1 /*
2  * Wrapper functions for OpenSSL libcrypto
3  * Copyright (c) 2004-2015, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  */
8 
9 #include "includes.h"
10 #include <openssl/opensslv.h>
11 #include <openssl/err.h>
12 #include <openssl/des.h>
13 #include <openssl/aes.h>
14 #include <openssl/bn.h>
15 #include <openssl/evp.h>
16 #include <openssl/dh.h>
17 #include <openssl/hmac.h>
18 #include <openssl/rand.h>
19 #ifdef CONFIG_OPENSSL_CMAC
20 #include <openssl/cmac.h>
21 #endif /* CONFIG_OPENSSL_CMAC */
22 #ifdef CONFIG_ECC
23 #include <openssl/ec.h>
24 #endif /* CONFIG_ECC */
25 
26 #include "common.h"
27 #include "wpabuf.h"
28 #include "dh_group5.h"
29 #include "sha1.h"
30 #include "sha256.h"
31 #include "sha384.h"
32 #include "md5.h"
33 #include "aes_wrap.h"
34 #include "crypto.h"
35 
36 #if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER)
37 /* Compatibility wrappers for older versions. */
38 
HMAC_CTX_new(void)39 static HMAC_CTX * HMAC_CTX_new(void)
40 {
41 	HMAC_CTX *ctx;
42 
43 	ctx = os_zalloc(sizeof(*ctx));
44 	if (ctx)
45 		HMAC_CTX_init(ctx);
46 	return ctx;
47 }
48 
49 
HMAC_CTX_free(HMAC_CTX * ctx)50 static void HMAC_CTX_free(HMAC_CTX *ctx)
51 {
52 	if (!ctx)
53 		return;
54 	HMAC_CTX_cleanup(ctx);
55 	bin_clear_free(ctx, sizeof(*ctx));
56 }
57 
58 
EVP_MD_CTX_new(void)59 static EVP_MD_CTX * EVP_MD_CTX_new(void)
60 {
61 	EVP_MD_CTX *ctx;
62 
63 	ctx = os_zalloc(sizeof(*ctx));
64 	if (ctx)
65 		EVP_MD_CTX_init(ctx);
66 	return ctx;
67 }
68 
69 
EVP_MD_CTX_free(EVP_MD_CTX * ctx)70 static void EVP_MD_CTX_free(EVP_MD_CTX *ctx)
71 {
72 	if (!ctx)
73 		return;
74 	EVP_MD_CTX_cleanup(ctx);
75 	bin_clear_free(ctx, sizeof(*ctx));
76 }
77 
78 #endif /* OpenSSL version < 1.1.0 */
79 
get_group5_prime(void)80 static BIGNUM * get_group5_prime(void)
81 {
82 #if OPENSSL_VERSION_NUMBER >= 0x10100000L && !defined(LIBRESSL_VERSION_NUMBER)
83 	return BN_get_rfc3526_prime_1536(NULL);
84 #elif !defined(OPENSSL_IS_BORINGSSL)
85 	return get_rfc3526_prime_1536(NULL);
86 #else
87 	static const unsigned char RFC3526_PRIME_1536[] = {
88 		0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
89 		0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
90 		0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
91 		0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
92 		0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
93 		0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
94 		0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
95 		0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
96 		0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
97 		0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
98 		0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
99 		0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
100 		0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
101 		0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
102 		0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
103 		0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
104 	};
105         return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL);
106 #endif
107 }
108 
109 #ifdef OPENSSL_NO_SHA256
110 #define NO_SHA256_WRAPPER
111 #endif
112 #ifdef OPENSSL_NO_SHA512
113 #define NO_SHA384_WRAPPER
114 #endif
115 
