1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 /** \mainpage V8 API Reference Guide
6 *
7 * V8 is Google's open source JavaScript engine.
8 *
9 * This set of documents provides reference material generated from the
10 * V8 header file, include/v8.h.
11 *
12 * For other documentation see http://code.google.com/apis/v8/
13 */
14
15 #ifndef INCLUDE_V8_H_
16 #define INCLUDE_V8_H_
17
18 #include <stddef.h>
19 #include <stdint.h>
20 #include <stdio.h>
21 #include <memory>
22 #include <utility>
23 #include <vector>
24
25 #include "v8-version.h" // NOLINT(build/include)
26 #include "v8config.h" // NOLINT(build/include)
27
28 // We reserve the V8_* prefix for macros defined in V8 public API and
29 // assume there are no name conflicts with the embedder's code.
30
31 #ifdef V8_OS_WIN
32
33 // Setup for Windows DLL export/import. When building the V8 DLL the
34 // BUILDING_V8_SHARED needs to be defined. When building a program which uses
35 // the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8
36 // static library or building a program which uses the V8 static library neither
37 // BUILDING_V8_SHARED nor USING_V8_SHARED should be defined.
38 #ifdef BUILDING_V8_SHARED
39 # define V8_EXPORT __declspec(dllexport)
40 #elif USING_V8_SHARED
41 # define V8_EXPORT __declspec(dllimport)
42 #else
43 # define V8_EXPORT
44 #endif // BUILDING_V8_SHARED
45
46 #else // V8_OS_WIN
47
48 // Setup for Linux shared library export.
49 #if V8_HAS_ATTRIBUTE_VISIBILITY
50 # ifdef BUILDING_V8_SHARED
51 # define V8_EXPORT __attribute__ ((visibility("default")))
52 # else
53 # define V8_EXPORT
54 # endif
55 #else
56 # define V8_EXPORT
57 #endif
58
59 #endif // V8_OS_WIN
60
61 /**
62 * The v8 JavaScript engine.
63 */
64 namespace v8 {
65
66 class AccessorSignature;
67 class Array;
68 class ArrayBuffer;
69 class Boolean;
70 class BooleanObject;
71 class Context;
72 class CpuProfiler;
73 class Data;
74 class Date;
75 class External;
76 class Function;
77 class FunctionTemplate;
78 class HeapProfiler;
79 class ImplementationUtilities;
80 class Int32;
81 class Integer;
82 class Isolate;
83 template <class T>
84 class Maybe;
85 class Name;
86 class Number;
87 class NumberObject;
88 class Object;
89 class ObjectOperationDescriptor;
90 class ObjectTemplate;
91 class Platform;
92 class Primitive;
93 class Promise;
94 class PropertyDescriptor;
95 class Proxy;
96 class RawOperationDescriptor;
97 class Script;
98 class SharedArrayBuffer;
99 class Signature;
100 class StartupData;
101 class StackFrame;
102 class StackTrace;
103 class String;
104 class StringObject;
105 class Symbol;
106 class SymbolObject;
107 class Private;
108 class Uint32;
109 class Utils;
110 class Value;
111 template <class T> class Local;
112 template <class T>
113 class MaybeLocal;
114 template <class T> class Eternal;
115 template<class T> class NonCopyablePersistentTraits;
116 template<class T> class PersistentBase;
117 template <class T, class M = NonCopyablePersistentTraits<T> >
118 class Persistent;
119 template <class T>
120 class Global;
121 template<class K, class V, class T> class PersistentValueMap;
122 template <class K, class V, class T>
123 class PersistentValueMapBase;
124 template <class K, class V, class T>
125 class GlobalValueMap;
126 template<class V, class T> class PersistentValueVector;
127 template<class T, class P> class WeakCallbackObject;
128 class FunctionTemplate;
129 class ObjectTemplate;
130 class Data;
131 template<typename T> class FunctionCallbackInfo;
132 template<typename T> class PropertyCallbackInfo;
133 class StackTrace;
134 class StackFrame;
135 class Isolate;
136 class CallHandlerHelper;
137 class EscapableHandleScope;
138 template<typename T> class ReturnValue;
139
140 namespace experimental {
141 class FastAccessorBuilder;
142 } // namespace experimental
143
144 namespace internal {
145 class Arguments;
146 class Heap;
147 class HeapObject;
148 class Isolate;
149 class Object;
150 struct StreamedSource;
151 template<typename T> class CustomArguments;
152 class PropertyCallbackArguments;
153 class FunctionCallbackArguments;
154 class GlobalHandles;
155 } // namespace internal
156
157
158 /**
159 * General purpose unique identifier.
160 */
161 class UniqueId {
162 public:
UniqueId(intptr_t data)163 explicit UniqueId(intptr_t data)
164 : data_(data) {}
165
166 bool operator==(const UniqueId& other) const {
167 return data_ == other.data_;
168 }
169
170 bool operator!=(const UniqueId& other) const {
171 return data_ != other.data_;
172 }
173
174 bool operator<(const UniqueId& other) const {
175 return data_ < other.data_;
176 }
177
178 private:
179 intptr_t data_;
180 };
181
182 // --- Handles ---
183
184 #define TYPE_CHECK(T, S) \
185 while (false) { \
186 *(static_cast<T* volatile*>(0)) = static_cast<S*>(0); \
187 }
188
189
190 /**
191 * An object reference managed by the v8 garbage collector.
192 *
193 * All objects returned from v8 have to be tracked by the garbage
194 * collector so that it knows that the objects are still alive. Also,
195 * because the garbage collector may move objects, it is unsafe to
196 * point directly to an object. Instead, all objects are stored in
197 * handles which are known by the garbage collector and updated
198 * whenever an object moves. Handles should always be passed by value
199 * (except in cases like out-parameters) and they should never be
200 * allocated on the heap.
201 *
202 * There are two types of handles: local and persistent handles.
203 * Local handles are light-weight and transient and typically used in
204 * local operations. They are managed by HandleScopes. Persistent
205 * handles can be used when storing objects across several independent
206 * operations and have to be explicitly deallocated when they're no
207 * longer used.
208 *
209 * It is safe to extract the object stored in the handle by
210 * dereferencing the handle (for instance, to extract the Object* from
211 * a Local<Object>); the value will still be governed by a handle
212 * behind the scenes and the same rules apply to these values as to
213 * their handles.
214 */
215 template <class T>
216 class Local {
217 public:
Local()218 V8_INLINE Local() : val_(0) {}
219 template <class S>
Local(Local<S> that)220 V8_INLINE Local(Local<S> that)
221 : val_(reinterpret_cast<T*>(*that)) {
222 /**
223 * This check fails when trying to convert between incompatible
224 * handles. For example, converting from a Local<String> to a
225 * Local<Number>.
226 */
227 TYPE_CHECK(T, S);
228 }
229
230 /**
231 * Returns true if the handle is empty.
232 */
IsEmpty()233 V8_INLINE bool IsEmpty() const { return val_ == 0; }
234
235 /**
236 * Sets the handle to be empty. IsEmpty() will then return true.
237 */
Clear()238 V8_INLINE void Clear() { val_ = 0; }
239
240 V8_INLINE T* operator->() const { return val_; }
241
242 V8_INLINE T* operator*() const { return val_; }
243
244 /**
245 * Checks whether two handles are the same.
246 * Returns true if both are empty, or if the objects
247 * to which they refer are identical.
248 * The handles' references are not checked.
249 */
250 template <class S>
251 V8_INLINE bool operator==(const Local<S>& that) const {
252 internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
253 internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
254 if (a == 0) return b == 0;
255 if (b == 0) return false;
256 return *a == *b;
257 }
258
259 template <class S> V8_INLINE bool operator==(
260 const PersistentBase<S>& that) const {
261 internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
262 internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
263 if (a == 0) return b == 0;
264 if (b == 0) return false;
265 return *a == *b;
266 }
267
268 /**
269 * Checks whether two handles are different.
270 * Returns true if only one of the handles is empty, or if
271 * the objects to which they refer are different.
272 * The handles' references are not checked.
273 */
274 template <class S>
275 V8_INLINE bool operator!=(const Local<S>& that) const {
276 return !operator==(that);
277 }
278
279 template <class S> V8_INLINE bool operator!=(
280 const Persistent<S>& that) const {
281 return !operator==(that);
282 }
283
Cast(Local<S> that)284 template <class S> V8_INLINE static Local<T> Cast(Local<S> that) {
285 #ifdef V8_ENABLE_CHECKS
286 // If we're going to perform the type check then we have to check
287 // that the handle isn't empty before doing the checked cast.
288 if (that.IsEmpty()) return Local<T>();
289 #endif
290 return Local<T>(T::Cast(*that));
291 }
292
293 template <class S>
As()294 V8_INLINE Local<S> As() const {
295 return Local<S>::Cast(*this);
296 }
297
298 /**
299 * Create a local handle for the content of another handle.
300 * The referee is kept alive by the local handle even when
301 * the original handle is destroyed/disposed.
302 */
303 V8_INLINE static Local<T> New(Isolate* isolate, Local<T> that);
304 V8_INLINE static Local<T> New(Isolate* isolate,
305 const PersistentBase<T>& that);
306
307 private:
308 friend class Utils;
309 template<class F> friend class Eternal;
310 template<class F> friend class PersistentBase;
311 template<class F, class M> friend class Persistent;
312 template<class F> friend class Local;
313 template <class F>
314 friend class MaybeLocal;
315 template<class F> friend class FunctionCallbackInfo;
316 template<class F> friend class PropertyCallbackInfo;
317 friend class String;
318 friend class Object;
319 friend class Context;
320 friend class Private;
321 template<class F> friend class internal::CustomArguments;
322 friend Local<Primitive> Undefined(Isolate* isolate);
323 friend Local<Primitive> Null(Isolate* isolate);
324 friend Local<Boolean> True(Isolate* isolate);
325 friend Local<Boolean> False(Isolate* isolate);
326 friend class HandleScope;
327 friend class EscapableHandleScope;
328 template <class F1, class F2, class F3>
329 friend class PersistentValueMapBase;
330 template<class F1, class F2> friend class PersistentValueVector;
331 template <class F>
332 friend class ReturnValue;
333
Local(T * that)334 explicit V8_INLINE Local(T* that) : val_(that) {}
335 V8_INLINE static Local<T> New(Isolate* isolate, T* that);
336 T* val_;
337 };
338
339
340 #if !defined(V8_IMMINENT_DEPRECATION_WARNINGS)
341 // Handle is an alias for Local for historical reasons.
342 template <class T>
343 using Handle = Local<T>;
344 #endif
345
346
347 /**
348 * A MaybeLocal<> is a wrapper around Local<> that enforces a check whether
349 * the Local<> is empty before it can be used.
350 *
351 * If an API method returns a MaybeLocal<>, the API method can potentially fail
352 * either because an exception is thrown, or because an exception is pending,
353 * e.g. because a previous API call threw an exception that hasn't been caught
354 * yet, or because a TerminateExecution exception was thrown. In that case, an
355 * empty MaybeLocal is returned.
356 */
357 template <class T>
358 class MaybeLocal {
359 public:
MaybeLocal()360 V8_INLINE MaybeLocal() : val_(nullptr) {}
361 template <class S>
MaybeLocal(Local<S> that)362 V8_INLINE MaybeLocal(Local<S> that)
363 : val_(reinterpret_cast<T*>(*that)) {
364 TYPE_CHECK(T, S);
365 }
366
IsEmpty()367 V8_INLINE bool IsEmpty() const { return val_ == nullptr; }
368
369 template <class S>
ToLocal(Local<S> * out)370 V8_WARN_UNUSED_RESULT V8_INLINE bool ToLocal(Local<S>* out) const {
371 out->val_ = IsEmpty() ? nullptr : this->val_;
372 return !IsEmpty();
373 }
374
375 // Will crash if the MaybeLocal<> is empty.
376 V8_INLINE Local<T> ToLocalChecked();
377
378 template <class S>
FromMaybe(Local<S> default_value)379 V8_INLINE Local<S> FromMaybe(Local<S> default_value) const {
380 return IsEmpty() ? default_value : Local<S>(val_);
381 }
382
383 private:
384 T* val_;
385 };
386
387
388 // Eternal handles are set-once handles that live for the life of the isolate.
389 template <class T> class Eternal {
390 public:
Eternal()391 V8_INLINE Eternal() : index_(kInitialValue) { }
392 template<class S>
Eternal(Isolate * isolate,Local<S> handle)393 V8_INLINE Eternal(Isolate* isolate, Local<S> handle) : index_(kInitialValue) {
394 Set(isolate, handle);
395 }
396 // Can only be safely called if already set.
397 V8_INLINE Local<T> Get(Isolate* isolate);
IsEmpty()398 V8_INLINE bool IsEmpty() { return index_ == kInitialValue; }
399 template<class S> V8_INLINE void Set(Isolate* isolate, Local<S> handle);
400
401 private:
402 static const int kInitialValue = -1;
403 int index_;
404 };
405
406
407 static const int kInternalFieldsInWeakCallback = 2;
408
409
410 template <typename T>
411 class WeakCallbackInfo {
412 public:
413 typedef void (*Callback)(const WeakCallbackInfo<T>& data);
414
WeakCallbackInfo(Isolate * isolate,T * parameter,void * internal_fields[kInternalFieldsInWeakCallback],Callback * callback)415 WeakCallbackInfo(Isolate* isolate, T* parameter,
416 void* internal_fields[kInternalFieldsInWeakCallback],
417 Callback* callback)
418 : isolate_(isolate), parameter_(parameter), callback_(callback) {
419 for (int i = 0; i < kInternalFieldsInWeakCallback; ++i) {
420 internal_fields_[i] = internal_fields[i];
421 }
422 }
423
GetIsolate()424 V8_INLINE Isolate* GetIsolate() const { return isolate_; }
GetParameter()425 V8_INLINE T* GetParameter() const { return parameter_; }
426 V8_INLINE void* GetInternalField(int index) const;
427
428 V8_INLINE V8_DEPRECATED("use indexed version",
GetInternalField1()429 void* GetInternalField1() const) {
430 return internal_fields_[0];
431 }
432 V8_INLINE V8_DEPRECATED("use indexed version",
GetInternalField2()433 void* GetInternalField2() const) {
434 return internal_fields_[1];
435 }
436
437 V8_DEPRECATED("Not realiable once SetSecondPassCallback() was used.",
IsFirstPass()438 bool IsFirstPass() const) {
439 return callback_ != nullptr;
440 }
441
442 // When first called, the embedder MUST Reset() the Global which triggered the
443 // callback. The Global itself is unusable for anything else. No v8 other api
444 // calls may be called in the first callback. Should additional work be
445 // required, the embedder must set a second pass callback, which will be
446 // called after all the initial callbacks are processed.
447 // Calling SetSecondPassCallback on the second pass will immediately crash.
SetSecondPassCallback(Callback callback)448 void SetSecondPassCallback(Callback callback) const { *callback_ = callback; }
449
450 private:
451 Isolate* isolate_;
452 T* parameter_;
453 Callback* callback_;
454 void* internal_fields_[kInternalFieldsInWeakCallback];
455 };
456
457
458 // kParameter will pass a void* parameter back to the callback, kInternalFields
459 // will pass the first two internal fields back to the callback, kFinalizer
460 // will pass a void* parameter back, but is invoked before the object is
461 // actually collected, so it can be resurrected. In the last case, it is not
462 // possible to request a second pass callback.
463 enum class WeakCallbackType { kParameter, kInternalFields, kFinalizer };
464
465 /**
466 * An object reference that is independent of any handle scope. Where
467 * a Local handle only lives as long as the HandleScope in which it was
468 * allocated, a PersistentBase handle remains valid until it is explicitly
469 * disposed.
470 *
471 * A persistent handle contains a reference to a storage cell within
472 * the v8 engine which holds an object value and which is updated by
473 * the garbage collector whenever the object is moved. A new storage
474 * cell can be created using the constructor or PersistentBase::Reset and
475 * existing handles can be disposed using PersistentBase::Reset.
476 *
477 */
478 template <class T> class PersistentBase {
479 public:
480 /**
481 * If non-empty, destroy the underlying storage cell
482 * IsEmpty() will return true after this call.
483 */
484 V8_INLINE void Reset();
485 /**
486 * If non-empty, destroy the underlying storage cell
487 * and create a new one with the contents of other if other is non empty
488 */
489 template <class S>
490 V8_INLINE void Reset(Isolate* isolate, const Local<S>& other);
491
492 /**
493 * If non-empty, destroy the underlying storage cell
494 * and create a new one with the contents of other if other is non empty
495 */
496 template <class S>
497 V8_INLINE void Reset(Isolate* isolate, const PersistentBase<S>& other);
498
IsEmpty()499 V8_INLINE bool IsEmpty() const { return val_ == NULL; }
Empty()500 V8_INLINE void Empty() { val_ = 0; }
501
Get(Isolate * isolate)502 V8_INLINE Local<T> Get(Isolate* isolate) const {
503 return Local<T>::New(isolate, *this);
504 }
505
506 template <class S>
507 V8_INLINE bool operator==(const PersistentBase<S>& that) const {
508 internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
509 internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
510 if (a == NULL) return b == NULL;
511 if (b == NULL) return false;
512 return *a == *b;
513 }
514
515 template <class S>
516 V8_INLINE bool operator==(const Local<S>& that) const {
517 internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
518 internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
519 if (a == NULL) return b == NULL;
520 if (b == NULL) return false;
521 return *a == *b;
522 }
523
524 template <class S>
525 V8_INLINE bool operator!=(const PersistentBase<S>& that) const {
526 return !operator==(that);
527 }
528
529 template <class S>
530 V8_INLINE bool operator!=(const Local<S>& that) const {
531 return !operator==(that);
532 }
533
534 /**
535 * Install a finalization callback on this object.
536 * NOTE: There is no guarantee as to *when* or even *if* the callback is
537 * invoked. The invocation is performed solely on a best effort basis.
538 * As always, GC-based finalization should *not* be relied upon for any
539 * critical form of resource management!
540 */
541 template <typename P>
542 V8_INLINE void SetWeak(P* parameter,
543 typename WeakCallbackInfo<P>::Callback callback,
544 WeakCallbackType type);
545
546 /**
547 * Turns this handle into a weak phantom handle without finalization callback.
548 * The handle will be reset automatically when the garbage collector detects
549 * that the object is no longer reachable.
550 * A related function Isolate::NumberOfPhantomHandleResetsSinceLastCall
551 * returns how many phantom handles were reset by the garbage collector.
552 */
553 V8_INLINE void SetWeak();
554
555 template<typename P>
556 V8_INLINE P* ClearWeak();
557
558 // TODO(dcarney): remove this.
ClearWeak()559 V8_INLINE void ClearWeak() { ClearWeak<void>(); }
560
561 /**
562 * Allows the embedder to tell the v8 garbage collector that a certain object
563 * is alive. Only allowed when the embedder is asked to trace its heap by
564 * EmbedderHeapTracer.
565 */
566 V8_INLINE void RegisterExternalReference(Isolate* isolate) const;
567
568 /**
569 * Marks the reference to this object independent. Garbage collector is free
570 * to ignore any object groups containing this object. Weak callback for an
571 * independent handle should not assume that it will be preceded by a global
572 * GC prologue callback or followed by a global GC epilogue callback.
573 */
574 V8_INLINE void MarkIndependent();
575
576 /**
577 * Marks the reference to this object as active. The scavenge garbage
578 * collection should not reclaim the objects marked as active.
579 * This bit is cleared after the each garbage collection pass.
580 */
581 V8_INLINE void MarkActive();
582
583 V8_INLINE bool IsIndependent() const;
584
585 /** Checks if the handle holds the only reference to an object. */
586 V8_INLINE bool IsNearDeath() const;
587
588 /** Returns true if the handle's reference is weak. */
589 V8_INLINE bool IsWeak() const;
590
591 /**
592 * Assigns a wrapper class ID to the handle. See RetainedObjectInfo interface
593 * description in v8-profiler.h for details.
594 */
595 V8_INLINE void SetWrapperClassId(uint16_t class_id);
596
597 /**
598 * Returns the class ID previously assigned to this handle or 0 if no class ID
599 * was previously assigned.
600 */
601 V8_INLINE uint16_t WrapperClassId() const;
602
603 PersistentBase(const PersistentBase& other) = delete; // NOLINT
604 void operator=(const PersistentBase&) = delete;
605
606 private:
607 friend class Isolate;
608 friend class Utils;
609 template<class F> friend class Local;
610 template<class F1, class F2> friend class Persistent;
611 template <class F>
612 friend class Global;
613 template<class F> friend class PersistentBase;
614 template<class F> friend class ReturnValue;
615 template <class F1, class F2, class F3>
616 friend class PersistentValueMapBase;
617 template<class F1, class F2> friend class PersistentValueVector;
618 friend class Object;
619
PersistentBase(T * val)620 explicit V8_INLINE PersistentBase(T* val) : val_(val) {}
621 V8_INLINE static T* New(Isolate* isolate, T* that);
622
623 T* val_;
624 };
625
626
627 /**
628 * Default traits for Persistent. This class does not allow
629 * use of the copy constructor or assignment operator.
630 * At present kResetInDestructor is not set, but that will change in a future
631 * version.
632 */
633 template<class T>
634 class NonCopyablePersistentTraits {
635 public:
636 typedef Persistent<T, NonCopyablePersistentTraits<T> > NonCopyablePersistent;
637 static const bool kResetInDestructor = false;
638 template<class S, class M>
Copy(const Persistent<S,M> & source,NonCopyablePersistent * dest)639 V8_INLINE static void Copy(const Persistent<S, M>& source,
640 NonCopyablePersistent* dest) {
641 Uncompilable<Object>();
642 }
643 // TODO(dcarney): come up with a good compile error here.
Uncompilable()644 template<class O> V8_INLINE static void Uncompilable() {
645 TYPE_CHECK(O, Primitive);
646 }
647 };
648
649
650 /**
651 * Helper class traits to allow copying and assignment of Persistent.
652 * This will clone the contents of storage cell, but not any of the flags, etc.
653 */
654 template<class T>
655 struct CopyablePersistentTraits {
656 typedef Persistent<T, CopyablePersistentTraits<T> > CopyablePersistent;
657 static const bool kResetInDestructor = true;
658 template<class S, class M>
CopyCopyablePersistentTraits659 static V8_INLINE void Copy(const Persistent<S, M>& source,
660 CopyablePersistent* dest) {
661 // do nothing, just allow copy
662 }
663 };
664
665
666 /**
667 * A PersistentBase which allows copy and assignment.
668 *
669 * Copy, assignment and destructor bevavior is controlled by the traits
670 * class M.
671 *
672 * Note: Persistent class hierarchy is subject to future changes.
673 */
674 template <class T, class M> class Persistent : public PersistentBase<T> {
675 public:
676 /**
677 * A Persistent with no storage cell.
678 */
Persistent()679 V8_INLINE Persistent() : PersistentBase<T>(0) { }
680 /**
681 * Construct a Persistent from a Local.
682 * When the Local is non-empty, a new storage cell is created
683 * pointing to the same object, and no flags are set.
684 */
685 template <class S>
Persistent(Isolate * isolate,Local<S> that)686 V8_INLINE Persistent(Isolate* isolate, Local<S> that)
687 : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
688 TYPE_CHECK(T, S);
689 }
690 /**
691 * Construct a Persistent from a Persistent.
692 * When the Persistent is non-empty, a new storage cell is created
693 * pointing to the same object, and no flags are set.
694 */
695 template <class S, class M2>
Persistent(Isolate * isolate,const Persistent<S,M2> & that)696 V8_INLINE Persistent(Isolate* isolate, const Persistent<S, M2>& that)
697 : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
698 TYPE_CHECK(T, S);
699 }
700 /**
701 * The copy constructors and assignment operator create a Persistent
702 * exactly as the Persistent constructor, but the Copy function from the
703 * traits class is called, allowing the setting of flags based on the
704 * copied Persistent.
705 */
Persistent(const Persistent & that)706 V8_INLINE Persistent(const Persistent& that) : PersistentBase<T>(0) {
707 Copy(that);
708 }
709 template <class S, class M2>
Persistent(const Persistent<S,M2> & that)710 V8_INLINE Persistent(const Persistent<S, M2>& that) : PersistentBase<T>(0) {
711 Copy(that);
712 }
713 V8_INLINE Persistent& operator=(const Persistent& that) { // NOLINT
714 Copy(that);
715 return *this;
716 }
717 template <class S, class M2>
718 V8_INLINE Persistent& operator=(const Persistent<S, M2>& that) { // NOLINT
719 Copy(that);
720 return *this;
721 }
722 /**
723 * The destructor will dispose the Persistent based on the
724 * kResetInDestructor flags in the traits class. Since not calling dispose
725 * can result in a memory leak, it is recommended to always set this flag.
726 */
~Persistent()727 V8_INLINE ~Persistent() {
728 if (M::kResetInDestructor) this->Reset();
729 }
730
731 // TODO(dcarney): this is pretty useless, fix or remove
732 template <class S>
Cast(const Persistent<S> & that)733 V8_INLINE static Persistent<T>& Cast(const Persistent<S>& that) { // NOLINT
734 #ifdef V8_ENABLE_CHECKS
735 // If we're going to perform the type check then we have to check
736 // that the handle isn't empty before doing the checked cast.
737 if (!that.IsEmpty()) T::Cast(*that);
738 #endif
739 return reinterpret_cast<Persistent<T>&>(const_cast<Persistent<S>&>(that));
740 }
741
742 // TODO(dcarney): this is pretty useless, fix or remove
743 template <class S>
As()744 V8_INLINE Persistent<S>& As() const { // NOLINT
745 return Persistent<S>::Cast(*this);
746 }
747
748 private:
749 friend class Isolate;
750 friend class Utils;
751 template<class F> friend class Local;
752 template<class F1, class F2> friend class Persistent;
753 template<class F> friend class ReturnValue;
754
Persistent(T * that)755 explicit V8_INLINE Persistent(T* that) : PersistentBase<T>(that) {}
756 V8_INLINE T* operator*() const { return this->val_; }
757 template<class S, class M2>
758 V8_INLINE void Copy(const Persistent<S, M2>& that);
759 };
760
761
762 /**
763 * A PersistentBase which has move semantics.
764 *
765 * Note: Persistent class hierarchy is subject to future changes.
766 */
767 template <class T>
768 class Global : public PersistentBase<T> {
769 public:
770 /**
771 * A Global with no storage cell.
772 */
Global()773 V8_INLINE Global() : PersistentBase<T>(nullptr) {}
774 /**
775 * Construct a Global from a Local.
776 * When the Local is non-empty, a new storage cell is created
777 * pointing to the same object, and no flags are set.
778 */
779 template <class S>
Global(Isolate * isolate,Local<S> that)780 V8_INLINE Global(Isolate* isolate, Local<S> that)
781 : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
782 TYPE_CHECK(T, S);
783 }
784 /**
785 * Construct a Global from a PersistentBase.
786 * When the Persistent is non-empty, a new storage cell is created
787 * pointing to the same object, and no flags are set.
788 */
789 template <class S>
Global(Isolate * isolate,const PersistentBase<S> & that)790 V8_INLINE Global(Isolate* isolate, const PersistentBase<S>& that)
791 : PersistentBase<T>(PersistentBase<T>::New(isolate, that.val_)) {
792 TYPE_CHECK(T, S);
793 }
794 /**
795 * Move constructor.
796 */
Global(Global && other)797 V8_INLINE Global(Global&& other) : PersistentBase<T>(other.val_) { // NOLINT
798 other.val_ = nullptr;
799 }
~Global()800 V8_INLINE ~Global() { this->Reset(); }
801 /**
802 * Move via assignment.
803 */
804 template <class S>
805 V8_INLINE Global& operator=(Global<S>&& rhs) { // NOLINT
806 TYPE_CHECK(T, S);
807 if (this != &rhs) {
808 this->Reset();
809 this->val_ = rhs.val_;
810 rhs.val_ = nullptr;
811 }
812 return *this;
813 }
814 /**
815 * Pass allows returning uniques from functions, etc.
816 */
Pass()817 Global Pass() { return static_cast<Global&&>(*this); } // NOLINT
818
819 /*
820 * For compatibility with Chromium's base::Bind (base::Passed).
821 */
822 typedef void MoveOnlyTypeForCPP03;
823
824 Global(const Global&) = delete;
825 void operator=(const Global&) = delete;
826
827 private:
828 template <class F>
829 friend class ReturnValue;
830 V8_INLINE T* operator*() const { return this->val_; }
831 };
832
833
834 // UniquePersistent is an alias for Global for historical reason.
835 template <class T>
836 using UniquePersistent = Global<T>;
837
838
839 /**
840 * A stack-allocated class that governs a number of local handles.
841 * After a handle scope has been created, all local handles will be
842 * allocated within that handle scope until either the handle scope is
843 * deleted or another handle scope is created. If there is already a
844 * handle scope and a new one is created, all allocations will take
845 * place in the new handle scope until it is deleted. After that,
846 * new handles will again be allocated in the original handle scope.
847 *
848 * After the handle scope of a local handle has been deleted the
849 * garbage collector will no longer track the object stored in the
850 * handle and may deallocate it. The behavior of accessing a handle
851 * for which the handle scope has been deleted is undefined.
852 */
853 class V8_EXPORT HandleScope {
854 public:
855 explicit HandleScope(Isolate* isolate);
856
857 ~HandleScope();
858
859 /**
860 * Counts the number of allocated handles.
861 */
862 static int NumberOfHandles(Isolate* isolate);
863
GetIsolate()864 V8_INLINE Isolate* GetIsolate() const {
865 return reinterpret_cast<Isolate*>(isolate_);
866 }
867
868 HandleScope(const HandleScope&) = delete;
869 void operator=(const HandleScope&) = delete;
870 void* operator new(size_t size) = delete;
871 void operator delete(void*, size_t) = delete;
872
873 protected:
HandleScope()874 V8_INLINE HandleScope() {}
875
876 void Initialize(Isolate* isolate);
877
878 static internal::Object** CreateHandle(internal::Isolate* isolate,
879 internal::Object* value);
880
881 private:
882 // Uses heap_object to obtain the current Isolate.
883 static internal::Object** CreateHandle(internal::HeapObject* heap_object,
884 internal::Object* value);
885
886 internal::Isolate* isolate_;
887 internal::Object** prev_next_;
888 internal::Object** prev_limit_;
889
890 // Local::New uses CreateHandle with an Isolate* parameter.
891 template<class F> friend class Local;
892
893 // Object::GetInternalField and Context::GetEmbedderData use CreateHandle with
894 // a HeapObject* in their shortcuts.
895 friend class Object;
896 friend class Context;
897 };
898
899
900 /**
901 * A HandleScope which first allocates a handle in the current scope
902 * which will be later filled with the escape value.
903 */
904 class V8_EXPORT EscapableHandleScope : public HandleScope {
905 public:
906 explicit EscapableHandleScope(Isolate* isolate);
~EscapableHandleScope()907 V8_INLINE ~EscapableHandleScope() {}
908
909 /**
910 * Pushes the value into the previous scope and returns a handle to it.
911 * Cannot be called twice.
912 */
913 template <class T>
Escape(Local<T> value)914 V8_INLINE Local<T> Escape(Local<T> value) {
915 internal::Object** slot =
916 Escape(reinterpret_cast<internal::Object**>(*value));
917 return Local<T>(reinterpret_cast<T*>(slot));
918 }
919
920 EscapableHandleScope(const EscapableHandleScope&) = delete;
921 void operator=(const EscapableHandleScope&) = delete;
922 void* operator new(size_t size) = delete;
923 void operator delete(void*, size_t) = delete;
924
925 private:
926 internal::Object** Escape(internal::Object** escape_value);
927 internal::Object** escape_slot_;
928 };
929
930 class V8_EXPORT SealHandleScope {
931 public:
932 SealHandleScope(Isolate* isolate);
933 ~SealHandleScope();
934
935 SealHandleScope(const SealHandleScope&) = delete;
936 void operator=(const SealHandleScope&) = delete;
937 void* operator new(size_t size) = delete;
938 void operator delete(void*, size_t) = delete;
939
940 private:
941 internal::Isolate* const isolate_;
942 internal::Object** prev_limit_;
943 int prev_sealed_level_;
944 };
945
946
947 // --- Special objects ---
948
949
950 /**
951 * The superclass of values and API object templates.
952 */
953 class V8_EXPORT Data {
954 private:
955 Data();
956 };
957
958
959 /**
960 * The optional attributes of ScriptOrigin.
961 */
962 class ScriptOriginOptions {
963 public:
964 V8_INLINE ScriptOriginOptions(bool is_embedder_debug_script = false,
965 bool is_shared_cross_origin = false,
966 bool is_opaque = false)
967 : flags_((is_embedder_debug_script ? kIsEmbedderDebugScript : 0) |
968 (is_shared_cross_origin ? kIsSharedCrossOrigin : 0) |
969 (is_opaque ? kIsOpaque : 0)) {}
ScriptOriginOptions(int flags)970 V8_INLINE ScriptOriginOptions(int flags)
971 : flags_(flags &
972 (kIsEmbedderDebugScript | kIsSharedCrossOrigin | kIsOpaque)) {}
IsEmbedderDebugScript()973 bool IsEmbedderDebugScript() const {
974 return (flags_ & kIsEmbedderDebugScript) != 0;
975 }
IsSharedCrossOrigin()976 bool IsSharedCrossOrigin() const {
977 return (flags_ & kIsSharedCrossOrigin) != 0;
978 }
IsOpaque()979 bool IsOpaque() const { return (flags_ & kIsOpaque) != 0; }
Flags()980 int Flags() const { return flags_; }
981
982 private:
983 enum {
984 kIsEmbedderDebugScript = 1,
985 kIsSharedCrossOrigin = 1 << 1,
986 kIsOpaque = 1 << 2
987 };
988 const int flags_;
989 };
990
991 /**
992 * The origin, within a file, of a script.
993 */
994 class ScriptOrigin {
995 public:
996 V8_INLINE ScriptOrigin(
997 Local<Value> resource_name,
998 Local<Integer> resource_line_offset = Local<Integer>(),
999 Local<Integer> resource_column_offset = Local<Integer>(),
1000 Local<Boolean> resource_is_shared_cross_origin = Local<Boolean>(),
1001 Local<Integer> script_id = Local<Integer>(),
1002 Local<Boolean> resource_is_embedder_debug_script = Local<Boolean>(),
1003 Local<Value> source_map_url = Local<Value>(),
1004 Local<Boolean> resource_is_opaque = Local<Boolean>());
1005 V8_INLINE Local<Value> ResourceName() const;
1006 V8_INLINE Local<Integer> ResourceLineOffset() const;
1007 V8_INLINE Local<Integer> ResourceColumnOffset() const;
1008 /**
1009 * Returns true for embedder's debugger scripts
1010 */
1011 V8_INLINE Local<Integer> ScriptID() const;
1012 V8_INLINE Local<Value> SourceMapUrl() const;
Options()1013 V8_INLINE ScriptOriginOptions Options() const { return options_; }
1014
1015 private:
1016 Local<Value> resource_name_;
1017 Local<Integer> resource_line_offset_;
1018 Local<Integer> resource_column_offset_;
1019 ScriptOriginOptions options_;
1020 Local<Integer> script_id_;
1021 Local<Value> source_map_url_;
1022 };
1023
1024
1025 /**
1026 * A compiled JavaScript script, not yet tied to a Context.
1027 */
1028 class V8_EXPORT UnboundScript {
1029 public:
1030 /**
1031 * Binds the script to the currently entered context.
1032 */
1033 Local<Script> BindToCurrentContext();
1034
1035 int GetId();
1036 Local<Value> GetScriptName();
1037
1038 /**
1039 * Data read from magic sourceURL comments.
1040 */
1041 Local<Value> GetSourceURL();
1042 /**
1043 * Data read from magic sourceMappingURL comments.
1044 */
1045 Local<Value> GetSourceMappingURL();
1046
1047 /**
1048 * Returns zero based line number of the code_pos location in the script.
1049 * -1 will be returned if no information available.
1050 */
1051 int GetLineNumber(int code_pos);
1052
1053 static const int kNoScriptId = 0;
1054 };
1055
1056 /**
1057 * This is an unfinished experimental feature, and is only exposed
1058 * here for internal testing purposes. DO NOT USE.
1059 *
1060 * A compiled JavaScript module.
1061 */
1062 class V8_EXPORT Module {
1063 public:
1064 /**
1065 * Returns the number of modules requested by this module.
1066 */
1067 int GetModuleRequestsLength() const;
1068
1069 /**
1070 * Returns the ith module specifier in this module.
1071 * i must be < GetModuleRequestsLength() and >= 0.
1072 */
1073 Local<String> GetModuleRequest(int i) const;
1074
1075 /**
1076 * Returns the identity hash for this object.
1077 */
1078 int GetIdentityHash() const;
1079
1080 typedef MaybeLocal<Module> (*ResolveCallback)(Local<Context> context,
1081 Local<String> specifier,
1082 Local<Module> referrer);
1083
1084 /**
1085 * ModuleDeclarationInstantiation
1086 *
1087 * Returns false if an exception occurred during instantiation.
1088 */
1089 V8_WARN_UNUSED_RESULT bool Instantiate(Local<Context> context,
1090 ResolveCallback callback);
1091
1092 /**
1093 * ModuleEvaluation
1094 */
1095 V8_WARN_UNUSED_RESULT MaybeLocal<Value> Evaluate(Local<Context> context);
1096 };
1097
1098 /**
1099 * A compiled JavaScript script, tied to a Context which was active when the
1100 * script was compiled.
1101 */
1102 class V8_EXPORT Script {
1103 public:
1104 /**
1105 * A shorthand for ScriptCompiler::Compile().
1106 */
1107 static V8_DEPRECATE_SOON(
1108 "Use maybe version",
1109 Local<Script> Compile(Local<String> source,
1110 ScriptOrigin* origin = nullptr));
1111 static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
1112 Local<Context> context, Local<String> source,
1113 ScriptOrigin* origin = nullptr);
1114
1115 static Local<Script> V8_DEPRECATE_SOON("Use maybe version",
1116 Compile(Local<String> source,
1117 Local<String> file_name));
1118
1119 /**
1120 * Runs the script returning the resulting value. It will be run in the
1121 * context in which it was created (ScriptCompiler::CompileBound or
1122 * UnboundScript::BindToCurrentContext()).
1123 */
1124 V8_DEPRECATE_SOON("Use maybe version", Local<Value> Run());
1125 V8_WARN_UNUSED_RESULT MaybeLocal<Value> Run(Local<Context> context);
1126
1127 /**
1128 * Returns the corresponding context-unbound script.
1129 */
1130 Local<UnboundScript> GetUnboundScript();
1131 };
1132
1133
1134 /**
1135 * For compiling scripts.
1136 */
1137 class V8_EXPORT ScriptCompiler {
1138 public:
1139 /**
1140 * Compilation data that the embedder can cache and pass back to speed up
1141 * future compilations. The data is produced if the CompilerOptions passed to
1142 * the compilation functions in ScriptCompiler contains produce_data_to_cache
1143 * = true. The data to cache can then can be retrieved from
1144 * UnboundScript.
1145 */
1146 struct V8_EXPORT CachedData {
1147 enum BufferPolicy {
1148 BufferNotOwned,
1149 BufferOwned
1150 };
1151
CachedDataCachedData1152 CachedData()
1153 : data(NULL),
1154 length(0),
1155 rejected(false),
1156 buffer_policy(BufferNotOwned) {}
1157
1158 // If buffer_policy is BufferNotOwned, the caller keeps the ownership of
1159 // data and guarantees that it stays alive until the CachedData object is
1160 // destroyed. If the policy is BufferOwned, the given data will be deleted
1161 // (with delete[]) when the CachedData object is destroyed.
1162 CachedData(const uint8_t* data, int length,
1163 BufferPolicy buffer_policy = BufferNotOwned);
1164 ~CachedData();
1165 // TODO(marja): Async compilation; add constructors which take a callback
1166 // which will be called when V8 no longer needs the data.
1167 const uint8_t* data;
1168 int length;
1169 bool rejected;
1170 BufferPolicy buffer_policy;
1171
1172 // Prevent copying.
1173 CachedData(const CachedData&) = delete;
1174 CachedData& operator=(const CachedData&) = delete;
1175 };
1176
1177 /**
1178 * Source code which can be then compiled to a UnboundScript or Script.
1179 */
1180 class Source {
1181 public:
1182 // Source takes ownership of CachedData.
1183 V8_INLINE Source(Local<String> source_string, const ScriptOrigin& origin,
1184 CachedData* cached_data = NULL);
1185 V8_INLINE Source(Local<String> source_string,
1186 CachedData* cached_data = NULL);
1187 V8_INLINE ~Source();
1188
1189 // Ownership of the CachedData or its buffers is *not* transferred to the
1190 // caller. The CachedData object is alive as long as the Source object is
1191 // alive.
1192 V8_INLINE const CachedData* GetCachedData() const;
1193
1194 // Prevent copying.
1195 Source(const Source&) = delete;
1196 Source& operator=(const Source&) = delete;
1197
1198 private:
1199 friend class ScriptCompiler;
1200
1201 Local<String> source_string;
1202
1203 // Origin information
1204 Local<Value> resource_name;
1205 Local<Integer> resource_line_offset;
1206 Local<Integer> resource_column_offset;
1207 ScriptOriginOptions resource_options;
1208 Local<Value> source_map_url;
1209
1210 // Cached data from previous compilation (if a kConsume*Cache flag is
1211 // set), or hold newly generated cache data (kProduce*Cache flags) are
1212 // set when calling a compile method.
1213 CachedData* cached_data;
1214 };
1215
1216 /**
1217 * For streaming incomplete script data to V8. The embedder should implement a
1218 * subclass of this class.
1219 */
1220 class V8_EXPORT ExternalSourceStream {
1221 public:
~ExternalSourceStream()1222 virtual ~ExternalSourceStream() {}
1223
1224 /**
1225 * V8 calls this to request the next chunk of data from the embedder. This
1226 * function will be called on a background thread, so it's OK to block and
1227 * wait for the data, if the embedder doesn't have data yet. Returns the
1228 * length of the data returned. When the data ends, GetMoreData should
1229 * return 0. Caller takes ownership of the data.
1230 *
1231 * When streaming UTF-8 data, V8 handles multi-byte characters split between
1232 * two data chunks, but doesn't handle multi-byte characters split between
1233 * more than two data chunks. The embedder can avoid this problem by always
1234 * returning at least 2 bytes of data.
1235 *
1236 * If the embedder wants to cancel the streaming, they should make the next
1237 * GetMoreData call return 0. V8 will interpret it as end of data (and most
1238 * probably, parsing will fail). The streaming task will return as soon as
1239 * V8 has parsed the data it received so far.
1240 */
1241 virtual size_t GetMoreData(const uint8_t** src) = 0;
1242
1243 /**
1244 * V8 calls this method to set a 'bookmark' at the current position in
1245 * the source stream, for the purpose of (maybe) later calling
1246 * ResetToBookmark. If ResetToBookmark is called later, then subsequent
1247 * calls to GetMoreData should return the same data as they did when
1248 * SetBookmark was called earlier.
1249 *
1250 * The embedder may return 'false' to indicate it cannot provide this
1251 * functionality.
1252 */
1253 virtual bool SetBookmark();
1254
1255 /**
1256 * V8 calls this to return to a previously set bookmark.
1257 */
1258 virtual void ResetToBookmark();
1259 };
1260
1261
1262 /**
1263 * Source code which can be streamed into V8 in pieces. It will be parsed
1264 * while streaming. It can be compiled after the streaming is complete.
1265 * StreamedSource must be kept alive while the streaming task is ran (see
1266 * ScriptStreamingTask below).
1267 */
1268 class V8_EXPORT StreamedSource {
1269 public:
1270 enum Encoding { ONE_BYTE, TWO_BYTE, UTF8 };
1271
1272 StreamedSource(ExternalSourceStream* source_stream, Encoding encoding);
1273 ~StreamedSource();
1274
1275 // Ownership of the CachedData or its buffers is *not* transferred to the
1276 // caller. The CachedData object is alive as long as the StreamedSource
1277 // object is alive.
1278 const CachedData* GetCachedData() const;
1279
impl()1280 internal::StreamedSource* impl() const { return impl_; }
1281
1282 // Prevent copying.
