1 /*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkScalerContext.h"
9
10 #include "SkAutoMalloc.h"
11 #include "SkAutoPixmapStorage.h"
12 #include "SkColorPriv.h"
13 #include "SkDescriptor.h"
14 #include "SkDraw.h"
15 #include "SkGlyph.h"
16 #include "SkMakeUnique.h"
17 #include "SkMaskFilter.h"
18 #include "SkMaskGamma.h"
19 #include "SkMatrix22.h"
20 #include "SkPathEffect.h"
21 #include "SkRasterClip.h"
22 #include "SkRasterizer.h"
23 #include "SkReadBuffer.h"
24 #include "SkStroke.h"
25 #include "SkStrokeRec.h"
26 #include "SkWriteBuffer.h"
27
28 #define ComputeBWRowBytes(width) (((unsigned)(width) + 7) >> 3)
29
toMask(SkMask * mask) const30 void SkGlyph::toMask(SkMask* mask) const {
31 SkASSERT(mask);
32
33 mask->fImage = (uint8_t*)fImage;
34 mask->fBounds.set(fLeft, fTop, fLeft + fWidth, fTop + fHeight);
35 mask->fRowBytes = this->rowBytes();
36 mask->fFormat = static_cast<SkMask::Format>(fMaskFormat);
37 }
38
computeImageSize() const39 size_t SkGlyph::computeImageSize() const {
40 const size_t size = this->rowBytes() * fHeight;
41
42 switch (fMaskFormat) {
43 case SkMask::k3D_Format:
44 return 3 * size;
45 default:
46 return size;
47 }
48 }
49
zeroMetrics()50 void SkGlyph::zeroMetrics() {
51 fAdvanceX = 0;
52 fAdvanceY = 0;
53 fWidth = 0;
54 fHeight = 0;
55 fTop = 0;
56 fLeft = 0;
57 fRsbDelta = 0;
58 fLsbDelta = 0;
59 }
60
61 ///////////////////////////////////////////////////////////////////////////////
62
63 #ifdef SK_DEBUG
64 #define DUMP_RECx
65 #endif
66
SkScalerContext(sk_sp<SkTypeface> typeface,const SkScalerContextEffects & effects,const SkDescriptor * desc)67 SkScalerContext::SkScalerContext(sk_sp<SkTypeface> typeface, const SkScalerContextEffects& effects,
68 const SkDescriptor* desc)
69 : fRec(*static_cast<const Rec*>(desc->findEntry(kRec_SkDescriptorTag, nullptr)))
70
71 , fTypeface(std::move(typeface))
72 , fPathEffect(sk_ref_sp(effects.fPathEffect))
73 , fMaskFilter(sk_ref_sp(effects.fMaskFilter))
74 , fRasterizer(sk_ref_sp(effects.fRasterizer))
75 // Initialize based on our settings. Subclasses can also force this.
76 , fGenerateImageFromPath(fRec.fFrameWidth > 0 || fPathEffect != nullptr || fRasterizer != nullptr)
77
78 , fPreBlend(fMaskFilter ? SkMaskGamma::PreBlend() : SkScalerContext::GetMaskPreBlend(fRec))
79 , fPreBlendForFilter(fMaskFilter ? SkScalerContext::GetMaskPreBlend(fRec)
80 : SkMaskGamma::PreBlend())
81 {
82 #ifdef DUMP_REC
83 desc->assertChecksum();
84 SkDebugf("SkScalerContext checksum %x count %d length %d\n",
85 desc->getChecksum(), desc->getCount(), desc->getLength());
86 SkDebugf(" textsize %g prescale %g preskew %g post [%g %g %g %g]\n",
87 rec->fTextSize, rec->fPreScaleX, rec->fPreSkewX, rec->fPost2x2[0][0],
88 rec->fPost2x2[0][1], rec->fPost2x2[1][0], rec->fPost2x2[1][1]);
89 SkDebugf(" frame %g miter %g hints %d framefill %d format %d join %d cap %d\n",
90 rec->fFrameWidth, rec->fMiterLimit, rec->fHints, rec->fFrameAndFill,
91 rec->fMaskFormat, rec->fStrokeJoin, rec->fStrokeCap);
92 SkDebugf(" pathEffect %x maskFilter %x\n",
93 desc->findEntry(kPathEffect_SkDescriptorTag, nullptr),
94 desc->findEntry(kMaskFilter_SkDescriptorTag, nullptr));
95 #endif
96 }
97
~SkScalerContext()98 SkScalerContext::~SkScalerContext() {}
99
getAdvance(SkGlyph * glyph)100 void SkScalerContext::getAdvance(SkGlyph* glyph) {
101 // mark us as just having a valid advance
102 glyph->fMaskFormat = MASK_FORMAT_JUST_ADVANCE;
103 // we mark the format before making the call, in case the impl
104 // internally ends up calling its generateMetrics, which is OK
105 // albeit slower than strictly necessary
106 generateAdvance(glyph);
107 }
108
getMetrics(SkGlyph * glyph)109 void SkScalerContext::getMetrics(SkGlyph* glyph) {
110 generateMetrics(glyph);
111
112 // for now we have separate cache entries for devkerning on and off
113 // in the future we might share caches, but make our measure/draw
114 // code make the distinction. Thus we zap the values if the caller
115 // has not asked for them.
