1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4  *
5  * Lightly modified for gPXE, July 2009, by Joshua Oreman <oremanj@rwcr.net>.
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  */
20 
21 FILE_LICENCE ( MIT );
22 
23 /*************************************\
24 * DMA and interrupt masking functions *
25 \*************************************/
26 
27 /*
28  * dma.c - DMA and interrupt masking functions
29  *
30  * Here we setup descriptor pointers (rxdp/txdp) start/stop dma engine and
31  * handle queue setup for 5210 chipset (rest are handled on qcu.c).
32  * Also we setup interrupt mask register (IMR) and read the various iterrupt
33  * status registers (ISR).
34  *
35  * TODO: Handle SISR on 5211+ and introduce a function to return the queue
36  * number that resulted the interrupt.
37  */
38 
39 #include <unistd.h>
40 
41 #include "ath5k.h"
42 #include "reg.h"
43 #include "base.h"
44 
45 /*********\
46 * Receive *
47 \*********/
48 
49 /**
50  * ath5k_hw_start_rx_dma - Start DMA receive
51  *
52  * @ah:	The &struct ath5k_hw
53  */
ath5k_hw_start_rx_dma(struct ath5k_hw * ah)54 void ath5k_hw_start_rx_dma(struct ath5k_hw *ah)
55 {
56 	ath5k_hw_reg_write(ah, AR5K_CR_RXE, AR5K_CR);
57 	ath5k_hw_reg_read(ah, AR5K_CR);
58 }
59 
60 /**
61  * ath5k_hw_stop_rx_dma - Stop DMA receive
62  *
63  * @ah:	The &struct ath5k_hw
64  */
ath5k_hw_stop_rx_dma(struct ath5k_hw * ah)65 int ath5k_hw_stop_rx_dma(struct ath5k_hw *ah)
66 {
67 	unsigned int i;
68 
69 	ath5k_hw_reg_write(ah, AR5K_CR_RXD, AR5K_CR);
70 
71 	/*
72 	 * It may take some time to disable the DMA receive unit
73 	 */
74 	for (i = 1000; i > 0 &&
75 			(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_CR_RXE) != 0;
76 			i--)
77 		udelay(10);
78 
79 	return i ? 0 : -EBUSY;
80 }
81 
82 /**
83  * ath5k_hw_get_rxdp - Get RX Descriptor's address
84  *
85  * @ah: The &struct ath5k_hw
86  *
87  * XXX: Is RXDP read and clear ?
88  */
ath5k_hw_get_rxdp(struct ath5k_hw * ah)89 u32 ath5k_hw_get_rxdp(struct ath5k_hw *ah)
90 {
91 	return ath5k_hw_reg_read(ah, AR5K_RXDP);
92 }
93 
94 /**
95  * ath5k_hw_set_rxdp - Set RX Descriptor's address
96  *
97  * @ah: The &struct ath5k_hw
98  * @phys_addr: RX descriptor address
99  *
100  * XXX: Should we check if rx is enabled before setting rxdp ?
101  */
ath5k_hw_set_rxdp(struct ath5k_hw * ah,u32 phys_addr)102 void ath5k_hw_set_rxdp(struct ath5k_hw *ah, u32 phys_addr)
103 {
104 	ath5k_hw_reg_write(ah, phys_addr, AR5K_RXDP);
105 }
106 
107 
108 /**********\
109 * Transmit *
110 \**********/
111 
112 /**
113  * ath5k_hw_start_tx_dma - Start DMA transmit for a specific queue
114  *
115  * @ah: The &struct ath5k_hw
116  * @queue: The hw queue number
117  *
118  * Start DMA transmit for a specific queue and since 5210 doesn't have
119  * QCU/DCU, set up queue parameters for 5210 here based on queue type (one
120  * queue for normal data and one queue for beacons). For queue setup
121  * on newer chips check out qcu.c. Returns -EINVAL if queue number is out
122  * of range or if queue is already disabled.
123  *
124  * NOTE: Must be called after setting up tx control descriptor for that
125  * queue (see below).
