1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Float2Int pass, which aims to demote floating
11 // point operations to work on integers, where that is losslessly possible.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "float2int"
16 
17 #include "llvm/Transforms/Scalar/Float2Int.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/APSInt.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/GlobalsModRef.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/InstIterator.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Transforms/Scalar.h"
32 #include <deque>
33 #include <functional> // For std::function
34 using namespace llvm;
35 
36 // The algorithm is simple. Start at instructions that convert from the
37 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
38 // graph, using an equivalence datastructure to unify graphs that interfere.
39 //
40 // Mappable instructions are those with an integer corrollary that, given
41 // integer domain inputs, produce an integer output; fadd, for example.
42 //
43 // If a non-mappable instruction is seen, this entire def-use graph is marked
44 // as non-transformable. If we see an instruction that converts from the
45 // integer domain to FP domain (uitofp,sitofp), we terminate our walk.
46 
47 /// The largest integer type worth dealing with.
48 static cl::opt<unsigned>
49 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden,
50              cl::desc("Max integer bitwidth to consider in float2int"
51                       "(default=64)"));
52 
53 namespace {
54   struct Float2IntLegacyPass : public FunctionPass {
55     static char ID; // Pass identification, replacement for typeid
Float2IntLegacyPass__anona5fede280111::Float2IntLegacyPass56     Float2IntLegacyPass() : FunctionPass(ID) {
57       initializeFloat2IntLegacyPassPass(*PassRegistry::getPassRegistry());
58     }
59 
runOnFunction__anona5fede280111::Float2IntLegacyPass60     bool runOnFunction(Function &F) override {
61       if (skipFunction(F))
62         return false;
63 
64       return Impl.runImpl(F);
65     }
66 
getAnalysisUsage__anona5fede280111::Float2IntLegacyPass67     void getAnalysisUsage(AnalysisUsage &AU) const override {
68       AU.setPreservesCFG();
69       AU.addPreserved<GlobalsAAWrapperPass>();
70     }
71 
72   private:
73     Float2IntPass Impl;
74   };
75 }
76 
77 char Float2IntLegacyPass::ID = 0;
78 INITIALIZE_PASS(Float2IntLegacyPass, "float2int", "Float to int", false, false)
79 
80 // Given a FCmp predicate, return a matching ICmp predicate if one
81 // exists, otherwise return BAD_ICMP_PREDICATE.
mapFCmpPred(CmpInst::Predicate P)82 static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) {
83   switch (P) {
84   case CmpInst::FCMP_OEQ:
85   case CmpInst::FCMP_UEQ:
86     return CmpInst::ICMP_EQ;
87   case CmpInst::FCMP_OGT:
88   case CmpInst::FCMP_UGT:
89     return CmpInst::ICMP_SGT;
90   case CmpInst::FCMP_OGE:
91   case CmpInst::FCMP_UGE:
92     return CmpInst::ICMP_SGE;
93   case CmpInst::FCMP_OLT:
94   case CmpInst::FCMP_ULT:
95     return CmpInst::ICMP_SLT;
96   case CmpInst::FCMP_OLE:
97   case CmpInst::FCMP_ULE:
98     return CmpInst::ICMP_SLE;
99   case CmpInst::FCMP_ONE:
100   case CmpInst::FCMP_UNE:
101     return CmpInst::ICMP_NE;
102   default:
103     return CmpInst::BAD_ICMP_PREDICATE;
104   }
105 }
106 
107 // Given a floating point binary operator, return the matching
108 // integer version.
mapBinOpcode(unsigned Opcode)109 static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) {
110   switch (Opcode) {
111   default: llvm_unreachable("Unhandled opcode!");
112   case Instruction::FAdd: return Instruction::Add;
113   case Instruction::FSub: return Instruction::Sub;
114   case Instruction::FMul: return Instruction::Mul;
115   }
116 }
117 
118 // Find the roots - instructions that convert from the FP domain to
119 // integer domain.
findRoots(Function & F,SmallPtrSet<Instruction *,8> & Roots)120 void Float2IntPass::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) {
121   for (auto &I : instructions(F)) {
122     if (isa<VectorType>(I.getType()))
123       continue;
124     switch (I.getOpcode()) {
125     default: break;
126     case Instruction::FPToUI:
127     case Instruction::FPToSI:
128       Roots.insert(&I);
129       break;
130     case Instruction::FCmp:
131       if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) !=
132           CmpInst::BAD_ICMP_PREDICATE)
133         Roots.insert(&I);
134       break;
135     }
136   }
137 }
138 
139 // Helper - mark I as having been traversed, having range R.
