1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Float2Int pass, which aims to demote floating
11 // point operations to work on integers, where that is losslessly possible.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "float2int"
16
17 #include "llvm/Transforms/Scalar/Float2Int.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/APSInt.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/GlobalsModRef.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/InstIterator.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Transforms/Scalar.h"
32 #include <deque>
33 #include <functional> // For std::function
34 using namespace llvm;
35
36 // The algorithm is simple. Start at instructions that convert from the
37 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
38 // graph, using an equivalence datastructure to unify graphs that interfere.
39 //
40 // Mappable instructions are those with an integer corrollary that, given
41 // integer domain inputs, produce an integer output; fadd, for example.
42 //
43 // If a non-mappable instruction is seen, this entire def-use graph is marked
44 // as non-transformable. If we see an instruction that converts from the
45 // integer domain to FP domain (uitofp,sitofp), we terminate our walk.
46
47 /// The largest integer type worth dealing with.
48 static cl::opt<unsigned>
49 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden,
50 cl::desc("Max integer bitwidth to consider in float2int"
51 "(default=64)"));
52
53 namespace {
54 struct Float2IntLegacyPass : public FunctionPass {
55 static char ID; // Pass identification, replacement for typeid
Float2IntLegacyPass__anona5fede280111::Float2IntLegacyPass56 Float2IntLegacyPass() : FunctionPass(ID) {
57 initializeFloat2IntLegacyPassPass(*PassRegistry::getPassRegistry());
58 }
59
runOnFunction__anona5fede280111::Float2IntLegacyPass60 bool runOnFunction(Function &F) override {
61 if (skipFunction(F))
62 return false;
63
64 return Impl.runImpl(F);
65 }
66
getAnalysisUsage__anona5fede280111::Float2IntLegacyPass67 void getAnalysisUsage(AnalysisUsage &AU) const override {
68 AU.setPreservesCFG();
69 AU.addPreserved<GlobalsAAWrapperPass>();
70 }
71
72 private:
73 Float2IntPass Impl;
74 };
75 }
76
77 char Float2IntLegacyPass::ID = 0;
78 INITIALIZE_PASS(Float2IntLegacyPass, "float2int", "Float to int", false, false)
79
80 // Given a FCmp predicate, return a matching ICmp predicate if one
81 // exists, otherwise return BAD_ICMP_PREDICATE.
mapFCmpPred(CmpInst::Predicate P)82 static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) {
83 switch (P) {
84 case CmpInst::FCMP_OEQ:
85 case CmpInst::FCMP_UEQ:
86 return CmpInst::ICMP_EQ;
87 case CmpInst::FCMP_OGT:
88 case CmpInst::FCMP_UGT:
89 return CmpInst::ICMP_SGT;
90 case CmpInst::FCMP_OGE:
91 case CmpInst::FCMP_UGE:
92 return CmpInst::ICMP_SGE;
93 case CmpInst::FCMP_OLT:
94 case CmpInst::FCMP_ULT:
95 return CmpInst::ICMP_SLT;
96 case CmpInst::FCMP_OLE:
97 case CmpInst::FCMP_ULE:
98 return CmpInst::ICMP_SLE;
99 case CmpInst::FCMP_ONE:
100 case CmpInst::FCMP_UNE:
101 return CmpInst::ICMP_NE;
102 default:
103 return CmpInst::BAD_ICMP_PREDICATE;
104 }
105 }
106
107 // Given a floating point binary operator, return the matching
108 // integer version.
mapBinOpcode(unsigned Opcode)109 static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) {
110 switch (Opcode) {
111 default: llvm_unreachable("Unhandled opcode!");
112 case Instruction::FAdd: return Instruction::Add;
113 case Instruction::FSub: return Instruction::Sub;
114 case Instruction::FMul: return Instruction::Mul;
115 }
116 }
117
118 // Find the roots - instructions that convert from the FP domain to
119 // integer domain.
findRoots(Function & F,SmallPtrSet<Instruction *,8> & Roots)120 void Float2IntPass::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) {
121 for (auto &I : instructions(F)) {
122 if (isa<VectorType>(I.getType()))
123 continue;
124 switch (I.getOpcode()) {
125 default: break;
126 case Instruction::FPToUI:
127 case Instruction::FPToSI:
128 Roots.insert(&I);
129 break;
130 case Instruction::FCmp:
131 if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) !=
132 CmpInst::BAD_ICMP_PREDICATE)
133 Roots.insert(&I);
134 break;
135 }
136 }
137 }
138
139 // Helper - mark I as having been traversed, having range R.