126  */
ath5k_hw_start_tx_dma(struct ath5k_hw * ah,unsigned int queue)127 int ath5k_hw_start_tx_dma(struct ath5k_hw *ah, unsigned int queue)
128 {
129 	u32 tx_queue;
130 
131 	/* Return if queue is declared inactive */
132 	if (ah->ah_txq.tqi_type == AR5K_TX_QUEUE_INACTIVE)
133 		return -EIO;
134 
135 	if (ah->ah_version == AR5K_AR5210) {
136 		tx_queue = ath5k_hw_reg_read(ah, AR5K_CR);
137 
138 		/* Assume always a data queue */
139 		tx_queue |= AR5K_CR_TXE0 & ~AR5K_CR_TXD0;
140 
141 		/* Start queue */
142 		ath5k_hw_reg_write(ah, tx_queue, AR5K_CR);
143 		ath5k_hw_reg_read(ah, AR5K_CR);
144 	} else {
145 		/* Return if queue is disabled */
146 		if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXD, queue))
147 			return -EIO;
148 
149 		/* Start queue */
150 		AR5K_REG_WRITE_Q(ah, AR5K_QCU_TXE, queue);
151 	}
152 
153 	return 0;
154 }
155 
156 /**
157  * ath5k_hw_stop_tx_dma - Stop DMA transmit on a specific queue
158  *
159  * @ah: The &struct ath5k_hw
160  * @queue: The hw queue number
161  *
162  * Stop DMA transmit on a specific hw queue and drain queue so we don't
163  * have any pending frames. Returns -EBUSY if we still have pending frames,
164  * -EINVAL if queue number is out of range.
165  *
166  */
ath5k_hw_stop_tx_dma(struct ath5k_hw * ah,unsigned int queue)167 int ath5k_hw_stop_tx_dma(struct ath5k_hw *ah, unsigned int queue)
168 {
169 	unsigned int i = 40;
170 	u32 tx_queue, pending;
171 
172 	/* Return if queue is declared inactive */
173 	if (ah->ah_txq.tqi_type == AR5K_TX_QUEUE_INACTIVE)
174 		return -EIO;
175 
176 	if (ah->ah_version == AR5K_AR5210) {
177 		tx_queue = ath5k_hw_reg_read(ah, AR5K_CR);
178 
179 		/* Assume a data queue */
180 		tx_queue |= AR5K_CR_TXD0 & ~AR5K_CR_TXE0;
181 
182 		/* Stop queue */
183 		ath5k_hw_reg_write(ah, tx_queue, AR5K_CR);
184 		ath5k_hw_reg_read(ah, AR5K_CR);
185 	} else {
186 		/*
187 		 * Schedule TX disable and wait until queue is empty
188 		 */
189 		AR5K_REG_WRITE_Q(ah, AR5K_QCU_TXD, queue);
190 
191 		/*Check for pending frames*/
192 		do {
193 			pending = ath5k_hw_reg_read(ah,
194 				AR5K_QUEUE_STATUS(queue)) &
195 				AR5K_QCU_STS_FRMPENDCNT;
196 			udelay(100);
197 		} while (--i && pending);
198 
199 		/* For 2413+ order PCU to drop packets using
200 		 * QUIET mechanism */
201 		if (ah->ah_mac_version >= (AR5K_SREV_AR2414 >> 4) && pending) {
202 			/* Set periodicity and duration */
203 			ath5k_hw_reg_write(ah,
204 				AR5K_REG_SM(100, AR5K_QUIET_CTL2_QT_PER)|
205 				AR5K_REG_SM(10, AR5K_QUIET_CTL2_QT_DUR),
206 				AR5K_QUIET_CTL2);
207 
208 			/* Enable quiet period for current TSF */
209 			ath5k_hw_reg_write(ah,
210 				AR5K_QUIET_CTL1_QT_EN |
211 				AR5K_REG_SM(ath5k_hw_reg_read(ah,
212 						AR5K_TSF_L32_5211) >> 10,
213 						AR5K_QUIET_CTL1_NEXT_QT_TSF),
214 				AR5K_QUIET_CTL1);
215 
216 			/* Force channel idle high */
217 			AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
218 					AR5K_DIAG_SW_CHANEL_IDLE_HIGH);
219 
220 			/* Wait a while and disable mechanism */
221 			udelay(200);
222 			AR5K_REG_DISABLE_BITS(ah, AR5K_QUIET_CTL1,
223 						AR5K_QUIET_CTL1_QT_EN);
224 
225 			/* Re-check for pending frames */
226 			i = 40;
227 			do {
228 				pending = ath5k_hw_reg_read(ah,
229 					AR5K_QUEUE_STATUS(queue)) &
230 					AR5K_QCU_STS_FRMPENDCNT;
231 				udelay(100);
232 			} while (--i && pending);
233 
234 			AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5211,
235 					AR5K_DIAG_SW_CHANEL_IDLE_HIGH);
236 		}
237 
238 		/* Clear register */
239 		ath5k_hw_reg_write(ah, 0, AR5K_QCU_TXD);
240 		if (pending)
241 			return -EBUSY;
242 	}
243 
244 	/* TODO: Check for success on 5210 else return error */
245 	return 0;
246 }
247 
248 /**
249  * ath5k_hw_get_txdp - Get TX Descriptor's address for a specific queue
250  *
251  * @ah: The &struct ath5k_hw
252  * @queue: The hw queue number
253  *
254  * Get TX descriptor's address for a specific queue. For 5210 we ignore
255  * the queue number and use tx queue type since we only have 2 queues.
