:  return std::make_pair(C1 & C2, true);
3236   case ISD::OR:   return std::make_pair(C1 | C2, true);
3237   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
3238   case ISD::SHL:  return std::make_pair(C1 << C2, true);
3239   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
3240   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
3241   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
3242   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
3243   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
3244   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
3245   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
3246   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
3247   case ISD::UDIV:
3248     if (!C2.getBoolValue())
3249       break;
3250     return std::make_pair(C1.udiv(C2), true);
3251   case ISD::UREM:
3252     if (!C2.getBoolValue())
3253       break;
3254     return std::make_pair(C1.urem(C2), true);
3255   case ISD::SDIV:
3256     if (!C2.getBoolValue())
3257       break;
3258     return std::make_pair(C1.sdiv(C2), true);
3259   case ISD::SREM:
3260     if (!C2.getBoolValue())
3261       break;
3262     return std::make_pair(C1.srem(C2), true);
3263   }
3264   return std::make_pair(APInt(1, 0), false);
3265 }
3266 
FoldConstantArithmetic(unsigned Opcode,const SDLoc & DL,EVT VT,const ConstantSDNode * Cst1,const ConstantSDNode * Cst2)3267 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
3268                                              EVT VT, const ConstantSDNode *Cst1,
3269                                              const ConstantSDNode *Cst2) {
3270   if (Cst1->isOpaque() || Cst2->isOpaque())
3271     return SDValue();
3272 
3273   std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(),
3274                                             Cst2->getAPIntValue());
3275   if (!Folded.second)
3276     return SDValue();
3277   return getConstant(Folded.first, DL, VT);
3278 }
3279 
FoldSymbolOffset(unsigned Opcode,EVT VT,const GlobalAddressSDNode * GA,const SDNode * N2)3280 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
3281                                        const GlobalAddressSDNode *GA,
3282                                        const SDNode *N2) {
3283   if (GA->getOpcode() != ISD::GlobalAddress)
3284     return SDValue();
3285   if (!TLI->isOffsetFoldingLegal(GA))
3286     return SDValue();
3287   const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2);
3288   if (!Cst2)
3289     return SDValue();
3290   int64_t Offset = Cst2->getSExtValue();
3291   switch (Opcode) {
3292   case ISD::ADD: break;
3293   case ISD::SUB: Offset = -uint64_t(Offset); break;
3294   default: return SDValue();
3295   }
3296   return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT,
3297                           GA->getOffset() + uint64_t(Offset));
3298 }
3299 
FoldConstantArithmetic(unsigned Opcode,const SDLoc & DL,EVT VT,SDNode * Cst1,SDNode * Cst2)3300 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
3301                                              EVT VT, SDNode *Cst1,
3302                                              SDNode *Cst2) {
3303   // If the opcode is a target-specific ISD node, there's nothing we can
3304   // do here and the operand rules may not line up with the below, so
3305   // bail early.
3306   if (Opcode >= ISD::BUILTIN_OP_END)
3307     return SDValue();
3308 
3309   // Handle the case of two scalars.
3310   if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) {
3311     if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) {
3312       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2);
3313       assert((!Folded || !VT.isVector()) &&
3314              "Can't fold vectors ops with scalar operands");
3315       return Folded;
3316     }
3317   }
3318 
3319   // fold (add Sym, c) -> Sym+c
3320   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1))
3321     return FoldSymbolOffset(Opcode, VT, GA, Cst2);
3322   if (isCommutativeBinOp(Opcode))
3323     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2))
3324       return FoldSymbolOffset(Opcode, VT, GA, Cst1);
3325 
3326   // For vectors extract each constant element into Inputs so we can constant
3327   // fold them individually.
3328   BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1);
3329   BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2);
3330   if (!BV1 || !BV2)
3331     return SDValue();
3332 
3333   assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!");
3334 
3335   EVT SVT = VT.getScalarType();
3336   SmallVector<SDValue, 4> Outputs;
3337   for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) {
3338     ConstantSDNode *V1 = dyn_cast<ConstantSDNode>(BV1->getOperand(I));
3339     ConstantSDNode *V2 = dyn_cast<ConstantSDNode>(BV2->getOperand(I));
3340     if (!V1 || !V2) // Not a constant, bail.
3341       return SDValue();
3342 
3343     if (V1->isOpaque() || V2->isOpaque())
3344       return SDValue();
3345 
3346     // Avoid BUILD_VECTOR nodes that perform implicit truncation.
3347     // FIXME: This is valid and could be handled by truncating the APInts.
3348     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
3349       return SDValue();
3350 
3351     // Fold one vector element.
3352     std::pair<APInt, bool> Folded = FoldValue(Opcode, V1->getAPIntValue(),
3353                                               V2->getAPIntValue());
3354     if (!Folded.second)
3355       return SDValue();
3356     Outputs.push_back(getConstant(Folded.first, DL, SVT));
3357   }
3358 
3359   assert(VT.getVectorNumElements() == Outputs.size() &&
3360          "Vector size mismatch!");
3361 
3362   // We may have a vector type but a scalar result. Create a splat.
3363   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
3364 
3365   // Build a big vector out of the scalar elements we generated.
3366   return getBuildVector(VT, SDLoc(), Outputs);
3367 }
3368 
FoldConstantVectorArithmetic(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,const SDNodeFlags * Flags)3369 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
3370                                                    const SDLoc &DL, EVT VT,
3371                                                    ArrayRef<SDValue> Ops,
3372                                                    const SDNodeFlags *Flags) {
3373   // If the opcode is a target-specific ISD node, there's nothing we can
3374   // do here and the operand rules may not line up with the below, so
3375   // bail early.
3376   if (Opcode >= ISD::BUILTIN_OP_END)
3377     return SDValue();
3378 
3379   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
3380   if (!VT.isVector())
3381     return SDValue();
3382 
3383   unsigned NumElts = VT.getVectorNumElements();
3384 
3385   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
3386     return !Op.getValueType().isVector() ||
3387            Op.getValueType().getVectorNumElements() == NumElts;
3388   };
3389 
3390   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
3391     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
3392     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
3393            (BV && BV->isConstant());
3394   };
3395 
3396   // All operands must be vector types with the same number of elements as
3397   // the result type and must be either UNDEF or a build vector of constant
3398   // or UNDEF scalars.
3399   if (!std::all_of(Ops.begin(), Ops.end(), IsConstantBuildVectorOrUndef) ||
3400       !std::all_of(Ops.begin(), Ops.end(), IsScalarOrSameVectorSize))
3401     return SDValue();
3402 
3403   // If we are comparing vectors, then the result needs to be a i1 boolean
3404   // that is then sign-extended back to the legal result type.
3405   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
3406 
3407   // Find legal integer scalar type for constant promotion and
3408   // ensure that its scalar size is at least as large as source.
3409   EVT LegalSVT = VT.getScalarType();
3410   if (LegalSVT.isInteger()) {
3411     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
3412     if (LegalSVT.bitsLT(VT.getScalarType()))
3413       return SDValue();
3414   }
3415 
3416   // Constant fold each scalar lane separately.
3417   SmallVector<SDValue, 4> ScalarResults;
3418   for (unsigned i = 0; i != NumElts; i++) {
3419     SmallVector<SDValue, 4> ScalarOps;
3420     for (SDValue Op : Ops) {
3421       EVT InSVT = Op.getValueType().getScalarType();
3422       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
3423       if (!InBV) {
3424         // We've checked that this is UNDEF or a constant of some kind.
3425         if (Op.isUndef())
3426           ScalarOps.push_back(getUNDEF(InSVT));
3427         else
3428           ScalarOps.push_back(Op);
3429         continue;
3430       }
3431 
3432       SDValue ScalarOp = InBV->getOperand(i);
3433       EVT ScalarVT = ScalarOp.getValueType();
3434 
3435       // Build vector (integer) scalar operands may need implicit
3436       // truncation - do this before constant folding.
3437       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
3438         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
3439 
3440       ScalarOps.push_back(ScalarOp);
3441     }
3442 
3443     // Constant fold the scalar operands.
3444     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
3445 
3446     // Legalize the (integer) scalar constant if necessary.
3447     if (LegalSVT != SVT)
3448       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
3449 
3450     // Scalar folding only succeeded if the result is a constant or UNDEF.
3451     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
3452         ScalarResult.getOpcode() != ISD::ConstantFP)
3453       return SDValue();
3454     ScalarResults.push_back(ScalarResult);
3455   }
3456 
3457   return getBuildVector(VT, DL, ScalarResults);
3458 }
3459 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,const SDNodeFlags * Flags)3460 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
3461                               SDValue N1, SDValue N2,
3462                               const SDNodeFlags *Flags) {
3463   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3464   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
3465   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3466   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
3467 
3468   // Canonicalize constant to RHS if commutative.
3469   if (isCommutativeBinOp(Opcode)) {
3470     if (N1C && !N2C) {
3471       std::swap(N1C, N2C);
3472       std::swap(N1, N2);
3473     } else if (N1CFP && !N2CFP) {
3474       std::swap(N1CFP, N2CFP);
3475       std::swap(N1, N2);
3476     }
3477   }
3478 
3479   switch (Opcode) {
3480   default: break;
3481   case ISD::TokenFactor:
3482     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
3483            N2.getValueType() == MVT::Other && "Invalid token factor!");
3484     // Fold trivial token factors.
3485     if (N1.getOpcode() == ISD::EntryToken) return N2;
3486     if (N2.getOpcode() == ISD::EntryToken) return N1;
3487     if (N1 == N2) return N1;
3488     break;
3489   case ISD::CONCAT_VECTORS: {
3490     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
3491     SDValue Ops[] = {N1, N2};
3492     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
3493       return V;
3494     break;
3495   }
3496   case ISD::AND:
3497     assert(VT.isInteger() && "This operator does not apply to FP types!");
3498     assert(N1.getValueType() == N2.getValueType() &&
3499            N1.getValueType() == VT && "Binary operator types must match!");
3500     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
3501     // worth handling here.
3502     if (N2C && N2C->isNullValue())
3503       return N2;
3504     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
3505       return N1;
3506     break;
3507   case ISD::OR:
3508   case ISD::XOR:
3509   case ISD::ADD:
3510   case ISD::SUB:
3511     assert(VT.isInteger() && "This operator does not apply to FP types!");
3512     assert(N1.getValueType() == N2.getValueType() &&
3513            N1.getValueType() == VT && "Binary operator types must match!");
3514     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
3515     // it's worth handling here.
3516     if (N2C && N2C->isNullValue())
3517       return N1;
3518     break;
3519   case ISD::UDIV:
3520   case ISD::UREM:
3521   case ISD::MULHU:
3522   case ISD::MULHS:
3523   case ISD::MUL:
3524   case ISD::SDIV:
3525   case ISD::SREM:
3526   case ISD::SMIN:
3527   case ISD::SMAX:
3528   case ISD::UMIN:
3529   case ISD::UMAX:
3530     assert(VT.isInteger() && "This operator does not apply to FP types!");
3531     assert(N1.getValueType() == N2.getValueType() &&
3532            N1.getValueType() == VT && "Binary operator types must match!");
3533     break;
3534   case ISD::FADD:
3535   case ISD::FSUB:
3536   case ISD::FMUL:
3537   case ISD::FDIV:
3538   case ISD::FREM:
3539     if (getTarget().Options.UnsafeFPMath) {
3540       if (Opcode == ISD::FADD) {
3541         // x+0 --> x
3542         if (N2CFP && N2CFP->getValueAPF().isZero())
3543           return N1;
3544       } else if (Opcode == ISD::FSUB) {
3545         // x-0 --> x
3546         if (N2CFP && N2CFP->getValueAPF().isZero())
3547           return N1;
3548       } else if (Opcode == ISD::FMUL) {
3549         // x*0 --> 0
3550         if (N2CFP && N2CFP->isZero())
3551           return N2;
3552         // x*1 --> x
3553         if (N2CFP && N2CFP->isExactlyValue(1.0))
3554           return N1;
3555       }
3556     }
3557     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
3558     assert(N1.getValueType() == N2.getValueType() &&
3559            N1.getValueType() == VT && "Binary operator types must match!");
3560     break;
3561   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
3562     assert(N1.getValueType() == VT &&
3563            N1.getValueType().isFloatingPoint() &&
3564            N2.getValueType().isFloatingPoint() &&
3565            "Invalid FCOPYSIGN!");
3566     break;
3567   case ISD::SHL:
3568   case ISD::SRA:
3569   case ISD::SRL:
3570   case ISD::ROTL:
3571   case ISD::ROTR:
3572     assert(VT == N1.getValueType() &&
3573            "Shift operators return type must be the same as their first arg");
3574     assert(VT.isInteger() && N2.getValueType().isInteger() &&
3575            "Shifts only work on integers");
3576     assert((!VT.isVector() || VT == N2.getValueType()) &&
3577            "Vector shift amounts must be in the same as their first arg");
3578     // Verify that the shift amount VT is bit enough to hold valid shift
3579     // amounts.  This catches things like trying to shift an i1024 value by an
3580     // i8, which is easy to fall into in generic code that uses
3581     // TLI.getShiftAmount().
3582     assert(N2.getValueType().getSizeInBits() >=
3583                    Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
3584            "Invalid use of small shift amount with oversized value!");
3585 
3586     // Always fold shifts of i1 values so the code generator doesn't need to
3587     // handle them.  Since we know the size of the shift has to be less than the
3588     // size of the value, the shift/rotate count is guaranteed to be zero.
3589     if (VT == MVT::i1)
3590       return N1;
3591     if (N2C && N2C->isNullValue())
3592       return N1;
3593     break;
3594   case ISD::FP_ROUND_INREG: {
3595     EVT EVT = cast<VTSDNode>(N2)->getVT();
3596     assert(VT == N1.getValueType() && "Not an inreg round!");
3597     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
3598            "Cannot FP_ROUND_INREG integer types");
3599     assert(EVT.isVector() == VT.isVector() &&
3600            "FP_ROUND_INREG type should be vector iff the operand "
3601            "type is vector!");
3602     assert((!EVT.isVector() ||
3603             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
3604            "Vector element counts must match in FP_ROUND_INREG");
3605     assert(EVT.bitsLE(VT) && "Not rounding down!");
3606     (void)EVT;
3607     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
3608     break;
3609   }
3610   case ISD::FP_ROUND:
3611     assert(VT.isFloatingPoint() &&
3612            N1.getValueType().isFloatingPoint() &&
3613            VT.bitsLE(N1.getValueType()) &&
3614            N2C && "Invalid FP_ROUND!");
3615     if (N1.getValueType() == VT) return N1;  // noop conversion.
3616     break;
3617   case ISD::AssertSext:
3618   case ISD::AssertZext: {
3619     EVT EVT = cast<VTSDNode>(N2)->getVT();
3620     assert(VT == N1.getValueType() && "Not an inreg extend!");
3621     assert(VT.isInteger() && EVT.isInteger() &&
3622            "Cannot *_EXTEND_INREG FP types");
3623     assert(!EVT.isVector() &&
3624            "AssertSExt/AssertZExt type should be the vector element type "
3625            "rather than the vector type!");
3626     assert(EVT.bitsLE(VT) && "Not extending!");
3627     if (VT == EVT) return N1; // noop assertion.
3628     break;
3629   }
3630   case ISD::SIGN_EXTEND_INREG: {
3631     EVT EVT = cast<VTSDNode>(N2)->getVT();
3632     assert(VT == N1.getValueType() && "Not an inreg extend!");
3633     assert(VT.isInteger() && EVT.isInteger() &&
3634            "Cannot *_EXTEND_INREG FP types");
3635     assert(EVT.isVector() == VT.isVector() &&
3636            "SIGN_EXTEND_INREG type should be vector iff the operand "
3637            "type is vector!");
3638     assert((!EVT.isVector() ||
3639             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
3640            "Vector element counts must match in SIGN_EXTEND_INREG");
3641     assert(EVT.bitsLE(VT) && "Not extending!");
3642     if (EVT == VT) return N1;  // Not actually extending
3643 
3644     auto SignExtendInReg = [&](APInt Val) {
3645       unsigned FromBits = EVT.getScalarType().getSizeInBits();
3646       Val <<= Val.getBitWidth() - FromBits;
3647       Val = Val.ashr(Val.getBitWidth() - FromBits);
3648       return getConstant(Val, DL, VT.getScalarType());
3649     };
3650 
3651     if (N1C) {
3652       const APInt &Val = N1C->getAPIntValue();
3653       return SignExtendInReg(Val);
3654     }
3655     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
3656       SmallVector<SDValue, 8> Ops;
3657       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
3658         SDValue Op = N1.getOperand(i);
3659         if (Op.isUndef()) {
3660           Ops.push_back(getUNDEF(VT.getScalarType()));
3661           continue;
3662         }
3663         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3664           APInt Val = C->getAPIntValue();
3665           Val = Val.zextOrTrunc(VT.getScalarSizeInBits());
3666           Ops.push_back(SignExtendInReg(Val));
3667           continue;
3668         }
3669         break;
3670       }
3671       if (Ops.size() == VT.getVectorNumElements())
3672         return getBuildVector(VT, DL, Ops);
3673     }
3674     break;
3675   }
3676   case ISD::EXTRACT_VECTOR_ELT:
3677     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
3678     if (N1.isUndef())
3679       return getUNDEF(VT);
3680 
3681     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
3682     if (N2C && N2C->getZExtValue() >= N1.getValueType().getVectorNumElements())
3683       return getUNDEF(VT);
3684 
3685     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
3686     // expanding copies of large vectors from registers.
3687     if (N2C &&
3688         N1.getOpcode() == ISD::CONCAT_VECTORS &&
3689         N1.getNumOperands() > 0) {
3690       unsigned Factor =
3691         N1.getOperand(0).getValueType().getVectorNumElements();
3692       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
3693                      N1.getOperand(N2C->getZExtValue() / Factor),
3694                      getConstant(N2C->getZExtValue() % Factor, DL,
3695                                  N2.getValueType()));
3696     }
3697 
3698     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
3699     // expanding large vector constants.
3700     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
3701       SDValue Elt = N1.getOperand(N2C->getZExtValue());
3702 
3703       if (VT != Elt.getValueType())
3704         // If the vector element type is not legal, the BUILD_VECTOR operands
3705         // are promoted and implicitly truncated, and the result implicitly
3706         // extended. Make that explicit here.
3707         Elt = getAnyExtOrTrunc(Elt, DL, VT);
3708 
3709       return Elt;
3710     }
3711 
3712     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
3713     // operations are lowered to scalars.
3714     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
3715       // If the indices are the same, return the inserted element else
3716       // if the indices are known different, extract the element from
3717       // the original vector.
3718       SDValue N1Op2 = N1.getOperand(2);
3719       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
3720 
3721       if (N1Op2C && N2C) {
3722         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
3723           if (VT == N1.getOperand(1).getValueType())
3724             return N1.getOperand(1);
3725           else
3726             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
3727         }
3728 
3729         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
3730       }
3731     }
3732     break;
3733   case ISD::EXTRACT_ELEMENT:
3734     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
3735     assert(!N1.getValueType().isVector() && !VT.isVector() &&
3736            (N1.getValueType().isInteger() == VT.isInteger()) &&
3737            N1.getValueType() != VT &&
3738            "Wrong types for EXTRACT_ELEMENT!");
3739 
3740     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
3741     // 64-bit integers into 32-bit parts.  Instead of building the extract of
3742     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
3743     if (N1.getOpcode() == ISD::BUILD_PAIR)
3744       return N1.getOperand(N2C->getZExtValue());
3745 
3746     // EXTRACT_ELEMENT of a constant int is also very common.