openssl_digest_vector(const EVP_MD * type,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)116 static int openssl_digest_vector(const EVP_MD *type, size_t num_elem,
117 				 const u8 *addr[], const size_t *len, u8 *mac)
118 {
119 	EVP_MD_CTX *ctx;
120 	size_t i;
121 	unsigned int mac_len;
122 
123 	if (TEST_FAIL())
124 		return -1;
125 
126 	ctx = EVP_MD_CTX_new();
127 	if (!ctx)
128 		return -1;
129 	if (!EVP_DigestInit_ex(ctx, type, NULL)) {
130 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s",
131 			   ERR_error_string(ERR_get_error(), NULL));
132 		EVP_MD_CTX_free(ctx);
133 		return -1;
134 	}
135 	for (i = 0; i < num_elem; i++) {
136 		if (!EVP_DigestUpdate(ctx, addr[i], len[i])) {
137 			wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate "
138 				   "failed: %s",
139 				   ERR_error_string(ERR_get_error(), NULL));
140 			EVP_MD_CTX_free(ctx);
141 			return -1;
142 		}
143 	}
144 	if (!EVP_DigestFinal(ctx, mac, &mac_len)) {
145 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s",
146 			   ERR_error_string(ERR_get_error(), NULL));
147 		EVP_MD_CTX_free(ctx);
148 		return -1;
149 	}
150 	EVP_MD_CTX_free(ctx);
151 
152 	return 0;
153 }
154 
155 
156 #ifndef CONFIG_FIPS
md4_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)157 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
158 {
159 	return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac);
160 }
161 #endif /* CONFIG_FIPS */
162 
163 
des_encrypt(const u8 * clear,const u8 * key,u8 * cypher)164 void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
165 {
166 	u8 pkey[8], next, tmp;
167 	int i;
168 	DES_key_schedule ks;
169 
170 	/* Add parity bits to the key */
171 	next = 0;
172 	for (i = 0; i < 7; i++) {
173 		tmp = key[i];
174 		pkey[i] = (tmp >> i) | next | 1;
175 		next = tmp << (7 - i);
176 	}
177 	pkey[i] = next | 1;
178 
179 	DES_set_key((DES_cblock *) &pkey, &ks);
180 	DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
181 			DES_ENCRYPT);
182 }
183 
184 
185 #ifndef CONFIG_NO_RC4
rc4_skip(const u8 * key,size_t keylen,size_t skip,u8 * data,size_t data_len)186 int rc4_skip(const u8 *key, size_t keylen, size_t skip,
187 	     u8 *data, size_t data_len)
188 {
189 #ifdef OPENSSL_NO_RC4
190 	return -1;
191 #else /* OPENSSL_NO_RC4 */
192 	EVP_CIPHER_CTX *ctx;
193 	int outl;
194 	int res = -1;
195 	unsigned char skip_buf[16];
196 
197 	ctx = EVP_CIPHER_CTX_new();
198 	if (!ctx ||
199 	    !EVP_CIPHER_CTX_set_padding(ctx, 0) ||
200 	    !EVP_CipherInit_ex(ctx, EVP_rc4(), NULL, NULL, NULL, 1) ||
201 	    !EVP_CIPHER_CTX_set_key_length(ctx, keylen) ||
202 	    !EVP_CipherInit_ex(ctx, NULL, NULL, key, NULL, 1))
203 		goto out;
204 
205 	while (skip >= sizeof(skip_buf)) {
206 		size_t len = skip;
207 		if (len > sizeof(skip_buf))
208 			len = sizeof(skip_buf);
209 		if (!EVP_CipherUpdate(ctx, skip_buf, &outl, skip_buf, len))
210 			goto out;
211 		skip -= len;
212 	}
213 
214 	if (EVP_CipherUpdate(ctx, data, &outl, data, data_len))
215 		res = 0;
216 
217 out:
218 	if (ctx)
219 		EVP_CIPHER_CTX_free(ctx);
220 	return res;
221 #endif /* OPENSSL_NO_RC4 */
222 }
223 #endif /* CONFIG_NO_RC4 */
224 
225 
226 #ifndef CONFIG_FIPS
md5_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)227 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
228 {
229 	return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac);