116 if ((fRec.fFlags & SkScalerContext::kDevKernText_Flag) == 0) {
117 // no devkern, so zap the fields
118 glyph->fLsbDelta = glyph->fRsbDelta = 0;
119 }
120
121 // if either dimension is empty, zap the image bounds of the glyph
122 if (0 == glyph->fWidth || 0 == glyph->fHeight) {
123 glyph->fWidth = 0;
124 glyph->fHeight = 0;
125 glyph->fTop = 0;
126 glyph->fLeft = 0;
127 glyph->fMaskFormat = 0;
128 return;
129 }
130
131 if (fGenerateImageFromPath) {
132 SkPath devPath, fillPath;
133 SkMatrix fillToDevMatrix;
134
135 this->internalGetPath(glyph->getPackedID(), &fillPath, &devPath, &fillToDevMatrix);
136
137 if (fRasterizer) {
138 SkMask mask;
139
140 if (fRasterizer->rasterize(fillPath, fillToDevMatrix, nullptr,
141 fMaskFilter.get(), &mask,
142 SkMask::kJustComputeBounds_CreateMode)) {
143 glyph->fLeft = mask.fBounds.fLeft;
144 glyph->fTop = mask.fBounds.fTop;
145 glyph->fWidth = SkToU16(mask.fBounds.width());
146 glyph->fHeight = SkToU16(mask.fBounds.height());
147 } else {
148 goto SK_ERROR;
149 }
150 } else {
151 // just use devPath
152 const SkIRect ir = devPath.getBounds().roundOut();
153
154 if (ir.isEmpty() || !ir.is16Bit()) {
155 goto SK_ERROR;
156 }
157 glyph->fLeft = ir.fLeft;
158 glyph->fTop = ir.fTop;
159 glyph->fWidth = SkToU16(ir.width());
160 glyph->fHeight = SkToU16(ir.height());
161
162 if (glyph->fWidth > 0) {
163 switch (fRec.fMaskFormat) {
164 case SkMask::kLCD16_Format:
165 glyph->fWidth += 2;
166 glyph->fLeft -= 1;
167 break;
168 default:
169 break;
170 }
171 }
172 }
173 }
174
175 if (SkMask::kARGB32_Format != glyph->fMaskFormat) {
176 glyph->fMaskFormat = fRec.fMaskFormat;
177 }
178
179 // If we are going to create the mask, then we cannot keep the color
180 if ((fGenerateImageFromPath || fMaskFilter) &&
181 SkMask::kARGB32_Format == glyph->fMaskFormat) {
182 glyph->fMaskFormat = SkMask::kA8_Format;
183 }
184
185 if (fMaskFilter) {
186 SkMask src, dst;
187 SkMatrix matrix;
188
189 glyph->toMask(&src);
190 fRec.getMatrixFrom2x2(&matrix);
191
192 src.fImage = nullptr; // only want the bounds from the filter
193 if (fMaskFilter->filterMask(&dst, src, matrix, nullptr)) {
194 if (dst.fBounds.isEmpty() || !dst.fBounds.is16Bit()) {
195 goto SK_ERROR;
196 }
197 SkASSERT(dst.fImage == nullptr);
198 glyph->fLeft = dst.fBounds.fLeft;
199 glyph->fTop = dst.fBounds.fTop;
200 glyph->fWidth = SkToU16(dst.fBounds.width());
201 glyph->fHeight = SkToU16(dst.fBounds.height());
202 glyph->fMaskFormat = dst.fFormat;
203 }
204 }
205 return;
206
207 SK_ERROR:
208 // draw nothing 'cause we failed
209 glyph->fLeft = 0;
210 glyph->fTop = 0;
211 glyph->fWidth = 0;
212 glyph->fHeight = 0;
213 // put a valid value here, in case it was earlier set to
214 // MASK_FORMAT_JUST_ADVANCE
215 glyph->fMaskFormat = fRec.fMaskFormat;
216 }
217
218 #define SK_SHOW_TEXT_BLIT_COVERAGE 0
219
applyLUTToA8Mask(const SkMask & mask,const uint8_t * lut)220 static void applyLUTToA8Mask(const SkMask& mask, const uint8_t* lut) {
221 uint8_t* SK_RESTRICT dst = (uint8_t*)mask.fImage;
222 unsigned rowBytes = mask.fRowBytes;
223
224 for (int y = mask.fBounds.height() - 1; y >= 0; --y) {
225 for (int x = mask.fBounds.width() - 1; x >= 0; --x) {
226 dst[x] = lut[dst[x]];
227 }
228 dst += rowBytes;
229 }
230 }
231
232 template<bool APPLY_PREBLEND>
pack4xHToLCD16(const SkPixmap & src,const SkMask & dst,const SkMaskGamma::PreBlend & maskPreBlend)233 static void pack4xHToLCD16(const SkPixmap& src, const SkMask& dst,
234 const SkMaskGamma::PreBlend& maskPreBlend) {
235 #define SAMPLES_PER_PIXEL 4
236 #define LCD_PER_PIXEL 3
237 SkASSERT(kAlpha_8_SkColorType == src.colorType());
238 SkASSERT(SkMask::kLCD16_Format == dst.fFormat);
239
240 const int sample_width = src.width();
241 const int height = src.height();
242
243 uint16_t* dstP = (uint16_t*)dst.fImage;
244 size_t dstRB = dst.fRowBytes;
245 // An N tap FIR is defined by
246 // out[n] = coeff[0]*x[n] + coeff[1]*x[n-1] + ... + coeff[N]*x[n-N]
247 // or
248 // out[n] = sum(i, 0, N, coeff[i]*x[n-i])
249
250 // The strategy is to use one FIR (different coefficients) for each of r, g, and b.