1283 StreamedSource(const StreamedSource&) = delete;
1284 StreamedSource& operator=(const StreamedSource&) = delete;
1285
1286 private:
1287 internal::StreamedSource* impl_;
1288 };
1289
1290 /**
1291 * A streaming task which the embedder must run on a background thread to
1292 * stream scripts into V8. Returned by ScriptCompiler::StartStreamingScript.
1293 */
1294 class ScriptStreamingTask {
1295 public:
~ScriptStreamingTask()1296 virtual ~ScriptStreamingTask() {}
1297 virtual void Run() = 0;
1298 };
1299
1300 enum CompileOptions {
1301 kNoCompileOptions = 0,
1302 kProduceParserCache,
1303 kConsumeParserCache,
1304 kProduceCodeCache,
1305 kConsumeCodeCache
1306 };
1307
1308 /**
1309 * Compiles the specified script (context-independent).
1310 * Cached data as part of the source object can be optionally produced to be
1311 * consumed later to speed up compilation of identical source scripts.
1312 *
1313 * Note that when producing cached data, the source must point to NULL for
1314 * cached data. When consuming cached data, the cached data must have been
1315 * produced by the same version of V8.
1316 *
1317 * \param source Script source code.
1318 * \return Compiled script object (context independent; for running it must be
1319 * bound to a context).
1320 */
1321 static V8_DEPRECATED("Use maybe version",
1322 Local<UnboundScript> CompileUnbound(
1323 Isolate* isolate, Source* source,
1324 CompileOptions options = kNoCompileOptions));
1325 static V8_WARN_UNUSED_RESULT MaybeLocal<UnboundScript> CompileUnboundScript(
1326 Isolate* isolate, Source* source,
1327 CompileOptions options = kNoCompileOptions);
1328
1329 /**
1330 * Compiles the specified script (bound to current context).
1331 *
1332 * \param source Script source code.
1333 * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
1334 * using pre_data speeds compilation if it's done multiple times.
1335 * Owned by caller, no references are kept when this function returns.
1336 * \return Compiled script object, bound to the context that was active
1337 * when this function was called. When run it will always use this
1338 * context.
1339 */
1340 static V8_DEPRECATED(
1341 "Use maybe version",
1342 Local<Script> Compile(Isolate* isolate, Source* source,
1343 CompileOptions options = kNoCompileOptions));
1344 static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
1345 Local<Context> context, Source* source,
1346 CompileOptions options = kNoCompileOptions);
1347
1348 /**
1349 * Returns a task which streams script data into V8, or NULL if the script
1350 * cannot be streamed. The user is responsible for running the task on a
1351 * background thread and deleting it. When ran, the task starts parsing the
1352 * script, and it will request data from the StreamedSource as needed. When
1353 * ScriptStreamingTask::Run exits, all data has been streamed and the script
1354 * can be compiled (see Compile below).
1355 *
1356 * This API allows to start the streaming with as little data as possible, and
1357 * the remaining data (for example, the ScriptOrigin) is passed to Compile.
1358 */
1359 static ScriptStreamingTask* StartStreamingScript(
1360 Isolate* isolate, StreamedSource* source,
1361 CompileOptions options = kNoCompileOptions);
1362
1363 /**
1364 * Compiles a streamed script (bound to current context).
1365 *
1366 * This can only be called after the streaming has finished
1367 * (ScriptStreamingTask has been run). V8 doesn't construct the source string
1368 * during streaming, so the embedder needs to pass the full source here.
1369 */
1370 static V8_DEPRECATED("Use maybe version",
1371 Local<Script> Compile(Isolate* isolate,
1372 StreamedSource* source,
1373 Local<String> full_source_string,
1374 const ScriptOrigin& origin));
1375 static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
1376 Local<Context> context, StreamedSource* source,
1377 Local<String> full_source_string, const ScriptOrigin& origin);
1378
1379 /**
1380 * Return a version tag for CachedData for the current V8 version & flags.
1381 *
1382 * This value is meant only for determining whether a previously generated
1383 * CachedData instance is still valid; the tag has no other meaing.
1384 *
1385 * Background: The data carried by CachedData may depend on the exact
1386 * V8 version number or currently compiler flags. This means when
1387 * persisting CachedData, the embedder must take care to not pass in
1388 * data from another V8 version, or the same version with different
1389 * features enabled.
1390 *
1391 * The easiest way to do so is to clear the embedder's cache on any
1392 * such change.
1393 *
1394 * Alternatively, this tag can be stored alongside the cached data and
1395 * compared when it is being used.
1396 */
1397 static uint32_t CachedDataVersionTag();
1398
1399 /**
1400 * This is an unfinished experimental feature, and is only exposed
1401 * here for internal testing purposes. DO NOT USE.
1402 *
1403 * Compile an ES module, returning a Module that encapsulates
1404 * the compiled code.
1405 *
1406 * Corresponds to the ParseModule abstract operation in the
1407 * ECMAScript specification.
1408 */
1409 static V8_WARN_UNUSED_RESULT MaybeLocal<Module> CompileModule(
1410 Isolate* isolate, Source* source);
1411
1412 /**
1413 * Compile a function for a given context. This is equivalent to running
1414 *
1415 * with (obj) {
1416 * return function(args) { ... }
1417 * }
1418 *
1419 * It is possible to specify multiple context extensions (obj in the above
1420 * example).
1421 */
1422 static V8_DEPRECATE_SOON("Use maybe version",
1423 Local<Function> CompileFunctionInContext(
1424 Isolate* isolate, Source* source,
1425 Local<Context> context, size_t arguments_count,
1426 Local<String> arguments[],
1427 size_t context_extension_count,
1428 Local<Object> context_extensions[]));
1429 static V8_WARN_UNUSED_RESULT MaybeLocal<Function> CompileFunctionInContext(
1430 Local<Context> context, Source* source, size_t arguments_count,
1431 Local<String> arguments[], size_t context_extension_count,
1432 Local<Object> context_extensions[]);
1433
1434 private:
1435 static V8_WARN_UNUSED_RESULT MaybeLocal<UnboundScript> CompileUnboundInternal(
1436 Isolate* isolate, Source* source, CompileOptions options, bool is_module);
1437 };
1438
1439
1440 /**
1441 * An error message.
1442 */
1443 class V8_EXPORT Message {
1444 public:
1445 Local<String> Get() const;
1446
1447 V8_DEPRECATE_SOON("Use maybe version", Local<String> GetSourceLine() const);
1448 V8_WARN_UNUSED_RESULT MaybeLocal<String> GetSourceLine(
1449 Local<Context> context) const;
1450
1451 /**
1452 * Returns the origin for the script from where the function causing the
1453 * error originates.
1454 */
1455 ScriptOrigin GetScriptOrigin() const;
1456
1457 /**
1458 * Returns the resource name for the script from where the function causing
1459 * the error originates.
1460 */
1461 Local<Value> GetScriptResourceName() const;
1462
1463 /**
1464 * Exception stack trace. By default stack traces are not captured for
1465 * uncaught exceptions. SetCaptureStackTraceForUncaughtExceptions allows
1466 * to change this option.
1467 */
1468 Local<StackTrace> GetStackTrace() const;
1469
1470 /**
1471 * Returns the number, 1-based, of the line where the error occurred.
1472 */
1473 V8_DEPRECATE_SOON("Use maybe version", int GetLineNumber() const);
1474 V8_WARN_UNUSED_RESULT Maybe<int> GetLineNumber(Local<Context> context) const;
1475
1476 /**
1477 * Returns the index within the script of the first character where
1478 * the error occurred.
1479 */
1480 int GetStartPosition() const;
1481
1482 /**
1483 * Returns the index within the script of the last character where
1484 * the error occurred.
1485 */
1486 int GetEndPosition() const;
1487
1488 /**
1489 * Returns the index within the line of the first character where
1490 * the error occurred.
1491 */
1492 V8_DEPRECATE_SOON("Use maybe version", int GetStartColumn() const);
1493 V8_WARN_UNUSED_RESULT Maybe<int> GetStartColumn(Local<Context> context) const;
1494
1495 /**
1496 * Returns the index within the line of the last character where
1497 * the error occurred.
1498 */
1499 V8_DEPRECATED("Use maybe version", int GetEndColumn() const);
1500 V8_WARN_UNUSED_RESULT Maybe<int> GetEndColumn(Local<Context> context) const;
1501
1502 /**
1503 * Passes on the value set by the embedder when it fed the script from which
1504 * this Message was generated to V8.
1505 */
1506 bool IsSharedCrossOrigin() const;
1507 bool IsOpaque() const;
1508
1509 // TODO(1245381): Print to a string instead of on a FILE.
1510 static void PrintCurrentStackTrace(Isolate* isolate, FILE* out);
1511
1512 static const int kNoLineNumberInfo = 0;
1513 static const int kNoColumnInfo = 0;
1514 static const int kNoScriptIdInfo = 0;
1515 };
1516
1517
1518 /**
1519 * Representation of a JavaScript stack trace. The information collected is a
1520 * snapshot of the execution stack and the information remains valid after
1521 * execution continues.
1522 */
1523 class V8_EXPORT StackTrace {
1524 public:
1525 /**
1526 * Flags that determine what information is placed captured for each
1527 * StackFrame when grabbing the current stack trace.
1528 */
1529 enum StackTraceOptions {
1530 kLineNumber = 1,
1531 kColumnOffset = 1 << 1 | kLineNumber,
1532 kScriptName = 1 << 2,
1533 kFunctionName = 1 << 3,
1534 kIsEval = 1 << 4,
1535 kIsConstructor = 1 << 5,
1536 kScriptNameOrSourceURL = 1 << 6,
1537 kScriptId = 1 << 7,
1538 kExposeFramesAcrossSecurityOrigins = 1 << 8,
1539 kOverview = kLineNumber | kColumnOffset | kScriptName | kFunctionName,
1540 kDetailed = kOverview | kIsEval | kIsConstructor | kScriptNameOrSourceURL
1541 };
1542
1543 /**
1544 * Returns a StackFrame at a particular index.
1545 */
1546 Local<StackFrame> GetFrame(uint32_t index) const;
1547
1548 /**
1549 * Returns the number of StackFrames.
1550 */
1551 int GetFrameCount() const;
1552
1553 /**
1554 * Returns StackTrace as a v8::Array that contains StackFrame objects.
1555 */
1556 Local<Array> AsArray();
1557
1558 /**
1559 * Grab a snapshot of the current JavaScript execution stack.
1560 *
1561 * \param frame_limit The maximum number of stack frames we want to capture.
1562 * \param options Enumerates the set of things we will capture for each
1563 * StackFrame.
1564 */
1565 static Local<StackTrace> CurrentStackTrace(
1566 Isolate* isolate,
1567 int frame_limit,
1568 StackTraceOptions options = kOverview);
1569 };
1570
1571
1572 /**
1573 * A single JavaScript stack frame.
1574 */
1575 class V8_EXPORT StackFrame {
1576 public:
1577 /**
1578 * Returns the number, 1-based, of the line for the associate function call.
1579 * This method will return Message::kNoLineNumberInfo if it is unable to
1580 * retrieve the line number, or if kLineNumber was not passed as an option
1581 * when capturing the StackTrace.
1582 */
1583 int GetLineNumber() const;
1584
1585 /**
1586 * Returns the 1-based column offset on the line for the associated function
1587 * call.
1588 * This method will return Message::kNoColumnInfo if it is unable to retrieve
1589 * the column number, or if kColumnOffset was not passed as an option when
1590 * capturing the StackTrace.
1591 */
1592 int GetColumn() const;
1593
1594 /**
1595 * Returns the id of the script for the function for this StackFrame.
1596 * This method will return Message::kNoScriptIdInfo if it is unable to
1597 * retrieve the script id, or if kScriptId was not passed as an option when
1598 * capturing the StackTrace.
1599 */
1600 int GetScriptId() const;
1601
1602 /**
1603 * Returns the name of the resource that contains the script for the
1604 * function for this StackFrame.
1605 */
1606 Local<String> GetScriptName() const;
1607
1608 /**
1609 * Returns the name of the resource that contains the script for the
1610 * function for this StackFrame or sourceURL value if the script name
1611 * is undefined and its source ends with //# sourceURL=... string or
1612 * deprecated //@ sourceURL=... string.
1613 */
1614 Local<String> GetScriptNameOrSourceURL() const;
1615
1616 /**
1617 * Returns the name of the function associated with this stack frame.
1618 */
1619 Local<String> GetFunctionName() const;
1620
1621 /**
1622 * Returns whether or not the associated function is compiled via a call to
1623 * eval().
1624 */
1625 bool IsEval() const;
1626
1627 /**
1628 * Returns whether or not the associated function is called as a
1629 * constructor via "new".
1630 */
1631 bool IsConstructor() const;
1632 };
1633
1634
1635 // A StateTag represents a possible state of the VM.
1636 enum StateTag { JS, GC, COMPILER, OTHER, EXTERNAL, IDLE };
1637
1638 // A RegisterState represents the current state of registers used
1639 // by the sampling profiler API.
1640 struct RegisterState {
RegisterStateRegisterState1641 RegisterState() : pc(nullptr), sp(nullptr), fp(nullptr) {}
1642 void* pc; // Instruction pointer.
1643 void* sp; // Stack pointer.
1644 void* fp; // Frame pointer.
1645 };
1646
1647 // The output structure filled up by GetStackSample API function.
1648 struct SampleInfo {
1649 size_t frames_count; // Number of frames collected.
1650 StateTag vm_state; // Current VM state.
1651 void* external_callback_entry; // External callback address if VM is
1652 // executing an external callback.
1653 };
1654
1655 /**
1656 * A JSON Parser and Stringifier.
1657 */
1658 class V8_EXPORT JSON {
1659 public:
1660 /**
1661 * Tries to parse the string |json_string| and returns it as value if
1662 * successful.
1663 *
1664 * \param json_string The string to parse.
1665 * \return The corresponding value if successfully parsed.
1666 */
1667 static V8_DEPRECATED("Use the maybe version taking context",
1668 Local<Value> Parse(Local<String> json_string));
1669 static V8_DEPRECATE_SOON("Use the maybe version taking context",
1670 MaybeLocal<Value> Parse(Isolate* isolate,
1671 Local<String> json_string));
1672 static V8_WARN_UNUSED_RESULT MaybeLocal<Value> Parse(
1673 Local<Context> context, Local<String> json_string);
1674
1675 /**
1676 * Tries to stringify the JSON-serializable object |json_object| and returns
1677 * it as string if successful.
1678 *
1679 * \param json_object The JSON-serializable object to stringify.
1680 * \return The corresponding string if successfully stringified.
1681 */
1682 static V8_WARN_UNUSED_RESULT MaybeLocal<String> Stringify(
1683 Local<Context> context, Local<Object> json_object,
1684 Local<String> gap = Local<String>());
1685 };
1686
1687 /**
1688 * Value serialization compatible with the HTML structured clone algorithm.
1689 * The format is backward-compatible (i.e. safe to store to disk).
1690 *
1691 * WARNING: This API is under development, and changes (including incompatible
1692 * changes to the API or wire format) may occur without notice until this
1693 * warning is removed.
1694 */
1695 class V8_EXPORT ValueSerializer {
1696 public:
1697 class V8_EXPORT Delegate {
1698 public:
~Delegate()1699 virtual ~Delegate() {}
1700
1701 /*
1702 * Handles the case where a DataCloneError would be thrown in the structured
1703 * clone spec. Other V8 embedders may throw some other appropriate exception
1704 * type.
1705 */
1706 virtual void ThrowDataCloneError(Local<String> message) = 0;
1707
1708 /*
1709 * The embedder overrides this method to write some kind of host object, if
1710 * possible. If not, a suitable exception should be thrown and
1711 * Nothing<bool>() returned.
1712 */
1713 virtual Maybe<bool> WriteHostObject(Isolate* isolate, Local<Object> object);
1714
1715 /*
1716 * Allocates memory for the buffer of at least the size provided. The actual
1717 * size (which may be greater or equal) is written to |actual_size|. If no
1718 * buffer has been allocated yet, nullptr will be provided.
1719 */
1720 virtual void* ReallocateBufferMemory(void* old_buffer, size_t size,
1721 size_t* actual_size);
1722
1723 /*
1724 * Frees a buffer allocated with |ReallocateBufferMemory|.
1725 */
1726 virtual void FreeBufferMemory(void* buffer);
1727 };
1728
1729 explicit ValueSerializer(Isolate* isolate);
1730 ValueSerializer(Isolate* isolate, Delegate* delegate);
1731 ~ValueSerializer();
1732
1733 /*
1734 * Writes out a header, which includes the format version.
1735 */
1736 void WriteHeader();
1737
1738 /*
1739 * Serializes a JavaScript value into the buffer.
1740 */
1741 V8_WARN_UNUSED_RESULT Maybe<bool> WriteValue(Local<Context> context,
1742 Local<Value> value);
1743
1744 /*
1745 * Returns the stored data. This serializer should not be used once the buffer
1746 * is released. The contents are undefined if a previous write has failed.
1747 */
1748 V8_DEPRECATE_SOON("Use Release()", std::vector<uint8_t> ReleaseBuffer());
1749
1750 /*
1751 * Returns the stored data (allocated using the delegate's
1752 * AllocateBufferMemory) and its size. This serializer should not be used once
1753 * the buffer is released. The contents are undefined if a previous write has
1754 * failed.
1755 */
1756 V8_WARN_UNUSED_RESULT std::pair<uint8_t*, size_t> Release();
1757
1758 /*
1759 * Marks an ArrayBuffer as havings its contents transferred out of band.
1760 * Pass the corresponding JSArrayBuffer in the deserializing context to
1761 * ValueDeserializer::TransferArrayBuffer.
1762 */
1763 void TransferArrayBuffer(uint32_t transfer_id,
1764 Local<ArrayBuffer> array_buffer);
1765
1766 /*
1767 * Similar to TransferArrayBuffer, but for SharedArrayBuffer.
1768 */
1769 void TransferSharedArrayBuffer(uint32_t transfer_id,
1770 Local<SharedArrayBuffer> shared_array_buffer);
1771
1772 /*
1773 * Write raw data in various common formats to the buffer.
1774 * Note that integer types are written in base-128 varint format, not with a
1775 * binary copy. For use during an override of Delegate::WriteHostObject.
1776 */
1777 void WriteUint32(uint32_t value);
1778 void WriteUint64(uint64_t value);
1779 void WriteDouble(double value);
1780 void WriteRawBytes(const void* source, size_t length);
1781
1782 private:
1783 ValueSerializer(const ValueSerializer&) = delete;
1784 void operator=(const ValueSerializer&) = delete;
1785
1786 struct PrivateData;
1787 PrivateData* private_;
1788 };
1789
1790 /**
1791 * Deserializes values from data written with ValueSerializer, or a compatible
1792 * implementation.
1793 *
1794 * WARNING: This API is under development, and changes (including incompatible
1795 * changes to the API or wire format) may occur without notice until this
1796 * warning is removed.
1797 */
1798 class V8_EXPORT ValueDeserializer {
1799 public:
1800 class V8_EXPORT Delegate {
1801 public:
~Delegate()1802 virtual ~Delegate() {}
1803
1804 /*
1805 * The embedder overrides this method to read some kind of host object, if
1806 * possible. If not, a suitable exception should be thrown and
1807 * MaybeLocal<Object>() returned.
1808 */
1809 virtual MaybeLocal<Object> ReadHostObject(Isolate* isolate);
1810 };
1811
1812 ValueDeserializer(Isolate* isolate, const uint8_t* data, size_t size);
1813 ValueDeserializer(Isolate* isolate, const uint8_t* data, size_t size,
1814 Delegate* delegate);
1815 ~ValueDeserializer();
1816
1817 /*
1818 * Reads and validates a header (including the format version).
1819 * May, for example, reject an invalid or unsupported wire format.
1820 */
1821 V8_WARN_UNUSED_RESULT Maybe<bool> ReadHeader(Local<Context> context);
1822
1823 /*
1824 * Deserializes a JavaScript value from the buffer.
1825 */
1826 V8_WARN_UNUSED_RESULT MaybeLocal<Value> ReadValue(Local<Context> context);
1827
1828 /*
1829 * Accepts the array buffer corresponding to the one passed previously to
1830 * ValueSerializer::TransferArrayBuffer.
1831 */
1832 void TransferArrayBuffer(uint32_t transfer_id,
1833 Local<ArrayBuffer> array_buffer);
1834
1835 /*
1836 * Similar to TransferArrayBuffer, but for SharedArrayBuffer.
1837 * transfer_id exists in the same namespace as unshared ArrayBuffer objects.
1838 */
1839 void TransferSharedArrayBuffer(uint32_t transfer_id,
1840 Local<SharedArrayBuffer> shared_array_buffer);
1841
1842 /*
1843 * Must be called before ReadHeader to enable support for reading the legacy
1844 * wire format (i.e., which predates this being shipped).
1845 *
1846 * Don't use this unless you need to read data written by previous versions of
1847 * blink::ScriptValueSerializer.
1848 */
1849 void SetSupportsLegacyWireFormat(bool supports_legacy_wire_format);
1850
1851 /*
1852 * Reads the underlying wire format version. Likely mostly to be useful to
1853 * legacy code reading old wire format versions. Must be called after
1854 * ReadHeader.
1855 */
1856 uint32_t GetWireFormatVersion() const;
1857
1858 /*
1859 * Reads raw data in various common formats to the buffer.
1860 * Note that integer types are read in base-128 varint format, not with a
1861 * binary copy. For use during an override of Delegate::ReadHostObject.
1862 */
1863 V8_WARN_UNUSED_RESULT bool ReadUint32(uint32_t* value);
1864 V8_WARN_UNUSED_RESULT bool ReadUint64(uint64_t* value);
1865 V8_WARN_UNUSED_RESULT bool ReadDouble(double* value);
1866 V8_WARN_UNUSED_RESULT bool ReadRawBytes(size_t length, const void** data);
1867
1868 private:
1869 ValueDeserializer(const ValueDeserializer&) = delete;
1870 void operator=(const ValueDeserializer&) = delete;
1871
1872 struct PrivateData;
1873 PrivateData* private_;
1874 };
1875
1876 /**
1877 * A map whose keys are referenced weakly. It is similar to JavaScript WeakMap
1878 * but can be created without entering a v8::Context and hence shouldn't
1879 * escape to JavaScript.
1880 */
1881 class V8_EXPORT NativeWeakMap : public Data {
1882 public:
1883 static Local<NativeWeakMap> New(Isolate* isolate);
1884 void Set(Local<Value> key, Local<Value> value);
1885 Local<Value> Get(Local<Value> key);
1886 bool Has(Local<Value> key);
1887 bool Delete(Local<Value> key);
1888 };
1889
1890
1891 // --- Value ---
1892
1893
1894 /**
1895 * The superclass of all JavaScript values and objects.
1896 */
1897 class V8_EXPORT Value : public Data {
1898 public:
1899 /**
1900 * Returns true if this value is the undefined value. See ECMA-262
1901 * 4.3.10.
1902 */
1903 V8_INLINE bool IsUndefined() const;
1904
1905 /**
1906 * Returns true if this value is the null value. See ECMA-262
1907 * 4.3.11.
1908 */
1909 V8_INLINE bool IsNull() const;
1910
1911 /**
1912 * Returns true if this value is true.
1913 */
1914 bool IsTrue() const;
1915
1916 /**
1917 * Returns true if this value is false.
1918 */
1919 bool IsFalse() const;
1920
1921 /**
1922 * Returns true if this value is a symbol or a string.
1923 * This is an experimental feature.
1924 */
1925 bool IsName() const;
1926
1927 /**
1928 * Returns true if this value is an instance of the String type.
1929 * See ECMA-262 8.4.
1930 */
1931 V8_INLINE bool IsString() const;
1932
1933 /**
1934 * Returns true if this value is a symbol.
1935 * This is an experimental feature.
1936 */
1937 bool IsSymbol() const;
1938
1939 /**
1940 * Returns true if this value is a function.
1941 */
1942 bool IsFunction() const;
1943
1944 /**
1945 * Returns true if this value is an array. Note that it will return false for
1946 * an Proxy for an array.
1947 */
1948 bool IsArray() const;
1949
1950 /**
1951 * Returns true if this value is an object.
1952 */
1953 bool IsObject() const;
1954
1955 /**
1956 * Returns true if this value is boolean.
1957 */
1958 bool IsBoolean() const;
1959
1960 /**
1961 * Returns true if this value is a number.
1962 */
1963 bool IsNumber() const;
1964
1965 /**
1966 * Returns true if this value is external.
1967 */
1968 bool IsExternal() const;
1969
1970 /**
1971 * Returns true if this value is a 32-bit signed integer.
1972 */
1973 bool IsInt32() const;
1974
1975 /**
1976 * Returns true if this value is a 32-bit unsigned integer.
1977 */
1978 bool IsUint32() const;
1979
1980 /**
1981 * Returns true if this value is a Date.
1982 */
1983 bool IsDate() const;
1984
1985 /**
1986 * Returns true if this value is an Arguments object.
1987 */
1988 bool IsArgumentsObject() const;
1989
1990 /**
1991 * Returns true if this value is a Boolean object.
1992 */
1993 bool IsBooleanObject() const;
1994
1995 /**
1996 * Returns true if this value is a Number object.
1997 */
1998 bool IsNumberObject() const;
1999
2000 /**
2001 * Returns true if this value is a String object.
2002 */
2003 bool IsStringObject() const;
2004
2005 /**
2006 * Returns true if this value is a Symbol object.
2007 * This is an experimental feature.
2008 */
2009 bool IsSymbolObject() const;
2010
2011 /**
2012 * Returns true if this value is a NativeError.
2013 */
2014 bool IsNativeError() const;
2015
2016 /**
2017 * Returns true if this value is a RegExp.
2018 */
2019 bool IsRegExp() const;
2020
2021 /**
2022 * Returns true if this value is an async function.
2023 */
2024 bool IsAsyncFunction() const;
2025
2026 /**
2027 * Returns true if this value is a Generator function.
2028 * This is an experimental feature.
2029 */
2030 bool IsGeneratorFunction() const;
2031
2032 /**
2033 * Returns true if this value is a Generator object (iterator).
2034 * This is an experimental feature.
2035 */
2036 bool IsGeneratorObject() const;
2037
2038 /**
2039 * Returns true if this value is a Promise.
2040 * This is an experimental feature.
2041 */
2042 bool IsPromise() const;
2043
2044 /**
2045 * Returns true if this value is a Map.
2046 */
2047 bool IsMap() const;
2048
2049 /**
2050 * Returns true if this value is a Set.
2051 */
2052 bool IsSet() const;
2053
2054 /**
2055 * Returns true if this value is a Map Iterator.
2056 */
2057 bool IsMapIterator() const;
2058
2059 /**
2060 * Returns true if this value is a Set Iterator.
2061 */
2062 bool IsSetIterator() const;
2063
2064 /**
2065 * Returns true if this value is a WeakMap.
2066 */
2067 bool IsWeakMap() const;
2068
2069 /**
2070 * Returns true if this value is a WeakSet.
2071 */
2072 bool IsWeakSet() const;
2073
2074 /**
2075 * Returns true if this value is an ArrayBuffer.
2076 * This is an experimental feature.
2077 */
2078 bool IsArrayBuffer() const;
2079
2080 /**
2081 * Returns true if this value is an ArrayBufferView.
2082 * This is an experimental feature.
2083 */
2084 bool IsArrayBufferView() const;
2085
2086 /**
2087 * Returns true if this value is one of TypedArrays.
2088 * This is an experimental feature.
2089 */
2090 bool IsTypedArray() const;
2091
2092 /**
2093 * Returns true if this value is an Uint8Array.
2094 * This is an experimental feature.
2095 */
2096 bool IsUint8Array() const;
2097
2098 /**
2099 * Returns true if this value is an Uint8ClampedArray.
2100 * This is an experimental feature.
2101 */
2102 bool IsUint8ClampedArray() const;
2103
2104 /**
2105 * Returns true if this value is an Int8Array.
2106 * This is an experimental feature.
2107 */
2108 bool IsInt8Array() const;
2109
2110 /**
2111 * Returns true if this value is an Uint16Array.
2112 * This is an experimental feature.
2113 */
2114 bool IsUint16Array() const;
2115
2116 /**
2117 * Returns true if this value is an Int16Array.
2118 * This is an experimental feature.
2119 */
2120 bool IsInt16Array() const;
2121
2122 /**
2123 * Returns true if this value is an Uint32Array.
2124 * This is an experimental feature.
2125 */
2126 bool IsUint32Array() const;
2127
2128 /**
2129 * Returns true if this value is an Int32Array.
2130 * This is an experimental feature.
2131 */
2132 bool IsInt32Array() const;
2133
2134 /**
2135 * Returns true if this value is a Float32Array.
2136 * This is an experimental feature.
2137 */
2138 bool IsFloat32Array() const;
2139
2140 /**
2141 * Returns true if this value is a Float64Array.
2142 * This is an experimental feature.
2143 */
2144 bool IsFloat64Array() const;
2145
2146 /**
2147 * Returns true if this value is a SIMD Float32x4.
2148 * This is an experimental feature.
2149 */
2150 bool IsFloat32x4() const;
2151
2152 /**
2153 * Returns true if this value is a DataView.
2154 * This is an experimental feature.
2155 */
2156 bool IsDataView() const;
2157
2158 /**
2159 * Returns true if this value is a SharedArrayBuffer.
2160 * This is an experimental feature.
2161 */
2162 bool IsSharedArrayBuffer() const;
2163
2164 /**
2165 * Returns true if this value is a JavaScript Proxy.
2166 */
2167 bool IsProxy() const;
2168
2169 bool IsWebAssemblyCompiledModule() const;
2170
2171 V8_WARN_UNUSED_RESULT MaybeLocal<Boolean> ToBoolean(
2172 Local<Context> context) const;
2173 V8_WARN_UNUSED_RESULT MaybeLocal<Number> ToNumber(
2174 Local<Context> context) const;
2175 V8_WARN_UNUSED_RESULT MaybeLocal<String> ToString(
2176 Local<Context> context) const;
2177 V8_WARN_UNUSED_RESULT MaybeLocal<String> ToDetailString(
2178 Local<Context> context) const;
2179 V8_WARN_UNUSED_RESULT MaybeLocal<Object> ToObject(
2180 Local<Context> context) const;
2181 V8_WARN_UNUSED_RESULT MaybeLocal<Integer> ToInteger(
2182 Local<Context> context) const;
2183 V8_WARN_UNUSED_RESULT MaybeLocal<Uint32> ToUint32(
2184 Local<Context> context) const;
2185 V8_WARN_UNUSED_RESULT MaybeLocal<Int32> ToInt32(Local<Context> context) const;
2186
2187 V8_DEPRECATE_SOON("Use maybe version",
2188 Local<Boolean> ToBoolean(Isolate* isolate) const);
2189 V8_DEPRECATE_SOON("Use maybe version",
2190 Local<Number> ToNumber(Isolate* isolate) const);
2191 V8_DEPRECATE_SOON("Use maybe version",
2192 Local<String> ToString(Isolate* isolate) const);
2193 V8_DEPRECATED("Use maybe version",
2194 Local<String> ToDetailString(Isolate* isolate) const);
2195 V8_DEPRECATE_SOON("Use maybe version",
2196 Local<Object> ToObject(Isolate* isolate) const);
2197 V8_DEPRECATE_SOON("Use maybe version",
2198 Local<Integer> ToInteger(Isolate* isolate) const);
2199 V8_DEPRECATED("Use maybe version",
2200 Local<Uint32> ToUint32(Isolate* isolate) const);
2201 V8_DEPRECATE_SOON("Use maybe version",
2202 Local<Int32> ToInt32(Isolate* isolate) const);
2203
2204 inline V8_DEPRECATE_SOON("Use maybe version",
2205 Local<Boolean> ToBoolean() const);
2206 inline V8_DEPRECATED("Use maybe version", Local<Number> ToNumber() const);
2207 inline V8_DEPRECATE_SOON("Use maybe version", Local<String> ToString() const);
2208 inline V8_DEPRECATED("Use maybe version",
2209 Local<String> ToDetailString() const);
2210 inline V8_DEPRECATE_SOON("Use maybe version", Local<Object> ToObject() const);
2211 inline V8_DEPRECATE_SOON("Use maybe version",
2212 Local<Integer> ToInteger() const);
2213 inline V8_DEPRECATED("Use maybe version", Local<Uint32> ToUint32() const);
2214 inline V8_DEPRECATED("Use maybe version", Local<Int32> ToInt32() const);
2215
2216 /**
2217 * Attempts to convert a string to an array index.
2218 * Returns an empty handle if the conversion fails.
2219 */
2220 V8_DEPRECATED("Use maybe version", Local<Uint32> ToArrayIndex() const);
2221 V8_WARN_UNUSED_RESULT MaybeLocal<Uint32> ToArrayIndex(
2222 Local<Context> context) const;
2223
2224 V8_WARN_UNUSED_RESULT Maybe<bool> BooleanValue(Local<Context> context) const;
2225 V8_WARN_UNUSED_RESULT Maybe<double> NumberValue(Local<Context> context) const;
2226 V8_WARN_UNUSED_RESULT Maybe<int64_t> IntegerValue(
2227 Local<Context> context) const;
2228 V8_WARN_UNUSED_RESULT Maybe<uint32_t> Uint32Value(
2229 Local<Context> context) const;
2230 V8_WARN_UNUSED_RESULT Maybe<int32_t> Int32Value(Local<Context> context) const;
2231
2232 V8_DEPRECATE_SOON("Use maybe version", bool BooleanValue() const);
2233 V8_DEPRECATE_SOON("Use maybe version", double NumberValue() const);
2234 V8_DEPRECATE_SOON("Use maybe version", int64_t IntegerValue() const);
2235 V8_DEPRECATE_SOON("Use maybe version", uint32_t Uint32Value() const);
2236 V8_DEPRECATE_SOON("Use maybe version", int32_t Int32Value() const);
2237
2238 /** JS == */
2239 V8_DEPRECATE_SOON("Use maybe version", bool Equals(Local<Value> that) const);
2240 V8_WARN_UNUSED_RESULT Maybe<bool> Equals(Local<Context> context,
2241 Local<Value> that) const;
2242 bool StrictEquals(Local<Value> that) const;
2243 bool SameValue(Local<Value> that) const;
2244
2245 template <class T> V8_INLINE static Value* Cast(T* value);
2246
2247 Local<String> TypeOf(v8::Isolate*);
2248
2249 private:
2250 V8_INLINE bool QuickIsUndefined() const;
2251 V8_INLINE bool QuickIsNull() const;
2252 V8_INLINE bool QuickIsString() const;
2253 bool FullIsUndefined() const;
2254 bool FullIsNull() const;
2255 bool FullIsString() const;
2256 };
2257
2258
2259 /**
2260 * The superclass of primitive values. See ECMA-262 4.3.2.
2261 */
2262 class V8_EXPORT Primitive : public Value { };
2263
2264
2265 /**
2266 * A primitive boolean value (ECMA-262, 4.3.14). Either the true
2267 * or false value.
2268 */
2269 class V8_EXPORT Boolean : public Primitive {
2270 public:
2271 bool Value() const;
2272 V8_INLINE static Boolean* Cast(v8::Value* obj);
2273 V8_INLINE static Local<Boolean> New(Isolate* isolate, bool value);
2274
2275 private:
2276 static void CheckCast(v8::Value* obj);
2277 };
2278
2279
2280 /**
2281 * A superclass for symbols and strings.
2282 */
2283 class V8_EXPORT Name : public Primitive {
2284 public:
2285 /**
2286 * Returns the identity hash for this object. The current implementation
2287 * uses an inline property on the object to store the identity hash.
2288 *
2289 * The return value will never be 0. Also, it is not guaranteed to be
2290 * unique.
2291 */
2292 int GetIdentityHash();
2293
2294 V8_INLINE static Name* Cast(v8::Value* obj);
2295 private:
2296 static void CheckCast(v8::Value* obj);
2297 };
2298
2299
2300 enum class NewStringType { kNormal, kInternalized };
2301
2302
2303 /**
2304 * A JavaScript string value (ECMA-262, 4.3.17).
2305 */
2306 class V8_EXPORT String : public Name {
2307 public:
2308 static const int kMaxLength = (1 << 28) - 16;
2309
2310 enum Encoding {
2311 UNKNOWN_ENCODING = 0x1,
2312 TWO_BYTE_ENCODING = 0x0,
2313 ONE_BYTE_ENCODING = 0x4
2314 };
2315 /**
2316 * Returns the number of characters in this string.
2317 */
2318 int Length() const;
2319
2320 /**
2321 * Returns the number of bytes in the UTF-8 encoded
2322 * representation of this string.
2323 */
2324 int Utf8Length() const;
2325
2326 /**
2327 * Returns whether this string is known to contain only one byte data.
2328 * Does not read the string.
2329 * False negatives are possible.
2330 */
2331 bool IsOneByte() const;
2332
2333 /**
2334 * Returns whether this string contain only one byte data.
2335 * Will read the entire string in some cases.
2336 */
2337 bool ContainsOnlyOneByte() const;
2338
2339 /**
2340 * Write the contents of the string to an external buffer.
2341 * If no arguments are given, expects the buffer to be large
2342 * enough to hold the entire string and NULL terminator. Copies
2343 * the contents of the string and the NULL terminator into the
2344 * buffer.
2345 *
2346 * WriteUtf8 will not write partial UTF-8 sequences, preferring to stop
2347 * before the end of the buffer.
2348 *
2349 * Copies up to length characters into the output buffer.
2350 * Only null-terminates if there is enough space in the buffer.
2351 *
2352 * \param buffer The buffer into which the string will be copied.
2353 * \param start The starting position within the string at which
2354 * copying begins.
2355 * \param length The number of characters to copy from the string. For
2356 * WriteUtf8 the number of bytes in the buffer.
2357 * \param nchars_ref The number of characters written, can be NULL.
2358 * \param options Various options that might affect performance of this or
2359 * subsequent operations.
2360 * \return The number of characters copied to the buffer excluding the null
2361 * terminator. For WriteUtf8: The number of bytes copied to the buffer
2362 * including the null terminator (if written).
2363 */
2364 enum WriteOptions {
2365 NO_OPTIONS = 0,
2366 HINT_MANY_WRITES_EXPECTED = 1,
2367 NO_NULL_TERMINATION = 2,
2368 PRESERVE_ONE_BYTE_NULL = 4,
2369 // Used by WriteUtf8 to replace orphan surrogate code units with the
2370 // unicode replacement character. Needs to be set to guarantee valid UTF-8
2371 // output.
2372 REPLACE_INVALID_UTF8 = 8
2373 };
2374
2375 // 16-bit character codes.
2376 int Write(uint16_t* buffer,
2377 int start = 0,
2378 int length = -1,
2379 int options = NO_OPTIONS) const;
2380 // One byte characters.
2381 int WriteOneByte(uint8_t* buffer,
2382 int start = 0,
2383 int length = -1,
2384 int options = NO_OPTIONS) const;
2385 // UTF-8 encoded characters.
2386 int WriteUtf8(char* buffer,
2387 int length = -1,
2388 int* nchars_ref = NULL,
2389 int options = NO_OPTIONS) const;
2390
2391 /**
2392 * A zero length string.
2393 */
2394 V8_INLINE static v8::Local<v8::String> Empty(Isolate* isolate);
2395
2396 /**
2397 * Returns true if the string is external
2398 */
2399 bool IsExternal() const;
2400
2401 /**
2402 * Returns true if the string is both external and one-byte.
2403 */
2404 bool IsExternalOneByte() const;
2405
2406 class V8_EXPORT ExternalStringResourceBase { // NOLINT
2407 public:
~ExternalStringResourceBase()2408 virtual ~ExternalStringResourceBase() {}
2409
IsCompressible()2410 virtual bool IsCompressible() const { return false; }
2411
2412 protected:
ExternalStringResourceBase()2413 ExternalStringResourceBase() {}
2414
2415 /**
2416 * Internally V8 will call this Dispose method when the external string
2417 * resource is no longer needed. The default implementation will use the
2418 * delete operator. This method can be overridden in subclasses to
2419 * control how allocated external string resources are disposed.
2420 */
Dispose()2421 virtual void Dispose() { delete this; }
2422
2423 // Disallow copying and assigning.
2424 ExternalStringResourceBase(const ExternalStringResourceBase&) = delete;
2425 void operator=(const ExternalStringResourceBase&) = delete;
2426
2427 private:
2428 friend class v8::internal::Heap;
2429 };
2430
2431 /**
2432 * An ExternalStringResource is a wrapper around a two-byte string
2433 * buffer that resides outside V8's heap. Implement an
2434 * ExternalStringResource to manage the life cycle of the underlying
2435 * buffer. Note that the string data must be immutable.
2436 */
2437 class V8_EXPORT ExternalStringResource
2438 : public ExternalStringResourceBase {
2439 public:
2440 /**
2441 * Override the destructor to manage the life cycle of the underlying
2442 * buffer.
2443 */
~ExternalStringResource()2444 virtual ~ExternalStringResource() {}
2445
2446 /**
2447 * The string data from the underlying buffer.
2448 */
2449 virtual const uint16_t* data() const = 0;
2450
2451 /**
2452 * The length of the string. That is, the number of two-byte characters.
2453 */
2454 virtual size_t length() const = 0;
2455
2456 protected:
ExternalStringResource()2457 ExternalStringResource() {}
2458 };
2459
2460 /**
2461 * An ExternalOneByteStringResource is a wrapper around an one-byte
2462 * string buffer that resides outside V8's heap. Implement an
2463 * ExternalOneByteStringResource to manage the life cycle of the
2464 * underlying buffer. Note that the string data must be immutable
2465 * and that the data must be Latin-1 and not UTF-8, which would require
2466 * special treatment internally in the engine and do not allow efficient
2467 * indexing. Use String::New or convert to 16 bit data for non-Latin1.
2468 */
2469
2470 class V8_EXPORT ExternalOneByteStringResource
2471 : public ExternalStringResourceBase {
2472 public:
2473 /**
2474 * Override the destructor to manage the life cycle of the underlying
2475 * buffer.
2476 */
~ExternalOneByteStringResource()2477 virtual ~ExternalOneByteStringResource() {}
2478 /** The string data from the underlying buffer.*/
2479 virtual const char* data() const = 0;
2480 /** The number of Latin-1 characters in the string.*/
2481 virtual size_t length() const = 0;
2482 protected:
ExternalOneByteStringResource()2483 ExternalOneByteStringResource() {}
2484 };
2485
2486 /**
2487 * If the string is an external string, return the ExternalStringResourceBase
2488 * regardless of the encoding, otherwise return NULL. The encoding of the
2489 * string is returned in encoding_out.
2490 */
2491 V8_INLINE ExternalStringResourceBase* GetExternalStringResourceBase(
2492 Encoding* encoding_out) const;
2493
2494 /**
2495 * Get the ExternalStringResource for an external string. Returns
2496 * NULL if IsExternal() doesn't return true.
2497 */
2498 V8_INLINE ExternalStringResource* GetExternalStringResource() const;
2499
2500 /**
2501 * Get the ExternalOneByteStringResource for an external one-byte string.
2502 * Returns NULL if IsExternalOneByte() doesn't return true.
2503 */
2504 const ExternalOneByteStringResource* GetExternalOneByteStringResource() const;
2505
2506 V8_INLINE static String* Cast(v8::Value* obj);
2507
2508 // TODO(dcarney): remove with deprecation of New functions.
2509 enum NewStringType {
2510 kNormalString = static_cast<int>(v8::NewStringType::kNormal),
2511 kInternalizedString = static_cast<int>(v8::NewStringType::kInternalized)
2512 };
2513
2514 /** Allocates a new string from UTF-8 data.*/
2515 static V8_DEPRECATE_SOON(
2516 "Use maybe version",
2517 Local<String> NewFromUtf8(Isolate* isolate, const char* data,
2518 NewStringType type = kNormalString,
2519 int length = -1));
2520
2521 /** Allocates a new string from UTF-8 data. Only returns an empty value when
2522 * length > kMaxLength. **/
2523 static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromUtf8(
2524 Isolate* isolate, const char* data, v8::NewStringType type,
2525 int length = -1);
2526
2527 /** Allocates a new string from Latin-1 data.*/
2528 static V8_DEPRECATED(
2529 "Use maybe version",
2530 Local<String> NewFromOneByte(Isolate* isolate, const uint8_t* data,
2531 NewStringType type = kNormalString,
2532 int length = -1));
2533
2534 /** Allocates a new string from Latin-1 data. Only returns an empty value
2535 * when length > kMaxLength. **/
2536 static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromOneByte(
2537 Isolate* isolate, const uint8_t* data, v8::NewStringType type,
2538 int length = -1);
2539
2540 /** Allocates a new string from UTF-16 data.*/
2541 static V8_DEPRECATE_SOON(
2542 "Use maybe version",
2543 Local<String> NewFromTwoByte(Isolate* isolate, const uint16_t* data,
2544 NewStringType type = kNormalString,
2545 int length = -1));
2546
2547 /** Allocates a new string from UTF-16 data. Only returns an empty value when
2548 * length > kMaxLength. **/
2549 static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromTwoByte(
2550 Isolate* isolate, const uint16_t* data, v8::NewStringType type,
2551 int length = -1);
2552
2553 /**
2554 * Creates a new string by concatenating the left and the right strings
2555 * passed in as parameters.