230 }
231 #endif /* CONFIG_FIPS */
232 
233 
sha1_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)234 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
235 {
236 	return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac);
237 }
238 
239 
240 #ifndef NO_SHA256_WRAPPER
sha256_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)241 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
242 		  u8 *mac)
243 {
244 	return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac);
245 }
246 #endif /* NO_SHA256_WRAPPER */
247 
248 #ifndef NO_SHA384_WRAPPER
sha384_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)249 int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len,
250 		  u8 *mac)
251 {
252 	return openssl_digest_vector(EVP_sha384(), num_elem, addr, len, mac);
253 }
254 #endif /* NO_SHA384_WRAPPER */
255 
256 
aes_get_evp_cipher(size_t keylen)257 static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen)
258 {
259 	switch (keylen) {
260 	case 16:
261 		return EVP_aes_128_ecb();
262 #ifndef OPENSSL_IS_BORINGSSL
263 	case 24:
264 		return EVP_aes_192_ecb();
265 #endif /* OPENSSL_IS_BORINGSSL */
266 	case 32:
267 		return EVP_aes_256_ecb();
268 	}
269 
270 	return NULL;
271 }
272 
273 
aes_encrypt_init(const u8 * key,size_t len)274 void * aes_encrypt_init(const u8 *key, size_t len)
275 {
276 	EVP_CIPHER_CTX *ctx;
277 	const EVP_CIPHER *type;
278 
279 	if (TEST_FAIL())
280 		return NULL;
281 
282 	type = aes_get_evp_cipher(len);
283 	if (type == NULL)
284 		return NULL;
285 
286 	ctx = EVP_CIPHER_CTX_new();
287 	if (ctx == NULL)
288 		return NULL;
289 	if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
290 		os_free(ctx);
291 		return NULL;
292 	}
293 	EVP_CIPHER_CTX_set_padding(ctx, 0);
294 	return ctx;
295 }
296 
297 
aes_encrypt(void * ctx,const u8 * plain,u8 * crypt)298 void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
299 {
300 	EVP_CIPHER_CTX *c = ctx;
301 	int clen = 16;
302 	if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) {
303 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s",
304 			   ERR_error_string(ERR_get_error(), NULL));
305 	}
306 }
307 
308 
aes_encrypt_deinit(void * ctx)309 void aes_encrypt_deinit(void *ctx)
310 {
311 	EVP_CIPHER_CTX *c = ctx;
312 	u8 buf[16];
313 	int len = sizeof(buf);
314 	if (EVP_EncryptFinal_ex(c, buf, &len) != 1) {
315 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: "
316 			   "%s", ERR_error_string(ERR_get_error(), NULL));
317 	}
318 	if (len != 0) {
319 		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
320 			   "in AES encrypt", len);
321 	}
322 	EVP_CIPHER_CTX_free(c);
323 }
324 
325 
aes_decrypt_init(const u8 * key,size_t len)326 void * aes_decrypt_init(const u8 *key, size_t len)
327 {
328 	EVP_CIPHER_CTX *ctx;
329 	const EVP_CIPHER *type;
330 
331 	if (TEST_FAIL())
332 		return NULL;
333 
334 	type = aes_get_evp_cipher(len);
335 	if (type == NULL)
336 		return NULL;
337 
338 	ctx = EVP_CIPHER_CTX_new();
339 	if (ctx == NULL)
340 		return NULL;
341 	if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
342 		EVP_CIPHER_CTX_free(ctx);
343 		return NULL;
344 	}
345 	EVP_CIPHER_CTX_set_padding(ctx, 0);
346 	return ctx;
347 }
348 
349 
aes_decrypt(void * ctx,const u8 * crypt,u8 * plain)350 void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
