1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SplitAnalysis class as well as mutator functions for
11 // live range splitting.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "SplitKit.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
18 #include "llvm/CodeGen/LiveRangeEdit.h"
19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/VirtRegMap.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Target/TargetInstrInfo.h"
28 #include "llvm/Target/TargetMachine.h"
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "regalloc"
33 
34 STATISTIC(NumFinished, "Number of splits finished");
35 STATISTIC(NumSimple,   "Number of splits that were simple");
36 STATISTIC(NumCopies,   "Number of copies inserted for splitting");
37 STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
38 STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
39 
40 //===----------------------------------------------------------------------===//
41 //                     Last Insert Point Analysis
42 //===----------------------------------------------------------------------===//
43 
InsertPointAnalysis(const LiveIntervals & lis,unsigned BBNum)44 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
45                                          unsigned BBNum)
46     : LIS(lis), LastInsertPoint(BBNum) {}
47 
48 SlotIndex
computeLastInsertPoint(const LiveInterval & CurLI,const MachineBasicBlock & MBB)49 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
50                                             const MachineBasicBlock &MBB) {
51   unsigned Num = MBB.getNumber();
52   std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
53   SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
54 
55   SmallVector<const MachineBasicBlock *, 1> EHPadSucessors;
56   for (const MachineBasicBlock *SMBB : MBB.successors())
57     if (SMBB->isEHPad())
58       EHPadSucessors.push_back(SMBB);
59 
60   // Compute insert points on the first call. The pair is independent of the
61   // current live interval.
62   if (!LIP.first.isValid()) {
63     MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
64     if (FirstTerm == MBB.end())
65       LIP.first = MBBEnd;
66     else
67       LIP.first = LIS.getInstructionIndex(*FirstTerm);
68 
69     // If there is a landing pad successor, also find the call instruction.
70     if (EHPadSucessors.empty())
71       return LIP.first;
72     // There may not be a call instruction (?) in which case we ignore LPad.
73     LIP.second = LIP.first;
74     for (MachineBasicBlock::const_iterator I = MBB.end(), E = MBB.begin();
75          I != E;) {
76       --I;
77       if (I->isCall()) {
78         LIP.second = LIS.getInstructionIndex(*I);
79         break;
80       }
81     }
82   }
83 
84   // If CurLI is live into a landing pad successor, move the last insert point
85   // back to the call that may throw.
86   if (!LIP.second)
87     return LIP.first;
88 
89   if (none_of(EHPadSucessors, [&](const MachineBasicBlock *EHPad) {
90         return LIS.isLiveInToMBB(CurLI, EHPad);
91       }))
92     return LIP.first;
93 
94   // Find the value leaving MBB.
95   const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
96   if (!VNI)
97     return LIP.first;
98 
99   // If the value leaving MBB was defined after the call in MBB, it can't
100   // really be live-in to the landing pad.  This can happen if the landing pad
101   // has a PHI, and this register is undef on the exceptional edge.
102   // <rdar://problem/10664933>
103   if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
104     return LIP.first;
105 
106   // Value is properly live-in to the landing pad.
107   // Only allow inserts before the call.
108   return LIP.second;
109 }
110 
111 MachineBasicBlock::iterator
getLastInsertPointIter(const LiveInterval & CurLI,MachineBasicBlock & MBB)112 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
113                                             MachineBasicBlock &MBB) {
114   SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
115   if (LIP == LIS.getMBBEndIdx(&MBB))
116     return MBB.end();
117   return LIS.getInstructionFromIndex(LIP);
118 }
119 
120 //===----------------------------------------------------------------------===//
121 //                                 Split Analysis
122 //===----------------------------------------------------------------------===//
123 
SplitAnalysis(const VirtRegMap & vrm,const LiveIntervals & lis,const MachineLoopInfo & mli)124 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
125                              const MachineLoopInfo &mli)
126     : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
127       TII(*MF.getSubtarget().getInstrInfo()), CurLI(nullptr),
128       IPA(lis, MF.getNumBlockIDs()) {}
129 
clear()130 void SplitAnalysis::clear() {
131   UseSlots.clear();
132   UseBlocks.clear();
133   ThroughBlocks.clear();
134   CurLI = nullptr;
135   DidRepairRange = false;
136 }
137 
138 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
analyzeUses()139 void SplitAnalysis::analyzeUses() {
140   assert(UseSlots.empty() && "Call clear first");
141 
142   // First get all the defs from the interval values. This provides the correct
143   // slots for early clobbers.
144   for (const VNInfo *VNI : CurLI->valnos)
145     if (!VNI->isPHIDef() && !VNI->isUnused())
146       UseSlots.push_back(VNI->def);
147 
148   // Get use slots form the use-def chain.
149   const MachineRegisterInfo &MRI = MF.getRegInfo();
150   for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg))
151     if (!MO.isUndef())
152       UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
153 
154   array_pod_sort(UseSlots.begin(), UseSlots.end());
155 
156   // Remove duplicates, keeping the smaller slot for each instruction.
157   // That is what we want for early clobbers.
158   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
159                              SlotIndex::isSameInstr),
160                  UseSlots.end());
161 
162   // Compute per-live block info.
163   if (!calcLiveBlockInfo()) {
164     // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
165     // I am looking at you, RegisterCoalescer!
166     DidRepairRange = true;
167     ++NumRepairs;
168     DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
169     const_cast<LiveIntervals&>(LIS)
170       .shrinkToUses(const_cast<LiveInterval*>(CurLI));
171     UseBlocks.clear();
172     ThroughBlocks.clear();
173     bool fixed = calcLiveBlockInfo();
174     (void)fixed;
175     assert(fixed && "Couldn't fix broken live interval");
176   }
177 
178   DEBUG(dbgs() << "Analyze counted "
179                << UseSlots.size() << " instrs in "
180                << UseBlocks.size() << " blocks, through "
181                << NumThroughBlocks << " blocks.\n");
182 }
183 
184 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
185 /// where CurLI is live.
calcLiveBlockInfo()186 bool SplitAnalysis::calcLiveBlockInfo() {
187   ThroughBlocks.resize(MF.getNumBlockIDs());
188   NumThroughBlocks = NumGapBlocks = 0;
189   if (CurLI->empty())
190     return true;
191 
192   LiveInterval::const_iterator LVI = CurLI->begin();
193   LiveInterval::const_iterator LVE = CurLI->end();
194 
195   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
196   UseI = UseSlots.begin();
197   UseE = UseSlots.end();
198 
199   // Loop over basic blocks where CurLI is live.