2556 */
2557 static Local<String> Concat(Local<String> left, Local<String> right);
2558
2559 /**
2560 * Creates a new external string using the data defined in the given
2561 * resource. When the external string is no longer live on V8's heap the
2562 * resource will be disposed by calling its Dispose method. The caller of
2563 * this function should not otherwise delete or modify the resource. Neither
2564 * should the underlying buffer be deallocated or modified except through the
2565 * destructor of the external string resource.
2566 */
2567 static V8_DEPRECATED("Use maybe version",
2568 Local<String> NewExternal(
2569 Isolate* isolate, ExternalStringResource* resource));
2570 static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewExternalTwoByte(
2571 Isolate* isolate, ExternalStringResource* resource);
2572
2573 /**
2574 * Associate an external string resource with this string by transforming it
2575 * in place so that existing references to this string in the JavaScript heap
2576 * will use the external string resource. The external string resource's
2577 * character contents need to be equivalent to this string.
2578 * Returns true if the string has been changed to be an external string.
2579 * The string is not modified if the operation fails. See NewExternal for
2580 * information on the lifetime of the resource.
2581 */
2582 bool MakeExternal(ExternalStringResource* resource);
2583
2584 /**
2585 * Creates a new external string using the one-byte data defined in the given
2586 * resource. When the external string is no longer live on V8's heap the
2587 * resource will be disposed by calling its Dispose method. The caller of
2588 * this function should not otherwise delete or modify the resource. Neither
2589 * should the underlying buffer be deallocated or modified except through the
2590 * destructor of the external string resource.
2591 */
2592 static V8_DEPRECATE_SOON(
2593 "Use maybe version",
2594 Local<String> NewExternal(Isolate* isolate,
2595 ExternalOneByteStringResource* resource));
2596 static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewExternalOneByte(
2597 Isolate* isolate, ExternalOneByteStringResource* resource);
2598
2599 /**
2600 * Associate an external string resource with this string by transforming it
2601 * in place so that existing references to this string in the JavaScript heap
2602 * will use the external string resource. The external string resource's
2603 * character contents need to be equivalent to this string.
2604 * Returns true if the string has been changed to be an external string.
2605 * The string is not modified if the operation fails. See NewExternal for
2606 * information on the lifetime of the resource.
2607 */
2608 bool MakeExternal(ExternalOneByteStringResource* resource);
2609
2610 /**
2611 * Returns true if this string can be made external.
2612 */
2613 bool CanMakeExternal();
2614
2615 /**
2616 * Converts an object to a UTF-8-encoded character array. Useful if
2617 * you want to print the object. If conversion to a string fails
2618 * (e.g. due to an exception in the toString() method of the object)
2619 * then the length() method returns 0 and the * operator returns
2620 * NULL.
2621 */
2622 class V8_EXPORT Utf8Value {
2623 public:
2624 explicit Utf8Value(Local<v8::Value> obj);
2625 ~Utf8Value();
2626 char* operator*() { return str_; }
2627 const char* operator*() const { return str_; }
length()2628 int length() const { return length_; }
2629
2630 // Disallow copying and assigning.
2631 Utf8Value(const Utf8Value&) = delete;
2632 void operator=(const Utf8Value&) = delete;
2633
2634 private:
2635 char* str_;
2636 int length_;
2637 };
2638
2639 /**
2640 * Converts an object to a two-byte string.
2641 * If conversion to a string fails (eg. due to an exception in the toString()
2642 * method of the object) then the length() method returns 0 and the * operator
2643 * returns NULL.
2644 */
2645 class V8_EXPORT Value {
2646 public:
2647 explicit Value(Local<v8::Value> obj);
2648 ~Value();
2649 uint16_t* operator*() { return str_; }
2650 const uint16_t* operator*() const { return str_; }
length()2651 int length() const { return length_; }
2652
2653 // Disallow copying and assigning.
2654 Value(const Value&) = delete;
2655 void operator=(const Value&) = delete;
2656
2657 private:
2658 uint16_t* str_;
2659 int length_;
2660 };
2661
2662 private:
2663 void VerifyExternalStringResourceBase(ExternalStringResourceBase* v,
2664 Encoding encoding) const;
2665 void VerifyExternalStringResource(ExternalStringResource* val) const;
2666 static void CheckCast(v8::Value* obj);
2667 };
2668
2669
2670 /**
2671 * A JavaScript symbol (ECMA-262 edition 6)
2672 *
2673 * This is an experimental feature. Use at your own risk.
2674 */
2675 class V8_EXPORT Symbol : public Name {
2676 public:
2677 // Returns the print name string of the symbol, or undefined if none.
2678 Local<Value> Name() const;
2679
2680 // Create a symbol. If name is not empty, it will be used as the description.
2681 static Local<Symbol> New(Isolate* isolate,
2682 Local<String> name = Local<String>());
2683
2684 // Access global symbol registry.
2685 // Note that symbols created this way are never collected, so
2686 // they should only be used for statically fixed properties.
2687 // Also, there is only one global name space for the names used as keys.
2688 // To minimize the potential for clashes, use qualified names as keys.
2689 static Local<Symbol> For(Isolate *isolate, Local<String> name);
2690
2691 // Retrieve a global symbol. Similar to |For|, but using a separate
2692 // registry that is not accessible by (and cannot clash with) JavaScript code.
2693 static Local<Symbol> ForApi(Isolate *isolate, Local<String> name);
2694
2695 // Well-known symbols
2696 static Local<Symbol> GetIterator(Isolate* isolate);
2697 static Local<Symbol> GetUnscopables(Isolate* isolate);
2698 static Local<Symbol> GetToStringTag(Isolate* isolate);
2699 static Local<Symbol> GetIsConcatSpreadable(Isolate* isolate);
2700
2701 V8_INLINE static Symbol* Cast(v8::Value* obj);
2702
2703 private:
2704 Symbol();
2705 static void CheckCast(v8::Value* obj);
2706 };
2707
2708
2709 /**
2710 * A private symbol
2711 *
2712 * This is an experimental feature. Use at your own risk.
2713 */
2714 class V8_EXPORT Private : public Data {
2715 public:
2716 // Returns the print name string of the private symbol, or undefined if none.
2717 Local<Value> Name() const;
2718
2719 // Create a private symbol. If name is not empty, it will be the description.
2720 static Local<Private> New(Isolate* isolate,
2721 Local<String> name = Local<String>());
2722
2723 // Retrieve a global private symbol. If a symbol with this name has not
2724 // been retrieved in the same isolate before, it is created.
2725 // Note that private symbols created this way are never collected, so
2726 // they should only be used for statically fixed properties.
2727 // Also, there is only one global name space for the names used as keys.
2728 // To minimize the potential for clashes, use qualified names as keys,
2729 // e.g., "Class#property".
2730 static Local<Private> ForApi(Isolate* isolate, Local<String> name);
2731
2732 private:
2733 Private();
2734 };
2735
2736
2737 /**
2738 * A JavaScript number value (ECMA-262, 4.3.20)
2739 */
2740 class V8_EXPORT Number : public Primitive {
2741 public:
2742 double Value() const;
2743 static Local<Number> New(Isolate* isolate, double value);
2744 V8_INLINE static Number* Cast(v8::Value* obj);
2745 private:
2746 Number();
2747 static void CheckCast(v8::Value* obj);
2748 };
2749
2750
2751 /**
2752 * A JavaScript value representing a signed integer.
2753 */
2754 class V8_EXPORT Integer : public Number {
2755 public:
2756 static Local<Integer> New(Isolate* isolate, int32_t value);
2757 static Local<Integer> NewFromUnsigned(Isolate* isolate, uint32_t value);
2758 int64_t Value() const;
2759 V8_INLINE static Integer* Cast(v8::Value* obj);
2760 private:
2761 Integer();
2762 static void CheckCast(v8::Value* obj);
2763 };
2764
2765
2766 /**
2767 * A JavaScript value representing a 32-bit signed integer.
2768 */
2769 class V8_EXPORT Int32 : public Integer {
2770 public:
2771 int32_t Value() const;
2772 V8_INLINE static Int32* Cast(v8::Value* obj);
2773
2774 private:
2775 Int32();
2776 static void CheckCast(v8::Value* obj);
2777 };
2778
2779
2780 /**
2781 * A JavaScript value representing a 32-bit unsigned integer.
2782 */
2783 class V8_EXPORT Uint32 : public Integer {
2784 public:
2785 uint32_t Value() const;
2786 V8_INLINE static Uint32* Cast(v8::Value* obj);
2787
2788 private:
2789 Uint32();
2790 static void CheckCast(v8::Value* obj);
2791 };
2792
2793 /**
2794 * PropertyAttribute.
2795 */
2796 enum PropertyAttribute {
2797 /** None. **/
2798 None = 0,
2799 /** ReadOnly, i.e., not writable. **/
2800 ReadOnly = 1 << 0,
2801 /** DontEnum, i.e., not enumerable. **/
2802 DontEnum = 1 << 1,
2803 /** DontDelete, i.e., not configurable. **/
2804 DontDelete = 1 << 2
2805 };
2806
2807 /**
2808 * Accessor[Getter|Setter] are used as callback functions when
2809 * setting|getting a particular property. See Object and ObjectTemplate's
2810 * method SetAccessor.
2811 */
2812 typedef void (*AccessorGetterCallback)(
2813 Local<String> property,
2814 const PropertyCallbackInfo<Value>& info);
2815 typedef void (*AccessorNameGetterCallback)(
2816 Local<Name> property,
2817 const PropertyCallbackInfo<Value>& info);
2818
2819
2820 typedef void (*AccessorSetterCallback)(
2821 Local<String> property,
2822 Local<Value> value,
2823 const PropertyCallbackInfo<void>& info);
2824 typedef void (*AccessorNameSetterCallback)(
2825 Local<Name> property,
2826 Local<Value> value,
2827 const PropertyCallbackInfo<void>& info);
2828
2829
2830 /**
2831 * Access control specifications.
2832 *
2833 * Some accessors should be accessible across contexts. These
2834 * accessors have an explicit access control parameter which specifies
2835 * the kind of cross-context access that should be allowed.
2836 *
2837 * TODO(dcarney): Remove PROHIBITS_OVERWRITING as it is now unused.
2838 */
2839 enum AccessControl {
2840 DEFAULT = 0,
2841 ALL_CAN_READ = 1,
2842 ALL_CAN_WRITE = 1 << 1,
2843 PROHIBITS_OVERWRITING = 1 << 2
2844 };
2845
2846 /**
2847 * Property filter bits. They can be or'ed to build a composite filter.
2848 */
2849 enum PropertyFilter {
2850 ALL_PROPERTIES = 0,
2851 ONLY_WRITABLE = 1,
2852 ONLY_ENUMERABLE = 2,
2853 ONLY_CONFIGURABLE = 4,
2854 SKIP_STRINGS = 8,
2855 SKIP_SYMBOLS = 16
2856 };
2857
2858 /**
2859 * Keys/Properties filter enums:
2860 *
2861 * KeyCollectionMode limits the range of collected properties. kOwnOnly limits
2862 * the collected properties to the given Object only. kIncludesPrototypes will
2863 * include all keys of the objects's prototype chain as well.
2864 */
2865 enum class KeyCollectionMode { kOwnOnly, kIncludePrototypes };
2866
2867 /**
2868 * kIncludesIndices allows for integer indices to be collected, while
2869 * kSkipIndices will exclude integer indicies from being collected.
2870 */
2871 enum class IndexFilter { kIncludeIndices, kSkipIndices };
2872
2873 /**
2874 * Integrity level for objects.
2875 */
2876 enum class IntegrityLevel { kFrozen, kSealed };
2877
2878 /**
2879 * A JavaScript object (ECMA-262, 4.3.3)
2880 */
2881 class V8_EXPORT Object : public Value {
2882 public:
2883 V8_DEPRECATE_SOON("Use maybe version",
2884 bool Set(Local<Value> key, Local<Value> value));
2885 V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context,
2886 Local<Value> key, Local<Value> value);
2887
2888 V8_DEPRECATE_SOON("Use maybe version",
2889 bool Set(uint32_t index, Local<Value> value));
2890 V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context, uint32_t index,
2891 Local<Value> value);
2892
2893 // Implements CreateDataProperty (ECMA-262, 7.3.4).
2894 //
2895 // Defines a configurable, writable, enumerable property with the given value
2896 // on the object unless the property already exists and is not configurable
2897 // or the object is not extensible.
2898 //
2899 // Returns true on success.
2900 V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context,
2901 Local<Name> key,
2902 Local<Value> value);
2903 V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context,
2904 uint32_t index,
2905 Local<Value> value);
2906
2907 // Implements DefineOwnProperty.
2908 //
2909 // In general, CreateDataProperty will be faster, however, does not allow
2910 // for specifying attributes.
2911 //
2912 // Returns true on success.
2913 V8_WARN_UNUSED_RESULT Maybe<bool> DefineOwnProperty(
2914 Local<Context> context, Local<Name> key, Local<Value> value,
2915 PropertyAttribute attributes = None);
2916
2917 // Implements Object.DefineProperty(O, P, Attributes), see Ecma-262 19.1.2.4.
2918 //
2919 // The defineProperty function is used to add an own property or
2920 // update the attributes of an existing own property of an object.
2921 //
2922 // Both data and accessor descriptors can be used.
2923 //
2924 // In general, CreateDataProperty is faster, however, does not allow
2925 // for specifying attributes or an accessor descriptor.
2926 //
2927 // The PropertyDescriptor can change when redefining a property.
2928 //
2929 // Returns true on success.
2930 V8_WARN_UNUSED_RESULT Maybe<bool> DefineProperty(
2931 Local<Context> context, Local<Name> key, PropertyDescriptor& descriptor);
2932
2933 // Sets an own property on this object bypassing interceptors and
2934 // overriding accessors or read-only properties.
2935 //
2936 // Note that if the object has an interceptor the property will be set
2937 // locally, but since the interceptor takes precedence the local property
2938 // will only be returned if the interceptor doesn't return a value.
2939 //
2940 // Note also that this only works for named properties.
2941 V8_DEPRECATED("Use CreateDataProperty / DefineOwnProperty",
2942 bool ForceSet(Local<Value> key, Local<Value> value,
2943 PropertyAttribute attribs = None));
2944 V8_DEPRECATE_SOON("Use CreateDataProperty / DefineOwnProperty",
2945 Maybe<bool> ForceSet(Local<Context> context,
2946 Local<Value> key, Local<Value> value,
2947 PropertyAttribute attribs = None));
2948
2949 V8_DEPRECATE_SOON("Use maybe version", Local<Value> Get(Local<Value> key));
2950 V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
2951 Local<Value> key);
2952
2953 V8_DEPRECATE_SOON("Use maybe version", Local<Value> Get(uint32_t index));
2954 V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
2955 uint32_t index);
2956
2957 /**
2958 * Gets the property attributes of a property which can be None or
2959 * any combination of ReadOnly, DontEnum and DontDelete. Returns
2960 * None when the property doesn't exist.
2961 */
2962 V8_DEPRECATED("Use maybe version",
2963 PropertyAttribute GetPropertyAttributes(Local<Value> key));
2964 V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetPropertyAttributes(
2965 Local<Context> context, Local<Value> key);
2966
2967 /**
2968 * Returns Object.getOwnPropertyDescriptor as per ES5 section 15.2.3.3.
2969 */
2970 V8_DEPRECATED("Use maybe version",
2971 Local<Value> GetOwnPropertyDescriptor(Local<String> key));
2972 V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetOwnPropertyDescriptor(
2973 Local<Context> context, Local<String> key);
2974
2975 V8_DEPRECATE_SOON("Use maybe version", bool Has(Local<Value> key));
2976 /**
2977 * Object::Has() calls the abstract operation HasProperty(O, P) described
2978 * in ECMA-262, 7.3.10. Has() returns
2979 * true, if the object has the property, either own or on the prototype chain.
2980 * Interceptors, i.e., PropertyQueryCallbacks, are called if present.
2981 *
2982 * Has() has the same side effects as JavaScript's `variable in object`.
2983 * For example, calling Has() on a revoked proxy will throw an exception.
2984 *
2985 * \note Has() converts the key to a name, which possibly calls back into
2986 * JavaScript.
2987 *
2988 * See also v8::Object::HasOwnProperty() and
2989 * v8::Object::HasRealNamedProperty().
2990 */
2991 V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
2992 Local<Value> key);
2993
2994 V8_DEPRECATE_SOON("Use maybe version", bool Delete(Local<Value> key));
2995 // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
2996 Maybe<bool> Delete(Local<Context> context, Local<Value> key);
2997
2998 V8_DEPRECATED("Use maybe version", bool Has(uint32_t index));
2999 V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context, uint32_t index);
3000
3001 V8_DEPRECATED("Use maybe version", bool Delete(uint32_t index));
3002 // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3003 Maybe<bool> Delete(Local<Context> context, uint32_t index);
3004
3005 V8_DEPRECATED("Use maybe version",
3006 bool SetAccessor(Local<String> name,
3007 AccessorGetterCallback getter,
3008 AccessorSetterCallback setter = 0,
3009 Local<Value> data = Local<Value>(),
3010 AccessControl settings = DEFAULT,
3011 PropertyAttribute attribute = None));
3012 V8_DEPRECATED("Use maybe version",
3013 bool SetAccessor(Local<Name> name,
3014 AccessorNameGetterCallback getter,
3015 AccessorNameSetterCallback setter = 0,
3016 Local<Value> data = Local<Value>(),
3017 AccessControl settings = DEFAULT,
3018 PropertyAttribute attribute = None));
3019 // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3020 Maybe<bool> SetAccessor(Local<Context> context, Local<Name> name,
3021 AccessorNameGetterCallback getter,
3022 AccessorNameSetterCallback setter = 0,
3023 MaybeLocal<Value> data = MaybeLocal<Value>(),
3024 AccessControl settings = DEFAULT,
3025 PropertyAttribute attribute = None);
3026
3027 void SetAccessorProperty(Local<Name> name, Local<Function> getter,
3028 Local<Function> setter = Local<Function>(),
3029 PropertyAttribute attribute = None,
3030 AccessControl settings = DEFAULT);
3031
3032 /**
3033 * Functionality for private properties.
3034 * This is an experimental feature, use at your own risk.
3035 * Note: Private properties are not inherited. Do not rely on this, since it
3036 * may change.
3037 */
3038 Maybe<bool> HasPrivate(Local<Context> context, Local<Private> key);
3039 Maybe<bool> SetPrivate(Local<Context> context, Local<Private> key,
3040 Local<Value> value);
3041 Maybe<bool> DeletePrivate(Local<Context> context, Local<Private> key);
3042 MaybeLocal<Value> GetPrivate(Local<Context> context, Local<Private> key);
3043
3044 /**
3045 * Returns an array containing the names of the enumerable properties
3046 * of this object, including properties from prototype objects. The
3047 * array returned by this method contains the same values as would
3048 * be enumerated by a for-in statement over this object.
3049 */
3050 V8_DEPRECATE_SOON("Use maybe version", Local<Array> GetPropertyNames());
3051 V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetPropertyNames(
3052 Local<Context> context);
3053 V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetPropertyNames(
3054 Local<Context> context, KeyCollectionMode mode,
3055 PropertyFilter property_filter, IndexFilter index_filter);
3056
3057 /**
3058 * This function has the same functionality as GetPropertyNames but
3059 * the returned array doesn't contain the names of properties from
3060 * prototype objects.
3061 */
3062 V8_DEPRECATE_SOON("Use maybe version", Local<Array> GetOwnPropertyNames());
3063 V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetOwnPropertyNames(
3064 Local<Context> context);
3065
3066 /**
3067 * Returns an array containing the names of the filtered properties
3068 * of this object, including properties from prototype objects. The
3069 * array returned by this method contains the same values as would
3070 * be enumerated by a for-in statement over this object.
3071 */
3072 V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetOwnPropertyNames(
3073 Local<Context> context, PropertyFilter filter);
3074
3075 /**
3076 * Get the prototype object. This does not skip objects marked to
3077 * be skipped by __proto__ and it does not consult the security
3078 * handler.
3079 */
3080 Local<Value> GetPrototype();
3081
3082 /**
3083 * Set the prototype object. This does not skip objects marked to
3084 * be skipped by __proto__ and it does not consult the security
3085 * handler.
3086 */
3087 V8_DEPRECATED("Use maybe version", bool SetPrototype(Local<Value> prototype));
3088 V8_WARN_UNUSED_RESULT Maybe<bool> SetPrototype(Local<Context> context,
3089 Local<Value> prototype);
3090
3091 /**
3092 * Finds an instance of the given function template in the prototype
3093 * chain.
3094 */
3095 Local<Object> FindInstanceInPrototypeChain(Local<FunctionTemplate> tmpl);
3096
3097 /**
3098 * Call builtin Object.prototype.toString on this object.
3099 * This is different from Value::ToString() that may call
3100 * user-defined toString function. This one does not.
3101 */
3102 V8_DEPRECATED("Use maybe version", Local<String> ObjectProtoToString());
3103 V8_WARN_UNUSED_RESULT MaybeLocal<String> ObjectProtoToString(
3104 Local<Context> context);
3105
3106 /**
3107 * Returns the name of the function invoked as a constructor for this object.
3108 */
3109 Local<String> GetConstructorName();
3110
3111 /**
3112 * Sets the integrity level of the object.
3113 */
3114 Maybe<bool> SetIntegrityLevel(Local<Context> context, IntegrityLevel level);
3115
3116 /** Gets the number of internal fields for this Object. */
3117 int InternalFieldCount();
3118
3119 /** Same as above, but works for Persistents */
InternalFieldCount(const PersistentBase<Object> & object)3120 V8_INLINE static int InternalFieldCount(
3121 const PersistentBase<Object>& object) {
3122 return object.val_->InternalFieldCount();
3123 }
3124
3125 /** Gets the value from an internal field. */
3126 V8_INLINE Local<Value> GetInternalField(int index);
3127
3128 /** Sets the value in an internal field. */
3129 void SetInternalField(int index, Local<Value> value);
3130
3131 /**
3132 * Gets a 2-byte-aligned native pointer from an internal field. This field
3133 * must have been set by SetAlignedPointerInInternalField, everything else
3134 * leads to undefined behavior.
3135 */
3136 V8_INLINE void* GetAlignedPointerFromInternalField(int index);
3137
3138 /** Same as above, but works for Persistents */
GetAlignedPointerFromInternalField(const PersistentBase<Object> & object,int index)3139 V8_INLINE static void* GetAlignedPointerFromInternalField(
3140 const PersistentBase<Object>& object, int index) {
3141 return object.val_->GetAlignedPointerFromInternalField(index);
3142 }
3143
3144 /**
3145 * Sets a 2-byte-aligned native pointer in an internal field. To retrieve such
3146 * a field, GetAlignedPointerFromInternalField must be used, everything else
3147 * leads to undefined behavior.
3148 */
3149 void SetAlignedPointerInInternalField(int index, void* value);
3150 void SetAlignedPointerInInternalFields(int argc, int indices[],
3151 void* values[]);
3152
3153 // Testers for local properties.
3154 V8_DEPRECATED("Use maybe version", bool HasOwnProperty(Local<String> key));
3155
3156 /**
3157 * HasOwnProperty() is like JavaScript's Object.prototype.hasOwnProperty().
3158 *
3159 * See also v8::Object::Has() and v8::Object::HasRealNamedProperty().
3160 */
3161 V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context,
3162 Local<Name> key);
3163 V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context,
3164 uint32_t index);
3165 V8_DEPRECATE_SOON("Use maybe version",
3166 bool HasRealNamedProperty(Local<String> key));
3167 /**
3168 * Use HasRealNamedProperty() if you want to check if an object has an own
3169 * property without causing side effects, i.e., without calling interceptors.
3170 *
3171 * This function is similar to v8::Object::HasOwnProperty(), but it does not
3172 * call interceptors.
3173 *
3174 * \note Consider using non-masking interceptors, i.e., the interceptors are
3175 * not called if the receiver has the real named property. See
3176 * `v8::PropertyHandlerFlags::kNonMasking`.
3177 *
3178 * See also v8::Object::Has().
3179 */
3180 V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedProperty(Local<Context> context,
3181 Local<Name> key);
3182 V8_DEPRECATE_SOON("Use maybe version",
3183 bool HasRealIndexedProperty(uint32_t index));
3184 V8_WARN_UNUSED_RESULT Maybe<bool> HasRealIndexedProperty(
3185 Local<Context> context, uint32_t index);
3186 V8_DEPRECATE_SOON("Use maybe version",
3187 bool HasRealNamedCallbackProperty(Local<String> key));
3188 V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedCallbackProperty(
3189 Local<Context> context, Local<Name> key);
3190
3191 /**
3192 * If result.IsEmpty() no real property was located in the prototype chain.
3193 * This means interceptors in the prototype chain are not called.
3194 */
3195 V8_DEPRECATED(
3196 "Use maybe version",
3197 Local<Value> GetRealNamedPropertyInPrototypeChain(Local<String> key));
3198 V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetRealNamedPropertyInPrototypeChain(
3199 Local<Context> context, Local<Name> key);
3200
3201 /**
3202 * Gets the property attributes of a real property in the prototype chain,
3203 * which can be None or any combination of ReadOnly, DontEnum and DontDelete.
3204 * Interceptors in the prototype chain are not called.
3205 */
3206 V8_DEPRECATED(
3207 "Use maybe version",
3208 Maybe<PropertyAttribute> GetRealNamedPropertyAttributesInPrototypeChain(
3209 Local<String> key));
3210 V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute>
3211 GetRealNamedPropertyAttributesInPrototypeChain(Local<Context> context,
3212 Local<Name> key);
3213
3214 /**
3215 * If result.IsEmpty() no real property was located on the object or
3216 * in the prototype chain.
3217 * This means interceptors in the prototype chain are not called.
3218 */
3219 V8_DEPRECATED("Use maybe version",
3220 Local<Value> GetRealNamedProperty(Local<String> key));
3221 V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetRealNamedProperty(
3222 Local<Context> context, Local<Name> key);
3223
3224 /**
3225 * Gets the property attributes of a real property which can be
3226 * None or any combination of ReadOnly, DontEnum and DontDelete.
3227 * Interceptors in the prototype chain are not called.
3228 */
3229 V8_DEPRECATED("Use maybe version",
3230 Maybe<PropertyAttribute> GetRealNamedPropertyAttributes(
3231 Local<String> key));
3232 V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetRealNamedPropertyAttributes(
3233 Local<Context> context, Local<Name> key);
3234
3235 /** Tests for a named lookup interceptor.*/
3236 bool HasNamedLookupInterceptor();
3237
3238 /** Tests for an index lookup interceptor.*/
3239 bool HasIndexedLookupInterceptor();
3240
3241 /**
3242 * Returns the identity hash for this object. The current implementation
3243 * uses a hidden property on the object to store the identity hash.
3244 *
3245 * The return value will never be 0. Also, it is not guaranteed to be
3246 * unique.
3247 */
3248 int GetIdentityHash();
3249
3250 /**
3251 * Clone this object with a fast but shallow copy. Values will point
3252 * to the same values as the original object.
3253 */
3254 // TODO(dcarney): take an isolate and optionally bail out?
3255 Local<Object> Clone();
3256
3257 /**
3258 * Returns the context in which the object was created.
3259 */
3260 Local<Context> CreationContext();
3261
3262 /** Same as above, but works for Persistents */
CreationContext(const PersistentBase<Object> & object)3263 V8_INLINE static Local<Context> CreationContext(
3264 const PersistentBase<Object>& object) {
3265 return object.val_->CreationContext();
3266 }
3267
3268 /**
3269 * Checks whether a callback is set by the
3270 * ObjectTemplate::SetCallAsFunctionHandler method.
3271 * When an Object is callable this method returns true.
3272 */
3273 bool IsCallable();
3274
3275 /**
3276 * True if this object is a constructor.
3277 */
3278 bool IsConstructor();
3279
3280 /**
3281 * Call an Object as a function if a callback is set by the
3282 * ObjectTemplate::SetCallAsFunctionHandler method.
3283 */
3284 V8_DEPRECATED("Use maybe version",
3285 Local<Value> CallAsFunction(Local<Value> recv, int argc,
3286 Local<Value> argv[]));
3287 V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsFunction(Local<Context> context,
3288 Local<Value> recv,
3289 int argc,
3290 Local<Value> argv[]);
3291
3292 /**
3293 * Call an Object as a constructor if a callback is set by the
3294 * ObjectTemplate::SetCallAsFunctionHandler method.
3295 * Note: This method behaves like the Function::NewInstance method.
3296 */
3297 V8_DEPRECATED("Use maybe version",
3298 Local<Value> CallAsConstructor(int argc, Local<Value> argv[]));
3299 V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsConstructor(
3300 Local<Context> context, int argc, Local<Value> argv[]);
3301
3302 /**
3303 * Return the isolate to which the Object belongs to.
3304 */
3305 V8_DEPRECATE_SOON("Keep track of isolate correctly", Isolate* GetIsolate());
3306
3307 static Local<Object> New(Isolate* isolate);
3308
3309 V8_INLINE static Object* Cast(Value* obj);
3310
3311 private:
3312 Object();
3313 static void CheckCast(Value* obj);
3314 Local<Value> SlowGetInternalField(int index);
3315 void* SlowGetAlignedPointerFromInternalField(int index);
3316 };
3317
3318
3319 /**
3320 * An instance of the built-in array constructor (ECMA-262, 15.4.2).
3321 */
3322 class V8_EXPORT Array : public Object {
3323 public:
3324 uint32_t Length() const;
3325
3326 /**
3327 * Clones an element at index |index|. Returns an empty
3328 * handle if cloning fails (for any reason).
3329 */
3330 V8_DEPRECATED("Cloning is not supported.",
3331 Local<Object> CloneElementAt(uint32_t index));
3332 V8_DEPRECATED("Cloning is not supported.",
3333 MaybeLocal<Object> CloneElementAt(Local<Context> context,
3334 uint32_t index));
3335
3336 /**
3337 * Creates a JavaScript array with the given length. If the length
3338 * is negative the returned array will have length 0.
3339 */
3340 static Local<Array> New(Isolate* isolate, int length = 0);
3341
3342 V8_INLINE static Array* Cast(Value* obj);
3343 private:
3344 Array();
3345 static void CheckCast(Value* obj);
3346 };
3347
3348
3349 /**
3350 * An instance of the built-in Map constructor (ECMA-262, 6th Edition, 23.1.1).
3351 */
3352 class V8_EXPORT Map : public Object {
3353 public:
3354 size_t Size() const;
3355 void Clear();
3356 V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
3357 Local<Value> key);
3358 V8_WARN_UNUSED_RESULT MaybeLocal<Map> Set(Local<Context> context,
3359 Local<Value> key,
3360 Local<Value> value);
3361 V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
3362 Local<Value> key);
3363 V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context,
3364 Local<Value> key);
3365
3366 /**
3367 * Returns an array of length Size() * 2, where index N is the Nth key and
3368 * index N + 1 is the Nth value.
3369 */
3370 Local<Array> AsArray() const;
3371
3372 /**
3373 * Creates a new empty Map.
3374 */
3375 static Local<Map> New(Isolate* isolate);
3376
3377 V8_INLINE static Map* Cast(Value* obj);
3378
3379 private:
3380 Map();
3381 static void CheckCast(Value* obj);
3382 };
3383
3384
3385 /**
3386 * An instance of the built-in Set constructor (ECMA-262, 6th Edition, 23.2.1).
3387 */
3388 class V8_EXPORT Set : public Object {
3389 public:
3390 size_t Size() const;
3391 void Clear();
3392 V8_WARN_UNUSED_RESULT MaybeLocal<Set> Add(Local<Context> context,
3393 Local<Value> key);
3394 V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
3395 Local<Value> key);
3396 V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context,
3397 Local<Value> key);
3398
3399 /**
3400 * Returns an array of the keys in this Set.
3401 */
3402 Local<Array> AsArray() const;
3403
3404 /**
3405 * Creates a new empty Set.
3406 */
3407 static Local<Set> New(Isolate* isolate);
3408
3409 V8_INLINE static Set* Cast(Value* obj);
3410
3411 private:
3412 Set();
3413 static void CheckCast(Value* obj);
3414 };
3415
3416
3417 template<typename T>
3418 class ReturnValue {
3419 public:
ReturnValue(const ReturnValue<S> & that)3420 template <class S> V8_INLINE ReturnValue(const ReturnValue<S>& that)
3421 : value_(that.value_) {
3422 TYPE_CHECK(T, S);
3423 }
3424 // Local setters
3425 template <typename S>
3426 V8_INLINE V8_DEPRECATE_SOON("Use Global<> instead",
3427 void Set(const Persistent<S>& handle));
3428 template <typename S>
3429 V8_INLINE void Set(const Global<S>& handle);
3430 template <typename S>
3431 V8_INLINE void Set(const Local<S> handle);
3432 // Fast primitive setters
3433 V8_INLINE void Set(bool value);
3434 V8_INLINE void Set(double i);
3435 V8_INLINE void Set(int32_t i);
3436 V8_INLINE void Set(uint32_t i);
3437 // Fast JS primitive setters
3438 V8_INLINE void SetNull();
3439 V8_INLINE void SetUndefined();
3440 V8_INLINE void SetEmptyString();
3441 // Convenience getter for Isolate
3442 V8_INLINE Isolate* GetIsolate() const;
3443
3444 // Pointer setter: Uncompilable to prevent inadvertent misuse.
3445 template <typename S>
3446 V8_INLINE void Set(S* whatever);
3447
3448 // Getter. Creates a new Local<> so it comes with a certain performance
3449 // hit. If the ReturnValue was not yet set, this will return the undefined
3450 // value.
3451 V8_INLINE Local<Value> Get() const;
3452
3453 private:
3454 template<class F> friend class ReturnValue;
3455 template<class F> friend class FunctionCallbackInfo;
3456 template<class F> friend class PropertyCallbackInfo;
3457 template <class F, class G, class H>
3458 friend class PersistentValueMapBase;
SetInternal(internal::Object * value)3459 V8_INLINE void SetInternal(internal::Object* value) { *value_ = value; }
3460 V8_INLINE internal::Object* GetDefaultValue();
3461 V8_INLINE explicit ReturnValue(internal::Object** slot);
3462 internal::Object** value_;
3463 };
3464
3465
3466 /**
3467 * The argument information given to function call callbacks. This
3468 * class provides access to information about the context of the call,
3469 * including the receiver, the number and values of arguments, and
3470 * the holder of the function.
3471 */
3472 template<typename T>
3473 class FunctionCallbackInfo {
3474 public:
3475 V8_INLINE int Length() const;
3476 V8_INLINE Local<Value> operator[](int i) const;
3477 V8_INLINE V8_DEPRECATED("Use Data() to explicitly pass Callee instead",
3478 Local<Function> Callee() const);
3479 V8_INLINE Local<Object> This() const;
3480 V8_INLINE Local<Object> Holder() const;
3481 V8_INLINE Local<Value> NewTarget() const;
3482 V8_INLINE bool IsConstructCall() const;
3483 V8_INLINE Local<Value> Data() const;
3484 V8_INLINE Isolate* GetIsolate() const;
3485 V8_INLINE ReturnValue<T> GetReturnValue() const;
3486 // This shouldn't be public, but the arm compiler needs it.
3487 static const int kArgsLength = 8;
3488
3489 protected:
3490 friend class internal::FunctionCallbackArguments;
3491 friend class internal::CustomArguments<FunctionCallbackInfo>;
3492 static const int kHolderIndex = 0;
3493 static const int kIsolateIndex = 1;
3494 static const int kReturnValueDefaultValueIndex = 2;
3495 static const int kReturnValueIndex = 3;
3496 static const int kDataIndex = 4;
3497 static const int kCalleeIndex = 5;
3498 static const int kContextSaveIndex = 6;
3499 static const int kNewTargetIndex = 7;
3500
3501 V8_INLINE FunctionCallbackInfo(internal::Object** implicit_args,
3502 internal::Object** values, int length);
3503 internal::Object** implicit_args_;
3504 internal::Object** values_;
3505 int length_;
3506 };
3507
3508
3509 /**
3510 * The information passed to a property callback about the context
3511 * of the property access.
3512 */
3513 template<typename T>
3514 class PropertyCallbackInfo {
3515 public:
3516 /**
3517 * \return The isolate of the property access.
3518 */
3519 V8_INLINE Isolate* GetIsolate() const;
3520
3521 /**
3522 * \return The data set in the configuration, i.e., in
3523 * `NamedPropertyHandlerConfiguration` or
3524 * `IndexedPropertyHandlerConfiguration.`
3525 */
3526 V8_INLINE Local<Value> Data() const;
3527
3528 /**
3529 * \return The receiver. In many cases, this is the object on which the
3530 * property access was intercepted. When using
3531 * `Reflect.get`, `Function.prototype.call`, or similar functions, it is the
3532 * object passed in as receiver or thisArg.
3533 *
3534 * \code
3535 * void GetterCallback(Local<Name> name,
3536 * const v8::PropertyCallbackInfo<v8::Value>& info) {
3537 * auto context = info.GetIsolate()->GetCurrentContext();
3538 *
3539 * v8::Local<v8::Value> a_this =
3540 * info.This()
3541 * ->GetRealNamedProperty(context, v8_str("a"))
3542 * .ToLocalChecked();
3543 * v8::Local<v8::Value> a_holder =
3544 * info.Holder()
3545 * ->GetRealNamedProperty(context, v8_str("a"))
3546 * .ToLocalChecked();
3547 *
3548 * CHECK(v8_str("r")->Equals(context, a_this).FromJust());
3549 * CHECK(v8_str("obj")->Equals(context, a_holder).FromJust());
3550 *
3551 * info.GetReturnValue().Set(name);
3552 * }
3553 *
3554 * v8::Local<v8::FunctionTemplate> templ =
3555 * v8::FunctionTemplate::New(isolate);
3556 * templ->InstanceTemplate()->SetHandler(
3557 * v8::NamedPropertyHandlerConfiguration(GetterCallback));
3558 * LocalContext env;
3559 * env->Global()
3560 * ->Set(env.local(), v8_str("obj"), templ->GetFunction(env.local())
3561 * .ToLocalChecked()
3562 * ->NewInstance(env.local())
3563 * .ToLocalChecked())
3564 * .FromJust();
3565 *
3566 * CompileRun("obj.a = 'obj'; var r = {a: 'r'}; Reflect.get(obj, 'x', r)");
3567 * \endcode
3568 */
3569 V8_INLINE Local<Object> This() const;
3570
3571 /**
3572 * \return The object in the prototype chain of the receiver that has the
3573 * interceptor. Suppose you have `x` and its prototype is `y`, and `y`
3574 * has an interceptor. Then `info.This()` is `x` and `info.Holder()` is `y`.
3575 * The Holder() could be a hidden object (the global object, rather
3576 * than the global proxy).
3577 *
3578 * \note For security reasons, do not pass the object back into the runtime.
3579 */
3580 V8_INLINE Local<Object> Holder() const;
3581
3582 /**
3583 * \return The return value of the callback.
3584 * Can be changed by calling Set().
3585 * \code
3586 * info.GetReturnValue().Set(...)
3587 * \endcode
3588 *
3589 */
3590 V8_INLINE ReturnValue<T> GetReturnValue() const;
3591
3592 /**
3593 * \return True if the intercepted function should throw if an error occurs.
3594 * Usually, `true` corresponds to `'use strict'`.
3595 *
3596 * \note Always `false` when intercepting `Reflect.set()`
3597 * independent of the language mode.
3598 */
3599 V8_INLINE bool ShouldThrowOnError() const;
3600
3601 // This shouldn't be public, but the arm compiler needs it.
3602 static const int kArgsLength = 7;
3603
3604 protected:
3605 friend class MacroAssembler;
3606 friend class internal::PropertyCallbackArguments;
3607 friend class internal::CustomArguments<PropertyCallbackInfo>;
3608 static const int kShouldThrowOnErrorIndex = 0;
3609 static const int kHolderIndex = 1;
3610 static const int kIsolateIndex = 2;
3611 static const int kReturnValueDefaultValueIndex = 3;
3612 static const int kReturnValueIndex = 4;
3613 static const int kDataIndex = 5;
3614 static const int kThisIndex = 6;
3615
PropertyCallbackInfo(internal::Object ** args)3616 V8_INLINE PropertyCallbackInfo(internal::Object** args) : args_(args) {}
3617 internal::Object** args_;
3618 };
3619
3620
3621 typedef void (*FunctionCallback)(const FunctionCallbackInfo<Value>& info);
3622
3623 enum class ConstructorBehavior { kThrow, kAllow };
3624
3625 /**
3626 * A JavaScript function object (ECMA-262, 15.3).
3627 */
3628 class V8_EXPORT Function : public Object {
3629 public:
3630 /**
3631 * Create a function in the current execution context
3632 * for a given FunctionCallback.
3633 */
3634 static MaybeLocal<Function> New(
3635 Local<Context> context, FunctionCallback callback,
3636 Local<Value> data = Local<Value>(), int length = 0,
3637 ConstructorBehavior behavior = ConstructorBehavior::kAllow);
3638 static V8_DEPRECATE_SOON(
3639 "Use maybe version",
3640 Local<Function> New(Isolate* isolate, FunctionCallback callback,
3641 Local<Value> data = Local<Value>(), int length = 0));
3642
3643 V8_DEPRECATED("Use maybe version",
3644 Local<Object> NewInstance(int argc, Local<Value> argv[]) const);
3645 V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(
3646 Local<Context> context, int argc, Local<Value> argv[]) const;
3647
3648 V8_DEPRECATED("Use maybe version", Local<Object> NewInstance() const);
NewInstance(Local<Context> context)3649 V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(
3650 Local<Context> context) const {
3651 return NewInstance(context, 0, nullptr);
3652 }
3653
3654 V8_DEPRECATE_SOON("Use maybe version",
3655 Local<Value> Call(Local<Value> recv, int argc,
3656 Local<Value> argv[]));
3657 V8_WARN_UNUSED_RESULT MaybeLocal<Value> Call(Local<Context> context,
3658 Local<Value> recv, int argc,
3659 Local<Value> argv[]);
3660
3661 void SetName(Local<String> name);
3662 Local<Value> GetName() const;
3663
3664 /**
3665 * Name inferred from variable or property assignment of this function.
3666 * Used to facilitate debugging and profiling of JavaScript code written
3667 * in an OO style, where many functions are anonymous but are assigned
3668 * to object properties.
3669 */
3670 Local<Value> GetInferredName() const;
3671
3672 /**
3673 * displayName if it is set, otherwise name if it is configured, otherwise
3674 * function name, otherwise inferred name.
3675 */
3676 Local<Value> GetDebugName() const;
3677
3678 /**
3679 * User-defined name assigned to the "displayName" property of this function.
3680 * Used to facilitate debugging and profiling of JavaScript code.
3681 */
3682 Local<Value> GetDisplayName() const;
3683
3684 /**
3685 * Returns zero based line number of function body and
3686 * kLineOffsetNotFound if no information available.
3687 */
3688 int GetScriptLineNumber() const;
3689 /**
3690 * Returns zero based column number of function body and
3691 * kLineOffsetNotFound if no information available.
3692 */
3693 int GetScriptColumnNumber() const;
3694
3695 /**
3696 * Tells whether this function is builtin.
3697 */
3698 bool IsBuiltin() const;
3699
3700 /**
3701 * Returns scriptId.
3702 */
3703 int ScriptId() const;
3704
3705 /**
3706 * Returns the original function if this function is bound, else returns
3707 * v8::Undefined.
3708 */
3709 Local<Value> GetBoundFunction() const;
3710
3711 ScriptOrigin GetScriptOrigin() const;
3712 V8_INLINE static Function* Cast(Value* obj);
3713 static const int kLineOffsetNotFound;
3714
3715 private:
3716 Function();
3717 static void CheckCast(Value* obj);
3718 };
3719
3720
3721 /**
3722 * An instance of the built-in Promise constructor (ES6 draft).