251 // This means using every 4th FIR output value of each FIR and discarding the rest.
252 // The FIRs are aligned, and the coefficients reach 5 samples to each side of their 'center'.
253 // (For r and b this is technically incorrect, but the coeffs outside round to zero anyway.)
254
255 // These are in some fixed point repesentation.
256 // Adding up to more than one simulates ink spread.
257 // For implementation reasons, these should never add up to more than two.
258
259 // Coefficients determined by a gausian where 5 samples = 3 std deviations (0x110 'contrast').
260 // Calculated using tools/generate_fir_coeff.py
261 // With this one almost no fringing is ever seen, but it is imperceptibly blurry.
262 // The lcd smoothed text is almost imperceptibly different from gray,
263 // but is still sharper on small stems and small rounded corners than gray.
264 // This also seems to be about as wide as one can get and only have a three pixel kernel.
265 // TODO: caculate these at runtime so parameters can be adjusted (esp contrast).
266 static const unsigned int coefficients[LCD_PER_PIXEL][SAMPLES_PER_PIXEL*3] = {
267 //The red subpixel is centered inside the first sample (at 1/6 pixel), and is shifted.
268 { 0x03, 0x0b, 0x1c, 0x33, 0x40, 0x39, 0x24, 0x10, 0x05, 0x01, 0x00, 0x00, },
269 //The green subpixel is centered between two samples (at 1/2 pixel), so is symetric
270 { 0x00, 0x02, 0x08, 0x16, 0x2b, 0x3d, 0x3d, 0x2b, 0x16, 0x08, 0x02, 0x00, },
271 //The blue subpixel is centered inside the last sample (at 5/6 pixel), and is shifted.
272 { 0x00, 0x00, 0x01, 0x05, 0x10, 0x24, 0x39, 0x40, 0x33, 0x1c, 0x0b, 0x03, },
273 };
274
275 for (int y = 0; y < height; ++y) {
276 const uint8_t* srcP = src.addr8(0, y);
277
278 // TODO: this fir filter implementation is straight forward, but slow.
279 // It should be possible to make it much faster.
280 for (int sample_x = -4, pixel_x = 0; sample_x < sample_width + 4; sample_x += 4, ++pixel_x) {
281 int fir[LCD_PER_PIXEL] = { 0 };
282 for (int sample_index = SkMax32(0, sample_x - 4), coeff_index = sample_index - (sample_x - 4)
283 ; sample_index < SkMin32(sample_x + 8, sample_width)
284 ; ++sample_index, ++coeff_index)
285 {
286 int sample_value = srcP[sample_index];
287 for (int subpxl_index = 0; subpxl_index < LCD_PER_PIXEL; ++subpxl_index) {
288 fir[subpxl_index] += coefficients[subpxl_index][coeff_index] * sample_value;
289 }
290 }
291 for (int subpxl_index = 0; subpxl_index < LCD_PER_PIXEL; ++subpxl_index) {
292 fir[subpxl_index] /= 0x100;
293 fir[subpxl_index] = SkMin32(fir[subpxl_index], 255);
294 }
295
296 U8CPU r = sk_apply_lut_if<APPLY_PREBLEND>(fir[0], maskPreBlend.fR);
297 U8CPU g = sk_apply_lut_if<APPLY_PREBLEND>(fir[1], maskPreBlend.fG);
298 U8CPU b = sk_apply_lut_if<APPLY_PREBLEND>(fir[2], maskPreBlend.fB);
299 #if SK_SHOW_TEXT_BLIT_COVERAGE
300 r = SkMax32(r, 10); g = SkMax32(g, 10); b = SkMax32(b, 10);
301 #endif
302 dstP[pixel_x] = SkPack888ToRGB16(r, g, b);
303 }
304 dstP = (uint16_t*)((char*)dstP + dstRB);
305 }
306 }
307
convert_8_to_1(unsigned byte)308 static inline int convert_8_to_1(unsigned byte) {
309 SkASSERT(byte <= 0xFF);
310 return byte >> 7;
311 }
312
pack_8_to_1(const uint8_t alpha[8])313 static uint8_t pack_8_to_1(const uint8_t alpha[8]) {
314 unsigned bits = 0;
315 for (int i = 0; i < 8; ++i) {
316 bits <<= 1;
317 bits |= convert_8_to_1(alpha[i]);
318 }
319 return SkToU8(bits);
320 }
321
packA8ToA1(const SkMask & mask,const uint8_t * src,size_t srcRB)322 static void packA8ToA1(const SkMask& mask, const uint8_t* src, size_t srcRB) {
323 const int height = mask.fBounds.height();
324 const int width = mask.fBounds.width();
325 const int octs = width >> 3;
326 const int leftOverBits = width & 7;
327
