1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BasicBlock class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/BasicBlock.h"
15 #include "SymbolTableListTraitsImpl.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/IR/CFG.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Type.h"
23 #include <algorithm>
24
25 using namespace llvm;
26
getValueSymbolTable()27 ValueSymbolTable *BasicBlock::getValueSymbolTable() {
28 if (Function *F = getParent())
29 return &F->getValueSymbolTable();
30 return nullptr;
31 }
32
getContext() const33 LLVMContext &BasicBlock::getContext() const {
34 return getType()->getContext();
35 }
36
37 // Explicit instantiation of SymbolTableListTraits since some of the methods
38 // are not in the public header file...
39 template class llvm::SymbolTableListTraits<Instruction>;
40
BasicBlock(LLVMContext & C,const Twine & Name,Function * NewParent,BasicBlock * InsertBefore)41 BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent,
42 BasicBlock *InsertBefore)
43 : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) {
44
45 if (NewParent)
46 insertInto(NewParent, InsertBefore);
47 else
48 assert(!InsertBefore &&
49 "Cannot insert block before another block with no function!");
50
51 setName(Name);
52 }
53
insertInto(Function * NewParent,BasicBlock * InsertBefore)54 void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) {
55 assert(NewParent && "Expected a parent");
56 assert(!Parent && "Already has a parent");
57
58 if (InsertBefore)
59 NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this);
60 else
61 NewParent->getBasicBlockList().push_back(this);
62 }
63
~BasicBlock()64 BasicBlock::~BasicBlock() {
65 // If the address of the block is taken and it is being deleted (e.g. because
66 // it is dead), this means that there is either a dangling constant expr
67 // hanging off the block, or an undefined use of the block (source code
68 // expecting the address of a label to keep the block alive even though there
69 // is no indirect branch). Handle these cases by zapping the BlockAddress
70 // nodes. There are no other possible uses at this point.
71 if (hasAddressTaken()) {
72 assert(!use_empty() && "There should be at least one blockaddress!");
73 Constant *Replacement =
74 ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1);
75 while (!use_empty()) {
76 BlockAddress *BA = cast<BlockAddress>(user_back());
77 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
78 BA->getType()));
79 BA->destroyConstant();
80 }
81 }
82
83 assert(getParent() == nullptr && "BasicBlock still linked into the program!");
84 dropAllReferences();
85 InstList.clear();
86 }
87
setParent(Function * parent)88 void BasicBlock::setParent(Function *parent) {
89 // Set Parent=parent, updating instruction symtab entries as appropriate.
90 InstList.setSymTabObject(&Parent, parent);
91 }
92
removeFromParent()93 void BasicBlock::removeFromParent() {
94 getParent()->getBasicBlockList().remove(getIterator());
95 }
96
eraseFromParent()97 iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() {
98 return getParent()->getBasicBlockList().erase(getIterator());
99 }
100
101 /// Unlink this basic block from its current function and
102 /// insert it into the function that MovePos lives in, right before MovePos.
moveBefore(BasicBlock * MovePos)103 void BasicBlock::moveBefore(BasicBlock *MovePos) {
104 MovePos->getParent()->getBasicBlockList().splice(
105 MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator());
106 }
107
108 /// Unlink this basic block from its current function and
109 /// insert it into the function that MovePos lives in, right after MovePos.
moveAfter(BasicBlock * MovePos)110 void BasicBlock::moveAfter(BasicBlock *MovePos) {
111 MovePos->getParent()->getBasicBlockList().splice(
112 ++MovePos->getIterator(), getParent()->getBasicBlockList(),
113 getIterator());
114 }
115
getModule() const116 const Module *BasicBlock::getModule() const {
117 return getParent()->getParent();
118 }
119
getModule()120 Module *BasicBlock::getModule() {
121 return getParent()->getParent();
122 }
123
getTerminator()124 TerminatorInst *BasicBlock::getTerminator() {
125 if (InstList.empty()) return nullptr;
126 return dyn_cast<TerminatorInst>(&InstList.back());
127 }
128
getTerminator() const129 const TerminatorInst *BasicBlock::getTerminator() const {
130 if (InstList.empty()) return nullptr;
131 return dyn_cast<TerminatorInst>(&InstList.back());
132 }
133
getTerminatingMustTailCall()134 CallInst *BasicBlock::getTerminatingMustTailCall() {
135 if (InstList.empty())
136 return nullptr;
137 ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back());
138 if (!RI || RI == &InstList.front())
139 return nullptr;
140
141 Instruction *Prev = RI->getPrevNode();
142 if (!Prev)
143 return nullptr;
144
145 if (Value *RV = RI->getReturnValue()) {
146 if (RV != Prev)
147 return nullptr;
148
149 // Look through the optional bitcast.