seen(Instruction * I,ConstantRange R)140 ConstantRange Float2IntPass::seen(Instruction *I, ConstantRange R) {
141 DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n");
142 if (SeenInsts.find(I) != SeenInsts.end())
143 SeenInsts.find(I)->second = R;
144 else
145 SeenInsts.insert(std::make_pair(I, R));
146 return R;
147 }
148
149 // Helper - get a range representing a poison value.
badRange()150 ConstantRange Float2IntPass::badRange() {
151 return ConstantRange(MaxIntegerBW + 1, true);
152 }
unknownRange()153 ConstantRange Float2IntPass::unknownRange() {
154 return ConstantRange(MaxIntegerBW + 1, false);
155 }
validateRange(ConstantRange R)156 ConstantRange Float2IntPass::validateRange(ConstantRange R) {
157 if (R.getBitWidth() > MaxIntegerBW + 1)
158 return badRange();
159 return R;
160 }
161
162 // The most obvious way to structure the search is a depth-first, eager
163 // search from each root. However, that require direct recursion and so
164 // can only handle small instruction sequences. Instead, we split the search
165 // up into two phases:
166 // - walkBackwards: A breadth-first walk of the use-def graph starting from
167 // the roots. Populate "SeenInsts" with interesting
168 // instructions and poison values if they're obvious and
169 // cheap to compute. Calculate the equivalance set structure
170 // while we're here too.
171 // - walkForwards: Iterate over SeenInsts in reverse order, so we visit
172 // defs before their uses. Calculate the real range info.
173
174 // Breadth-first walk of the use-def graph; determine the set of nodes
175 // we care about and eagerly determine if some of them are poisonous.
walkBackwards(const SmallPtrSetImpl<Instruction * > & Roots)176 void Float2IntPass::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) {
177 std::deque<Instruction*> Worklist(Roots.begin(), Roots.end());
178 while (!Worklist.empty()) {
179 Instruction *I = Worklist.back();
180 Worklist.pop_back();
181
182 if (SeenInsts.find(I) != SeenInsts.end())
183 // Seen already.
184 continue;
185
186 switch (I->getOpcode()) {
187 // FIXME: Handle select and phi nodes.
188 default:
189 // Path terminated uncleanly.
190 seen(I, badRange());
191 break;
192
193 case Instruction::UIToFP: {
194 // Path terminated cleanly.
195 unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
196 APInt Min = APInt::getMinValue(BW).zextOrSelf(MaxIntegerBW+1);
197 APInt Max = APInt::getMaxValue(BW).zextOrSelf(MaxIntegerBW+1);
198 seen(I, validateRange(ConstantRange(Min, Max)));
199 continue;
200 }
201
202 case Instruction::SIToFP: {
203 // Path terminated cleanly.
204 unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
205 APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(MaxIntegerBW+1);
206 APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(MaxIntegerBW+1);
207 seen(I, validateRange(ConstantRange(SMin, SMax)));
208 continue;
209 }
210
211 case Instruction::FAdd:
212 case Instruction::FSub:
213 case Instruction::FMul:
214 case Instruction::FPToUI:
215 case Instruction::FPToSI:
216 case Instruction::FCmp:
217 seen(I, unknownRange());
218 break;
219 }
220
221 for (Value *O : I->operands()) {
222 if (Instruction *OI = dyn_cast<Instruction>(O)) {
223 // Unify def-use chains if they interfere.
224 ECs.unionSets(I, OI);
225 if (SeenInsts.find(I)->second != badRange())
226 Worklist.push_back(OI);
227 } else if (!isa<ConstantFP>(O)) {
228 // Not an instruction or ConstantFP? we can't do anything.
229 seen(I, badRange());
230 }
231 }
232 }
233 }
234
235 // Walk forwards down the list of seen instructions, so we visit defs before
236 // uses.
walkForwards()237 void Float2IntPass::walkForwards() {
238 for (auto &It : reverse(SeenInsts)) {
239 if (It.second != unknownRange())
240 continue;
241
242 Instruction *I = It.first;
243 std::function<ConstantRange(ArrayRef<ConstantRange>)> Op;
244 switch (I->getOpcode()) {
245 // FIXME: Handle select and phi nodes.
246 default:
247 case Instruction::UIToFP:
248 case Instruction::SIToFP:
249 llvm_unreachable("Should have been handled in walkForwards!");
250
251 case Instruction::FAdd:
252 Op = [](ArrayRef<ConstantRange> Ops) {
253 assert(Ops.size() == 2 && "FAdd is a binary operator!");
254 return Ops[0].add(Ops[1]);
255 };
256 break;
257
258 case Instruction::FSub:
259 Op = [](ArrayRef<ConstantRange> Ops) {
260 assert(Ops.size() == 2 && "FSub is a binary operator!");
261 return Ops[0].sub(Ops[1]);
262 };
263 break;
264
265 case Instruction::FMul:
266 Op = [](ArrayRef<ConstantRange> Ops) {
267 assert(Ops.size() == 2 && "FMul is a binary operator!");
268 return Ops[0].multiply(Ops[1]);
269 };
270 break;
271
272 //
273 // Root-only instructions - we'll only see these if they're the
274 // first node in a walk.