328 uint8_t* dst = mask.fImage;
329 const int dstPad = mask.fRowBytes - SkAlign8(width)/8;
330 SkASSERT(dstPad >= 0);
331
332 SkASSERT(width >= 0);
333 SkASSERT(srcRB >= (size_t)width);
334 const size_t srcPad = srcRB - width;
335
336 for (int y = 0; y < height; ++y) {
337 for (int i = 0; i < octs; ++i) {
338 *dst++ = pack_8_to_1(src);
339 src += 8;
340 }
341 if (leftOverBits > 0) {
342 unsigned bits = 0;
343 int shift = 7;
344 for (int i = 0; i < leftOverBits; ++i, --shift) {
345 bits |= convert_8_to_1(*src++) << shift;
346 }
347 *dst++ = bits;
348 }
349 src += srcPad;
350 dst += dstPad;
351 }
352 }
353
generateMask(const SkMask & mask,const SkPath & path,const SkMaskGamma::PreBlend & maskPreBlend)354 static void generateMask(const SkMask& mask, const SkPath& path,
355 const SkMaskGamma::PreBlend& maskPreBlend) {
356 SkPaint paint;
357
358 int srcW = mask.fBounds.width();
359 int srcH = mask.fBounds.height();
360 int dstW = srcW;
361 int dstH = srcH;
362 int dstRB = mask.fRowBytes;
363
364 SkMatrix matrix;
365 matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft),
366 -SkIntToScalar(mask.fBounds.fTop));
367
368 paint.setAntiAlias(SkMask::kBW_Format != mask.fFormat);
369 switch (mask.fFormat) {
370 case SkMask::kBW_Format:
371 dstRB = 0; // signals we need a copy
372 break;
373 case SkMask::kA8_Format:
374 break;
375 case SkMask::kLCD16_Format:
376 // TODO: trigger off LCD orientation
377 dstW = 4*dstW - 8;
378 matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft + 1),
379 -SkIntToScalar(mask.fBounds.fTop));
380 matrix.postScale(SkIntToScalar(4), SK_Scalar1);
381 dstRB = 0; // signals we need a copy
382 break;
383 default:
384 SkDEBUGFAIL("unexpected mask format");
385 }
386
387 SkRasterClip clip;
388 clip.setRect(SkIRect::MakeWH(dstW, dstH));
389
390 const SkImageInfo info = SkImageInfo::MakeA8(dstW, dstH);
391 SkAutoPixmapStorage dst;
392
393 if (0 == dstRB) {
394 if (!dst.tryAlloc(info)) {
395 // can't allocate offscreen, so empty the mask and return
396 sk_bzero(mask.fImage, mask.computeImageSize());
397 return;
398 }
399 } else {
400 dst.reset(info, mask.fImage, dstRB);
401 }
402 sk_bzero(dst.writable_addr(), dst.getSafeSize());
403
404 SkDraw draw;
405 draw.fDst = dst;
406 draw.fRC = &clip;
407 draw.fMatrix = &matrix;
408 draw.drawPath(path, paint);
409
410 switch (mask.fFormat) {
411 case SkMask::kBW_Format:
412 packA8ToA1(mask, dst.addr8(0, 0), dst.rowBytes());
413 break;
414 case SkMask::kA8_Format:
415 if (maskPreBlend.isApplicable()) {
416 applyLUTToA8Mask(mask, maskPreBlend.fG);
417 }
418 break;
419 case SkMask::kLCD16_Format:
420 if (maskPreBlend.isApplicable()) {
421 pack4xHToLCD16<true>(dst, mask, maskPreBlend);
422 } else {
423 pack4xHToLCD16<false>(dst, mask, maskPreBlend);
424 }
425 break;
426 default:
427 break;
428 }
429 }
430
extract_alpha(const SkMask & dst,const SkPMColor * srcRow,size_t srcRB)431 static void extract_alpha(const SkMask& dst,
432 const SkPMColor* srcRow, size_t srcRB) {
433 int width = dst.fBounds.width();
434 int height = dst.fBounds.height();
435 int dstRB = dst.fRowBytes;
436 uint8_t* dstRow = dst.fImage;
437
438 for (int y = 0; y < height; ++y) {
439 for (int x = 0; x < width; ++x) {
440 dstRow[x] = SkGetPackedA32(srcRow[x]);
441 }
442 // zero any padding on each row
443 for (int x = width; x < dstRB; ++x) {
444 dstRow[x] = 0;
445 }
446 dstRow += dstRB;
447 srcRow = (const SkPMColor*)((const char*)srcRow + srcRB);
448 }
449 }
450
getImage(const SkGlyph & origGlyph)451 void SkScalerContext::getImage(const SkGlyph& origGlyph) {
452 const SkGlyph* glyph = &origGlyph;
453 SkGlyph tmpGlyph;
454
455 // in case we need to call generateImage on a mask-format that is different
456 // (i.e. larger) than what our caller allocated by looking at origGlyph.