seen(Instruction * I,ConstantRange R)140 ConstantRange Float2IntPass::seen(Instruction *I, ConstantRange R) {
141   DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n");
142   if (SeenInsts.find(I) != SeenInsts.end())
143     SeenInsts.find(I)->second = R;
144   else
145     SeenInsts.insert(std::make_pair(I, R));
146   return R;
147 }
148 
149 // Helper - get a range representing a poison value.
badRange()150 ConstantRange Float2IntPass::badRange() {
151   return ConstantRange(MaxIntegerBW + 1, true);
152 }
unknownRange()153 ConstantRange Float2IntPass::unknownRange() {
154   return ConstantRange(MaxIntegerBW + 1, false);
155 }
validateRange(ConstantRange R)156 ConstantRange Float2IntPass::validateRange(ConstantRange R) {
157   if (R.getBitWidth() > MaxIntegerBW + 1)
158     return badRange();
159   return R;
160 }
161 
162 // The most obvious way to structure the search is a depth-first, eager
163 // search from each root. However, that require direct recursion and so
164 // can only handle small instruction sequences. Instead, we split the search
165 // up into two phases:
166 //   - walkBackwards:  A breadth-first walk of the use-def graph starting from
167 //                     the roots. Populate "SeenInsts" with interesting
168 //                     instructions and poison values if they're obvious and
169 //                     cheap to compute. Calculate the equivalance set structure
170 //                     while we're here too.
171 //   - walkForwards:  Iterate over SeenInsts in reverse order, so we visit
172 //                     defs before their uses. Calculate the real range info.
173 
174 // Breadth-first walk of the use-def graph; determine the set of nodes
175 // we care about and eagerly determine if some of them are poisonous.
walkBackwards(const SmallPtrSetImpl<Instruction * > & Roots)176 void Float2IntPass::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) {
177   std::deque<Instruction*> Worklist(Roots.begin(), Roots.end());
178   while (!Worklist.empty()) {
179     Instruction *I = Worklist.back();
180     Worklist.pop_back();
181 
182     if (SeenInsts.find(I) != SeenInsts.end())
183       // Seen already.
184       continue;
185 
186     switch (I->getOpcode()) {
187       // FIXME: Handle select and phi nodes.
188     default:
189       // Path terminated uncleanly.
190       seen(I, badRange());
191       break;
192 
193     case Instruction::UIToFP: {
194       // Path terminated cleanly.
195       unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
196       APInt Min = APInt::getMinValue(BW).zextOrSelf(MaxIntegerBW+1);
197       APInt Max = APInt::getMaxValue(BW).zextOrSelf(MaxIntegerBW+1);
198       seen(I, validateRange(ConstantRange(Min, Max)));
199       continue;
200     }
201 
202     case Instruction::SIToFP: {
203       // Path terminated cleanly.
204       unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
205       APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(MaxIntegerBW+1);
206       APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(MaxIntegerBW+1);
207       seen(I, validateRange(ConstantRange(SMin, SMax)));
208       continue;
209     }
210 
211     case Instruction::FAdd:
212     case Instruction::FSub:
213     case Instruction::FMul:
214     case Instruction::FPToUI:
215     case Instruction::FPToSI:
216     case Instruction::FCmp:
217       seen(I, unknownRange());
218       break;
219     }
220 
221     for (Value *O : I->operands()) {
222       if (Instruction *OI = dyn_cast<Instruction>(O)) {
223         // Unify def-use chains if they interfere.
224         ECs.unionSets(I, OI);
225         if (SeenInsts.find(I)->second != badRange())
226           Worklist.push_back(OI);
227       } else if (!isa<ConstantFP>(O)) {
228         // Not an instruction or ConstantFP? we can't do anything.
229         seen(I, badRange());
230       }
231     }
232   }
233 }
234 
235 // Walk forwards down the list of seen instructions, so we visit defs before
236 // uses.
walkForwards()237 void Float2IntPass::walkForwards() {
238   for (auto &It : reverse(SeenInsts)) {
239     if (It.second != unknownRange())
240       continue;
241 
242     Instruction *I = It.first;
243     std::function<ConstantRange(ArrayRef<ConstantRange>)> Op;
244     switch (I->getOpcode()) {
245       // FIXME: Handle select and phi nodes.
246     default:
247     case Instruction::UIToFP:
248     case Instruction::SIToFP:
249       llvm_unreachable("Should have been handled in walkForwards!");
250 
251     case Instruction::FAdd:
252       Op = [](ArrayRef<ConstantRange> Ops) {
253         assert(Ops.size() == 2 && "FAdd is a binary operator!");
254         return Ops[0].add(Ops[1]);
255       };
256       break;
257 
258     case Instruction::FSub:
259       Op = [](ArrayRef<ConstantRange> Ops) {
260         assert(Ops.size() == 2 && "FSub is a binary operator!");
261         return Ops[0].sub(Ops[1]);
262       };
263       break;
264 
265     case Instruction::FMul:
266       Op = [](ArrayRef<ConstantRange> Ops) {
267         assert(Ops.size() == 2 && "FMul is a binary operator!");
268         return Ops[0].multiply(Ops[1]);
269       };
270       break;
271 
272     //
273     // Root-only instructions - we'll only see these if they're the
274     //                          first node in a walk.