275 //
276 case Instruction::FPToUI:
277 case Instruction::FPToSI:
278 Op = [](ArrayRef<ConstantRange> Ops) {
279 assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!");
280 return Ops[0];
281 };
282 break;
283
284 case Instruction::FCmp:
285 Op = [](ArrayRef<ConstantRange> Ops) {
286 assert(Ops.size() == 2 && "FCmp is a binary operator!");
287 return Ops[0].unionWith(Ops[1]);
288 };
289 break;
290 }
291
292 bool Abort = false;
293 SmallVector<ConstantRange,4> OpRanges;
294 for (Value *O : I->operands()) {
295 if (Instruction *OI = dyn_cast<Instruction>(O)) {
296 assert(SeenInsts.find(OI) != SeenInsts.end() &&
297 "def not seen before use!");
298 OpRanges.push_back(SeenInsts.find(OI)->second);
299 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) {
300 // Work out if the floating point number can be losslessly represented
301 // as an integer.
302 // APFloat::convertToInteger(&Exact) purports to do what we want, but
303 // the exactness can be too precise. For example, negative zero can
304 // never be exactly converted to an integer.
305 //
306 // Instead, we ask APFloat to round itself to an integral value - this
307 // preserves sign-of-zero - then compare the result with the original.
308 //
309 const APFloat &F = CF->getValueAPF();
310
311 // First, weed out obviously incorrect values. Non-finite numbers
312 // can't be represented and neither can negative zero, unless
313 // we're in fast math mode.
314 if (!F.isFinite() ||
315 (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) &&
316 !I->hasNoSignedZeros())) {
317 seen(I, badRange());
318 Abort = true;
319 break;
320 }
321
322 APFloat NewF = F;
323 auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven);
324 if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) {
325 seen(I, badRange());
326 Abort = true;
327 break;
328 }
329 // OK, it's representable. Now get it.
330 APSInt Int(MaxIntegerBW+1, false);
331 bool Exact;
332 CF->getValueAPF().convertToInteger(Int,
333 APFloat::rmNearestTiesToEven,
334 &Exact);
335 OpRanges.push_back(ConstantRange(Int));
336 } else {
337 llvm_unreachable("Should have already marked this as badRange!");
338 }
339 }
340
341 // Reduce the operands' ranges to a single range and return.
342 if (!Abort)
343 seen(I, Op(OpRanges));
344 }
345 }
346
347 // If there is a valid transform to be done, do it.
validateAndTransform()348 bool Float2IntPass::validateAndTransform() {
349 bool MadeChange = false;
350
351 // Iterate over every disjoint partition of the def-use graph.
352 for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) {
353 ConstantRange R(MaxIntegerBW + 1, false);
354 bool Fail = false;
355 Type *ConvertedToTy = nullptr;
356
357 // For every member of the partition, union all the ranges together.
358 for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
359 MI != ME; ++MI) {
360 Instruction *I = *MI;
361 auto SeenI = SeenInsts.find(I);
362 if (SeenI == SeenInsts.end())
363 continue;
364
365 R = R.unionWith(SeenI->second);
366 // We need to ensure I has no users that have not been seen.
367 // If it does, transformation would be illegal.
368 //
369 // Don't count the roots, as they terminate the graphs.
370 if (Roots.count(I) == 0) {
371 // Set the type of the conversion while we're here.
372 if (!ConvertedToTy)
373 ConvertedToTy = I->getType();
374 for (User *U : I->users()) {
375 Instruction *UI = dyn_cast<Instruction>(U);
376 if (!UI || SeenInsts.find(UI) == SeenInsts.end()) {
377 DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n");
378 Fail = true;
379 break;
380 }
381 }
382 }
383 if (Fail)
384 break;
385 }
386
387 // If the set was empty, or we failed, or the range is poisonous,
388 // bail out.
389 if (ECs.member_begin(It) == ECs.member_end() || Fail ||
390 R.isFullSet() || R.isSignWrappedSet())
391 continue;
392 assert(ConvertedToTy && "Must have set the convertedtoty by this point!");
393
394 // The number of bits required is the maximum of the upper and
395 // lower limits, plus one so it can be signed.