351 {
352 	EVP_CIPHER_CTX *c = ctx;
353 	int plen = 16;
354 	if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) {
355 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s",
356 			   ERR_error_string(ERR_get_error(), NULL));
357 	}
358 }
359 
360 
aes_decrypt_deinit(void * ctx)361 void aes_decrypt_deinit(void *ctx)
362 {
363 	EVP_CIPHER_CTX *c = ctx;
364 	u8 buf[16];
365 	int len = sizeof(buf);
366 	if (EVP_DecryptFinal_ex(c, buf, &len) != 1) {
367 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: "
368 			   "%s", ERR_error_string(ERR_get_error(), NULL));
369 	}
370 	if (len != 0) {
371 		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
372 			   "in AES decrypt", len);
373 	}
374 	EVP_CIPHER_CTX_free(c);
375 }
376 
377 
378 #ifndef CONFIG_FIPS
379 #ifndef CONFIG_OPENSSL_INTERNAL_AES_WRAP
380 
aes_wrap(const u8 * kek,size_t kek_len,int n,const u8 * plain,u8 * cipher)381 int aes_wrap(const u8 *kek, size_t kek_len, int n, const u8 *plain, u8 *cipher)
382 {
383 	AES_KEY actx;
384 	int res;
385 
386 	if (TEST_FAIL())
387 		return -1;
388 	if (AES_set_encrypt_key(kek, kek_len << 3, &actx))
389 		return -1;
390 	res = AES_wrap_key(&actx, NULL, cipher, plain, n * 8);
391 	OPENSSL_cleanse(&actx, sizeof(actx));
392 	return res <= 0 ? -1 : 0;
393 }
394 
395 
aes_unwrap(const u8 * kek,size_t kek_len,int n,const u8 * cipher,u8 * plain)396 int aes_unwrap(const u8 *kek, size_t kek_len, int n, const u8 *cipher,
397 	       u8 *plain)
398 {
399 	AES_KEY actx;
400 	int res;
401 
402 	if (TEST_FAIL())
403 		return -1;
404 	if (AES_set_decrypt_key(kek, kek_len << 3, &actx))
405 		return -1;
406 	res = AES_unwrap_key(&actx, NULL, plain, cipher, (n + 1) * 8);
407 	OPENSSL_cleanse(&actx, sizeof(actx));
408 	return res <= 0 ? -1 : 0;
409 }
410 
411 #endif /* CONFIG_OPENSSL_INTERNAL_AES_WRAP */
412 #endif /* CONFIG_FIPS */
413 
414 
aes_128_cbc_encrypt(const u8 * key,const u8 * iv,u8 * data,size_t data_len)415 int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
416 {
417 	EVP_CIPHER_CTX *ctx;
418 	int clen, len;
419 	u8 buf[16];
420 	int res = -1;
421 
422 	if (TEST_FAIL())
423 		return -1;
424 
425 	ctx = EVP_CIPHER_CTX_new();
426 	if (!ctx)
427 		return -1;
428 	clen = data_len;
429 	len = sizeof(buf);
430 	if (EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv) == 1 &&
431 	    EVP_CIPHER_CTX_set_padding(ctx, 0) == 1 &&
432 	    EVP_EncryptUpdate(ctx, data, &clen, data, data_len) == 1 &&
433 	    clen == (int) data_len &&
434 	    EVP_EncryptFinal_ex(ctx, buf, &len) == 1 && len == 0)
435 		res = 0;
436 	EVP_CIPHER_CTX_free(ctx);
437 
438 	return res;
439 }
440 
441 
aes_128_cbc_decrypt(const u8 * key,const u8 * iv,u8 * data,size_t data_len)442 int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
443 {
444 	EVP_CIPHER_CTX *ctx;
445 	int plen, len;
446 	u8 buf[16];
447 	int res = -1;
448 
449 	if (TEST_FAIL())
450 		return -1;
451 
452 	ctx = EVP_CIPHER_CTX_new();
453 	if (!ctx)
454 		return -1;
455 	plen = data_len;
456 	len = sizeof(buf);
457 	if (EVP_DecryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv) == 1 &&
458 	    EVP_CIPHER_CTX_set_padding(ctx, 0) == 1 &&
459 	    EVP_DecryptUpdate(ctx, data, &plen, data, data_len) == 1 &&
460 	    plen == (int) data_len &&
461 	    EVP_DecryptFinal_ex(ctx, buf, &len) == 1 && len == 0)