457 SkAutoMalloc tmpGlyphImageStorage;
458
459 // If we are going to draw-from-path, then we cannot generate color, since
460 // the path only makes a mask. This case should have been caught up in
461 // generateMetrics().
462 SkASSERT(!fGenerateImageFromPath ||
463 SkMask::kARGB32_Format != origGlyph.fMaskFormat);
464
465 if (fMaskFilter) { // restore the prefilter bounds
466 tmpGlyph.initWithGlyphID(origGlyph.getPackedID());
467
468 // need the original bounds, sans our maskfilter
469 SkMaskFilter* mf = fMaskFilter.release(); // temp disable
470 this->getMetrics(&tmpGlyph);
471 fMaskFilter = sk_sp<SkMaskFilter>(mf); // restore
472
473 // we need the prefilter bounds to be <= filter bounds
474 SkASSERT(tmpGlyph.fWidth <= origGlyph.fWidth);
475 SkASSERT(tmpGlyph.fHeight <= origGlyph.fHeight);
476
477 if (tmpGlyph.fMaskFormat == origGlyph.fMaskFormat) {
478 tmpGlyph.fImage = origGlyph.fImage;
479 } else {
480 tmpGlyphImageStorage.reset(tmpGlyph.computeImageSize());
481 tmpGlyph.fImage = tmpGlyphImageStorage.get();
482 }
483 glyph = &tmpGlyph;
484 }
485
486 if (fGenerateImageFromPath) {
487 SkPath devPath, fillPath;
488 SkMatrix fillToDevMatrix;
489 SkMask mask;
490
491 this->internalGetPath(glyph->getPackedID(), &fillPath, &devPath, &fillToDevMatrix);
492 glyph->toMask(&mask);
493
494 if (fRasterizer) {
495 mask.fFormat = SkMask::kA8_Format;
496 sk_bzero(glyph->fImage, mask.computeImageSize());
497
498 if (!fRasterizer->rasterize(fillPath, fillToDevMatrix, nullptr,
499 fMaskFilter.get(), &mask,
500 SkMask::kJustRenderImage_CreateMode)) {
501 return;
502 }
503 if (fPreBlend.isApplicable()) {
504 applyLUTToA8Mask(mask, fPreBlend.fG);
505 }
506 } else {
507 SkASSERT(SkMask::kARGB32_Format != mask.fFormat);
508 generateMask(mask, devPath, fPreBlend);
509 }
510 } else {
511 generateImage(*glyph);
512 }
513
514 if (fMaskFilter) {
515 SkMask srcM, dstM;
516 SkMatrix matrix;
517
518 // the src glyph image shouldn't be 3D
519 SkASSERT(SkMask::k3D_Format != glyph->fMaskFormat);
520
521 SkAutoSMalloc<32*32> a8storage;
522 glyph->toMask(&srcM);
523 if (SkMask::kARGB32_Format == srcM.fFormat) {
524 // now we need to extract the alpha-channel from the glyph's image
525 // and copy it into a temp buffer, and then point srcM at that temp.