3747     if (N1C) {
3748       unsigned ElementSize = VT.getSizeInBits();
3749       unsigned Shift = ElementSize * N2C->getZExtValue();
3750       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
3751       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
3752     }
3753     break;
3754   case ISD::EXTRACT_SUBVECTOR:
3755     if (VT.isSimple() && N1.getValueType().isSimple()) {
3756       assert(VT.isVector() && N1.getValueType().isVector() &&
3757              "Extract subvector VTs must be a vectors!");
3758       assert(VT.getVectorElementType() ==
3759              N1.getValueType().getVectorElementType() &&
3760              "Extract subvector VTs must have the same element type!");
3761       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
3762              "Extract subvector must be from larger vector to smaller vector!");
3763 
3764       if (N2C) {
3765         assert((VT.getVectorNumElements() + N2C->getZExtValue()
3766                 <= N1.getValueType().getVectorNumElements())
3767                && "Extract subvector overflow!");
3768       }
3769 
3770       // Trivial extraction.
3771       if (VT.getSimpleVT() == N1.getSimpleValueType())
3772         return N1;
3773     }
3774     break;
3775   }
3776 
3777   // Perform trivial constant folding.
3778   if (SDValue SV =
3779           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
3780     return SV;
3781 
3782   // Constant fold FP operations.
3783   bool HasFPExceptions = TLI->hasFloatingPointExceptions();
3784   if (N1CFP) {
3785     if (N2CFP) {
3786       APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
3787       APFloat::opStatus s;
3788       switch (Opcode) {
3789       case ISD::FADD:
3790         s = V1.add(V2, APFloat::rmNearestTiesToEven);
3791         if (!HasFPExceptions || s != APFloat::opInvalidOp)
3792           return getConstantFP(V1, DL, VT);
3793         break;
3794       case ISD::FSUB:
3795         s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
3796         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
3797           return getConstantFP(V1, DL, VT);
3798         break;
3799       case ISD::FMUL:
3800         s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
3801         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
3802           return getConstantFP(V1, DL, VT);
3803         break;
3804       case ISD::FDIV:
3805         s = V1.divide(V2, APFloat::rmNearestTiesToEven);
3806         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
3807                                  s!=APFloat::opDivByZero)) {
3808           return getConstantFP(V1, DL, VT);
3809         }
3810         break;
3811       case ISD::FREM :
3812         s = V1.mod(V2);
3813         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
3814                                  s!=APFloat::opDivByZero)) {
3815           return getConstantFP(V1, DL, VT);
3816         }
3817         break;
3818       case ISD::FCOPYSIGN:
3819         V1.copySign(V2);
3820         return getConstantFP(V1, DL, VT);
3821       default: break;
3822       }
3823     }
3824 
3825     if (Opcode == ISD::FP_ROUND) {
3826       APFloat V = N1CFP->getValueAPF();    // make copy
3827       bool ignored;
3828       // This can return overflow, underflow, or inexact; we don't care.
3829       // FIXME need to be more flexible about rounding mode.
3830       (void)V.convert(EVTToAPFloatSemantics(VT),
3831                       APFloat::rmNearestTiesToEven, &ignored);
3832       return getConstantFP(V, DL, VT);
3833     }
3834   }
3835 
3836   // Canonicalize an UNDEF to the RHS, even over a constant.
3837   if (N1.isUndef()) {
3838     if (isCommutativeBinOp(Opcode)) {
3839       std::swap(N1, N2);
3840     } else {
3841       switch (Opcode) {
3842       case ISD::FP_ROUND_INREG:
3843       case ISD::SIGN_EXTEND_INREG:
3844       case ISD::SUB:
3845       case ISD::FSUB:
3846       case ISD::FDIV:
3847       case ISD::FREM:
3848       case ISD::SRA:
3849         return N1;     // fold op(undef, arg2) -> undef
3850       case ISD::UDIV:
3851       case ISD::SDIV:
3852       case ISD::UREM:
3853       case ISD::SREM:
3854       case ISD::SRL:
3855       case ISD::SHL:
3856         if (!VT.isVector())
3857           return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
3858         // For vectors, we can't easily build an all zero vector, just return
3859         // the LHS.
3860         return N2;
3861       }
3862     }
3863   }
3864 
3865   // Fold a bunch of operators when the RHS is undef.
3866   if (N2.isUndef()) {
3867     switch (Opcode) {
3868     case ISD::XOR:
3869       if (N1.isUndef())
3870         // Handle undef ^ undef -> 0 special case. This is a common
3871         // idiom (misuse).
3872         return getConstant(0, DL, VT);
3873       // fallthrough
3874     case ISD::ADD:
3875     case ISD::ADDC:
3876     case ISD::ADDE:
3877     case ISD::SUB:
3878     case ISD::UDIV:
3879     case ISD::SDIV:
3880     case ISD::UREM:
3881     case ISD::SREM:
3882       return N2;       // fold op(arg1, undef) -> undef
3883     case ISD::FADD:
3884     case ISD::FSUB:
3885     case ISD::FMUL:
3886     case ISD::FDIV:
3887     case ISD::FREM:
3888       if (getTarget().Options.UnsafeFPMath)
3889         return N2;
3890       break;
3891     case ISD::MUL:
3892     case ISD::AND:
3893     case ISD::SRL:
3894     case ISD::SHL:
3895       if (!VT.isVector())
3896         return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
3897       // For vectors, we can't easily build an all zero vector, just return
3898       // the LHS.
3899       return N1;
3900     case ISD::OR:
3901       if (!VT.isVector())
3902         return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT);
3903       // For vectors, we can't easily build an all one vector, just return
3904       // the LHS.
3905       return N1;
3906     case ISD::SRA:
3907       return N1;
3908     }
3909   }
3910 
3911   // Memoize this node if possible.
3912   SDNode *N;
3913   SDVTList VTs = getVTList(VT);
3914   if (VT != MVT::Glue) {
3915     SDValue Ops[] = {N1, N2};
3916     FoldingSetNodeID ID;
3917     AddNodeIDNode(ID, Opcode, VTs, Ops);
3918     void *IP = nullptr;
3919     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
3920       if (Flags)
3921         E->intersectFlagsWith(Flags);
3922       return SDValue(E, 0);
3923     }
3924 
3925     N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags);
3926     CSEMap.InsertNode(N, IP);
3927   } else {
3928     N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags);
3929   }
3930 
3931   InsertNode(N);
3932   return SDValue(N, 0);
3933 }
3934 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,SDValue N3)3935 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
3936                               SDValue N1, SDValue N2, SDValue N3) {
3937   // Perform various simplifications.
3938   switch (Opcode) {
3939   case ISD::FMA: {
3940     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3941     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
3942     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
3943     if (N1CFP && N2CFP && N3CFP) {
3944       APFloat  V1 = N1CFP->getValueAPF();
3945       const APFloat &V2 = N2CFP->getValueAPF();
3946       const APFloat &V3 = N3CFP->getValueAPF();
3947       APFloat::opStatus s =
3948         V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
3949       if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
3950         return getConstantFP(V1, DL, VT);
3951     }
3952     break;
3953   }
3954   case ISD::CONCAT_VECTORS: {
3955     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
3956     SDValue Ops[] = {N1, N2, N3};
3957     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
3958       return V;
3959     break;
3960   }
3961   case ISD::SETCC: {
3962     // Use FoldSetCC to simplify SETCC's.
3963     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
3964       return V;
3965     // Vector constant folding.
3966     SDValue Ops[] = {N1, N2, N3};
3967     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
3968       return V;
3969     break;
3970   }
3971   case ISD::SELECT:
3972     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
3973      if (N1C->getZExtValue())
3974        return N2;             // select true, X, Y -> X
3975      return N3;             // select false, X, Y -> Y
3976     }
3977 
3978     if (N2 == N3) return N2;   // select C, X, X -> X
3979     break;
3980   case ISD::VECTOR_SHUFFLE:
3981     llvm_unreachable("should use getVectorShuffle constructor!");
3982   case ISD::INSERT_SUBVECTOR: {
3983     SDValue Index = N3;
3984     if (VT.isSimple() && N1.getValueType().isSimple()
3985         && N2.getValueType().isSimple()) {
3986       assert(VT.isVector() && N1.getValueType().isVector() &&
3987              N2.getValueType().isVector() &&
3988              "Insert subvector VTs must be a vectors");
3989       assert(VT == N1.getValueType() &&
3990              "Dest and insert subvector source types must match!");
3991       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
3992              "Insert subvector must be from smaller vector to larger vector!");
3993       if (isa<ConstantSDNode>(Index)) {
3994         assert((N2.getValueType().getVectorNumElements() +
3995                 cast<ConstantSDNode>(Index)->getZExtValue()
3996                 <= VT.getVectorNumElements())
3997                && "Insert subvector overflow!");
3998       }
3999 
4000       // Trivial insertion.
4001       if (VT.getSimpleVT() == N2.getSimpleValueType())
4002         return N2;
4003     }
4004     break;
4005   }
4006   case ISD::BITCAST:
4007     // Fold bit_convert nodes from a type to themselves.
4008     if (N1.getValueType() == VT)
4009       return N1;
4010     break;
4011   }
4012 
4013   // Memoize node if it doesn't produce a flag.
4014   SDNode *N;
4015   SDVTList VTs = getVTList(VT);
4016   SDValue Ops[] = {N1, N2, N3};
4017   if (VT != MVT::Glue) {
4018     FoldingSetNodeID ID;
4019     AddNodeIDNode(ID, Opcode, VTs, Ops);
4020     void *IP = nullptr;
4021     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4022       return SDValue(E, 0);
4023 
4024     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4025     createOperands(N, Ops);
4026     CSEMap.InsertNode(N, IP);
4027   } else {
4028     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4029     createOperands(N, Ops);
4030   }
4031 
4032   InsertNode(N);
4033   return SDValue(N, 0);
4034 }
4035 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,SDValue N3,SDValue N4)4036 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4037                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
4038   SDValue Ops[] = { N1, N2, N3, N4 };
4039   return getNode(Opcode, DL, VT, Ops);
4040 }
4041 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,SDValue N3,SDValue N4,SDValue N5)4042 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4043                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
4044                               SDValue N5) {
4045   SDValue Ops[] = { N1, N2, N3, N4, N5 };
4046   return getNode(Opcode, DL, VT, Ops);
4047 }
4048 
4049 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
4050 /// the incoming stack arguments to be loaded from the stack.
getStackArgumentTokenFactor(SDValue Chain)4051 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
4052   SmallVector<SDValue, 8> ArgChains;
4053 
4054   // Include the original chain at the beginning of the list. When this is
4055   // used by target LowerCall hooks, this helps legalize find the
4056   // CALLSEQ_BEGIN node.
4057   ArgChains.push_back(Chain);
4058 
4059   // Add a chain value for each stack argument.
4060   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
4061        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
4062     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
4063       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
4064         if (FI->getIndex() < 0)
4065           ArgChains.push_back(SDValue(L, 1));
4066 
4067   // Build a tokenfactor for all the chains.
4068   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
4069 }
4070 
4071 /// getMemsetValue - Vectorized representation of the memset value
4072 /// operand.
getMemsetValue(SDValue Value,EVT VT,SelectionDAG & DAG,const SDLoc & dl)4073 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
4074                               const SDLoc &dl) {
4075   assert(!Value.isUndef());
4076 
4077   unsigned NumBits = VT.getScalarType().getSizeInBits();
4078   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4079     assert(C->getAPIntValue().getBitWidth() == 8);
4080     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
4081     if (VT.isInteger())
4082       return DAG.getConstant(Val, dl, VT);
4083     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
4084                              VT);
4085   }
4086 
4087   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
4088   EVT IntVT = VT.getScalarType();
4089   if (!IntVT.isInteger())
4090     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
4091 
4092   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
4093   if (NumBits > 8) {
4094     // Use a multiplication with 0x010101... to extend the input to the
4095     // required length.
4096     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
4097     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
4098                         DAG.getConstant(Magic, dl, IntVT));
4099   }
4100 
4101   if (VT != Value.getValueType() && !VT.isInteger())
4102     Value = DAG.getBitcast(VT.getScalarType(), Value);
4103   if (VT != Value.getValueType())
4104     Value = DAG.getSplatBuildVector(VT, dl, Value);
4105 
4106   return Value;
4107 }
4108 
4109 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4110 /// used when a memcpy is turned into a memset when the source is a constant
4111 /// string ptr.
getMemsetStringVal(EVT VT,const SDLoc & dl,SelectionDAG & DAG,const TargetLowering & TLI,StringRef Str)4112 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
4113                                   const TargetLowering &TLI, StringRef Str) {
4114   // Handle vector with all elements zero.
4115   if (Str.empty()) {
4116     if (VT.isInteger())
4117       return DAG.getConstant(0, dl, VT);
4118     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
4119       return DAG.getConstantFP(0.0, dl, VT);
4120     else if (VT.isVector()) {
4121       unsigned NumElts = VT.getVectorNumElements();
4122       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
4123       return DAG.getNode(ISD::BITCAST, dl, VT,
4124                          DAG.getConstant(0, dl,
4125                                          EVT::getVectorVT(*DAG.getContext(),
4126                                                           EltVT, NumElts)));
4127     } else
4128       llvm_unreachable("Expected type!");
4129   }
4130 
4131   assert(!VT.isVector() && "Can't handle vector type here!");
4132   unsigned NumVTBits = VT.getSizeInBits();
4133   unsigned NumVTBytes = NumVTBits / 8;
4134   unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size()));
4135 
4136   APInt Val(NumVTBits, 0);
4137   if (DAG.getDataLayout().isLittleEndian()) {
4138     for (unsigned i = 0; i != NumBytes; ++i)
4139       Val |= (uint64_t)(unsigned char)Str[i] << i*8;
4140   } else {
4141     for (unsigned i = 0; i != NumBytes; ++i)
4142       Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8;
4143   }
4144 
4145   // If the "cost" of materializing the integer immediate is less than the cost
4146   // of a load, then it is cost effective to turn the load into the immediate.
4147   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
4148   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
4149     return DAG.getConstant(Val, dl, VT);
4150   return SDValue(nullptr, 0);
4151 }
4152 
getMemBasePlusOffset(SDValue Base,unsigned Offset,const SDLoc & DL)4153 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
4154                                            const SDLoc &DL) {
4155   EVT VT = Base.getValueType();
4156   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
4157 }
4158 
4159 /// isMemSrcFromString - Returns true if memcpy source is a string constant.
4160 ///
isMemSrcFromString(SDValue Src,StringRef & Str)4161 static bool isMemSrcFromString(SDValue Src, StringRef &Str) {
4162   uint64_t SrcDelta = 0;
4163   GlobalAddressSDNode *G = nullptr;
4164   if (Src.getOpcode() == ISD::GlobalAddress)
4165     G = cast<GlobalAddressSDNode>(Src);
4166   else if (Src.getOpcode() == ISD::ADD &&
4167            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4168            Src.getOperand(1).getOpcode() == ISD::Constant) {
4169     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
4170     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
4171   }
4172   if (!G)
4173     return false;
4174 
4175   return getConstantStringInfo(G->getGlobal(), Str,
4176                                SrcDelta + G->getOffset(), false);
4177 }
4178 
4179 /// Determines the optimal series of memory ops to replace the memset / memcpy.
4180 /// Return true if the number of memory ops is below the threshold (Limit).
4181 /// It returns the types of the sequence of memory ops to perform
4182 /// memset / memcpy by reference.
FindOptimalMemOpLowering(std::vector<EVT> & MemOps,unsigned Limit,uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,bool AllowOverlap,unsigned DstAS,unsigned SrcAS,SelectionDAG & DAG,const TargetLowering & TLI)4183 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
4184                                      unsigned Limit, uint64_t Size,
4185                                      unsigned DstAlign, unsigned SrcAlign,
4186                                      bool IsMemset,
4187                                      bool ZeroMemset,
4188                                      bool MemcpyStrSrc,
4189                                      bool AllowOverlap,
4190                                      unsigned DstAS, unsigned SrcAS,
4191                                      SelectionDAG &DAG,
4192                                      const TargetLowering &TLI) {
4193   assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
4194          "Expecting memcpy / memset source to meet alignment requirement!");
4195   // If 'SrcAlign' is zero, that means the memory operation does not need to
4196   // load the value, i.e. memset or memcpy from constant string. Otherwise,
4197   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
4198   // is the specified alignment of the memory operation. If it is zero, that
4199   // means it's possible to change the alignment of the destination.
4200   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
4201   // not need to be loaded.
4202   EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
4203                                    IsMemset, ZeroMemset, MemcpyStrSrc,
4204                                    DAG.getMachineFunction());
4205 
4206   if (VT == MVT::Other) {
4207     if (DstAlign >= DAG.getDataLayout().getPointerPrefAlignment(DstAS) ||
4208         TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) {
4209       VT = TLI.getPointerTy(DAG.getDataLayout(), DstAS);
4210     } else {
4211       switch (DstAlign & 7) {
4212       case 0:  VT = MVT::i64; break;
4213       case 4:  VT = MVT::i32; break;
4214       case 2:  VT = MVT::i16; break;
4215       default: VT = MVT::i8;  break;
4216       }
4217     }
4218 
4219     MVT LVT = MVT::i64;
4220     while (!TLI.isTypeLegal(LVT))
4221       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
4222     assert(LVT.isInteger());
4223 
4224     if (VT.bitsGT(LVT))
4225       VT = LVT;
4226   }
4227 
4228   unsigned NumMemOps = 0;
4229   while (Size != 0) {
4230     unsigned VTSize = VT.getSizeInBits() / 8;
4231     while (VTSize > Size) {
4232       // For now, only use non-vector load / store's for the left-over pieces.
4233       EVT NewVT = VT;
4234       unsigned NewVTSize;
4235 
4236       bool Found = false;
4237       if (VT.isVector() || VT.isFloatingPoint()) {
4238         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
4239         if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
4240             TLI.isSafeMemOpType(NewVT.getSimpleVT()))
4241           Found = true;
4242         else if (NewVT == MVT::i64 &&
4243                  TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
4244                  TLI.isSafeMemOpType(MVT::f64)) {
4245           // i64 is usually not legal on 32-bit targets, but f64 may be.
4246           NewVT = MVT::f64;
4247           Found = true;
4248         }
4249       }
4250 
4251       if (!Found) {
4252         do {
4253           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
4254           if (NewVT == MVT::i8)
4255             break;
4256         } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
4257       }
4258       NewVTSize = NewVT.getSizeInBits() / 8;
4259 
4260       // If the new VT cannot cover all of the remaining bits, then consider
4261       // issuing a (or a pair of) unaligned and overlapping load / store.
4262       // FIXME: Only does this for 64-bit or more since we don't have proper
4263       // cost model for unaligned load / store.
4264       bool Fast;
4265       if (NumMemOps && AllowOverlap &&
4266           VTSize >= 8 && NewVTSize < Size &&
4267           TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast)
4268         VTSize = Size;
4269       else {
4270         VT = NewVT;
4271         VTSize = NewVTSize;
4272       }
4273     }
4274 
4275     if (++NumMemOps > Limit)
4276       return false;
4277 
4278     MemOps.push_back(VT);
4279     Size -= VTSize;
4280   }
4281 
4282   return true;
4283 }
4284 
shouldLowerMemFuncForSize(const MachineFunction & MF)4285 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
4286   // On Darwin, -Os means optimize for size without hurting performance, so
4287   // only really optimize for size when -Oz (MinSize) is used.