462 		res = 0;
463 	EVP_CIPHER_CTX_free(ctx);
464 
465 	return res;
466 
467 }
468 
469 
crypto_mod_exp(const u8 * base,size_t base_len,const u8 * power,size_t power_len,const u8 * modulus,size_t modulus_len,u8 * result,size_t * result_len)470 int crypto_mod_exp(const u8 *base, size_t base_len,
471 		   const u8 *power, size_t power_len,
472 		   const u8 *modulus, size_t modulus_len,
473 		   u8 *result, size_t *result_len)
474 {
475 	BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
476 	int ret = -1;
477 	BN_CTX *ctx;
478 
479 	ctx = BN_CTX_new();
480 	if (ctx == NULL)
481 		return -1;
482 
483 	bn_base = BN_bin2bn(base, base_len, NULL);
484 	bn_exp = BN_bin2bn(power, power_len, NULL);
485 	bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
486 	bn_result = BN_new();
487 
488 	if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
489 	    bn_result == NULL)
490 		goto error;
491 
492 	if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1)
493 		goto error;
494 
495 	*result_len = BN_bn2bin(bn_result, result);
496 	ret = 0;
497 
498 error:
499 	BN_clear_free(bn_base);
500 	BN_clear_free(bn_exp);
501 	BN_clear_free(bn_modulus);
502 	BN_clear_free(bn_result);
503 	BN_CTX_free(ctx);
504 	return ret;
505 }
506 
507 
508 struct crypto_cipher {
509 	EVP_CIPHER_CTX *enc;
510 	EVP_CIPHER_CTX *dec;
511 };
512 
513 
crypto_cipher_init(enum crypto_cipher_alg alg,const u8 * iv,const u8 * key,size_t key_len)514 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
515 					  const u8 *iv, const u8 *key,
516 					  size_t key_len)
517 {
518 	struct crypto_cipher *ctx;
519 	const EVP_CIPHER *cipher;
520 
521 	ctx = os_zalloc(sizeof(*ctx));
522 	if (ctx == NULL)
523 		return NULL;
524 
525 	switch (alg) {
526 #ifndef CONFIG_NO_RC4
527 #ifndef OPENSSL_NO_RC4
528 	case CRYPTO_CIPHER_ALG_RC4:
529 		cipher = EVP_rc4();
530 		break;
531 #endif /* OPENSSL_NO_RC4 */
532 #endif /* CONFIG_NO_RC4 */
533 #ifndef OPENSSL_NO_AES
534 	case CRYPTO_CIPHER_ALG_AES:
535 		switch (key_len) {
536 		case 16:
537 			cipher = EVP_aes_128_cbc();
538 			break;
539 #ifndef OPENSSL_IS_BORINGSSL
540 		case 24:
541 			cipher = EVP_aes_192_cbc();
542 			break;
543 #endif /* OPENSSL_IS_BORINGSSL */
544 		case 32:
545 			cipher = EVP_aes_256_cbc();
546 			break;
547 		default:
548 			os_free(ctx);
549 			return NULL;
550 		}
551 		break;
552 #endif /* OPENSSL_NO_AES */
553 #ifndef OPENSSL_NO_DES
554 	case CRYPTO_CIPHER_ALG_3DES:
555 		cipher = EVP_des_ede3_cbc();
556 		break;
557 	case CRYPTO_CIPHER_ALG_DES:
558 		cipher = EVP_des_cbc();
559 		break;
560 #endif /* OPENSSL_NO_DES */
561 #ifndef OPENSSL_NO_RC2
562 	case CRYPTO_CIPHER_ALG_RC2:
563 		cipher = EVP_rc2_ecb();
564 		break;
565 #endif /* OPENSSL_NO_RC2 */
566 	default:
567 		os_free(ctx);
568 		return NULL;
569 	}
570 
571 	if (!(ctx->enc = EVP_CIPHER_CTX_new()) ||
572 	    !EVP_CIPHER_CTX_set_padding(ctx->enc, 0) ||
573 	    !EVP_EncryptInit_ex(ctx->enc, cipher, NULL, NULL, NULL) ||
574 	    !EVP_CIPHER_CTX_set_key_length(ctx->enc, key_len) ||
575 	    !EVP_EncryptInit_ex(ctx->enc, NULL, NULL, key, iv)) {
576 		if (ctx->enc)
577 			EVP_CIPHER_CTX_free(ctx->enc);
578 		os_free(ctx);
579 		return NULL;
580 	}
581 
582 	if (!(ctx->dec = EVP_CIPHER_CTX_new()) ||
583 	    !EVP_CIPHER_CTX_set_padding(ctx->dec, 0) ||