200   MachineFunction::iterator MFI =
201       LIS.getMBBFromIndex(LVI->start)->getIterator();
202   for (;;) {
203     BlockInfo BI;
204     BI.MBB = &*MFI;
205     SlotIndex Start, Stop;
206     std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
207 
208     // If the block contains no uses, the range must be live through. At one
209     // point, RegisterCoalescer could create dangling ranges that ended
210     // mid-block.
211     if (UseI == UseE || *UseI >= Stop) {
212       ++NumThroughBlocks;
213       ThroughBlocks.set(BI.MBB->getNumber());
214       // The range shouldn't end mid-block if there are no uses. This shouldn't
215       // happen.
216       if (LVI->end < Stop)
217         return false;
218     } else {
219       // This block has uses. Find the first and last uses in the block.
220       BI.FirstInstr = *UseI;
221       assert(BI.FirstInstr >= Start);
222       do ++UseI;
223       while (UseI != UseE && *UseI < Stop);
224       BI.LastInstr = UseI[-1];
225       assert(BI.LastInstr < Stop);
226 
227       // LVI is the first live segment overlapping MBB.
228       BI.LiveIn = LVI->start <= Start;
229 
230       // When not live in, the first use should be a def.
231       if (!BI.LiveIn) {
232         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
233         assert(LVI->start == BI.FirstInstr && "First instr should be a def");
234         BI.FirstDef = BI.FirstInstr;
235       }
236 
237       // Look for gaps in the live range.
238       BI.LiveOut = true;
239       while (LVI->end < Stop) {
240         SlotIndex LastStop = LVI->end;
241         if (++LVI == LVE || LVI->start >= Stop) {
242           BI.LiveOut = false;
243           BI.LastInstr = LastStop;
244           break;
245         }
246 
247         if (LastStop < LVI->start) {
248           // There is a gap in the live range. Create duplicate entries for the
249           // live-in snippet and the live-out snippet.
250           ++NumGapBlocks;
251 
252           // Push the Live-in part.
253           BI.LiveOut = false;
254           UseBlocks.push_back(BI);
255           UseBlocks.back().LastInstr = LastStop;
256 
257           // Set up BI for the live-out part.
258           BI.LiveIn = false;
259           BI.LiveOut = true;
260           BI.FirstInstr = BI.FirstDef = LVI->start;
261         }
262 
263         // A Segment that starts in the middle of the block must be a def.
264         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
265         if (!BI.FirstDef)
266           BI.FirstDef = LVI->start;
267       }
268 
269       UseBlocks.push_back(BI);
270 
271       // LVI is now at LVE or LVI->end >= Stop.
272       if (LVI == LVE)
273         break;
274     }
275 
276     // Live segment ends exactly at Stop. Move to the next segment.
277     if (LVI->end == Stop && ++LVI == LVE)
278       break;
279 
280     // Pick the next basic block.
281     if (LVI->start < Stop)
282       ++MFI;
283     else
284       MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
285   }
286 
287   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
288   return true;
289 }
290 
countLiveBlocks(const LiveInterval * cli) const291 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
292   if (cli->empty())
293     return 0;
294   LiveInterval *li = const_cast<LiveInterval*>(cli);
295   LiveInterval::iterator LVI = li->begin();
296   LiveInterval::iterator LVE = li->end();
297   unsigned Count = 0;
298 
299   // Loop over basic blocks where li is live.
300   MachineFunction::const_iterator MFI =
301       LIS.getMBBFromIndex(LVI->start)->getIterator();
302   SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
303   for (;;) {
304     ++Count;
305     LVI = li->advanceTo(LVI, Stop);
306     if (LVI == LVE)
307       return Count;
308     do {
309       ++MFI;
310       Stop = LIS.getMBBEndIdx(&*MFI);
311     } while (Stop <= LVI->start);
312   }
313 }
314 
isOriginalEndpoint(SlotIndex Idx) const315 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
316   unsigned OrigReg = VRM.getOriginal(CurLI->reg);
317   const LiveInterval &Orig = LIS.getInterval(OrigReg);
318   assert(!Orig.empty() && "Splitting empty interval?");
319   LiveInterval::const_iterator I = Orig.find(Idx);
320 
321   // Range containing Idx should begin at Idx.
322   if (I != Orig.end() && I->start <= Idx)
323     return I->start == Idx;
324 
325   // Range does not contain Idx, previous must end at Idx.
326   return I != Orig.begin() && (--I)->end == Idx;
327 }
328 
analyze(const LiveInterval * li)329 void SplitAnalysis::analyze(const LiveInterval *li) {
330   clear();
331   CurLI = li;
332   analyzeUses();
333 }
334 
335 
336 //===----------------------------------------------------------------------===//
337 //                               Split Editor
338 //===----------------------------------------------------------------------===//
339 
340 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
SplitEditor(SplitAnalysis & sa,AliasAnalysis & aa,LiveIntervals & lis,VirtRegMap & vrm,MachineDominatorTree & mdt,MachineBlockFrequencyInfo & mbfi)341 SplitEditor::SplitEditor(SplitAnalysis &sa, AliasAnalysis &aa,
342                          LiveIntervals &lis, VirtRegMap &vrm,
343                          MachineDominatorTree &mdt,
344                          MachineBlockFrequencyInfo &mbfi)
345     : SA(sa), AA(aa), LIS(lis), VRM(vrm),
346       MRI(vrm.getMachineFunction().getRegInfo()), MDT(mdt),
347       TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()),
348       TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()),
349       MBFI(mbfi), Edit(nullptr), OpenIdx(0), SpillMode(SM_Partition),
350       RegAssign(Allocator) {}
351 
reset(LiveRangeEdit & LRE,ComplementSpillMode SM)352 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
353   Edit = &LRE;
354   SpillMode = SM;
355   OpenIdx = 0;
356   RegAssign.clear();
357   Values.clear();
358 
359   // Reset the LiveRangeCalc instances needed for this spill mode.
360   LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
361                   &LIS.getVNInfoAllocator());
362   if (SpillMode)
363     LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
364                     &LIS.getVNInfoAllocator());
365 
366   // We don't need an AliasAnalysis since we will only be performing
367   // cheap-as-a-copy remats anyway.
368   Edit->anyRematerializable(nullptr);
369 }
370 
371 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const372 LLVM_DUMP_METHOD void SplitEditor::dump() const {
373   if (RegAssign.empty()) {
374     dbgs() << " empty\n";
375     return;
376   }
377 
378   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
379     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
380   dbgs() << '\n';
381 }
382 #endif
383 
defValue(unsigned RegIdx,const VNInfo * ParentVNI,SlotIndex Idx)384 VNInfo *SplitEditor::defValue(unsigned RegIdx,
385                               const VNInfo *ParentVNI,
386                               SlotIndex Idx) {
387   assert(ParentVNI && "Mapping  NULL value");
388   assert(Idx.isValid() && "Invalid SlotIndex");
389   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
390   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
391 
392   // Create a new value.