4288   if (MF.getTarget().getTargetTriple().isOSDarwin())
4289     return MF.getFunction()->optForMinSize();
4290   return MF.getFunction()->optForSize();
4291 }
4292 
getMemcpyLoadsAndStores(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,unsigned Align,bool isVol,bool AlwaysInline,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)4293 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
4294                                        SDValue Chain, SDValue Dst, SDValue Src,
4295                                        uint64_t Size, unsigned Align,
4296                                        bool isVol, bool AlwaysInline,
4297                                        MachinePointerInfo DstPtrInfo,
4298                                        MachinePointerInfo SrcPtrInfo) {
4299   // Turn a memcpy of undef to nop.
4300   if (Src.isUndef())
4301     return Chain;
4302 
4303   // Expand memcpy to a series of load and store ops if the size operand falls
4304   // below a certain threshold.
4305   // TODO: In the AlwaysInline case, if the size is big then generate a loop
4306   // rather than maybe a humongous number of loads and stores.
4307   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4308   std::vector<EVT> MemOps;
4309   bool DstAlignCanChange = false;
4310   MachineFunction &MF = DAG.getMachineFunction();
4311   MachineFrameInfo *MFI = MF.getFrameInfo();
4312   bool OptSize = shouldLowerMemFuncForSize(MF);
4313   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
4314   if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
4315     DstAlignCanChange = true;
4316   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
4317   if (Align > SrcAlign)
4318     SrcAlign = Align;
4319   StringRef Str;
4320   bool CopyFromStr = isMemSrcFromString(Src, Str);
4321   bool isZeroStr = CopyFromStr && Str.empty();
4322   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
4323 
4324   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
4325                                 (DstAlignCanChange ? 0 : Align),
4326                                 (isZeroStr ? 0 : SrcAlign),
4327                                 false, false, CopyFromStr, true,
4328                                 DstPtrInfo.getAddrSpace(),
4329                                 SrcPtrInfo.getAddrSpace(),
4330                                 DAG, TLI))
4331     return SDValue();
4332 
4333   if (DstAlignCanChange) {
4334     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
4335     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
4336 
4337     // Don't promote to an alignment that would require dynamic stack
4338     // realignment.
4339     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
4340     if (!TRI->needsStackRealignment(MF))
4341       while (NewAlign > Align &&
4342              DAG.getDataLayout().exceedsNaturalStackAlignment(NewAlign))
4343           NewAlign /= 2;
4344 
4345     if (NewAlign > Align) {
4346       // Give the stack frame object a larger alignment if needed.
4347       if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
4348         MFI->setObjectAlignment(FI->getIndex(), NewAlign);
4349       Align = NewAlign;
4350     }
4351   }
4352 
4353   SmallVector<SDValue, 8> OutChains;
4354   unsigned NumMemOps = MemOps.size();
4355   uint64_t SrcOff = 0, DstOff = 0;
4356   for (unsigned i = 0; i != NumMemOps; ++i) {
4357     EVT VT = MemOps[i];
4358     unsigned VTSize = VT.getSizeInBits() / 8;
4359     SDValue Value, Store;
4360 
4361     if (VTSize > Size) {
4362       // Issuing an unaligned load / store pair  that overlaps with the previous
4363       // pair. Adjust the offset accordingly.
4364       assert(i == NumMemOps-1 && i != 0);
4365       SrcOff -= VTSize - Size;
4366       DstOff -= VTSize - Size;
4367     }
4368 
4369     if (CopyFromStr &&
4370         (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
4371       // It's unlikely a store of a vector immediate can be done in a single
4372       // instruction. It would require a load from a constantpool first.
4373       // We only handle zero vectors here.
4374       // FIXME: Handle other cases where store of vector immediate is done in
4375       // a single instruction.
4376       Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff));
4377       if (Value.getNode())
4378         Store = DAG.getStore(Chain, dl, Value,
4379                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
4380                              DstPtrInfo.getWithOffset(DstOff), isVol,
4381                              false, Align);
4382     }
4383 
4384     if (!Store.getNode()) {
4385       // The type might not be legal for the target.  This should only happen
4386       // if the type is smaller than a legal type, as on PPC, so the right
4387       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
4388       // to Load/Store if NVT==VT.
4389       // FIXME does the case above also need this?
4390       EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
4391       assert(NVT.bitsGE(VT));
4392       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
4393                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
4394                              SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
4395                              false, MinAlign(SrcAlign, SrcOff));
4396       OutChains.push_back(Value.getValue(1));
4397       Store = DAG.getTruncStore(Chain, dl, Value,
4398                                 DAG.getMemBasePlusOffset(Dst, DstOff, dl),
4399                                 DstPtrInfo.getWithOffset(DstOff), VT, isVol,
4400                                 false, Align);
4401     }
4402     OutChains.push_back(Store);
4403     SrcOff += VTSize;
4404     DstOff += VTSize;
4405     Size -= VTSize;
4406   }
4407 
4408   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
4409 }
4410 
getMemmoveLoadsAndStores(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,unsigned Align,bool isVol,bool AlwaysInline,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)4411 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
4412                                         SDValue Chain, SDValue Dst, SDValue Src,
4413                                         uint64_t Size, unsigned Align,
4414                                         bool isVol, bool AlwaysInline,
4415                                         MachinePointerInfo DstPtrInfo,
4416                                         MachinePointerInfo SrcPtrInfo) {
4417   // Turn a memmove of undef to nop.
4418   if (Src.isUndef())
4419     return Chain;
4420 
4421   // Expand memmove to a series of load and store ops if the size operand falls
4422   // below a certain threshold.
4423   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4424   std::vector<EVT> MemOps;
4425   bool DstAlignCanChange = false;
4426   MachineFunction &MF = DAG.getMachineFunction();
4427   MachineFrameInfo *MFI = MF.getFrameInfo();
4428   bool OptSize = shouldLowerMemFuncForSize(MF);
4429   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
4430   if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
4431     DstAlignCanChange = true;
4432   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
4433   if (Align > SrcAlign)
4434     SrcAlign = Align;
4435   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
4436 
4437   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
4438                                 (DstAlignCanChange ? 0 : Align), SrcAlign,
4439                                 false, false, false, false,
4440                                 DstPtrInfo.getAddrSpace(),
4441                                 SrcPtrInfo.getAddrSpace(),
4442                                 DAG, TLI))
4443     return SDValue();
4444 
4445   if (DstAlignCanChange) {
4446     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
4447     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
4448     if (NewAlign > Align) {
4449       // Give the stack frame object a larger alignment if needed.
4450       if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
4451         MFI->setObjectAlignment(FI->getIndex(), NewAlign);
4452       Align = NewAlign;
4453     }
4454   }
4455 
4456   uint64_t SrcOff = 0, DstOff = 0;
4457   SmallVector<SDValue, 8> LoadValues;
4458   SmallVector<SDValue, 8> LoadChains;
4459   SmallVector<SDValue, 8> OutChains;
4460   unsigned NumMemOps = MemOps.size();
4461   for (unsigned i = 0; i < NumMemOps; i++) {
4462     EVT VT = MemOps[i];
4463     unsigned VTSize = VT.getSizeInBits() / 8;
4464     SDValue Value;
4465 
4466     Value = DAG.getLoad(VT, dl, Chain,
4467                         DAG.getMemBasePlusOffset(Src, SrcOff, dl),
4468                         SrcPtrInfo.getWithOffset(SrcOff), isVol,
4469                         false, false, SrcAlign);
4470     LoadValues.push_back(Value);
4471     LoadChains.push_back(Value.getValue(1));
4472     SrcOff += VTSize;
4473   }
4474   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
4475   OutChains.clear();
4476   for (unsigned i = 0; i < NumMemOps; i++) {
4477     EVT VT = MemOps[i];
4478     unsigned VTSize = VT.getSizeInBits() / 8;
4479     SDValue Store;
4480 
4481     Store = DAG.getStore(Chain, dl, LoadValues[i],
4482                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
4483                          DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
4484     OutChains.push_back(Store);
4485     DstOff += VTSize;
4486   }
4487 
4488   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
4489 }
4490 
4491 /// \brief Lower the call to 'memset' intrinsic function into a series of store
4492 /// operations.
4493 ///
4494 /// \param DAG Selection DAG where lowered code is placed.
4495 /// \param dl Link to corresponding IR location.
4496 /// \param Chain Control flow dependency.
4497 /// \param Dst Pointer to destination memory location.
4498 /// \param Src Value of byte to write into the memory.
4499 /// \param Size Number of bytes to write.
4500 /// \param Align Alignment of the destination in bytes.
4501 /// \param isVol True if destination is volatile.
4502 /// \param DstPtrInfo IR information on the memory pointer.
4503 /// \returns New head in the control flow, if lowering was successful, empty
4504 /// SDValue otherwise.
4505 ///
4506 /// The function tries to replace 'llvm.memset' intrinsic with several store
4507 /// operations and value calculation code. This is usually profitable for small
4508 /// memory size.
getMemsetStores(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,unsigned Align,bool isVol,MachinePointerInfo DstPtrInfo)4509 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
4510                                SDValue Chain, SDValue Dst, SDValue Src,
4511                                uint64_t Size, unsigned Align, bool isVol,
4512                                MachinePointerInfo DstPtrInfo) {
4513   // Turn a memset of undef to nop.
4514   if (Src.isUndef())
4515     return Chain;
4516 
4517   // Expand memset to a series of load/store ops if the size operand
4518   // falls below a certain threshold.
4519   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4520   std::vector<EVT> MemOps;
4521   bool DstAlignCanChange = false;
4522   MachineFunction &MF = DAG.getMachineFunction();
4523   MachineFrameInfo *MFI = MF.getFrameInfo();
4524   bool OptSize = shouldLowerMemFuncForSize(MF);
4525   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
4526   if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
4527     DstAlignCanChange = true;
4528   bool IsZeroVal =
4529     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
4530   if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
4531                                 Size, (DstAlignCanChange ? 0 : Align), 0,
4532                                 true, IsZeroVal, false, true,
4533                                 DstPtrInfo.getAddrSpace(), ~0u,
4534                                 DAG, TLI))
4535     return SDValue();
4536 
4537   if (DstAlignCanChange) {
4538     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
4539     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
4540     if (NewAlign > Align) {
4541       // Give the stack frame object a larger alignment if needed.
4542       if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
4543         MFI->setObjectAlignment(FI->getIndex(), NewAlign);
4544       Align = NewAlign;
4545     }
4546   }
4547 
4548   SmallVector<SDValue, 8> OutChains;
4549   uint64_t DstOff = 0;
4550   unsigned NumMemOps = MemOps.size();
4551 
4552   // Find the largest store and generate the bit pattern for it.
4553   EVT LargestVT = MemOps[0];
4554   for (unsigned i = 1; i < NumMemOps; i++)
4555     if (MemOps[i].bitsGT(LargestVT))
4556       LargestVT = MemOps[i];
4557   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
4558 
4559   for (unsigned i = 0; i < NumMemOps; i++) {
4560     EVT VT = MemOps[i];
4561     unsigned VTSize = VT.getSizeInBits() / 8;
4562     if (VTSize > Size) {
4563       // Issuing an unaligned load / store pair  that overlaps with the previous
4564       // pair. Adjust the offset accordingly.
4565       assert(i == NumMemOps-1 && i != 0);
4566       DstOff -= VTSize - Size;
4567     }
4568 
4569     // If this store is smaller than the largest store see whether we can get
4570     // the smaller value for free with a truncate.
4571     SDValue Value = MemSetValue;
4572     if (VT.bitsLT(LargestVT)) {
4573       if (!LargestVT.isVector() && !VT.isVector() &&
4574           TLI.isTruncateFree(LargestVT, VT))
4575         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
4576       else
4577         Value = getMemsetValue(Src, VT, DAG, dl);
4578     }
4579     assert(Value.getValueType() == VT && "Value with wrong type.");
4580     SDValue Store = DAG.getStore(Chain, dl, Value,
4581                                  DAG.getMemBasePlusOffset(Dst, DstOff, dl),
4582                                  DstPtrInfo.getWithOffset(DstOff),
4583                                  isVol, false, Align);
4584     OutChains.push_back(Store);
4585     DstOff += VT.getSizeInBits() / 8;
4586     Size -= VTSize;
4587   }
4588 
4589   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
4590 }
4591 
checkAddrSpaceIsValidForLibcall(const TargetLowering * TLI,unsigned AS)4592 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
4593                                             unsigned AS) {
4594   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
4595   // pointer operands can be losslessly bitcasted to pointers of address space 0
4596   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
4597     report_fatal_error("cannot lower memory intrinsic in address space " +
4598                        Twine(AS));
4599   }
4600 }
4601 
getMemcpy(SDValue Chain,const SDLoc & dl,SDValue Dst,SDValue Src,SDValue Size,unsigned Align,bool isVol,bool AlwaysInline,bool isTailCall,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)4602 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
4603                                 SDValue Src, SDValue Size, unsigned Align,
4604                                 bool isVol, bool AlwaysInline, bool isTailCall,
4605                                 MachinePointerInfo DstPtrInfo,
4606                                 MachinePointerInfo SrcPtrInfo) {
4607   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
4608 
4609   // Check to see if we should lower the memcpy to loads and stores first.
4610   // For cases within the target-specified limits, this is the best choice.
4611   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
4612   if (ConstantSize) {
4613     // Memcpy with size zero? Just return the original chain.
4614     if (ConstantSize->isNullValue())
4615       return Chain;
4616 
4617     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
4618                                              ConstantSize->getZExtValue(),Align,
4619                                 isVol, false, DstPtrInfo, SrcPtrInfo);
4620     if (Result.getNode())
4621       return Result;
4622   }
4623 
4624   // Then check to see if we should lower the memcpy with target-specific
4625   // code. If the target chooses to do this, this is the next best.
4626   if (TSI) {
4627     SDValue Result = TSI->EmitTargetCodeForMemcpy(
4628         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
4629         DstPtrInfo, SrcPtrInfo);
4630     if (Result.getNode())
4631       return Result;
4632   }
4633 
4634   // If we really need inline code and the target declined to provide it,
4635   // use a (potentially long) sequence of loads and stores.
4636   if (AlwaysInline) {
4637     assert(ConstantSize && "AlwaysInline requires a constant size!");
4638     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
4639                                    ConstantSize->getZExtValue(), Align, isVol,
4640                                    true, DstPtrInfo, SrcPtrInfo);
4641   }
4642 
4643   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
4644   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
4645 
4646   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
4647   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
4648   // respect volatile, so they may do things like read or write memory
4649   // beyond the given memory regions. But fixing this isn't easy, and most
4650   // people don't care.
4651 
4652   // Emit a library call.
4653   TargetLowering::ArgListTy Args;
4654   TargetLowering::ArgListEntry Entry;
4655   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
4656   Entry.Node = Dst; Args.push_back(Entry);
4657   Entry.Node = Src; Args.push_back(Entry);
4658   Entry.Node = Size; Args.push_back(Entry);
4659   // FIXME: pass in SDLoc
4660   TargetLowering::CallLoweringInfo CLI(*this);
4661   CLI.setDebugLoc(dl)
4662       .setChain(Chain)
4663       .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
4664                  Dst.getValueType().getTypeForEVT(*getContext()),
4665                  getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
4666                                    TLI->getPointerTy(getDataLayout())),
4667                  std::move(Args))
4668       .setDiscardResult()
4669       .setTailCall(isTailCall);
4670 
4671   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
4672   return CallResult.second;
4673 }
4674 
getMemmove(SDValue Chain,const SDLoc & dl,SDValue Dst,SDValue Src,SDValue Size,unsigned Align,bool isVol,bool isTailCall,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)4675 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
4676                                  SDValue Src, SDValue Size, unsigned Align,
4677                                  bool isVol, bool isTailCall,
4678                                  MachinePointerInfo DstPtrInfo,
4679                                  MachinePointerInfo SrcPtrInfo) {
4680   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
4681 
4682   // Check to see if we should lower the memmove to loads and stores first.
4683   // For cases within the target-specified limits, this is the best choice.
4684   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
4685   if (ConstantSize) {
4686     // Memmove with size zero? Just return the original chain.
4687     if (ConstantSize->isNullValue())
4688       return Chain;
4689 
4690     SDValue Result =
4691       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
4692                                ConstantSize->getZExtValue(), Align, isVol,
4693                                false, DstPtrInfo, SrcPtrInfo);
4694     if (Result.getNode())
4695       return Result;
4696   }
4697 
4698   // Then check to see if we should lower the memmove with target-specific
4699   // code. If the target chooses to do this, this is the next best.
4700   if (TSI) {
4701     SDValue Result = TSI->EmitTargetCodeForMemmove(
4702         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
4703     if (Result.getNode())
4704       return Result;
4705   }
4706 
4707   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
4708   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
4709 
4710   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
4711   // not be safe.  See memcpy above for more details.
4712 
4713   // Emit a library call.
4714   TargetLowering::ArgListTy Args;
4715   TargetLowering::ArgListEntry Entry;
4716   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
4717   Entry.Node = Dst; Args.push_back(Entry);
4718   Entry.Node = Src; Args.push_back(Entry);
4719   Entry.Node = Size; Args.push_back(Entry);
4720   // FIXME:  pass in SDLoc
4721   TargetLowering::CallLoweringInfo CLI(*this);
4722   CLI.setDebugLoc(dl)
4723       .setChain(Chain)
4724       .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
4725                  Dst.getValueType().getTypeForEVT(*getContext()),
4726                  getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
4727                                    TLI->getPointerTy(getDataLayout())),
4728                  std::move(Args))
4729       .setDiscardResult()
4730       .setTailCall(isTailCall);
4731 
4732   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
4733   return CallResult.second;
4734 }
4735 
getMemset(SDValue Chain,const SDLoc & dl,SDValue Dst,SDValue Src,SDValue Size,unsigned Align,bool isVol,bool isTailCall,MachinePointerInfo DstPtrInfo)4736 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
4737                                 SDValue Src, SDValue Size, unsigned Align,
4738                                 bool isVol, bool isTailCall,
4739                                 MachinePointerInfo DstPtrInfo) {
4740   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
4741 
4742   // Check to see if we should lower the memset to stores first.
4743   // For cases within the target-specified limits, this is the best choice.
4744   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
4745   if (ConstantSize) {
4746     // Memset with size zero? Just return the original chain.
4747     if (ConstantSize->isNullValue())
4748       return Chain;
4749 
4750     SDValue Result =
4751       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
4752                       Align, isVol, DstPtrInfo);
4753 
4754     if (Result.getNode())
4755       return Result;
4756   }
4757 
4758   // Then check to see if we should lower the memset with target-specific
4759   // code. If the target chooses to do this, this is the next best.
4760   if (TSI) {
4761     SDValue Result = TSI->EmitTargetCodeForMemset(
4762         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
4763     if (Result.getNode())
4764       return Result;
4765   }
4766 
4767   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
4768 
4769   // Emit a library call.