584 	    !EVP_DecryptInit_ex(ctx->dec, cipher, NULL, NULL, NULL) ||
585 	    !EVP_CIPHER_CTX_set_key_length(ctx->dec, key_len) ||
586 	    !EVP_DecryptInit_ex(ctx->dec, NULL, NULL, key, iv)) {
587 		EVP_CIPHER_CTX_free(ctx->enc);
588 		if (ctx->dec)
589 			EVP_CIPHER_CTX_free(ctx->dec);
590 		os_free(ctx);
591 		return NULL;
592 	}
593 
594 	return ctx;
595 }
596 
597 
crypto_cipher_encrypt(struct crypto_cipher * ctx,const u8 * plain,u8 * crypt,size_t len)598 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
599 			  u8 *crypt, size_t len)
600 {
601 	int outl;
602 	if (!EVP_EncryptUpdate(ctx->enc, crypt, &outl, plain, len))
603 		return -1;
604 	return 0;
605 }
606 
607 
crypto_cipher_decrypt(struct crypto_cipher * ctx,const u8 * crypt,u8 * plain,size_t len)608 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
609 			  u8 *plain, size_t len)
610 {
611 	int outl;
612 	outl = len;
613 	if (!EVP_DecryptUpdate(ctx->dec, plain, &outl, crypt, len))
614 		return -1;
615 	return 0;
616 }
617 
618 
crypto_cipher_deinit(struct crypto_cipher * ctx)619 void crypto_cipher_deinit(struct crypto_cipher *ctx)
620 {
621 	EVP_CIPHER_CTX_free(ctx->enc);
622 	EVP_CIPHER_CTX_free(ctx->dec);
623 	os_free(ctx);
624 }
625 
626 
dh5_init(struct wpabuf ** priv,struct wpabuf ** publ)627 void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
628 {
629 #if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER)
630 	DH *dh;
631 	struct wpabuf *pubkey = NULL, *privkey = NULL;
632 	size_t publen, privlen;
633 
634 	*priv = NULL;
635 	wpabuf_free(*publ);
636 	*publ = NULL;
637 
638 	dh = DH_new();
639 	if (dh == NULL)
640 		return NULL;
641 
642 	dh->g = BN_new();
643 	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
644 		goto err;
645 
646 	dh->p = get_group5_prime();
647 	if (dh->p == NULL)
648 		goto err;
649 
650 	if (DH_generate_key(dh) != 1)
651 		goto err;
652 
653 	publen = BN_num_bytes(dh->pub_key);
654 	pubkey = wpabuf_alloc(publen);
655 	if (pubkey == NULL)
656 		goto err;
657 	privlen = BN_num_bytes(dh->priv_key);
658 	privkey = wpabuf_alloc(privlen);
659 	if (privkey == NULL)
660 		goto err;
661 
662 	BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen));
663 	BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen));
664 
665 	*priv = privkey;
666 	*publ = pubkey;
667 	return dh;
668 
669 err:
670 	wpabuf_clear_free(pubkey);
671 	wpabuf_clear_free(privkey);
672 	DH_free(dh);
673 	return NULL;
674 #else
675 	DH *dh;
676 	struct wpabuf *pubkey = NULL, *privkey = NULL;
677 	size_t publen, privlen;
678 	BIGNUM *p = NULL, *g;
679 	const BIGNUM *priv_key = NULL, *pub_key = NULL;
680 
681 	*priv = NULL;
682 	wpabuf_free(*publ);
683 	*publ = NULL;
684 
685 	dh = DH_new();
686 	if (dh == NULL)
687 		return NULL;
688 
689 	g = BN_new();
690 	p = get_group5_prime();
691 	if (!g || BN_set_word(g, 2) != 1 || !p ||
692 	    DH_set0_pqg(dh, p, NULL, g) != 1)
693 		goto err;
694 	p = NULL;
695 	g = NULL;
696 
697 	if (DH_generate_key(dh) != 1)
698 		goto err;
699 
700 	DH_get0_key(dh, &pub_key, &priv_key);
701 	publen = BN_num_bytes(pub_key);
702 	pubkey = wpabuf_alloc(publen);
703 	if (!pubkey)
704 		goto err;
705 	privlen = BN_num_bytes(priv_key);
706 	privkey = wpabuf_alloc(privlen);
707 	if (!privkey)
708 		goto err;
709 
710 	BN_bn2bin(pub_key, wpabuf_put(pubkey, publen));