150 if (auto *BI = dyn_cast<BitCastInst>(Prev)) {
151 RV = BI->getOperand(0);
152 Prev = BI->getPrevNode();
153 if (!Prev || RV != Prev)
154 return nullptr;
155 }
156 }
157
158 if (auto *CI = dyn_cast<CallInst>(Prev)) {
159 if (CI->isMustTailCall())
160 return CI;
161 }
162 return nullptr;
163 }
164
getTerminatingDeoptimizeCall()165 CallInst *BasicBlock::getTerminatingDeoptimizeCall() {
166 if (InstList.empty())
167 return nullptr;
168 auto *RI = dyn_cast<ReturnInst>(&InstList.back());
169 if (!RI || RI == &InstList.front())
170 return nullptr;
171
172 if (auto *CI = dyn_cast_or_null<CallInst>(RI->getPrevNode()))
173 if (Function *F = CI->getCalledFunction())
174 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize)
175 return CI;
176
177 return nullptr;
178 }
179
getFirstNonPHI()180 Instruction* BasicBlock::getFirstNonPHI() {
181 for (Instruction &I : *this)
182 if (!isa<PHINode>(I))
183 return &I;
184 return nullptr;
185 }
186
getFirstNonPHIOrDbg()187 Instruction* BasicBlock::getFirstNonPHIOrDbg() {
188 for (Instruction &I : *this)
189 if (!isa<PHINode>(I) && !isa<DbgInfoIntrinsic>(I))
190 return &I;
191 return nullptr;
192 }
193
getFirstNonPHIOrDbgOrLifetime()194 Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() {
195 for (Instruction &I : *this) {
196 if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I))
197 continue;
198
199 if (auto *II = dyn_cast<IntrinsicInst>(&I))
200 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
201 II->getIntrinsicID() == Intrinsic::lifetime_end)
202 continue;
203
204 return &I;
205 }
206 return nullptr;
207 }
208
getFirstInsertionPt()209 BasicBlock::iterator BasicBlock::getFirstInsertionPt() {
210 Instruction *FirstNonPHI = getFirstNonPHI();
211 if (!FirstNonPHI)
212 return end();
213
214 iterator InsertPt = FirstNonPHI->getIterator();
215 if (InsertPt->isEHPad()) ++InsertPt;
216 return InsertPt;
217 }
218
dropAllReferences()219 void BasicBlock::dropAllReferences() {
220 for (Instruction &I : *this)
221 I.dropAllReferences();
222 }
223
224 /// If this basic block has a single predecessor block,
225 /// return the block, otherwise return a null pointer.
getSinglePredecessor()226 BasicBlock *BasicBlock::getSinglePredecessor() {
227 pred_iterator PI = pred_begin(this), E = pred_end(this);
228 if (PI == E) return nullptr; // No preds.
229 BasicBlock *ThePred = *PI;
230 ++PI;
231 return (PI == E) ? ThePred : nullptr /*multiple preds*/;
232 }
233
234 /// If this basic block has a unique predecessor block,
235 /// return the block, otherwise return a null pointer.
236 /// Note that unique predecessor doesn't mean single edge, there can be
237 /// multiple edges from the unique predecessor to this block (for example
238 /// a switch statement with multiple cases having the same destination).
getUniquePredecessor()239 BasicBlock *BasicBlock::getUniquePredecessor() {
240 pred_iterator PI = pred_begin(this), E = pred_end(this);
241 if (PI == E) return nullptr; // No preds.