393   VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
394 
395   // Use insert for lookup, so we can add missing values with a second lookup.
396   std::pair<ValueMap::iterator, bool> InsP =
397     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id),
398                                  ValueForcePair(VNI, false)));
399 
400   // This was the first time (RegIdx, ParentVNI) was mapped.
401   // Keep it as a simple def without any liveness.
402   if (InsP.second)
403     return VNI;
404 
405   // If the previous value was a simple mapping, add liveness for it now.
406   if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
407     SlotIndex Def = OldVNI->def;
408     LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), OldVNI));
409     // No longer a simple mapping.  Switch to a complex, non-forced mapping.
410     InsP.first->second = ValueForcePair();
411   }
412 
413   // This is a complex mapping, add liveness for VNI
414   SlotIndex Def = VNI->def;
415   LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
416 
417   return VNI;
418 }
419 
forceRecompute(unsigned RegIdx,const VNInfo * ParentVNI)420 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
421   assert(ParentVNI && "Mapping  NULL value");
422   ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)];
423   VNInfo *VNI = VFP.getPointer();
424 
425   // ParentVNI was either unmapped or already complex mapped. Either way, just
426   // set the force bit.
427   if (!VNI) {
428     VFP.setInt(true);
429     return;
430   }
431 
432   // This was previously a single mapping. Make sure the old def is represented
433   // by a trivial live range.
434   SlotIndex Def = VNI->def;
435   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
436   LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
437   // Mark as complex mapped, forced.
438   VFP = ValueForcePair(nullptr, true);
439 }
440 
defFromParent(unsigned RegIdx,VNInfo * ParentVNI,SlotIndex UseIdx,MachineBasicBlock & MBB,MachineBasicBlock::iterator I)441 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
442                                    VNInfo *ParentVNI,
443                                    SlotIndex UseIdx,
444                                    MachineBasicBlock &MBB,
445                                    MachineBasicBlock::iterator I) {
446   MachineInstr *CopyMI = nullptr;
447   SlotIndex Def;
448   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
449 
450   // We may be trying to avoid interference that ends at a deleted instruction,
451   // so always begin RegIdx 0 early and all others late.
452   bool Late = RegIdx != 0;
453 
454   // Attempt cheap-as-a-copy rematerialization.
455   unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
456   LiveInterval &OrigLI = LIS.getInterval(Original);
457   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
458   LiveRangeEdit::Remat RM(ParentVNI);
459   RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
460 
461   if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
462     Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late);
463     ++NumRemats;
464   } else {
465     // Can't remat, just insert a copy from parent.
466     CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
467                .addReg(Edit->getReg());
468     Def = LIS.getSlotIndexes()
469               ->insertMachineInstrInMaps(*CopyMI, Late)
470               .getRegSlot();
471     ++NumCopies;
472   }
473 
474   // Define the value in Reg.
475   return defValue(RegIdx, ParentVNI, Def);
476 }
477 
478 /// Create a new virtual register and live interval.
openIntv()479 unsigned SplitEditor::openIntv() {
480   // Create the complement as index 0.
481   if (Edit->empty())
482     Edit->createEmptyInterval();
483 
484   // Create the open interval.
485   OpenIdx = Edit->size();
486   Edit->createEmptyInterval();
487   return OpenIdx;
488 }
489 
selectIntv(unsigned Idx)490 void SplitEditor::selectIntv(unsigned Idx) {
491   assert(Idx != 0 && "Cannot select the complement interval");
492   assert(Idx < Edit->size() && "Can only select previously opened interval");
493   DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
494   OpenIdx = Idx;
495 }
496 
enterIntvBefore(SlotIndex Idx)497 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
498   assert(OpenIdx && "openIntv not called before enterIntvBefore");
499   DEBUG(dbgs() << "    enterIntvBefore " << Idx);
500   Idx = Idx.getBaseIndex();
501   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
502   if (!ParentVNI) {
503     DEBUG(dbgs() << ": not live\n");
504     return Idx;
505   }
506   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
507   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
508   assert(MI && "enterIntvBefore called with invalid index");
509 
510   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
511   return VNI->def;
512 }
513 
enterIntvAfter(SlotIndex Idx)514 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
515   assert(OpenIdx && "openIntv not called before enterIntvAfter");
516   DEBUG(dbgs() << "    enterIntvAfter " << Idx);
517   Idx = Idx.getBoundaryIndex();
518   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
519   if (!ParentVNI) {
520     DEBUG(dbgs() << ": not live\n");
521     return Idx;
522   }
523   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
524   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
525   assert(MI && "enterIntvAfter called with invalid index");
526 
527   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
528                               std::next(MachineBasicBlock::iterator(MI)));
529   return VNI->def;
530 }
531 
enterIntvAtEnd(MachineBasicBlock & MBB)532 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
533   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
534   SlotIndex End = LIS.getMBBEndIdx(&MBB);
535   SlotIndex Last = End.getPrevSlot();
536   DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
537   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
538   if (!ParentVNI) {
539     DEBUG(dbgs() << ": not live\n");
540     return End;
541   }
542   DEBUG(dbgs() << ": valno " << ParentVNI->id);
543   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
544                               SA.getLastSplitPointIter(&MBB));
545   RegAssign.insert(VNI->def, End, OpenIdx);
546   DEBUG(dump());
547   return VNI->def;
548 }
549 
550 /// useIntv - indicate that all instructions in MBB should use OpenLI.
useIntv(const MachineBasicBlock & MBB)551 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
552   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
553 }
554 
useIntv(SlotIndex Start,SlotIndex End)555 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
556   assert(OpenIdx && "openIntv not called before useIntv");
557   DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
558   RegAssign.insert(Start, End, OpenIdx);
559   DEBUG(dump());
560 }
561 
leaveIntvAfter(SlotIndex Idx)562 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
563   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
564   DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
565 
566   // The interval must be live beyond the instruction at Idx.
567   SlotIndex Boundary = Idx.getBoundaryIndex();
568   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
569   if (!ParentVNI) {
570     DEBUG(dbgs() << ": not live\n");
571     return Boundary.getNextSlot();
572   }
573   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
574   MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
575   assert(MI && "No instruction at index");
576 
577   // In spill mode, make live ranges as short as possible by inserting the copy
578   // before MI.  This is only possible if that instruction doesn't redefine the
579   // value.  The inserted COPY is not a kill, and we don't need to recompute
580   // the source live range.  The spiller also won't try to hoist this copy.
