1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BasicBlock class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/BasicBlock.h"
15 #include "SymbolTableListTraitsImpl.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/IR/CFG.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Type.h"
23 #include <algorithm>
24 
25 using namespace llvm;
26 
getValueSymbolTable()27 ValueSymbolTable *BasicBlock::getValueSymbolTable() {
28   if (Function *F = getParent())
29     return &F->getValueSymbolTable();
30   return nullptr;
31 }
32 
getContext() const33 LLVMContext &BasicBlock::getContext() const {
34   return getType()->getContext();
35 }
36 
37 // Explicit instantiation of SymbolTableListTraits since some of the methods
38 // are not in the public header file...
39 template class llvm::SymbolTableListTraits<Instruction>;
40 
BasicBlock(LLVMContext & C,const Twine & Name,Function * NewParent,BasicBlock * InsertBefore)41 BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent,
42                        BasicBlock *InsertBefore)
43   : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) {
44 
45   if (NewParent)
46     insertInto(NewParent, InsertBefore);
47   else
48     assert(!InsertBefore &&
49            "Cannot insert block before another block with no function!");
50 
51   setName(Name);
52 }
53 
insertInto(Function * NewParent,BasicBlock * InsertBefore)54 void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) {
55   assert(NewParent && "Expected a parent");
56   assert(!Parent && "Already has a parent");
57 
58   if (InsertBefore)
59     NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this);
60   else
61     NewParent->getBasicBlockList().push_back(this);
62 }
63 
~BasicBlock()64 BasicBlock::~BasicBlock() {
65   // If the address of the block is taken and it is being deleted (e.g. because
66   // it is dead), this means that there is either a dangling constant expr
67   // hanging off the block, or an undefined use of the block (source code
68   // expecting the address of a label to keep the block alive even though there
69   // is no indirect branch).  Handle these cases by zapping the BlockAddress
70   // nodes.  There are no other possible uses at this point.
71   if (hasAddressTaken()) {
72     assert(!use_empty() && "There should be at least one blockaddress!");
73     Constant *Replacement =
74       ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1);
75     while (!use_empty()) {
76       BlockAddress *BA = cast<BlockAddress>(user_back());
77       BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
78                                                        BA->getType()));
79       BA->destroyConstant();
80     }
81   }
82 
83   assert(getParent() == nullptr && "BasicBlock still linked into the program!");
84   dropAllReferences();
85   InstList.clear();
86 }
87 
setParent(Function * parent)88 void BasicBlock::setParent(Function *parent) {
89   // Set Parent=parent, updating instruction symtab entries as appropriate.
90   InstList.setSymTabObject(&Parent, parent);
91 }
92 
removeFromParent()93 void BasicBlock::removeFromParent() {
94   getParent()->getBasicBlockList().remove(getIterator());
95 }
96 
eraseFromParent()97 iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() {
98   return getParent()->getBasicBlockList().erase(getIterator());
99 }
100 
101 /// Unlink this basic block from its current function and
102 /// insert it into the function that MovePos lives in, right before MovePos.
moveBefore(BasicBlock * MovePos)103 void BasicBlock::moveBefore(BasicBlock *MovePos) {
104   MovePos->getParent()->getBasicBlockList().splice(
105       MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator());
106 }
107 
108 /// Unlink this basic block from its current function and
109 /// insert it into the function that MovePos lives in, right after MovePos.
moveAfter(BasicBlock * MovePos)110 void BasicBlock::moveAfter(BasicBlock *MovePos) {
111   MovePos->getParent()->getBasicBlockList().splice(
112       ++MovePos->getIterator(), getParent()->getBasicBlockList(),
113       getIterator());
114 }
115 
getModule() const116 const Module *BasicBlock::getModule() const {
117   return getParent()->getParent();
118 }
119 
getModule()120 Module *BasicBlock::getModule() {
121   return getParent()->getParent();
122 }
123 
getTerminator()124 TerminatorInst *BasicBlock::getTerminator() {
125   if (InstList.empty()) return nullptr;
126   return dyn_cast<TerminatorInst>(&InstList.back());
127 }
128 
getTerminator() const129 const TerminatorInst *BasicBlock::getTerminator() const {
130   if (InstList.empty()) return nullptr;
131   return dyn_cast<TerminatorInst>(&InstList.back());
132 }
133 
getTerminatingMustTailCall()134 CallInst *BasicBlock::getTerminatingMustTailCall() {
135   if (InstList.empty())
136     return nullptr;
137   ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back());
138   if (!RI || RI == &InstList.front())
139     return nullptr;
140 
141   Instruction *Prev = RI->getPrevNode();
142   if (!Prev)
143     return nullptr;
144 
145   if (Value *RV = RI->getReturnValue()) {
146     if (RV != Prev)
147       return nullptr;
148 
149     // Look through the optional bitcast.