256  * We use TXDP0 for normal data queue and TXDP1 for beacon queue.
257  * For newer chips with QCU/DCU we just read the corresponding TXDP register.
258  *
259  * XXX: Is TXDP read and clear ?
260  */
ath5k_hw_get_txdp(struct ath5k_hw * ah,unsigned int queue)261 u32 ath5k_hw_get_txdp(struct ath5k_hw *ah, unsigned int queue)
262 {
263 	u16 tx_reg;
264 
265 	/*
266 	 * Get the transmit queue descriptor pointer from the selected queue
267 	 */
268 	/*5210 doesn't have QCU*/
269 	if (ah->ah_version == AR5K_AR5210) {
270 		/* Assume a data queue */
271 		tx_reg = AR5K_NOQCU_TXDP0;
272 	} else {
273 		tx_reg = AR5K_QUEUE_TXDP(queue);
274 	}
275 
276 	return ath5k_hw_reg_read(ah, tx_reg);
277 }
278 
279 /**
280  * ath5k_hw_set_txdp - Set TX Descriptor's address for a specific queue
281  *
282  * @ah: The &struct ath5k_hw
283  * @queue: The hw queue number
284  *
285  * Set TX descriptor's address for a specific queue. For 5210 we ignore
286  * the queue number and we use tx queue type since we only have 2 queues
287  * so as above we use TXDP0 for normal data queue and TXDP1 for beacon queue.
288  * For newer chips with QCU/DCU we just set the corresponding TXDP register.
289  * Returns -EINVAL if queue type is invalid for 5210 and -EIO if queue is still
290  * active.
291  */
ath5k_hw_set_txdp(struct ath5k_hw * ah,unsigned int queue,u32 phys_addr)292 int ath5k_hw_set_txdp(struct ath5k_hw *ah, unsigned int queue, u32 phys_addr)
293 {
294 	u16 tx_reg;
295 
296 	/*
297 	 * Set the transmit queue descriptor pointer register by type
298 	 * on 5210
299 	 */
300 	if (ah->ah_version == AR5K_AR5210) {
301 		/* Assume a data queue */
302 		tx_reg = AR5K_NOQCU_TXDP0;
303 	} else {
304 		/*
305 		 * Set the transmit queue descriptor pointer for
306 		 * the selected queue on QCU for 5211+
307 		 * (this won't work if the queue is still active)
308 		 */
309 		if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, queue))
310 			return -EIO;
311 
312 		tx_reg = AR5K_QUEUE_TXDP(queue);
313 	}
314 
315 	/* Set descriptor pointer */
316 	ath5k_hw_reg_write(ah, phys_addr, tx_reg);
317 
318 	return 0;
319 }
320 
321 /**
322  * ath5k_hw_update_tx_triglevel - Update tx trigger level
323  *
324  * @ah: The &struct ath5k_hw
325  * @increase: Flag to force increase of trigger level
326  *
327  * This function increases/decreases the tx trigger level for the tx fifo
328  * buffer (aka FIFO threshold) that is used to indicate when PCU flushes
329  * the buffer and transmits it's data. Lowering this results sending small
330  * frames more quickly but can lead to tx underruns, raising it a lot can
331  * result other problems (i think bmiss is related). Right now we start with
332  * the lowest possible (64Bytes) and if we get tx underrun we increase it using
333  * the increase flag. Returns -EIO if we have have reached maximum/minimum.
334  *
335  * XXX: Link this with tx DMA size ?
336  * XXX: Use it to save interrupts ?
337  * TODO: Needs testing, i think it's related to bmiss...