526 srcM.fFormat = SkMask::kA8_Format;
527 srcM.fRowBytes = SkAlign4(srcM.fBounds.width());
528 size_t size = srcM.computeImageSize();
529 a8storage.reset(size);
530 srcM.fImage = (uint8_t*)a8storage.get();
531 extract_alpha(srcM,
532 (const SkPMColor*)glyph->fImage, glyph->rowBytes());
533 }
534
535 fRec.getMatrixFrom2x2(&matrix);
536
537 if (fMaskFilter->filterMask(&dstM, srcM, matrix, nullptr)) {
538 int width = SkFastMin32(origGlyph.fWidth, dstM.fBounds.width());
539 int height = SkFastMin32(origGlyph.fHeight, dstM.fBounds.height());
540 int dstRB = origGlyph.rowBytes();
541 int srcRB = dstM.fRowBytes;
542
543 const uint8_t* src = (const uint8_t*)dstM.fImage;
544 uint8_t* dst = (uint8_t*)origGlyph.fImage;
545
546 if (SkMask::k3D_Format == dstM.fFormat) {
547 // we have to copy 3 times as much
548 height *= 3;
549 }
550
551 // clean out our glyph, since it may be larger than dstM
552 //sk_bzero(dst, height * dstRB);
553
554 while (--height >= 0) {
555 memcpy(dst, src, width);
556 src += srcRB;
557 dst += dstRB;
558 }
559 SkMask::FreeImage(dstM.fImage);
560
561 if (fPreBlendForFilter.isApplicable()) {
562 applyLUTToA8Mask(srcM, fPreBlendForFilter.fG);
563 }
564 }
565 }
566 }
567
getPath(SkPackedGlyphID glyphID,SkPath * path)568 void SkScalerContext::getPath(SkPackedGlyphID glyphID, SkPath* path) {
569 this->internalGetPath(glyphID, nullptr, path, nullptr);
570 }
571
getFontMetrics(SkPaint::FontMetrics * fm)572 void SkScalerContext::getFontMetrics(SkPaint::FontMetrics* fm) {
573 SkASSERT(fm);
574 this->generateFontMetrics(fm);
575 }
576
generateGlyphToChar(uint16_t glyph)577 SkUnichar SkScalerContext::generateGlyphToChar(uint16_t glyph) {
578 return 0;
579 }
580
581 ///////////////////////////////////////////////////////////////////////////////
582
internalGetPath(SkPackedGlyphID glyphID,SkPath * fillPath,SkPath * devPath,SkMatrix * fillToDevMatrix)583 void SkScalerContext::internalGetPath(SkPackedGlyphID glyphID, SkPath* fillPath,
584 SkPath* devPath, SkMatrix* fillToDevMatrix) {
585 SkPath path;
586 generatePath(glyphID.code(), &path);
587
588 if (fRec.fFlags & SkScalerContext::kSubpixelPositioning_Flag) {
589 SkFixed dx = glyphID.getSubXFixed();
590 SkFixed dy = glyphID.getSubYFixed();
591 if (dx | dy) {
592 path.offset(SkFixedToScalar(dx), SkFixedToScalar(dy));
593 }
594 }
595
596 if (fRec.fFrameWidth > 0 || fPathEffect != nullptr) {
597 // need the path in user-space, with only the point-size applied
598 // so that our stroking and effects will operate the same way they
599 // would if the user had extracted the path themself, and then
600 // called drawPath
601 SkPath localPath;
602 SkMatrix matrix, inverse;
603
604 fRec.getMatrixFrom2x2(&matrix);
605 if (!matrix.invert(&inverse)) {
606 // assume fillPath and devPath are already empty.
607 return;
608 }
609 path.transform(inverse, &localPath);
610 // now localPath is only affected by the paint settings, and not the canvas matrix
611
612 SkStrokeRec rec(SkStrokeRec::kFill_InitStyle);
613
614 if (fRec.fFrameWidth > 0) {
615 rec.setStrokeStyle(fRec.fFrameWidth,
616 SkToBool(fRec.fFlags & kFrameAndFill_Flag));
617 // glyphs are always closed contours, so cap type is ignored,
618 // so we just pass something.
619 rec.setStrokeParams((SkPaint::Cap)fRec.fStrokeCap,
620 (SkPaint::Join)fRec.fStrokeJoin,
621 fRec.fMiterLimit);
622 }
623
624 if (fPathEffect) {
625 SkPath effectPath;
626 if (fPathEffect->filterPath(&effectPath, localPath, &rec, nullptr)) {
627 localPath.swap(effectPath);
628 }
629 }
630
631 if (rec.needToApply()) {
632 SkPath strokePath;
633 if (rec.applyToPath(&strokePath, localPath)) {
634 localPath.swap(strokePath);
635 }
636 }
637
638 // now return stuff to the caller
639 if (fillToDevMatrix) {
640 *fillToDevMatrix = matrix;
641 }
642 if (devPath) {
643 localPath.transform(matrix, devPath);
644 }
645 if (fillPath) {
646 fillPath->swap(localPath);
647 }
648 } else { // nothing tricky to do
649 if (fillToDevMatrix) {
650 fillToDevMatrix->reset();
651 }
652 if (devPath) {
653 if (fillPath == nullptr) {
654 devPath->swap(path);
655 } else {
656 *devPath = path;
657 }
658 }
659
660 if (fillPath) {
661 fillPath->swap(path);
662 }
663 }
664
665 if (devPath) {
666 devPath->updateBoundsCache();
667 }
668 if (fillPath) {
669 fillPath->updateBoundsCache();
670 }
671 }
672
673
getMatrixFrom2x2(SkMatrix * dst) const674 void SkScalerContextRec::getMatrixFrom2x2(SkMatrix* dst) const {
675 dst->setAll(fPost2x2[0][0], fPost2x2[0][1], 0,
676 fPost2x2[1][0], fPost2x2[1][1], 0,
677 0, 0, 1);
678 }
679
getLocalMatrix(SkMatrix * m) const680 void SkScalerContextRec::getLocalMatrix(SkMatrix* m) const {
681 SkPaint::SetTextMatrix(m, fTextSize, fPreScaleX, fPreSkewX);
682 }
683
getSingleMatrix(SkMatrix * m) const684 void SkScalerContextRec::getSingleMatrix(SkMatrix* m) const {
685 this->getLocalMatrix(m);
686
687 // now concat the device matrix
688 SkMatrix deviceMatrix;
689 this->getMatrixFrom2x2(&deviceMatrix);
690 m->postConcat(deviceMatrix);
691 }
692
computeMatrices(PreMatrixScale preMatrixScale,SkVector * s,SkMatrix * sA,SkMatrix * GsA,SkMatrix * G_inv,SkMatrix * A_out)693 bool SkScalerContextRec::computeMatrices(PreMatrixScale preMatrixScale, SkVector* s, SkMatrix* sA,
694 SkMatrix* GsA, SkMatrix* G_inv, SkMatrix* A_out)
695 {
696 // A is the 'total' matrix.
