1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5 // Copyright (C) 2013-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11 #ifndef EIGEN_BIDIAGONALIZATION_H
12 #define EIGEN_BIDIAGONALIZATION_H
13
14 namespace Eigen {
15
16 namespace internal {
17 // UpperBidiagonalization will probably be replaced by a Bidiagonalization class, don't want to make it stable API.
18 // At the same time, it's useful to keep for now as it's about the only thing that is testing the BandMatrix class.
19
20 template<typename _MatrixType> class UpperBidiagonalization
21 {
22 public:
23
24 typedef _MatrixType MatrixType;
25 enum {
26 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
27 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
28 ColsAtCompileTimeMinusOne = internal::decrement_size<ColsAtCompileTime>::ret
29 };
30 typedef typename MatrixType::Scalar Scalar;
31 typedef typename MatrixType::RealScalar RealScalar;
32 typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
33 typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
34 typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
35 typedef BandMatrix<RealScalar, ColsAtCompileTime, ColsAtCompileTime, 1, 0, RowMajor> BidiagonalType;
36 typedef Matrix<Scalar, ColsAtCompileTime, 1> DiagVectorType;
37 typedef Matrix<Scalar, ColsAtCompileTimeMinusOne, 1> SuperDiagVectorType;
38 typedef HouseholderSequence<
39 const MatrixType,
40 const typename internal::remove_all<typename Diagonal<const MatrixType,0>::ConjugateReturnType>::type
41 > HouseholderUSequenceType;
42 typedef HouseholderSequence<
43 const typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type,
44 Diagonal<const MatrixType,1>,
45 OnTheRight
46 > HouseholderVSequenceType;
47
48 /**
49 * \brief Default Constructor.
50 *
51 * The default constructor is useful in cases in which the user intends to
52 * perform decompositions via Bidiagonalization::compute(const MatrixType&).
53 */
UpperBidiagonalization()54 UpperBidiagonalization() : m_householder(), m_bidiagonal(), m_isInitialized(false) {}
55
UpperBidiagonalization(const MatrixType & matrix)56 explicit UpperBidiagonalization(const MatrixType& matrix)
57 : m_householder(matrix.rows(), matrix.cols()),
58 m_bidiagonal(matrix.cols(), matrix.cols()),
59 m_isInitialized(false)
60 {
61 compute(matrix);
62 }
63
64 UpperBidiagonalization& compute(const MatrixType& matrix);
65 UpperBidiagonalization& computeUnblocked(const MatrixType& matrix);
66
householder()67 const MatrixType& householder() const { return m_householder; }
bidiagonal()68 const BidiagonalType& bidiagonal() const { return m_bidiagonal; }
69
householderU()70 const HouseholderUSequenceType householderU() const
71 {
72 eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized.");
73 return HouseholderUSequenceType(m_householder, m_householder.diagonal().conjugate());
74 }
75
householderV()76 const HouseholderVSequenceType householderV() // const here gives nasty errors and i'm lazy
77 {
78 eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized.");
79 return HouseholderVSequenceType(m_householder.conjugate(), m_householder.const_derived().template diagonal<1>())
80 .setLength(m_householder.cols()-1)
81 .setShift(1);
82 }
83
84 protected:
85 MatrixType m_householder;
86 BidiagonalType m_bidiagonal;
87 bool m_isInitialized;
88 };
89
90 // Standard upper bidiagonalization without fancy optimizations
91 // This version should be faster for small matrix size
92 template<typename MatrixType>
93 void upperbidiagonalization_inplace_unblocked(MatrixType& mat,
94 typename MatrixType::RealScalar *diagonal,
95 typename MatrixType::RealScalar *upper_diagonal,
96 typename MatrixType::Scalar* tempData = 0)
97 {
98 typedef typename MatrixType::Scalar Scalar;
99
100 Index rows = mat.rows();
101 Index cols = mat.cols();
102
103 typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixType::MaxRowsAtCompileTime,1> TempType;
104 TempType tempVector;
105 if(tempData==0)
106 {
107 tempVector.resize(rows);
108 tempData = tempVector.data();
109 }
110
111 for (Index k = 0; /* breaks at k==cols-1 below */ ; ++k)
112 {
113 Index remainingRows = rows - k;
114 Index remainingCols = cols - k - 1;
115
116 // construct left householder transform in-place in A
117 mat.col(k).tail(remainingRows)
118 .makeHouseholderInPlace(mat.coeffRef(k,k), diagonal[k]);
119 // apply householder transform to remaining part of A on the left
120 mat.bottomRightCorner(remainingRows, remainingCols)
121 .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), mat.coeff(k,k), tempData);
122
123 if(k == cols-1) break;
124
125 // construct right householder transform in-place in mat
126 mat.row(k).tail(remainingCols)
127 .makeHouseholderInPlace(mat.coeffRef(k,k+1), upper_diagonal[k]);
128 // apply householder transform to remaining part of mat on the left
129 mat.bottomRightCorner(remainingRows-1, remainingCols)
130 .applyHouseholderOnTheRight(mat.row(k).tail(remainingCols-1).transpose(), mat.coeff(k,k+1), tempData);
131 }
132 }
133
134 /** \internal
135 * Helper routine for the block reduction to upper bidiagonal form.