4770   Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
4771   TargetLowering::ArgListTy Args;
4772   TargetLowering::ArgListEntry Entry;
4773   Entry.Node = Dst; Entry.Ty = IntPtrTy;
4774   Args.push_back(Entry);
4775   Entry.Node = Src;
4776   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
4777   Args.push_back(Entry);
4778   Entry.Node = Size;
4779   Entry.Ty = IntPtrTy;
4780   Args.push_back(Entry);
4781 
4782   // FIXME: pass in SDLoc
4783   TargetLowering::CallLoweringInfo CLI(*this);
4784   CLI.setDebugLoc(dl)
4785       .setChain(Chain)
4786       .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
4787                  Dst.getValueType().getTypeForEVT(*getContext()),
4788                  getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
4789                                    TLI->getPointerTy(getDataLayout())),
4790                  std::move(Args))
4791       .setDiscardResult()
4792       .setTailCall(isTailCall);
4793 
4794   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
4795   return CallResult.second;
4796 }
4797 
getAtomic(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDVTList VTList,ArrayRef<SDValue> Ops,MachineMemOperand * MMO,AtomicOrdering SuccessOrdering,AtomicOrdering FailureOrdering,SynchronizationScope SynchScope)4798 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
4799                                 SDVTList VTList, ArrayRef<SDValue> Ops,
4800                                 MachineMemOperand *MMO,
4801                                 AtomicOrdering SuccessOrdering,
4802                                 AtomicOrdering FailureOrdering,
4803                                 SynchronizationScope SynchScope) {
4804   FoldingSetNodeID ID;
4805   ID.AddInteger(MemVT.getRawBits());
4806   AddNodeIDNode(ID, Opcode, VTList, Ops);
4807   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4808   void* IP = nullptr;
4809   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
4810     cast<AtomicSDNode>(E)->refineAlignment(MMO);
4811     return SDValue(E, 0);
4812   }
4813 
4814   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
4815                                     VTList, MemVT, MMO, SuccessOrdering,
4816                                     FailureOrdering, SynchScope);
4817   createOperands(N, Ops);
4818 
4819   CSEMap.InsertNode(N, IP);
4820   InsertNode(N);
4821   return SDValue(N, 0);
4822 }
4823 
getAtomic(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDVTList VTList,ArrayRef<SDValue> Ops,MachineMemOperand * MMO,AtomicOrdering Ordering,SynchronizationScope SynchScope)4824 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
4825                                 SDVTList VTList, ArrayRef<SDValue> Ops,
4826                                 MachineMemOperand *MMO, AtomicOrdering Ordering,
4827                                 SynchronizationScope SynchScope) {
4828   return getAtomic(Opcode, dl, MemVT, VTList, Ops, MMO, Ordering,
4829                    Ordering, SynchScope);
4830 }
4831 
getAtomicCmpSwap(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDVTList VTs,SDValue Chain,SDValue Ptr,SDValue Cmp,SDValue Swp,MachinePointerInfo PtrInfo,unsigned Alignment,AtomicOrdering SuccessOrdering,AtomicOrdering FailureOrdering,SynchronizationScope SynchScope)4832 SDValue SelectionDAG::getAtomicCmpSwap(
4833     unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain,
4834     SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
4835     unsigned Alignment, AtomicOrdering SuccessOrdering,
4836     AtomicOrdering FailureOrdering, SynchronizationScope SynchScope) {
4837   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
4838          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
4839   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
4840 
4841   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4842     Alignment = getEVTAlignment(MemVT);
4843 
4844   MachineFunction &MF = getMachineFunction();
4845 
4846   // FIXME: Volatile isn't really correct; we should keep track of atomic
4847   // orderings in the memoperand.
4848   unsigned Flags = MachineMemOperand::MOVolatile;
4849   Flags |= MachineMemOperand::MOLoad;
4850   Flags |= MachineMemOperand::MOStore;
4851 
4852   MachineMemOperand *MMO =
4853     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
4854 
4855   return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO,
4856                           SuccessOrdering, FailureOrdering, SynchScope);
4857 }
4858 
getAtomicCmpSwap(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDVTList VTs,SDValue Chain,SDValue Ptr,SDValue Cmp,SDValue Swp,MachineMemOperand * MMO,AtomicOrdering SuccessOrdering,AtomicOrdering FailureOrdering,SynchronizationScope SynchScope)4859 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
4860                                        EVT MemVT, SDVTList VTs, SDValue Chain,
4861                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
4862                                        MachineMemOperand *MMO,
4863                                        AtomicOrdering SuccessOrdering,
4864                                        AtomicOrdering FailureOrdering,
4865                                        SynchronizationScope SynchScope) {
4866   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
4867          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
4868   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
4869 
4870   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
4871   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO,
4872                    SuccessOrdering, FailureOrdering, SynchScope);
4873 }
4874 
getAtomic(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDValue Chain,SDValue Ptr,SDValue Val,const Value * PtrVal,unsigned Alignment,AtomicOrdering Ordering,SynchronizationScope SynchScope)4875 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
4876                                 SDValue Chain, SDValue Ptr, SDValue Val,
4877                                 const Value *PtrVal, unsigned Alignment,
4878                                 AtomicOrdering Ordering,
4879                                 SynchronizationScope SynchScope) {
4880   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4881     Alignment = getEVTAlignment(MemVT);
4882 
4883   MachineFunction &MF = getMachineFunction();
4884   // An atomic store does not load. An atomic load does not store.
4885   // (An atomicrmw obviously both loads and stores.)
4886   // For now, atomics are considered to be volatile always, and they are
4887   // chained as such.
4888   // FIXME: Volatile isn't really correct; we should keep track of atomic
4889   // orderings in the memoperand.
4890   unsigned Flags = MachineMemOperand::MOVolatile;
4891   if (Opcode != ISD::ATOMIC_STORE)
4892     Flags |= MachineMemOperand::MOLoad;
4893   if (Opcode != ISD::ATOMIC_LOAD)
4894     Flags |= MachineMemOperand::MOStore;
4895 
4896   MachineMemOperand *MMO =
4897     MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
4898                             MemVT.getStoreSize(), Alignment);
4899 
4900   return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO,
4901                    Ordering, SynchScope);
4902 }
4903 
getAtomic(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDValue Chain,SDValue Ptr,SDValue Val,MachineMemOperand * MMO,AtomicOrdering Ordering,SynchronizationScope SynchScope)4904 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
4905                                 SDValue Chain, SDValue Ptr, SDValue Val,
4906                                 MachineMemOperand *MMO, AtomicOrdering Ordering,
4907                                 SynchronizationScope SynchScope) {
4908   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
4909           Opcode == ISD::ATOMIC_LOAD_SUB ||
4910           Opcode == ISD::ATOMIC_LOAD_AND ||
4911           Opcode == ISD::ATOMIC_LOAD_OR ||
4912           Opcode == ISD::ATOMIC_LOAD_XOR ||
4913           Opcode == ISD::ATOMIC_LOAD_NAND ||
4914           Opcode == ISD::ATOMIC_LOAD_MIN ||
4915           Opcode == ISD::ATOMIC_LOAD_MAX ||
4916           Opcode == ISD::ATOMIC_LOAD_UMIN ||
4917           Opcode == ISD::ATOMIC_LOAD_UMAX ||
4918           Opcode == ISD::ATOMIC_SWAP ||
4919           Opcode == ISD::ATOMIC_STORE) &&
4920          "Invalid Atomic Op");
4921 
4922   EVT VT = Val.getValueType();
4923 
4924   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
4925                                                getVTList(VT, MVT::Other);
4926   SDValue Ops[] = {Chain, Ptr, Val};
4927   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO, Ordering, SynchScope);
4928 }
4929 
getAtomic(unsigned Opcode,const SDLoc & dl,EVT MemVT,EVT VT,SDValue Chain,SDValue Ptr,MachineMemOperand * MMO,AtomicOrdering Ordering,SynchronizationScope SynchScope)4930 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
4931                                 EVT VT, SDValue Chain, SDValue Ptr,
4932                                 MachineMemOperand *MMO, AtomicOrdering Ordering,
4933                                 SynchronizationScope SynchScope) {
4934   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
4935 
4936   SDVTList VTs = getVTList(VT, MVT::Other);
4937   SDValue Ops[] = {Chain, Ptr};
4938   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO, Ordering, SynchScope);
4939 }
4940 
4941 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
getMergeValues(ArrayRef<SDValue> Ops,const SDLoc & dl)4942 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
4943   if (Ops.size() == 1)
4944     return Ops[0];
4945 
4946   SmallVector<EVT, 4> VTs;
4947   VTs.reserve(Ops.size());
4948   for (unsigned i = 0; i < Ops.size(); ++i)
4949     VTs.push_back(Ops[i].getValueType());
4950   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
4951 }
4952 
getMemIntrinsicNode(unsigned Opcode,const SDLoc & dl,SDVTList VTList,ArrayRef<SDValue> Ops,EVT MemVT,MachinePointerInfo PtrInfo,unsigned Align,bool Vol,bool ReadMem,bool WriteMem,unsigned Size)4953 SDValue SelectionDAG::getMemIntrinsicNode(
4954     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
4955     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, bool Vol,
4956     bool ReadMem, bool WriteMem, unsigned Size) {
4957   if (Align == 0)  // Ensure that codegen never sees alignment 0
4958     Align = getEVTAlignment(MemVT);
4959 
4960   MachineFunction &MF = getMachineFunction();
4961   unsigned Flags = 0;
4962   if (WriteMem)
4963     Flags |= MachineMemOperand::MOStore;
4964   if (ReadMem)
4965     Flags |= MachineMemOperand::MOLoad;
4966   if (Vol)
4967     Flags |= MachineMemOperand::MOVolatile;
4968   if (!Size)
4969     Size = MemVT.getStoreSize();
4970   MachineMemOperand *MMO =
4971     MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
4972 
4973   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
4974 }
4975 
getMemIntrinsicNode(unsigned Opcode,const SDLoc & dl,SDVTList VTList,ArrayRef<SDValue> Ops,EVT MemVT,MachineMemOperand * MMO)4976 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
4977                                           SDVTList VTList,
4978                                           ArrayRef<SDValue> Ops, EVT MemVT,
4979                                           MachineMemOperand *MMO) {
4980   assert((Opcode == ISD::INTRINSIC_VOID ||
4981           Opcode == ISD::INTRINSIC_W_CHAIN ||
4982           Opcode == ISD::PREFETCH ||
4983           Opcode == ISD::LIFETIME_START ||
4984           Opcode == ISD::LIFETIME_END ||
4985           (Opcode <= INT_MAX &&
4986            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
4987          "Opcode is not a memory-accessing opcode!");
4988 
4989   // Memoize the node unless it returns a flag.
4990   MemIntrinsicSDNode *N;
4991   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4992     FoldingSetNodeID ID;
4993     AddNodeIDNode(ID, Opcode, VTList, Ops);
4994     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4995     void *IP = nullptr;
4996     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
4997       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
4998       return SDValue(E, 0);
4999     }
5000 
5001     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5002                                       VTList, MemVT, MMO);
5003     createOperands(N, Ops);
5004 
5005   CSEMap.InsertNode(N, IP);
5006   } else {
5007     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
5008                                       VTList, MemVT, MMO);
5009     createOperands(N, Ops);
5010   }
5011   InsertNode(N);
5012   return SDValue(N, 0);
5013 }
5014 
5015 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
5016 /// MachinePointerInfo record from it.  This is particularly useful because the
5017 /// code generator has many cases where it doesn't bother passing in a
5018 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
InferPointerInfo(SelectionDAG & DAG,SDValue Ptr,int64_t Offset=0)5019 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr,
5020                                            int64_t Offset = 0) {
5021   // If this is FI+Offset, we can model it.
5022   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
5023     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
5024                                              FI->getIndex(), Offset);
5025 
5026   // If this is (FI+Offset1)+Offset2, we can model it.
5027   if (Ptr.getOpcode() != ISD::ADD ||
5028       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
5029       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
5030     return MachinePointerInfo();
5031 
5032   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
5033   return MachinePointerInfo::getFixedStack(
5034       DAG.getMachineFunction(), FI,
5035       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
5036 }
5037 
5038 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
5039 /// MachinePointerInfo record from it.  This is particularly useful because the
5040 /// code generator has many cases where it doesn't bother passing in a
5041 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
InferPointerInfo(SelectionDAG & DAG,SDValue Ptr,SDValue OffsetOp)5042 static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr,
5043                                            SDValue OffsetOp) {
5044   // If the 'Offset' value isn't a constant, we can't handle this.
5045   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
5046     return InferPointerInfo(DAG, Ptr, OffsetNode->getSExtValue());
5047   if (OffsetOp.isUndef())
5048     return InferPointerInfo(DAG, Ptr);
5049   return MachinePointerInfo();
5050 }
5051 
getLoad(ISD::MemIndexedMode AM,ISD::LoadExtType ExtType,EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue Offset,MachinePointerInfo PtrInfo,EVT MemVT,bool isVolatile,bool isNonTemporal,bool isInvariant,unsigned Alignment,const AAMDNodes & AAInfo,const MDNode * Ranges)5052 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
5053                               EVT VT, const SDLoc &dl, SDValue Chain,
5054                               SDValue Ptr, SDValue Offset,
5055                               MachinePointerInfo PtrInfo, EVT MemVT,
5056                               bool isVolatile, bool isNonTemporal,
5057                               bool isInvariant, unsigned Alignment,
5058                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
5059   assert(Chain.getValueType() == MVT::Other &&
5060         "Invalid chain type");
5061   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5062     Alignment = getEVTAlignment(VT);
5063 
5064   unsigned Flags = MachineMemOperand::MOLoad;
5065   if (isVolatile)
5066     Flags |= MachineMemOperand::MOVolatile;
5067   if (isNonTemporal)
5068     Flags |= MachineMemOperand::MONonTemporal;
5069   if (isInvariant)
5070     Flags |= MachineMemOperand::MOInvariant;
5071 
5072   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
5073   // clients.
5074   if (PtrInfo.V.isNull())
5075     PtrInfo = InferPointerInfo(*this, Ptr, Offset);
5076 
5077   MachineFunction &MF = getMachineFunction();
5078   MachineMemOperand *MMO =
5079     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
5080                             AAInfo, Ranges);
5081   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
5082 }
5083 
getLoad(ISD::MemIndexedMode AM,ISD::LoadExtType ExtType,EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue Offset,EVT MemVT,MachineMemOperand * MMO)5084 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
5085                               EVT VT, const SDLoc &dl, SDValue Chain,
5086                               SDValue Ptr, SDValue Offset, EVT MemVT,
5087                               MachineMemOperand *MMO) {
5088   if (VT == MemVT) {
5089     ExtType = ISD::NON_EXTLOAD;
5090   } else if (ExtType == ISD::NON_EXTLOAD) {
5091     assert(VT == MemVT && "Non-extending load from different memory type!");
5092   } else {
5093     // Extending load.
5094     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
5095            "Should only be an extending load, not truncating!");
5096     assert(VT.isInteger() == MemVT.isInteger() &&
5097            "Cannot convert from FP to Int or Int -> FP!");
5098     assert(VT.isVector() == MemVT.isVector() &&
5099            "Cannot use an ext load to convert to or from a vector!");
5100     assert((!VT.isVector() ||
5101             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
5102            "Cannot use an ext load to change the number of vector elements!");
5103   }
5104 
5105   bool Indexed = AM != ISD::UNINDEXED;