275     //
276     case Instruction::FPToUI:
277     case Instruction::FPToSI:
278       Op = [](ArrayRef<ConstantRange> Ops) {
279         assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!");
280         return Ops[0];
281       };
282       break;
283 
284     case Instruction::FCmp:
285       Op = [](ArrayRef<ConstantRange> Ops) {
286         assert(Ops.size() == 2 && "FCmp is a binary operator!");
287         return Ops[0].unionWith(Ops[1]);
288       };
289       break;
290     }
291 
292     bool Abort = false;
293     SmallVector<ConstantRange,4> OpRanges;
294     for (Value *O : I->operands()) {
295       if (Instruction *OI = dyn_cast<Instruction>(O)) {
296         assert(SeenInsts.find(OI) != SeenInsts.end() &&
297                "def not seen before use!");
298         OpRanges.push_back(SeenInsts.find(OI)->second);
299       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) {
300         // Work out if the floating point number can be losslessly represented
301         // as an integer.
302         // APFloat::convertToInteger(&Exact) purports to do what we want, but
303         // the exactness can be too precise. For example, negative zero can
304         // never be exactly converted to an integer.
305         //
306         // Instead, we ask APFloat to round itself to an integral value - this
307         // preserves sign-of-zero - then compare the result with the original.
308         //
309         const APFloat &F = CF->getValueAPF();
310 
311         // First, weed out obviously incorrect values. Non-finite numbers
312         // can't be represented and neither can negative zero, unless
313         // we're in fast math mode.
314         if (!F.isFinite() ||
315             (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) &&
316              !I->hasNoSignedZeros())) {
317           seen(I, badRange());
318           Abort = true;
319           break;
320         }
321 
322         APFloat NewF = F;
323         auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven);
324         if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) {
325           seen(I, badRange());
326           Abort = true;
327           break;
328         }
329         // OK, it's representable. Now get it.
330         APSInt Int(MaxIntegerBW+1, false);
331         bool Exact;
332         CF->getValueAPF().convertToInteger(Int,
333                                            APFloat::rmNearestTiesToEven,
334                                            &Exact);
335         OpRanges.push_back(ConstantRange(Int));
336       } else {
337         llvm_unreachable("Should have already marked this as badRange!");
338       }
339     }
340 
341     // Reduce the operands' ranges to a single range and return.
342     if (!Abort)
343       seen(I, Op(OpRanges));
344   }
345 }
346 
347 // If there is a valid transform to be done, do it.
validateAndTransform()348 bool Float2IntPass::validateAndTransform() {
349   bool MadeChange = false;
350 
351   // Iterate over every disjoint partition of the def-use graph.
352   for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) {
353     ConstantRange R(MaxIntegerBW + 1, false);
354     bool Fail = false;
355     Type *ConvertedToTy = nullptr;
356 
357     // For every member of the partition, union all the ranges together.
358     for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
359          MI != ME; ++MI) {
360       Instruction *I = *MI;
361       auto SeenI = SeenInsts.find(I);
362       if (SeenI == SeenInsts.end())
363         continue;
364 
365       R = R.unionWith(SeenI->second);
366       // We need to ensure I has no users that have not been seen.
367       // If it does, transformation would be illegal.
368       //
369       // Don't count the roots, as they terminate the graphs.
370       if (Roots.count(I) == 0) {
371         // Set the type of the conversion while we're here.
372         if (!ConvertedToTy)
373           ConvertedToTy = I->getType();
374         for (User *U : I->users()) {
375           Instruction *UI = dyn_cast<Instruction>(U);
376           if (!UI || SeenInsts.find(UI) == SeenInsts.end()) {
377             DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n");
378             Fail = true;
379             break;
380           }
381         }
382       }
383       if (Fail)
384         break;
385     }
386 
387     // If the set was empty, or we failed, or the range is poisonous,
388     // bail out.
389     if (ECs.member_begin(It) == ECs.member_end() || Fail ||
390         R.isFullSet() || R.isSignWrappedSet())
391       continue;
392     assert(ConvertedToTy && "Must have set the convertedtoty by this point!");
393 
394     // The number of bits required is the maximum of the upper and
395     // lower limits, plus one so it can be signed.