136 *
137 * Let's partition the matrix A:
138 *
139 * | A00 A01 |
140 * A = | |
141 * | A10 A11 |
142 *
143 * This function reduces to bidiagonal form the left \c rows x \a blockSize vertical panel [A00/A10]
144 * and the \a blockSize x \c cols horizontal panel [A00 A01] of the matrix \a A. The bottom-right block A11
145 * is updated using matrix-matrix products:
146 * A22 -= V * Y^T - X * U^T
147 * where V and U contains the left and right Householder vectors. U and V are stored in A10, and A01
148 * respectively, and the update matrices X and Y are computed during the reduction.
149 *
150 */
151 template<typename MatrixType>
upperbidiagonalization_blocked_helper(MatrixType & A,typename MatrixType::RealScalar * diagonal,typename MatrixType::RealScalar * upper_diagonal,Index bs,Ref<Matrix<typename MatrixType::Scalar,Dynamic,Dynamic,traits<MatrixType>::Flags & RowMajorBit>> X,Ref<Matrix<typename MatrixType::Scalar,Dynamic,Dynamic,traits<MatrixType>::Flags & RowMajorBit>> Y)152 void upperbidiagonalization_blocked_helper(MatrixType& A,
153 typename MatrixType::RealScalar *diagonal,
154 typename MatrixType::RealScalar *upper_diagonal,
155 Index bs,
156 Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic,
157 traits<MatrixType>::Flags & RowMajorBit> > X,
158 Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic,
159 traits<MatrixType>::Flags & RowMajorBit> > Y)
160 {
161 typedef typename MatrixType::Scalar Scalar;
162 enum { StorageOrder = traits<MatrixType>::Flags & RowMajorBit };
163 typedef InnerStride<int(StorageOrder) == int(ColMajor) ? 1 : Dynamic> ColInnerStride;
164 typedef InnerStride<int(StorageOrder) == int(ColMajor) ? Dynamic : 1> RowInnerStride;
165 typedef Ref<Matrix<Scalar, Dynamic, 1>, 0, ColInnerStride> SubColumnType;
166 typedef Ref<Matrix<Scalar, 1, Dynamic>, 0, RowInnerStride> SubRowType;
167 typedef Ref<Matrix<Scalar, Dynamic, Dynamic, StorageOrder > > SubMatType;
168
169 Index brows = A.rows();
170 Index bcols = A.cols();
171
172 Scalar tau_u, tau_u_prev(0), tau_v;
173
174 for(Index k = 0; k < bs; ++k)
175 {
176 Index remainingRows = brows - k;
177 Index remainingCols = bcols - k - 1;
178
179 SubMatType X_k1( X.block(k,0, remainingRows,k) );
180 SubMatType V_k1( A.block(k,0, remainingRows,k) );
181
182 // 1 - update the k-th column of A
183 SubColumnType v_k = A.col(k).tail(remainingRows);
184 v_k -= V_k1 * Y.row(k).head(k).adjoint();
185 if(k) v_k -= X_k1 * A.col(k).head(k);
186
187 // 2 - construct left Householder transform in-place
188 v_k.makeHouseholderInPlace(tau_v, diagonal[k]);
189
190 if(k+1<bcols)
191 {
192 SubMatType Y_k ( Y.block(k+1,0, remainingCols, k+1) );
193 SubMatType U_k1 ( A.block(0,k+1, k,remainingCols) );
194
195 // this eases the application of Householder transforAions
196 // A(k,k) will store tau_v later