581   if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
582       MI->readsVirtualRegister(Edit->getReg())) {
583     forceRecompute(0, ParentVNI);
584     defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
585     return Idx;
586   }
587 
588   VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
589                               std::next(MachineBasicBlock::iterator(MI)));
590   return VNI->def;
591 }
592 
leaveIntvBefore(SlotIndex Idx)593 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
594   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
595   DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
596 
597   // The interval must be live into the instruction at Idx.
598   Idx = Idx.getBaseIndex();
599   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
600   if (!ParentVNI) {
601     DEBUG(dbgs() << ": not live\n");
602     return Idx.getNextSlot();
603   }
604   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
605 
606   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
607   assert(MI && "No instruction at index");
608   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
609   return VNI->def;
610 }
611 
leaveIntvAtTop(MachineBasicBlock & MBB)612 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
613   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
614   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
615   DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
616 
617   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
618   if (!ParentVNI) {
619     DEBUG(dbgs() << ": not live\n");
620     return Start;
621   }
622 
623   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
624                               MBB.SkipPHIsAndLabels(MBB.begin()));
625   RegAssign.insert(Start, VNI->def, OpenIdx);
626   DEBUG(dump());
627   return VNI->def;
628 }
629 
overlapIntv(SlotIndex Start,SlotIndex End)630 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
631   assert(OpenIdx && "openIntv not called before overlapIntv");
632   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
633   assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
634          "Parent changes value in extended range");
635   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
636          "Range cannot span basic blocks");
637 
638   // The complement interval will be extended as needed by LRCalc.extend().
639   if (ParentVNI)
640     forceRecompute(0, ParentVNI);
641   DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
642   RegAssign.insert(Start, End, OpenIdx);
643   DEBUG(dump());
644 }
645 
646 //===----------------------------------------------------------------------===//
647 //                                  Spill modes
648 //===----------------------------------------------------------------------===//
649 
removeBackCopies(SmallVectorImpl<VNInfo * > & Copies)650 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
651   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
652   DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
653   RegAssignMap::iterator AssignI;
654   AssignI.setMap(RegAssign);
655 
656   for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
657     SlotIndex Def = Copies[i]->def;
658     MachineInstr *MI = LIS.getInstructionFromIndex(Def);
659     assert(MI && "No instruction for back-copy");
660 
661     MachineBasicBlock *MBB = MI->getParent();
662     MachineBasicBlock::iterator MBBI(MI);
663     bool AtBegin;
664     do AtBegin = MBBI == MBB->begin();
665     while (!AtBegin && (--MBBI)->isDebugValue());
666 
667     DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
668     LIS.removeVRegDefAt(*LI, Def);
669     LIS.RemoveMachineInstrFromMaps(*MI);
670     MI->eraseFromParent();
671 
672     // Adjust RegAssign if a register assignment is killed at Def. We want to
673     // avoid calculating the live range of the source register if possible.
674     AssignI.find(Def.getPrevSlot());
675     if (!AssignI.valid() || AssignI.start() >= Def)
676       continue;
677     // If MI doesn't kill the assigned register, just leave it.
678     if (AssignI.stop() != Def)
679       continue;
680     unsigned RegIdx = AssignI.value();
681     if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
682       DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx << '\n');
683       forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def));
684     } else {
685       SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot();
686       DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
687       AssignI.setStop(Kill);
688     }
689   }
690 }
691 
692 MachineBasicBlock*
findShallowDominator(MachineBasicBlock * MBB,MachineBasicBlock * DefMBB)693 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
694                                   MachineBasicBlock *DefMBB) {
695   if (MBB == DefMBB)
696     return MBB;
697   assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
698 
699   const MachineLoopInfo &Loops = SA.Loops;
700   const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
701   MachineDomTreeNode *DefDomNode = MDT[DefMBB];
702 
703   // Best candidate so far.
704   MachineBasicBlock *BestMBB = MBB;
705   unsigned BestDepth = UINT_MAX;
706 
707   for (;;) {
708     const MachineLoop *Loop = Loops.getLoopFor(MBB);
709 
710     // MBB isn't in a loop, it doesn't get any better.  All dominators have a
711     // higher frequency by definition.
712     if (!Loop) {
713       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
714                    << MBB->getNumber() << " at depth 0\n");
715       return MBB;
716     }
717 
718     // We'll never be able to exit the DefLoop.
719     if (Loop == DefLoop) {
720       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
721                    << MBB->getNumber() << " in the same loop\n");
722       return MBB;
723     }
724 
725     // Least busy dominator seen so far.
726     unsigned Depth = Loop->getLoopDepth();
727     if (Depth < BestDepth) {
728       BestMBB = MBB;
729       BestDepth = Depth;
730       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
731                    << MBB->getNumber() << " at depth " << Depth << '\n');
732     }
733 
734     // Leave loop by going to the immediate dominator of the loop header.
735     // This is a bigger stride than simply walking up the dominator tree.
736     MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
737 
738     // Too far up the dominator tree?
739     if (!IDom || !MDT.dominates(DefDomNode, IDom))
740       return BestMBB;
741 
742     MBB = IDom->getBlock();
743   }
744 }
745 
computeRedundantBackCopies(DenseSet<unsigned> & NotToHoistSet,SmallVectorImpl<VNInfo * > & BackCopies)746 void SplitEditor::computeRedundantBackCopies(
747     DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
748   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
749   LiveInterval *Parent = &Edit->getParent();
750   SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
751   SmallPtrSet<VNInfo *, 8> DominatedVNIs;
752 
753   // Aggregate VNIs having the same value as ParentVNI.
754   for (VNInfo *VNI : LI->valnos) {
755     if (VNI->isUnused())
756       continue;
757     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
758     EqualVNs[ParentVNI->id].insert(VNI);
759   }
760 
761   // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
762   // redundant VNIs to BackCopies.