396 unsigned MinBW = std::max(R.getLower().getMinSignedBits(),
397 R.getUpper().getMinSignedBits()) + 1;
398 DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n");
399
400 // If we've run off the realms of the exactly representable integers,
401 // the floating point result will differ from an integer approximation.
402
403 // Do we need more bits than are in the mantissa of the type we converted
404 // to? semanticsPrecision returns the number of mantissa bits plus one
405 // for the sign bit.
406 unsigned MaxRepresentableBits
407 = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1;
408 if (MinBW > MaxRepresentableBits) {
409 DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
410 continue;
411 }
412 if (MinBW > 64) {
413 DEBUG(dbgs() << "F2I: Value requires more than 64 bits to represent!\n");
414 continue;
415 }
416
417 // OK, R is known to be representable. Now pick a type for it.
418 // FIXME: Pick the smallest legal type that will fit.
419 Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx);
420
421 for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
422 MI != ME; ++MI)
423 convert(*MI, Ty);
424 MadeChange = true;
425 }
426
427 return MadeChange;
428 }
429
convert(Instruction * I,Type * ToTy)430 Value *Float2IntPass::convert(Instruction *I, Type *ToTy) {
431 if (ConvertedInsts.find(I) != ConvertedInsts.end())
432 // Already converted this instruction.
433 return ConvertedInsts[I];
434
435 SmallVector<Value*,4> NewOperands;
436 for (Value *V : I->operands()) {
437 // Don't recurse if we're an instruction that terminates the path.
438 if (I->getOpcode() == Instruction::UIToFP ||
439 I->getOpcode() == Instruction::SIToFP) {
440 NewOperands.push_back(V);
441 } else if (Instruction *VI = dyn_cast<Instruction>(V)) {
442 NewOperands.push_back(convert(VI, ToTy));
443 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
444 APSInt Val(ToTy->getPrimitiveSizeInBits(), /*IsUnsigned=*/false);
445 bool Exact;
446 CF->getValueAPF().convertToInteger(Val,
447 APFloat::rmNearestTiesToEven,
448 &Exact);
449 NewOperands.push_back(ConstantInt::get(ToTy, Val));
450 } else {
451 llvm_unreachable("Unhandled operand type?");
452 }
453 }
454
455 // Now create a new instruction.
456 IRBuilder<> IRB(I);
457 Value *NewV = nullptr;
458 switch (I->getOpcode()) {
459 default: llvm_unreachable("Unhandled instruction!");
460
461 case Instruction::FPToUI:
462 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType());
463 break;
464
465 case Instruction::FPToSI:
466 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType());
467 break;
468
469 case Instruction::FCmp: {
470 CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate());
471 assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!");
472 NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName());
473 break;
474 }
475
476 case Instruction::UIToFP:
477 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy);
478 break;
479
480 case Instruction::SIToFP:
481 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy);
482 break;
483
484 case Instruction::FAdd:
485 case Instruction::FSub:
486 case Instruction::FMul:
487 NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()),
488 NewOperands[0], NewOperands[1],
489 I->getName());
490 break;
491 }
492
493 // If we're a root instruction, RAUW.
494 if (Roots.count(I))
495 I->replaceAllUsesWith(NewV);
496
497 ConvertedInsts[I] = NewV;
498 return NewV;
499 }
500
501 // Perform dead code elimination on the instructions we just modified.
cleanup()502 void Float2IntPass::cleanup() {
503 for (auto &I : reverse(ConvertedInsts))
504 I.first->eraseFromParent();
505 }
506
runImpl(Function & F)507 bool Float2IntPass::runImpl(Function &F) {
508 DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n");
509 // Clear out all state.
510 ECs = EquivalenceClasses<Instruction*>();
511 SeenInsts.clear();
512 ConvertedInsts.clear();
513 Roots.clear();
514
515 Ctx = &F.getParent()->getContext();
516
517 findRoots(F, Roots);
518
519 walkBackwards(Roots);
520 walkForwards();
521
522 bool Modified = validateAndTransform();
523 if (Modified)
524 cleanup();
525 return Modified;
526 }
527
528 namespace llvm {
createFloat2IntPass()529 FunctionPass *createFloat2IntPass() { return new Float2IntLegacyPass(); }
530
run(Function & F,FunctionAnalysisManager &)531 PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &) {
532 if (!runImpl(F))
533 return PreservedAnalyses::all();
534 else {
535 // FIXME: This should also 'preserve the CFG'.
536 PreservedAnalyses PA;
537 PA.preserve<GlobalsAA>();
538 return PA;
539 }
540 }
541 } // End namespace llvm
542