3723 * This API is experimental. Only works with --harmony flag.
3724 */
3725 class V8_EXPORT Promise : public Object {
3726 public:
3727 class V8_EXPORT Resolver : public Object {
3728 public:
3729 /**
3730 * Create a new resolver, along with an associated promise in pending state.
3731 */
3732 static V8_DEPRECATE_SOON("Use maybe version",
3733 Local<Resolver> New(Isolate* isolate));
3734 static V8_WARN_UNUSED_RESULT MaybeLocal<Resolver> New(
3735 Local<Context> context);
3736
3737 /**
3738 * Extract the associated promise.
3739 */
3740 Local<Promise> GetPromise();
3741
3742 /**
3743 * Resolve/reject the associated promise with a given value.
3744 * Ignored if the promise is no longer pending.
3745 */
3746 V8_DEPRECATE_SOON("Use maybe version", void Resolve(Local<Value> value));
3747 // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3748 Maybe<bool> Resolve(Local<Context> context, Local<Value> value);
3749
3750 V8_DEPRECATE_SOON("Use maybe version", void Reject(Local<Value> value));
3751 // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3752 Maybe<bool> Reject(Local<Context> context, Local<Value> value);
3753
3754 V8_INLINE static Resolver* Cast(Value* obj);
3755
3756 private:
3757 Resolver();
3758 static void CheckCast(Value* obj);
3759 };
3760
3761 /**
3762 * Register a resolution/rejection handler with a promise.
3763 * The handler is given the respective resolution/rejection value as
3764 * an argument. If the promise is already resolved/rejected, the handler is
3765 * invoked at the end of turn.
3766 */
3767 V8_DEPRECATED("Use maybe version",
3768 Local<Promise> Catch(Local<Function> handler));
3769 V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Catch(Local<Context> context,
3770 Local<Function> handler);
3771
3772 V8_DEPRECATED("Use maybe version",
3773 Local<Promise> Then(Local<Function> handler));
3774 V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Then(Local<Context> context,
3775 Local<Function> handler);
3776
3777 /**
3778 * Returns true if the promise has at least one derived promise, and
3779 * therefore resolve/reject handlers (including default handler).
3780 */
3781 bool HasHandler();
3782
3783 V8_INLINE static Promise* Cast(Value* obj);
3784
3785 private:
3786 Promise();
3787 static void CheckCast(Value* obj);
3788 };
3789
3790 /**
3791 * An instance of a Property Descriptor, see Ecma-262 6.2.4.
3792 *
3793 * Properties in a descriptor are present or absent. If you do not set
3794 * `enumerable`, `configurable`, and `writable`, they are absent. If `value`,
3795 * `get`, or `set` are absent, but you must specify them in the constructor, use
3796 * empty handles.
3797 *
3798 * Accessors `get` and `set` must be callable or undefined if they are present.
3799 *
3800 * \note Only query properties if they are present, i.e., call `x()` only if
3801 * `has_x()` returns true.
3802 *
3803 * \code
3804 * // var desc = {writable: false}
3805 * v8::PropertyDescriptor d(Local<Value>()), false);
3806 * d.value(); // error, value not set
3807 * if (d.has_writable()) {
3808 * d.writable(); // false
3809 * }
3810 *
3811 * // var desc = {value: undefined}
3812 * v8::PropertyDescriptor d(v8::Undefined(isolate));
3813 *
3814 * // var desc = {get: undefined}
3815 * v8::PropertyDescriptor d(v8::Undefined(isolate), Local<Value>()));
3816 * \endcode
3817 */
3818 class V8_EXPORT PropertyDescriptor {
3819 public:
3820 // GenericDescriptor
3821 PropertyDescriptor();
3822
3823 // DataDescriptor
3824 PropertyDescriptor(Local<Value> value);
3825
3826 // DataDescriptor with writable property
3827 PropertyDescriptor(Local<Value> value, bool writable);
3828
3829 // AccessorDescriptor
3830 PropertyDescriptor(Local<Value> get, Local<Value> set);
3831
3832 ~PropertyDescriptor();
3833
3834 Local<Value> value() const;
3835 bool has_value() const;
3836
3837 Local<Value> get() const;
3838 bool has_get() const;
3839 Local<Value> set() const;
3840 bool has_set() const;
3841
3842 void set_enumerable(bool enumerable);
3843 bool enumerable() const;
3844 bool has_enumerable() const;
3845
3846 void set_configurable(bool configurable);
3847 bool configurable() const;
3848 bool has_configurable() const;
3849
3850 bool writable() const;
3851 bool has_writable() const;
3852
3853 struct PrivateData;
get_private()3854 PrivateData* get_private() const { return private_; }
3855
3856 PropertyDescriptor(const PropertyDescriptor&) = delete;
3857 void operator=(const PropertyDescriptor&) = delete;
3858
3859 private:
3860 PrivateData* private_;
3861 };
3862
3863 /**
3864 * An instance of the built-in Proxy constructor (ECMA-262, 6th Edition,
3865 * 26.2.1).
3866 */
3867 class V8_EXPORT Proxy : public Object {
3868 public:
3869 Local<Object> GetTarget();
3870 Local<Value> GetHandler();
3871 bool IsRevoked();
3872 void Revoke();
3873
3874 /**
3875 * Creates a new Proxy for the target object.
3876 */
3877 static MaybeLocal<Proxy> New(Local<Context> context,
3878 Local<Object> local_target,
3879 Local<Object> local_handler);
3880
3881 V8_INLINE static Proxy* Cast(Value* obj);
3882
3883 private:
3884 Proxy();
3885 static void CheckCast(Value* obj);
3886 };
3887
3888 class V8_EXPORT WasmCompiledModule : public Object {
3889 public:
3890 typedef std::pair<std::unique_ptr<const uint8_t[]>, size_t> SerializedModule;
3891 // A buffer that is owned by the caller.
3892 typedef std::pair<const uint8_t*, size_t> CallerOwnedBuffer;
3893 // Get the wasm-encoded bytes that were used to compile this module.
3894 Local<String> GetWasmWireBytes();
3895
3896 // Serialize the compiled module. The serialized data does not include the
3897 // uncompiled bytes.
3898 SerializedModule Serialize();
3899
3900 // If possible, deserialize the module, otherwise compile it from the provided
3901 // uncompiled bytes.
3902 static MaybeLocal<WasmCompiledModule> DeserializeOrCompile(
3903 Isolate* isolate, const CallerOwnedBuffer& serialized_module,
3904 const CallerOwnedBuffer& wire_bytes);
3905 V8_INLINE static WasmCompiledModule* Cast(Value* obj);
3906
3907 private:
3908 static MaybeLocal<WasmCompiledModule> Deserialize(
3909 Isolate* isolate, const CallerOwnedBuffer& serialized_module,
3910 const CallerOwnedBuffer& wire_bytes);
3911 static MaybeLocal<WasmCompiledModule> Compile(Isolate* isolate,
3912 const uint8_t* start,
3913 size_t length);
3914 WasmCompiledModule();
3915 static void CheckCast(Value* obj);
3916 };
3917
3918 #ifndef V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT
3919 // The number of required internal fields can be defined by embedder.
3920 #define V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT 2
3921 #endif
3922
3923
3924 enum class ArrayBufferCreationMode { kInternalized, kExternalized };
3925
3926
3927 /**
3928 * An instance of the built-in ArrayBuffer constructor (ES6 draft 15.13.5).
3929 * This API is experimental and may change significantly.
3930 */
3931 class V8_EXPORT ArrayBuffer : public Object {
3932 public:
3933 /**
3934 * A thread-safe allocator that V8 uses to allocate |ArrayBuffer|'s memory.
3935 * The allocator is a global V8 setting. It has to be set via
3936 * Isolate::CreateParams.
3937 *
3938 * Memory allocated through this allocator by V8 is accounted for as external
3939 * memory by V8. Note that V8 keeps track of the memory for all internalized
3940 * |ArrayBuffer|s. Responsibility for tracking external memory (using
3941 * Isolate::AdjustAmountOfExternalAllocatedMemory) is handed over to the
3942 * embedder upon externalization and taken over upon internalization (creating
3943 * an internalized buffer from an existing buffer).
3944 *
3945 * Note that it is unsafe to call back into V8 from any of the allocator
3946 * functions.
3947 */
3948 class V8_EXPORT Allocator { // NOLINT
3949 public:
~Allocator()3950 virtual ~Allocator() {}
3951
3952 /**
3953 * Allocate |length| bytes. Return NULL if allocation is not successful.
3954 * Memory should be initialized to zeroes.
3955 */
3956 virtual void* Allocate(size_t length) = 0;
3957
3958 /**
3959 * Allocate |length| bytes. Return NULL if allocation is not successful.
3960 * Memory does not have to be initialized.
3961 */
3962 virtual void* AllocateUninitialized(size_t length) = 0;
3963
3964 /**
3965 * Free the memory block of size |length|, pointed to by |data|.
3966 * That memory is guaranteed to be previously allocated by |Allocate|.
3967 */
3968 virtual void Free(void* data, size_t length) = 0;
3969
3970 /**
3971 * malloc/free based convenience allocator.
3972 *
3973 * Caller takes ownership.
3974 */
3975 static Allocator* NewDefaultAllocator();
3976 };
3977
3978 /**
3979 * The contents of an |ArrayBuffer|. Externalization of |ArrayBuffer|
3980 * returns an instance of this class, populated, with a pointer to data
3981 * and byte length.
3982 *
3983 * The Data pointer of ArrayBuffer::Contents is always allocated with
3984 * Allocator::Allocate that is set via Isolate::CreateParams.
3985 *
3986 * This API is experimental and may change significantly.
3987 */
3988 class V8_EXPORT Contents { // NOLINT
3989 public:
Contents()3990 Contents() : data_(NULL), byte_length_(0) {}
3991
Data()3992 void* Data() const { return data_; }
ByteLength()3993 size_t ByteLength() const { return byte_length_; }
3994
3995 private:
3996 void* data_;
3997 size_t byte_length_;
3998
3999 friend class ArrayBuffer;
4000 };
4001
4002
4003 /**
4004 * Data length in bytes.
4005 */
4006 size_t ByteLength() const;
4007
4008 /**
4009 * Create a new ArrayBuffer. Allocate |byte_length| bytes.
4010 * Allocated memory will be owned by a created ArrayBuffer and
4011 * will be deallocated when it is garbage-collected,
4012 * unless the object is externalized.
4013 */
4014 static Local<ArrayBuffer> New(Isolate* isolate, size_t byte_length);
4015
4016 /**
4017 * Create a new ArrayBuffer over an existing memory block.
4018 * The created array buffer is by default immediately in externalized state.
4019 * The memory block will not be reclaimed when a created ArrayBuffer
4020 * is garbage-collected.
4021 */
4022 static Local<ArrayBuffer> New(
4023 Isolate* isolate, void* data, size_t byte_length,
4024 ArrayBufferCreationMode mode = ArrayBufferCreationMode::kExternalized);
4025
4026 /**
4027 * Returns true if ArrayBuffer is externalized, that is, does not
4028 * own its memory block.
4029 */
4030 bool IsExternal() const;
4031
4032 /**
4033 * Returns true if this ArrayBuffer may be neutered.
4034 */
4035 bool IsNeuterable() const;
4036
4037 /**
4038 * Neuters this ArrayBuffer and all its views (typed arrays).
4039 * Neutering sets the byte length of the buffer and all typed arrays to zero,
4040 * preventing JavaScript from ever accessing underlying backing store.
4041 * ArrayBuffer should have been externalized and must be neuterable.
4042 */
4043 void Neuter();
4044
4045 /**
4046 * Make this ArrayBuffer external. The pointer to underlying memory block
4047 * and byte length are returned as |Contents| structure. After ArrayBuffer
4048 * had been externalized, it does no longer own the memory block. The caller
4049 * should take steps to free memory when it is no longer needed.
4050 *
4051 * The memory block is guaranteed to be allocated with |Allocator::Allocate|
4052 * that has been set via Isolate::CreateParams.
4053 */
4054 Contents Externalize();
4055
4056 /**
4057 * Get a pointer to the ArrayBuffer's underlying memory block without
4058 * externalizing it. If the ArrayBuffer is not externalized, this pointer
4059 * will become invalid as soon as the ArrayBuffer gets garbage collected.
4060 *
4061 * The embedder should make sure to hold a strong reference to the
4062 * ArrayBuffer while accessing this pointer.
4063 *
4064 * The memory block is guaranteed to be allocated with |Allocator::Allocate|.
4065 */
4066 Contents GetContents();
4067
4068 V8_INLINE static ArrayBuffer* Cast(Value* obj);
4069
4070 static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT;
4071
4072 private:
4073 ArrayBuffer();
4074 static void CheckCast(Value* obj);
4075 };
4076
4077
4078 #ifndef V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT
4079 // The number of required internal fields can be defined by embedder.
4080 #define V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT 2
4081 #endif
4082
4083
4084 /**
4085 * A base class for an instance of one of "views" over ArrayBuffer,
4086 * including TypedArrays and DataView (ES6 draft 15.13).
4087 *
4088 * This API is experimental and may change significantly.
4089 */
4090 class V8_EXPORT ArrayBufferView : public Object {
4091 public:
4092 /**
4093 * Returns underlying ArrayBuffer.
4094 */
4095 Local<ArrayBuffer> Buffer();
4096 /**
4097 * Byte offset in |Buffer|.
4098 */
4099 size_t ByteOffset();
4100 /**
4101 * Size of a view in bytes.
4102 */
4103 size_t ByteLength();
4104
4105 /**
4106 * Copy the contents of the ArrayBufferView's buffer to an embedder defined
4107 * memory without additional overhead that calling ArrayBufferView::Buffer
4108 * might incur.
4109 *
4110 * Will write at most min(|byte_length|, ByteLength) bytes starting at
4111 * ByteOffset of the underlying buffer to the memory starting at |dest|.
4112 * Returns the number of bytes actually written.
4113 */
4114 size_t CopyContents(void* dest, size_t byte_length);
4115
4116 /**
4117 * Returns true if ArrayBufferView's backing ArrayBuffer has already been
4118 * allocated.
4119 */
4120 bool HasBuffer() const;
4121
4122 V8_INLINE static ArrayBufferView* Cast(Value* obj);
4123
4124 static const int kInternalFieldCount =
4125 V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT;
4126
4127 private:
4128 ArrayBufferView();
4129 static void CheckCast(Value* obj);
4130 };
4131
4132
4133 /**
4134 * A base class for an instance of TypedArray series of constructors
4135 * (ES6 draft 15.13.6).
4136 * This API is experimental and may change significantly.
4137 */
4138 class V8_EXPORT TypedArray : public ArrayBufferView {
4139 public:
4140 /**
4141 * Number of elements in this typed array
4142 * (e.g. for Int16Array, |ByteLength|/2).
4143 */
4144 size_t Length();
4145
4146 V8_INLINE static TypedArray* Cast(Value* obj);
4147
4148 private:
4149 TypedArray();
4150 static void CheckCast(Value* obj);
4151 };
4152
4153
4154 /**
4155 * An instance of Uint8Array constructor (ES6 draft 15.13.6).
4156 * This API is experimental and may change significantly.
4157 */
4158 class V8_EXPORT Uint8Array : public TypedArray {
4159 public:
4160 static Local<Uint8Array> New(Local<ArrayBuffer> array_buffer,
4161 size_t byte_offset, size_t length);
4162 static Local<Uint8Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4163 size_t byte_offset, size_t length);
4164 V8_INLINE static Uint8Array* Cast(Value* obj);
4165
4166 private:
4167 Uint8Array();
4168 static void CheckCast(Value* obj);
4169 };
4170
4171
4172 /**
4173 * An instance of Uint8ClampedArray constructor (ES6 draft 15.13.6).
4174 * This API is experimental and may change significantly.
4175 */
4176 class V8_EXPORT Uint8ClampedArray : public TypedArray {
4177 public:
4178 static Local<Uint8ClampedArray> New(Local<ArrayBuffer> array_buffer,
4179 size_t byte_offset, size_t length);
4180 static Local<Uint8ClampedArray> New(
4181 Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset,
4182 size_t length);
4183 V8_INLINE static Uint8ClampedArray* Cast(Value* obj);
4184
4185 private:
4186 Uint8ClampedArray();
4187 static void CheckCast(Value* obj);
4188 };
4189
4190 /**
4191 * An instance of Int8Array constructor (ES6 draft 15.13.6).
4192 * This API is experimental and may change significantly.
4193 */
4194 class V8_EXPORT Int8Array : public TypedArray {
4195 public:
4196 static Local<Int8Array> New(Local<ArrayBuffer> array_buffer,
4197 size_t byte_offset, size_t length);
4198 static Local<Int8Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4199 size_t byte_offset, size_t length);
4200 V8_INLINE static Int8Array* Cast(Value* obj);
4201
4202 private:
4203 Int8Array();
4204 static void CheckCast(Value* obj);
4205 };
4206
4207
4208 /**
4209 * An instance of Uint16Array constructor (ES6 draft 15.13.6).
4210 * This API is experimental and may change significantly.
4211 */
4212 class V8_EXPORT Uint16Array : public TypedArray {
4213 public:
4214 static Local<Uint16Array> New(Local<ArrayBuffer> array_buffer,
4215 size_t byte_offset, size_t length);
4216 static Local<Uint16Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4217 size_t byte_offset, size_t length);
4218 V8_INLINE static Uint16Array* Cast(Value* obj);
4219
4220 private:
4221 Uint16Array();
4222 static void CheckCast(Value* obj);
4223 };
4224
4225
4226 /**
4227 * An instance of Int16Array constructor (ES6 draft 15.13.6).
4228 * This API is experimental and may change significantly.
4229 */
4230 class V8_EXPORT Int16Array : public TypedArray {
4231 public:
4232 static Local<Int16Array> New(Local<ArrayBuffer> array_buffer,
4233 size_t byte_offset, size_t length);
4234 static Local<Int16Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4235 size_t byte_offset, size_t length);
4236 V8_INLINE static Int16Array* Cast(Value* obj);
4237
4238 private:
4239 Int16Array();
4240 static void CheckCast(Value* obj);
4241 };
4242
4243
4244 /**
4245 * An instance of Uint32Array constructor (ES6 draft 15.13.6).
4246 * This API is experimental and may change significantly.
4247 */
4248 class V8_EXPORT Uint32Array : public TypedArray {
4249 public:
4250 static Local<Uint32Array> New(Local<ArrayBuffer> array_buffer,
4251 size_t byte_offset, size_t length);
4252 static Local<Uint32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4253 size_t byte_offset, size_t length);
4254 V8_INLINE static Uint32Array* Cast(Value* obj);
4255
4256 private:
4257 Uint32Array();
4258 static void CheckCast(Value* obj);
4259 };
4260
4261
4262 /**
4263 * An instance of Int32Array constructor (ES6 draft 15.13.6).
4264 * This API is experimental and may change significantly.
4265 */
4266 class V8_EXPORT Int32Array : public TypedArray {
4267 public:
4268 static Local<Int32Array> New(Local<ArrayBuffer> array_buffer,
4269 size_t byte_offset, size_t length);
4270 static Local<Int32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4271 size_t byte_offset, size_t length);
4272 V8_INLINE static Int32Array* Cast(Value* obj);
4273
4274 private:
4275 Int32Array();
4276 static void CheckCast(Value* obj);
4277 };
4278
4279
4280 /**
4281 * An instance of Float32Array constructor (ES6 draft 15.13.6).
4282 * This API is experimental and may change significantly.
4283 */
4284 class V8_EXPORT Float32Array : public TypedArray {
4285 public:
4286 static Local<Float32Array> New(Local<ArrayBuffer> array_buffer,
4287 size_t byte_offset, size_t length);
4288 static Local<Float32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4289 size_t byte_offset, size_t length);
4290 V8_INLINE static Float32Array* Cast(Value* obj);
4291
4292 private:
4293 Float32Array();
4294 static void CheckCast(Value* obj);
4295 };
4296
4297
4298 /**
4299 * An instance of Float64Array constructor (ES6 draft 15.13.6).
4300 * This API is experimental and may change significantly.
4301 */
4302 class V8_EXPORT Float64Array : public TypedArray {
4303 public:
4304 static Local<Float64Array> New(Local<ArrayBuffer> array_buffer,
4305 size_t byte_offset, size_t length);
4306 static Local<Float64Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4307 size_t byte_offset, size_t length);
4308 V8_INLINE static Float64Array* Cast(Value* obj);
4309
4310 private:
4311 Float64Array();
4312 static void CheckCast(Value* obj);
4313 };
4314
4315
4316 /**
4317 * An instance of DataView constructor (ES6 draft 15.13.7).
4318 * This API is experimental and may change significantly.
4319 */
4320 class V8_EXPORT DataView : public ArrayBufferView {
4321 public:
4322 static Local<DataView> New(Local<ArrayBuffer> array_buffer,
4323 size_t byte_offset, size_t length);
4324 static Local<DataView> New(Local<SharedArrayBuffer> shared_array_buffer,
4325 size_t byte_offset, size_t length);
4326 V8_INLINE static DataView* Cast(Value* obj);
4327
4328 private:
4329 DataView();
4330 static void CheckCast(Value* obj);
4331 };
4332
4333
4334 /**
4335 * An instance of the built-in SharedArrayBuffer constructor.
4336 * This API is experimental and may change significantly.
4337 */
4338 class V8_EXPORT SharedArrayBuffer : public Object {
4339 public:
4340 /**
4341 * The contents of an |SharedArrayBuffer|. Externalization of
4342 * |SharedArrayBuffer| returns an instance of this class, populated, with a
4343 * pointer to data and byte length.
4344 *
4345 * The Data pointer of SharedArrayBuffer::Contents is always allocated with
4346 * |ArrayBuffer::Allocator::Allocate| by the allocator specified in
4347 * v8::Isolate::CreateParams::array_buffer_allocator.
4348 *
4349 * This API is experimental and may change significantly.
4350 */
4351 class V8_EXPORT Contents { // NOLINT
4352 public:
Contents()4353 Contents() : data_(NULL), byte_length_(0) {}
4354
Data()4355 void* Data() const { return data_; }
ByteLength()4356 size_t ByteLength() const { return byte_length_; }
4357
4358 private:
4359 void* data_;
4360 size_t byte_length_;
4361
4362 friend class SharedArrayBuffer;
4363 };
4364
4365
4366 /**
4367 * Data length in bytes.
4368 */
4369 size_t ByteLength() const;
4370
4371 /**
4372 * Create a new SharedArrayBuffer. Allocate |byte_length| bytes.
4373 * Allocated memory will be owned by a created SharedArrayBuffer and
4374 * will be deallocated when it is garbage-collected,
4375 * unless the object is externalized.
4376 */
4377 static Local<SharedArrayBuffer> New(Isolate* isolate, size_t byte_length);
4378
4379 /**
4380 * Create a new SharedArrayBuffer over an existing memory block. The created
4381 * array buffer is immediately in externalized state unless otherwise
4382 * specified. The memory block will not be reclaimed when a created
4383 * SharedArrayBuffer is garbage-collected.
4384 */
4385 static Local<SharedArrayBuffer> New(
4386 Isolate* isolate, void* data, size_t byte_length,
4387 ArrayBufferCreationMode mode = ArrayBufferCreationMode::kExternalized);
4388
4389 /**
4390 * Returns true if SharedArrayBuffer is externalized, that is, does not
4391 * own its memory block.
4392 */
4393 bool IsExternal() const;
4394
4395 /**
4396 * Make this SharedArrayBuffer external. The pointer to underlying memory
4397 * block and byte length are returned as |Contents| structure. After
4398 * SharedArrayBuffer had been externalized, it does no longer own the memory
4399 * block. The caller should take steps to free memory when it is no longer
4400 * needed.
4401 *
4402 * The memory block is guaranteed to be allocated with |Allocator::Allocate|
4403 * by the allocator specified in
4404 * v8::Isolate::CreateParams::array_buffer_allocator.
4405 *
4406 */
4407 Contents Externalize();
4408
4409 /**
4410 * Get a pointer to the ArrayBuffer's underlying memory block without
4411 * externalizing it. If the ArrayBuffer is not externalized, this pointer
4412 * will become invalid as soon as the ArrayBuffer became garbage collected.
4413 *
4414 * The embedder should make sure to hold a strong reference to the
4415 * ArrayBuffer while accessing this pointer.
4416 *
4417 * The memory block is guaranteed to be allocated with |Allocator::Allocate|
4418 * by the allocator specified in
4419 * v8::Isolate::CreateParams::array_buffer_allocator.
4420 */
4421 Contents GetContents();
4422
4423 V8_INLINE static SharedArrayBuffer* Cast(Value* obj);
4424
4425 static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT;
4426
4427 private:
4428 SharedArrayBuffer();
4429 static void CheckCast(Value* obj);
4430 };
4431
4432
4433 /**
4434 * An instance of the built-in Date constructor (ECMA-262, 15.9).
4435 */
4436 class V8_EXPORT Date : public Object {
4437 public:
4438 static V8_DEPRECATE_SOON("Use maybe version.",
4439 Local<Value> New(Isolate* isolate, double time));
4440 static V8_WARN_UNUSED_RESULT MaybeLocal<Value> New(Local<Context> context,
4441 double time);
4442
4443 /**
4444 * A specialization of Value::NumberValue that is more efficient
4445 * because we know the structure of this object.
4446 */
4447 double ValueOf() const;
4448
4449 V8_INLINE static Date* Cast(v8::Value* obj);
4450
4451 /**
4452 * Notification that the embedder has changed the time zone,
4453 * daylight savings time, or other date / time configuration
4454 * parameters. V8 keeps a cache of various values used for
4455 * date / time computation. This notification will reset
4456 * those cached values for the current context so that date /
4457 * time configuration changes would be reflected in the Date
4458 * object.
4459 *
4460 * This API should not be called more than needed as it will
4461 * negatively impact the performance of date operations.
4462 */
4463 static void DateTimeConfigurationChangeNotification(Isolate* isolate);
4464
4465 private:
4466 static void CheckCast(v8::Value* obj);
4467 };
4468
4469
4470 /**
4471 * A Number object (ECMA-262, 4.3.21).
4472 */
4473 class V8_EXPORT NumberObject : public Object {
4474 public:
4475 static Local<Value> New(Isolate* isolate, double value);
4476
4477 double ValueOf() const;
4478
4479 V8_INLINE static NumberObject* Cast(v8::Value* obj);
4480
4481 private:
4482 static void CheckCast(v8::Value* obj);
4483 };
4484
4485
4486 /**
4487 * A Boolean object (ECMA-262, 4.3.15).
4488 */
4489 class V8_EXPORT BooleanObject : public Object {
4490 public:
4491 static Local<Value> New(Isolate* isolate, bool value);
4492 V8_DEPRECATED("Pass an isolate", static Local<Value> New(bool value));
4493
4494 bool ValueOf() const;
4495
4496 V8_INLINE static BooleanObject* Cast(v8::Value* obj);
4497
4498 private:
4499 static void CheckCast(v8::Value* obj);
4500 };
4501
4502
4503 /**
4504 * A String object (ECMA-262, 4.3.18).
4505 */
4506 class V8_EXPORT StringObject : public Object {
4507 public:
4508 static Local<Value> New(Local<String> value);
4509
4510 Local<String> ValueOf() const;
4511
4512 V8_INLINE static StringObject* Cast(v8::Value* obj);
4513
4514 private:
4515 static void CheckCast(v8::Value* obj);
4516 };
4517
4518
4519 /**
4520 * A Symbol object (ECMA-262 edition 6).
4521 *
4522 * This is an experimental feature. Use at your own risk.
4523 */
4524 class V8_EXPORT SymbolObject : public Object {
4525 public:
4526 static Local<Value> New(Isolate* isolate, Local<Symbol> value);
4527
4528 Local<Symbol> ValueOf() const;
4529
4530 V8_INLINE static SymbolObject* Cast(v8::Value* obj);
4531
4532 private:
4533 static void CheckCast(v8::Value* obj);
4534 };
4535
4536
4537 /**
4538 * An instance of the built-in RegExp constructor (ECMA-262, 15.10).
4539 */
4540 class V8_EXPORT RegExp : public Object {
4541 public:
4542 /**
4543 * Regular expression flag bits. They can be or'ed to enable a set
4544 * of flags.
4545 */
4546 enum Flags {
4547 kNone = 0,
4548 kGlobal = 1,
4549 kIgnoreCase = 2,
4550 kMultiline = 4,
4551 kSticky = 8,
4552 kUnicode = 16
4553 };
4554
4555 /**
4556 * Creates a regular expression from the given pattern string and
4557 * the flags bit field. May throw a JavaScript exception as
4558 * described in ECMA-262, 15.10.4.1.
4559 *
4560 * For example,
4561 * RegExp::New(v8::String::New("foo"),
4562 * static_cast<RegExp::Flags>(kGlobal | kMultiline))
4563 * is equivalent to evaluating "/foo/gm".
4564 */
4565 static V8_DEPRECATE_SOON("Use maybe version",
4566 Local<RegExp> New(Local<String> pattern,
4567 Flags flags));
4568 static V8_WARN_UNUSED_RESULT MaybeLocal<RegExp> New(Local<Context> context,
4569 Local<String> pattern,
4570 Flags flags);
4571
4572 /**
4573 * Returns the value of the source property: a string representing
4574 * the regular expression.
4575 */
4576 Local<String> GetSource() const;
4577
4578 /**
4579 * Returns the flags bit field.
4580 */
4581 Flags GetFlags() const;
4582
4583 V8_INLINE static RegExp* Cast(v8::Value* obj);
4584
4585 private:
4586 static void CheckCast(v8::Value* obj);
4587 };
4588
4589
4590 /**
4591 * A JavaScript value that wraps a C++ void*. This type of value is mainly used
4592 * to associate C++ data structures with JavaScript objects.
4593 */
4594 class V8_EXPORT External : public Value {
4595 public:
4596 static Local<External> New(Isolate* isolate, void* value);
4597 V8_INLINE static External* Cast(Value* obj);
4598 void* Value() const;
4599 private:
4600 static void CheckCast(v8::Value* obj);
4601 };
4602
4603
4604 #define V8_INTRINSICS_LIST(F) F(ArrayProto_values, array_values_iterator)
4605
4606 enum Intrinsic {
4607 #define V8_DECL_INTRINSIC(name, iname) k##name,
4608 V8_INTRINSICS_LIST(V8_DECL_INTRINSIC)
4609 #undef V8_DECL_INTRINSIC
4610 };
4611
4612
4613 // --- Templates ---
4614
4615
4616 /**
4617 * The superclass of object and function templates.
4618 */
4619 class V8_EXPORT Template : public Data {
4620 public:
4621 /**
4622 * Adds a property to each instance created by this template.
4623 *
4624 * The property must be defined either as a primitive value, or a template.
4625 */
4626 void Set(Local<Name> name, Local<Data> value,
4627 PropertyAttribute attributes = None);
4628 void SetPrivate(Local<Private> name, Local<Data> value,
4629 PropertyAttribute attributes = None);
4630 V8_INLINE void Set(Isolate* isolate, const char* name, Local<Data> value);
4631
4632 void SetAccessorProperty(
4633 Local<Name> name,
4634 Local<FunctionTemplate> getter = Local<FunctionTemplate>(),
4635 Local<FunctionTemplate> setter = Local<FunctionTemplate>(),
4636 PropertyAttribute attribute = None,
4637 AccessControl settings = DEFAULT);
4638
4639 /**
4640 * Whenever the property with the given name is accessed on objects
4641 * created from this Template the getter and setter callbacks
4642 * are called instead of getting and setting the property directly
4643 * on the JavaScript object.
4644 *
4645 * \param name The name of the property for which an accessor is added.
4646 * \param getter The callback to invoke when getting the property.
4647 * \param setter The callback to invoke when setting the property.
4648 * \param data A piece of data that will be passed to the getter and setter
4649 * callbacks whenever they are invoked.
4650 * \param settings Access control settings for the accessor. This is a bit
4651 * field consisting of one of more of
4652 * DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
4653 * The default is to not allow cross-context access.
4654 * ALL_CAN_READ means that all cross-context reads are allowed.
4655 * ALL_CAN_WRITE means that all cross-context writes are allowed.
4656 * The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
4657 * cross-context access.
4658 * \param attribute The attributes of the property for which an accessor
4659 * is added.
4660 * \param signature The signature describes valid receivers for the accessor
4661 * and is used to perform implicit instance checks against them. If the
4662 * receiver is incompatible (i.e. is not an instance of the constructor as
4663 * defined by FunctionTemplate::HasInstance()), an implicit TypeError is
4664 * thrown and no callback is invoked.
4665 */
4666 void SetNativeDataProperty(
4667 Local<String> name, AccessorGetterCallback getter,
4668 AccessorSetterCallback setter = 0,
4669 // TODO(dcarney): gcc can't handle Local below
4670 Local<Value> data = Local<Value>(), PropertyAttribute attribute = None,
4671 Local<AccessorSignature> signature = Local<AccessorSignature>(),
4672 AccessControl settings = DEFAULT);
4673 void SetNativeDataProperty(
4674 Local<Name> name, AccessorNameGetterCallback getter,
4675 AccessorNameSetterCallback setter = 0,
4676 // TODO(dcarney): gcc can't handle Local below
4677 Local<Value> data = Local<Value>(), PropertyAttribute attribute = None,
4678 Local<AccessorSignature> signature = Local<AccessorSignature>(),
4679 AccessControl settings = DEFAULT);
4680
4681 /**
4682 * Like SetNativeDataProperty, but V8 will replace the native data property
4683 * with a real data property on first access.
4684 */
4685 void SetLazyDataProperty(Local<Name> name, AccessorNameGetterCallback getter,
4686 Local<Value> data = Local<Value>(),
4687 PropertyAttribute attribute = None);
4688
4689 /**
4690 * During template instantiation, sets the value with the intrinsic property
4691 * from the correct context.
4692 */
4693 void SetIntrinsicDataProperty(Local<Name> name, Intrinsic intrinsic,
4694 PropertyAttribute attribute = None);
4695
4696 private:
4697 Template();
4698
4699 friend class ObjectTemplate;
4700 friend class FunctionTemplate;
4701 };
4702
4703
4704 /**
4705 * NamedProperty[Getter|Setter] are used as interceptors on object.
4706 * See ObjectTemplate::SetNamedPropertyHandler.
4707 */
4708 typedef void (*NamedPropertyGetterCallback)(
4709 Local<String> property,
4710 const PropertyCallbackInfo<Value>& info);
4711
4712
4713 /**
4714 * Returns the value if the setter intercepts the request.
4715 * Otherwise, returns an empty handle.
4716 */
4717 typedef void (*NamedPropertySetterCallback)(
4718 Local<String> property,
4719 Local<Value> value,
4720 const PropertyCallbackInfo<Value>& info);
4721
4722
4723 /**
4724 * Returns a non-empty handle if the interceptor intercepts the request.
4725 * The result is an integer encoding property attributes (like v8::None,
4726 * v8::DontEnum, etc.)
4727 */
4728 typedef void (*NamedPropertyQueryCallback)(
4729 Local<String> property,
4730 const PropertyCallbackInfo<Integer>& info);
4731
4732
4733 /**
4734 * Returns a non-empty handle if the deleter intercepts the request.
4735 * The return value is true if the property could be deleted and false
4736 * otherwise.
4737 */
4738 typedef void (*NamedPropertyDeleterCallback)(
4739 Local<String> property,
4740 const PropertyCallbackInfo<Boolean>& info);
4741
4742
4743 /**
4744 * Returns an array containing the names of the properties the named
4745 * property getter intercepts.
4746 */
4747 typedef void (*NamedPropertyEnumeratorCallback)(
4748 const PropertyCallbackInfo<Array>& info);
4749
4750
4751 // TODO(dcarney): Deprecate and remove previous typedefs, and replace
4752 // GenericNamedPropertyFooCallback with just NamedPropertyFooCallback.
4753
4754 /**
4755 * Interceptor for get requests on an object.
4756 *
4757 * Use `info.GetReturnValue().Set()` to set the return value of the
4758 * intercepted get request.
4759 *
4760 * \param property The name of the property for which the request was
4761 * intercepted.
4762 * \param info Information about the intercepted request, such as
4763 * isolate, receiver, return value, or whether running in `'use strict`' mode.
4764 * See `PropertyCallbackInfo`.
4765 *
4766 * \code
4767 * void GetterCallback(
4768 * Local<Name> name,
4769 * const v8::PropertyCallbackInfo<v8::Value>& info) {
4770 * info.GetReturnValue().Set(v8_num(42));
4771 * }
4772 *
4773 * v8::Local<v8::FunctionTemplate> templ =
4774 * v8::FunctionTemplate::New(isolate);
4775 * templ->InstanceTemplate()->SetHandler(
4776 * v8::NamedPropertyHandlerConfiguration(GetterCallback));
4777 * LocalContext env;
4778 * env->Global()
4779 * ->Set(env.local(), v8_str("obj"), templ->GetFunction(env.local())
4780 * .ToLocalChecked()
4781 * ->NewInstance(env.local())
4782 * .ToLocalChecked())
4783 * .FromJust();
4784 * v8::Local<v8::Value> result = CompileRun("obj.a = 17; obj.a");
4785 * CHECK(v8_num(42)->Equals(env.local(), result).FromJust());
4786 * \endcode
4787 *
4788 * See also `ObjectTemplate::SetHandler`.
4789 */
4790 typedef void (*GenericNamedPropertyGetterCallback)(
4791 Local<Name> property, const PropertyCallbackInfo<Value>& info);
4792
4793 /**
4794 * Interceptor for set requests on an object.
4795 *
4796 * Use `info.GetReturnValue()` to indicate whether the request was intercepted
4797 * or not. If the setter successfully intercepts the request, i.e., if the
4798 * request should not be further executed, call
4799 * `info.GetReturnValue().Set(value)`. If the setter
4800 * did not intercept the request, i.e., if the request should be handled as
4801 * if no interceptor is present, do not not call `Set()`.
4802 *
4803 * \param property The name of the property for which the request was
4804 * intercepted.
4805 * \param value The value which the property will have if the request
4806 * is not intercepted.
4807 * \param info Information about the intercepted request, such as
4808 * isolate, receiver, return value, or whether running in `'use strict'` mode.
4809 * See `PropertyCallbackInfo`.
4810 *
4811 * See also
4812 * `ObjectTemplate::SetHandler.`
4813 */
4814 typedef void (*GenericNamedPropertySetterCallback)(
4815 Local<Name> property, Local<Value> value,
4816 const PropertyCallbackInfo<Value>& info);
4817
4818 /**
4819 * Intercepts all requests that query the attributes of the
4820 * property, e.g., getOwnPropertyDescriptor(), propertyIsEnumerable(), and
4821 * defineProperty().
4822 *
4823 * Use `info.GetReturnValue().Set(value)` to set the property attributes. The
4824 * value is an interger encoding a `v8::PropertyAttribute`.
4825 *
4826 * \param property The name of the property for which the request was
4827 * intercepted.
4828 * \param info Information about the intercepted request, such as
4829 * isolate, receiver, return value, or whether running in `'use strict'` mode.
4830 * See `PropertyCallbackInfo`.
4831 *
4832 * \note Some functions query the property attributes internally, even though
4833 * they do not return the attributes. For example, `hasOwnProperty()` can
4834 * trigger this interceptor depending on the state of the object.
4835 *
4836 * See also
4837 * `ObjectTemplate::SetHandler.`
4838 */
4839 typedef void (*GenericNamedPropertyQueryCallback)(
4840 Local<Name> property, const PropertyCallbackInfo<Integer>& info);
4841
4842 /**
4843 * Interceptor for delete requests on an object.
4844 *
4845 * Use `info.GetReturnValue()` to indicate whether the request was intercepted
4846 * or not. If the deleter successfully intercepts the request, i.e., if the
4847 * request should not be further executed, call
4848 * `info.GetReturnValue().Set(value)` with a boolean `value`. The `value` is
4849 * used as the return value of `delete`.
4850 *
4851 * \param property The name of the property for which the request was
4852 * intercepted.
4853 * \param info Information about the intercepted request, such as
4854 * isolate, receiver, return value, or whether running in `'use strict'` mode.
4855 * See `PropertyCallbackInfo`.
4856 *
4857 * \note If you need to mimic the behavior of `delete`, i.e., throw in strict
4858 * mode instead of returning false, use `info.ShouldThrowOnError()` to determine
4859 * if you are in strict mode.
4860 *
4861 * See also `ObjectTemplate::SetHandler.`
4862 */
4863 typedef void (*GenericNamedPropertyDeleterCallback)(
4864 Local<Name> property, const PropertyCallbackInfo<Boolean>& info);
4865
4866
4867 /**
4868 * Returns an array containing the names of the properties the named
4869 * property getter intercepts.
4870 */
4871 typedef void (*GenericNamedPropertyEnumeratorCallback)(
4872 const PropertyCallbackInfo<Array>& info);
4873
4874 /**
4875 * Interceptor for defineProperty requests on an object.
4876 *
4877 * Use `info.GetReturnValue()` to indicate whether the request was intercepted
4878 * or not. If the definer successfully intercepts the request, i.e., if the
4879 * request should not be further executed, call
4880 * `info.GetReturnValue().Set(value)`. If the definer
4881 * did not intercept the request, i.e., if the request should be handled as
4882 * if no interceptor is present, do not not call `Set()`.
4883 *
4884 * \param property The name of the property for which the request was
4885 * intercepted.
4886 * \param desc The property descriptor which is used to define the
4887 * property if the request is not intercepted.
4888 * \param info Information about the intercepted request, such as
4889 * isolate, receiver, return value, or whether running in `'use strict'` mode.
4890 * See `PropertyCallbackInfo`.
4891 *
4892 * See also `ObjectTemplate::SetHandler`.
4893 */
4894 typedef void (*GenericNamedPropertyDefinerCallback)(
4895 Local<Name> property, const PropertyDescriptor& desc,
4896 const PropertyCallbackInfo<Value>& info);
4897
4898 /**
4899 * Interceptor for getOwnPropertyDescriptor requests on an object.
4900 *
4901 * Use `info.GetReturnValue().Set()` to set the return value of the
4902 * intercepted request. The return value must be an object that
4903 * can be converted to a PropertyDescriptor, e.g., a `v8::value` returned from
4904 * `v8::Object::getOwnPropertyDescriptor`.
4905 *
4906 * \param property The name of the property for which the request was
4907 * intercepted.
4908 * \info Information about the intercepted request, such as
4909 * isolate, receiver, return value, or whether running in `'use strict'` mode.
4910 * See `PropertyCallbackInfo`.
4911 *
4912 * \note If GetOwnPropertyDescriptor is intercepted, it will
4913 * always return true, i.e., indicate that the property was found.
4914 *
4915 * See also `ObjectTemplate::SetHandler`.
4916 */
4917 typedef void (*GenericNamedPropertyDescriptorCallback)(
4918 Local<Name> property, const PropertyCallbackInfo<Value>& info);
4919
4920 /**
4921 * See `v8::GenericNamedPropertyGetterCallback`.
4922 */
4923 typedef void (*IndexedPropertyGetterCallback)(
4924 uint32_t index,
4925 const PropertyCallbackInfo<Value>& info);
4926
4927 /**
4928 * See `v8::GenericNamedPropertySetterCallback`.
4929 */
4930 typedef void (*IndexedPropertySetterCallback)(
4931 uint32_t index,
4932 Local<Value> value,
4933 const PropertyCallbackInfo<Value>& info);
4934
4935 /**
4936 * See `v8::GenericNamedPropertyQueryCallback`.
4937 */
4938 typedef void (*IndexedPropertyQueryCallback)(
4939 uint32_t index,
4940 const PropertyCallbackInfo<Integer>& info);
4941
4942 /**
4943 * See `v8::GenericNamedPropertyDeleterCallback`.
4944 */
4945 typedef void (*IndexedPropertyDeleterCallback)(
4946 uint32_t index,
4947 const PropertyCallbackInfo<Boolean>& info);
4948
4949 /**
4950 * See `v8::GenericNamedPropertyEnumeratorCallback`.
4951 */
4952 typedef void (*IndexedPropertyEnumeratorCallback)(
4953 const PropertyCallbackInfo<Array>& info);
4954
4955 /**
4956 * See `v8::GenericNamedPropertyDefinerCallback`.