5106   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
5107 
5108   SDVTList VTs = Indexed ?
5109     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
5110   SDValue Ops[] = { Chain, Ptr, Offset };
5111   FoldingSetNodeID ID;
5112   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
5113   ID.AddInteger(MemVT.getRawBits());
5114   ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
5115                                      MMO->isNonTemporal(),
5116                                      MMO->isInvariant()));
5117   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5118   void *IP = nullptr;
5119   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5120     cast<LoadSDNode>(E)->refineAlignment(MMO);
5121     return SDValue(E, 0);
5122   }
5123   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
5124                                   ExtType, MemVT, MMO);
5125   createOperands(N, Ops);
5126 
5127   CSEMap.InsertNode(N, IP);
5128   InsertNode(N);
5129   return SDValue(N, 0);
5130 }
5131 
getLoad(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,MachinePointerInfo PtrInfo,bool isVolatile,bool isNonTemporal,bool isInvariant,unsigned Alignment,const AAMDNodes & AAInfo,const MDNode * Ranges)5132 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
5133                               SDValue Ptr, MachinePointerInfo PtrInfo,
5134                               bool isVolatile, bool isNonTemporal,
5135                               bool isInvariant, unsigned Alignment,
5136                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
5137   SDValue Undef = getUNDEF(Ptr.getValueType());
5138   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
5139                  PtrInfo, VT, isVolatile, isNonTemporal, isInvariant, Alignment,
5140                  AAInfo, Ranges);
5141 }
5142 
getLoad(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,MachineMemOperand * MMO)5143 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
5144                               SDValue Ptr, MachineMemOperand *MMO) {
5145   SDValue Undef = getUNDEF(Ptr.getValueType());
5146   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
5147                  VT, MMO);
5148 }
5149 
getExtLoad(ISD::LoadExtType ExtType,const SDLoc & dl,EVT VT,SDValue Chain,SDValue Ptr,MachinePointerInfo PtrInfo,EVT MemVT,bool isVolatile,bool isNonTemporal,bool isInvariant,unsigned Alignment,const AAMDNodes & AAInfo)5150 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
5151                                  EVT VT, SDValue Chain, SDValue Ptr,
5152                                  MachinePointerInfo PtrInfo, EVT MemVT,
5153                                  bool isVolatile, bool isNonTemporal,
5154                                  bool isInvariant, unsigned Alignment,
5155                                  const AAMDNodes &AAInfo) {
5156   SDValue Undef = getUNDEF(Ptr.getValueType());
5157   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
5158                  PtrInfo, MemVT, isVolatile, isNonTemporal, isInvariant,
5159                  Alignment, AAInfo);
5160 }
5161 
getExtLoad(ISD::LoadExtType ExtType,const SDLoc & dl,EVT VT,SDValue Chain,SDValue Ptr,EVT MemVT,MachineMemOperand * MMO)5162 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
5163                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
5164                                  MachineMemOperand *MMO) {
5165   SDValue Undef = getUNDEF(Ptr.getValueType());
5166   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
5167                  MemVT, MMO);
5168 }
5169 
getIndexedLoad(SDValue OrigLoad,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)5170 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
5171                                      SDValue Base, SDValue Offset,
5172                                      ISD::MemIndexedMode AM) {
5173   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
5174   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
5175   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
5176                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
5177                  LD->getMemoryVT(), LD->isVolatile(), LD->isNonTemporal(),
5178                  false, LD->getAlignment());
5179 }
5180 
getStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,MachinePointerInfo PtrInfo,bool isVolatile,bool isNonTemporal,unsigned Alignment,const AAMDNodes & AAInfo)5181 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5182                                SDValue Ptr, MachinePointerInfo PtrInfo,
5183                                bool isVolatile, bool isNonTemporal,
5184                                unsigned Alignment, const AAMDNodes &AAInfo) {
5185   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
5186   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5187     Alignment = getEVTAlignment(Val.getValueType());
5188 
5189   unsigned Flags = MachineMemOperand::MOStore;
5190   if (isVolatile)
5191     Flags |= MachineMemOperand::MOVolatile;
5192   if (isNonTemporal)
5193     Flags |= MachineMemOperand::MONonTemporal;
5194 
5195   if (PtrInfo.V.isNull())
5196     PtrInfo = InferPointerInfo(*this, Ptr);
5197 
5198   MachineFunction &MF = getMachineFunction();
5199   MachineMemOperand *MMO =
5200     MF.getMachineMemOperand(PtrInfo, Flags,
5201                             Val.getValueType().getStoreSize(), Alignment,
5202                             AAInfo);
5203 
5204   return getStore(Chain, dl, Val, Ptr, MMO);
5205 }
5206 
getStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,MachineMemOperand * MMO)5207 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5208                                SDValue Ptr, MachineMemOperand *MMO) {
5209   assert(Chain.getValueType() == MVT::Other &&
5210         "Invalid chain type");
5211   EVT VT = Val.getValueType();
5212   SDVTList VTs = getVTList(MVT::Other);
5213   SDValue Undef = getUNDEF(Ptr.getValueType());
5214   SDValue Ops[] = { Chain, Val, Ptr, Undef };
5215   FoldingSetNodeID ID;
5216   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
5217   ID.AddInteger(VT.getRawBits());
5218   ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
5219                                      MMO->isNonTemporal(), MMO->isInvariant()));
5220   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5221   void *IP = nullptr;
5222   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5223     cast<StoreSDNode>(E)->refineAlignment(MMO);
5224     return SDValue(E, 0);
5225   }
5226   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5227                                    ISD::UNINDEXED, false, VT, MMO);
5228   createOperands(N, Ops);
5229 
5230   CSEMap.InsertNode(N, IP);
5231   InsertNode(N);
5232   return SDValue(N, 0);
5233 }
5234 
getTruncStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,MachinePointerInfo PtrInfo,EVT SVT,bool isVolatile,bool isNonTemporal,unsigned Alignment,const AAMDNodes & AAInfo)5235 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5236                                     SDValue Ptr, MachinePointerInfo PtrInfo,
5237                                     EVT SVT, bool isVolatile,
5238                                     bool isNonTemporal, unsigned Alignment,
5239                                     const AAMDNodes &AAInfo) {
5240   assert(Chain.getValueType() == MVT::Other &&
5241         "Invalid chain type");
5242   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
5243     Alignment = getEVTAlignment(SVT);
5244 
5245   unsigned Flags = MachineMemOperand::MOStore;
5246   if (isVolatile)
5247     Flags |= MachineMemOperand::MOVolatile;
5248   if (isNonTemporal)
5249     Flags |= MachineMemOperand::MONonTemporal;
5250 
5251   if (PtrInfo.V.isNull())
5252     PtrInfo = InferPointerInfo(*this, Ptr);
5253 
5254   MachineFunction &MF = getMachineFunction();
5255   MachineMemOperand *MMO =
5256     MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
5257                             AAInfo);
5258 
5259   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
5260 }
5261 
getTruncStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,EVT SVT,MachineMemOperand * MMO)5262 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
5263                                     SDValue Ptr, EVT SVT,
5264                                     MachineMemOperand *MMO) {
5265   EVT VT = Val.getValueType();
5266 
5267   assert(Chain.getValueType() == MVT::Other &&
5268         "Invalid chain type");
5269   if (VT == SVT)
5270     return getStore(Chain, dl, Val, Ptr, MMO);
5271 
5272   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
5273          "Should only be a truncating store, not extending!");
5274   assert(VT.isInteger() == SVT.isInteger() &&
5275          "Can't do FP-INT conversion!");
5276   assert(VT.isVector() == SVT.isVector() &&
5277          "Cannot use trunc store to convert to or from a vector!");
5278   assert((!VT.isVector() ||
5279           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
5280          "Cannot use trunc store to change the number of vector elements!");
5281 
5282   SDVTList VTs = getVTList(MVT::Other);
5283   SDValue Undef = getUNDEF(Ptr.getValueType());
5284   SDValue Ops[] = { Chain, Val, Ptr, Undef };
5285   FoldingSetNodeID ID;
5286   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
5287   ID.AddInteger(SVT.getRawBits());
5288   ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
5289                                      MMO->isNonTemporal(), MMO->isInvariant()));
5290   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5291   void *IP = nullptr;
5292   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5293     cast<StoreSDNode>(E)->refineAlignment(MMO);
5294     return SDValue(E, 0);
5295   }
5296   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5297                                    ISD::UNINDEXED, true, SVT, MMO);
5298   createOperands(N, Ops);
5299 
5300   CSEMap.InsertNode(N, IP);
5301   InsertNode(N);
5302   return SDValue(N, 0);
5303 }
5304 
getIndexedStore(SDValue OrigStore,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)5305 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
5306                                       SDValue Base, SDValue Offset,
5307                                       ISD::MemIndexedMode AM) {
5308   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
5309   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
5310   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
5311   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
5312   FoldingSetNodeID ID;
5313   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
5314   ID.AddInteger(ST->getMemoryVT().getRawBits());
5315   ID.AddInteger(ST->getRawSubclassData());
5316   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
5317   void *IP = nullptr;
5318   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
5319     return SDValue(E, 0);
5320 
5321   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
5322                                    ST->isTruncatingStore(), ST->getMemoryVT(),
5323                                    ST->getMemOperand());
5324   createOperands(N, Ops);
5325 
5326   CSEMap.InsertNode(N, IP);
5327   InsertNode(N);
5328   return SDValue(N, 0);
5329 }
5330 
getMaskedLoad(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue Mask,SDValue Src0,EVT MemVT,MachineMemOperand * MMO,ISD::LoadExtType ExtTy)5331 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
5332                                     SDValue Ptr, SDValue Mask, SDValue Src0,
5333                                     EVT MemVT, MachineMemOperand *MMO,
5334                                     ISD::LoadExtType ExtTy) {
5335 
5336   SDVTList VTs = getVTList(VT, MVT::Other);
5337   SDValue Ops[] = { Chain, Ptr, Mask, Src0 };
5338   FoldingSetNodeID ID;
5339   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
5340   ID.AddInteger(VT.getRawBits());
5341   ID.AddInteger(encodeMemSDNodeFlags(ExtTy, ISD::UNINDEXED,
5342                                      MMO->isVolatile(),
5343                                      MMO->isNonTemporal(),
5344                                      MMO->isInvariant()));
5345   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5346   void *IP = nullptr;
5347   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5348     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
5349     return SDValue(E, 0);
5350   }
5351   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5352                                         ExtTy, MemVT, MMO);
5353   createOperands(N, Ops);
5354 
5355   CSEMap.InsertNode(N, IP);
5356   InsertNode(N);
5357   return SDValue(N, 0);
5358 }
5359 
getMaskedStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,SDValue Mask,EVT MemVT,MachineMemOperand * MMO,bool isTrunc)5360 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
5361                                      SDValue Val, SDValue Ptr, SDValue Mask,
5362                                      EVT MemVT, MachineMemOperand *MMO,
5363                                      bool isTrunc) {
5364   assert(Chain.getValueType() == MVT::Other &&
5365         "Invalid chain type");
5366   EVT VT = Val.getValueType();
5367   SDVTList VTs = getVTList(MVT::Other);
5368   SDValue Ops[] = { Chain, Ptr, Mask, Val };
5369   FoldingSetNodeID ID;
5370   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
5371   ID.AddInteger(VT.getRawBits());
5372   ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
5373                                      MMO->isNonTemporal(), MMO->isInvariant()));
5374   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5375   void *IP = nullptr;
5376   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5377     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
5378     return SDValue(E, 0);
5379   }
5380   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
5381                                          isTrunc, MemVT, MMO);
5382   createOperands(N, Ops);
5383 
5384   CSEMap.InsertNode(N, IP);
5385   InsertNode(N);
5386   return SDValue(N, 0);
5387 }
5388 
getMaskedGather(SDVTList VTs,EVT VT,const SDLoc & dl,ArrayRef<SDValue> Ops,MachineMemOperand * MMO)5389 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
5390                                       ArrayRef<SDValue> Ops,
5391                                       MachineMemOperand *MMO) {
5392   assert(Ops.size() == 5 && "Incompatible number of operands");
5393 
5394   FoldingSetNodeID ID;
5395   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
5396   ID.AddInteger(VT.getRawBits());
5397   ID.AddInteger(encodeMemSDNodeFlags(ISD::NON_EXTLOAD, ISD::UNINDEXED,
5398                                      MMO->isVolatile(),
5399                                      MMO->isNonTemporal(),
5400                                      MMO->isInvariant()));
5401   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5402   void *IP = nullptr;
5403   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5404     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
5405     return SDValue(E, 0);
5406   }
5407 
5408   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
5409                                           VTs, VT, MMO);
5410   createOperands(N, Ops);
5411 
5412   assert(N->getValue().getValueType() == N->getValueType(0) &&
5413          "Incompatible type of the PassThru value in MaskedGatherSDNode");
5414   assert(N->getMask().getValueType().getVectorNumElements() ==
5415              N->getValueType(0).getVectorNumElements() &&
5416          "Vector width mismatch between mask and data");
5417   assert(N->getIndex().getValueType().getVectorNumElements() ==
5418              N->getValueType(0).getVectorNumElements() &&
5419          "Vector width mismatch between index and data");
5420 
5421   CSEMap.InsertNode(N, IP);
5422   InsertNode(N);
5423   return SDValue(N, 0);
5424 }
5425 
getMaskedScatter(SDVTList VTs,EVT VT,const SDLoc & dl,ArrayRef<SDValue> Ops,MachineMemOperand * MMO)5426 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
5427                                        ArrayRef<SDValue> Ops,
5428                                        MachineMemOperand *MMO) {
5429   assert(Ops.size() == 5 && "Incompatible number of operands");
5430 
5431   FoldingSetNodeID ID;
5432   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
5433   ID.AddInteger(VT.getRawBits());
5434   ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
5435                                      MMO->isNonTemporal(),
5436                                      MMO->isInvariant()));
5437   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
5438   void *IP = nullptr;
5439   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
5440     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
5441     return SDValue(E, 0);
5442   }
5443   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
5444                                            VTs, VT, MMO);
5445   createOperands(N, Ops);
5446 
5447   assert(N->getMask().getValueType().getVectorNumElements() ==
5448              N->getValue().getValueType().getVectorNumElements() &&
5449          "Vector width mismatch between mask and data");
5450   assert(N->getIndex().getValueType().getVectorNumElements() ==
5451              N->getValue().getValueType().getVectorNumElements() &&
5452          "Vector width mismatch between index and data");
5453 
5454   CSEMap.InsertNode(N, IP);
5455   InsertNode(N);
5456   return SDValue(N, 0);
5457 }
5458 
getVAArg(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue SV,unsigned Align)5459 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
5460                                SDValue Ptr, SDValue SV, unsigned Align) {
5461   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
5462   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
5463 }
5464 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDUse> Ops)5465 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5466                               ArrayRef<SDUse> Ops) {
5467   switch (Ops.size()) {
5468   case 0: return getNode(Opcode, DL, VT);
5469   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
5470   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
5471   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
5472   default: break;
5473   }
5474 
5475   // Copy from an SDUse array into an SDValue array for use with
5476   // the regular getNode logic.
5477   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
5478   return getNode(Opcode, DL, VT, NewOps);
5479 }
5480 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,const SDNodeFlags * Flags)5481 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5482                               ArrayRef<SDValue> Ops, const SDNodeFlags *Flags) {
5483   unsigned NumOps = Ops.size();
5484   switch (NumOps) {
5485   case 0: return getNode(Opcode, DL, VT);
5486   case 1: return getNode(Opcode, DL, VT, Ops[0]);
5487   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
5488   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
5489   default: break;
5490   }
5491 
5492   switch (Opcode) {
5493   default: break;
5494   case ISD::CONCAT_VECTORS: {
5495     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
5496     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
5497       return V;
5498     break;
5499   }
5500   case ISD::SELECT_CC: {
5501     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
5502     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
5503            "LHS and RHS of condition must have same type!");
5504     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
5505            "True and False arms of SelectCC must have same type!");
5506     assert(Ops[2].getValueType() == VT &&
5507            "select_cc node must be of same type as true and false value!");
5508     break;
5509   }
5510   case ISD::BR_CC: {
5511     assert(NumOps == 5 && "BR_CC takes 5 operands!");
5512     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
5513            "LHS/RHS of comparison should match types!");
5514     break;
5515   }
5516   }
5517 
5518   // Memoize nodes.
5519   SDNode *N;
5520   SDVTList VTs = getVTList(VT);
5521 
5522   if (VT != MVT::Glue) {
5523     FoldingSetNodeID ID;
5524     AddNodeIDNode(ID, Opcode, VTs, Ops);
5525     void *IP = nullptr;
5526 
5527     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5528       return SDValue(E, 0);
5529 
5530     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5531     createOperands(N, Ops);
5532 
5533     CSEMap.InsertNode(N, IP);
5534   } else {
5535     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5536     createOperands(N, Ops);
5537   }
5538 
5539   InsertNode(N);
5540   return SDValue(N, 0);
5541 }
5542 
getNode(unsigned Opcode,const SDLoc & DL,ArrayRef<EVT> ResultTys,ArrayRef<SDValue> Ops)5543 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
5544                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
5545   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
5546 }
5547 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,ArrayRef<SDValue> Ops)5548 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5549                               ArrayRef<SDValue> Ops) {
5550   if (VTList.NumVTs == 1)
5551     return getNode(Opcode, DL, VTList.VTs[0], Ops);
5552 
5553 #if 0
5554   switch (Opcode) {
5555   // FIXME: figure out how to safely handle things like
5556   // int foo(int x) { return 1 << (x & 255); }
5557   // int bar() { return foo(256); }
5558   case ISD::SRA_PARTS:
5559   case ISD::SRL_PARTS:
5560   case ISD::SHL_PARTS:
5561     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5562         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
5563       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
5564     else if (N3.getOpcode() == ISD::AND)
5565       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
5566         // If the and is only masking out bits that cannot effect the shift,
5567         // eliminate the and.
5568         unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
5569         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
5570           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
5571       }
5572     break;
5573   }
5574 #endif
5575 
5576   // Memoize the node unless it returns a flag.
5577   SDNode *N;
5578   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5579     FoldingSetNodeID ID;
5580     AddNodeIDNode(ID, Opcode, VTList, Ops);
5581     void *IP = nullptr;
5582     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5583       return SDValue(E, 0);
5584 
5585     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
5586     createOperands(N, Ops);
5587     CSEMap.InsertNode(N, IP);
5588   } else {
5589     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
5590     createOperands(N, Ops);
5591   }
5592   InsertNode(N);
5593   return SDValue(N, 0);
5594 }
5595 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList)5596 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
5597                               SDVTList VTList) {
5598   return getNode(Opcode, DL, VTList, None);
5599 }
5600 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1)5601 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5602                               SDValue N1) {
5603   SDValue Ops[] = { N1 };
5604   return getNode(Opcode, DL, VTList, Ops);
5605 }
5606 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2)5607 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5608                               SDValue N1, SDValue N2) {
5609   SDValue Ops[] = { N1, N2 };
5610   return getNode(Opcode, DL, VTList, Ops);
5611 }
5612 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3)5613 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5614                               SDValue N1, SDValue N2, SDValue N3) {
5615   SDValue Ops[] = { N1, N2, N3 };
5616   return getNode(Opcode, DL, VTList, Ops);
5617 }
5618 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3,SDValue N4)5619 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5620                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5621   SDValue Ops[] = { N1, N2, N3, N4 };
5622   return getNode(Opcode, DL, VTList, Ops);
5623 }
5624 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3,SDValue N4,SDValue N5)5625 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
5626                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5627                               SDValue N5) {
5628   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5629   return getNode(Opcode, DL, VTList, Ops);
5630 }
5631 
getVTList(EVT VT)5632 SDVTList SelectionDAG::getVTList(EVT VT) {
5633   return makeVTList(SDNode::getValueTypeList(VT), 1);
5634 }
5635 
getVTList(EVT VT1,EVT VT2)5636 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
5637   FoldingSetNodeID ID;
5638   ID.AddInteger(2U);
5639   ID.AddInteger(VT1.getRawBits());
5640   ID.AddInteger(VT2.getRawBits());
5641 
5642   void *IP = nullptr;
5643   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
5644   if (!Result) {
5645     EVT *Array = Allocator.Allocate<EVT>(2);
5646     Array[0] = VT1;
5647     Array[1] = VT2;
5648     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
5649     VTListMap.InsertNode(Result, IP);
5650   }
5651   return Result->getSDVTList();
5652 }
5653 
getVTList(EVT VT1,EVT VT2,EVT VT3)5654 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
5655   FoldingSetNodeID ID;
5656   ID.AddInteger(3U);
5657   ID.AddInteger(VT1.getRawBits());
5658   ID.AddInteger(VT2.getRawBits());
5659   ID.AddInteger(VT3.getRawBits());
5660 
5661   void *IP = nullptr;
5662   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
5663   if (!Result) {
5664     EVT *Array = Allocator.Allocate<EVT>(3);
5665     Array[0] = VT1;
5666     Array[1] = VT2;
5667     Array[2] = VT3;
5668     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
5669     VTListMap.InsertNode(Result, IP);
5670   }
5671   return Result->getSDVTList();
5672 }
5673 
getVTList(EVT VT1,EVT VT2,EVT VT3,EVT VT4)5674 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
5675   FoldingSetNodeID ID;
5676   ID.AddInteger(4U);
5677   ID.AddInteger(VT1.getRawBits());
5678   ID.AddInteger(VT2.getRawBits());
5679   ID.AddInteger(VT3.getRawBits());
5680   ID.AddInteger(VT4.getRawBits());
5681 
5682   void *IP = nullptr;
5683   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
5684   if (!Result) {
5685     EVT *Array = Allocator.Allocate<EVT>(4);
5686     Array[0] = VT1;
5687     Array[1] = VT2;
5688     Array[2] = VT3;
5689     Array[3] = VT4;
5690     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
5691     VTListMap.InsertNode(Result, IP);
5692   }
5693   return Result->getSDVTList();
5694 }
5695 
getVTList(ArrayRef<EVT> VTs)5696 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
5697   unsigned NumVTs = VTs.size();
5698   FoldingSetNodeID ID;
5699   ID.AddInteger(NumVTs);
5700   for (unsigned index = 0; index < NumVTs; index++) {
5701     ID.AddInteger(VTs[index].getRawBits());
5702   }
5703 
5704   void *IP = nullptr;
5705   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
5706   if (!Result) {
5707     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
5708     std::copy(VTs.begin(), VTs.end(), Array);
5709     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
5710     VTListMap.InsertNode(Result, IP);
5711   }
5712   return Result->getSDVTList();
5713 }
5714 
5715 
5716 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
5717 /// specified operands.  If the resultant node already exists in the DAG,
5718 /// this does not modify the specified node, instead it returns the node that
5719 /// already exists.  If the resultant node does not exist in the DAG, the
5720 /// input node is returned.  As a degenerate case, if you specify the same
5721 /// input operands as the node already has, the input node is returned.
UpdateNodeOperands(SDNode * N,SDValue Op)5722 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
5723   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
5724 
5725   // Check to see if there is no change.
5726   if (Op == N->getOperand(0)) return N;
5727 
5728   // See if the modified node already exists.
5729   void *InsertPos = nullptr;
5730   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
5731     return Existing;
5732 
5733   // Nope it doesn't.  Remove the node from its current place in the maps.
5734   if (InsertPos)
5735     if (!RemoveNodeFromCSEMaps(N))
5736       InsertPos = nullptr;
5737 
5738   // Now we update the operands.
5739   N->OperandList[0].set(Op);
5740 
5741   // If this gets put into a CSE map, add it.
5742   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
5743   return N;
5744 }
5745 
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2)5746 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
5747   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
5748 
5749   // Check to see if there is no change.
5750   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
5751     return N;   // No operands changed, just return the input node.
5752 
5753   // See if the modified node already exists.
5754   void *InsertPos = nullptr;
5755   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
5756     return Existing;
5757 
5758   // Nope it doesn't.  Remove the node from its current place in the maps.
5759   if (InsertPos)
5760     if (!RemoveNodeFromCSEMaps(N))
5761       InsertPos = nullptr;
5762 
5763   // Now we update the operands.
5764   if (N->OperandList[0] != Op1)
5765     N->OperandList[0].set(Op1);
5766   if (N->OperandList[1] != Op2)
5767     N->OperandList[1].set(Op2);
5768 
5769   // If this gets put into a CSE map, add it.