338  */
ath5k_hw_update_tx_triglevel(struct ath5k_hw * ah,int increase)339 int ath5k_hw_update_tx_triglevel(struct ath5k_hw *ah, int increase)
340 {
341 	u32 trigger_level, imr;
342 	int ret = -EIO;
343 
344 	/*
345 	 * Disable interrupts by setting the mask
346 	 */
347 	imr = ath5k_hw_set_imr(ah, ah->ah_imr & ~AR5K_INT_GLOBAL);
348 
349 	trigger_level = AR5K_REG_MS(ath5k_hw_reg_read(ah, AR5K_TXCFG),
350 			AR5K_TXCFG_TXFULL);
351 
352 	if (!increase) {
353 		if (--trigger_level < AR5K_TUNE_MIN_TX_FIFO_THRES)
354 			goto done;
355 	} else
356 		trigger_level +=
357 			((AR5K_TUNE_MAX_TX_FIFO_THRES - trigger_level) / 2);
358 
359 	/*
360 	 * Update trigger level on success
361 	 */
362 	if (ah->ah_version == AR5K_AR5210)
363 		ath5k_hw_reg_write(ah, trigger_level, AR5K_TRIG_LVL);
364 	else
365 		AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
366 				AR5K_TXCFG_TXFULL, trigger_level);
367 
368 	ret = 0;
369 
370 done:
371 	/*
372 	 * Restore interrupt mask
373 	 */
374 	ath5k_hw_set_imr(ah, imr);
375 
376 	return ret;
377 }
378 
379 /*******************\
380 * Interrupt masking *
381 \*******************/
382 
383 /**
384  * ath5k_hw_is_intr_pending - Check if we have pending interrupts
385  *
386  * @ah: The &struct ath5k_hw
387  *
388  * Check if we have pending interrupts to process. Returns 1 if we
389  * have pending interrupts and 0 if we haven't.
390  */
ath5k_hw_is_intr_pending(struct ath5k_hw * ah)391 int ath5k_hw_is_intr_pending(struct ath5k_hw *ah)
392 {
393 	return ath5k_hw_reg_read(ah, AR5K_INTPEND) == 1 ? 1 : 0;
394 }
395 
396 /**
397  * ath5k_hw_get_isr - Get interrupt status
398  *
399  * @ah: The @struct ath5k_hw
400  * @interrupt_mask: Driver's interrupt mask used to filter out
401  * interrupts in sw.
402  *
403  * This function is used inside our interrupt handler to determine the reason
404  * for the interrupt by reading Primary Interrupt Status Register. Returns an
405  * abstract interrupt status mask which is mostly ISR with some uncommon bits
406  * being mapped on some standard non hw-specific positions
407  * (check out &ath5k_int).
408  *
409  * NOTE: We use read-and-clear register, so after this function is called ISR
410  * is zeroed.
411  */
ath5k_hw_get_isr(struct ath5k_hw * ah,enum ath5k_int * interrupt_mask)412 int ath5k_hw_get_isr(struct ath5k_hw *ah, enum ath5k_int *interrupt_mask)
413 {
414 	u32 data;
415 
416 	/*
417 	 * Read interrupt status from the Interrupt Status register
418 	 * on 5210
419 	 */
420 	if (ah->ah_version == AR5K_AR5210) {
421 		data = ath5k_hw_reg_read(ah, AR5K_ISR);
422 		if (data == AR5K_INT_NOCARD) {
423 			*interrupt_mask = data;
424 			return -ENODEV;
425 		}
426 	} else {
427 		/*
428 		 * Read interrupt status from Interrupt
429 		 * Status Register shadow copy (Read And Clear)
430 		 *
431 		 * Note: PISR/SISR Not available on 5210
432 		 */
433 		data = ath5k_hw_reg_read(ah, AR5K_RAC_PISR);
434 		if (data == AR5K_INT_NOCARD) {
435 			*interrupt_mask = data;
436 			return -ENODEV;
437 		}
438 	}
439 
440 	/*
441 	 * Get abstract interrupt mask (driver-compatible)
442 	 */
443 	*interrupt_mask = (data & AR5K_INT_COMMON) & ah->ah_imr;
444 
445 	if (ah->ah_version != AR5K_AR5210) {
446 		u32 sisr2 = ath5k_hw_reg_read(ah, AR5K_RAC_SISR2);