697 SkMatrix A;
698 this->getSingleMatrix(&A);
699
700 // The caller may find the 'total' matrix useful when dealing directly with EM sizes.
701 if (A_out) {
702 *A_out = A;
703 }
704
705 // If the 'total' matrix is singular, set the 'scale' to something finite and zero the matrices.
706 // All underlying ports have issues with zero text size, so use the matricies to zero.
707
708 // Map the vectors [0,1], [1,0], [1,1] and [1,-1] (the EM) through the 'total' matrix.
709 // If the length of one of these vectors is less than 1/256 then an EM filling square will
710 // never affect any pixels.
711 SkVector diag[4] = { { A.getScaleX() , A.getSkewY() },
712 { A.getSkewX(), A.getScaleY() },
713 { A.getScaleX() + A.getSkewX(), A.getScaleY() + A.getSkewY() },
714 { A.getScaleX() - A.getSkewX(), A.getScaleY() - A.getSkewY() }, };
715 if (diag[0].lengthSqd() <= SK_ScalarNearlyZero * SK_ScalarNearlyZero ||
716 diag[1].lengthSqd() <= SK_ScalarNearlyZero * SK_ScalarNearlyZero ||
717 diag[2].lengthSqd() <= SK_ScalarNearlyZero * SK_ScalarNearlyZero ||
718 diag[3].lengthSqd() <= SK_ScalarNearlyZero * SK_ScalarNearlyZero)
719 {
720 s->fX = SK_Scalar1;
721 s->fY = SK_Scalar1;
722 sA->setScale(0, 0);
723 if (GsA) {
724 GsA->setScale(0, 0);
725 }
726 if (G_inv) {
727 G_inv->reset();
728 }
729 return false;
730 }
731
732 // GA is the matrix A with rotation removed.
733 SkMatrix GA;
734 bool skewedOrFlipped = A.getSkewX() || A.getSkewY() || A.getScaleX() < 0 || A.getScaleY() < 0;
735 if (skewedOrFlipped) {
736 // h is where A maps the horizontal baseline.
737 SkPoint h = SkPoint::Make(SK_Scalar1, 0);
738 A.mapPoints(&h, 1);
739
740 // G is the Givens Matrix for A (rotational matrix where GA[0][1] == 0).
741 SkMatrix G;
742 SkComputeGivensRotation(h, &G);
743
744 GA = G;
745 GA.preConcat(A);
746
747 // The 'remainingRotation' is G inverse, which is fairly simple since G is 2x2 rotational.
748 if (G_inv) {
749 G_inv->setAll(
750 G.get(SkMatrix::kMScaleX), -G.get(SkMatrix::kMSkewX), G.get(SkMatrix::kMTransX),
751 -G.get(SkMatrix::kMSkewY), G.get(SkMatrix::kMScaleY), G.get(SkMatrix::kMTransY),
752 G.get(SkMatrix::kMPersp0), G.get(SkMatrix::kMPersp1), G.get(SkMatrix::kMPersp2));
753 }
754 } else {
755 GA = A;
756 if (G_inv) {
757 G_inv->reset();
758 }
759 }
760
761 // At this point, given GA, create s.
762 switch (preMatrixScale) {
763 case kFull_PreMatrixScale:
764 s->fX = SkScalarAbs(GA.get(SkMatrix::kMScaleX));
765 s->fY = SkScalarAbs(GA.get(SkMatrix::kMScaleY));
766 break;
767 case kVertical_PreMatrixScale: {
768 SkScalar yScale = SkScalarAbs(GA.get(SkMatrix::kMScaleY));
769 s->fX = yScale;
770 s->fY = yScale;
771 break;
772 }
773 case kVerticalInteger_PreMatrixScale: {
774 SkScalar realYScale = SkScalarAbs(GA.get(SkMatrix::kMScaleY));
775 SkScalar intYScale = SkScalarRoundToScalar(realYScale);
776 if (intYScale == 0) {
777 intYScale = SK_Scalar1;
778 }
779 s->fX = intYScale;
780 s->fY = intYScale;
781 break;
782 }
783 }
784
785 // The 'remaining' matrix sA is the total matrix A without the scale.