197 A(k,k) = Scalar(1);
198
199 // 3 - Compute y_k^T = tau_v * ( A^T*v_k - Y_k-1*V_k-1^T*v_k - U_k-1*X_k-1^T*v_k )
200 {
201 SubColumnType y_k( Y.col(k).tail(remainingCols) );
202
203 // let's use the begining of column k of Y as a temporary vector
204 SubColumnType tmp( Y.col(k).head(k) );
205 y_k.noalias() = A.block(k,k+1, remainingRows,remainingCols).adjoint() * v_k; // bottleneck
206 tmp.noalias() = V_k1.adjoint() * v_k;
207 y_k.noalias() -= Y_k.leftCols(k) * tmp;
208 tmp.noalias() = X_k1.adjoint() * v_k;
209 y_k.noalias() -= U_k1.adjoint() * tmp;
210 y_k *= numext::conj(tau_v);
211 }
212
213 // 4 - update k-th row of A (it will become u_k)
214 SubRowType u_k( A.row(k).tail(remainingCols) );
215 u_k = u_k.conjugate();
216 {
217 u_k -= Y_k * A.row(k).head(k+1).adjoint();
218 if(k) u_k -= U_k1.adjoint() * X.row(k).head(k).adjoint();
219 }
220
221 // 5 - construct right Householder transform in-place
222 u_k.makeHouseholderInPlace(tau_u, upper_diagonal[k]);
223
224 // this eases the application of Householder transformations
225 // A(k,k+1) will store tau_u later
226 A(k,k+1) = Scalar(1);
227
228 // 6 - Compute x_k = tau_u * ( A*u_k - X_k-1*U_k-1^T*u_k - V_k*Y_k^T*u_k )
229 {
230 SubColumnType x_k ( X.col(k).tail(remainingRows-1) );
231
232 // let's use the begining of column k of X as a temporary vectors
233 // note that tmp0 and tmp1 overlaps
234 SubColumnType tmp0 ( X.col(k).head(k) ),
235 tmp1 ( X.col(k).head(k+1) );
236
237 x_k.noalias() = A.block(k+1,k+1, remainingRows-1,remainingCols) * u_k.transpose(); // bottleneck
238 tmp0.noalias() = U_k1 * u_k.transpose();
239 x_k.noalias() -= X_k1.bottomRows(remainingRows-1) * tmp0;
240 tmp1.noalias() = Y_k.adjoint() * u_k.transpose();
241 x_k.noalias() -= A.block(k+1,0, remainingRows-1,k+1) * tmp1;
242 x_k *= numext::conj(tau_u);
243 tau_u = numext::conj(tau_u);
244 u_k = u_k.conjugate();
245 }
246
247 if(k>0) A.coeffRef(k-1,k) = tau_u_prev;
248 tau_u_prev = tau_u;
249 }
250 else
251 A.coeffRef(k-1,k) = tau_u_prev;
252
253 A.coeffRef(k,k) = tau_v;
254 }
255
256 if(bs<bcols)
257 A.coeffRef(bs-1,bs) = tau_u_prev;
258
259 // update A22
260 if(bcols>bs && brows>bs)
261 {
262 SubMatType A11( A.bottomRightCorner(brows-bs,bcols-bs) );
263 SubMatType A10( A.block(bs,0, brows-bs,bs) );
264 SubMatType A01( A.block(0,bs, bs,bcols-bs) );
265 Scalar tmp = A01(bs-1,0);
266 A01(bs-1,0) = 1;
267 A11.noalias() -= A10 * Y.topLeftCorner(bcols,bs).bottomRows(bcols-bs).adjoint();
268 A11.noalias() -= X.topLeftCorner(brows,bs).bottomRows(brows-bs) * A01;
269 A01(bs-1,0) = tmp;
270 }
271 }
272
273 /** \internal
274 *
275 * Implementation of a block-bidiagonal reduction.
276 * It is based on the following paper:
277 * The Design of a Parallel Dense Linear Algebra Software Library: Reduction to Hessenberg, Tridiagonal, and Bidiagonal Form.