396     unsigned MinBW = std::max(R.getLower().getMinSignedBits(),
397                               R.getUpper().getMinSignedBits()) + 1;
398     DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n");
399 
400     // If we've run off the realms of the exactly representable integers,
401     // the floating point result will differ from an integer approximation.
402 
403     // Do we need more bits than are in the mantissa of the type we converted
404     // to? semanticsPrecision returns the number of mantissa bits plus one
405     // for the sign bit.
406     unsigned MaxRepresentableBits
407       = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1;
408     if (MinBW > MaxRepresentableBits) {
409       DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
410       continue;
411     }
412     if (MinBW > 64) {
413       DEBUG(dbgs() << "F2I: Value requires more than 64 bits to represent!\n");
414       continue;
415     }
416 
417     // OK, R is known to be representable. Now pick a type for it.
418     // FIXME: Pick the smallest legal type that will fit.
419     Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx);
420 
421     for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
422          MI != ME; ++MI)
423       convert(*MI, Ty);
424     MadeChange = true;
425   }
426 
427   return MadeChange;
428 }
429 
convert(Instruction * I,Type * ToTy)430 Value *Float2IntPass::convert(Instruction *I, Type *ToTy) {
431   if (ConvertedInsts.find(I) != ConvertedInsts.end())
432     // Already converted this instruction.
433     return ConvertedInsts[I];
434 
435   SmallVector<Value*,4> NewOperands;
436   for (Value *V : I->operands()) {
437     // Don't recurse if we're an instruction that terminates the path.
438     if (I->getOpcode() == Instruction::UIToFP ||
439         I->getOpcode() == Instruction::SIToFP) {
440       NewOperands.push_back(V);
441     } else if (Instruction *VI = dyn_cast<Instruction>(V)) {
442       NewOperands.push_back(convert(VI, ToTy));
443     } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
444       APSInt Val(ToTy->getPrimitiveSizeInBits(), /*IsUnsigned=*/false);
445       bool Exact;
446       CF->getValueAPF().convertToInteger(Val,
447                                          APFloat::rmNearestTiesToEven,
448                                          &Exact);
449       NewOperands.push_back(ConstantInt::get(ToTy, Val));
450     } else {
451       llvm_unreachable("Unhandled operand type?");
452     }
453   }
454 
455   // Now create a new instruction.
456   IRBuilder<> IRB(I);
457   Value *NewV = nullptr;
458   switch (I->getOpcode()) {
459   default: llvm_unreachable("Unhandled instruction!");
460 
461   case Instruction::FPToUI:
462     NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType());
463     break;
464 
465   case Instruction::FPToSI:
466     NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType());
467     break;
468 
469   case Instruction::FCmp: {
470     CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate());
471     assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!");
472     NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName());
473     break;
474   }
475 
476   case Instruction::UIToFP:
477     NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy);
478     break;
479 
480   case Instruction::SIToFP:
481     NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy);
482     break;
483 
484   case Instruction::FAdd:
485   case Instruction::FSub:
486   case Instruction::FMul:
487     NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()),
488                            NewOperands[0], NewOperands[1],
489                            I->getName());
490     break;
491   }
492 
493   // If we're a root instruction, RAUW.
494   if (Roots.count(I))
495     I->replaceAllUsesWith(NewV);
496 
497   ConvertedInsts[I] = NewV;
498   return NewV;
499 }
500 
501 // Perform dead code elimination on the instructions we just modified.
cleanup()502 void Float2IntPass::cleanup() {
503   for (auto &I : reverse(ConvertedInsts))
504     I.first->eraseFromParent();
505 }
506 
runImpl(Function & F)507 bool Float2IntPass::runImpl(Function &F) {
508   DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n");
509   // Clear out all state.
510   ECs = EquivalenceClasses<Instruction*>();
511   SeenInsts.clear();
512   ConvertedInsts.clear();
513   Roots.clear();
514 
515   Ctx = &F.getParent()->getContext();
516 
517   findRoots(F, Roots);
518 
519   walkBackwards(Roots);
520   walkForwards();
521 
522   bool Modified = validateAndTransform();
523   if (Modified)
524     cleanup();
525   return Modified;
526 }
527 
528 namespace llvm {
createFloat2IntPass()529 FunctionPass *createFloat2IntPass() { return new Float2IntLegacyPass(); }
530 
run(Function & F,FunctionAnalysisManager &)531 PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &) {
532   if (!runImpl(F))
533     return PreservedAnalyses::all();
534   else {
535     // FIXME: This should also 'preserve the CFG'.
536     PreservedAnalyses PA;
537     PA.preserve<GlobalsAA>();
538     return PA;
539   }
540 }
541 } // End namespace llvm
542