786 if (!skewedOrFlipped && (
787 (kFull_PreMatrixScale == preMatrixScale) ||
788 (kVertical_PreMatrixScale == preMatrixScale && A.getScaleX() == A.getScaleY())))
789 {
790 // If GA == A and kFull_PreMatrixScale, sA is identity.
791 // If GA == A and kVertical_PreMatrixScale and A.scaleX == A.scaleY, sA is identity.
792 sA->reset();
793 } else if (!skewedOrFlipped && kVertical_PreMatrixScale == preMatrixScale) {
794 // If GA == A and kVertical_PreMatrixScale, sA.scaleY is SK_Scalar1.
795 sA->reset();
796 sA->setScaleX(A.getScaleX() / s->fY);
797 } else {
798 // TODO: like kVertical_PreMatrixScale, kVerticalInteger_PreMatrixScale with int scales.
799 *sA = A;
800 sA->preScale(SkScalarInvert(s->fX), SkScalarInvert(s->fY));
801 }
802
803 // The 'remainingWithoutRotation' matrix GsA is the non-rotational part of A without the scale.
804 if (GsA) {
805 *GsA = GA;
806 // G is rotational so reorders with the scale.
807 GsA->preScale(SkScalarInvert(s->fX), SkScalarInvert(s->fY));
808 }
809
810 return true;
811 }
812
computeAxisAlignmentForHText()813 SkAxisAlignment SkScalerContext::computeAxisAlignmentForHText() {
814 // Why fPost2x2 can be used here.
815 // getSingleMatrix multiplies in getLocalMatrix, which consists of
816 // * fTextSize (a scale, which has no effect)
817 // * fPreScaleX (a scale in x, which has no effect)
818 // * fPreSkewX (has no effect, but would on vertical text alignment).
819 // In other words, making the text bigger, stretching it along the
820 // horizontal axis, or fake italicizing it does not move the baseline.
821
822 if (0 == fRec.fPost2x2[1][0]) {
823 // The x axis is mapped onto the x axis.
824 return kX_SkAxisAlignment;
825 }
826 if (0 == fRec.fPost2x2[0][0]) {
827 // The x axis is mapped onto the y axis.
828 return kY_SkAxisAlignment;
829 }
830 return kNone_SkAxisAlignment;
831 }
832
833 ///////////////////////////////////////////////////////////////////////////////
834
835 class SkScalerContext_Empty : public SkScalerContext {
836 public:
SkScalerContext_Empty(sk_sp<SkTypeface> typeface,const SkScalerContextEffects & effects,const SkDescriptor * desc)837 SkScalerContext_Empty(sk_sp<SkTypeface> typeface, const SkScalerContextEffects& effects,
838 const SkDescriptor* desc)
839 : SkScalerContext(std::move(typeface), effects, desc) {}
840
841 protected:
generateGlyphCount()842 unsigned generateGlyphCount() override {
843 return 0;
844 }
generateCharToGlyph(SkUnichar uni)845 uint16_t generateCharToGlyph(SkUnichar uni) override {
846 return 0;
847 }
generateAdvance(SkGlyph * glyph)848 void generateAdvance(SkGlyph* glyph) override {
849 glyph->zeroMetrics();
850 }
generateMetrics(SkGlyph * glyph)851 void generateMetrics(SkGlyph* glyph) override {
852 glyph->zeroMetrics();
853 }
generateImage(const SkGlyph & glyph)854 void generateImage(const SkGlyph& glyph) override {}
generatePath(SkGlyphID glyph,SkPath * path)855 void generatePath(SkGlyphID glyph, SkPath* path) override {}
generateFontMetrics(SkPaint::FontMetrics * metrics)856 void generateFontMetrics(SkPaint::FontMetrics* metrics) override {
857 if (metrics) {
858 sk_bzero(metrics, sizeof(*metrics));
859 }
860 }
861 };
862
863 extern SkScalerContext* SkCreateColorScalerContext(const SkDescriptor* desc);
864
createScalerContext(const SkScalerContextEffects & effects,const SkDescriptor * desc,bool allowFailure) const865 std::unique_ptr<SkScalerContext> SkTypeface::createScalerContext(
866 const SkScalerContextEffects& effects, const SkDescriptor* desc, bool allowFailure) const
867 {
868 std::unique_ptr<SkScalerContext> c(this->onCreateScalerContext(effects, desc));
869 if (!c && !allowFailure) {
870 c = skstd::make_unique<SkScalerContext_Empty>(sk_ref_sp(const_cast<SkTypeface*>(this)),
871 effects, desc);
872 }
873 return c;
874 }
875