763   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
764     VNInfo *ParentVNI = Parent->getValNumInfo(i);
765     if (!NotToHoistSet.count(ParentVNI->id))
766       continue;
767     SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
768     SmallPtrSetIterator<VNInfo *> It2 = It1;
769     for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
770       It2 = It1;
771       for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
772         if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
773           continue;
774 
775         MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
776         MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
777         if (MBB1 == MBB2) {
778           DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
779         } else if (MDT.dominates(MBB1, MBB2)) {
780           DominatedVNIs.insert(*It2);
781         } else if (MDT.dominates(MBB2, MBB1)) {
782           DominatedVNIs.insert(*It1);
783         }
784       }
785     }
786     if (!DominatedVNIs.empty()) {
787       forceRecompute(0, ParentVNI);
788       for (auto VNI : DominatedVNIs) {
789         BackCopies.push_back(VNI);
790       }
791       DominatedVNIs.clear();
792     }
793   }
794 }
795 
796 /// For SM_Size mode, find a common dominator for all the back-copies for
797 /// the same ParentVNI and hoist the backcopies to the dominator BB.
798 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
799 /// to do the hoisting, simply remove the dominated backcopies for the same
800 /// ParentVNI.
hoistCopies()801 void SplitEditor::hoistCopies() {
802   // Get the complement interval, always RegIdx 0.
803   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
804   LiveInterval *Parent = &Edit->getParent();
805 
806   // Track the nearest common dominator for all back-copies for each ParentVNI,
807   // indexed by ParentVNI->id.
808   typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair;
809   SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
810   // The total cost of all the back-copies for each ParentVNI.
811   SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
812   // The ParentVNI->id set for which hoisting back-copies are not beneficial
813   // for Speed.
814   DenseSet<unsigned> NotToHoistSet;
815 
816   // Find the nearest common dominator for parent values with multiple
817   // back-copies.  If a single back-copy dominates, put it in DomPair.second.
818   for (VNInfo *VNI : LI->valnos) {
819     if (VNI->isUnused())
820       continue;
821     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
822     assert(ParentVNI && "Parent not live at complement def");
823 
824     // Don't hoist remats.  The complement is probably going to disappear
825     // completely anyway.
826     if (Edit->didRematerialize(ParentVNI))
827       continue;
828 
829     MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
830 
831     DomPair &Dom = NearestDom[ParentVNI->id];
832 
833     // Keep directly defined parent values.  This is either a PHI or an
834     // instruction in the complement range.  All other copies of ParentVNI
835     // should be eliminated.
836     if (VNI->def == ParentVNI->def) {
837       DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
838       Dom = DomPair(ValMBB, VNI->def);
839       continue;
840     }
841     // Skip the singly mapped values.  There is nothing to gain from hoisting a
842     // single back-copy.
843     if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
844       DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
845       continue;
846     }
847 
848     if (!Dom.first) {
849       // First time we see ParentVNI.  VNI dominates itself.
850       Dom = DomPair(ValMBB, VNI->def);
851     } else if (Dom.first == ValMBB) {
852       // Two defs in the same block.  Pick the earlier def.
853       if (!Dom.second.isValid() || VNI->def < Dom.second)
854         Dom.second = VNI->def;
855     } else {
856       // Different basic blocks. Check if one dominates.
857       MachineBasicBlock *Near =
858         MDT.findNearestCommonDominator(Dom.first, ValMBB);
859       if (Near == ValMBB)
860         // Def ValMBB dominates.
861         Dom = DomPair(ValMBB, VNI->def);
862       else if (Near != Dom.first)
863         // None dominate. Hoist to common dominator, need new def.
864         Dom = DomPair(Near, SlotIndex());
865       Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
866     }
867 
868     DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
869                  << " for parent " << ParentVNI->id << '@' << ParentVNI->def
870                  << " hoist to BB#" << Dom.first->getNumber() << ' '
871                  << Dom.second << '\n');
872   }
873 
874   // Insert the hoisted copies.
875   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
876     DomPair &Dom = NearestDom[i];
877     if (!Dom.first || Dom.second.isValid())
878       continue;
879     // This value needs a hoisted copy inserted at the end of Dom.first.
880     VNInfo *ParentVNI = Parent->getValNumInfo(i);
881     MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
882     // Get a less loopy dominator than Dom.first.
883     Dom.first = findShallowDominator(Dom.first, DefMBB);
884     if (SpillMode == SM_Speed &&
885         MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
886       NotToHoistSet.insert(ParentVNI->id);
887       continue;
888     }
889     SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
890     Dom.second =
891       defFromParent(0, ParentVNI, Last, *Dom.first,
892                     SA.getLastSplitPointIter(Dom.first))->def;
893   }
894 
895   // Remove redundant back-copies that are now known to be dominated by another
896   // def with the same value.
897   SmallVector<VNInfo*, 8> BackCopies;
898   for (VNInfo *VNI : LI->valnos) {
899     if (VNI->isUnused())
900       continue;
901     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
902     const DomPair &Dom = NearestDom[ParentVNI->id];
903     if (!Dom.first || Dom.second == VNI->def ||
904         NotToHoistSet.count(ParentVNI->id))
905       continue;
906     BackCopies.push_back(VNI);
907     forceRecompute(0, ParentVNI);
908   }
909 
910   // If it is not beneficial to hoist all the BackCopies, simply remove
911   // redundant BackCopies in speed mode.
912   if (SpillMode == SM_Speed && !NotToHoistSet.empty())
913     computeRedundantBackCopies(NotToHoistSet, BackCopies);
914 
915   removeBackCopies(BackCopies);
916 }
917 
918 
919 /// transferValues - Transfer all possible values to the new live ranges.
920 /// Values that were rematerialized are left alone, they need LRCalc.extend().
transferValues()921 bool SplitEditor::transferValues() {
922   bool Skipped = false;
923   RegAssignMap::const_iterator AssignI = RegAssign.begin();
924   for (const LiveRange::Segment &S : Edit->getParent()) {
925     DEBUG(dbgs() << "  blit " << S << ':');
926     VNInfo *ParentVNI = S.valno;
927     // RegAssign has holes where RegIdx 0 should be used.
928     SlotIndex Start = S.start;
929     AssignI.advanceTo(Start);
930     do {
931       unsigned RegIdx;
932       SlotIndex End = S.end;
933       if (!AssignI.valid()) {
934         RegIdx = 0;
935       } else if (AssignI.start() <= Start) {
936         RegIdx = AssignI.value();
937         if (AssignI.stop() < End) {
938           End = AssignI.stop();
939           ++AssignI;
940         }
941       } else {
942         RegIdx = 0;
943         End = std::min(End, AssignI.start());
944       }
945 
946       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
947       DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
948       LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
949 
950       // Check for a simply defined value that can be blitted directly.
951       ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
952       if (VNInfo *VNI = VFP.getPointer()) {
953         DEBUG(dbgs() << ':' << VNI->id);
954         LR.addSegment(LiveInterval::Segment(Start, End, VNI));
955         Start = End;
956         continue;
957       }
958 
959       // Skip values with forced recomputation.