150     if (auto *BI = dyn_cast<BitCastInst>(Prev)) {
151       RV = BI->getOperand(0);
152       Prev = BI->getPrevNode();
153       if (!Prev || RV != Prev)
154         return nullptr;
155     }
156   }
157 
158   if (auto *CI = dyn_cast<CallInst>(Prev)) {
159     if (CI->isMustTailCall())
160       return CI;
161   }
162   return nullptr;
163 }
164 
getTerminatingDeoptimizeCall()165 CallInst *BasicBlock::getTerminatingDeoptimizeCall() {
166   if (InstList.empty())
167     return nullptr;
168   auto *RI = dyn_cast<ReturnInst>(&InstList.back());
169   if (!RI || RI == &InstList.front())
170     return nullptr;
171 
172   if (auto *CI = dyn_cast_or_null<CallInst>(RI->getPrevNode()))
173     if (Function *F = CI->getCalledFunction())
174       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize)
175         return CI;
176 
177   return nullptr;
178 }
179 
getFirstNonPHI()180 Instruction* BasicBlock::getFirstNonPHI() {
181   for (Instruction &I : *this)
182     if (!isa<PHINode>(I))
183       return &I;
184   return nullptr;
185 }
186 
getFirstNonPHIOrDbg()187 Instruction* BasicBlock::getFirstNonPHIOrDbg() {
188   for (Instruction &I : *this)
189     if (!isa<PHINode>(I) && !isa<DbgInfoIntrinsic>(I))
190       return &I;
191   return nullptr;
192 }
193 
getFirstNonPHIOrDbgOrLifetime()194 Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() {
195   for (Instruction &I : *this) {
196     if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I))
197       continue;
198 
199     if (auto *II = dyn_cast<IntrinsicInst>(&I))
200       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
201           II->getIntrinsicID() == Intrinsic::lifetime_end)
202         continue;
203 
204     return &I;
205   }
206   return nullptr;
207 }
208 
getFirstInsertionPt()209 BasicBlock::iterator BasicBlock::getFirstInsertionPt() {
210   Instruction *FirstNonPHI = getFirstNonPHI();
211   if (!FirstNonPHI)
212     return end();
213 
214   iterator InsertPt = FirstNonPHI->getIterator();
215   if (InsertPt->isEHPad()) ++InsertPt;
216   return InsertPt;
217 }
218 
dropAllReferences()219 void BasicBlock::dropAllReferences() {
220   for (Instruction &I : *this)
221     I.dropAllReferences();
222 }
223 
224 /// If this basic block has a single predecessor block,
225 /// return the block, otherwise return a null pointer.
getSinglePredecessor()226 BasicBlock *BasicBlock::getSinglePredecessor() {
227   pred_iterator PI = pred_begin(this), E = pred_end(this);
228   if (PI == E) return nullptr;         // No preds.
229   BasicBlock *ThePred = *PI;
230   ++PI;
231   return (PI == E) ? ThePred : nullptr /*multiple preds*/;
232 }
233 
234 /// If this basic block has a unique predecessor block,
235 /// return the block, otherwise return a null pointer.
236 /// Note that unique predecessor doesn't mean single edge, there can be
237 /// multiple edges from the unique predecessor to this block (for example
238 /// a switch statement with multiple cases having the same destination).
getUniquePredecessor()239 BasicBlock *BasicBlock::getUniquePredecessor() {
240   pred_iterator PI = pred_begin(this), E = pred_end(this);
241   if (PI == E) return nullptr; // No preds.