4957 */
4958 typedef void (*IndexedPropertyDefinerCallback)(
4959 uint32_t index, const PropertyDescriptor& desc,
4960 const PropertyCallbackInfo<Value>& info);
4961
4962 /**
4963 * See `v8::GenericNamedPropertyDescriptorCallback`.
4964 */
4965 typedef void (*IndexedPropertyDescriptorCallback)(
4966 uint32_t index, const PropertyCallbackInfo<Value>& info);
4967
4968 /**
4969 * Access type specification.
4970 */
4971 enum AccessType {
4972 ACCESS_GET,
4973 ACCESS_SET,
4974 ACCESS_HAS,
4975 ACCESS_DELETE,
4976 ACCESS_KEYS
4977 };
4978
4979
4980 /**
4981 * Returns true if the given context should be allowed to access the given
4982 * object.
4983 */
4984 typedef bool (*AccessCheckCallback)(Local<Context> accessing_context,
4985 Local<Object> accessed_object,
4986 Local<Value> data);
4987
4988 /**
4989 * A FunctionTemplate is used to create functions at runtime. There
4990 * can only be one function created from a FunctionTemplate in a
4991 * context. The lifetime of the created function is equal to the
4992 * lifetime of the context. So in case the embedder needs to create
4993 * temporary functions that can be collected using Scripts is
4994 * preferred.
4995 *
4996 * Any modification of a FunctionTemplate after first instantiation will trigger
4997 * a crash.
4998 *
4999 * A FunctionTemplate can have properties, these properties are added to the
5000 * function object when it is created.
5001 *
5002 * A FunctionTemplate has a corresponding instance template which is
5003 * used to create object instances when the function is used as a
5004 * constructor. Properties added to the instance template are added to
5005 * each object instance.
5006 *
5007 * A FunctionTemplate can have a prototype template. The prototype template
5008 * is used to create the prototype object of the function.
5009 *
5010 * The following example shows how to use a FunctionTemplate:
5011 *
5012 * \code
5013 * v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New(isolate);
5014 * t->Set(isolate, "func_property", v8::Number::New(isolate, 1));
5015 *
5016 * v8::Local<v8::Template> proto_t = t->PrototypeTemplate();
5017 * proto_t->Set(isolate,
5018 * "proto_method",
5019 * v8::FunctionTemplate::New(isolate, InvokeCallback));
5020 * proto_t->Set(isolate, "proto_const", v8::Number::New(isolate, 2));
5021 *
5022 * v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate();
5023 * instance_t->SetAccessor(String::NewFromUtf8(isolate, "instance_accessor"),
5024 * InstanceAccessorCallback);
5025 * instance_t->SetNamedPropertyHandler(PropertyHandlerCallback);
5026 * instance_t->Set(String::NewFromUtf8(isolate, "instance_property"),
5027 * Number::New(isolate, 3));
5028 *
5029 * v8::Local<v8::Function> function = t->GetFunction();
5030 * v8::Local<v8::Object> instance = function->NewInstance();
5031 * \endcode
5032 *
5033 * Let's use "function" as the JS variable name of the function object
5034 * and "instance" for the instance object created above. The function
5035 * and the instance will have the following properties:
5036 *
5037 * \code
5038 * func_property in function == true;
5039 * function.func_property == 1;
5040 *
5041 * function.prototype.proto_method() invokes 'InvokeCallback'
5042 * function.prototype.proto_const == 2;
5043 *
5044 * instance instanceof function == true;
5045 * instance.instance_accessor calls 'InstanceAccessorCallback'
5046 * instance.instance_property == 3;
5047 * \endcode
5048 *
5049 * A FunctionTemplate can inherit from another one by calling the
5050 * FunctionTemplate::Inherit method. The following graph illustrates
5051 * the semantics of inheritance:
5052 *
5053 * \code
5054 * FunctionTemplate Parent -> Parent() . prototype -> { }
5055 * ^ ^
5056 * | Inherit(Parent) | .__proto__
5057 * | |
5058 * FunctionTemplate Child -> Child() . prototype -> { }
5059 * \endcode
5060 *
5061 * A FunctionTemplate 'Child' inherits from 'Parent', the prototype
5062 * object of the Child() function has __proto__ pointing to the
5063 * Parent() function's prototype object. An instance of the Child
5064 * function has all properties on Parent's instance templates.
5065 *
5066 * Let Parent be the FunctionTemplate initialized in the previous
5067 * section and create a Child FunctionTemplate by:
5068 *
5069 * \code
5070 * Local<FunctionTemplate> parent = t;
5071 * Local<FunctionTemplate> child = FunctionTemplate::New();
5072 * child->Inherit(parent);
5073 *
5074 * Local<Function> child_function = child->GetFunction();
5075 * Local<Object> child_instance = child_function->NewInstance();
5076 * \endcode
5077 *
5078 * The Child function and Child instance will have the following
5079 * properties:
5080 *
5081 * \code
5082 * child_func.prototype.__proto__ == function.prototype;
5083 * child_instance.instance_accessor calls 'InstanceAccessorCallback'
5084 * child_instance.instance_property == 3;
5085 * \endcode
5086 */
5087 class V8_EXPORT FunctionTemplate : public Template {
5088 public:
5089 /** Creates a function template.*/
5090 static Local<FunctionTemplate> New(
5091 Isolate* isolate, FunctionCallback callback = 0,
5092 Local<Value> data = Local<Value>(),
5093 Local<Signature> signature = Local<Signature>(), int length = 0,
5094 ConstructorBehavior behavior = ConstructorBehavior::kAllow);
5095
5096 /** Get a template included in the snapshot by index. */
5097 static MaybeLocal<FunctionTemplate> FromSnapshot(Isolate* isolate,
5098 size_t index);
5099
5100 /**
5101 * Creates a function template with a fast handler. If a fast handler is set,
5102 * the callback cannot be null.
5103 */
5104 static Local<FunctionTemplate> NewWithFastHandler(
5105 Isolate* isolate, FunctionCallback callback,
5106 experimental::FastAccessorBuilder* fast_handler = nullptr,
5107 Local<Value> data = Local<Value>(),
5108 Local<Signature> signature = Local<Signature>(), int length = 0);
5109
5110 /**
5111 * Creates a function template backed/cached by a private property.
5112 */
5113 static Local<FunctionTemplate> NewWithCache(
5114 Isolate* isolate, FunctionCallback callback,
5115 Local<Private> cache_property, Local<Value> data = Local<Value>(),
5116 Local<Signature> signature = Local<Signature>(), int length = 0);
5117
5118 /** Returns the unique function instance in the current execution context.*/
5119 V8_DEPRECATE_SOON("Use maybe version", Local<Function> GetFunction());
5120 V8_WARN_UNUSED_RESULT MaybeLocal<Function> GetFunction(
5121 Local<Context> context);
5122
5123 /**
5124 * Similar to Context::NewRemoteContext, this creates an instance that
5125 * isn't backed by an actual object.
5126 *
5127 * The InstanceTemplate of this FunctionTemplate must have access checks with
5128 * handlers installed.
5129 */
5130 V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewRemoteInstance();
5131
5132 /**
5133 * Set the call-handler callback for a FunctionTemplate. This
5134 * callback is called whenever the function created from this
5135 * FunctionTemplate is called.
5136 */
5137 void SetCallHandler(
5138 FunctionCallback callback, Local<Value> data = Local<Value>(),
5139 experimental::FastAccessorBuilder* fast_handler = nullptr);
5140
5141 /** Set the predefined length property for the FunctionTemplate. */
5142 void SetLength(int length);
5143
5144 /** Get the InstanceTemplate. */
5145 Local<ObjectTemplate> InstanceTemplate();
5146
5147 /** Causes the function template to inherit from a parent function template.*/
5148 void Inherit(Local<FunctionTemplate> parent);
5149
5150 /**
5151 * A PrototypeTemplate is the template used to create the prototype object
5152 * of the function created by this template.
5153 */
5154 Local<ObjectTemplate> PrototypeTemplate();
5155
5156 /**
5157 * Set the class name of the FunctionTemplate. This is used for
5158 * printing objects created with the function created from the
5159 * FunctionTemplate as its constructor.
5160 */
5161 void SetClassName(Local<String> name);
5162
5163
5164 /**
5165 * When set to true, no access check will be performed on the receiver of a
5166 * function call. Currently defaults to true, but this is subject to change.
5167 */
5168 void SetAcceptAnyReceiver(bool value);
5169
5170 /**
5171 * Determines whether the __proto__ accessor ignores instances of
5172 * the function template. If instances of the function template are
5173 * ignored, __proto__ skips all instances and instead returns the
5174 * next object in the prototype chain.
5175 *
5176 * Call with a value of true to make the __proto__ accessor ignore
5177 * instances of the function template. Call with a value of false
5178 * to make the __proto__ accessor not ignore instances of the
5179 * function template. By default, instances of a function template
5180 * are not ignored.
5181 */
5182 void SetHiddenPrototype(bool value);
5183
5184 /**
5185 * Sets the ReadOnly flag in the attributes of the 'prototype' property
5186 * of functions created from this FunctionTemplate to true.
5187 */
5188 void ReadOnlyPrototype();
5189
5190 /**
5191 * Removes the prototype property from functions created from this
5192 * FunctionTemplate.
5193 */
5194 void RemovePrototype();
5195
5196 /**
5197 * Returns true if the given object is an instance of this function
5198 * template.
5199 */
5200 bool HasInstance(Local<Value> object);
5201
5202 private:
5203 FunctionTemplate();
5204 friend class Context;
5205 friend class ObjectTemplate;
5206 };
5207
5208 /**
5209 * Configuration flags for v8::NamedPropertyHandlerConfiguration or
5210 * v8::IndexedPropertyHandlerConfiguration.
5211 */
5212 enum class PropertyHandlerFlags {
5213 /**
5214 * None.
5215 */
5216 kNone = 0,
5217
5218 /**
5219 * See ALL_CAN_READ above.
5220 */
5221 kAllCanRead = 1,
5222
5223 /** Will not call into interceptor for properties on the receiver or prototype
5224 * chain, i.e., only call into interceptor for properties that do not exist.
5225 * Currently only valid for named interceptors.
5226 */
5227 kNonMasking = 1 << 1,
5228
5229 /**
5230 * Will not call into interceptor for symbol lookup. Only meaningful for
5231 * named interceptors.
5232 */
5233 kOnlyInterceptStrings = 1 << 2,
5234 };
5235
5236 struct NamedPropertyHandlerConfiguration {
5237 NamedPropertyHandlerConfiguration(
5238 /** Note: getter is required */
5239 GenericNamedPropertyGetterCallback getter = 0,
5240 GenericNamedPropertySetterCallback setter = 0,
5241 GenericNamedPropertyQueryCallback query = 0,
5242 GenericNamedPropertyDeleterCallback deleter = 0,
5243 GenericNamedPropertyEnumeratorCallback enumerator = 0,
5244 Local<Value> data = Local<Value>(),
5245 PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
getterNamedPropertyHandlerConfiguration5246 : getter(getter),
5247 setter(setter),
5248 query(query),
5249 deleter(deleter),
5250 enumerator(enumerator),
5251 definer(0),
5252 descriptor(0),
5253 data(data),
5254 flags(flags) {}
5255
5256 NamedPropertyHandlerConfiguration(
5257 GenericNamedPropertyGetterCallback getter,
5258 GenericNamedPropertySetterCallback setter,
5259 GenericNamedPropertyDescriptorCallback descriptor,
5260 GenericNamedPropertyDeleterCallback deleter,
5261 GenericNamedPropertyEnumeratorCallback enumerator,
5262 GenericNamedPropertyDefinerCallback definer,
5263 Local<Value> data = Local<Value>(),
5264 PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
getterNamedPropertyHandlerConfiguration5265 : getter(getter),
5266 setter(setter),
5267 query(0),
5268 deleter(deleter),
5269 enumerator(enumerator),
5270 definer(definer),
5271 descriptor(descriptor),
5272 data(data),
5273 flags(flags) {}
5274
5275 GenericNamedPropertyGetterCallback getter;
5276 GenericNamedPropertySetterCallback setter;
5277 GenericNamedPropertyQueryCallback query;
5278 GenericNamedPropertyDeleterCallback deleter;
5279 GenericNamedPropertyEnumeratorCallback enumerator;
5280 GenericNamedPropertyDefinerCallback definer;
5281 GenericNamedPropertyDescriptorCallback descriptor;
5282 Local<Value> data;
5283 PropertyHandlerFlags flags;
5284 };
5285
5286
5287 struct IndexedPropertyHandlerConfiguration {
5288 IndexedPropertyHandlerConfiguration(
5289 /** Note: getter is required */
5290 IndexedPropertyGetterCallback getter = 0,
5291 IndexedPropertySetterCallback setter = 0,
5292 IndexedPropertyQueryCallback query = 0,
5293 IndexedPropertyDeleterCallback deleter = 0,
5294 IndexedPropertyEnumeratorCallback enumerator = 0,
5295 Local<Value> data = Local<Value>(),
5296 PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
getterIndexedPropertyHandlerConfiguration5297 : getter(getter),
5298 setter(setter),
5299 query(query),
5300 deleter(deleter),
5301 enumerator(enumerator),
5302 definer(0),
5303 descriptor(0),
5304 data(data),
5305 flags(flags) {}
5306
5307 IndexedPropertyHandlerConfiguration(
5308 IndexedPropertyGetterCallback getter,
5309 IndexedPropertySetterCallback setter,
5310 IndexedPropertyDescriptorCallback descriptor,
5311 IndexedPropertyDeleterCallback deleter,
5312 IndexedPropertyEnumeratorCallback enumerator,
5313 IndexedPropertyDefinerCallback definer,
5314 Local<Value> data = Local<Value>(),
5315 PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
getterIndexedPropertyHandlerConfiguration5316 : getter(getter),
5317 setter(setter),
5318 query(0),
5319 deleter(deleter),
5320 enumerator(enumerator),
5321 definer(definer),
5322 descriptor(descriptor),
5323 data(data),
5324 flags(flags) {}
5325
5326 IndexedPropertyGetterCallback getter;
5327 IndexedPropertySetterCallback setter;
5328 IndexedPropertyQueryCallback query;
5329 IndexedPropertyDeleterCallback deleter;
5330 IndexedPropertyEnumeratorCallback enumerator;
5331 IndexedPropertyDefinerCallback definer;
5332 IndexedPropertyDescriptorCallback descriptor;
5333 Local<Value> data;
5334 PropertyHandlerFlags flags;
5335 };
5336
5337
5338 /**
5339 * An ObjectTemplate is used to create objects at runtime.
5340 *
5341 * Properties added to an ObjectTemplate are added to each object
5342 * created from the ObjectTemplate.
5343 */
5344 class V8_EXPORT ObjectTemplate : public Template {
5345 public:
5346 /** Creates an ObjectTemplate. */
5347 static Local<ObjectTemplate> New(
5348 Isolate* isolate,
5349 Local<FunctionTemplate> constructor = Local<FunctionTemplate>());
5350 static V8_DEPRECATED("Use isolate version", Local<ObjectTemplate> New());
5351
5352 /** Get a template included in the snapshot by index. */
5353 static MaybeLocal<ObjectTemplate> FromSnapshot(Isolate* isolate,
5354 size_t index);
5355
5356 /** Creates a new instance of this template.*/
5357 V8_DEPRECATE_SOON("Use maybe version", Local<Object> NewInstance());
5358 V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(Local<Context> context);
5359
5360 /**
5361 * Sets an accessor on the object template.
5362 *
5363 * Whenever the property with the given name is accessed on objects
5364 * created from this ObjectTemplate the getter and setter callbacks
5365 * are called instead of getting and setting the property directly
5366 * on the JavaScript object.
5367 *
5368 * \param name The name of the property for which an accessor is added.
5369 * \param getter The callback to invoke when getting the property.
5370 * \param setter The callback to invoke when setting the property.
5371 * \param data A piece of data that will be passed to the getter and setter
5372 * callbacks whenever they are invoked.
5373 * \param settings Access control settings for the accessor. This is a bit
5374 * field consisting of one of more of
5375 * DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
5376 * The default is to not allow cross-context access.
5377 * ALL_CAN_READ means that all cross-context reads are allowed.
5378 * ALL_CAN_WRITE means that all cross-context writes are allowed.
5379 * The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
5380 * cross-context access.
5381 * \param attribute The attributes of the property for which an accessor
5382 * is added.
5383 * \param signature The signature describes valid receivers for the accessor
5384 * and is used to perform implicit instance checks against them. If the
5385 * receiver is incompatible (i.e. is not an instance of the constructor as
5386 * defined by FunctionTemplate::HasInstance()), an implicit TypeError is
5387 * thrown and no callback is invoked.
5388 */
5389 void SetAccessor(
5390 Local<String> name, AccessorGetterCallback getter,
5391 AccessorSetterCallback setter = 0, Local<Value> data = Local<Value>(),
5392 AccessControl settings = DEFAULT, PropertyAttribute attribute = None,
5393 Local<AccessorSignature> signature = Local<AccessorSignature>());
5394 void SetAccessor(
5395 Local<Name> name, AccessorNameGetterCallback getter,
5396 AccessorNameSetterCallback setter = 0, Local<Value> data = Local<Value>(),
5397 AccessControl settings = DEFAULT, PropertyAttribute attribute = None,
5398 Local<AccessorSignature> signature = Local<AccessorSignature>());
5399
5400 /**
5401 * Sets a named property handler on the object template.
5402 *
5403 * Whenever a property whose name is a string is accessed on objects created
5404 * from this object template, the provided callback is invoked instead of
5405 * accessing the property directly on the JavaScript object.
5406 *
5407 * SetNamedPropertyHandler() is different from SetHandler(), in
5408 * that the latter can intercept symbol-named properties as well as
5409 * string-named properties when called with a
5410 * NamedPropertyHandlerConfiguration. New code should use SetHandler().
5411 *
5412 * \param getter The callback to invoke when getting a property.
5413 * \param setter The callback to invoke when setting a property.
5414 * \param query The callback to invoke to check if a property is present,
5415 * and if present, get its attributes.
5416 * \param deleter The callback to invoke when deleting a property.
5417 * \param enumerator The callback to invoke to enumerate all the named
5418 * properties of an object.
5419 * \param data A piece of data that will be passed to the callbacks
5420 * whenever they are invoked.
5421 */
5422 // TODO(dcarney): deprecate
5423 void SetNamedPropertyHandler(NamedPropertyGetterCallback getter,
5424 NamedPropertySetterCallback setter = 0,
5425 NamedPropertyQueryCallback query = 0,
5426 NamedPropertyDeleterCallback deleter = 0,
5427 NamedPropertyEnumeratorCallback enumerator = 0,
5428 Local<Value> data = Local<Value>());
5429
5430 /**
5431 * Sets a named property handler on the object template.
5432 *
5433 * Whenever a property whose name is a string or a symbol is accessed on
5434 * objects created from this object template, the provided callback is
5435 * invoked instead of accessing the property directly on the JavaScript
5436 * object.
5437 *
5438 * @param configuration The NamedPropertyHandlerConfiguration that defines the
5439 * callbacks to invoke when accessing a property.
5440 */
5441 void SetHandler(const NamedPropertyHandlerConfiguration& configuration);
5442
5443 /**
5444 * Sets an indexed property handler on the object template.
5445 *
5446 * Whenever an indexed property is accessed on objects created from
5447 * this object template, the provided callback is invoked instead of
5448 * accessing the property directly on the JavaScript object.
5449 *
5450 * \param getter The callback to invoke when getting a property.
5451 * \param setter The callback to invoke when setting a property.
5452 * \param query The callback to invoke to check if an object has a property.
5453 * \param deleter The callback to invoke when deleting a property.
5454 * \param enumerator The callback to invoke to enumerate all the indexed
5455 * properties of an object.
5456 * \param data A piece of data that will be passed to the callbacks
5457 * whenever they are invoked.
5458 */
5459 // TODO(dcarney): deprecate
5460 void SetIndexedPropertyHandler(
5461 IndexedPropertyGetterCallback getter,
5462 IndexedPropertySetterCallback setter = 0,
5463 IndexedPropertyQueryCallback query = 0,
5464 IndexedPropertyDeleterCallback deleter = 0,
5465 IndexedPropertyEnumeratorCallback enumerator = 0,
5466 Local<Value> data = Local<Value>()) {
5467 SetHandler(IndexedPropertyHandlerConfiguration(getter, setter, query,
5468 deleter, enumerator, data));
5469 }
5470
5471 /**
5472 * Sets an indexed property handler on the object template.
5473 *
5474 * Whenever an indexed property is accessed on objects created from
5475 * this object template, the provided callback is invoked instead of
5476 * accessing the property directly on the JavaScript object.
5477 *
5478 * @param configuration The IndexedPropertyHandlerConfiguration that defines
5479 * the callbacks to invoke when accessing a property.
5480 */
5481 void SetHandler(const IndexedPropertyHandlerConfiguration& configuration);
5482
5483 /**
5484 * Sets the callback to be used when calling instances created from
5485 * this template as a function. If no callback is set, instances
5486 * behave like normal JavaScript objects that cannot be called as a
5487 * function.
5488 */
5489 void SetCallAsFunctionHandler(FunctionCallback callback,
5490 Local<Value> data = Local<Value>());
5491
5492 /**
5493 * Mark object instances of the template as undetectable.
5494 *
5495 * In many ways, undetectable objects behave as though they are not
5496 * there. They behave like 'undefined' in conditionals and when
5497 * printed. However, properties can be accessed and called as on
5498 * normal objects.
5499 */
5500 void MarkAsUndetectable();
5501
5502 /**
5503 * Sets access check callback on the object template and enables access
5504 * checks.
5505 *
5506 * When accessing properties on instances of this object template,
5507 * the access check callback will be called to determine whether or
5508 * not to allow cross-context access to the properties.
5509 */
5510 void SetAccessCheckCallback(AccessCheckCallback callback,
5511 Local<Value> data = Local<Value>());
5512
5513 /**
5514 * Like SetAccessCheckCallback but invokes an interceptor on failed access
5515 * checks instead of looking up all-can-read properties. You can only use
5516 * either this method or SetAccessCheckCallback, but not both at the same
5517 * time.
5518 */
5519 void SetAccessCheckCallbackAndHandler(
5520 AccessCheckCallback callback,
5521 const NamedPropertyHandlerConfiguration& named_handler,
5522 const IndexedPropertyHandlerConfiguration& indexed_handler,
5523 Local<Value> data = Local<Value>());
5524
5525 /**
5526 * Gets the number of internal fields for objects generated from
5527 * this template.
5528 */
5529 int InternalFieldCount();
5530
5531 /**
5532 * Sets the number of internal fields for objects generated from
5533 * this template.
5534 */
5535 void SetInternalFieldCount(int value);
5536
5537 /**
5538 * Returns true if the object will be an immutable prototype exotic object.
5539 */
5540 bool IsImmutableProto();
5541
5542 /**
5543 * Makes the ObjectTempate for an immutable prototype exotic object, with an
5544 * immutable __proto__.
5545 */
5546 void SetImmutableProto();
5547
5548 private:
5549 ObjectTemplate();
5550 static Local<ObjectTemplate> New(internal::Isolate* isolate,
5551 Local<FunctionTemplate> constructor);
5552 friend class FunctionTemplate;
5553 };
5554
5555
5556 /**
5557 * A Signature specifies which receiver is valid for a function.
5558 */
5559 class V8_EXPORT Signature : public Data {
5560 public:
5561 static Local<Signature> New(
5562 Isolate* isolate,
5563 Local<FunctionTemplate> receiver = Local<FunctionTemplate>());
5564
5565 private:
5566 Signature();
5567 };
5568
5569
5570 /**
5571 * An AccessorSignature specifies which receivers are valid parameters
5572 * to an accessor callback.
5573 */
5574 class V8_EXPORT AccessorSignature : public Data {
5575 public:
5576 static Local<AccessorSignature> New(
5577 Isolate* isolate,
5578 Local<FunctionTemplate> receiver = Local<FunctionTemplate>());
5579
5580 private:
5581 AccessorSignature();
5582 };
5583
5584
5585 // --- Extensions ---
5586
5587 class V8_EXPORT ExternalOneByteStringResourceImpl
5588 : public String::ExternalOneByteStringResource {
5589 public:
ExternalOneByteStringResourceImpl()5590 ExternalOneByteStringResourceImpl() : data_(0), length_(0) {}
ExternalOneByteStringResourceImpl(const char * data,size_t length)5591 ExternalOneByteStringResourceImpl(const char* data, size_t length)
5592 : data_(data), length_(length) {}
data()5593 const char* data() const { return data_; }
length()5594 size_t length() const { return length_; }
5595
5596 private:
5597 const char* data_;
5598 size_t length_;
5599 };
5600
5601 /**
5602 * Ignore
5603 */
5604 class V8_EXPORT Extension { // NOLINT
5605 public:
5606 // Note that the strings passed into this constructor must live as long
5607 // as the Extension itself.
5608 Extension(const char* name,
5609 const char* source = 0,
5610 int dep_count = 0,
5611 const char** deps = 0,
5612 int source_length = -1);
~Extension()5613 virtual ~Extension() { }
GetNativeFunctionTemplate(v8::Isolate * isolate,v8::Local<v8::String> name)5614 virtual v8::Local<v8::FunctionTemplate> GetNativeFunctionTemplate(
5615 v8::Isolate* isolate, v8::Local<v8::String> name) {
5616 return v8::Local<v8::FunctionTemplate>();
5617 }
5618
name()5619 const char* name() const { return name_; }
source_length()5620 size_t source_length() const { return source_length_; }
source()5621 const String::ExternalOneByteStringResource* source() const {
5622 return &source_; }
dependency_count()5623 int dependency_count() { return dep_count_; }
dependencies()5624 const char** dependencies() { return deps_; }
set_auto_enable(bool value)5625 void set_auto_enable(bool value) { auto_enable_ = value; }
auto_enable()5626 bool auto_enable() { return auto_enable_; }
5627
5628 // Disallow copying and assigning.
5629 Extension(const Extension&) = delete;
5630 void operator=(const Extension&) = delete;
5631
5632 private:
5633 const char* name_;
5634 size_t source_length_; // expected to initialize before source_
5635 ExternalOneByteStringResourceImpl source_;
5636 int dep_count_;
5637 const char** deps_;
5638 bool auto_enable_;
5639 };
5640
5641
5642 void V8_EXPORT RegisterExtension(Extension* extension);
5643
5644
5645 // --- Statics ---
5646
5647 V8_INLINE Local<Primitive> Undefined(Isolate* isolate);
5648 V8_INLINE Local<Primitive> Null(Isolate* isolate);
5649 V8_INLINE Local<Boolean> True(Isolate* isolate);
5650 V8_INLINE Local<Boolean> False(Isolate* isolate);
5651
5652 /**
5653 * A set of constraints that specifies the limits of the runtime's memory use.
5654 * You must set the heap size before initializing the VM - the size cannot be
5655 * adjusted after the VM is initialized.
5656 *
5657 * If you are using threads then you should hold the V8::Locker lock while
5658 * setting the stack limit and you must set a non-default stack limit separately
5659 * for each thread.
5660 *
5661 * The arguments for set_max_semi_space_size, set_max_old_space_size,
5662 * set_max_executable_size, set_code_range_size specify limits in MB.
5663 */
5664 class V8_EXPORT ResourceConstraints {
5665 public:
5666 ResourceConstraints();
5667
5668 /**
5669 * Configures the constraints with reasonable default values based on the
5670 * capabilities of the current device the VM is running on.
5671 *
5672 * \param physical_memory The total amount of physical memory on the current
5673 * device, in bytes.
5674 * \param virtual_memory_limit The amount of virtual memory on the current
5675 * device, in bytes, or zero, if there is no limit.
5676 */
5677 void ConfigureDefaults(uint64_t physical_memory,
5678 uint64_t virtual_memory_limit);
5679
max_semi_space_size()5680 int max_semi_space_size() const { return max_semi_space_size_; }
set_max_semi_space_size(int limit_in_mb)5681 void set_max_semi_space_size(int limit_in_mb) {
5682 max_semi_space_size_ = limit_in_mb;
5683 }
max_old_space_size()5684 int max_old_space_size() const { return max_old_space_size_; }
set_max_old_space_size(int limit_in_mb)5685 void set_max_old_space_size(int limit_in_mb) {
5686 max_old_space_size_ = limit_in_mb;
5687 }
max_executable_size()5688 int max_executable_size() const { return max_executable_size_; }
set_max_executable_size(int limit_in_mb)5689 void set_max_executable_size(int limit_in_mb) {
5690 max_executable_size_ = limit_in_mb;
5691 }
stack_limit()5692 uint32_t* stack_limit() const { return stack_limit_; }
5693 // Sets an address beyond which the VM's stack may not grow.
set_stack_limit(uint32_t * value)5694 void set_stack_limit(uint32_t* value) { stack_limit_ = value; }
code_range_size()5695 size_t code_range_size() const { return code_range_size_; }
set_code_range_size(size_t limit_in_mb)5696 void set_code_range_size(size_t limit_in_mb) {
5697 code_range_size_ = limit_in_mb;
5698 }
max_zone_pool_size()5699 size_t max_zone_pool_size() const { return max_zone_pool_size_; }
set_max_zone_pool_size(const size_t bytes)5700 void set_max_zone_pool_size(const size_t bytes) {
5701 max_zone_pool_size_ = bytes;
5702 }
5703
5704 private:
5705 int max_semi_space_size_;
5706 int max_old_space_size_;
5707 int max_executable_size_;
5708 uint32_t* stack_limit_;
5709 size_t code_range_size_;
5710 size_t max_zone_pool_size_;
5711 };
5712
5713
5714 // --- Exceptions ---
5715
5716
5717 typedef void (*FatalErrorCallback)(const char* location, const char* message);
5718
5719 typedef void (*OOMErrorCallback)(const char* location, bool is_heap_oom);
5720
5721 typedef void (*MessageCallback)(Local<Message> message, Local<Value> error);
5722
5723 // --- Tracing ---
5724
5725 typedef void (*LogEventCallback)(const char* name, int event);
5726
5727 /**
5728 * Create new error objects by calling the corresponding error object
5729 * constructor with the message.
5730 */
5731 class V8_EXPORT Exception {
5732 public:
5733 static Local<Value> RangeError(Local<String> message);
5734 static Local<Value> ReferenceError(Local<String> message);
5735 static Local<Value> SyntaxError(Local<String> message);
5736 static Local<Value> TypeError(Local<String> message);
5737 static Local<Value> Error(Local<String> message);
5738
5739 /**
5740 * Creates an error message for the given exception.
5741 * Will try to reconstruct the original stack trace from the exception value,
5742 * or capture the current stack trace if not available.
5743 */
5744 static Local<Message> CreateMessage(Isolate* isolate, Local<Value> exception);
5745 V8_DEPRECATED("Use version with an Isolate*",
5746 static Local<Message> CreateMessage(Local<Value> exception));
5747
5748 /**
5749 * Returns the original stack trace that was captured at the creation time
5750 * of a given exception, or an empty handle if not available.
5751 */
5752 static Local<StackTrace> GetStackTrace(Local<Value> exception);
5753 };
5754
5755
5756 // --- Counters Callbacks ---
5757
5758 typedef int* (*CounterLookupCallback)(const char* name);
5759
5760 typedef void* (*CreateHistogramCallback)(const char* name,
5761 int min,
5762 int max,
5763 size_t buckets);
5764
5765 typedef void (*AddHistogramSampleCallback)(void* histogram, int sample);
5766
5767 // --- Memory Allocation Callback ---
5768 enum ObjectSpace {
5769 kObjectSpaceNewSpace = 1 << 0,
5770 kObjectSpaceOldSpace = 1 << 1,
5771 kObjectSpaceCodeSpace = 1 << 2,
5772 kObjectSpaceMapSpace = 1 << 3,
5773 kObjectSpaceLoSpace = 1 << 4,
5774 kObjectSpaceAll = kObjectSpaceNewSpace | kObjectSpaceOldSpace |
5775 kObjectSpaceCodeSpace | kObjectSpaceMapSpace |
5776 kObjectSpaceLoSpace
5777 };
5778
5779 enum AllocationAction {
5780 kAllocationActionAllocate = 1 << 0,
5781 kAllocationActionFree = 1 << 1,
5782 kAllocationActionAll = kAllocationActionAllocate | kAllocationActionFree
5783 };
5784
5785 // --- Enter/Leave Script Callback ---
5786 typedef void (*BeforeCallEnteredCallback)(Isolate*);
5787 typedef void (*CallCompletedCallback)(Isolate*);
5788 typedef void (*DeprecatedCallCompletedCallback)();
5789
5790 // --- Promise Reject Callback ---
5791 enum PromiseRejectEvent {
5792 kPromiseRejectWithNoHandler = 0,
5793 kPromiseHandlerAddedAfterReject = 1
5794 };
5795
5796 class PromiseRejectMessage {
5797 public:
PromiseRejectMessage(Local<Promise> promise,PromiseRejectEvent event,Local<Value> value,Local<StackTrace> stack_trace)5798 PromiseRejectMessage(Local<Promise> promise, PromiseRejectEvent event,
5799 Local<Value> value, Local<StackTrace> stack_trace)
5800 : promise_(promise),
5801 event_(event),
5802 value_(value),
5803 stack_trace_(stack_trace) {}
5804
GetPromise()5805 V8_INLINE Local<Promise> GetPromise() const { return promise_; }
GetEvent()5806 V8_INLINE PromiseRejectEvent GetEvent() const { return event_; }
GetValue()5807 V8_INLINE Local<Value> GetValue() const { return value_; }
5808
5809 V8_DEPRECATED("Use v8::Exception::CreateMessage(GetValue())->GetStackTrace()",
5810 V8_INLINE Local<StackTrace> GetStackTrace() const) {
5811 return stack_trace_;
5812 }
5813
5814 private:
5815 Local<Promise> promise_;
5816 PromiseRejectEvent event_;
5817 Local<Value> value_;
5818 Local<StackTrace> stack_trace_;
5819 };
5820
5821 typedef void (*PromiseRejectCallback)(PromiseRejectMessage message);
5822
5823 // --- Microtasks Callbacks ---
5824 typedef void (*MicrotasksCompletedCallback)(Isolate*);
5825 typedef void (*MicrotaskCallback)(void* data);
5826
5827
5828 /**
5829 * Policy for running microtasks:
5830 * - explicit: microtasks are invoked with Isolate::RunMicrotasks() method;
5831 * - scoped: microtasks invocation is controlled by MicrotasksScope objects;
5832 * - auto: microtasks are invoked when the script call depth decrements
5833 * to zero.
5834 */
5835 enum class MicrotasksPolicy { kExplicit, kScoped, kAuto };
5836
5837
5838 /**
5839 * This scope is used to control microtasks when kScopeMicrotasksInvocation
5840 * is used on Isolate. In this mode every non-primitive call to V8 should be
5841 * done inside some MicrotasksScope.
5842 * Microtasks are executed when topmost MicrotasksScope marked as kRunMicrotasks
5843 * exits.
5844 * kDoNotRunMicrotasks should be used to annotate calls not intended to trigger
5845 * microtasks.
5846 */
5847 class V8_EXPORT MicrotasksScope {
5848 public:
5849 enum Type { kRunMicrotasks, kDoNotRunMicrotasks };
5850
5851 MicrotasksScope(Isolate* isolate, Type type);
5852 ~MicrotasksScope();
5853
5854 /**
5855 * Runs microtasks if no kRunMicrotasks scope is currently active.
5856 */
5857 static void PerformCheckpoint(Isolate* isolate);
5858
5859 /**
5860 * Returns current depth of nested kRunMicrotasks scopes.
5861 */
5862 static int GetCurrentDepth(Isolate* isolate);
5863
5864 /**
5865 * Returns true while microtasks are being executed.
5866 */
5867 static bool IsRunningMicrotasks(Isolate* isolate);
5868
5869 // Prevent copying.
5870 MicrotasksScope(const MicrotasksScope&) = delete;
5871 MicrotasksScope& operator=(const MicrotasksScope&) = delete;
5872
5873 private:
5874 internal::Isolate* const isolate_;
5875 bool run_;
5876 };
5877
5878
5879 // --- Failed Access Check Callback ---
5880 typedef void (*FailedAccessCheckCallback)(Local<Object> target,
5881 AccessType type,
5882 Local<Value> data);
5883
5884 // --- AllowCodeGenerationFromStrings callbacks ---
5885
5886 /**
5887 * Callback to check if code generation from strings is allowed. See
5888 * Context::AllowCodeGenerationFromStrings.
5889 */
5890 typedef bool (*AllowCodeGenerationFromStringsCallback)(Local<Context> context);
5891
5892 // --- Garbage Collection Callbacks ---
5893
5894 /**
5895 * Applications can register callback functions which will be called before and
5896 * after certain garbage collection operations. Allocations are not allowed in
5897 * the callback functions, you therefore cannot manipulate objects (set or
5898 * delete properties for example) since it is possible such operations will
5899 * result in the allocation of objects.
5900 */
5901 enum GCType {
5902 kGCTypeScavenge = 1 << 0,
5903 kGCTypeMarkSweepCompact = 1 << 1,
5904 kGCTypeIncrementalMarking = 1 << 2,
5905 kGCTypeProcessWeakCallbacks = 1 << 3,
5906 kGCTypeAll = kGCTypeScavenge | kGCTypeMarkSweepCompact |
5907 kGCTypeIncrementalMarking | kGCTypeProcessWeakCallbacks
5908 };
5909
5910 /**
5911 * GCCallbackFlags is used to notify additional information about the GC
5912 * callback.
5913 * - kGCCallbackFlagConstructRetainedObjectInfos: The GC callback is for
5914 * constructing retained object infos.
5915 * - kGCCallbackFlagForced: The GC callback is for a forced GC for testing.
5916 * - kGCCallbackFlagSynchronousPhantomCallbackProcessing: The GC callback
5917 * is called synchronously without getting posted to an idle task.
5918 * - kGCCallbackFlagCollectAllAvailableGarbage: The GC callback is called
5919 * in a phase where V8 is trying to collect all available garbage
5920 * (e.g., handling a low memory notification).
5921 */
5922 enum GCCallbackFlags {
5923 kNoGCCallbackFlags = 0,
5924 kGCCallbackFlagConstructRetainedObjectInfos = 1 << 1,
5925 kGCCallbackFlagForced = 1 << 2,
5926 kGCCallbackFlagSynchronousPhantomCallbackProcessing = 1 << 3,
5927 kGCCallbackFlagCollectAllAvailableGarbage = 1 << 4,
5928 kGCCallbackFlagCollectAllExternalMemory = 1 << 5,
5929 };
5930
5931 typedef void (*GCCallback)(GCType type, GCCallbackFlags flags);
5932
5933 typedef void (*InterruptCallback)(Isolate* isolate, void* data);
5934
5935
5936 /**
5937 * Collection of V8 heap information.
5938 *
5939 * Instances of this class can be passed to v8::V8::HeapStatistics to
5940 * get heap statistics from V8.
5941 */
5942 class V8_EXPORT HeapStatistics {
5943 public:
5944 HeapStatistics();
total_heap_size()5945 size_t total_heap_size() { return total_heap_size_; }
total_heap_size_executable()5946 size_t total_heap_size_executable() { return total_heap_size_executable_; }
total_physical_size()5947 size_t total_physical_size() { return total_physical_size_; }
total_available_size()5948 size_t total_available_size() { return total_available_size_; }
used_heap_size()5949 size_t used_heap_size() { return used_heap_size_; }
heap_size_limit()5950 size_t heap_size_limit() { return heap_size_limit_; }
malloced_memory()5951 size_t malloced_memory() { return malloced_memory_; }
peak_malloced_memory()5952 size_t peak_malloced_memory() { return peak_malloced_memory_; }
does_zap_garbage()5953 size_t does_zap_garbage() { return does_zap_garbage_; }
5954
5955 private:
5956 size_t total_heap_size_;
5957 size_t total_heap_size_executable_;
5958 size_t total_physical_size_;
5959 size_t total_available_size_;
5960 size_t used_heap_size_;
5961 size_t heap_size_limit_;
5962 size_t malloced_memory_;
5963 size_t peak_malloced_memory_;
5964 bool does_zap_garbage_;
5965
5966 friend class V8;
5967 friend class Isolate;
5968 };
5969
5970
5971 class V8_EXPORT HeapSpaceStatistics {
5972 public:
5973 HeapSpaceStatistics();
space_name()5974 const char* space_name() { return space_name_; }
space_size()5975 size_t space_size() { return space_size_; }
space_used_size()5976 size_t space_used_size() { return space_used_size_; }
space_available_size()5977 size_t space_available_size() { return space_available_size_; }
physical_space_size()5978 size_t physical_space_size() { return physical_space_size_; }
5979
5980 private:
5981 const char* space_name_;
5982 size_t space_size_;
5983 size_t space_used_size_;
5984 size_t space_available_size_;
5985 size_t physical_space_size_;
5986
5987 friend class Isolate;
5988 };
5989
5990
5991 class V8_EXPORT HeapObjectStatistics {
5992 public:
5993 HeapObjectStatistics();
object_type()5994 const char* object_type() { return object_type_; }
object_sub_type()5995 const char* object_sub_type() { return object_sub_type_; }
object_count()5996 size_t object_count() { return object_count_; }
object_size()5997 size_t object_size() { return object_size_; }
5998
5999 private:
6000 const char* object_type_;
6001 const char* object_sub_type_;
6002 size_t object_count_;
6003 size_t object_size_;
6004
6005 friend class Isolate;
6006 };
6007
6008 class V8_EXPORT HeapCodeStatistics {
6009 public:
6010 HeapCodeStatistics();
code_and_metadata_size()6011 size_t code_and_metadata_size() { return code_and_metadata_size_; }
bytecode_and_metadata_size()6012 size_t bytecode_and_metadata_size() { return bytecode_and_metadata_size_; }
6013
6014 private:
6015 size_t code_and_metadata_size_;
6016 size_t bytecode_and_metadata_size_;
6017
6018 friend class Isolate;
6019 };
6020
6021 class RetainedObjectInfo;
6022
6023
6024 /**
6025 * FunctionEntryHook is the type of the profile entry hook called at entry to
6026 * any generated function when function-level profiling is enabled.
6027 *
6028 * \param function the address of the function that's being entered.
6029 * \param return_addr_location points to a location on stack where the machine
6030 * return address resides. This can be used to identify the caller of
6031 * \p function, and/or modified to divert execution when \p function exits.
6032 *
6033 * \note the entry hook must not cause garbage collection.
6034 */
6035 typedef void (*FunctionEntryHook)(uintptr_t function,
6036 uintptr_t return_addr_location);
6037
6038 /**
6039 * A JIT code event is issued each time code is added, moved or removed.
6040 *
6041 * \note removal events are not currently issued.
6042 */
6043 struct JitCodeEvent {
6044 enum EventType {
6045 CODE_ADDED,
6046 CODE_MOVED,
6047 CODE_REMOVED,
6048 CODE_ADD_LINE_POS_INFO,
6049 CODE_START_LINE_INFO_RECORDING,
6050 CODE_END_LINE_INFO_RECORDING
6051 };
6052 // Definition of the code position type. The "POSITION" type means the place
6053 // in the source code which are of interest when making stack traces to
6054 // pin-point the source location of a stack frame as close as possible.
6055 // The "STATEMENT_POSITION" means the place at the beginning of each
6056 // statement, and is used to indicate possible break locations.
6057 enum PositionType { POSITION, STATEMENT_POSITION };
6058
6059 // Type of event.
6060 EventType type;
6061 // Start of the instructions.
6062 void* code_start;
6063 // Size of the instructions.
6064 size_t code_len;
6065 // Script info for CODE_ADDED event.
6066 Local<UnboundScript> script;
6067 // User-defined data for *_LINE_INFO_* event. It's used to hold the source
6068 // code line information which is returned from the
6069 // CODE_START_LINE_INFO_RECORDING event. And it's passed to subsequent
6070 // CODE_ADD_LINE_POS_INFO and CODE_END_LINE_INFO_RECORDING events.
6071 void* user_data;
6072
6073 struct name_t {
6074 // Name of the object associated with the code, note that the string is not
6075 // zero-terminated.
6076 const char* str;
6077 // Number of chars in str.
6078 size_t len;
6079 };
6080
6081 struct line_info_t {
6082 // PC offset
6083 size_t offset;
6084 // Code postion
6085 size_t pos;
6086 // The position type.
6087 PositionType position_type;
6088 };
6089
6090 union {
6091 // Only valid for CODE_ADDED.