960       if (VFP.getInt()) {
961         DEBUG(dbgs() << "(recalc)");
962         Skipped = true;
963         Start = End;
964         continue;
965       }
966 
967       LiveRangeCalc &LRC = getLRCalc(RegIdx);
968 
969       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
970       // so the live range is accurate. Add live-in blocks in [Start;End) to the
971       // LiveInBlocks.
972       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
973       SlotIndex BlockStart, BlockEnd;
974       std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
975 
976       // The first block may be live-in, or it may have its own def.
977       if (Start != BlockStart) {
978         VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
979         assert(VNI && "Missing def for complex mapped value");
980         DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
981         // MBB has its own def. Is it also live-out?
982         if (BlockEnd <= End)
983           LRC.setLiveOutValue(&*MBB, VNI);
984 
985         // Skip to the next block for live-in.
986         ++MBB;
987         BlockStart = BlockEnd;
988       }
989 
990       // Handle the live-in blocks covered by [Start;End).
991       assert(Start <= BlockStart && "Expected live-in block");
992       while (BlockStart < End) {
993         DEBUG(dbgs() << ">BB#" << MBB->getNumber());
994         BlockEnd = LIS.getMBBEndIdx(&*MBB);
995         if (BlockStart == ParentVNI->def) {
996           // This block has the def of a parent PHI, so it isn't live-in.
997           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
998           VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
999           assert(VNI && "Missing def for complex mapped parent PHI");
1000           if (End >= BlockEnd)
1001             LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1002         } else {
1003           // This block needs a live-in value.  The last block covered may not
1004           // be live-out.
1005           if (End < BlockEnd)
1006             LRC.addLiveInBlock(LR, MDT[&*MBB], End);
1007           else {
1008             // Live-through, and we don't know the value.
1009             LRC.addLiveInBlock(LR, MDT[&*MBB]);
1010             LRC.setLiveOutValue(&*MBB, nullptr);
1011           }
1012         }
1013         BlockStart = BlockEnd;
1014         ++MBB;
1015       }
1016       Start = End;
1017     } while (Start != S.end);
1018     DEBUG(dbgs() << '\n');
1019   }
1020 
1021   LRCalc[0].calculateValues();
1022   if (SpillMode)
1023     LRCalc[1].calculateValues();
1024 
1025   return Skipped;
1026 }
1027 
extendPHIKillRanges()1028 void SplitEditor::extendPHIKillRanges() {
1029   // Extend live ranges to be live-out for successor PHI values.
1030   for (const VNInfo *PHIVNI : Edit->getParent().valnos) {
1031     if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
1032       continue;
1033     unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
1034     LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
1035 
1036     // Check whether PHI is dead.
1037     const LiveRange::Segment *Segment = LR.getSegmentContaining(PHIVNI->def);
1038     assert(Segment != nullptr && "Missing segment for VNI");
1039     if (Segment->end == PHIVNI->def.getDeadSlot()) {
1040       // This is a dead PHI. Remove it.
1041       LR.removeSegment(*Segment, true);
1042       continue;
1043     }
1044 
1045     LiveRangeCalc &LRC = getLRCalc(RegIdx);
1046     MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
1047     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
1048          PE = MBB->pred_end(); PI != PE; ++PI) {
1049       SlotIndex End = LIS.getMBBEndIdx(*PI);
1050       SlotIndex LastUse = End.getPrevSlot();
1051       // The predecessor may not have a live-out value. That is OK, like an
1052       // undef PHI operand.
1053       if (Edit->getParent().liveAt(LastUse)) {
1054         assert(RegAssign.lookup(LastUse) == RegIdx &&
1055                "Different register assignment in phi predecessor");
1056         LRC.extend(LR, End);
1057       }
1058     }
1059   }
1060 }
1061 
1062 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
rewriteAssigned(bool ExtendRanges)1063 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1064   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
1065        RE = MRI.reg_end(); RI != RE;) {
1066     MachineOperand &MO = *RI;
1067     MachineInstr *MI = MO.getParent();
1068     ++RI;
1069     // LiveDebugVariables should have handled all DBG_VALUE instructions.
1070     if (MI->isDebugValue()) {
1071       DEBUG(dbgs() << "Zapping " << *MI);
1072       MO.setReg(0);
1073       continue;
1074     }
1075 
1076     // <undef> operands don't really read the register, so it doesn't matter
1077     // which register we choose.  When the use operand is tied to a def, we must
1078     // use the same register as the def, so just do that always.
1079     SlotIndex Idx = LIS.getInstructionIndex(*MI);
1080     if (MO.isDef() || MO.isUndef())
1081       Idx = Idx.getRegSlot(MO.isEarlyClobber());
1082 
1083     // Rewrite to the mapped register at Idx.
1084     unsigned RegIdx = RegAssign.lookup(Idx);
1085     LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
1086     MO.setReg(LI->reg);
1087     DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
1088                  << Idx << ':' << RegIdx << '\t' << *MI);
1089 
1090     // Extend liveness to Idx if the instruction reads reg.
1091     if (!ExtendRanges || MO.isUndef())
1092       continue;
1093 
1094     // Skip instructions that don't read Reg.
1095     if (MO.isDef()) {
1096       if (!MO.getSubReg() && !MO.isEarlyClobber())
1097         continue;
1098       // We may wan't to extend a live range for a partial redef, or for a use
1099       // tied to an early clobber.
1100       Idx = Idx.getPrevSlot();
1101       if (!Edit->getParent().liveAt(Idx))
1102         continue;
1103     } else
1104       Idx = Idx.getRegSlot(true);
1105 
1106     getLRCalc(RegIdx).extend(*LI, Idx.getNextSlot());
1107   }
1108 }
1109 
deleteRematVictims()1110 void SplitEditor::deleteRematVictims() {
1111   SmallVector<MachineInstr*, 8> Dead;
1112   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
1113     LiveInterval *LI = &LIS.getInterval(*I);
1114     for (const LiveRange::Segment &S : LI->segments) {
1115       // Dead defs end at the dead slot.
1116       if (S.end != S.valno->def.getDeadSlot())
1117         continue;
1118       if (S.valno->isPHIDef())
1119         continue;
1120       MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1121       assert(MI && "Missing instruction for dead def");
1122       MI->addRegisterDead(LI->reg, &TRI);
1123 
1124       if (!MI->allDefsAreDead())
1125         continue;
1126 
1127       DEBUG(dbgs() << "All defs dead: " << *MI);
1128       Dead.push_back(MI);
1129     }
1130   }
1131 
1132   if (Dead.empty())
1133     return;
1134 
1135   Edit->eliminateDeadDefs(Dead, None, &AA);
1136 }
1137 
finish(SmallVectorImpl<unsigned> * LRMap)1138 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1139   ++NumFinished;
1140 
1141   // At this point, the live intervals in Edit contain VNInfos corresponding to
1142   // the inserted copies.