278 * by Jaeyoung Choi, Jack J. Dongarra, David W. Walker. (1995)
279 * section 3.3
280 */
281 template<typename MatrixType, typename BidiagType>
282 void upperbidiagonalization_inplace_blocked(MatrixType& A, BidiagType& bidiagonal,
283 Index maxBlockSize=32,
284 typename MatrixType::Scalar* /*tempData*/ = 0)
285 {
286 typedef typename MatrixType::Scalar Scalar;
287 typedef Block<MatrixType,Dynamic,Dynamic> BlockType;
288
289 Index rows = A.rows();
290 Index cols = A.cols();
291 Index size = (std::min)(rows, cols);
292
293 // X and Y are work space
294 enum { StorageOrder = traits<MatrixType>::Flags & RowMajorBit };
295 Matrix<Scalar,
296 MatrixType::RowsAtCompileTime,
297 Dynamic,
298 StorageOrder,
299 MatrixType::MaxRowsAtCompileTime> X(rows,maxBlockSize);
300 Matrix<Scalar,
301 MatrixType::ColsAtCompileTime,
302 Dynamic,
303 StorageOrder,
304 MatrixType::MaxColsAtCompileTime> Y(cols,maxBlockSize);
305 Index blockSize = (std::min)(maxBlockSize,size);
306
307 Index k = 0;
308 for(k = 0; k < size; k += blockSize)
309 {
310 Index bs = (std::min)(size-k,blockSize); // actual size of the block
311 Index brows = rows - k; // rows of the block
312 Index bcols = cols - k; // columns of the block
313
314 // partition the matrix A:
315 //
316 // | A00 A01 A02 |
317 // | |
318 // A = | A10 A11 A12 |
319 // | |
320 // | A20 A21 A22 |
321 //
322 // where A11 is a bs x bs diagonal block,
323 // and let:
324 // | A11 A12 |
325 // B = | |
326 // | A21 A22 |
327
328 BlockType B = A.block(k,k,brows,bcols);
329
330 // This stage performs the bidiagonalization of A11, A21, A12, and updating of A22.
331 // Finally, the algorithm continue on the updated A22.
332 //
333 // However, if B is too small, or A22 empty, then let's use an unblocked strategy
334 if(k+bs==cols || bcols<48) // somewhat arbitrary threshold
335 {
336 upperbidiagonalization_inplace_unblocked(B,
337 &(bidiagonal.template diagonal<0>().coeffRef(k)),
338 &(bidiagonal.template diagonal<1>().coeffRef(k)),
339 X.data()
340 );
341 break; // We're done
342 }
343 else
344 {
345 upperbidiagonalization_blocked_helper<BlockType>( B,
346 &(bidiagonal.template diagonal<0>().coeffRef(k)),
347 &(bidiagonal.template diagonal<1>().coeffRef(k)),
348 bs,
349 X.topLeftCorner(brows,bs),
350 Y.topLeftCorner(bcols,bs)
351 );
352 }
353 }
354 }
355
356 template<typename _MatrixType>
computeUnblocked(const _MatrixType & matrix)357 UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::computeUnblocked(const _MatrixType& matrix)
358 {
359 Index rows = matrix.rows();
360 Index cols = matrix.cols();
361 EIGEN_ONLY_USED_FOR_DEBUG(cols);
362
363 eigen_assert(rows >= cols && "UpperBidiagonalization is only for Arices satisfying rows>=cols.");
364
365 m_householder = matrix;
366
367 ColVectorType temp(rows);
368
369 upperbidiagonalization_inplace_unblocked(m_householder,
370 &(m_bidiagonal.template diagonal<0>().coeffRef(0)),
371 &(m_bidiagonal.template diagonal<1>().coeffRef(0)),
372 temp.data());
373
374 m_isInitialized = true;
375 return *this;
376 }
377
378 template<typename _MatrixType>
compute(const _MatrixType & matrix)379 UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::compute(const _MatrixType& matrix)
380 {
381 Index rows = matrix.rows();
382 Index cols = matrix.cols();
383 EIGEN_ONLY_USED_FOR_DEBUG(rows);
384 EIGEN_ONLY_USED_FOR_DEBUG(cols);
385
386 eigen_assert(rows >= cols && "UpperBidiagonalization is only for Arices satisfying rows>=cols.");
387
388 m_householder = matrix;
389 upperbidiagonalization_inplace_blocked(m_householder, m_bidiagonal);
390
391 m_isInitialized = true;
392 return *this;
393 }
394
395 #if 0
396 /** \return the Householder QR decomposition of \c *this.
397 *
398 * \sa class Bidiagonalization
399 */
400 template<typename Derived>
401 const UpperBidiagonalization<typename MatrixBase<Derived>::PlainObject>
402 MatrixBase<Derived>::bidiagonalization() const
403 {
404 return UpperBidiagonalization<PlainObject>(eval());
405 }
406 #endif
407
408 } // end namespace internal
409
410 } // end namespace Eigen
411
412 #endif // EIGEN_BIDIAGONALIZATION_H
413