6092 struct name_t name;
6093
6094 // Only valid for CODE_ADD_LINE_POS_INFO
6095 struct line_info_t line_info;
6096
6097 // New location of instructions. Only valid for CODE_MOVED.
6098 void* new_code_start;
6099 };
6100 };
6101
6102 /**
6103 * Option flags passed to the SetRAILMode function.
6104 * See documentation https://developers.google.com/web/tools/chrome-devtools/
6105 * profile/evaluate-performance/rail
6106 */
6107 enum RAILMode {
6108 // Response performance mode: In this mode very low virtual machine latency
6109 // is provided. V8 will try to avoid JavaScript execution interruptions.
6110 // Throughput may be throttled.
6111 PERFORMANCE_RESPONSE,
6112 // Animation performance mode: In this mode low virtual machine latency is
6113 // provided. V8 will try to avoid as many JavaScript execution interruptions
6114 // as possible. Throughput may be throttled. This is the default mode.
6115 PERFORMANCE_ANIMATION,
6116 // Idle performance mode: The embedder is idle. V8 can complete deferred work
6117 // in this mode.
6118 PERFORMANCE_IDLE,
6119 // Load performance mode: In this mode high throughput is provided. V8 may
6120 // turn off latency optimizations.
6121 PERFORMANCE_LOAD
6122 };
6123
6124 /**
6125 * Option flags passed to the SetJitCodeEventHandler function.
6126 */
6127 enum JitCodeEventOptions {
6128 kJitCodeEventDefault = 0,
6129 // Generate callbacks for already existent code.
6130 kJitCodeEventEnumExisting = 1
6131 };
6132
6133
6134 /**
6135 * Callback function passed to SetJitCodeEventHandler.
6136 *
6137 * \param event code add, move or removal event.
6138 */
6139 typedef void (*JitCodeEventHandler)(const JitCodeEvent* event);
6140
6141
6142 /**
6143 * Interface for iterating through all external resources in the heap.
6144 */
6145 class V8_EXPORT ExternalResourceVisitor { // NOLINT
6146 public:
~ExternalResourceVisitor()6147 virtual ~ExternalResourceVisitor() {}
VisitExternalString(Local<String> string)6148 virtual void VisitExternalString(Local<String> string) {}
6149 };
6150
6151
6152 /**
6153 * Interface for iterating through all the persistent handles in the heap.
6154 */
6155 class V8_EXPORT PersistentHandleVisitor { // NOLINT
6156 public:
~PersistentHandleVisitor()6157 virtual ~PersistentHandleVisitor() {}
VisitPersistentHandle(Persistent<Value> * value,uint16_t class_id)6158 virtual void VisitPersistentHandle(Persistent<Value>* value,
6159 uint16_t class_id) {}
6160 };
6161
6162 /**
6163 * Memory pressure level for the MemoryPressureNotification.
6164 * kNone hints V8 that there is no memory pressure.
6165 * kModerate hints V8 to speed up incremental garbage collection at the cost of
6166 * of higher latency due to garbage collection pauses.
6167 * kCritical hints V8 to free memory as soon as possible. Garbage collection
6168 * pauses at this level will be large.
6169 */
6170 enum class MemoryPressureLevel { kNone, kModerate, kCritical };
6171
6172 /**
6173 * Interface for tracing through the embedder heap. During a v8 garbage
6174 * collection, v8 collects hidden fields of all potential wrappers, and at the
6175 * end of its marking phase iterates the collection and asks the embedder to
6176 * trace through its heap and use reporter to report each JavaScript object
6177 * reachable from any of the given wrappers.
6178 *
6179 * Before the first call to the TraceWrappersFrom function TracePrologue will be
6180 * called. When the garbage collection cycle is finished, TraceEpilogue will be
6181 * called.
6182 */
6183 class V8_EXPORT EmbedderHeapTracer {
6184 public:
6185 enum ForceCompletionAction { FORCE_COMPLETION, DO_NOT_FORCE_COMPLETION };
6186
6187 struct AdvanceTracingActions {
AdvanceTracingActionsAdvanceTracingActions6188 explicit AdvanceTracingActions(ForceCompletionAction force_completion_)
6189 : force_completion(force_completion_) {}
6190
6191 ForceCompletionAction force_completion;
6192 };
6193
6194 /**
6195 * Called by v8 to register internal fields of found wrappers.
6196 *
6197 * The embedder is expected to store them somewhere and trace reachable
6198 * wrappers from them when called through |AdvanceTracing|.
6199 */
6200 virtual void RegisterV8References(
6201 const std::vector<std::pair<void*, void*> >& internal_fields) = 0;
6202
6203 /**
6204 * Called at the beginning of a GC cycle.
6205 */
6206 virtual void TracePrologue() = 0;
6207
6208 /**
6209 * Called to to make a tracing step in the embedder.
6210 *
6211 * The embedder is expected to trace its heap starting from wrappers reported
6212 * by RegisterV8References method, and report back all reachable wrappers.
6213 * Furthermore, the embedder is expected to stop tracing by the given
6214 * deadline.
6215 *
6216 * Returns true if there is still work to do.
6217 */
6218 virtual bool AdvanceTracing(double deadline_in_ms,
6219 AdvanceTracingActions actions) = 0;
6220
6221 /**
6222 * Called at the end of a GC cycle.
6223 *
6224 * Note that allocation is *not* allowed within |TraceEpilogue|.
6225 */
6226 virtual void TraceEpilogue() = 0;
6227
6228 /**
6229 * Called upon entering the final marking pause. No more incremental marking
6230 * steps will follow this call.
6231 */
6232 virtual void EnterFinalPause() = 0;
6233
6234 /**
6235 * Called when tracing is aborted.
6236 *
6237 * The embedder is expected to throw away all intermediate data and reset to
6238 * the initial state.
6239 */
6240 virtual void AbortTracing() = 0;
6241
6242 /**
6243 * Returns the number of wrappers that are still to be traced by the embedder.
6244 */
NumberOfWrappersToTrace()6245 virtual size_t NumberOfWrappersToTrace() { return 0; }
6246
6247 protected:
6248 virtual ~EmbedderHeapTracer() = default;
6249 };
6250
6251 /**
6252 * Callback to the embedder used in SnapshotCreator to handle internal fields.
6253 */
6254 typedef StartupData (*SerializeInternalFieldsCallback)(Local<Object> holder,
6255 int index);
6256
6257 /**
6258 * Callback to the embedder used to deserialize internal fields.
6259 */
6260 typedef void (*DeserializeInternalFieldsCallback)(Local<Object> holder,
6261 int index,
6262 StartupData payload);
6263
6264 /**
6265 * Isolate represents an isolated instance of the V8 engine. V8 isolates have
6266 * completely separate states. Objects from one isolate must not be used in
6267 * other isolates. The embedder can create multiple isolates and use them in
6268 * parallel in multiple threads. An isolate can be entered by at most one
6269 * thread at any given time. The Locker/Unlocker API must be used to
6270 * synchronize.
6271 */
6272 class V8_EXPORT Isolate {
6273 public:
6274 /**
6275 * Initial configuration parameters for a new Isolate.
6276 */
6277 struct CreateParams {
CreateParamsCreateParams6278 CreateParams()
6279 : entry_hook(nullptr),
6280 code_event_handler(nullptr),
6281 snapshot_blob(nullptr),
6282 counter_lookup_callback(nullptr),
6283 create_histogram_callback(nullptr),
6284 add_histogram_sample_callback(nullptr),
6285 array_buffer_allocator(nullptr),
6286 external_references(nullptr),
6287 deserialize_internal_fields_callback(nullptr) {}
6288
6289 /**
6290 * The optional entry_hook allows the host application to provide the
6291 * address of a function that's invoked on entry to every V8-generated
6292 * function. Note that entry_hook is invoked at the very start of each
6293 * generated function. Furthermore, if an entry_hook is given, V8 will
6294 * not use a snapshot, including custom snapshots.
6295 */
6296 FunctionEntryHook entry_hook;
6297
6298 /**
6299 * Allows the host application to provide the address of a function that is
6300 * notified each time code is added, moved or removed.
6301 */
6302 JitCodeEventHandler code_event_handler;
6303
6304 /**
6305 * ResourceConstraints to use for the new Isolate.
6306 */
6307 ResourceConstraints constraints;
6308
6309 /**
6310 * Explicitly specify a startup snapshot blob. The embedder owns the blob.
6311 */
6312 StartupData* snapshot_blob;
6313
6314
6315 /**
6316 * Enables the host application to provide a mechanism for recording
6317 * statistics counters.
6318 */
6319 CounterLookupCallback counter_lookup_callback;
6320
6321 /**
6322 * Enables the host application to provide a mechanism for recording
6323 * histograms. The CreateHistogram function returns a
6324 * histogram which will later be passed to the AddHistogramSample
6325 * function.
6326 */
6327 CreateHistogramCallback create_histogram_callback;
6328 AddHistogramSampleCallback add_histogram_sample_callback;
6329
6330 /**
6331 * The ArrayBuffer::Allocator to use for allocating and freeing the backing
6332 * store of ArrayBuffers.
6333 */
6334 ArrayBuffer::Allocator* array_buffer_allocator;
6335
6336 /**
6337 * Specifies an optional nullptr-terminated array of raw addresses in the
6338 * embedder that V8 can match against during serialization and use for
6339 * deserialization. This array and its content must stay valid for the
6340 * entire lifetime of the isolate.
6341 */
6342 intptr_t* external_references;
6343
6344 /**
6345 * Specifies an optional callback to deserialize internal fields. It
6346 * should match the SerializeInternalFieldCallback used to serialize.
6347 */
6348 DeserializeInternalFieldsCallback deserialize_internal_fields_callback;
6349 };
6350
6351
6352 /**
6353 * Stack-allocated class which sets the isolate for all operations
6354 * executed within a local scope.
6355 */
6356 class V8_EXPORT Scope {
6357 public:
Scope(Isolate * isolate)6358 explicit Scope(Isolate* isolate) : isolate_(isolate) {
6359 isolate->Enter();
6360 }
6361
~Scope()6362 ~Scope() { isolate_->Exit(); }
6363
6364 // Prevent copying of Scope objects.
6365 Scope(const Scope&) = delete;
6366 Scope& operator=(const Scope&) = delete;
6367
6368 private:
6369 Isolate* const isolate_;
6370 };
6371
6372
6373 /**
6374 * Assert that no Javascript code is invoked.
6375 */
6376 class V8_EXPORT DisallowJavascriptExecutionScope {
6377 public:
6378 enum OnFailure { CRASH_ON_FAILURE, THROW_ON_FAILURE };
6379
6380 DisallowJavascriptExecutionScope(Isolate* isolate, OnFailure on_failure);
6381 ~DisallowJavascriptExecutionScope();
6382
6383 // Prevent copying of Scope objects.
6384 DisallowJavascriptExecutionScope(const DisallowJavascriptExecutionScope&) =
6385 delete;
6386 DisallowJavascriptExecutionScope& operator=(
6387 const DisallowJavascriptExecutionScope&) = delete;
6388
6389 private:
6390 bool on_failure_;
6391 void* internal_;
6392 };
6393
6394
6395 /**
6396 * Introduce exception to DisallowJavascriptExecutionScope.
6397 */
6398 class V8_EXPORT AllowJavascriptExecutionScope {
6399 public:
6400 explicit AllowJavascriptExecutionScope(Isolate* isolate);
6401 ~AllowJavascriptExecutionScope();
6402
6403 // Prevent copying of Scope objects.
6404 AllowJavascriptExecutionScope(const AllowJavascriptExecutionScope&) =
6405 delete;
6406 AllowJavascriptExecutionScope& operator=(
6407 const AllowJavascriptExecutionScope&) = delete;
6408
6409 private:
6410 void* internal_throws_;
6411 void* internal_assert_;
6412 };
6413
6414 /**
6415 * Do not run microtasks while this scope is active, even if microtasks are
6416 * automatically executed otherwise.
6417 */
6418 class V8_EXPORT SuppressMicrotaskExecutionScope {
6419 public:
6420 explicit SuppressMicrotaskExecutionScope(Isolate* isolate);
6421 ~SuppressMicrotaskExecutionScope();
6422
6423 // Prevent copying of Scope objects.
6424 SuppressMicrotaskExecutionScope(const SuppressMicrotaskExecutionScope&) =
6425 delete;
6426 SuppressMicrotaskExecutionScope& operator=(
6427 const SuppressMicrotaskExecutionScope&) = delete;
6428
6429 private:
6430 internal::Isolate* const isolate_;
6431 };
6432
6433 /**
6434 * Types of garbage collections that can be requested via
6435 * RequestGarbageCollectionForTesting.
6436 */
6437 enum GarbageCollectionType {
6438 kFullGarbageCollection,
6439 kMinorGarbageCollection
6440 };
6441
6442 /**
6443 * Features reported via the SetUseCounterCallback callback. Do not change
6444 * assigned numbers of existing items; add new features to the end of this
6445 * list.
6446 */
6447 enum UseCounterFeature {
6448 kUseAsm = 0,
6449 kBreakIterator = 1,
6450 kLegacyConst = 2,
6451 kMarkDequeOverflow = 3,
6452 kStoreBufferOverflow = 4,
6453 kSlotsBufferOverflow = 5,
6454 kObjectObserve = 6,
6455 kForcedGC = 7,
6456 kSloppyMode = 8,
6457 kStrictMode = 9,
6458 kStrongMode = 10,
6459 kRegExpPrototypeStickyGetter = 11,
6460 kRegExpPrototypeToString = 12,
6461 kRegExpPrototypeUnicodeGetter = 13,
6462 kIntlV8Parse = 14,
6463 kIntlPattern = 15,
6464 kIntlResolved = 16,
6465 kPromiseChain = 17,
6466 kPromiseAccept = 18,
6467 kPromiseDefer = 19,
6468 kHtmlCommentInExternalScript = 20,
6469 kHtmlComment = 21,
6470 kSloppyModeBlockScopedFunctionRedefinition = 22,
6471 kForInInitializer = 23,
6472 kArrayProtectorDirtied = 24,
6473 kArraySpeciesModified = 25,
6474 kArrayPrototypeConstructorModified = 26,
6475 kArrayInstanceProtoModified = 27,
6476 kArrayInstanceConstructorModified = 28,
6477 kLegacyFunctionDeclaration = 29,
6478 kRegExpPrototypeSourceGetter = 30,
6479 kRegExpPrototypeOldFlagGetter = 31,
6480 kDecimalWithLeadingZeroInStrictMode = 32,
6481 kLegacyDateParser = 33,
6482 kDefineGetterOrSetterWouldThrow = 34,
6483 kFunctionConstructorReturnedUndefined = 35,
6484
6485 // If you add new values here, you'll also need to update Chromium's:
6486 // UseCounter.h, V8PerIsolateData.cpp, histograms.xml
6487 kUseCounterFeatureCount // This enum value must be last.
6488 };
6489
6490 typedef void (*UseCounterCallback)(Isolate* isolate,
6491 UseCounterFeature feature);
6492
6493
6494 /**
6495 * Creates a new isolate. Does not change the currently entered
6496 * isolate.
6497 *
6498 * When an isolate is no longer used its resources should be freed
6499 * by calling Dispose(). Using the delete operator is not allowed.
6500 *
6501 * V8::Initialize() must have run prior to this.
6502 */
6503 static Isolate* New(const CreateParams& params);
6504
6505 /**
6506 * Returns the entered isolate for the current thread or NULL in
6507 * case there is no current isolate.
6508 *
6509 * This method must not be invoked before V8::Initialize() was invoked.
6510 */
6511 static Isolate* GetCurrent();
6512
6513 /**
6514 * Custom callback used by embedders to help V8 determine if it should abort
6515 * when it throws and no internal handler is predicted to catch the
6516 * exception. If --abort-on-uncaught-exception is used on the command line,
6517 * then V8 will abort if either:
6518 * - no custom callback is set.
6519 * - the custom callback set returns true.
6520 * Otherwise, the custom callback will not be called and V8 will not abort.
6521 */
6522 typedef bool (*AbortOnUncaughtExceptionCallback)(Isolate*);
6523 void SetAbortOnUncaughtExceptionCallback(
6524 AbortOnUncaughtExceptionCallback callback);
6525
6526 /**
6527 * Optional notification that the system is running low on memory.
6528 * V8 uses these notifications to guide heuristics.
6529 * It is allowed to call this function from another thread while
6530 * the isolate is executing long running JavaScript code.
6531 */
6532 void MemoryPressureNotification(MemoryPressureLevel level);
6533
6534 /**
6535 * Methods below this point require holding a lock (using Locker) in
6536 * a multi-threaded environment.
6537 */
6538
6539 /**
6540 * Sets this isolate as the entered one for the current thread.
6541 * Saves the previously entered one (if any), so that it can be
6542 * restored when exiting. Re-entering an isolate is allowed.
6543 */
6544 void Enter();
6545
6546 /**
6547 * Exits this isolate by restoring the previously entered one in the
6548 * current thread. The isolate may still stay the same, if it was
6549 * entered more than once.
6550 *
6551 * Requires: this == Isolate::GetCurrent().
6552 */
6553 void Exit();
6554
6555 /**
6556 * Disposes the isolate. The isolate must not be entered by any
6557 * thread to be disposable.
6558 */
6559 void Dispose();
6560
6561 /**
6562 * Discards all V8 thread-specific data for the Isolate. Should be used
6563 * if a thread is terminating and it has used an Isolate that will outlive
6564 * the thread -- all thread-specific data for an Isolate is discarded when
6565 * an Isolate is disposed so this call is pointless if an Isolate is about
6566 * to be Disposed.
6567 */
6568 void DiscardThreadSpecificMetadata();
6569
6570 /**
6571 * Associate embedder-specific data with the isolate. |slot| has to be
6572 * between 0 and GetNumberOfDataSlots() - 1.
6573 */
6574 V8_INLINE void SetData(uint32_t slot, void* data);
6575
6576 /**
6577 * Retrieve embedder-specific data from the isolate.
6578 * Returns NULL if SetData has never been called for the given |slot|.
6579 */
6580 V8_INLINE void* GetData(uint32_t slot);
6581
6582 /**
6583 * Returns the maximum number of available embedder data slots. Valid slots
6584 * are in the range of 0 - GetNumberOfDataSlots() - 1.
6585 */
6586 V8_INLINE static uint32_t GetNumberOfDataSlots();
6587
6588 /**
6589 * Get statistics about the heap memory usage.
6590 */
6591 void GetHeapStatistics(HeapStatistics* heap_statistics);
6592
6593 /**
6594 * Returns the number of spaces in the heap.
6595 */
6596 size_t NumberOfHeapSpaces();
6597
6598 /**
6599 * Get the memory usage of a space in the heap.
6600 *
6601 * \param space_statistics The HeapSpaceStatistics object to fill in
6602 * statistics.
6603 * \param index The index of the space to get statistics from, which ranges
6604 * from 0 to NumberOfHeapSpaces() - 1.
6605 * \returns true on success.
6606 */
6607 bool GetHeapSpaceStatistics(HeapSpaceStatistics* space_statistics,
6608 size_t index);
6609
6610 /**
6611 * Returns the number of types of objects tracked in the heap at GC.
6612 */
6613 size_t NumberOfTrackedHeapObjectTypes();
6614
6615 /**
6616 * Get statistics about objects in the heap.
6617 *
6618 * \param object_statistics The HeapObjectStatistics object to fill in
6619 * statistics of objects of given type, which were live in the previous GC.
6620 * \param type_index The index of the type of object to fill details about,
6621 * which ranges from 0 to NumberOfTrackedHeapObjectTypes() - 1.
6622 * \returns true on success.
6623 */
6624 bool GetHeapObjectStatisticsAtLastGC(HeapObjectStatistics* object_statistics,
6625 size_t type_index);
6626
6627 /**
6628 * Get statistics about code and its metadata in the heap.
6629 *
6630 * \param object_statistics The HeapCodeStatistics object to fill in
6631 * statistics of code, bytecode and their metadata.
6632 * \returns true on success.
6633 */
6634 bool GetHeapCodeAndMetadataStatistics(HeapCodeStatistics* object_statistics);
6635
6636 /**
6637 * Get a call stack sample from the isolate.
6638 * \param state Execution state.
6639 * \param frames Caller allocated buffer to store stack frames.
6640 * \param frames_limit Maximum number of frames to capture. The buffer must
6641 * be large enough to hold the number of frames.
6642 * \param sample_info The sample info is filled up by the function
6643 * provides number of actual captured stack frames and
6644 * the current VM state.
6645 * \note GetStackSample should only be called when the JS thread is paused or
6646 * interrupted. Otherwise the behavior is undefined.
6647 */
6648 void GetStackSample(const RegisterState& state, void** frames,
6649 size_t frames_limit, SampleInfo* sample_info);
6650
6651 /**
6652 * Adjusts the amount of registered external memory. Used to give V8 an
6653 * indication of the amount of externally allocated memory that is kept alive
6654 * by JavaScript objects. V8 uses this to decide when to perform global
6655 * garbage collections. Registering externally allocated memory will trigger
6656 * global garbage collections more often than it would otherwise in an attempt
6657 * to garbage collect the JavaScript objects that keep the externally
6658 * allocated memory alive.
6659 *
6660 * \param change_in_bytes the change in externally allocated memory that is
6661 * kept alive by JavaScript objects.
6662 * \returns the adjusted value.
6663 */
6664 V8_INLINE int64_t
6665 AdjustAmountOfExternalAllocatedMemory(int64_t change_in_bytes);
6666
6667 /**
6668 * Returns the number of phantom handles without callbacks that were reset
6669 * by the garbage collector since the last call to this function.
6670 */
6671 size_t NumberOfPhantomHandleResetsSinceLastCall();
6672
6673 /**
6674 * Returns heap profiler for this isolate. Will return NULL until the isolate
6675 * is initialized.
6676 */
6677 HeapProfiler* GetHeapProfiler();
6678
6679 /**
6680 * Returns CPU profiler for this isolate. Will return NULL unless the isolate
6681 * is initialized. It is the embedder's responsibility to stop all CPU
6682 * profiling activities if it has started any.
6683 */
6684 V8_DEPRECATE_SOON("CpuProfiler should be created with CpuProfiler::New call.",
6685 CpuProfiler* GetCpuProfiler());
6686
6687 /** Returns true if this isolate has a current context. */
6688 bool InContext();
6689
6690 /**
6691 * Returns the context of the currently running JavaScript, or the context
6692 * on the top of the stack if no JavaScript is running.
6693 */
6694 Local<Context> GetCurrentContext();
6695
6696 /**
6697 * Returns the context of the calling JavaScript code. That is the
6698 * context of the top-most JavaScript frame. If there are no
6699 * JavaScript frames an empty handle is returned.
6700 */
6701 V8_DEPRECATE_SOON(
6702 "Calling context concept is not compatible with tail calls, and will be "
6703 "removed.",
6704 Local<Context> GetCallingContext());
6705
6706 /** Returns the last context entered through V8's C++ API. */
6707 Local<Context> GetEnteredContext();
6708
6709 /**
6710 * Schedules an exception to be thrown when returning to JavaScript. When an
6711 * exception has been scheduled it is illegal to invoke any JavaScript
6712 * operation; the caller must return immediately and only after the exception
6713 * has been handled does it become legal to invoke JavaScript operations.
6714 */
6715 Local<Value> ThrowException(Local<Value> exception);
6716
6717 /**
6718 * Allows the host application to group objects together. If one
6719 * object in the group is alive, all objects in the group are alive.
6720 * After each garbage collection, object groups are removed. It is
6721 * intended to be used in the before-garbage-collection callback
6722 * function, for instance to simulate DOM tree connections among JS
6723 * wrapper objects. Object groups for all dependent handles need to
6724 * be provided for kGCTypeMarkSweepCompact collections, for all other
6725 * garbage collection types it is sufficient to provide object groups
6726 * for partially dependent handles only.
6727 */
6728 template<typename T> void SetObjectGroupId(const Persistent<T>& object,
6729 UniqueId id);
6730
6731 /**
6732 * Allows the host application to declare implicit references from an object
6733 * group to an object. If the objects of the object group are alive, the child
6734 * object is alive too. After each garbage collection, all implicit references
6735 * are removed. It is intended to be used in the before-garbage-collection
6736 * callback function.
6737 */
6738 template<typename T> void SetReferenceFromGroup(UniqueId id,
6739 const Persistent<T>& child);
6740
6741 /**
6742 * Allows the host application to declare implicit references from an object
6743 * to another object. If the parent object is alive, the child object is alive
6744 * too. After each garbage collection, all implicit references are removed. It
6745 * is intended to be used in the before-garbage-collection callback function.
6746 */
6747 template<typename T, typename S>
6748 void SetReference(const Persistent<T>& parent, const Persistent<S>& child);
6749
6750 typedef void (*GCCallback)(Isolate* isolate, GCType type,
6751 GCCallbackFlags flags);
6752
6753 /**
6754 * Enables the host application to receive a notification before a
6755 * garbage collection. Allocations are allowed in the callback function,
6756 * but the callback is not re-entrant: if the allocation inside it will
6757 * trigger the garbage collection, the callback won't be called again.
6758 * It is possible to specify the GCType filter for your callback. But it is
6759 * not possible to register the same callback function two times with
6760 * different GCType filters.
6761 */
6762 void AddGCPrologueCallback(GCCallback callback,
6763 GCType gc_type_filter = kGCTypeAll);
6764
6765 /**
6766 * This function removes callback which was installed by
6767 * AddGCPrologueCallback function.
6768 */
6769 void RemoveGCPrologueCallback(GCCallback callback);
6770
6771 /**
6772 * Sets the embedder heap tracer for the isolate.
6773 */
6774 void SetEmbedderHeapTracer(EmbedderHeapTracer* tracer);
6775
6776 /**
6777 * Enables the host application to receive a notification after a
6778 * garbage collection. Allocations are allowed in the callback function,
6779 * but the callback is not re-entrant: if the allocation inside it will
6780 * trigger the garbage collection, the callback won't be called again.
6781 * It is possible to specify the GCType filter for your callback. But it is
6782 * not possible to register the same callback function two times with
6783 * different GCType filters.
6784 */
6785 void AddGCEpilogueCallback(GCCallback callback,
6786 GCType gc_type_filter = kGCTypeAll);
6787
6788 /**
6789 * This function removes callback which was installed by
6790 * AddGCEpilogueCallback function.
6791 */
6792 void RemoveGCEpilogueCallback(GCCallback callback);
6793
6794 /**
6795 * Forcefully terminate the current thread of JavaScript execution
6796 * in the given isolate.
6797 *
6798 * This method can be used by any thread even if that thread has not
6799 * acquired the V8 lock with a Locker object.
6800 */
6801 void TerminateExecution();
6802
6803 /**
6804 * Is V8 terminating JavaScript execution.
6805 *
6806 * Returns true if JavaScript execution is currently terminating
6807 * because of a call to TerminateExecution. In that case there are
6808 * still JavaScript frames on the stack and the termination
6809 * exception is still active.
6810 */
6811 bool IsExecutionTerminating();
6812
6813 /**
6814 * Resume execution capability in the given isolate, whose execution
6815 * was previously forcefully terminated using TerminateExecution().
6816 *
6817 * When execution is forcefully terminated using TerminateExecution(),
6818 * the isolate can not resume execution until all JavaScript frames
6819 * have propagated the uncatchable exception which is generated. This
6820 * method allows the program embedding the engine to handle the
6821 * termination event and resume execution capability, even if
6822 * JavaScript frames remain on the stack.
6823 *
6824 * This method can be used by any thread even if that thread has not
6825 * acquired the V8 lock with a Locker object.
6826 */
6827 void CancelTerminateExecution();
6828
6829 /**
6830 * Request V8 to interrupt long running JavaScript code and invoke
6831 * the given |callback| passing the given |data| to it. After |callback|
6832 * returns control will be returned to the JavaScript code.
6833 * There may be a number of interrupt requests in flight.
6834 * Can be called from another thread without acquiring a |Locker|.
6835 * Registered |callback| must not reenter interrupted Isolate.
6836 */
6837 void RequestInterrupt(InterruptCallback callback, void* data);
6838
6839 /**
6840 * Request garbage collection in this Isolate. It is only valid to call this
6841 * function if --expose_gc was specified.
6842 *
6843 * This should only be used for testing purposes and not to enforce a garbage
6844 * collection schedule. It has strong negative impact on the garbage
6845 * collection performance. Use IdleNotificationDeadline() or
6846 * LowMemoryNotification() instead to influence the garbage collection
6847 * schedule.
6848 */
6849 void RequestGarbageCollectionForTesting(GarbageCollectionType type);
6850
6851 /**
6852 * Set the callback to invoke for logging event.
6853 */
6854 void SetEventLogger(LogEventCallback that);
6855
6856 /**
6857 * Adds a callback to notify the host application right before a script
6858 * is about to run. If a script re-enters the runtime during executing, the
6859 * BeforeCallEnteredCallback is invoked for each re-entrance.
6860 * Executing scripts inside the callback will re-trigger the callback.
6861 */
6862 void AddBeforeCallEnteredCallback(BeforeCallEnteredCallback callback);
6863
6864 /**
6865 * Removes callback that was installed by AddBeforeCallEnteredCallback.
6866 */
6867 void RemoveBeforeCallEnteredCallback(BeforeCallEnteredCallback callback);
6868
6869 /**
6870 * Adds a callback to notify the host application when a script finished
6871 * running. If a script re-enters the runtime during executing, the
6872 * CallCompletedCallback is only invoked when the outer-most script
6873 * execution ends. Executing scripts inside the callback do not trigger
6874 * further callbacks.
6875 */
6876 void AddCallCompletedCallback(CallCompletedCallback callback);
6877 V8_DEPRECATE_SOON(
6878 "Use callback with parameter",
6879 void AddCallCompletedCallback(DeprecatedCallCompletedCallback callback));
6880
6881 /**
6882 * Removes callback that was installed by AddCallCompletedCallback.
6883 */
6884 void RemoveCallCompletedCallback(CallCompletedCallback callback);
6885 V8_DEPRECATE_SOON(
6886 "Use callback with parameter",
6887 void RemoveCallCompletedCallback(
6888 DeprecatedCallCompletedCallback callback));
6889
6890 /**
6891 * Set callback to notify about promise reject with no handler, or
6892 * revocation of such a previous notification once the handler is added.
6893 */
6894 void SetPromiseRejectCallback(PromiseRejectCallback callback);
6895
6896 /**
6897 * Experimental: Runs the Microtask Work Queue until empty
6898 * Any exceptions thrown by microtask callbacks are swallowed.
6899 */
6900 void RunMicrotasks();
6901
6902 /**
6903 * Experimental: Enqueues the callback to the Microtask Work Queue
6904 */
6905 void EnqueueMicrotask(Local<Function> microtask);
6906
6907 /**
6908 * Experimental: Enqueues the callback to the Microtask Work Queue
6909 */
6910 void EnqueueMicrotask(MicrotaskCallback microtask, void* data = NULL);
6911
6912 /**
6913 * Experimental: Controls how Microtasks are invoked. See MicrotasksPolicy
6914 * for details.
6915 */
6916 void SetMicrotasksPolicy(MicrotasksPolicy policy);
6917 V8_DEPRECATE_SOON("Use SetMicrotasksPolicy",
6918 void SetAutorunMicrotasks(bool autorun));
6919
6920 /**
6921 * Experimental: Returns the policy controlling how Microtasks are invoked.
6922 */
6923 MicrotasksPolicy GetMicrotasksPolicy() const;
6924 V8_DEPRECATE_SOON("Use GetMicrotasksPolicy",
6925 bool WillAutorunMicrotasks() const);
6926
6927 /**
6928 * Experimental: adds a callback to notify the host application after
6929 * microtasks were run. The callback is triggered by explicit RunMicrotasks
6930 * call or automatic microtasks execution (see SetAutorunMicrotasks).
6931 *
6932 * Callback will trigger even if microtasks were attempted to run,
6933 * but the microtasks queue was empty and no single microtask was actually
6934 * executed.
6935 *
6936 * Executing scriptsinside the callback will not re-trigger microtasks and
6937 * the callback.
6938 */
6939 void AddMicrotasksCompletedCallback(MicrotasksCompletedCallback callback);
6940
6941 /**
6942 * Removes callback that was installed by AddMicrotasksCompletedCallback.
6943 */
6944 void RemoveMicrotasksCompletedCallback(MicrotasksCompletedCallback callback);
6945
6946 /**
6947 * Sets a callback for counting the number of times a feature of V8 is used.
6948 */
6949 void SetUseCounterCallback(UseCounterCallback callback);
6950
6951 /**
6952 * Enables the host application to provide a mechanism for recording
6953 * statistics counters.
6954 */
6955 void SetCounterFunction(CounterLookupCallback);
6956
6957 /**
6958 * Enables the host application to provide a mechanism for recording
6959 * histograms. The CreateHistogram function returns a
6960 * histogram which will later be passed to the AddHistogramSample
6961 * function.
6962 */
6963 void SetCreateHistogramFunction(CreateHistogramCallback);
6964 void SetAddHistogramSampleFunction(AddHistogramSampleCallback);
6965
6966 /**
6967 * Optional notification that the embedder is idle.
6968 * V8 uses the notification to perform garbage collection.
6969 * This call can be used repeatedly if the embedder remains idle.
6970 * Returns true if the embedder should stop calling IdleNotificationDeadline
6971 * until real work has been done. This indicates that V8 has done
6972 * as much cleanup as it will be able to do.
6973 *
6974 * The deadline_in_seconds argument specifies the deadline V8 has to finish
6975 * garbage collection work. deadline_in_seconds is compared with
6976 * MonotonicallyIncreasingTime() and should be based on the same timebase as
6977 * that function. There is no guarantee that the actual work will be done
6978 * within the time limit.
6979 */
6980 bool IdleNotificationDeadline(double deadline_in_seconds);
6981
6982 V8_DEPRECATED("use IdleNotificationDeadline()",
6983 bool IdleNotification(int idle_time_in_ms));
6984
6985 /**
6986 * Optional notification that the system is running low on memory.
6987 * V8 uses these notifications to attempt to free memory.
6988 */
6989 void LowMemoryNotification();
6990
6991 /**
6992 * Optional notification that a context has been disposed. V8 uses
6993 * these notifications to guide the GC heuristic. Returns the number
6994 * of context disposals - including this one - since the last time
6995 * V8 had a chance to clean up.
6996 *
6997 * The optional parameter |dependant_context| specifies whether the disposed
6998 * context was depending on state from other contexts or not.
6999 */
7000 int ContextDisposedNotification(bool dependant_context = true);
7001
7002 /**
7003 * Optional notification that the isolate switched to the foreground.
7004 * V8 uses these notifications to guide heuristics.
7005 */
7006 void IsolateInForegroundNotification();
7007
7008 /**
7009 * Optional notification that the isolate switched to the background.
7010 * V8 uses these notifications to guide heuristics.
7011 */
7012 void IsolateInBackgroundNotification();
7013
7014 /**
7015 * Optional notification to tell V8 the current performance requirements
7016 * of the embedder based on RAIL.
7017 * V8 uses these notifications to guide heuristics.
7018 * This is an unfinished experimental feature. Semantics and implementation
7019 * may change frequently.
7020 */
7021 void SetRAILMode(RAILMode rail_mode);
7022
7023 /**
7024 * Allows the host application to provide the address of a function that is
7025 * notified each time code is added, moved or removed.
7026 *
7027 * \param options options for the JIT code event handler.
7028 * \param event_handler the JIT code event handler, which will be invoked
7029 * each time code is added, moved or removed.
7030 * \note \p event_handler won't get notified of existent code.
7031 * \note since code removal notifications are not currently issued, the
7032 * \p event_handler may get notifications of code that overlaps earlier
7033 * code notifications. This happens when code areas are reused, and the
7034 * earlier overlapping code areas should therefore be discarded.
7035 * \note the events passed to \p event_handler and the strings they point to
7036 * are not guaranteed to live past each call. The \p event_handler must
7037 * copy strings and other parameters it needs to keep around.
7038 * \note the set of events declared in JitCodeEvent::EventType is expected to
7039 * grow over time, and the JitCodeEvent structure is expected to accrue
7040 * new members. The \p event_handler function must ignore event codes
7041 * it does not recognize to maintain future compatibility.
7042 * \note Use Isolate::CreateParams to get events for code executed during
7043 * Isolate setup.
7044 */
7045 void SetJitCodeEventHandler(JitCodeEventOptions options,
7046 JitCodeEventHandler event_handler);
7047
7048 /**
7049 * Modifies the stack limit for this Isolate.
7050 *
7051 * \param stack_limit An address beyond which the Vm's stack may not grow.
7052 *
7053 * \note If you are using threads then you should hold the V8::Locker lock
7054 * while setting the stack limit and you must set a non-default stack
7055 * limit separately for each thread.
7056 */
7057 void SetStackLimit(uintptr_t stack_limit);
7058
7059 /**
7060 * Returns a memory range that can potentially contain jitted code.
7061 *
7062 * On Win64, embedders are advised to install function table callbacks for
7063 * these ranges, as default SEH won't be able to unwind through jitted code.
7064 *
7065 * The first page of the code range is reserved for the embedder and is
7066 * committed, writable, and executable.
7067 *
7068 * Might be empty on other platforms.
7069 *
7070 * https://code.google.com/p/v8/issues/detail?id=3598
7071 */
7072 void GetCodeRange(void** start, size_t* length_in_bytes);
7073
7074 /** Set the callback to invoke in case of fatal errors. */
7075 void SetFatalErrorHandler(FatalErrorCallback that);
7076
7077 /** Set the callback to invoke in case of OOM errors. */
7078 void SetOOMErrorHandler(OOMErrorCallback that);
7079
7080 /**
7081 * Set the callback to invoke to check if code generation from
7082 * strings should be allowed.
7083 */
7084 void SetAllowCodeGenerationFromStringsCallback(
7085 AllowCodeGenerationFromStringsCallback callback);
7086
7087 /**
7088 * Check if V8 is dead and therefore unusable. This is the case after
7089 * fatal errors such as out-of-memory situations.
7090 */
7091 bool IsDead();
7092
7093 /**
7094 * Adds a message listener.
7095 *
7096 * The same message listener can be added more than once and in that
7097 * case it will be called more than once for each message.
7098 *
7099 * If data is specified, it will be passed to the callback when it is called.
7100 * Otherwise, the exception object will be passed to the callback instead.
7101 */
7102 bool AddMessageListener(MessageCallback that,
7103 Local<Value> data = Local<Value>());
7104
7105 /**
7106 * Remove all message listeners from the specified callback function.
7107 */
7108 void RemoveMessageListeners(MessageCallback that);
7109
7110 /** Callback function for reporting failed access checks.*/
7111 void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback);
7112
7113 /**
7114 * Tells V8 to capture current stack trace when uncaught exception occurs
7115 * and report it to the message listeners. The option is off by default.
7116 */
7117 void SetCaptureStackTraceForUncaughtExceptions(
7118 bool capture, int frame_limit = 10,
7119 StackTrace::StackTraceOptions options = StackTrace::kOverview);
7120
7121 /**
7122 * Iterates through all external resources referenced from current isolate
7123 * heap. GC is not invoked prior to iterating, therefore there is no
7124 * guarantee that visited objects are still alive.
7125 */
7126 void VisitExternalResources(ExternalResourceVisitor* visitor);
7127
7128 /**
7129 * Iterates through all the persistent handles in the current isolate's heap
7130 * that have class_ids.
7131 */
7132 void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor);
7133
7134 /**
7135 * Iterates through all the persistent handles in the current isolate's heap
7136 * that have class_ids and are candidates to be marked as partially dependent
7137 * handles. This will visit handles to young objects created since the last
7138 * garbage collection but is free to visit an arbitrary superset of these
7139 * objects.
7140 */
7141 void VisitHandlesForPartialDependence(PersistentHandleVisitor* visitor);
7142
7143 /**
7144 * Iterates through all the persistent handles in the current isolate's heap
7145 * that have class_ids and are weak to be marked as inactive if there is no
7146 * pending activity for the handle.
7147 */
7148 void VisitWeakHandles(PersistentHandleVisitor* visitor);
7149
7150 /**
7151 * Check if this isolate is in use.
7152 * True if at least one thread Enter'ed this isolate.
7153 */
7154 bool IsInUse();
7155
7156 Isolate() = delete;
7157 ~Isolate() = delete;
7158 Isolate(const Isolate&) = delete;
7159 Isolate& operator=(const Isolate&) = delete;
7160 void* operator new(size_t size) = delete;
7161 void operator delete(void*, size_t) = delete;
7162
7163 private:
7164 template <class K, class V, class Traits>
7165 friend class PersistentValueMapBase;
7166
7167 void SetObjectGroupId(internal::Object** object, UniqueId id);
7168 void SetReferenceFromGroup(UniqueId id, internal::Object** object);
7169 void SetReference(internal::Object** parent, internal::Object** child);
7170 void ReportExternalAllocationLimitReached();
7171 };
7172
7173 class V8_EXPORT StartupData {
7174 public:
7175 const char* data;
7176 int raw_size;
7177 };
7178
7179
7180 /**
7181 * EntropySource is used as a callback function when v8 needs a source
7182 * of entropy.
7183 */
7184 typedef bool (*EntropySource)(unsigned char* buffer, size_t length);
7185
7186 /**
7187 * ReturnAddressLocationResolver is used as a callback function when v8 is
7188 * resolving the location of a return address on the stack. Profilers that
7189 * change the return address on the stack can use this to resolve the stack
7190 * location to whereever the profiler stashed the original return address.
7191 *
7192 * \param return_addr_location A location on stack where a machine
7193 * return address resides.
7194 * \returns Either return_addr_location, or else a pointer to the profiler's
7195 * copy of the original return address.
7196 *
7197 * \note The resolver function must not cause garbage collection.
7198 */
7199 typedef uintptr_t (*ReturnAddressLocationResolver)(
7200 uintptr_t return_addr_location);
7201
7202
7203 /**
7204 * Container class for static utility functions.
7205 */
7206 class V8_EXPORT V8 {
7207 public:
7208 /** Set the callback to invoke in case of fatal errors. */
7209 V8_INLINE static V8_DEPRECATED(
7210 "Use isolate version",
7211 void SetFatalErrorHandler(FatalErrorCallback that));
7212
7213 /**
7214 * Set the callback to invoke to check if code generation from
7215 * strings should be allowed.
7216 */
7217 V8_INLINE static V8_DEPRECATED(
7218 "Use isolate version", void SetAllowCodeGenerationFromStringsCallback(
7219 AllowCodeGenerationFromStringsCallback that));
7220
7221 /**
7222 * Check if V8 is dead and therefore unusable. This is the case after
7223 * fatal errors such as out-of-memory situations.
7224 */
7225 V8_INLINE static V8_DEPRECATED("Use isolate version", bool IsDead());
7226
7227 /**
7228 * Hand startup data to V8, in case the embedder has chosen to build
7229 * V8 with external startup data.
7230 *
7231 * Note:
7232 * - By default the startup data is linked into the V8 library, in which
7233 * case this function is not meaningful.
7234 * - If this needs to be called, it needs to be called before V8
7235 * tries to make use of its built-ins.
7236 * - To avoid unnecessary copies of data, V8 will point directly into the
7237 * given data blob, so pretty please keep it around until V8 exit.
7238 * - Compression of the startup blob might be useful, but needs to
7239 * handled entirely on the embedders' side.
7240 * - The call will abort if the data is invalid.
7241 */
7242 static void SetNativesDataBlob(StartupData* startup_blob);
7243 static void SetSnapshotDataBlob(StartupData* startup_blob);
7244
7245 /**
7246 * Bootstrap an isolate and a context from scratch to create a startup
7247 * snapshot. Include the side-effects of running the optional script.
7248 * Returns { NULL, 0 } on failure.
7249 * The caller acquires ownership of the data array in the return value.
7250 */
7251 static StartupData CreateSnapshotDataBlob(const char* embedded_source = NULL);
7252
7253 /**
7254 * Bootstrap an isolate and a context from the cold startup blob, run the
7255 * warm-up script to trigger code compilation. The side effects are then
7256 * discarded. The resulting startup snapshot will include compiled code.
7257 * Returns { NULL, 0 } on failure.
7258 * The caller acquires ownership of the data array in the return value.
7259 * The argument startup blob is untouched.
7260 */
7261 static StartupData WarmUpSnapshotDataBlob(StartupData cold_startup_blob,
7262 const char* warmup_source);
7263
7264 /**
7265 * Adds a message listener.
7266 *
7267 * The same message listener can be added more than once and in that
7268 * case it will be called more than once for each message.