447 
448 		/*HIU = Host Interface Unit (PCI etc)*/
449 		if (data & (AR5K_ISR_HIUERR))
450 			*interrupt_mask |= AR5K_INT_FATAL;
451 
452 		/*Beacon Not Ready*/
453 		if (data & (AR5K_ISR_BNR))
454 			*interrupt_mask |= AR5K_INT_BNR;
455 
456 		if (sisr2 & (AR5K_SISR2_SSERR | AR5K_SISR2_DPERR |
457 			     AR5K_SISR2_MCABT))
458 			*interrupt_mask |= AR5K_INT_FATAL;
459 
460 		if (data & AR5K_ISR_TIM)
461 			*interrupt_mask |= AR5K_INT_TIM;
462 
463 		if (data & AR5K_ISR_BCNMISC) {
464 			if (sisr2 & AR5K_SISR2_TIM)
465 				*interrupt_mask |= AR5K_INT_TIM;
466 			if (sisr2 & AR5K_SISR2_DTIM)
467 				*interrupt_mask |= AR5K_INT_DTIM;
468 			if (sisr2 & AR5K_SISR2_DTIM_SYNC)
469 				*interrupt_mask |= AR5K_INT_DTIM_SYNC;
470 			if (sisr2 & AR5K_SISR2_BCN_TIMEOUT)
471 				*interrupt_mask |= AR5K_INT_BCN_TIMEOUT;
472 			if (sisr2 & AR5K_SISR2_CAB_TIMEOUT)
473 				*interrupt_mask |= AR5K_INT_CAB_TIMEOUT;
474 		}
475 
476 		if (data & AR5K_ISR_RXDOPPLER)
477 			*interrupt_mask |= AR5K_INT_RX_DOPPLER;
478 		if (data & AR5K_ISR_QCBRORN) {
479 			*interrupt_mask |= AR5K_INT_QCBRORN;
480 			ah->ah_txq_isr |= AR5K_REG_MS(
481 					ath5k_hw_reg_read(ah, AR5K_RAC_SISR3),
482 					AR5K_SISR3_QCBRORN);
483 		}
484 		if (data & AR5K_ISR_QCBRURN) {
485 			*interrupt_mask |= AR5K_INT_QCBRURN;
486 			ah->ah_txq_isr |= AR5K_REG_MS(
487 					ath5k_hw_reg_read(ah, AR5K_RAC_SISR3),
488 					AR5K_SISR3_QCBRURN);
489 		}
490 		if (data & AR5K_ISR_QTRIG) {
491 			*interrupt_mask |= AR5K_INT_QTRIG;
492 			ah->ah_txq_isr |= AR5K_REG_MS(
493 					ath5k_hw_reg_read(ah, AR5K_RAC_SISR4),
494 					AR5K_SISR4_QTRIG);
495 		}
496 
497 		if (data & AR5K_ISR_TXOK)
498 			ah->ah_txq_isr |= AR5K_REG_MS(
499 					ath5k_hw_reg_read(ah, AR5K_RAC_SISR0),
500 					AR5K_SISR0_QCU_TXOK);
501 
502 		if (data & AR5K_ISR_TXDESC)
503 			ah->ah_txq_isr |= AR5K_REG_MS(
504 					ath5k_hw_reg_read(ah, AR5K_RAC_SISR0),
505 					AR5K_SISR0_QCU_TXDESC);
506 
507 		if (data & AR5K_ISR_TXERR)
508 			ah->ah_txq_isr |= AR5K_REG_MS(
509 					ath5k_hw_reg_read(ah, AR5K_RAC_SISR1),
510 					AR5K_SISR1_QCU_TXERR);
511 
512 		if (data & AR5K_ISR_TXEOL)
513 			ah->ah_txq_isr |= AR5K_REG_MS(
514 					ath5k_hw_reg_read(ah, AR5K_RAC_SISR1),
515 					AR5K_SISR1_QCU_TXEOL);
516 
517 		if (data & AR5K_ISR_TXURN)
518 			ah->ah_txq_isr |= AR5K_REG_MS(
519 					ath5k_hw_reg_read(ah, AR5K_RAC_SISR2),
520 					AR5K_SISR2_QCU_TXURN);
521 	} else {
522 		if (data & (AR5K_ISR_SSERR | AR5K_ISR_MCABT |
523 			    AR5K_ISR_HIUERR | AR5K_ISR_DPERR))
524 			*interrupt_mask |= AR5K_INT_FATAL;
525 
526 		/*
527 		 * XXX: BMISS interrupts may occur after association.
528 		 * I found this on 5210 code but it needs testing. If this is
529 		 * true we should disable them before assoc and re-enable them
530 		 * after a successful assoc + some jiffies.
531 			interrupt_mask &= ~AR5K_INT_BMISS;
532 		 */
533 	}
534 
535 	return 0;
536 }
537 
538 /**
539  * ath5k_hw_set_imr - Set interrupt mask
540  *
541  * @ah: The &struct ath5k_hw
542  * @new_mask: The new interrupt mask to be set
543  *
544  * Set the interrupt mask in hw to save interrupts. We do that by mapping
545  * ath5k_int bits to hw-specific bits to remove abstraction and writing
546  * Interrupt Mask Register.