242 BasicBlock *PredBB = *PI;
243 ++PI;
244 for (;PI != E; ++PI) {
245 if (*PI != PredBB)
246 return nullptr;
247 // The same predecessor appears multiple times in the predecessor list.
248 // This is OK.
249 }
250 return PredBB;
251 }
252
getSingleSuccessor()253 BasicBlock *BasicBlock::getSingleSuccessor() {
254 succ_iterator SI = succ_begin(this), E = succ_end(this);
255 if (SI == E) return nullptr; // no successors
256 BasicBlock *TheSucc = *SI;
257 ++SI;
258 return (SI == E) ? TheSucc : nullptr /* multiple successors */;
259 }
260
getUniqueSuccessor()261 BasicBlock *BasicBlock::getUniqueSuccessor() {
262 succ_iterator SI = succ_begin(this), E = succ_end(this);
263 if (SI == E) return nullptr; // No successors
264 BasicBlock *SuccBB = *SI;
265 ++SI;
266 for (;SI != E; ++SI) {
267 if (*SI != SuccBB)
268 return nullptr;
269 // The same successor appears multiple times in the successor list.
270 // This is OK.
271 }
272 return SuccBB;
273 }
274
275 /// This method is used to notify a BasicBlock that the
276 /// specified Predecessor of the block is no longer able to reach it. This is
277 /// actually not used to update the Predecessor list, but is actually used to
278 /// update the PHI nodes that reside in the block. Note that this should be
279 /// called while the predecessor still refers to this block.
280 ///
removePredecessor(BasicBlock * Pred,bool DontDeleteUselessPHIs)281 void BasicBlock::removePredecessor(BasicBlock *Pred,
282 bool DontDeleteUselessPHIs) {
283 assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
284 find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
285 "removePredecessor: BB is not a predecessor!");
286
287 if (InstList.empty()) return;
288 PHINode *APN = dyn_cast<PHINode>(&front());
289 if (!APN) return; // Quick exit.
290
291 // If there are exactly two predecessors, then we want to nuke the PHI nodes
292 // altogether. However, we cannot do this, if this in this case:
293 //
294 // Loop:
295 // %x = phi [X, Loop]
296 // %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1
297 // br Loop ;; %x2 does not dominate all uses
298 //
299 // This is because the PHI node input is actually taken from the predecessor
300 // basic block. The only case this can happen is with a self loop, so we
301 // check for this case explicitly now.
302 //
303 unsigned max_idx = APN->getNumIncomingValues();
304 assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
305 if (max_idx == 2) {
306 BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);
307
308 // Disable PHI elimination!
309 if (this == Other) max_idx = 3;
310 }
311
312 // <= Two predecessors BEFORE I remove one?
313 if (max_idx <= 2 && !DontDeleteUselessPHIs) {
314 // Yup, loop through and nuke the PHI nodes
315 while (PHINode *PN = dyn_cast<PHINode>(&front())) {
316 // Remove the predecessor first.
317 PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs);
318
319 // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
320 if (max_idx == 2) {
321 if (PN->getIncomingValue(0) != PN)
322 PN->replaceAllUsesWith(PN->getIncomingValue(0));
323 else
324 // We are left with an infinite loop with no entries: kill the PHI.
325 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
326 getInstList().pop_front(); // Remove the PHI node
327 }
328
329 // If the PHI node already only had one entry, it got deleted by
330 // removeIncomingValue.
331 }
332 } else {
333 // Okay, now we know that we need to remove predecessor #pred_idx from all
334 // PHI nodes. Iterate over each PHI node fixing them up
335 PHINode *PN;
336 for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
337 ++II;
338 PN->removeIncomingValue(Pred, false);
339 // If all incoming values to the Phi are the same, we can replace the Phi
340 // with that value.