7269 *
7270 * If data is specified, it will be passed to the callback when it is called.
7271 * Otherwise, the exception object will be passed to the callback instead.
7272 */
7273 V8_INLINE static V8_DEPRECATED(
7274 "Use isolate version",
7275 bool AddMessageListener(MessageCallback that,
7276 Local<Value> data = Local<Value>()));
7277
7278 /**
7279 * Remove all message listeners from the specified callback function.
7280 */
7281 V8_INLINE static V8_DEPRECATED(
7282 "Use isolate version", void RemoveMessageListeners(MessageCallback that));
7283
7284 /**
7285 * Tells V8 to capture current stack trace when uncaught exception occurs
7286 * and report it to the message listeners. The option is off by default.
7287 */
7288 V8_INLINE static V8_DEPRECATED(
7289 "Use isolate version",
7290 void SetCaptureStackTraceForUncaughtExceptions(
7291 bool capture, int frame_limit = 10,
7292 StackTrace::StackTraceOptions options = StackTrace::kOverview));
7293
7294 /**
7295 * Sets V8 flags from a string.
7296 */
7297 static void SetFlagsFromString(const char* str, int length);
7298
7299 /**
7300 * Sets V8 flags from the command line.
7301 */
7302 static void SetFlagsFromCommandLine(int* argc,
7303 char** argv,
7304 bool remove_flags);
7305
7306 /** Get the version string. */
7307 static const char* GetVersion();
7308
7309 /** Callback function for reporting failed access checks.*/
7310 V8_INLINE static V8_DEPRECATED(
7311 "Use isolate version",
7312 void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback));
7313
7314 /**
7315 * Enables the host application to receive a notification before a
7316 * garbage collection. Allocations are not allowed in the
7317 * callback function, you therefore cannot manipulate objects (set
7318 * or delete properties for example) since it is possible such
7319 * operations will result in the allocation of objects. It is possible
7320 * to specify the GCType filter for your callback. But it is not possible to
7321 * register the same callback function two times with different
7322 * GCType filters.
7323 */
7324 static V8_DEPRECATED(
7325 "Use isolate version",
7326 void AddGCPrologueCallback(GCCallback callback,
7327 GCType gc_type_filter = kGCTypeAll));
7328
7329 /**
7330 * This function removes callback which was installed by
7331 * AddGCPrologueCallback function.
7332 */
7333 V8_INLINE static V8_DEPRECATED(
7334 "Use isolate version",
7335 void RemoveGCPrologueCallback(GCCallback callback));
7336
7337 /**
7338 * Enables the host application to receive a notification after a
7339 * garbage collection. Allocations are not allowed in the
7340 * callback function, you therefore cannot manipulate objects (set
7341 * or delete properties for example) since it is possible such
7342 * operations will result in the allocation of objects. It is possible
7343 * to specify the GCType filter for your callback. But it is not possible to
7344 * register the same callback function two times with different
7345 * GCType filters.
7346 */
7347 static V8_DEPRECATED(
7348 "Use isolate version",
7349 void AddGCEpilogueCallback(GCCallback callback,
7350 GCType gc_type_filter = kGCTypeAll));
7351
7352 /**
7353 * This function removes callback which was installed by
7354 * AddGCEpilogueCallback function.
7355 */
7356 V8_INLINE static V8_DEPRECATED(
7357 "Use isolate version",
7358 void RemoveGCEpilogueCallback(GCCallback callback));
7359
7360 /**
7361 * Initializes V8. This function needs to be called before the first Isolate
7362 * is created. It always returns true.
7363 */
7364 static bool Initialize();
7365
7366 /**
7367 * Allows the host application to provide a callback which can be used
7368 * as a source of entropy for random number generators.
7369 */
7370 static void SetEntropySource(EntropySource source);
7371
7372 /**
7373 * Allows the host application to provide a callback that allows v8 to
7374 * cooperate with a profiler that rewrites return addresses on stack.
7375 */
7376 static void SetReturnAddressLocationResolver(
7377 ReturnAddressLocationResolver return_address_resolver);
7378
7379 /**
7380 * Forcefully terminate the current thread of JavaScript execution
7381 * in the given isolate.
7382 *
7383 * This method can be used by any thread even if that thread has not
7384 * acquired the V8 lock with a Locker object.
7385 *
7386 * \param isolate The isolate in which to terminate the current JS execution.
7387 */
7388 V8_INLINE static V8_DEPRECATED("Use isolate version",
7389 void TerminateExecution(Isolate* isolate));
7390
7391 /**
7392 * Is V8 terminating JavaScript execution.
7393 *
7394 * Returns true if JavaScript execution is currently terminating
7395 * because of a call to TerminateExecution. In that case there are
7396 * still JavaScript frames on the stack and the termination
7397 * exception is still active.
7398 *
7399 * \param isolate The isolate in which to check.
7400 */
7401 V8_INLINE static V8_DEPRECATED(
7402 "Use isolate version",
7403 bool IsExecutionTerminating(Isolate* isolate = NULL));
7404
7405 /**
7406 * Resume execution capability in the given isolate, whose execution
7407 * was previously forcefully terminated using TerminateExecution().
7408 *
7409 * When execution is forcefully terminated using TerminateExecution(),
7410 * the isolate can not resume execution until all JavaScript frames
7411 * have propagated the uncatchable exception which is generated. This
7412 * method allows the program embedding the engine to handle the
7413 * termination event and resume execution capability, even if
7414 * JavaScript frames remain on the stack.
7415 *
7416 * This method can be used by any thread even if that thread has not
7417 * acquired the V8 lock with a Locker object.
7418 *
7419 * \param isolate The isolate in which to resume execution capability.
7420 */
7421 V8_INLINE static V8_DEPRECATED(
7422 "Use isolate version", void CancelTerminateExecution(Isolate* isolate));
7423
7424 /**
7425 * Releases any resources used by v8 and stops any utility threads
7426 * that may be running. Note that disposing v8 is permanent, it
7427 * cannot be reinitialized.
7428 *
7429 * It should generally not be necessary to dispose v8 before exiting
7430 * a process, this should happen automatically. It is only necessary
7431 * to use if the process needs the resources taken up by v8.
7432 */
7433 static bool Dispose();
7434
7435 /**
7436 * Iterates through all external resources referenced from current isolate
7437 * heap. GC is not invoked prior to iterating, therefore there is no
7438 * guarantee that visited objects are still alive.
7439 */
7440 V8_INLINE static V8_DEPRECATED(
7441 "Use isolate version",
7442 void VisitExternalResources(ExternalResourceVisitor* visitor));
7443
7444 /**
7445 * Iterates through all the persistent handles in the current isolate's heap
7446 * that have class_ids.
7447 */
7448 V8_INLINE static V8_DEPRECATED(
7449 "Use isolate version",
7450 void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor));
7451
7452 /**
7453 * Iterates through all the persistent handles in isolate's heap that have
7454 * class_ids.
7455 */
7456 V8_INLINE static V8_DEPRECATED(
7457 "Use isolate version",
7458 void VisitHandlesWithClassIds(Isolate* isolate,
7459 PersistentHandleVisitor* visitor));
7460
7461 /**
7462 * Iterates through all the persistent handles in the current isolate's heap
7463 * that have class_ids and are candidates to be marked as partially dependent
7464 * handles. This will visit handles to young objects created since the last
7465 * garbage collection but is free to visit an arbitrary superset of these
7466 * objects.
7467 */
7468 V8_INLINE static V8_DEPRECATED(
7469 "Use isolate version",
7470 void VisitHandlesForPartialDependence(Isolate* isolate,
7471 PersistentHandleVisitor* visitor));
7472
7473 /**
7474 * Initialize the ICU library bundled with V8. The embedder should only
7475 * invoke this method when using the bundled ICU. Returns true on success.
7476 *
7477 * If V8 was compiled with the ICU data in an external file, the location
7478 * of the data file has to be provided.
7479 */
7480 V8_DEPRECATE_SOON(
7481 "Use version with default location.",
7482 static bool InitializeICU(const char* icu_data_file = nullptr));
7483
7484 /**
7485 * Initialize the ICU library bundled with V8. The embedder should only
7486 * invoke this method when using the bundled ICU. If V8 was compiled with
7487 * the ICU data in an external file and when the default location of that
7488 * file should be used, a path to the executable must be provided.
7489 * Returns true on success.
7490 *
7491 * The default is a file called icudtl.dat side-by-side with the executable.
7492 *
7493 * Optionally, the location of the data file can be provided to override the
7494 * default.
7495 */
7496 static bool InitializeICUDefaultLocation(const char* exec_path,
7497 const char* icu_data_file = nullptr);
7498
7499 /**
7500 * Initialize the external startup data. The embedder only needs to
7501 * invoke this method when external startup data was enabled in a build.
7502 *
7503 * If V8 was compiled with the startup data in an external file, then
7504 * V8 needs to be given those external files during startup. There are
7505 * three ways to do this:
7506 * - InitializeExternalStartupData(const char*)
7507 * This will look in the given directory for files "natives_blob.bin"
7508 * and "snapshot_blob.bin" - which is what the default build calls them.
7509 * - InitializeExternalStartupData(const char*, const char*)
7510 * As above, but will directly use the two given file names.
7511 * - Call SetNativesDataBlob, SetNativesDataBlob.
7512 * This will read the blobs from the given data structures and will
7513 * not perform any file IO.
7514 */
7515 static void InitializeExternalStartupData(const char* directory_path);
7516 static void InitializeExternalStartupData(const char* natives_blob,
7517 const char* snapshot_blob);
7518 /**
7519 * Sets the v8::Platform to use. This should be invoked before V8 is
7520 * initialized.
7521 */
7522 static void InitializePlatform(Platform* platform);
7523
7524 /**
7525 * Clears all references to the v8::Platform. This should be invoked after
7526 * V8 was disposed.
7527 */
7528 static void ShutdownPlatform();
7529
7530 private:
7531 V8();
7532
7533 static internal::Object** GlobalizeReference(internal::Isolate* isolate,
7534 internal::Object** handle);
7535 static internal::Object** CopyPersistent(internal::Object** handle);
7536 static void DisposeGlobal(internal::Object** global_handle);
7537 static void MakeWeak(internal::Object** location, void* data,
7538 WeakCallbackInfo<void>::Callback weak_callback,
7539 WeakCallbackType type);
7540 static void MakeWeak(internal::Object** location, void* data,
7541 // Must be 0 or -1.
7542 int internal_field_index1,
7543 // Must be 1 or -1.
7544 int internal_field_index2,
7545 WeakCallbackInfo<void>::Callback weak_callback);
7546 static void MakeWeak(internal::Object*** location_addr);
7547 static void* ClearWeak(internal::Object** location);
7548 static void Eternalize(Isolate* isolate,
7549 Value* handle,
7550 int* index);
7551 static Local<Value> GetEternal(Isolate* isolate, int index);
7552
7553 static void RegisterExternallyReferencedObject(internal::Object** object,
7554 internal::Isolate* isolate);
7555
7556 template <class K, class V, class T>
7557 friend class PersistentValueMapBase;
7558
7559 static void FromJustIsNothing();
7560 static void ToLocalEmpty();
7561 static void InternalFieldOutOfBounds(int index);
7562 template <class T> friend class Local;
7563 template <class T>
7564 friend class MaybeLocal;
7565 template <class T>
7566 friend class Maybe;
7567 template <class T>
7568 friend class WeakCallbackInfo;
7569 template <class T> friend class Eternal;
7570 template <class T> friend class PersistentBase;
7571 template <class T, class M> friend class Persistent;
7572 friend class Context;
7573 };
7574
7575 /**
7576 * Helper class to create a snapshot data blob.
7577 */
7578 class V8_EXPORT SnapshotCreator {
7579 public:
7580 enum class FunctionCodeHandling { kClear, kKeep };
7581
7582 /**
7583 * Create and enter an isolate, and set it up for serialization.
7584 * The isolate is either created from scratch or from an existing snapshot.
7585 * The caller keeps ownership of the argument snapshot.
7586 * \param existing_blob existing snapshot from which to create this one.
7587 * \param external_references a null-terminated array of external references
7588 * that must be equivalent to CreateParams::external_references.
7589 */
7590 SnapshotCreator(intptr_t* external_references = nullptr,
7591 StartupData* existing_blob = nullptr);
7592
7593 ~SnapshotCreator();
7594
7595 /**
7596 * \returns the isolate prepared by the snapshot creator.
7597 */
7598 Isolate* GetIsolate();
7599
7600 /**
7601 * Add a context to be included in the snapshot blob.
7602 * \returns the index of the context in the snapshot blob.
7603 */
7604 size_t AddContext(Local<Context> context);
7605
7606 /**
7607 * Add a template to be included in the snapshot blob.
7608 * \returns the index of the template in the snapshot blob.
7609 */
7610 size_t AddTemplate(Local<Template> template_obj);
7611
7612 /**
7613 * Created a snapshot data blob.
7614 * This must not be called from within a handle scope.
7615 * \param function_code_handling whether to include compiled function code
7616 * in the snapshot.
7617 * \param callback to serialize embedder-set internal fields.
7618 * \returns { nullptr, 0 } on failure, and a startup snapshot on success. The
7619 * caller acquires ownership of the data array in the return value.
7620 */
7621 StartupData CreateBlob(FunctionCodeHandling function_code_handling,
7622 SerializeInternalFieldsCallback callback = nullptr);
7623
7624 // Disallow copying and assigning.
7625 SnapshotCreator(const SnapshotCreator&) = delete;
7626 void operator=(const SnapshotCreator&) = delete;
7627
7628 private:
7629 void* data_;
7630 };
7631
7632 /**
7633 * A simple Maybe type, representing an object which may or may not have a
7634 * value, see https://hackage.haskell.org/package/base/docs/Data-Maybe.html.
7635 *
7636 * If an API method returns a Maybe<>, the API method can potentially fail
7637 * either because an exception is thrown, or because an exception is pending,
7638 * e.g. because a previous API call threw an exception that hasn't been caught
7639 * yet, or because a TerminateExecution exception was thrown. In that case, a
7640 * "Nothing" value is returned.
7641 */
7642 template <class T>
7643 class Maybe {
7644 public:
IsNothing()7645 V8_INLINE bool IsNothing() const { return !has_value_; }
IsJust()7646 V8_INLINE bool IsJust() const { return has_value_; }
7647
7648 // Will crash if the Maybe<> is nothing.
ToChecked()7649 V8_INLINE T ToChecked() const { return FromJust(); }
7650
To(T * out)7651 V8_WARN_UNUSED_RESULT V8_INLINE bool To(T* out) const {
7652 if (V8_LIKELY(IsJust())) *out = value_;
7653 return IsJust();
7654 }
7655
7656 // Will crash if the Maybe<> is nothing.
FromJust()7657 V8_INLINE T FromJust() const {
7658 if (V8_UNLIKELY(!IsJust())) V8::FromJustIsNothing();
7659 return value_;
7660 }
7661
FromMaybe(const T & default_value)7662 V8_INLINE T FromMaybe(const T& default_value) const {
7663 return has_value_ ? value_ : default_value;
7664 }
7665
7666 V8_INLINE bool operator==(const Maybe& other) const {
7667 return (IsJust() == other.IsJust()) &&
7668 (!IsJust() || FromJust() == other.FromJust());
7669 }
7670
7671 V8_INLINE bool operator!=(const Maybe& other) const {
7672 return !operator==(other);
7673 }
7674
7675 private:
Maybe()7676 Maybe() : has_value_(false) {}
Maybe(const T & t)7677 explicit Maybe(const T& t) : has_value_(true), value_(t) {}
7678
7679 bool has_value_;
7680 T value_;
7681
7682 template <class U>
7683 friend Maybe<U> Nothing();
7684 template <class U>
7685 friend Maybe<U> Just(const U& u);
7686 };
7687
7688
7689 template <class T>
Nothing()7690 inline Maybe<T> Nothing() {
7691 return Maybe<T>();
7692 }
7693
7694
7695 template <class T>
Just(const T & t)7696 inline Maybe<T> Just(const T& t) {
7697 return Maybe<T>(t);
7698 }
7699
7700
7701 /**
7702 * An external exception handler.
7703 */
7704 class V8_EXPORT TryCatch {
7705 public:
7706 /**
7707 * Creates a new try/catch block and registers it with v8. Note that
7708 * all TryCatch blocks should be stack allocated because the memory
7709 * location itself is compared against JavaScript try/catch blocks.
7710 */
7711 V8_DEPRECATED("Use isolate version", TryCatch());
7712
7713 /**
7714 * Creates a new try/catch block and registers it with v8. Note that
7715 * all TryCatch blocks should be stack allocated because the memory
7716 * location itself is compared against JavaScript try/catch blocks.
7717 */
7718 TryCatch(Isolate* isolate);
7719
7720 /**
7721 * Unregisters and deletes this try/catch block.
7722 */
7723 ~TryCatch();
7724
7725 /**
7726 * Returns true if an exception has been caught by this try/catch block.
7727 */
7728 bool HasCaught() const;
7729
7730 /**
7731 * For certain types of exceptions, it makes no sense to continue execution.
7732 *
7733 * If CanContinue returns false, the correct action is to perform any C++
7734 * cleanup needed and then return. If CanContinue returns false and
7735 * HasTerminated returns true, it is possible to call
7736 * CancelTerminateExecution in order to continue calling into the engine.
7737 */
7738 bool CanContinue() const;
7739
7740 /**
7741 * Returns true if an exception has been caught due to script execution
7742 * being terminated.
7743 *
7744 * There is no JavaScript representation of an execution termination
7745 * exception. Such exceptions are thrown when the TerminateExecution
7746 * methods are called to terminate a long-running script.
7747 *
7748 * If such an exception has been thrown, HasTerminated will return true,
7749 * indicating that it is possible to call CancelTerminateExecution in order
7750 * to continue calling into the engine.
7751 */
7752 bool HasTerminated() const;
7753
7754 /**
7755 * Throws the exception caught by this TryCatch in a way that avoids
7756 * it being caught again by this same TryCatch. As with ThrowException
7757 * it is illegal to execute any JavaScript operations after calling
7758 * ReThrow; the caller must return immediately to where the exception
7759 * is caught.
7760 */
7761 Local<Value> ReThrow();
7762
7763 /**
7764 * Returns the exception caught by this try/catch block. If no exception has
7765 * been caught an empty handle is returned.
7766 *
7767 * The returned handle is valid until this TryCatch block has been destroyed.
7768 */
7769 Local<Value> Exception() const;
7770
7771 /**
7772 * Returns the .stack property of the thrown object. If no .stack
7773 * property is present an empty handle is returned.
7774 */
7775 V8_DEPRECATE_SOON("Use maybe version.", Local<Value> StackTrace() const);
7776 V8_WARN_UNUSED_RESULT MaybeLocal<Value> StackTrace(
7777 Local<Context> context) const;
7778
7779 /**
7780 * Returns the message associated with this exception. If there is
7781 * no message associated an empty handle is returned.
7782 *
7783 * The returned handle is valid until this TryCatch block has been
7784 * destroyed.
7785 */
7786 Local<v8::Message> Message() const;
7787
7788 /**
7789 * Clears any exceptions that may have been caught by this try/catch block.
7790 * After this method has been called, HasCaught() will return false. Cancels
7791 * the scheduled exception if it is caught and ReThrow() is not called before.
7792 *
7793 * It is not necessary to clear a try/catch block before using it again; if
7794 * another exception is thrown the previously caught exception will just be
7795 * overwritten. However, it is often a good idea since it makes it easier
7796 * to determine which operation threw a given exception.
7797 */
7798 void Reset();
7799
7800 /**
7801 * Set verbosity of the external exception handler.
7802 *
7803 * By default, exceptions that are caught by an external exception
7804 * handler are not reported. Call SetVerbose with true on an
7805 * external exception handler to have exceptions caught by the
7806 * handler reported as if they were not caught.
7807 */
7808 void SetVerbose(bool value);
7809
7810 /**
7811 * Set whether or not this TryCatch should capture a Message object
7812 * which holds source information about where the exception
7813 * occurred. True by default.
7814 */
7815 void SetCaptureMessage(bool value);
7816
7817 /**
7818 * There are cases when the raw address of C++ TryCatch object cannot be
7819 * used for comparisons with addresses into the JS stack. The cases are:
7820 * 1) ARM, ARM64 and MIPS simulators which have separate JS stack.
7821 * 2) Address sanitizer allocates local C++ object in the heap when
7822 * UseAfterReturn mode is enabled.
7823 * This method returns address that can be used for comparisons with
7824 * addresses into the JS stack. When neither simulator nor ASAN's
7825 * UseAfterReturn is enabled, then the address returned will be the address
7826 * of the C++ try catch handler itself.
7827 */
JSStackComparableAddress(v8::TryCatch * handler)7828 static void* JSStackComparableAddress(v8::TryCatch* handler) {
7829 if (handler == NULL) return NULL;
7830 return handler->js_stack_comparable_address_;
7831 }
7832
7833 TryCatch(const TryCatch&) = delete;
7834 void operator=(const TryCatch&) = delete;
7835 void* operator new(size_t size) = delete;
7836 void operator delete(void*, size_t) = delete;
7837
7838 private:
7839 void ResetInternal();
7840
7841 v8::internal::Isolate* isolate_;
7842 v8::TryCatch* next_;
7843 void* exception_;
7844 void* message_obj_;
7845 void* js_stack_comparable_address_;
7846 bool is_verbose_ : 1;
7847 bool can_continue_ : 1;
7848 bool capture_message_ : 1;
7849 bool rethrow_ : 1;
7850 bool has_terminated_ : 1;
7851
7852 friend class v8::internal::Isolate;
7853 };
7854
7855
7856 // --- Context ---
7857
7858
7859 /**
7860 * A container for extension names.
7861 */
7862 class V8_EXPORT ExtensionConfiguration {
7863 public:
ExtensionConfiguration()7864 ExtensionConfiguration() : name_count_(0), names_(NULL) { }
ExtensionConfiguration(int name_count,const char * names[])7865 ExtensionConfiguration(int name_count, const char* names[])
7866 : name_count_(name_count), names_(names) { }
7867
begin()7868 const char** begin() const { return &names_[0]; }
end()7869 const char** end() const { return &names_[name_count_]; }
7870
7871 private:
7872 const int name_count_;
7873 const char** names_;
7874 };
7875
7876 /**
7877 * A sandboxed execution context with its own set of built-in objects
7878 * and functions.
7879 */
7880 class V8_EXPORT Context {
7881 public:
7882 /**
7883 * Returns the global proxy object.
7884 *
7885 * Global proxy object is a thin wrapper whose prototype points to actual
7886 * context's global object with the properties like Object, etc. This is done
7887 * that way for security reasons (for more details see
7888 * https://wiki.mozilla.org/Gecko:SplitWindow).
7889 *
7890 * Please note that changes to global proxy object prototype most probably
7891 * would break VM---v8 expects only global object as a prototype of global
7892 * proxy object.
7893 */
7894 Local<Object> Global();
7895
7896 /**
7897 * Detaches the global object from its context before
7898 * the global object can be reused to create a new context.
7899 */
7900 void DetachGlobal();
7901
7902 /**
7903 * Creates a new context and returns a handle to the newly allocated
7904 * context.
7905 *
7906 * \param isolate The isolate in which to create the context.
7907 *
7908 * \param extensions An optional extension configuration containing
7909 * the extensions to be installed in the newly created context.
7910 *
7911 * \param global_template An optional object template from which the
7912 * global object for the newly created context will be created.
7913 *
7914 * \param global_object An optional global object to be reused for
7915 * the newly created context. This global object must have been
7916 * created by a previous call to Context::New with the same global
7917 * template. The state of the global object will be completely reset
7918 * and only object identify will remain.
7919 */
7920 static Local<Context> New(
7921 Isolate* isolate, ExtensionConfiguration* extensions = NULL,
7922 MaybeLocal<ObjectTemplate> global_template = MaybeLocal<ObjectTemplate>(),
7923 MaybeLocal<Value> global_object = MaybeLocal<Value>());
7924
7925 static MaybeLocal<Context> FromSnapshot(
7926 Isolate* isolate, size_t context_snapshot_index,
7927 ExtensionConfiguration* extensions = nullptr,
7928 MaybeLocal<ObjectTemplate> global_template = MaybeLocal<ObjectTemplate>(),
7929 MaybeLocal<Value> global_object = MaybeLocal<Value>());
7930
7931 /**
7932 * Returns an global object that isn't backed by an actual context.
7933 *
7934 * The global template needs to have access checks with handlers installed.
7935 * If an existing global object is passed in, the global object is detached
7936 * from its context.
7937 *
7938 * Note that this is different from a detached context where all accesses to
7939 * the global proxy will fail. Instead, the access check handlers are invoked.
7940 *
7941 * It is also not possible to detach an object returned by this method.
7942 * Instead, the access check handlers need to return nothing to achieve the
7943 * same effect.
7944 *
7945 * It is possible, however, to create a new context from the global object
7946 * returned by this method.
7947 */
7948 static MaybeLocal<Object> NewRemoteContext(
7949 Isolate* isolate, Local<ObjectTemplate> global_template,
7950 MaybeLocal<Value> global_object = MaybeLocal<Value>());
7951
7952 /**
7953 * Sets the security token for the context. To access an object in
7954 * another context, the security tokens must match.
7955 */
7956 void SetSecurityToken(Local<Value> token);
7957
7958 /** Restores the security token to the default value. */
7959 void UseDefaultSecurityToken();
7960
7961 /** Returns the security token of this context.*/
7962 Local<Value> GetSecurityToken();
7963
7964 /**
7965 * Enter this context. After entering a context, all code compiled
7966 * and run is compiled and run in this context. If another context
7967 * is already entered, this old context is saved so it can be
7968 * restored when the new context is exited.
7969 */
7970 void Enter();
7971
7972 /**
7973 * Exit this context. Exiting the current context restores the
7974 * context that was in place when entering the current context.
7975 */
7976 void Exit();
7977
7978 /** Returns an isolate associated with a current context. */
7979 v8::Isolate* GetIsolate();
7980
7981 /**
7982 * The field at kDebugIdIndex is reserved for V8 debugger implementation.
7983 * The value is propagated to the scripts compiled in given Context and
7984 * can be used for filtering scripts.
7985 */
7986 enum EmbedderDataFields { kDebugIdIndex = 0 };
7987
7988 /**
7989 * Gets the embedder data with the given index, which must have been set by a
7990 * previous call to SetEmbedderData with the same index. Note that index 0
7991 * currently has a special meaning for Chrome's debugger.
7992 */
7993 V8_INLINE Local<Value> GetEmbedderData(int index);
7994
7995 /**
7996 * Gets the binding object used by V8 extras. Extra natives get a reference
7997 * to this object and can use it to "export" functionality by adding
7998 * properties. Extra natives can also "import" functionality by accessing
7999 * properties added by the embedder using the V8 API.
8000 */
8001 Local<Object> GetExtrasBindingObject();
8002
8003 /**
8004 * Sets the embedder data with the given index, growing the data as
8005 * needed. Note that index 0 currently has a special meaning for Chrome's
8006 * debugger.
8007 */
8008 void SetEmbedderData(int index, Local<Value> value);
8009
8010 /**
8011 * Gets a 2-byte-aligned native pointer from the embedder data with the given
8012 * index, which must have been set by a previous call to
8013 * SetAlignedPointerInEmbedderData with the same index. Note that index 0
8014 * currently has a special meaning for Chrome's debugger.
8015 */
8016 V8_INLINE void* GetAlignedPointerFromEmbedderData(int index);
8017
8018 /**
8019 * Sets a 2-byte-aligned native pointer in the embedder data with the given
8020 * index, growing the data as needed. Note that index 0 currently has a
8021 * special meaning for Chrome's debugger.
8022 */
8023 void SetAlignedPointerInEmbedderData(int index, void* value);
8024
8025 /**
8026 * Control whether code generation from strings is allowed. Calling
8027 * this method with false will disable 'eval' and the 'Function'
8028 * constructor for code running in this context. If 'eval' or the
8029 * 'Function' constructor are used an exception will be thrown.
8030 *
8031 * If code generation from strings is not allowed the
8032 * V8::AllowCodeGenerationFromStrings callback will be invoked if
8033 * set before blocking the call to 'eval' or the 'Function'
8034 * constructor. If that callback returns true, the call will be
8035 * allowed, otherwise an exception will be thrown. If no callback is
8036 * set an exception will be thrown.
8037 */
8038 void AllowCodeGenerationFromStrings(bool allow);
8039
8040 /**
8041 * Returns true if code generation from strings is allowed for the context.
8042 * For more details see AllowCodeGenerationFromStrings(bool) documentation.
8043 */
8044 bool IsCodeGenerationFromStringsAllowed();
8045
8046 /**
8047 * Sets the error description for the exception that is thrown when
8048 * code generation from strings is not allowed and 'eval' or the 'Function'
8049 * constructor are called.
8050 */
8051 void SetErrorMessageForCodeGenerationFromStrings(Local<String> message);
8052
8053 /**
8054 * Estimate the memory in bytes retained by this context.
8055 */
8056 size_t EstimatedSize();
8057
8058 /**
8059 * Stack-allocated class which sets the execution context for all
8060 * operations executed within a local scope.
8061 */
8062 class Scope {
8063 public:
Scope(Local<Context> context)8064 explicit V8_INLINE Scope(Local<Context> context) : context_(context) {
8065 context_->Enter();
8066 }
~Scope()8067 V8_INLINE ~Scope() { context_->Exit(); }
8068
8069 private:
8070 Local<Context> context_;
8071 };
8072
8073 private:
8074 friend class Value;
8075 friend class Script;
8076 friend class Object;
8077 friend class Function;
8078
8079 Local<Value> SlowGetEmbedderData(int index);
8080 void* SlowGetAlignedPointerFromEmbedderData(int index);
8081 };
8082
8083
8084 /**
8085 * Multiple threads in V8 are allowed, but only one thread at a time is allowed
8086 * to use any given V8 isolate, see the comments in the Isolate class. The
8087 * definition of 'using a V8 isolate' includes accessing handles or holding onto
8088 * object pointers obtained from V8 handles while in the particular V8 isolate.
8089 * It is up to the user of V8 to ensure, perhaps with locking, that this
8090 * constraint is not violated. In addition to any other synchronization
8091 * mechanism that may be used, the v8::Locker and v8::Unlocker classes must be
8092 * used to signal thread switches to V8.
8093 *
8094 * v8::Locker is a scoped lock object. While it's active, i.e. between its
8095 * construction and destruction, the current thread is allowed to use the locked
8096 * isolate. V8 guarantees that an isolate can be locked by at most one thread at
8097 * any time. In other words, the scope of a v8::Locker is a critical section.
8098 *
8099 * Sample usage:
8100 * \code
8101 * ...
8102 * {
8103 * v8::Locker locker(isolate);
8104 * v8::Isolate::Scope isolate_scope(isolate);
8105 * ...
8106 * // Code using V8 and isolate goes here.
8107 * ...
8108 * } // Destructor called here
8109 * \endcode
8110 *
8111 * If you wish to stop using V8 in a thread A you can do this either by
8112 * destroying the v8::Locker object as above or by constructing a v8::Unlocker
8113 * object:
8114 *
8115 * \code
8116 * {
8117 * isolate->Exit();
8118 * v8::Unlocker unlocker(isolate);
8119 * ...
8120 * // Code not using V8 goes here while V8 can run in another thread.
8121 * ...
8122 * } // Destructor called here.
8123 * isolate->Enter();
8124 * \endcode
8125 *
8126 * The Unlocker object is intended for use in a long-running callback from V8,
8127 * where you want to release the V8 lock for other threads to use.
8128 *
8129 * The v8::Locker is a recursive lock, i.e. you can lock more than once in a
8130 * given thread. This can be useful if you have code that can be called either
8131 * from code that holds the lock or from code that does not. The Unlocker is
8132 * not recursive so you can not have several Unlockers on the stack at once, and
8133 * you can not use an Unlocker in a thread that is not inside a Locker's scope.
8134 *
8135 * An unlocker will unlock several lockers if it has to and reinstate the
8136 * correct depth of locking on its destruction, e.g.:
8137 *
8138 * \code
8139 * // V8 not locked.
8140 * {
8141 * v8::Locker locker(isolate);
8142 * Isolate::Scope isolate_scope(isolate);
8143 * // V8 locked.
8144 * {
8145 * v8::Locker another_locker(isolate);
8146 * // V8 still locked (2 levels).
8147 * {
8148 * isolate->Exit();
8149 * v8::Unlocker unlocker(isolate);
8150 * // V8 not locked.
8151 * }
8152 * isolate->Enter();
8153 * // V8 locked again (2 levels).
8154 * }
8155 * // V8 still locked (1 level).
8156 * }
8157 * // V8 Now no longer locked.
8158 * \endcode
8159 */
8160 class V8_EXPORT Unlocker {
8161 public:
8162 /**
8163 * Initialize Unlocker for a given Isolate.
8164 */
Unlocker(Isolate * isolate)8165 V8_INLINE explicit Unlocker(Isolate* isolate) { Initialize(isolate); }
8166
8167 ~Unlocker();
8168 private:
8169 void Initialize(Isolate* isolate);
8170
8171 internal::Isolate* isolate_;
8172 };
8173
8174
8175 class V8_EXPORT Locker {
8176 public:
8177 /**
8178 * Initialize Locker for a given Isolate.
8179 */
Locker(Isolate * isolate)8180 V8_INLINE explicit Locker(Isolate* isolate) { Initialize(isolate); }
8181
8182 ~Locker();
8183
8184 /**
8185 * Returns whether or not the locker for a given isolate, is locked by the
8186 * current thread.
8187 */
8188 static bool IsLocked(Isolate* isolate);
8189
8190 /**
8191 * Returns whether v8::Locker is being used by this V8 instance.
8192 */
8193 static bool IsActive();
8194
8195 // Disallow copying and assigning.
8196 Locker(const Locker&) = delete;
8197 void operator=(const Locker&) = delete;
8198
8199 private:
8200 void Initialize(Isolate* isolate);
8201
8202 bool has_lock_;
8203 bool top_level_;
8204 internal::Isolate* isolate_;
8205 };
8206
8207
8208 // --- Implementation ---
8209
8210
8211 namespace internal {
8212
8213 const int kApiPointerSize = sizeof(void*); // NOLINT
8214 const int kApiIntSize = sizeof(int); // NOLINT
8215 const int kApiInt64Size = sizeof(int64_t); // NOLINT
8216
8217 // Tag information for HeapObject.
8218 const int kHeapObjectTag = 1;
8219 const int kHeapObjectTagSize = 2;
8220 const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
8221
8222 // Tag information for Smi.
8223 const int kSmiTag = 0;
8224 const int kSmiTagSize = 1;
8225 const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
8226
8227 template <size_t ptr_size> struct SmiTagging;
8228
8229 template<int kSmiShiftSize>
IntToSmi(int value)8230 V8_INLINE internal::Object* IntToSmi(int value) {
8231 int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
8232 uintptr_t tagged_value =
8233 (static_cast<uintptr_t>(value) << smi_shift_bits) | kSmiTag;
8234 return reinterpret_cast<internal::Object*>(tagged_value);
8235 }
8236
8237 // Smi constants for 32-bit systems.
8238 template <> struct SmiTagging<4> {
8239 enum { kSmiShiftSize = 0, kSmiValueSize = 31 };
8240 static int SmiShiftSize() { return kSmiShiftSize; }
8241 static int SmiValueSize() { return kSmiValueSize; }
8242 V8_INLINE static int SmiToInt(const internal::Object* value) {
8243 int shift_bits = kSmiTagSize + kSmiShiftSize;
8244 // Throw away top 32 bits and shift down (requires >> to be sign extending).
8245 return static_cast<int>(reinterpret_cast<intptr_t>(value)) >> shift_bits;
8246 }
8247 V8_INLINE static internal::Object* IntToSmi(int value) {
8248 return internal::IntToSmi<kSmiShiftSize>(value);
8249 }
8250 V8_INLINE static bool IsValidSmi(intptr_t value) {
8251 // To be representable as an tagged small integer, the two
8252 // most-significant bits of 'value' must be either 00 or 11 due to
8253 // sign-extension. To check this we add 01 to the two
8254 // most-significant bits, and check if the most-significant bit is 0
8255 //
8256 // CAUTION: The original code below:
8257 // bool result = ((value + 0x40000000) & 0x80000000) == 0;
8258 // may lead to incorrect results according to the C language spec, and
8259 // in fact doesn't work correctly with gcc4.1.1 in some cases: The
8260 // compiler may produce undefined results in case of signed integer
8261 // overflow. The computation must be done w/ unsigned ints.
8262 return static_cast<uintptr_t>(value + 0x40000000U) < 0x80000000U;
8263 }
8264 };
8265
8266 // Smi constants for 64-bit systems.
8267 template <> struct SmiTagging<8> {
8268 enum { kSmiShiftSize = 31, kSmiValueSize = 32 };
8269 static int SmiShiftSize() { return kSmiShiftSize; }
8270 static int SmiValueSize() { return kSmiValueSize; }
8271 V8_INLINE static int SmiToInt(const internal::Object* value) {
8272 int shift_bits = kSmiTagSize + kSmiShiftSize;
8273 // Shift down and throw away top 32 bits.
8274 return static_cast<int>(reinterpret_cast<intptr_t>(value) >> shift_bits);
8275 }
8276 V8_INLINE static internal::Object* IntToSmi(int value) {
8277 return internal::IntToSmi<kSmiShiftSize>(value);
8278 }
8279 V8_INLINE static bool IsValidSmi(intptr_t value) {
8280 // To be representable as a long smi, the value must be a 32-bit integer.
8281 return (value == static_cast<int32_t>(value));
8282 }
8283 };
8284
8285 typedef SmiTagging<kApiPointerSize> PlatformSmiTagging;
8286 const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize;
8287 const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize;
8288 V8_INLINE static bool SmiValuesAre31Bits() { return kSmiValueSize == 31; }
8289 V8_INLINE static bool SmiValuesAre32Bits() { return kSmiValueSize == 32; }
8290
8291 /**
8292 * This class exports constants and functionality from within v8 that
8293 * is necessary to implement inline functions in the v8 api. Don't
8294 * depend on functions and constants defined here.
8295 */
8296 class Internals {
8297 public:
8298 // These values match non-compiler-dependent values defined within
8299 // the implementation of v8.
8300 static const int kHeapObjectMapOffset = 0;
8301 static const int kMapInstanceTypeAndBitFieldOffset =
8302 1 * kApiPointerSize + kApiIntSize;
8303 static const int kStringResourceOffset = 3 * kApiPointerSize;
8304
8305 static const int kOddballKindOffset = 4 * kApiPointerSize + sizeof(double);
8306 static const int kForeignAddressOffset = kApiPointerSize;
8307 static const int kJSObjectHeaderSize = 3 * kApiPointerSize;
8308 static const int kFixedArrayHeaderSize = 2 * kApiPointerSize;
8309 static const int kContextHeaderSize = 2 * kApiPointerSize;
8310 static const int kContextEmbedderDataIndex = 5;
8311 static const int kFullStringRepresentationMask = 0x07;
8312 static const int kStringEncodingMask = 0x4;
8313 static const int kExternalTwoByteRepresentationTag = 0x02;
8314 static const int kExternalOneByteRepresentationTag = 0x06;
8315
8316 static const int kIsolateEmbedderDataOffset = 0 * kApiPointerSize;
8317 static const int kExternalMemoryOffset = 4 * kApiPointerSize;
8318 static const int kExternalMemoryLimitOffset =
8319 kExternalMemoryOffset + kApiInt64Size;
8320 static const int kIsolateRootsOffset = kExternalMemoryLimitOffset +
8321 kApiInt64Size + kApiInt64Size +
8322 kApiPointerSize + kApiPointerSize;
8323 static const int kUndefinedValueRootIndex = 4;
8324 static const int kTheHoleValueRootIndex = 5;
8325 static const int kNullValueRootIndex = 6;
8326 static const int kTrueValueRootIndex = 7;
8327 static const int kFalseValueRootIndex = 8;
8328 static const int kEmptyStringRootIndex = 9;
8329
8330 static const int kNodeClassIdOffset = 1 * kApiPointerSize;
8331 static const int kNodeFlagsOffset = 1 * kApiPointerSize + 3;
8332 static const int kNodeStateMask = 0x7;
8333 static const int kNodeStateIsWeakValue = 2;
8334 static const int kNodeStateIsPendingValue = 3;
8335 static const int kNodeStateIsNearDeathValue = 4;
8336 static const int kNodeIsIndependentShift = 3;
8337 static const int kNodeIsActiveShift = 4;
8338
8339 static const int kJSObjectType = 0xbc;
8340 static const int kJSApiObjectType = 0xbb;
8341 static const int kFirstNonstringType = 0x80;
8342 static const int kOddballType = 0x83;
8343 static const int kForeignType = 0x87;
8344
8345 static const int kUndefinedOddballKind = 5;
8346 static const int kNullOddballKind = 3;
8347
8348 static const uint32_t kNumIsolateDataSlots = 4;
8349
8350 V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate);
8351 V8_INLINE static void CheckInitialized(v8::Isolate* isolate) {
8352 #ifdef V8_ENABLE_CHECKS
8353 CheckInitializedImpl(isolate);
8354 #endif
8355 }
8356
8357 V8_INLINE static bool HasHeapObjectTag(const internal::Object* value) {
8358 return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) ==
8359 kHeapObjectTag);
8360 }
8361
8362 V8_INLINE static int SmiValue(const internal::Object* value) {
8363 return PlatformSmiTagging::SmiToInt(value);
8364 }
8365
8366 V8_INLINE static internal::Object* IntToSmi(int value) {
8367 return PlatformSmiTagging::IntToSmi(value);
8368 }
8369
8370 V8_INLINE static bool IsValidSmi(intptr_t value) {
8371 return PlatformSmiTagging::IsValidSmi(value);
8372 }
8373
8374 V8_INLINE static int GetInstanceType(const internal::Object* obj) {
8375 typedef internal::Object O;
8376 O* map = ReadField<O*>(obj, kHeapObjectMapOffset);
8377 // Map::InstanceType is defined so that it will always be loaded into
8378 // the LS 8 bits of one 16-bit word, regardless of endianess.