1143 
1144   // Add the original defs from the parent interval.
1145   for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1146     if (ParentVNI->isUnused())
1147       continue;
1148     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1149     defValue(RegIdx, ParentVNI, ParentVNI->def);
1150 
1151     // Force rematted values to be recomputed everywhere.
1152     // The new live ranges may be truncated.
1153     if (Edit->didRematerialize(ParentVNI))
1154       for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1155         forceRecompute(i, ParentVNI);
1156   }
1157 
1158   // Hoist back-copies to the complement interval when in spill mode.
1159   switch (SpillMode) {
1160   case SM_Partition:
1161     // Leave all back-copies as is.
1162     break;
1163   case SM_Size:
1164   case SM_Speed:
1165     // hoistCopies will behave differently between size and speed.
1166     hoistCopies();
1167   }
1168 
1169   // Transfer the simply mapped values, check if any are skipped.
1170   bool Skipped = transferValues();
1171 
1172   // Rewrite virtual registers, possibly extending ranges.
1173   rewriteAssigned(Skipped);
1174 
1175   if (Skipped)
1176     extendPHIKillRanges();
1177   else
1178     ++NumSimple;
1179 
1180   // Delete defs that were rematted everywhere.
1181   if (Skipped)
1182     deleteRematVictims();
1183 
1184   // Get rid of unused values and set phi-kill flags.
1185   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) {
1186     LiveInterval &LI = LIS.getInterval(*I);
1187     LI.RenumberValues();
1188   }
1189 
1190   // Provide a reverse mapping from original indices to Edit ranges.
1191   if (LRMap) {
1192     LRMap->clear();
1193     for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1194       LRMap->push_back(i);
1195   }
1196 
1197   // Now check if any registers were separated into multiple components.
1198   ConnectedVNInfoEqClasses ConEQ(LIS);
1199   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1200     // Don't use iterators, they are invalidated by create() below.
1201     unsigned VReg = Edit->get(i);
1202     LiveInterval &LI = LIS.getInterval(VReg);
1203     SmallVector<LiveInterval*, 8> SplitLIs;
1204     LIS.splitSeparateComponents(LI, SplitLIs);
1205     unsigned Original = VRM.getOriginal(VReg);
1206     for (LiveInterval *SplitLI : SplitLIs)
1207       VRM.setIsSplitFromReg(SplitLI->reg, Original);
1208 
1209     // The new intervals all map back to i.
1210     if (LRMap)
1211       LRMap->resize(Edit->size(), i);
1212   }
1213 
1214   // Calculate spill weight and allocation hints for new intervals.
1215   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
1216 
1217   assert(!LRMap || LRMap->size() == Edit->size());
1218 }
1219 
1220 
1221 //===----------------------------------------------------------------------===//
1222 //                            Single Block Splitting
1223 //===----------------------------------------------------------------------===//
1224 
shouldSplitSingleBlock(const BlockInfo & BI,bool SingleInstrs) const1225 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1226                                            bool SingleInstrs) const {
1227   // Always split for multiple instructions.
1228   if (!BI.isOneInstr())
1229     return true;
1230   // Don't split for single instructions unless explicitly requested.
1231   if (!SingleInstrs)
1232     return false;
1233   // Splitting a live-through range always makes progress.
1234   if (BI.LiveIn && BI.LiveOut)
1235     return true;
1236   // No point in isolating a copy. It has no register class constraints.
1237   if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1238     return false;
1239   // Finally, don't isolate an end point that was created by earlier splits.
1240   return isOriginalEndpoint(BI.FirstInstr);
1241 }
1242 
splitSingleBlock(const SplitAnalysis::BlockInfo & BI)1243 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1244   openIntv();
1245   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1246   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1247     LastSplitPoint));
1248   if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1249     useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1250   } else {
1251       // The last use is after the last valid split point.
1252     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1253     useIntv(SegStart, SegStop);
1254     overlapIntv(SegStop, BI.LastInstr);
1255   }
1256 }
1257 
1258 
1259 //===----------------------------------------------------------------------===//
1260 //                    Global Live Range Splitting Support
1261 //===----------------------------------------------------------------------===//
1262 
1263 // These methods support a method of global live range splitting that uses a
1264 // global algorithm to decide intervals for CFG edges. They will insert split
1265 // points and color intervals in basic blocks while avoiding interference.
1266 //
1267 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1268 // are on the stack.
1269 
splitLiveThroughBlock(unsigned MBBNum,unsigned IntvIn,SlotIndex LeaveBefore,unsigned IntvOut,SlotIndex EnterAfter)1270 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1271                                         unsigned IntvIn, SlotIndex LeaveBefore,
1272                                         unsigned IntvOut, SlotIndex EnterAfter){
1273   SlotIndex Start, Stop;
1274   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1275 
1276   DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
1277                << ") intf " << LeaveBefore << '-' << EnterAfter
1278                << ", live-through " << IntvIn << " -> " << IntvOut);
1279 
1280   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1281 
1282   assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1283   assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1284   assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1285 
1286   MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1287 
1288   if (!IntvOut) {
1289     DEBUG(dbgs() << ", spill on entry.\n");
1290     //
1291     //        <<<<<<<<<    Possible LeaveBefore interference.
1292     //    |-----------|    Live through.
1293     //    -____________    Spill on entry.
1294     //
1295     selectIntv(IntvIn);
1296     SlotIndex Idx = leaveIntvAtTop(*MBB);
1297     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1298     (void)Idx;
1299     return;
1300   }
1301 
1302   if (!IntvIn) {
1303     DEBUG(dbgs() << ", reload on exit.\n");
1304     //
1305     //    >>>>>>>          Possible EnterAfter interference.
1306     //    |-----------|    Live through.
1307     //    ___________--    Reload on exit.
1308     //
1309     selectIntv(IntvOut);
1310     SlotIndex Idx = enterIntvAtEnd(*MBB);
1311     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1312     (void)Idx;
1313     return;
1314   }
1315 
1316   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1317     DEBUG(dbgs() << ", straight through.\n");
1318     //
1319     //    |-----------|    Live through.
1320     //    -------------    Straight through, same intv, no interference.
1321     //
1322     selectIntv(IntvOut);
1323     useIntv(Start, Stop);
1324     return;
1325   }
1326 
1327   // We cannot legally insert splits after LSP.