5770   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
5771   return N;
5772 }
5773 
5774 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3)5775 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
5776   SDValue Ops[] = { Op1, Op2, Op3 };
5777   return UpdateNodeOperands(N, Ops);
5778 }
5779 
5780 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3,SDValue Op4)5781 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
5782                    SDValue Op3, SDValue Op4) {
5783   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
5784   return UpdateNodeOperands(N, Ops);
5785 }
5786 
5787 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3,SDValue Op4,SDValue Op5)5788 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
5789                    SDValue Op3, SDValue Op4, SDValue Op5) {
5790   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
5791   return UpdateNodeOperands(N, Ops);
5792 }
5793 
5794 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,ArrayRef<SDValue> Ops)5795 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
5796   unsigned NumOps = Ops.size();
5797   assert(N->getNumOperands() == NumOps &&
5798          "Update with wrong number of operands");
5799 
5800   // If no operands changed just return the input node.
5801   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
5802     return N;
5803 
5804   // See if the modified node already exists.
5805   void *InsertPos = nullptr;
5806   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
5807     return Existing;
5808 
5809   // Nope it doesn't.  Remove the node from its current place in the maps.
5810   if (InsertPos)
5811     if (!RemoveNodeFromCSEMaps(N))
5812       InsertPos = nullptr;
5813 
5814   // Now we update the operands.
5815   for (unsigned i = 0; i != NumOps; ++i)
5816     if (N->OperandList[i] != Ops[i])
5817       N->OperandList[i].set(Ops[i]);
5818 
5819   // If this gets put into a CSE map, add it.
5820   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
5821   return N;
5822 }
5823 
5824 /// DropOperands - Release the operands and set this node to have
5825 /// zero operands.
DropOperands()5826 void SDNode::DropOperands() {
5827   // Unlike the code in MorphNodeTo that does this, we don't need to
5828   // watch for dead nodes here.
5829   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
5830     SDUse &Use = *I++;
5831     Use.set(SDValue());
5832   }
5833 }
5834 
5835 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
5836 /// machine opcode.
5837 ///
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT)5838 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5839                                    EVT VT) {
5840   SDVTList VTs = getVTList(VT);
5841   return SelectNodeTo(N, MachineOpc, VTs, None);
5842 }
5843 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1)5844 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5845                                    EVT VT, SDValue Op1) {
5846   SDVTList VTs = getVTList(VT);
5847   SDValue Ops[] = { Op1 };
5848   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5849 }
5850 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1,SDValue Op2)5851 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5852                                    EVT VT, SDValue Op1,
5853                                    SDValue Op2) {
5854   SDVTList VTs = getVTList(VT);
5855   SDValue Ops[] = { Op1, Op2 };
5856   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5857 }
5858 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1,SDValue Op2,SDValue Op3)5859 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5860                                    EVT VT, SDValue Op1,
5861                                    SDValue Op2, SDValue Op3) {
5862   SDVTList VTs = getVTList(VT);
5863   SDValue Ops[] = { Op1, Op2, Op3 };
5864   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5865 }
5866 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,ArrayRef<SDValue> Ops)5867 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5868                                    EVT VT, ArrayRef<SDValue> Ops) {
5869   SDVTList VTs = getVTList(VT);
5870   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5871 }
5872 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,ArrayRef<SDValue> Ops)5873 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5874                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
5875   SDVTList VTs = getVTList(VT1, VT2);
5876   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5877 }
5878 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2)5879 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5880                                    EVT VT1, EVT VT2) {
5881   SDVTList VTs = getVTList(VT1, VT2);
5882   return SelectNodeTo(N, MachineOpc, VTs, None);
5883 }
5884 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,EVT VT3,ArrayRef<SDValue> Ops)5885 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5886                                    EVT VT1, EVT VT2, EVT VT3,
5887                                    ArrayRef<SDValue> Ops) {
5888   SDVTList VTs = getVTList(VT1, VT2, VT3);
5889   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5890 }
5891 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,EVT VT3,EVT VT4,ArrayRef<SDValue> Ops)5892 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5893                                    EVT VT1, EVT VT2, EVT VT3, EVT VT4,
5894                                    ArrayRef<SDValue> Ops) {
5895   SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
5896   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5897 }
5898 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,SDValue Op1)5899 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5900                                    EVT VT1, EVT VT2,
5901                                    SDValue Op1) {
5902   SDVTList VTs = getVTList(VT1, VT2);
5903   SDValue Ops[] = { Op1 };
5904   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5905 }
5906 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2)5907 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5908                                    EVT VT1, EVT VT2,
5909                                    SDValue Op1, SDValue Op2) {
5910   SDVTList VTs = getVTList(VT1, VT2);
5911   SDValue Ops[] = { Op1, Op2 };
5912   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5913 }
5914 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2,SDValue Op3)5915 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5916                                    EVT VT1, EVT VT2,
5917                                    SDValue Op1, SDValue Op2,
5918                                    SDValue Op3) {
5919   SDVTList VTs = getVTList(VT1, VT2);
5920   SDValue Ops[] = { Op1, Op2, Op3 };
5921   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5922 }
5923 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,EVT VT3,SDValue Op1,SDValue Op2,SDValue Op3)5924 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5925                                    EVT VT1, EVT VT2, EVT VT3,
5926                                    SDValue Op1, SDValue Op2,
5927                                    SDValue Op3) {
5928   SDVTList VTs = getVTList(VT1, VT2, VT3);
5929   SDValue Ops[] = { Op1, Op2, Op3 };
5930   return SelectNodeTo(N, MachineOpc, VTs, Ops);
5931 }
5932 
SelectNodeTo(SDNode * N,unsigned MachineOpc,SDVTList VTs,ArrayRef<SDValue> Ops)5933 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5934                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
5935   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
5936   // Reset the NodeID to -1.
5937   New->setNodeId(-1);
5938   if (New != N) {
5939     ReplaceAllUsesWith(N, New);
5940     RemoveDeadNode(N);
5941   }
5942   return New;
5943 }
5944 
5945 /// UpdadeSDLocOnMergedSDNode - If the opt level is -O0 then it throws away
5946 /// the line number information on the merged node since it is not possible to
5947 /// preserve the information that operation is associated with multiple lines.
5948 /// This will make the debugger working better at -O0, were there is a higher
5949 /// probability having other instructions associated with that line.
5950 ///
5951 /// For IROrder, we keep the smaller of the two
UpdadeSDLocOnMergedSDNode(SDNode * N,const SDLoc & OLoc)5952 SDNode *SelectionDAG::UpdadeSDLocOnMergedSDNode(SDNode *N, const SDLoc &OLoc) {
5953   DebugLoc NLoc = N->getDebugLoc();
5954   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
5955     N->setDebugLoc(DebugLoc());
5956   }
5957   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
5958   N->setIROrder(Order);
5959   return N;
5960 }
5961 
5962 /// MorphNodeTo - This *mutates* the specified node to have the specified
5963 /// return type, opcode, and operands.
5964 ///
5965 /// Note that MorphNodeTo returns the resultant node.  If there is already a
5966 /// node of the specified opcode and operands, it returns that node instead of
5967 /// the current one.  Note that the SDLoc need not be the same.
5968 ///
5969 /// Using MorphNodeTo is faster than creating a new node and swapping it in
5970 /// with ReplaceAllUsesWith both because it often avoids allocating a new
5971 /// node, and because it doesn't require CSE recalculation for any of
5972 /// the node's users.
5973 ///
5974 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
5975 /// As a consequence it isn't appropriate to use from within the DAG combiner or
5976 /// the legalizer which maintain worklists that would need to be updated when
5977 /// deleting things.
MorphNodeTo(SDNode * N,unsigned Opc,SDVTList VTs,ArrayRef<SDValue> Ops)5978 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
5979                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
5980   // If an identical node already exists, use it.
5981   void *IP = nullptr;
5982   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
5983     FoldingSetNodeID ID;
5984     AddNodeIDNode(ID, Opc, VTs, Ops);
5985     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
5986       return UpdadeSDLocOnMergedSDNode(ON, SDLoc(N));
5987   }
5988 
5989   if (!RemoveNodeFromCSEMaps(N))
5990     IP = nullptr;
5991 
5992   // Start the morphing.
5993   N->NodeType = Opc;
5994   N->ValueList = VTs.VTs;
5995   N->NumValues = VTs.NumVTs;
5996 
5997   // Clear the operands list, updating used nodes to remove this from their
5998   // use list.  Keep track of any operands that become dead as a result.
5999   SmallPtrSet<SDNode*, 16> DeadNodeSet;
6000   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
6001     SDUse &Use = *I++;
6002     SDNode *Used = Use.getNode();
6003     Use.set(SDValue());
6004     if (Used->use_empty())
6005       DeadNodeSet.insert(Used);
6006   }
6007 
6008   // For MachineNode, initialize the memory references information.
6009   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
6010     MN->setMemRefs(nullptr, nullptr);
6011 
6012   // Swap for an appropriately sized array from the recycler.
6013   removeOperands(N);
6014   createOperands(N, Ops);
6015 
6016   // Delete any nodes that are still dead after adding the uses for the
6017   // new operands.
6018   if (!DeadNodeSet.empty()) {
6019     SmallVector<SDNode *, 16> DeadNodes;
6020     for (SDNode *N : DeadNodeSet)
6021       if (N->use_empty())
6022         DeadNodes.push_back(N);
6023     RemoveDeadNodes(DeadNodes);
6024   }
6025 
6026   if (IP)
6027     CSEMap.InsertNode(N, IP);   // Memoize the new node.
6028   return N;
6029 }
6030 
6031 
6032 /// getMachineNode - These are used for target selectors to create a new node
6033 /// with specified return type(s), MachineInstr opcode, and operands.
6034 ///
6035 /// Note that getMachineNode returns the resultant node.  If there is already a
6036 /// node of the specified opcode and operands, it returns that node instead of
6037 /// the current one.
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT)6038 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6039                                             EVT VT) {
6040   SDVTList VTs = getVTList(VT);
6041   return getMachineNode(Opcode, dl, VTs, None);
6042 }
6043 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,SDValue Op1)6044 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6045                                             EVT VT, SDValue Op1) {
6046   SDVTList VTs = getVTList(VT);
6047   SDValue Ops[] = { Op1 };
6048   return getMachineNode(Opcode, dl, VTs, Ops);
6049 }
6050 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,SDValue Op1,SDValue Op2)6051 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6052                                             EVT VT, SDValue Op1, SDValue Op2) {
6053   SDVTList VTs = getVTList(VT);
6054   SDValue Ops[] = { Op1, Op2 };
6055   return getMachineNode(Opcode, dl, VTs, Ops);
6056 }
6057 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,SDValue Op1,SDValue Op2,SDValue Op3)6058 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6059                                             EVT VT, SDValue Op1, SDValue Op2,
6060                                             SDValue Op3) {
6061   SDVTList VTs = getVTList(VT);
6062   SDValue Ops[] = { Op1, Op2, Op3 };
6063   return getMachineNode(Opcode, dl, VTs, Ops);
6064 }
6065 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,ArrayRef<SDValue> Ops)6066 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6067                                             EVT VT, ArrayRef<SDValue> Ops) {
6068   SDVTList VTs = getVTList(VT);
6069   return getMachineNode(Opcode, dl, VTs, Ops);
6070 }
6071 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2)6072 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6073                                             EVT VT1, EVT VT2) {
6074   SDVTList VTs = getVTList(VT1, VT2);
6075   return getMachineNode(Opcode, dl, VTs, None);
6076 }
6077 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,SDValue Op1)6078 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6079                                             EVT VT1, EVT VT2, SDValue Op1) {
6080   SDVTList VTs = getVTList(VT1, VT2);
6081   SDValue Ops[] = { Op1 };
6082   return getMachineNode(Opcode, dl, VTs, Ops);
6083 }
6084 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2)6085 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6086                                             EVT VT1, EVT VT2, SDValue Op1,
6087                                             SDValue Op2) {
6088   SDVTList VTs = getVTList(VT1, VT2);
6089   SDValue Ops[] = { Op1, Op2 };
6090   return getMachineNode(Opcode, dl, VTs, Ops);
6091 }
6092 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2,SDValue Op3)6093 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6094                                             EVT VT1, EVT VT2, SDValue Op1,
6095                                             SDValue Op2, SDValue Op3) {
6096   SDVTList VTs = getVTList(VT1, VT2);
6097   SDValue Ops[] = { Op1, Op2, Op3 };
6098   return getMachineNode(Opcode, dl, VTs, Ops);
6099 }
6100 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,ArrayRef<SDValue> Ops)6101 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6102                                             EVT VT1, EVT VT2,
6103                                             ArrayRef<SDValue> Ops) {
6104   SDVTList VTs = getVTList(VT1, VT2);
6105   return getMachineNode(Opcode, dl, VTs, Ops);
6106 }
6107 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,EVT VT3,SDValue Op1,SDValue Op2)6108 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6109                                             EVT VT1, EVT VT2, EVT VT3,
6110                                             SDValue Op1, SDValue Op2) {
6111   SDVTList VTs = getVTList(VT1, VT2, VT3);
6112   SDValue Ops[] = { Op1, Op2 };
6113   return getMachineNode(Opcode, dl, VTs, Ops);
6114 }
6115 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,EVT VT3,SDValue Op1,SDValue Op2,SDValue Op3)6116 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6117                                             EVT VT1, EVT VT2, EVT VT3,
6118                                             SDValue Op1, SDValue Op2,
6119                                             SDValue Op3) {
6120   SDVTList VTs = getVTList(VT1, VT2, VT3);
6121   SDValue Ops[] = { Op1, Op2, Op3 };
6122   return getMachineNode(Opcode, dl, VTs, Ops);
6123 }
6124 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,EVT VT3,ArrayRef<SDValue> Ops)6125 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6126                                             EVT VT1, EVT VT2, EVT VT3,
6127                                             ArrayRef<SDValue> Ops) {
6128   SDVTList VTs = getVTList(VT1, VT2, VT3);
6129   return getMachineNode(Opcode, dl, VTs, Ops);
6130 }
6131 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,EVT VT3,EVT VT4,ArrayRef<SDValue> Ops)6132 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6133                                             EVT VT1, EVT VT2, EVT VT3, EVT VT4,
6134                                             ArrayRef<SDValue> Ops) {
6135   SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
6136   return getMachineNode(Opcode, dl, VTs, Ops);
6137 }
6138 
getMachineNode(unsigned Opcode,const SDLoc & dl,ArrayRef<EVT> ResultTys,ArrayRef<SDValue> Ops)6139 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
6140                                             ArrayRef<EVT> ResultTys,
6141                                             ArrayRef<SDValue> Ops) {
6142   SDVTList VTs = getVTList(ResultTys);
6143   return getMachineNode(Opcode, dl, VTs, Ops);
6144 }
6145 
getMachineNode(unsigned Opcode,const SDLoc & DL,SDVTList VTs,ArrayRef<SDValue> Ops)6146 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
6147                                             SDVTList VTs,
6148                                             ArrayRef<SDValue> Ops) {
6149   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
6150   MachineSDNode *N;
6151   void *IP = nullptr;
6152 
6153   if (DoCSE) {
6154     FoldingSetNodeID ID;
6155     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
6156     IP = nullptr;
6157     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6158       return cast<MachineSDNode>(UpdadeSDLocOnMergedSDNode(E, DL));
6159     }
6160   }
6161 
6162   // Allocate a new MachineSDNode.
6163   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6164   createOperands(N, Ops);
6165 
6166   if (DoCSE)
6167     CSEMap.InsertNode(N, IP);
6168 
6169   InsertNode(N);
6170   return N;
6171 }
6172 
6173 /// getTargetExtractSubreg - A convenience function for creating
6174 /// TargetOpcode::EXTRACT_SUBREG nodes.
getTargetExtractSubreg(int SRIdx,const SDLoc & DL,EVT VT,SDValue Operand)6175 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
6176                                              SDValue Operand) {
6177   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
6178   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
6179                                   VT, Operand, SRIdxVal);
6180   return SDValue(Subreg, 0);
6181 }
6182 
6183 /// getTargetInsertSubreg - A convenience function for creating
6184 /// TargetOpcode::INSERT_SUBREG nodes.
getTargetInsertSubreg(int SRIdx,const SDLoc & DL,EVT VT,SDValue Operand,SDValue Subreg)6185 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
6186                                             SDValue Operand, SDValue Subreg) {
6187   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
6188   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
6189                                   VT, Operand, Subreg, SRIdxVal);
6190   return SDValue(Result, 0);
6191 }
6192 
6193 /// getNodeIfExists - Get the specified node if it's already available, or
6194 /// else return NULL.
getNodeIfExists(unsigned Opcode,SDVTList VTList,ArrayRef<SDValue> Ops,const SDNodeFlags * Flags)6195 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
6196                                       ArrayRef<SDValue> Ops,
6197                                       const SDNodeFlags *Flags) {
6198   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
6199     FoldingSetNodeID ID;
6200     AddNodeIDNode(ID, Opcode, VTList, Ops);
6201     void *IP = nullptr;
6202     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
6203       if (Flags)
6204         E->intersectFlagsWith(Flags);
6205       return E;
6206     }
6207   }
6208   return nullptr;
6209 }
6210 
6211 /// getDbgValue - Creates a SDDbgValue node.
6212 ///
6213 /// SDNode
getDbgValue(MDNode * Var,MDNode * Expr,SDNode * N,unsigned R,bool IsIndirect,uint64_t Off,const DebugLoc & DL,unsigned O)6214 SDDbgValue *SelectionDAG::getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N,
6215                                       unsigned R, bool IsIndirect, uint64_t Off,
6216                                       const DebugLoc &DL, unsigned O) {
6217   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
6218          "Expected inlined-at fields to agree");
6219   return new (DbgInfo->getAlloc())
6220       SDDbgValue(Var, Expr, N, R, IsIndirect, Off, DL, O);
6221 }
6222 
6223 /// Constant
getConstantDbgValue(MDNode * Var,MDNode * Expr,const Value * C,uint64_t Off,const DebugLoc & DL,unsigned O)6224 SDDbgValue *SelectionDAG::getConstantDbgValue(MDNode *Var, MDNode *Expr,
6225                                               const Value *C, uint64_t Off,
6226                                               const DebugLoc &DL, unsigned O) {
6227   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
6228          "Expected inlined-at fields to agree");
6229   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, Off, DL, O);
6230 }
6231 
6232 /// FrameIndex
getFrameIndexDbgValue(MDNode * Var,MDNode * Expr,unsigned FI,uint64_t Off,const DebugLoc & DL,unsigned O)6233 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(MDNode *Var, MDNode *Expr,
6234                                                 unsigned FI, uint64_t Off,
6235                                                 const DebugLoc &DL,
6236                                                 unsigned O) {
6237   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
6238          "Expected inlined-at fields to agree");
6239   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, Off, DL, O);
6240 }
6241 
6242 namespace {
6243 
6244 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
6245 /// pointed to by a use iterator is deleted, increment the use iterator
6246 /// so that it doesn't dangle.
6247 ///
6248 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
6249   SDNode::use_iterator &UI;
6250   SDNode::use_iterator &UE;
6251 
NodeDeleted(SDNode * N,SDNode * E)6252   void NodeDeleted(SDNode *N, SDNode *E) override {
6253     // Increment the iterator as needed.
6254     while (UI != UE && N == *UI)
6255       ++UI;
6256   }
6257 
6258 public:
RAUWUpdateListener(SelectionDAG & d,SDNode::use_iterator & ui,SDNode::use_iterator & ue)6259   RAUWUpdateListener(SelectionDAG &d,
6260                      SDNode::use_iterator &ui,
6261                      SDNode::use_iterator &ue)
6262     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
6263 };
6264 
6265 }
6266 
6267 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
6268 /// This can cause recursive merging of nodes in the DAG.
6269 ///
6270 /// This version assumes From has a single result value.