8379 return ReadField<uint16_t>(map, kMapInstanceTypeAndBitFieldOffset) & 0xff;
8380 }
8381
8382 V8_INLINE static int GetOddballKind(const internal::Object* obj) {
8383 typedef internal::Object O;
8384 return SmiValue(ReadField<O*>(obj, kOddballKindOffset));
8385 }
8386
8387 V8_INLINE static bool IsExternalTwoByteString(int instance_type) {
8388 int representation = (instance_type & kFullStringRepresentationMask);
8389 return representation == kExternalTwoByteRepresentationTag;
8390 }
8391
8392 V8_INLINE static uint8_t GetNodeFlag(internal::Object** obj, int shift) {
8393 uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
8394 return *addr & static_cast<uint8_t>(1U << shift);
8395 }
8396
8397 V8_INLINE static void UpdateNodeFlag(internal::Object** obj,
8398 bool value, int shift) {
8399 uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
8400 uint8_t mask = static_cast<uint8_t>(1U << shift);
8401 *addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift));
8402 }
8403
8404 V8_INLINE static uint8_t GetNodeState(internal::Object** obj) {
8405 uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
8406 return *addr & kNodeStateMask;
8407 }
8408
8409 V8_INLINE static void UpdateNodeState(internal::Object** obj,
8410 uint8_t value) {
8411 uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
8412 *addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value);
8413 }
8414
8415 V8_INLINE static void SetEmbedderData(v8::Isolate* isolate,
8416 uint32_t slot,
8417 void* data) {
8418 uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) +
8419 kIsolateEmbedderDataOffset + slot * kApiPointerSize;
8420 *reinterpret_cast<void**>(addr) = data;
8421 }
8422
8423 V8_INLINE static void* GetEmbedderData(const v8::Isolate* isolate,
8424 uint32_t slot) {
8425 const uint8_t* addr = reinterpret_cast<const uint8_t*>(isolate) +
8426 kIsolateEmbedderDataOffset + slot * kApiPointerSize;
8427 return *reinterpret_cast<void* const*>(addr);
8428 }
8429
8430 V8_INLINE static internal::Object** GetRoot(v8::Isolate* isolate,
8431 int index) {
8432 uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) + kIsolateRootsOffset;
8433 return reinterpret_cast<internal::Object**>(addr + index * kApiPointerSize);
8434 }
8435
8436 template <typename T>
8437 V8_INLINE static T ReadField(const internal::Object* ptr, int offset) {
8438 const uint8_t* addr =
8439 reinterpret_cast<const uint8_t*>(ptr) + offset - kHeapObjectTag;
8440 return *reinterpret_cast<const T*>(addr);
8441 }
8442
8443 template <typename T>
8444 V8_INLINE static T ReadEmbedderData(const v8::Context* context, int index) {
8445 typedef internal::Object O;
8446 typedef internal::Internals I;
8447 O* ctx = *reinterpret_cast<O* const*>(context);
8448 int embedder_data_offset = I::kContextHeaderSize +
8449 (internal::kApiPointerSize * I::kContextEmbedderDataIndex);
8450 O* embedder_data = I::ReadField<O*>(ctx, embedder_data_offset);
8451 int value_offset =
8452 I::kFixedArrayHeaderSize + (internal::kApiPointerSize * index);
8453 return I::ReadField<T>(embedder_data, value_offset);
8454 }
8455 };
8456
8457 } // namespace internal
8458
8459
8460 template <class T>
8461 Local<T> Local<T>::New(Isolate* isolate, Local<T> that) {
8462 return New(isolate, that.val_);
8463 }
8464
8465 template <class T>
8466 Local<T> Local<T>::New(Isolate* isolate, const PersistentBase<T>& that) {
8467 return New(isolate, that.val_);
8468 }
8469
8470
8471 template <class T>
8472 Local<T> Local<T>::New(Isolate* isolate, T* that) {
8473 if (that == NULL) return Local<T>();
8474 T* that_ptr = that;
8475 internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr);
8476 return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(
8477 reinterpret_cast<internal::Isolate*>(isolate), *p)));
8478 }
8479
8480
8481 template<class T>
8482 template<class S>
8483 void Eternal<T>::Set(Isolate* isolate, Local<S> handle) {
8484 TYPE_CHECK(T, S);
8485 V8::Eternalize(isolate, reinterpret_cast<Value*>(*handle), &this->index_);
8486 }
8487
8488
8489 template<class T>
8490 Local<T> Eternal<T>::Get(Isolate* isolate) {
8491 return Local<T>(reinterpret_cast<T*>(*V8::GetEternal(isolate, index_)));
8492 }
8493
8494
8495 template <class T>
8496 Local<T> MaybeLocal<T>::ToLocalChecked() {
8497 if (V8_UNLIKELY(val_ == nullptr)) V8::ToLocalEmpty();
8498 return Local<T>(val_);
8499 }
8500
8501
8502 template <class T>
8503 void* WeakCallbackInfo<T>::GetInternalField(int index) const {
8504 #ifdef V8_ENABLE_CHECKS
8505 if (index < 0 || index >= kInternalFieldsInWeakCallback) {
8506 V8::InternalFieldOutOfBounds(index);
8507 }
8508 #endif
8509 return internal_fields_[index];
8510 }
8511
8512
8513 template <class T>
8514 T* PersistentBase<T>::New(Isolate* isolate, T* that) {
8515 if (that == NULL) return NULL;
8516 internal::Object** p = reinterpret_cast<internal::Object**>(that);
8517 return reinterpret_cast<T*>(
8518 V8::GlobalizeReference(reinterpret_cast<internal::Isolate*>(isolate),
8519 p));
8520 }
8521
8522
8523 template <class T, class M>
8524 template <class S, class M2>
8525 void Persistent<T, M>::Copy(const Persistent<S, M2>& that) {
8526 TYPE_CHECK(T, S);
8527 this->Reset();
8528 if (that.IsEmpty()) return;
8529 internal::Object** p = reinterpret_cast<internal::Object**>(that.val_);
8530 this->val_ = reinterpret_cast<T*>(V8::CopyPersistent(p));
8531 M::Copy(that, this);
8532 }
8533
8534
8535 template <class T>
8536 bool PersistentBase<T>::IsIndependent() const {
8537 typedef internal::Internals I;
8538 if (this->IsEmpty()) return false;
8539 return I::GetNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
8540 I::kNodeIsIndependentShift);
8541 }
8542
8543
8544 template <class T>
8545 bool PersistentBase<T>::IsNearDeath() const {
8546 typedef internal::Internals I;
8547 if (this->IsEmpty()) return false;
8548 uint8_t node_state =
8549 I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_));
8550 return node_state == I::kNodeStateIsNearDeathValue ||
8551 node_state == I::kNodeStateIsPendingValue;
8552 }
8553
8554
8555 template <class T>
8556 bool PersistentBase<T>::IsWeak() const {
8557 typedef internal::Internals I;
8558 if (this->IsEmpty()) return false;
8559 return I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_)) ==
8560 I::kNodeStateIsWeakValue;
8561 }
8562
8563
8564 template <class T>
8565 void PersistentBase<T>::Reset() {
8566 if (this->IsEmpty()) return;
8567 V8::DisposeGlobal(reinterpret_cast<internal::Object**>(this->val_));
8568 val_ = 0;
8569 }
8570
8571
8572 template <class T>
8573 template <class S>
8574 void PersistentBase<T>::Reset(Isolate* isolate, const Local<S>& other) {
8575 TYPE_CHECK(T, S);
8576 Reset();
8577 if (other.IsEmpty()) return;
8578 this->val_ = New(isolate, other.val_);
8579 }
8580
8581
8582 template <class T>
8583 template <class S>
8584 void PersistentBase<T>::Reset(Isolate* isolate,
8585 const PersistentBase<S>& other) {
8586 TYPE_CHECK(T, S);
8587 Reset();
8588 if (other.IsEmpty()) return;
8589 this->val_ = New(isolate, other.val_);
8590 }
8591
8592
8593 template <class T>
8594 template <typename P>
8595 V8_INLINE void PersistentBase<T>::SetWeak(
8596 P* parameter, typename WeakCallbackInfo<P>::Callback callback,
8597 WeakCallbackType type) {
8598 typedef typename WeakCallbackInfo<void>::Callback Callback;
8599 V8::MakeWeak(reinterpret_cast<internal::Object**>(this->val_), parameter,
8600 reinterpret_cast<Callback>(callback), type);
8601 }
8602
8603 template <class T>
8604 void PersistentBase<T>::SetWeak() {
8605 V8::MakeWeak(reinterpret_cast<internal::Object***>(&this->val_));
8606 }
8607
8608 template <class T>
8609 template <typename P>
8610 P* PersistentBase<T>::ClearWeak() {
8611 return reinterpret_cast<P*>(
8612 V8::ClearWeak(reinterpret_cast<internal::Object**>(this->val_)));
8613 }
8614
8615 template <class T>
8616 void PersistentBase<T>::RegisterExternalReference(Isolate* isolate) const {
8617 if (IsEmpty()) return;
8618 V8::RegisterExternallyReferencedObject(
8619 reinterpret_cast<internal::Object**>(this->val_),
8620 reinterpret_cast<internal::Isolate*>(isolate));
8621 }
8622
8623 template <class T>
8624 void PersistentBase<T>::MarkIndependent() {
8625 typedef internal::Internals I;
8626 if (this->IsEmpty()) return;
8627 I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
8628 true,
8629 I::kNodeIsIndependentShift);
8630 }
8631
8632 template <class T>
8633 void PersistentBase<T>::MarkActive() {
8634 typedef internal::Internals I;
8635 if (this->IsEmpty()) return;
8636 I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_), true,
8637 I::kNodeIsActiveShift);
8638 }
8639
8640
8641 template <class T>
8642 void PersistentBase<T>::SetWrapperClassId(uint16_t class_id) {
8643 typedef internal::Internals I;
8644 if (this->IsEmpty()) return;
8645 internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
8646 uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
8647 *reinterpret_cast<uint16_t*>(addr) = class_id;
8648 }
8649
8650
8651 template <class T>
8652 uint16_t PersistentBase<T>::WrapperClassId() const {
8653 typedef internal::Internals I;
8654 if (this->IsEmpty()) return 0;
8655 internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
8656 uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
8657 return *reinterpret_cast<uint16_t*>(addr);
8658 }
8659
8660
8661 template<typename T>
8662 ReturnValue<T>::ReturnValue(internal::Object** slot) : value_(slot) {}
8663
8664 template<typename T>
8665 template<typename S>
8666 void ReturnValue<T>::Set(const Persistent<S>& handle) {
8667 TYPE_CHECK(T, S);
8668 if (V8_UNLIKELY(handle.IsEmpty())) {
8669 *value_ = GetDefaultValue();
8670 } else {
8671 *value_ = *reinterpret_cast<internal::Object**>(*handle);
8672 }
8673 }
8674
8675 template <typename T>
8676 template <typename S>
8677 void ReturnValue<T>::Set(const Global<S>& handle) {
8678 TYPE_CHECK(T, S);
8679 if (V8_UNLIKELY(handle.IsEmpty())) {
8680 *value_ = GetDefaultValue();
8681 } else {
8682 *value_ = *reinterpret_cast<internal::Object**>(*handle);
8683 }
8684 }
8685
8686 template <typename T>
8687 template <typename S>
8688 void ReturnValue<T>::Set(const Local<S> handle) {
8689 TYPE_CHECK(T, S);
8690 if (V8_UNLIKELY(handle.IsEmpty())) {
8691 *value_ = GetDefaultValue();
8692 } else {
8693 *value_ = *reinterpret_cast<internal::Object**>(*handle);
8694 }
8695 }
8696
8697 template<typename T>
8698 void ReturnValue<T>::Set(double i) {
8699 TYPE_CHECK(T, Number);
8700 Set(Number::New(GetIsolate(), i));
8701 }
8702
8703 template<typename T>
8704 void ReturnValue<T>::Set(int32_t i) {
8705 TYPE_CHECK(T, Integer);
8706 typedef internal::Internals I;
8707 if (V8_LIKELY(I::IsValidSmi(i))) {
8708 *value_ = I::IntToSmi(i);
8709 return;
8710 }
8711 Set(Integer::New(GetIsolate(), i));
8712 }
8713
8714 template<typename T>
8715 void ReturnValue<T>::Set(uint32_t i) {
8716 TYPE_CHECK(T, Integer);
8717 // Can't simply use INT32_MAX here for whatever reason.
8718 bool fits_into_int32_t = (i & (1U << 31)) == 0;
8719 if (V8_LIKELY(fits_into_int32_t)) {
8720 Set(static_cast<int32_t>(i));
8721 return;
8722 }
8723 Set(Integer::NewFromUnsigned(GetIsolate(), i));
8724 }
8725
8726 template<typename T>
8727 void ReturnValue<T>::Set(bool value) {
8728 TYPE_CHECK(T, Boolean);
8729 typedef internal::Internals I;
8730 int root_index;
8731 if (value) {
8732 root_index = I::kTrueValueRootIndex;
8733 } else {
8734 root_index = I::kFalseValueRootIndex;
8735 }
8736 *value_ = *I::GetRoot(GetIsolate(), root_index);
8737 }
8738
8739 template<typename T>
8740 void ReturnValue<T>::SetNull() {
8741 TYPE_CHECK(T, Primitive);
8742 typedef internal::Internals I;
8743 *value_ = *I::GetRoot(GetIsolate(), I::kNullValueRootIndex);
8744 }
8745
8746 template<typename T>
8747 void ReturnValue<T>::SetUndefined() {
8748 TYPE_CHECK(T, Primitive);
8749 typedef internal::Internals I;
8750 *value_ = *I::GetRoot(GetIsolate(), I::kUndefinedValueRootIndex);
8751 }
8752
8753 template<typename T>
8754 void ReturnValue<T>::SetEmptyString() {
8755 TYPE_CHECK(T, String);
8756 typedef internal::Internals I;
8757 *value_ = *I::GetRoot(GetIsolate(), I::kEmptyStringRootIndex);
8758 }
8759
8760 template <typename T>
8761 Isolate* ReturnValue<T>::GetIsolate() const {
8762 // Isolate is always the pointer below the default value on the stack.
8763 return *reinterpret_cast<Isolate**>(&value_[-2]);
8764 }
8765
8766 template <typename T>
8767 Local<Value> ReturnValue<T>::Get() const {
8768 typedef internal::Internals I;
8769 if (*value_ == *I::GetRoot(GetIsolate(), I::kTheHoleValueRootIndex))
8770 return Local<Value>(*Undefined(GetIsolate()));
8771 return Local<Value>::New(GetIsolate(), reinterpret_cast<Value*>(value_));
8772 }
8773
8774 template <typename T>
8775 template <typename S>
8776 void ReturnValue<T>::Set(S* whatever) {
8777 // Uncompilable to prevent inadvertent misuse.
8778 TYPE_CHECK(S*, Primitive);
8779 }
8780
8781 template<typename T>
8782 internal::Object* ReturnValue<T>::GetDefaultValue() {
8783 // Default value is always the pointer below value_ on the stack.
8784 return value_[-1];
8785 }
8786
8787 template <typename T>
8788 FunctionCallbackInfo<T>::FunctionCallbackInfo(internal::Object** implicit_args,
8789 internal::Object** values,
8790 int length)
8791 : implicit_args_(implicit_args), values_(values), length_(length) {}
8792
8793 template<typename T>
8794 Local<Value> FunctionCallbackInfo<T>::operator[](int i) const {
8795 if (i < 0 || length_ <= i) return Local<Value>(*Undefined(GetIsolate()));
8796 return Local<Value>(reinterpret_cast<Value*>(values_ - i));
8797 }
8798
8799
8800 template<typename T>
8801 Local<Function> FunctionCallbackInfo<T>::Callee() const {
8802 return Local<Function>(reinterpret_cast<Function*>(
8803 &implicit_args_[kCalleeIndex]));
8804 }
8805
8806
8807 template<typename T>
8808 Local<Object> FunctionCallbackInfo<T>::This() const {
8809 return Local<Object>(reinterpret_cast<Object*>(values_ + 1));
8810 }
8811
8812
8813 template<typename T>
8814 Local<Object> FunctionCallbackInfo<T>::Holder() const {
8815 return Local<Object>(reinterpret_cast<Object*>(
8816 &implicit_args_[kHolderIndex]));
8817 }
8818
8819 template <typename T>
8820 Local<Value> FunctionCallbackInfo<T>::NewTarget() const {
8821 return Local<Value>(
8822 reinterpret_cast<Value*>(&implicit_args_[kNewTargetIndex]));
8823 }
8824
8825 template <typename T>
8826 Local<Value> FunctionCallbackInfo<T>::Data() const {
8827 return Local<Value>(reinterpret_cast<Value*>(&implicit_args_[kDataIndex]));
8828 }
8829
8830
8831 template<typename T>
8832 Isolate* FunctionCallbackInfo<T>::GetIsolate() const {
8833 return *reinterpret_cast<Isolate**>(&implicit_args_[kIsolateIndex]);
8834 }
8835
8836
8837 template<typename T>
8838 ReturnValue<T> FunctionCallbackInfo<T>::GetReturnValue() const {
8839 return ReturnValue<T>(&implicit_args_[kReturnValueIndex]);
8840 }
8841
8842
8843 template<typename T>
8844 bool FunctionCallbackInfo<T>::IsConstructCall() const {
8845 return !NewTarget()->IsUndefined();
8846 }
8847
8848
8849 template<typename T>
8850 int FunctionCallbackInfo<T>::Length() const {
8851 return length_;
8852 }
8853
8854 ScriptOrigin::ScriptOrigin(Local<Value> resource_name,
8855 Local<Integer> resource_line_offset,
8856 Local<Integer> resource_column_offset,
8857 Local<Boolean> resource_is_shared_cross_origin,
8858 Local<Integer> script_id,
8859 Local<Boolean> resource_is_embedder_debug_script,
8860 Local<Value> source_map_url,
8861 Local<Boolean> resource_is_opaque)
8862 : resource_name_(resource_name),
8863 resource_line_offset_(resource_line_offset),
8864 resource_column_offset_(resource_column_offset),
8865 options_(!resource_is_embedder_debug_script.IsEmpty() &&
8866 resource_is_embedder_debug_script->IsTrue(),
8867 !resource_is_shared_cross_origin.IsEmpty() &&
8868 resource_is_shared_cross_origin->IsTrue(),
8869 !resource_is_opaque.IsEmpty() && resource_is_opaque->IsTrue()),
8870 script_id_(script_id),
8871 source_map_url_(source_map_url) {}
8872
8873 Local<Value> ScriptOrigin::ResourceName() const { return resource_name_; }
8874
8875
8876 Local<Integer> ScriptOrigin::ResourceLineOffset() const {
8877 return resource_line_offset_;
8878 }
8879
8880
8881 Local<Integer> ScriptOrigin::ResourceColumnOffset() const {
8882 return resource_column_offset_;
8883 }
8884
8885
8886 Local<Integer> ScriptOrigin::ScriptID() const { return script_id_; }
8887
8888
8889 Local<Value> ScriptOrigin::SourceMapUrl() const { return source_map_url_; }
8890
8891
8892 ScriptCompiler::Source::Source(Local<String> string, const ScriptOrigin& origin,
8893 CachedData* data)
8894 : source_string(string),
8895 resource_name(origin.ResourceName()),
8896 resource_line_offset(origin.ResourceLineOffset()),
8897 resource_column_offset(origin.ResourceColumnOffset()),
8898 resource_options(origin.Options()),
8899 source_map_url(origin.SourceMapUrl()),
8900 cached_data(data) {}
8901
8902
8903 ScriptCompiler::Source::Source(Local<String> string,
8904 CachedData* data)
8905 : source_string(string), cached_data(data) {}
8906
8907
8908 ScriptCompiler::Source::~Source() {
8909 delete cached_data;
8910 }
8911
8912
8913 const ScriptCompiler::CachedData* ScriptCompiler::Source::GetCachedData()
8914 const {
8915 return cached_data;
8916 }
8917
8918
8919 Local<Boolean> Boolean::New(Isolate* isolate, bool value) {
8920 return value ? True(isolate) : False(isolate);
8921 }
8922
8923
8924 void Template::Set(Isolate* isolate, const char* name, v8::Local<Data> value) {
8925 Set(v8::String::NewFromUtf8(isolate, name, NewStringType::kNormal)
8926 .ToLocalChecked(),
8927 value);
8928 }
8929
8930
8931 Local<Value> Object::GetInternalField(int index) {
8932 #ifndef V8_ENABLE_CHECKS
8933 typedef internal::Object O;
8934 typedef internal::HeapObject HO;
8935 typedef internal::Internals I;
8936 O* obj = *reinterpret_cast<O**>(this);
8937 // Fast path: If the object is a plain JSObject, which is the common case, we
8938 // know where to find the internal fields and can return the value directly.
8939 auto instance_type = I::GetInstanceType(obj);
8940 if (instance_type == I::kJSObjectType ||
8941 instance_type == I::kJSApiObjectType) {
8942 int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
8943 O* value = I::ReadField<O*>(obj, offset);
8944 O** result = HandleScope::CreateHandle(reinterpret_cast<HO*>(obj), value);
8945 return Local<Value>(reinterpret_cast<Value*>(result));
8946 }
8947 #endif
8948 return SlowGetInternalField(index);
8949 }
8950
8951
8952 void* Object::GetAlignedPointerFromInternalField(int index) {
8953 #ifndef V8_ENABLE_CHECKS
8954 typedef internal::Object O;
8955 typedef internal::Internals I;
8956 O* obj = *reinterpret_cast<O**>(this);
8957 // Fast path: If the object is a plain JSObject, which is the common case, we
8958 // know where to find the internal fields and can return the value directly.
8959 auto instance_type = I::GetInstanceType(obj);
8960 if (V8_LIKELY(instance_type == I::kJSObjectType ||
8961 instance_type == I::kJSApiObjectType)) {
8962 int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
8963 return I::ReadField<void*>(obj, offset);
8964 }
8965 #endif
8966 return SlowGetAlignedPointerFromInternalField(index);
8967 }
8968
8969 String* String::Cast(v8::Value* value) {
8970 #ifdef V8_ENABLE_CHECKS
8971 CheckCast(value);
8972 #endif
8973 return static_cast<String*>(value);
8974 }
8975
8976
8977 Local<String> String::Empty(Isolate* isolate) {
8978 typedef internal::Object* S;
8979 typedef internal::Internals I;
8980 I::CheckInitialized(isolate);
8981 S* slot = I::GetRoot(isolate, I::kEmptyStringRootIndex);
8982 return Local<String>(reinterpret_cast<String*>(slot));
8983 }
8984
8985
8986 String::ExternalStringResource* String::GetExternalStringResource() const {
8987 typedef internal::Object O;
8988 typedef internal::Internals I;
8989 O* obj = *reinterpret_cast<O* const*>(this);
8990 String::ExternalStringResource* result;
8991 if (I::IsExternalTwoByteString(I::GetInstanceType(obj))) {
8992 void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
8993 result = reinterpret_cast<String::ExternalStringResource*>(value);
8994 } else {
8995 result = NULL;
8996 }
8997 #ifdef V8_ENABLE_CHECKS
8998 VerifyExternalStringResource(result);
8999 #endif
9000 return result;
9001 }
9002
9003
9004 String::ExternalStringResourceBase* String::GetExternalStringResourceBase(
9005 String::Encoding* encoding_out) const {
9006 typedef internal::Object O;
9007 typedef internal::Internals I;
9008 O* obj = *reinterpret_cast<O* const*>(this);
9009 int type = I::GetInstanceType(obj) & I::kFullStringRepresentationMask;
9010 *encoding_out = static_cast<Encoding>(type & I::kStringEncodingMask);
9011 ExternalStringResourceBase* resource = NULL;
9012 if (type == I::kExternalOneByteRepresentationTag ||
9013 type == I::kExternalTwoByteRepresentationTag) {
9014 void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
9015 resource = static_cast<ExternalStringResourceBase*>(value);
9016 }
9017 #ifdef V8_ENABLE_CHECKS
9018 VerifyExternalStringResourceBase(resource, *encoding_out);
9019 #endif
9020 return resource;
9021 }
9022
9023
9024 bool Value::IsUndefined() const {
9025 #ifdef V8_ENABLE_CHECKS
9026 return FullIsUndefined();
9027 #else
9028 return QuickIsUndefined();
9029 #endif
9030 }
9031
9032 bool Value::QuickIsUndefined() const {
9033 typedef internal::Object O;
9034 typedef internal::Internals I;
9035 O* obj = *reinterpret_cast<O* const*>(this);
9036 if (!I::HasHeapObjectTag(obj)) return false;
9037 if (I::GetInstanceType(obj) != I::kOddballType) return false;
9038 return (I::GetOddballKind(obj) == I::kUndefinedOddballKind);
9039 }
9040
9041
9042 bool Value::IsNull() const {
9043 #ifdef V8_ENABLE_CHECKS
9044 return FullIsNull();
9045 #else
9046 return QuickIsNull();
9047 #endif
9048 }
9049
9050 bool Value::QuickIsNull() const {
9051 typedef internal::Object O;
9052 typedef internal::Internals I;
9053 O* obj = *reinterpret_cast<O* const*>(this);
9054 if (!I::HasHeapObjectTag(obj)) return false;
9055 if (I::GetInstanceType(obj) != I::kOddballType) return false;
9056 return (I::GetOddballKind(obj) == I::kNullOddballKind);
9057 }
9058
9059
9060 bool Value::IsString() const {
9061 #ifdef V8_ENABLE_CHECKS
9062 return FullIsString();
9063 #else
9064 return QuickIsString();
9065 #endif
9066 }
9067
9068 bool Value::QuickIsString() const {
9069 typedef internal::Object O;
9070 typedef internal::Internals I;
9071 O* obj = *reinterpret_cast<O* const*>(this);
9072 if (!I::HasHeapObjectTag(obj)) return false;
9073 return (I::GetInstanceType(obj) < I::kFirstNonstringType);
9074 }
9075
9076
9077 template <class T> Value* Value::Cast(T* value) {
9078 return static_cast<Value*>(value);
9079 }
9080
9081
9082 Local<Boolean> Value::ToBoolean() const {
9083 return ToBoolean(Isolate::GetCurrent()->GetCurrentContext())
9084 .FromMaybe(Local<Boolean>());
9085 }
9086
9087
9088 Local<Number> Value::ToNumber() const {
9089 return ToNumber(Isolate::GetCurrent()->GetCurrentContext())
9090 .FromMaybe(Local<Number>());
9091 }
9092
9093
9094 Local<String> Value::ToString() const {
9095 return ToString(Isolate::GetCurrent()->GetCurrentContext())
9096 .FromMaybe(Local<String>());
9097 }
9098
9099
9100 Local<String> Value::ToDetailString() const {
9101 return ToDetailString(Isolate::GetCurrent()->GetCurrentContext())
9102 .FromMaybe(Local<String>());
9103 }
9104
9105
9106 Local<Object> Value::ToObject() const {
9107 return ToObject(Isolate::GetCurrent()->GetCurrentContext())
9108 .FromMaybe(Local<Object>());
9109 }
9110
9111
9112 Local<Integer> Value::ToInteger() const {
9113 return ToInteger(Isolate::GetCurrent()->GetCurrentContext())
9114 .FromMaybe(Local<Integer>());
9115 }
9116
9117
9118 Local<Uint32> Value::ToUint32() const {
9119 return ToUint32(Isolate::GetCurrent()->GetCurrentContext())
9120 .FromMaybe(Local<Uint32>());
9121 }
9122
9123
9124 Local<Int32> Value::ToInt32() const {
9125 return ToInt32(Isolate::GetCurrent()->GetCurrentContext())
9126 .FromMaybe(Local<Int32>());
9127 }
9128
9129
9130 Boolean* Boolean::Cast(v8::Value* value) {
9131 #ifdef V8_ENABLE_CHECKS
9132 CheckCast(value);
9133 #endif
9134 return static_cast<Boolean*>(value);
9135 }
9136
9137
9138 Name* Name::Cast(v8::Value* value) {
9139 #ifdef V8_ENABLE_CHECKS
9140 CheckCast(value);
9141 #endif
9142 return static_cast<Name*>(value);
9143 }
9144
9145
9146 Symbol* Symbol::Cast(v8::Value* value) {
9147 #ifdef V8_ENABLE_CHECKS
9148 CheckCast(value);
9149 #endif
9150 return static_cast<Symbol*>(value);
9151 }
9152
9153
9154 Number* Number::Cast(v8::Value* value) {
9155 #ifdef V8_ENABLE_CHECKS
9156 CheckCast(value);
9157 #endif
9158 return static_cast<Number*>(value);
9159 }
9160
9161
9162 Integer* Integer::Cast(v8::Value* value) {
9163 #ifdef V8_ENABLE_CHECKS
9164 CheckCast(value);
9165 #endif
9166 return static_cast<Integer*>(value);
9167 }
9168
9169
9170 Int32* Int32::Cast(v8::Value* value) {
9171 #ifdef V8_ENABLE_CHECKS
9172 CheckCast(value);
9173 #endif
9174 return static_cast<Int32*>(value);
9175 }
9176
9177
9178 Uint32* Uint32::Cast(v8::Value* value) {
9179 #ifdef V8_ENABLE_CHECKS
9180 CheckCast(value);
9181 #endif
9182 return static_cast<Uint32*>(value);
9183 }
9184
9185
9186 Date* Date::Cast(v8::Value* value) {
9187 #ifdef V8_ENABLE_CHECKS
9188 CheckCast(value);
9189 #endif
9190 return static_cast<Date*>(value);
9191 }
9192
9193
9194 StringObject* StringObject::Cast(v8::Value* value) {
9195 #ifdef V8_ENABLE_CHECKS
9196 CheckCast(value);
9197 #endif
9198 return static_cast<StringObject*>(value);
9199 }
9200
9201
9202 SymbolObject* SymbolObject::Cast(v8::Value* value) {
9203 #ifdef V8_ENABLE_CHECKS
9204 CheckCast(value);
9205 #endif
9206 return static_cast<SymbolObject*>(value);
9207 }
9208
9209
9210 NumberObject* NumberObject::Cast(v8::Value* value) {
9211 #ifdef V8_ENABLE_CHECKS
9212 CheckCast(value);
9213 #endif
9214 return static_cast<NumberObject*>(value);
9215 }
9216
9217
9218 BooleanObject* BooleanObject::Cast(v8::Value* value) {
9219 #ifdef V8_ENABLE_CHECKS
9220 CheckCast(value);
9221 #endif
9222 return static_cast<BooleanObject*>(value);
9223 }
9224
9225
9226 RegExp* RegExp::Cast(v8::Value* value) {
9227 #ifdef V8_ENABLE_CHECKS
9228 CheckCast(value);
9229 #endif
9230 return static_cast<RegExp*>(value);
9231 }
9232
9233
9234 Object* Object::Cast(v8::Value* value) {
9235 #ifdef V8_ENABLE_CHECKS
9236 CheckCast(value);
9237 #endif
9238 return static_cast<Object*>(value);
9239 }
9240
9241
9242 Array* Array::Cast(v8::Value* value) {
9243 #ifdef V8_ENABLE_CHECKS
9244 CheckCast(value);
9245 #endif
9246 return static_cast<Array*>(value);
9247 }
9248
9249
9250 Map* Map::Cast(v8::Value* value) {
9251 #ifdef V8_ENABLE_CHECKS
9252 CheckCast(value);
9253 #endif
9254 return static_cast<Map*>(value);
9255 }
9256
9257
9258 Set* Set::Cast(v8::Value* value) {
9259 #ifdef V8_ENABLE_CHECKS
9260 CheckCast(value);
9261 #endif
9262 return static_cast<Set*>(value);
9263 }
9264
9265
9266 Promise* Promise::Cast(v8::Value* value) {
9267 #ifdef V8_ENABLE_CHECKS
9268 CheckCast(value);
9269 #endif
9270 return static_cast<Promise*>(value);
9271 }
9272
9273
9274 Proxy* Proxy::Cast(v8::Value* value) {
9275 #ifdef V8_ENABLE_CHECKS
9276 CheckCast(value);
9277 #endif
9278 return static_cast<Proxy*>(value);
9279 }
9280
9281 WasmCompiledModule* WasmCompiledModule::Cast(v8::Value* value) {
9282 #ifdef V8_ENABLE_CHECKS
9283 CheckCast(value);
9284 #endif
9285 return static_cast<WasmCompiledModule*>(value);
9286 }
9287
9288 Promise::Resolver* Promise::Resolver::Cast(v8::Value* value) {
9289 #ifdef V8_ENABLE_CHECKS
9290 CheckCast(value);
9291 #endif
9292 return static_cast<Promise::Resolver*>(value);
9293 }
9294
9295
9296 ArrayBuffer* ArrayBuffer::Cast(v8::Value* value) {
9297 #ifdef V8_ENABLE_CHECKS
9298 CheckCast(value);
9299 #endif
9300 return static_cast<ArrayBuffer*>(value);
9301 }
9302
9303
9304 ArrayBufferView* ArrayBufferView::Cast(v8::Value* value) {
9305 #ifdef V8_ENABLE_CHECKS
9306 CheckCast(value);
9307 #endif
9308 return static_cast<ArrayBufferView*>(value);
9309 }
9310
9311
9312 TypedArray* TypedArray::Cast(v8::Value* value) {
9313 #ifdef V8_ENABLE_CHECKS
9314 CheckCast(value);
9315 #endif
9316 return static_cast<TypedArray*>(value);
9317 }
9318
9319
9320 Uint8Array* Uint8Array::Cast(v8::Value* value) {
9321 #ifdef V8_ENABLE_CHECKS
9322 CheckCast(value);
9323 #endif
9324 return static_cast<Uint8Array*>(value);
9325 }
9326
9327
9328 Int8Array* Int8Array::Cast(v8::Value* value) {
9329 #ifdef V8_ENABLE_CHECKS
9330 CheckCast(value);
9331 #endif
9332 return static_cast<Int8Array*>(value);
9333 }
9334
9335
9336 Uint16Array* Uint16Array::Cast(v8::Value* value) {
9337 #ifdef V8_ENABLE_CHECKS
9338 CheckCast(value);
9339 #endif
9340 return static_cast<Uint16Array*>(value);
9341 }
9342
9343
9344 Int16Array* Int16Array::Cast(v8::Value* value) {
9345 #ifdef V8_ENABLE_CHECKS
9346 CheckCast(value);
9347 #endif
9348 return static_cast<Int16Array*>(value);
9349 }
9350
9351
9352 Uint32Array* Uint32Array::Cast(v8::Value* value) {
9353 #ifdef V8_ENABLE_CHECKS
9354 CheckCast(value);
9355 #endif
9356 return static_cast<Uint32Array*>(value);
9357 }
9358
9359
9360 Int32Array* Int32Array::Cast(v8::Value* value) {
9361 #ifdef V8_ENABLE_CHECKS
9362 CheckCast(value);
9363 #endif
9364 return static_cast<Int32Array*>(value);
9365 }
9366
9367
9368 Float32Array* Float32Array::Cast(v8::Value* value) {
9369 #ifdef V8_ENABLE_CHECKS
9370 CheckCast(value);
9371 #endif
9372 return static_cast<Float32Array*>(value);
9373 }
9374
9375
9376 Float64Array* Float64Array::Cast(v8::Value* value) {
9377 #ifdef V8_ENABLE_CHECKS
9378 CheckCast(value);
9379 #endif
9380 return static_cast<Float64Array*>(value);
9381 }
9382
9383
9384 Uint8ClampedArray* Uint8ClampedArray::Cast(v8::Value* value) {
9385 #ifdef V8_ENABLE_CHECKS
9386 CheckCast(value);
9387 #endif
9388 return static_cast<Uint8ClampedArray*>(value);
9389 }
9390
9391
9392 DataView* DataView::Cast(v8::Value* value) {
9393 #ifdef V8_ENABLE_CHECKS
9394 CheckCast(value);
9395 #endif
9396 return static_cast<DataView*>(value);
9397 }
9398
9399
9400 SharedArrayBuffer* SharedArrayBuffer::Cast(v8::Value* value) {
9401 #ifdef V8_ENABLE_CHECKS
9402 CheckCast(value);
9403 #endif
9404 return static_cast<SharedArrayBuffer*>(value);
9405 }
9406
9407
9408 Function* Function::Cast(v8::Value* value) {
9409 #ifdef V8_ENABLE_CHECKS
9410 CheckCast(value);
9411 #endif
9412 return static_cast<Function*>(value);
9413 }
9414
9415
9416 External* External::Cast(v8::Value* value) {
9417 #ifdef V8_ENABLE_CHECKS
9418 CheckCast(value);
9419 #endif
9420 return static_cast<External*>(value);
9421 }
9422
9423
9424 template<typename T>
9425 Isolate* PropertyCallbackInfo<T>::GetIsolate() const {
9426 return *reinterpret_cast<Isolate**>(&args_[kIsolateIndex]);
9427 }
9428
9429
9430 template<typename T>
9431 Local<Value> PropertyCallbackInfo<T>::Data() const {
9432 return Local<Value>(reinterpret_cast<Value*>(&args_[kDataIndex]));
9433 }
9434
9435
9436 template<typename T>
9437 Local<Object> PropertyCallbackInfo<T>::This() const {
9438 return Local<Object>(reinterpret_cast<Object*>(&args_[kThisIndex]));
9439 }
9440
9441
9442 template<typename T>
9443 Local<Object> PropertyCallbackInfo<T>::Holder() const {
9444 return Local<Object>(reinterpret_cast<Object*>(&args_[kHolderIndex]));
9445 }
9446
9447
9448 template<typename T>
9449 ReturnValue<T> PropertyCallbackInfo<T>::GetReturnValue() const {
9450 return ReturnValue<T>(&args_[kReturnValueIndex]);
9451 }
9452
9453 template <typename T>
9454 bool PropertyCallbackInfo<T>::ShouldThrowOnError() const {
9455 typedef internal::Internals I;
9456 return args_[kShouldThrowOnErrorIndex] != I::IntToSmi(0);
9457 }
9458
9459
9460 Local<Primitive> Undefined(Isolate* isolate) {
9461 typedef internal::Object* S;
9462 typedef internal::Internals I;
9463 I::CheckInitialized(isolate);
9464 S* slot = I::GetRoot(isolate, I::kUndefinedValueRootIndex);
9465 return Local<Primitive>(reinterpret_cast<Primitive*>(slot));
9466 }
9467
9468
9469 Local<Primitive> Null(Isolate* isolate) {
9470 typedef internal::Object* S;
9471 typedef internal::Internals I;
9472 I::CheckInitialized(isolate);
9473 S* slot = I::GetRoot(isolate, I::kNullValueRootIndex);
9474 return Local<Primitive>(reinterpret_cast<Primitive*>(slot));
9475 }
9476
9477
9478 Local<Boolean> True(Isolate* isolate) {
9479 typedef internal::Object* S;
9480 typedef internal::Internals I;
9481 I::CheckInitialized(isolate);
9482 S* slot = I::GetRoot(isolate, I::kTrueValueRootIndex);
9483 return Local<Boolean>(reinterpret_cast<Boolean*>(slot));
9484 }
9485
9486
9487 Local<Boolean> False(Isolate* isolate) {
9488 typedef internal::Object* S;
9489 typedef internal::Internals I;
9490 I::CheckInitialized(isolate);
9491 S* slot = I::GetRoot(isolate, I::kFalseValueRootIndex);
9492 return Local<Boolean>(reinterpret_cast<Boolean*>(slot));
9493 }
9494
9495
9496 void Isolate::SetData(uint32_t slot, void* data) {
9497 typedef internal::Internals I;
9498 I::SetEmbedderData(this, slot, data);
9499 }
9500
9501
9502 void* Isolate::GetData(uint32_t slot) {
9503 typedef internal::Internals I;
9504 return I::GetEmbedderData(this, slot);
9505 }
9506
9507
9508 uint32_t Isolate::GetNumberOfDataSlots() {
9509 typedef internal::Internals I;
9510 return I::kNumIsolateDataSlots;
9511 }
9512
9513
9514 int64_t Isolate::AdjustAmountOfExternalAllocatedMemory(
9515 int64_t change_in_bytes) {
9516 typedef internal::Internals I;
9517 int64_t* external_memory = reinterpret_cast<int64_t*>(
9518 reinterpret_cast<uint8_t*>(this) + I::kExternalMemoryOffset);
9519 const int64_t external_memory_limit = *reinterpret_cast<int64_t*>(
9520 reinterpret_cast<uint8_t*>(this) + I::kExternalMemoryLimitOffset);
9521 const int64_t amount = *external_memory + change_in_bytes;
9522 *external_memory = amount;
9523 if (change_in_bytes > 0 && amount > external_memory_limit) {
9524 ReportExternalAllocationLimitReached();
9525 }
9526 return *external_memory;
9527 }
9528
9529
9530 template<typename T>
9531 void Isolate::SetObjectGroupId(const Persistent<T>& object,
9532 UniqueId id) {
9533 TYPE_CHECK(Value, T);
9534 SetObjectGroupId(reinterpret_cast<v8::internal::Object**>(object.val_), id);
9535 }
9536
9537
9538 template<typename T>
9539 void Isolate::SetReferenceFromGroup(UniqueId id,
9540 const Persistent<T>& object) {
9541 TYPE_CHECK(Value, T);
9542 SetReferenceFromGroup(id,
9543 reinterpret_cast<v8::internal::Object**>(object.val_));
9544 }
9545
9546
9547 template<typename T, typename S>
9548 void Isolate::SetReference(const Persistent<T>& parent,
9549 const Persistent<S>& child) {
9550 TYPE_CHECK(Object, T);
9551 TYPE_CHECK(Value, S);
9552 SetReference(reinterpret_cast<v8::internal::Object**>(parent.val_),
9553 reinterpret_cast<v8::internal::Object**>(child.val_));
9554 }
9555
9556
9557 Local<Value> Context::GetEmbedderData(int index) {
9558 #ifndef V8_ENABLE_CHECKS
9559 typedef internal::Object O;
9560 typedef internal::HeapObject HO;
9561 typedef internal::Internals I;
9562 HO* context = *reinterpret_cast<HO**>(this);
9563 O** result =
9564 HandleScope::CreateHandle(context, I::ReadEmbedderData<O*>(this, index));
9565 return Local<Value>(reinterpret_cast<Value*>(result));
9566 #else
9567 return SlowGetEmbedderData(index);
9568 #endif
9569 }
9570
9571
9572 void* Context::GetAlignedPointerFromEmbedderData(int index) {
9573 #ifndef V8_ENABLE_CHECKS
9574 typedef internal::Internals I;
9575 return I::ReadEmbedderData<void*>(this, index);
9576 #else
9577 return SlowGetAlignedPointerFromEmbedderData(index);
9578 #endif
9579 }
9580
9581
9582 void V8::SetAllowCodeGenerationFromStringsCallback(
9583 AllowCodeGenerationFromStringsCallback callback) {
9584 Isolate* isolate = Isolate::GetCurrent();
9585 isolate->SetAllowCodeGenerationFromStringsCallback(callback);
9586 }
9587
9588
9589 bool V8::IsDead() {
9590 Isolate* isolate = Isolate::GetCurrent();
9591 return isolate->IsDead();
9592 }
9593
9594
9595 bool V8::AddMessageListener(MessageCallback that, Local<Value> data) {
9596 Isolate* isolate = Isolate::GetCurrent();
9597 return isolate->AddMessageListener(that, data);
9598 }
9599
9600
9601 void V8::RemoveMessageListeners(MessageCallback that) {
9602 Isolate* isolate = Isolate::GetCurrent();
9603 isolate->RemoveMessageListeners(that);
9604 }
9605
9606
9607 void V8::SetFailedAccessCheckCallbackFunction(
9608 FailedAccessCheckCallback callback) {
9609 Isolate* isolate = Isolate::GetCurrent();
9610 isolate->SetFailedAccessCheckCallbackFunction(callback);
9611 }
9612
9613
9614 void V8::SetCaptureStackTraceForUncaughtExceptions(
9615 bool capture, int frame_limit, StackTrace::StackTraceOptions options) {
9616 Isolate* isolate = Isolate::GetCurrent();
9617 isolate->SetCaptureStackTraceForUncaughtExceptions(capture, frame_limit,
9618 options);
9619 }
9620
9621
9622 void V8::SetFatalErrorHandler(FatalErrorCallback callback) {
9623 Isolate* isolate = Isolate::GetCurrent();
9624 isolate->SetFatalErrorHandler(callback);
9625 }
9626
9627 void V8::RemoveGCPrologueCallback(GCCallback callback) {
9628 Isolate* isolate = Isolate::GetCurrent();
9629 isolate->RemoveGCPrologueCallback(
9630 reinterpret_cast<v8::Isolate::GCCallback>(callback));
9631 }
9632
9633
9634 void V8::RemoveGCEpilogueCallback(GCCallback callback) {
9635 Isolate* isolate = Isolate::GetCurrent();
9636 isolate->RemoveGCEpilogueCallback(
9637 reinterpret_cast<v8::Isolate::GCCallback>(callback));
9638 }
9639
9640 void V8::TerminateExecution(Isolate* isolate) { isolate->TerminateExecution(); }
9641
9642
9643 bool V8::IsExecutionTerminating(Isolate* isolate) {
9644 if (isolate == NULL) {
9645 isolate = Isolate::GetCurrent();
9646 }
9647 return isolate->IsExecutionTerminating();
9648 }
9649
9650
9651 void V8::CancelTerminateExecution(Isolate* isolate) {
9652 isolate->CancelTerminateExecution();
9653 }
9654
9655
9656 void V8::VisitExternalResources(ExternalResourceVisitor* visitor) {
9657 Isolate* isolate = Isolate::GetCurrent();
9658 isolate->VisitExternalResources(visitor);
9659 }
9660
9661
9662 void V8::VisitHandlesWithClassIds(PersistentHandleVisitor* visitor) {
9663 Isolate* isolate = Isolate::GetCurrent();
9664 isolate->VisitHandlesWithClassIds(visitor);
9665 }
9666
9667
9668 void V8::VisitHandlesWithClassIds(Isolate* isolate,
9669 PersistentHandleVisitor* visitor) {
9670 isolate->VisitHandlesWithClassIds(visitor);
9671 }
9672
9673
9674 void V8::VisitHandlesForPartialDependence(Isolate* isolate,
9675 PersistentHandleVisitor* visitor) {
9676 isolate->VisitHandlesForPartialDependence(visitor);
9677 }
9678
9679 /**
9680 * \example shell.cc
9681 * A simple shell that takes a list of expressions on the
9682 * command-line and executes them.
9683 */
9684
9685
9686 /**
9687 * \example process.cc
9688 */
9689
9690
9691 } // namespace v8
9692
9693
9694 #undef TYPE_CHECK
9695
9696
9697 #endif // INCLUDE_V8_H_
9698