1328   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1329   assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1330 
1331   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1332                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1333     DEBUG(dbgs() << ", switch avoiding interference.\n");
1334     //
1335     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1336     //    |-----------|    Live through.
1337     //    ------=======    Switch intervals between interference.
1338     //
1339     selectIntv(IntvOut);
1340     SlotIndex Idx;
1341     if (LeaveBefore && LeaveBefore < LSP) {
1342       Idx = enterIntvBefore(LeaveBefore);
1343       useIntv(Idx, Stop);
1344     } else {
1345       Idx = enterIntvAtEnd(*MBB);
1346     }
1347     selectIntv(IntvIn);
1348     useIntv(Start, Idx);
1349     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1350     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1351     return;
1352   }
1353 
1354   DEBUG(dbgs() << ", create local intv for interference.\n");
1355   //
1356   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1357   //    |-----------|    Live through.
1358   //    ==---------==    Switch intervals before/after interference.
1359   //
1360   assert(LeaveBefore <= EnterAfter && "Missed case");
1361 
1362   selectIntv(IntvOut);
1363   SlotIndex Idx = enterIntvAfter(EnterAfter);
1364   useIntv(Idx, Stop);
1365   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1366 
1367   selectIntv(IntvIn);
1368   Idx = leaveIntvBefore(LeaveBefore);
1369   useIntv(Start, Idx);
1370   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1371 }
1372 
1373 
splitRegInBlock(const SplitAnalysis::BlockInfo & BI,unsigned IntvIn,SlotIndex LeaveBefore)1374 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1375                                   unsigned IntvIn, SlotIndex LeaveBefore) {
1376   SlotIndex Start, Stop;
1377   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1378 
1379   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1380                << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1381                << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1382                << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1383 
1384   assert(IntvIn && "Must have register in");
1385   assert(BI.LiveIn && "Must be live-in");
1386   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1387 
1388   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1389     DEBUG(dbgs() << " before interference.\n");
1390     //
1391     //               <<<    Interference after kill.
1392     //     |---o---x   |    Killed in block.
1393     //     =========        Use IntvIn everywhere.
1394     //
1395     selectIntv(IntvIn);
1396     useIntv(Start, BI.LastInstr);
1397     return;
1398   }
1399 
1400   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1401 
1402   if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1403     //
1404     //               <<<    Possible interference after last use.
1405     //     |---o---o---|    Live-out on stack.
1406     //     =========____    Leave IntvIn after last use.
1407     //
1408     //                 <    Interference after last use.
1409     //     |---o---o--o|    Live-out on stack, late last use.
1410     //     ============     Copy to stack after LSP, overlap IntvIn.
1411     //            \_____    Stack interval is live-out.
1412     //
1413     if (BI.LastInstr < LSP) {
1414       DEBUG(dbgs() << ", spill after last use before interference.\n");
1415       selectIntv(IntvIn);
1416       SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1417       useIntv(Start, Idx);
1418       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1419     } else {
1420       DEBUG(dbgs() << ", spill before last split point.\n");
1421       selectIntv(IntvIn);
1422       SlotIndex Idx = leaveIntvBefore(LSP);
1423       overlapIntv(Idx, BI.LastInstr);
1424       useIntv(Start, Idx);
1425       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1426     }
1427     return;
1428   }
1429 
1430   // The interference is overlapping somewhere we wanted to use IntvIn. That
1431   // means we need to create a local interval that can be allocated a
1432   // different register.
1433   unsigned LocalIntv = openIntv();
1434   (void)LocalIntv;
1435   DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1436 
1437   if (!BI.LiveOut || BI.LastInstr < LSP) {
1438     //
1439     //           <<<<<<<    Interference overlapping uses.
1440     //     |---o---o---|    Live-out on stack.
1441     //     =====----____    Leave IntvIn before interference, then spill.
1442     //
1443     SlotIndex To = leaveIntvAfter(BI.LastInstr);
1444     SlotIndex From = enterIntvBefore(LeaveBefore);
1445     useIntv(From, To);
1446     selectIntv(IntvIn);
1447     useIntv(Start, From);
1448     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1449     return;
1450   }
1451 
1452   //           <<<<<<<    Interference overlapping uses.
1453   //     |---o---o--o|    Live-out on stack, late last use.
1454   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1455   //            \_____    Stack interval is live-out.
1456   //
1457   SlotIndex To = leaveIntvBefore(LSP);
1458   overlapIntv(To, BI.LastInstr);
1459   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1460   useIntv(From, To);
1461   selectIntv(IntvIn);
1462   useIntv(Start, From);
1463   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1464 }
1465 
splitRegOutBlock(const SplitAnalysis::BlockInfo & BI,unsigned IntvOut,SlotIndex EnterAfter)1466 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1467                                    unsigned IntvOut, SlotIndex EnterAfter) {
1468   SlotIndex Start, Stop;
1469   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1470 
1471   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1472                << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1473                << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1474                << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1475 
1476   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1477 
1478   assert(IntvOut && "Must have register out");
1479   assert(BI.LiveOut && "Must be live-out");
1480   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1481 
1482   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1483     DEBUG(dbgs() << " after interference.\n");
1484     //
1485     //    >>>>             Interference before def.
1486     //    |   o---o---|    Defined in block.
1487     //        =========    Use IntvOut everywhere.
1488     //
1489     selectIntv(IntvOut);
1490     useIntv(BI.FirstInstr, Stop);
1491     return;
1492   }
1493 
1494   if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1495     DEBUG(dbgs() << ", reload after interference.\n");
1496     //
1497     //    >>>>             Interference before def.
1498     //    |---o---o---|    Live-through, stack-in.
1499     //    ____=========    Enter IntvOut before first use.
1500     //
1501     selectIntv(IntvOut);
1502     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1503     useIntv(Idx, Stop);
1504     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1505     return;
1506   }
1507 
1508   // The interference is overlapping somewhere we wanted to use IntvOut. That
1509   // means we need to create a local interval that can be allocated a
1510   // different register.
1511   DEBUG(dbgs() << ", interference overlaps uses.\n");
1512   //
1513   //    >>>>>>>          Interference overlapping uses.
1514   //    |---o---o---|    Live-through, stack-in.
1515   //    ____---======    Create local interval for interference range.
1516   //
1517   selectIntv(IntvOut);
1518   SlotIndex Idx = enterIntvAfter(EnterAfter);
1519   useIntv(Idx, Stop);
1520   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1521 
1522   openIntv();
1523   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1524   useIntv(From, Idx);
1525 }
1526