547  */
ath5k_hw_set_imr(struct ath5k_hw * ah,enum ath5k_int new_mask)548 enum ath5k_int ath5k_hw_set_imr(struct ath5k_hw *ah, enum ath5k_int new_mask)
549 {
550 	enum ath5k_int old_mask, int_mask;
551 
552 	old_mask = ah->ah_imr;
553 
554 	/*
555 	 * Disable card interrupts to prevent any race conditions
556 	 * (they will be re-enabled afterwards if AR5K_INT GLOBAL
557 	 * is set again on the new mask).
558 	 */
559 	if (old_mask & AR5K_INT_GLOBAL) {
560 		ath5k_hw_reg_write(ah, AR5K_IER_DISABLE, AR5K_IER);
561 		ath5k_hw_reg_read(ah, AR5K_IER);
562 	}
563 
564 	/*
565 	 * Add additional, chipset-dependent interrupt mask flags
566 	 * and write them to the IMR (interrupt mask register).
567 	 */
568 	int_mask = new_mask & AR5K_INT_COMMON;
569 
570 	if (ah->ah_version != AR5K_AR5210) {
571 		/* Preserve per queue TXURN interrupt mask */
572 		u32 simr2 = ath5k_hw_reg_read(ah, AR5K_SIMR2)
573 				& AR5K_SIMR2_QCU_TXURN;
574 
575 		if (new_mask & AR5K_INT_FATAL) {
576 			int_mask |= AR5K_IMR_HIUERR;
577 			simr2 |= (AR5K_SIMR2_MCABT | AR5K_SIMR2_SSERR
578 				| AR5K_SIMR2_DPERR);
579 		}
580 
581 		/*Beacon Not Ready*/
582 		if (new_mask & AR5K_INT_BNR)
583 			int_mask |= AR5K_INT_BNR;
584 
585 		if (new_mask & AR5K_INT_TIM)
586 			int_mask |= AR5K_IMR_TIM;
587 
588 		if (new_mask & AR5K_INT_TIM)
589 			simr2 |= AR5K_SISR2_TIM;
590 		if (new_mask & AR5K_INT_DTIM)
591 			simr2 |= AR5K_SISR2_DTIM;
592 		if (new_mask & AR5K_INT_DTIM_SYNC)
593 			simr2 |= AR5K_SISR2_DTIM_SYNC;
594 		if (new_mask & AR5K_INT_BCN_TIMEOUT)
595 			simr2 |= AR5K_SISR2_BCN_TIMEOUT;
596 		if (new_mask & AR5K_INT_CAB_TIMEOUT)
597 			simr2 |= AR5K_SISR2_CAB_TIMEOUT;
598 
599 		if (new_mask & AR5K_INT_RX_DOPPLER)
600 			int_mask |= AR5K_IMR_RXDOPPLER;
601 
602 		/* Note: Per queue interrupt masks
603 		 * are set via reset_tx_queue (qcu.c) */
604 		ath5k_hw_reg_write(ah, int_mask, AR5K_PIMR);
605 		ath5k_hw_reg_write(ah, simr2, AR5K_SIMR2);
606 
607 	} else {
608 		if (new_mask & AR5K_INT_FATAL)
609 			int_mask |= (AR5K_IMR_SSERR | AR5K_IMR_MCABT
610 				| AR5K_IMR_HIUERR | AR5K_IMR_DPERR);
611 
612 		ath5k_hw_reg_write(ah, int_mask, AR5K_IMR);
613 	}
614 
615 	/* If RXNOFRM interrupt is masked disable it
616 	 * by setting AR5K_RXNOFRM to zero */
617 	if (!(new_mask & AR5K_INT_RXNOFRM))
618 		ath5k_hw_reg_write(ah, 0, AR5K_RXNOFRM);
619 
620 	/* Store new interrupt mask */
621 	ah->ah_imr = new_mask;
622 
623 	/* ..re-enable interrupts if AR5K_INT_GLOBAL is set */
624 	if (new_mask & AR5K_INT_GLOBAL) {
625 		ath5k_hw_reg_write(ah, ah->ah_ier, AR5K_IER);
626 		ath5k_hw_reg_read(ah, AR5K_IER);
627 	}
628 
629 	return old_mask;
630 }
631 
632