341 Value* PNV = nullptr;
342 if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue()))
343 if (PNV != PN) {
344 PN->replaceAllUsesWith(PNV);
345 PN->eraseFromParent();
346 }
347 }
348 }
349 }
350
canSplitPredecessors() const351 bool BasicBlock::canSplitPredecessors() const {
352 const Instruction *FirstNonPHI = getFirstNonPHI();
353 if (isa<LandingPadInst>(FirstNonPHI))
354 return true;
355 // This is perhaps a little conservative because constructs like
356 // CleanupBlockInst are pretty easy to split. However, SplitBlockPredecessors
357 // cannot handle such things just yet.
358 if (FirstNonPHI->isEHPad())
359 return false;
360 return true;
361 }
362
363 /// This splits a basic block into two at the specified
364 /// instruction. Note that all instructions BEFORE the specified iterator stay
365 /// as part of the original basic block, an unconditional branch is added to
366 /// the new BB, and the rest of the instructions in the BB are moved to the new
367 /// BB, including the old terminator. This invalidates the iterator.
368 ///
369 /// Note that this only works on well formed basic blocks (must have a
370 /// terminator), and 'I' must not be the end of instruction list (which would
371 /// cause a degenerate basic block to be formed, having a terminator inside of
372 /// the basic block).
373 ///
splitBasicBlock(iterator I,const Twine & BBName)374 BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) {
375 assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
376 assert(I != InstList.end() &&
377 "Trying to get me to create degenerate basic block!");
378
379 BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(),
380 this->getNextNode());
381
382 // Save DebugLoc of split point before invalidating iterator.
383 DebugLoc Loc = I->getDebugLoc();
384 // Move all of the specified instructions from the original basic block into
385 // the new basic block.
386 New->getInstList().splice(New->end(), this->getInstList(), I, end());
387
388 // Add a branch instruction to the newly formed basic block.
389 BranchInst *BI = BranchInst::Create(New, this);
390 BI->setDebugLoc(Loc);
391
392 // Now we must loop through all of the successors of the New block (which
393 // _were_ the successors of the 'this' block), and update any PHI nodes in
394 // successors. If there were PHI nodes in the successors, then they need to
395 // know that incoming branches will be from New, not from Old.
396 //
397 for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) {
398 // Loop over any phi nodes in the basic block, updating the BB field of
399 // incoming values...
400 BasicBlock *Successor = *I;
401 PHINode *PN;
402 for (BasicBlock::iterator II = Successor->begin();
403 (PN = dyn_cast<PHINode>(II)); ++II) {
404 int IDX = PN->getBasicBlockIndex(this);
405 while (IDX != -1) {
406 PN->setIncomingBlock((unsigned)IDX, New);
407 IDX = PN->getBasicBlockIndex(this);
408 }
409 }
410 }
411 return New;
412 }
413
replaceSuccessorsPhiUsesWith(BasicBlock * New)414 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) {
415 TerminatorInst *TI = getTerminator();
416 if (!TI)
417 // Cope with being called on a BasicBlock that doesn't have a terminator
418 // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this.
419 return;
420 for (BasicBlock *Succ : TI->successors()) {
421 // N.B. Succ might not be a complete BasicBlock, so don't assume
422 // that it ends with a non-phi instruction.
423 for (iterator II = Succ->begin(), IE = Succ->end(); II != IE; ++II) {
424 PHINode *PN = dyn_cast<PHINode>(II);
425 if (!PN)
426 break;
427 int i;
428 while ((i = PN->getBasicBlockIndex(this)) >= 0)
429 PN->setIncomingBlock(i, New);
430 }
431 }
432 }
433
434 /// Return true if this basic block is a landing pad. I.e., it's
435 /// the destination of the 'unwind' edge of an invoke instruction.
isLandingPad() const436 bool BasicBlock::isLandingPad() const {
437 return isa<LandingPadInst>(getFirstNonPHI());
438 }
439
440 /// Return the landingpad instruction associated with the landing pad.
getLandingPadInst()441 LandingPadInst *BasicBlock::getLandingPadInst() {
442 return dyn_cast<LandingPadInst>(getFirstNonPHI());
443 }
getLandingPadInst() const444 const LandingPadInst *BasicBlock::getLandingPadInst() const {
445 return dyn_cast<LandingPadInst>(getFirstNonPHI());
446 }
447