242   BasicBlock *PredBB = *PI;
243   ++PI;
244   for (;PI != E; ++PI) {
245     if (*PI != PredBB)
246       return nullptr;
247     // The same predecessor appears multiple times in the predecessor list.
248     // This is OK.
249   }
250   return PredBB;
251 }
252 
getSingleSuccessor()253 BasicBlock *BasicBlock::getSingleSuccessor() {
254   succ_iterator SI = succ_begin(this), E = succ_end(this);
255   if (SI == E) return nullptr; // no successors
256   BasicBlock *TheSucc = *SI;
257   ++SI;
258   return (SI == E) ? TheSucc : nullptr /* multiple successors */;
259 }
260 
getUniqueSuccessor()261 BasicBlock *BasicBlock::getUniqueSuccessor() {
262   succ_iterator SI = succ_begin(this), E = succ_end(this);
263   if (SI == E) return nullptr; // No successors
264   BasicBlock *SuccBB = *SI;
265   ++SI;
266   for (;SI != E; ++SI) {
267     if (*SI != SuccBB)
268       return nullptr;
269     // The same successor appears multiple times in the successor list.
270     // This is OK.
271   }
272   return SuccBB;
273 }
274 
275 /// This method is used to notify a BasicBlock that the
276 /// specified Predecessor of the block is no longer able to reach it.  This is
277 /// actually not used to update the Predecessor list, but is actually used to
278 /// update the PHI nodes that reside in the block.  Note that this should be
279 /// called while the predecessor still refers to this block.
280 ///
removePredecessor(BasicBlock * Pred,bool DontDeleteUselessPHIs)281 void BasicBlock::removePredecessor(BasicBlock *Pred,
282                                    bool DontDeleteUselessPHIs) {
283   assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
284           find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
285          "removePredecessor: BB is not a predecessor!");
286 
287   if (InstList.empty()) return;
288   PHINode *APN = dyn_cast<PHINode>(&front());
289   if (!APN) return;   // Quick exit.
290 
291   // If there are exactly two predecessors, then we want to nuke the PHI nodes
292   // altogether.  However, we cannot do this, if this in this case:
293   //
294   //  Loop:
295   //    %x = phi [X, Loop]
296   //    %x2 = add %x, 1         ;; This would become %x2 = add %x2, 1
297   //    br Loop                 ;; %x2 does not dominate all uses
298   //
299   // This is because the PHI node input is actually taken from the predecessor
300   // basic block.  The only case this can happen is with a self loop, so we
301   // check for this case explicitly now.
302   //
303   unsigned max_idx = APN->getNumIncomingValues();
304   assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
305   if (max_idx == 2) {
306     BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);
307 
308     // Disable PHI elimination!
309     if (this == Other) max_idx = 3;
310   }
311 
312   // <= Two predecessors BEFORE I remove one?
313   if (max_idx <= 2 && !DontDeleteUselessPHIs) {
314     // Yup, loop through and nuke the PHI nodes
315     while (PHINode *PN = dyn_cast<PHINode>(&front())) {
316       // Remove the predecessor first.
317       PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs);
318 
319       // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
320       if (max_idx == 2) {
321         if (PN->getIncomingValue(0) != PN)
322           PN->replaceAllUsesWith(PN->getIncomingValue(0));
323         else
324           // We are left with an infinite loop with no entries: kill the PHI.
325           PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
326         getInstList().pop_front();    // Remove the PHI node
327       }
328 
329       // If the PHI node already only had one entry, it got deleted by
330       // removeIncomingValue.
331     }
332   } else {
333     // Okay, now we know that we need to remove predecessor #pred_idx from all
334     // PHI nodes.  Iterate over each PHI node fixing them up
335     PHINode *PN;
336     for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
337       ++II;
338       PN->removeIncomingValue(Pred, false);
339       // If all incoming values to the Phi are the same, we can replace the Phi
340       // with that value.