6271 ///
ReplaceAllUsesWith(SDValue FromN,SDValue To)6272 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
6273   SDNode *From = FromN.getNode();
6274   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
6275          "Cannot replace with this method!");
6276   assert(From != To.getNode() && "Cannot replace uses of with self");
6277 
6278   // Iterate over all the existing uses of From. New uses will be added
6279   // to the beginning of the use list, which we avoid visiting.
6280   // This specifically avoids visiting uses of From that arise while the
6281   // replacement is happening, because any such uses would be the result
6282   // of CSE: If an existing node looks like From after one of its operands
6283   // is replaced by To, we don't want to replace of all its users with To
6284   // too. See PR3018 for more info.
6285   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
6286   RAUWUpdateListener Listener(*this, UI, UE);
6287   while (UI != UE) {
6288     SDNode *User = *UI;
6289 
6290     // This node is about to morph, remove its old self from the CSE maps.
6291     RemoveNodeFromCSEMaps(User);
6292 
6293     // A user can appear in a use list multiple times, and when this
6294     // happens the uses are usually next to each other in the list.
6295     // To help reduce the number of CSE recomputations, process all
6296     // the uses of this user that we can find this way.
6297     do {
6298       SDUse &Use = UI.getUse();
6299       ++UI;
6300       Use.set(To);
6301     } while (UI != UE && *UI == User);
6302 
6303     // Now that we have modified User, add it back to the CSE maps.  If it
6304     // already exists there, recursively merge the results together.
6305     AddModifiedNodeToCSEMaps(User);
6306   }
6307 
6308   // Preserve Debug Values
6309   TransferDbgValues(FromN, To);
6310 
6311   // If we just RAUW'd the root, take note.
6312   if (FromN == getRoot())
6313     setRoot(To);
6314 }
6315 
6316 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
6317 /// This can cause recursive merging of nodes in the DAG.
6318 ///
6319 /// This version assumes that for each value of From, there is a
6320 /// corresponding value in To in the same position with the same type.
6321 ///
ReplaceAllUsesWith(SDNode * From,SDNode * To)6322 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
6323 #ifndef NDEBUG
6324   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
6325     assert((!From->hasAnyUseOfValue(i) ||
6326             From->getValueType(i) == To->getValueType(i)) &&
6327            "Cannot use this version of ReplaceAllUsesWith!");
6328 #endif
6329 
6330   // Handle the trivial case.
6331   if (From == To)
6332     return;
6333 
6334   // Preserve Debug Info. Only do this if there's a use.
6335   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
6336     if (From->hasAnyUseOfValue(i)) {
6337       assert((i < To->getNumValues()) && "Invalid To location");
6338       TransferDbgValues(SDValue(From, i), SDValue(To, i));
6339     }
6340 
6341   // Iterate over just the existing users of From. See the comments in
6342   // the ReplaceAllUsesWith above.
6343   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
6344   RAUWUpdateListener Listener(*this, UI, UE);
6345   while (UI != UE) {
6346     SDNode *User = *UI;
6347 
6348     // This node is about to morph, remove its old self from the CSE maps.
6349     RemoveNodeFromCSEMaps(User);
6350 
6351     // A user can appear in a use list multiple times, and when this
6352     // happens the uses are usually next to each other in the list.
6353     // To help reduce the number of CSE recomputations, process all
6354     // the uses of this user that we can find this way.
6355     do {
6356       SDUse &Use = UI.getUse();
6357       ++UI;
6358       Use.setNode(To);
6359     } while (UI != UE && *UI == User);
6360 
6361     // Now that we have modified User, add it back to the CSE maps.  If it
6362     // already exists there, recursively merge the results together.
6363     AddModifiedNodeToCSEMaps(User);
6364   }
6365 
6366   // If we just RAUW'd the root, take note.
6367   if (From == getRoot().getNode())
6368     setRoot(SDValue(To, getRoot().getResNo()));
6369 }
6370 
6371 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
6372 /// This can cause recursive merging of nodes in the DAG.
6373 ///
6374 /// This version can replace From with any result values.  To must match the
6375 /// number and types of values returned by From.
ReplaceAllUsesWith(SDNode * From,const SDValue * To)6376 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
6377   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
6378     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
6379 
6380   // Preserve Debug Info.
6381   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
6382     TransferDbgValues(SDValue(From, i), *To);
6383 
6384   // Iterate over just the existing users of From. See the comments in
6385   // the ReplaceAllUsesWith above.
6386   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
6387   RAUWUpdateListener Listener(*this, UI, UE);
6388   while (UI != UE) {
6389     SDNode *User = *UI;
6390 
6391     // This node is about to morph, remove its old self from the CSE maps.
6392     RemoveNodeFromCSEMaps(User);
6393 
6394     // A user can appear in a use list multiple times, and when this
6395     // happens the uses are usually next to each other in the list.
6396     // To help reduce the number of CSE recomputations, process all
6397     // the uses of this user that we can find this way.
6398     do {
6399       SDUse &Use = UI.getUse();
6400       const SDValue &ToOp = To[Use.getResNo()];
6401       ++UI;
6402       Use.set(ToOp);
6403     } while (UI != UE && *UI == User);
6404 
6405     // Now that we have modified User, add it back to the CSE maps.  If it
6406     // already exists there, recursively merge the results together.
6407     AddModifiedNodeToCSEMaps(User);
6408   }
6409 
6410   // If we just RAUW'd the root, take note.
6411   if (From == getRoot().getNode())
6412     setRoot(SDValue(To[getRoot().getResNo()]));
6413 }
6414 
6415 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
6416 /// uses of other values produced by From.getNode() alone.  The Deleted
6417 /// vector is handled the same way as for ReplaceAllUsesWith.
ReplaceAllUsesOfValueWith(SDValue From,SDValue To)6418 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
6419   // Handle the really simple, really trivial case efficiently.
6420   if (From == To) return;
6421 
6422   // Handle the simple, trivial, case efficiently.
6423   if (From.getNode()->getNumValues() == 1) {
6424     ReplaceAllUsesWith(From, To);
6425     return;
6426   }
6427 
6428   // Preserve Debug Info.
6429   TransferDbgValues(From, To);
6430 
6431   // Iterate over just the existing users of From. See the comments in
6432   // the ReplaceAllUsesWith above.
6433   SDNode::use_iterator UI = From.getNode()->use_begin(),
6434                        UE = From.getNode()->use_end();
6435   RAUWUpdateListener Listener(*this, UI, UE);
6436   while (UI != UE) {
6437     SDNode *User = *UI;
6438     bool UserRemovedFromCSEMaps = false;
6439 
6440     // A user can appear in a use list multiple times, and when this
6441     // happens the uses are usually next to each other in the list.
6442     // To help reduce the number of CSE recomputations, process all
6443     // the uses of this user that we can find this way.
6444     do {
6445       SDUse &Use = UI.getUse();
6446 
6447       // Skip uses of different values from the same node.
6448       if (Use.getResNo() != From.getResNo()) {
6449         ++UI;
6450         continue;
6451       }
6452 
6453       // If this node hasn't been modified yet, it's still in the CSE maps,
6454       // so remove its old self from the CSE maps.
6455       if (!UserRemovedFromCSEMaps) {
6456         RemoveNodeFromCSEMaps(User);
6457         UserRemovedFromCSEMaps = true;
6458       }
6459 
6460       ++UI;
6461       Use.set(To);
6462     } while (UI != UE && *UI == User);
6463 
6464     // We are iterating over all uses of the From node, so if a use
6465     // doesn't use the specific value, no changes are made.
6466     if (!UserRemovedFromCSEMaps)
6467       continue;
6468 
6469     // Now that we have modified User, add it back to the CSE maps.  If it
6470     // already exists there, recursively merge the results together.
6471     AddModifiedNodeToCSEMaps(User);
6472   }
6473 
6474   // If we just RAUW'd the root, take note.
6475   if (From == getRoot())
6476     setRoot(To);
6477 }
6478 
6479 namespace {
6480   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
6481   /// to record information about a use.
6482   struct UseMemo {
6483     SDNode *User;
6484     unsigned Index;
6485     SDUse *Use;
6486   };
6487 
6488   /// operator< - Sort Memos by User.
operator <(const UseMemo & L,const UseMemo & R)6489   bool operator<(const UseMemo &L, const UseMemo &R) {
6490     return (intptr_t)L.User < (intptr_t)R.User;
6491   }
6492 }
6493 
6494 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
6495 /// uses of other values produced by From.getNode() alone.  The same value
6496 /// may appear in both the From and To list.  The Deleted vector is
6497 /// handled the same way as for ReplaceAllUsesWith.
ReplaceAllUsesOfValuesWith(const SDValue * From,const SDValue * To,unsigned Num)6498 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
6499                                               const SDValue *To,
6500                                               unsigned Num){
6501   // Handle the simple, trivial case efficiently.
6502   if (Num == 1)
6503     return ReplaceAllUsesOfValueWith(*From, *To);
6504 
6505   TransferDbgValues(*From, *To);
6506 
6507   // Read up all the uses and make records of them. This helps
6508   // processing new uses that are introduced during the
6509   // replacement process.
6510   SmallVector<UseMemo, 4> Uses;
6511   for (unsigned i = 0; i != Num; ++i) {
6512     unsigned FromResNo = From[i].getResNo();
6513     SDNode *FromNode = From[i].getNode();
6514     for (SDNode::use_iterator UI = FromNode->use_begin(),
6515          E = FromNode->use_end(); UI != E; ++UI) {
6516       SDUse &Use = UI.getUse();
6517       if (Use.getResNo() == FromResNo) {
6518         UseMemo Memo = { *UI, i, &Use };
6519         Uses.push_back(Memo);
6520       }
6521     }
6522   }
6523 
6524   // Sort the uses, so that all the uses from a given User are together.
6525   std::sort(Uses.begin(), Uses.end());
6526 
6527   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
6528        UseIndex != UseIndexEnd; ) {
6529     // We know that this user uses some value of From.  If it is the right
6530     // value, update it.
6531     SDNode *User = Uses[UseIndex].User;
6532 
6533     // This node is about to morph, remove its old self from the CSE maps.
6534     RemoveNodeFromCSEMaps(User);
6535 
6536     // The Uses array is sorted, so all the uses for a given User
6537     // are next to each other in the list.
6538     // To help reduce the number of CSE recomputations, process all
6539     // the uses of this user that we can find this way.
6540     do {
6541       unsigned i = Uses[UseIndex].Index;
6542       SDUse &Use = *Uses[UseIndex].Use;
6543       ++UseIndex;
6544 
6545       Use.set(To[i]);
6546     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
6547 
6548     // Now that we have modified User, add it back to the CSE maps.  If it
6549     // already exists there, recursively merge the results together.
6550     AddModifiedNodeToCSEMaps(User);
6551   }
6552 }
6553 
6554 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
6555 /// based on their topological order. It returns the maximum id and a vector
6556 /// of the SDNodes* in assigned order by reference.
AssignTopologicalOrder()6557 unsigned SelectionDAG::AssignTopologicalOrder() {
6558 
6559   unsigned DAGSize = 0;
6560 
6561   // SortedPos tracks the progress of the algorithm. Nodes before it are
6562   // sorted, nodes after it are unsorted. When the algorithm completes
6563   // it is at the end of the list.
6564   allnodes_iterator SortedPos = allnodes_begin();
6565 
6566   // Visit all the nodes. Move nodes with no operands to the front of
6567   // the list immediately. Annotate nodes that do have operands with their
6568   // operand count. Before we do this, the Node Id fields of the nodes
6569   // may contain arbitrary values. After, the Node Id fields for nodes
6570   // before SortedPos will contain the topological sort index, and the
6571   // Node Id fields for nodes At SortedPos and after will contain the
6572   // count of outstanding operands.
6573   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
6574     SDNode *N = &*I++;
6575     checkForCycles(N, this);
6576     unsigned Degree = N->getNumOperands();
6577     if (Degree == 0) {
6578       // A node with no uses, add it to the result array immediately.
6579       N->setNodeId(DAGSize++);
6580       allnodes_iterator Q(N);
6581       if (Q != SortedPos)
6582         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
6583       assert(SortedPos != AllNodes.end() && "Overran node list");
6584       ++SortedPos;
6585     } else {
6586       // Temporarily use the Node Id as scratch space for the degree count.
6587       N->setNodeId(Degree);
6588     }
6589   }
6590 
6591   // Visit all the nodes. As we iterate, move nodes into sorted order,
6592   // such that by the time the end is reached all nodes will be sorted.
6593   for (SDNode &Node : allnodes()) {
6594     SDNode *N = &Node;
6595     checkForCycles(N, this);
6596     // N is in sorted position, so all its uses have one less operand
6597     // that needs to be sorted.
6598     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6599          UI != UE; ++UI) {
6600       SDNode *P = *UI;
6601       unsigned Degree = P->getNodeId();
6602       assert(Degree != 0 && "Invalid node degree");
6603       --Degree;
6604       if (Degree == 0) {
6605         // All of P's operands are sorted, so P may sorted now.
6606         P->setNodeId(DAGSize++);
6607         if (P->getIterator() != SortedPos)
6608           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
6609         assert(SortedPos != AllNodes.end() && "Overran node list");
6610         ++SortedPos;
6611       } else {
6612         // Update P's outstanding operand count.
6613         P->setNodeId(Degree);
6614       }
6615     }
6616     if (Node.getIterator() == SortedPos) {
6617 #ifndef NDEBUG
6618       allnodes_iterator I(N);
6619       SDNode *S = &*++I;
6620       dbgs() << "Overran sorted position:\n";
6621       S->dumprFull(this); dbgs() << "\n";
6622       dbgs() << "Checking if this is due to cycles\n";
6623       checkForCycles(this, true);
6624 #endif
6625       llvm_unreachable(nullptr);
6626     }
6627   }
6628 
6629   assert(SortedPos == AllNodes.end() &&
6630          "Topological sort incomplete!");
6631   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
6632          "First node in topological sort is not the entry token!");
6633   assert(AllNodes.front().getNodeId() == 0 &&
6634          "First node in topological sort has non-zero id!");
6635   assert(AllNodes.front().getNumOperands() == 0 &&
6636          "First node in topological sort has operands!");
6637   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
6638          "Last node in topologic sort has unexpected id!");
6639   assert(AllNodes.back().use_empty() &&
6640          "Last node in topologic sort has users!");
6641   assert(DAGSize == allnodes_size() && "Node count mismatch!");
6642   return DAGSize;
6643 }
6644 
6645 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
6646 /// value is produced by SD.
AddDbgValue(SDDbgValue * DB,SDNode * SD,bool isParameter)6647 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
6648   if (SD) {
6649     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
6650     SD->setHasDebugValue(true);
6651   }
6652   DbgInfo->add(DB, SD, isParameter);
6653 }
6654 
6655 /// TransferDbgValues - Transfer SDDbgValues. Called in replace nodes.
TransferDbgValues(SDValue From,SDValue To)6656 void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
6657   if (From == To || !From.getNode()->getHasDebugValue())
6658     return;
6659   SDNode *FromNode = From.getNode();
6660   SDNode *ToNode = To.getNode();
6661   ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
6662   for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
6663        I != E; ++I) {
6664     SDDbgValue *Dbg = *I;
6665     // Only add Dbgvalues attached to same ResNo.
6666     if (Dbg->getKind() == SDDbgValue::SDNODE &&
6667         Dbg->getResNo() == From.getResNo()) {
6668       SDDbgValue *Clone =
6669           getDbgValue(Dbg->getVariable(), Dbg->getExpression(), ToNode,
6670                       To.getResNo(), Dbg->isIndirect(), Dbg->getOffset(),
6671                       Dbg->getDebugLoc(), Dbg->getOrder());
6672       AddDbgValue(Clone, ToNode, false);
6673     }
6674   }
6675 }
6676 
6677 //===----------------------------------------------------------------------===//
6678 //                              SDNode Class
6679 //===----------------------------------------------------------------------===//
6680 
isNullConstant(SDValue V)6681 bool llvm::isNullConstant(SDValue V) {
6682   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
6683   return Const != nullptr && Const->isNullValue();
6684 }
6685 
isNullFPConstant(SDValue V)6686 bool llvm::isNullFPConstant(SDValue V) {
6687   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
6688   return Const != nullptr && Const->isZero() && !Const->isNegative();
6689 }
6690 
isAllOnesConstant(SDValue V)6691 bool llvm::isAllOnesConstant(SDValue V) {
6692   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
6693   return Const != nullptr && Const->isAllOnesValue();
6694 }
6695 
isOneConstant(SDValue V)6696 bool llvm::isOneConstant(SDValue V) {
6697   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
6698   return Const != nullptr && Const->isOne();
6699 }
6700 
isBitwiseNot(SDValue V)6701 bool llvm::isBitwiseNot(SDValue V) {
6702   return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1));
6703 }
6704 
~HandleSDNode()6705 HandleSDNode::~HandleSDNode() {
6706   DropOperands();
6707 }
6708 
GlobalAddressSDNode(unsigned Opc,unsigned Order,const DebugLoc & DL,const GlobalValue * GA,EVT VT,int64_t o,unsigned char TF)6709 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
6710                                          const DebugLoc &DL,
6711                                          const GlobalValue *GA, EVT VT,
6712                                          int64_t o, unsigned char TF)
6713     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
6714   TheGlobal = GA;
6715 }
6716 
AddrSpaceCastSDNode(unsigned Order,const DebugLoc & dl,EVT VT,unsigned SrcAS,unsigned DestAS)6717 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
6718                                          EVT VT, unsigned SrcAS,
6719                                          unsigned DestAS)
6720     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
6721       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
6722 
MemSDNode(unsigned Opc,unsigned Order,const DebugLoc & dl,SDVTList VTs,EVT memvt,MachineMemOperand * mmo)6723 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
6724                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
6725     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
6726   SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
6727                                       MMO->isNonTemporal(), MMO->isInvariant());
6728   assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
6729   assert(isNonTemporal() == MMO->isNonTemporal() &&
6730          "Non-temporal encoding error!");
6731   // We check here that the size of the memory operand fits within the size of
6732   // the MMO. This is because the MMO might indicate only a possible address
6733   // range instead of specifying the affected memory addresses precisely.
6734   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
6735 }
6736 
6737 /// Profile - Gather unique data for the node.
6738 ///
Profile(FoldingSetNodeID & ID) const6739 void SDNode::Profile(FoldingSetNodeID &ID) const {
6740   AddNodeIDNode(ID, this);
6741 }
6742 
6743 namespace {
6744   struct EVTArray {
6745     std::vector<EVT> VTs;
6746 
EVTArray__anon54267b090911::EVTArray6747     EVTArray() {
6748       VTs.reserve(MVT::LAST_VALUETYPE);
6749       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
6750         VTs.push_back(MVT((MVT::SimpleValueType)i));
6751     }
6752   };
6753 }
6754 
6755 static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
6756 static ManagedStatic<EVTArray> SimpleVTArray;
6757 static ManagedStatic<sys::SmartMutex<true> > VTMutex;
6758 
6759 /// getValueTypeList - Return a pointer to the specified value type.
6760 ///
getValueTypeList(EVT VT)6761 const EVT *SDNode::getValueTypeList(EVT VT) {
6762   if (VT.isExtended()) {
6763     sys::SmartScopedLock<true> Lock(*VTMutex);
6764     return &(*EVTs->insert(VT).first);
6765   } else {
6766     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
6767            "Value type out of range!");
6768     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
6769   }
6770 }
6771 
6772 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
6773 /// indicated value.  This method ignores uses of other values defined by this
6774 /// operation.
hasNUsesOfValue(unsigned NUses,unsigned Value) const6775 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
6776   assert(Value < getNumValues() && "Bad value!");
6777 
6778   // TODO: Only iterate over uses of a given value of the node
6779   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
6780     if (UI.getUse().getResNo() == Value) {
6781       if (NUses == 0)
6782         return false;
6783       --NUses;
6784     }
6785   }
6786 
6787   // Found exactly the right number of uses?