341       Value* PNV = nullptr;
342       if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue()))
343         if (PNV != PN) {
344           PN->replaceAllUsesWith(PNV);
345           PN->eraseFromParent();
346         }
347     }
348   }
349 }
350 
canSplitPredecessors() const351 bool BasicBlock::canSplitPredecessors() const {
352   const Instruction *FirstNonPHI = getFirstNonPHI();
353   if (isa<LandingPadInst>(FirstNonPHI))
354     return true;
355   // This is perhaps a little conservative because constructs like
356   // CleanupBlockInst are pretty easy to split.  However, SplitBlockPredecessors
357   // cannot handle such things just yet.
358   if (FirstNonPHI->isEHPad())
359     return false;
360   return true;
361 }
362 
363 /// This splits a basic block into two at the specified
364 /// instruction.  Note that all instructions BEFORE the specified iterator stay
365 /// as part of the original basic block, an unconditional branch is added to
366 /// the new BB, and the rest of the instructions in the BB are moved to the new
367 /// BB, including the old terminator.  This invalidates the iterator.
368 ///
369 /// Note that this only works on well formed basic blocks (must have a
370 /// terminator), and 'I' must not be the end of instruction list (which would
371 /// cause a degenerate basic block to be formed, having a terminator inside of
372 /// the basic block).
373 ///
splitBasicBlock(iterator I,const Twine & BBName)374 BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) {
375   assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
376   assert(I != InstList.end() &&
377          "Trying to get me to create degenerate basic block!");
378 
379   BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(),
380                                        this->getNextNode());
381 
382   // Save DebugLoc of split point before invalidating iterator.
383   DebugLoc Loc = I->getDebugLoc();
384   // Move all of the specified instructions from the original basic block into
385   // the new basic block.
386   New->getInstList().splice(New->end(), this->getInstList(), I, end());
387 
388   // Add a branch instruction to the newly formed basic block.
389   BranchInst *BI = BranchInst::Create(New, this);
390   BI->setDebugLoc(Loc);
391 
392   // Now we must loop through all of the successors of the New block (which
393   // _were_ the successors of the 'this' block), and update any PHI nodes in
394   // successors.  If there were PHI nodes in the successors, then they need to
395   // know that incoming branches will be from New, not from Old.
396   //
397   for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) {
398     // Loop over any phi nodes in the basic block, updating the BB field of
399     // incoming values...
400     BasicBlock *Successor = *I;
401     PHINode *PN;
402     for (BasicBlock::iterator II = Successor->begin();
403          (PN = dyn_cast<PHINode>(II)); ++II) {
404       int IDX = PN->getBasicBlockIndex(this);
405       while (IDX != -1) {
406         PN->setIncomingBlock((unsigned)IDX, New);
407         IDX = PN->getBasicBlockIndex(this);
408       }
409     }
410   }
411   return New;
412 }
413 
replaceSuccessorsPhiUsesWith(BasicBlock * New)414 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) {
415   TerminatorInst *TI = getTerminator();
416   if (!TI)
417     // Cope with being called on a BasicBlock that doesn't have a terminator
418     // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this.
419     return;
420   for (BasicBlock *Succ : TI->successors()) {
421     // N.B. Succ might not be a complete BasicBlock, so don't assume
422     // that it ends with a non-phi instruction.
423     for (iterator II = Succ->begin(), IE = Succ->end(); II != IE; ++II) {
424       PHINode *PN = dyn_cast<PHINode>(II);
425       if (!PN)
426         break;
427       int i;
428       while ((i = PN->getBasicBlockIndex(this)) >= 0)
429         PN->setIncomingBlock(i, New);
430     }
431   }
432 }
433 
434 /// Return true if this basic block is a landing pad. I.e., it's
435 /// the destination of the 'unwind' edge of an invoke instruction.
isLandingPad() const436 bool BasicBlock::isLandingPad() const {
437   return isa<LandingPadInst>(getFirstNonPHI());
438 }
439 
440 /// Return the landingpad instruction associated with the landing pad.
getLandingPadInst()441 LandingPadInst *BasicBlock::getLandingPadInst() {
442   return dyn_cast<LandingPadInst>(getFirstNonPHI());
443 }
getLandingPadInst() const444 const LandingPadInst *BasicBlock::getLandingPadInst() const {
445   return dyn_cast<LandingPadInst>(getFirstNonPHI());
446 }
447