6788   return NUses == 0;
6789 }
6790 
6791 
6792 /// hasAnyUseOfValue - Return true if there are any use of the indicated
6793 /// value. This method ignores uses of other values defined by this operation.
hasAnyUseOfValue(unsigned Value) const6794 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
6795   assert(Value < getNumValues() && "Bad value!");
6796 
6797   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
6798     if (UI.getUse().getResNo() == Value)
6799       return true;
6800 
6801   return false;
6802 }
6803 
6804 
6805 /// isOnlyUserOf - Return true if this node is the only use of N.
6806 ///
isOnlyUserOf(const SDNode * N) const6807 bool SDNode::isOnlyUserOf(const SDNode *N) const {
6808   bool Seen = false;
6809   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
6810     SDNode *User = *I;
6811     if (User == this)
6812       Seen = true;
6813     else
6814       return false;
6815   }
6816 
6817   return Seen;
6818 }
6819 
6820 /// isOperand - Return true if this node is an operand of N.
6821 ///
isOperandOf(const SDNode * N) const6822 bool SDValue::isOperandOf(const SDNode *N) const {
6823   for (const SDValue &Op : N->op_values())
6824     if (*this == Op)
6825       return true;
6826   return false;
6827 }
6828 
isOperandOf(const SDNode * N) const6829 bool SDNode::isOperandOf(const SDNode *N) const {
6830   for (const SDValue &Op : N->op_values())
6831     if (this == Op.getNode())
6832       return true;
6833   return false;
6834 }
6835 
6836 /// reachesChainWithoutSideEffects - Return true if this operand (which must
6837 /// be a chain) reaches the specified operand without crossing any
6838 /// side-effecting instructions on any chain path.  In practice, this looks
6839 /// through token factors and non-volatile loads.  In order to remain efficient,
6840 /// this only looks a couple of nodes in, it does not do an exhaustive search.
reachesChainWithoutSideEffects(SDValue Dest,unsigned Depth) const6841 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
6842                                                unsigned Depth) const {
6843   if (*this == Dest) return true;
6844 
6845   // Don't search too deeply, we just want to be able to see through
6846   // TokenFactor's etc.
6847   if (Depth == 0) return false;
6848 
6849   // If this is a token factor, all inputs to the TF happen in parallel.  If any
6850   // of the operands of the TF does not reach dest, then we cannot do the xform.
6851   if (getOpcode() == ISD::TokenFactor) {
6852     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6853       if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
6854         return false;
6855     return true;
6856   }
6857 
6858   // Loads don't have side effects, look through them.
6859   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
6860     if (!Ld->isVolatile())
6861       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
6862   }
6863   return false;
6864 }
6865 
hasPredecessor(const SDNode * N) const6866 bool SDNode::hasPredecessor(const SDNode *N) const {
6867   SmallPtrSet<const SDNode *, 32> Visited;
6868   SmallVector<const SDNode *, 16> Worklist;
6869   Worklist.push_back(this);
6870   return hasPredecessorHelper(N, Visited, Worklist);
6871 }
6872 
getConstantOperandVal(unsigned Num) const6873 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
6874   assert(Num < NumOperands && "Invalid child # of SDNode!");
6875   return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
6876 }
6877 
getFlags() const6878 const SDNodeFlags *SDNode::getFlags() const {
6879   if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this))
6880     return &FlagsNode->Flags;
6881   return nullptr;
6882 }
6883 
intersectFlagsWith(const SDNodeFlags * Flags)6884 void SDNode::intersectFlagsWith(const SDNodeFlags *Flags) {
6885   if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this))
6886     FlagsNode->Flags.intersectWith(Flags);
6887 }
6888 
UnrollVectorOp(SDNode * N,unsigned ResNE)6889 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6890   assert(N->getNumValues() == 1 &&
6891          "Can't unroll a vector with multiple results!");
6892 
6893   EVT VT = N->getValueType(0);
6894   unsigned NE = VT.getVectorNumElements();
6895   EVT EltVT = VT.getVectorElementType();
6896   SDLoc dl(N);
6897 
6898   SmallVector<SDValue, 8> Scalars;
6899   SmallVector<SDValue, 4> Operands(N->getNumOperands());
6900 
6901   // If ResNE is 0, fully unroll the vector op.
6902   if (ResNE == 0)
6903     ResNE = NE;
6904   else if (NE > ResNE)
6905     NE = ResNE;
6906 
6907   unsigned i;
6908   for (i= 0; i != NE; ++i) {
6909     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6910       SDValue Operand = N->getOperand(j);
6911       EVT OperandVT = Operand.getValueType();
6912       if (OperandVT.isVector()) {
6913         // A vector operand; extract a single element.
6914         EVT OperandEltVT = OperandVT.getVectorElementType();
6915         Operands[j] =
6916             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
6917                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
6918       } else {
6919         // A scalar operand; just use it as is.
6920         Operands[j] = Operand;
6921       }
6922     }
6923 
6924     switch (N->getOpcode()) {
6925     default: {
6926       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
6927                                 N->getFlags()));
6928       break;
6929     }
6930     case ISD::VSELECT:
6931       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
6932       break;
6933     case ISD::SHL:
6934     case ISD::SRA:
6935     case ISD::SRL:
6936     case ISD::ROTL:
6937     case ISD::ROTR:
6938       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6939                                getShiftAmountOperand(Operands[0].getValueType(),
6940                                                      Operands[1])));
6941       break;
6942     case ISD::SIGN_EXTEND_INREG:
6943     case ISD::FP_ROUND_INREG: {
6944       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6945       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6946                                 Operands[0],
6947                                 getValueType(ExtVT)));
6948     }
6949     }
6950   }
6951 
6952   for (; i < ResNE; ++i)
6953     Scalars.push_back(getUNDEF(EltVT));
6954 
6955   return getNode(ISD::BUILD_VECTOR, dl,
6956                  EVT::getVectorVT(*getContext(), EltVT, ResNE), Scalars);
6957 }
6958 
areNonVolatileConsecutiveLoads(LoadSDNode * LD,LoadSDNode * Base,unsigned Bytes,int Dist) const6959 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
6960                                                   LoadSDNode *Base,
6961                                                   unsigned Bytes,
6962                                                   int Dist) const {
6963   if (LD->isVolatile() || Base->isVolatile())
6964     return false;
6965   if (LD->isIndexed() || Base->isIndexed())
6966     return false;
6967   if (LD->getChain() != Base->getChain())
6968     return false;
6969   EVT VT = LD->getValueType(0);
6970   if (VT.getSizeInBits() / 8 != Bytes)
6971     return false;
6972 
6973   SDValue Loc = LD->getOperand(1);
6974   SDValue BaseLoc = Base->getOperand(1);
6975   if (Loc.getOpcode() == ISD::FrameIndex) {
6976     if (BaseLoc.getOpcode() != ISD::FrameIndex)
6977       return false;
6978     const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6979     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6980     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6981     int FS  = MFI->getObjectSize(FI);
6982     int BFS = MFI->getObjectSize(BFI);
6983     if (FS != BFS || FS != (int)Bytes) return false;
6984     return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6985   }
6986 
6987   // Handle X + C.
6988   if (isBaseWithConstantOffset(Loc)) {
6989     int64_t LocOffset = cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
6990     if (Loc.getOperand(0) == BaseLoc) {
6991       // If the base location is a simple address with no offset itself, then
6992       // the second load's first add operand should be the base address.
6993       if (LocOffset == Dist * (int)Bytes)
6994         return true;
6995     } else if (isBaseWithConstantOffset(BaseLoc)) {
6996       // The base location itself has an offset, so subtract that value from the
6997       // second load's offset before comparing to distance * size.
6998       int64_t BOffset =
6999         cast<ConstantSDNode>(BaseLoc.getOperand(1))->getSExtValue();
7000       if (Loc.getOperand(0) == BaseLoc.getOperand(0)) {
7001         if ((LocOffset - BOffset) == Dist * (int)Bytes)
7002           return true;
7003       }
7004     }
7005   }
7006   const GlobalValue *GV1 = nullptr;
7007   const GlobalValue *GV2 = nullptr;
7008   int64_t Offset1 = 0;
7009   int64_t Offset2 = 0;
7010   bool isGA1 = TLI->isGAPlusOffset(Loc.getNode(), GV1, Offset1);
7011   bool isGA2 = TLI->isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
7012   if (isGA1 && isGA2 && GV1 == GV2)
7013     return Offset1 == (Offset2 + Dist*Bytes);
7014   return false;
7015 }
7016 
7017 
7018 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
7019 /// it cannot be inferred.
InferPtrAlignment(SDValue Ptr) const7020 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
7021   // If this is a GlobalAddress + cst, return the alignment.
7022   const GlobalValue *GV;
7023   int64_t GVOffset = 0;
7024   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
7025     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
7026     APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0);
7027     llvm::computeKnownBits(const_cast<GlobalValue *>(GV), KnownZero, KnownOne,
7028                            getDataLayout());
7029     unsigned AlignBits = KnownZero.countTrailingOnes();
7030     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
7031     if (Align)
7032       return MinAlign(Align, GVOffset);
7033   }
7034 
7035   // If this is a direct reference to a stack slot, use information about the
7036   // stack slot's alignment.
7037   int FrameIdx = 1 << 31;
7038   int64_t FrameOffset = 0;
7039   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
7040     FrameIdx = FI->getIndex();
7041   } else if (isBaseWithConstantOffset(Ptr) &&
7042              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
7043     // Handle FI+Cst
7044     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7045     FrameOffset = Ptr.getConstantOperandVal(1);
7046   }
7047 
7048   if (FrameIdx != (1 << 31)) {
7049     const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
7050     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
7051                                     FrameOffset);
7052     return FIInfoAlign;
7053   }
7054 
7055   return 0;
7056 }
7057 
7058 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
7059 /// which is split (or expanded) into two not necessarily identical pieces.
GetSplitDestVTs(const EVT & VT) const7060 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
7061   // Currently all types are split in half.
7062   EVT LoVT, HiVT;
7063   if (!VT.isVector()) {
7064     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
7065   } else {
7066     unsigned NumElements = VT.getVectorNumElements();
7067     assert(!(NumElements & 1) && "Splitting vector, but not in half!");
7068     LoVT = HiVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
7069                                    NumElements/2);
7070   }
7071   return std::make_pair(LoVT, HiVT);
7072 }
7073 
7074 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
7075 /// low/high part.
7076 std::pair<SDValue, SDValue>
SplitVector(const SDValue & N,const SDLoc & DL,const EVT & LoVT,const EVT & HiVT)7077 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
7078                           const EVT &HiVT) {
7079   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
7080          N.getValueType().getVectorNumElements() &&
7081          "More vector elements requested than available!");
7082   SDValue Lo, Hi;
7083   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
7084                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
7085   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
7086                getConstant(LoVT.getVectorNumElements(), DL,
7087                            TLI->getVectorIdxTy(getDataLayout())));
7088   return std::make_pair(Lo, Hi);
7089 }
7090 
ExtractVectorElements(SDValue Op,SmallVectorImpl<SDValue> & Args,unsigned Start,unsigned Count)7091 void SelectionDAG::ExtractVectorElements(SDValue Op,
7092                                          SmallVectorImpl<SDValue> &Args,
7093                                          unsigned Start, unsigned Count) {
7094   EVT VT = Op.getValueType();
7095   if (Count == 0)
7096     Count = VT.getVectorNumElements();
7097 
7098   EVT EltVT = VT.getVectorElementType();
7099   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
7100   SDLoc SL(Op);
7101   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
7102     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
7103                            Op, getConstant(i, SL, IdxTy)));
7104   }
7105 }
7106 
7107 // getAddressSpace - Return the address space this GlobalAddress belongs to.
getAddressSpace() const7108 unsigned GlobalAddressSDNode::getAddressSpace() const {
7109   return getGlobal()->getType()->getAddressSpace();
7110 }
7111 
7112 
getType() const7113 Type *ConstantPoolSDNode::getType() const {
7114   if (isMachineConstantPoolEntry())
7115     return Val.MachineCPVal->getType();
7116   return Val.ConstVal->getType();
7117 }
7118 
isConstantSplat(APInt & SplatValue,APInt & SplatUndef,unsigned & SplatBitSize,bool & HasAnyUndefs,unsigned MinSplatBits,bool isBigEndian) const7119 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
7120                                         APInt &SplatUndef,
7121                                         unsigned &SplatBitSize,
7122                                         bool &HasAnyUndefs,
7123                                         unsigned MinSplatBits,
7124                                         bool isBigEndian) const {
7125   EVT VT = getValueType(0);
7126   assert(VT.isVector() && "Expected a vector type");
7127   unsigned sz = VT.getSizeInBits();
7128   if (MinSplatBits > sz)
7129     return false;
7130 
7131   SplatValue = APInt(sz, 0);
7132   SplatUndef = APInt(sz, 0);
7133 
7134   // Get the bits.  Bits with undefined values (when the corresponding element
7135   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
7136   // in SplatValue.  If any of the values are not constant, give up and return
7137   // false.
7138   unsigned int nOps = getNumOperands();
7139   assert(nOps > 0 && "isConstantSplat has 0-size build vector");
7140   unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
7141 
7142   for (unsigned j = 0; j < nOps; ++j) {
7143     unsigned i = isBigEndian ? nOps-1-j : j;
7144     SDValue OpVal = getOperand(i);
7145     unsigned BitPos = j * EltBitSize;
7146 
7147     if (OpVal.isUndef())
7148       SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
7149     else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
7150       SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
7151                     zextOrTrunc(sz) << BitPos;
7152     else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
7153       SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
7154      else
7155       return false;
7156   }
7157 
7158   // The build_vector is all constants or undefs.  Find the smallest element
7159   // size that splats the vector.
7160 
7161   HasAnyUndefs = (SplatUndef != 0);
7162   while (sz > 8) {
7163 
7164     unsigned HalfSize = sz / 2;
7165     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
7166     APInt LowValue = SplatValue.trunc(HalfSize);
7167     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
7168     APInt LowUndef = SplatUndef.trunc(HalfSize);
7169 
7170     // If the two halves do not match (ignoring undef bits), stop here.
7171     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
7172         MinSplatBits > HalfSize)
7173       break;
7174 
7175     SplatValue = HighValue | LowValue;
7176     SplatUndef = HighUndef & LowUndef;
7177 
7178     sz = HalfSize;
7179   }
7180 
7181   SplatBitSize = sz;
7182   return true;
7183 }
7184 
getSplatValue(BitVector * UndefElements) const7185 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
7186   if (UndefElements) {
7187     UndefElements->clear();
7188     UndefElements->resize(getNumOperands());
7189   }
7190   SDValue Splatted;
7191   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
7192     SDValue Op = getOperand(i);
7193     if (Op.isUndef()) {
7194       if (UndefElements)
7195         (*UndefElements)[i] = true;
7196     } else if (!Splatted) {
7197       Splatted = Op;
7198     } else if (Splatted != Op) {
7199       return SDValue();
7200     }
7201   }
7202 
7203   if (!Splatted) {
7204     assert(getOperand(0).isUndef() &&
7205            "Can only have a splat without a constant for all undefs.");
7206     return getOperand(0);
7207   }
7208 
7209   return Splatted;
7210 }
7211 
7212 ConstantSDNode *
getConstantSplatNode(BitVector * UndefElements) const7213 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
7214   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
7215 }
7216 
7217 ConstantFPSDNode *
getConstantFPSplatNode(BitVector * UndefElements) const7218 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
7219   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
7220 }
7221 
7222 int32_t
getConstantFPSplatPow2ToLog2Int(BitVector * UndefElements,uint32_t BitWidth) const7223 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
7224                                                    uint32_t BitWidth) const {
7225   if (ConstantFPSDNode *CN =
7226           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
7227     bool IsExact;
7228     APSInt IntVal(BitWidth);
7229     const APFloat &APF = CN->getValueAPF();
7230     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
7231             APFloat::opOK ||
7232         !IsExact)
7233       return -1;
7234 
7235     return IntVal.exactLogBase2();
7236   }
7237   return -1;
7238 }
7239 
isConstant() const7240 bool BuildVectorSDNode::isConstant() const {
7241   for (const SDValue &Op : op_values()) {
7242     unsigned Opc = Op.getOpcode();
7243     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
7244       return false;
7245   }
7246   return true;
7247 }
7248 
isSplatMask(const int * Mask,EVT VT)7249 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
7250   // Find the first non-undef value in the shuffle mask.
7251   unsigned i, e;
7252   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
7253     /* search */;
7254 
7255   assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
7256 
7257   // Make sure all remaining elements are either undef or the same as the first
7258   // non-undef value.
7259   for (int Idx = Mask[i]; i != e; ++i)
7260     if (Mask[i] >= 0 && Mask[i] != Idx)
7261       return false;
7262   return true;
7263 }
7264 
7265 // \brief Returns the SDNode if it is a constant integer BuildVector
7266 // or constant integer.
isConstantIntBuildVectorOrConstantInt(SDValue N)7267 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
7268   if (isa<ConstantSDNode>(N))
7269     return N.getNode();
7270   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
7271     return N.getNode();
7272   // Treat a GlobalAddress supporting constant offset folding as a
7273   // constant integer.
7274   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
7275     if (GA->getOpcode() == ISD::GlobalAddress &&
7276         TLI->isOffsetFoldingLegal(GA))
7277       return GA;
7278   return nullptr;
7279 }
7280 
7281 #ifndef NDEBUG
checkForCyclesHelper(const SDNode * N,SmallPtrSetImpl<const SDNode * > & Visited,SmallPtrSetImpl<const SDNode * > & Checked,const llvm::SelectionDAG * DAG)7282 static void checkForCyclesHelper(const SDNode *N,
7283                                  SmallPtrSetImpl<const SDNode*> &Visited,
7284                                  SmallPtrSetImpl<const SDNode*> &Checked,
7285                                  const llvm::SelectionDAG *DAG) {
7286   // If this node has already been checked, don't check it again.
7287   if (Checked.count(N))
7288     return;
7289 
7290   // If a node has already been visited on this depth-first walk, reject it as
7291   // a cycle.
7292   if (!Visited.insert(N).second) {
7293     errs() << "Detected cycle in SelectionDAG\n";
7294     dbgs() << "Offending node:\n";
7295     N->dumprFull(DAG); dbgs() << "\n";
7296     abort();
7297   }
7298 
7299   for (const SDValue &Op : N->op_values())
7300     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
7301 
7302   Checked.insert(N);
7303   Visited.erase(N);
7304 }
7305 #endif
7306 
checkForCycles(const llvm::SDNode * N,const llvm::SelectionDAG * DAG,bool force)7307 void llvm::checkForCycles(const llvm::SDNode *N,
7308                           const llvm::SelectionDAG *DAG,
7309                           bool force) {
7310 #ifndef NDEBUG
7311   bool check = force;
7312 #ifdef EXPENSIVE_CHECKS
7313   check = true;
7314 #endif  // EXPENSIVE_CHECKS
7315   if (check) {
7316     assert(N && "Checking nonexistent SDNode");
7317     SmallPtrSet<const SDNode*, 32> visited;
7318     SmallPtrSet<const SDNode*, 32> checked;
7319     checkForCyclesHelper(N, visited, checked, DAG);
7320   }
7321 #endif  // !NDEBUG
7322 }
7323 
checkForCycles(const llvm::SelectionDAG * DAG,bool force)7324 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
7325   checkForCycles(DAG->getRoot().getNode(), DAG, force);
7326 }
7327