711 	BN_bn2bin(priv_key, wpabuf_put(privkey, privlen));
712 
713 	*priv = privkey;
714 	*publ = pubkey;
715 	return dh;
716 
717 err:
718 	BN_free(p);
719 	BN_free(g);
720 	wpabuf_clear_free(pubkey);
721 	wpabuf_clear_free(privkey);
722 	DH_free(dh);
723 	return NULL;
724 #endif
725 }
726 
727 
dh5_init_fixed(const struct wpabuf * priv,const struct wpabuf * publ)728 void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
729 {
730 #if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER)
731 	DH *dh;
732 
733 	dh = DH_new();
734 	if (dh == NULL)
735 		return NULL;
736 
737 	dh->g = BN_new();
738 	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
739 		goto err;
740 
741 	dh->p = get_group5_prime();
742 	if (dh->p == NULL)
743 		goto err;
744 
745 	dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
746 	if (dh->priv_key == NULL)
747 		goto err;
748 
749 	dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
750 	if (dh->pub_key == NULL)
751 		goto err;
752 
753 	if (DH_generate_key(dh) != 1)
754 		goto err;
755 
756 	return dh;
757 
758 err:
759 	DH_free(dh);
760 	return NULL;
761 #else
762 	DH *dh;
763 	BIGNUM *p = NULL, *g, *priv_key = NULL, *pub_key = NULL;
764 
765 	dh = DH_new();
766 	if (dh == NULL)
767 		return NULL;
768 
769 	g = BN_new();
770 	p = get_group5_prime();
771 	if (!g || BN_set_word(g, 2) != 1 || !p ||
772 	    DH_set0_pqg(dh, p, NULL, g) != 1)
773 		goto err;
774 	p = NULL;
775 	g = NULL;
776 
777 	priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
778 	pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
779 	if (!priv_key || !pub_key || DH_set0_key(dh, pub_key, priv_key) != 1)
780 		goto err;
781 	pub_key = NULL;
782 	priv_key = NULL;
783 
784 	if (DH_generate_key(dh) != 1)
785 		goto err;
786 
787 	return dh;
788 
789 err:
790 	BN_free(p);
791 	BN_free(g);
792 	BN_free(pub_key);
793 	BN_clear_free(priv_key);
794 	DH_free(dh);
795 	return NULL;
796 #endif
797 }
798 
799 
dh5_derive_shared(void * ctx,const struct wpabuf * peer_public,const struct wpabuf * own_private)800 struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
801 				  const struct wpabuf *own_private)
802 {
803 	BIGNUM *pub_key;
804 	struct wpabuf *res = NULL;
805 	size_t rlen;
806 	DH *dh = ctx;
807 	int keylen;
808 
809 	if (ctx == NULL)
810 		return NULL;
811 
812 	pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public),
813 			    NULL);
814 	if (pub_key == NULL)
815 		return NULL;
816 
817 	rlen = DH_size(dh);
818 	res = wpabuf_alloc(rlen);
819 	if (res == NULL)
820 		goto err;
821 
822 	keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh);
823 	if (keylen < 0)
824 		goto err;
825 	wpabuf_put(res, keylen);
826 	BN_clear_free(pub_key);
827 
828 	return res;
829 
830 err:
831 	BN_clear_free(pub_key);
832 	wpabuf_clear_free(res);
833 	return NULL;
834 }
835 
836 
dh5_free(void * ctx)837 void dh5_free(void *ctx)
838 {
839 	DH *dh;
840 	if (ctx == NULL)
841 		return;
842 	dh = ctx;
843 	DH_free(dh);
844 }
845 
846 
847 struct crypto_hash {
848 	HMAC_CTX *ctx;
849 };
850 
851 
crypto_hash_init(enum crypto_hash_alg alg,const u8 * key,size_t key_len)852 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
853 				      size_t key_len)
854 {
855 	struct crypto_hash *ctx;
856 	const EVP_MD *md;
857 
858 	switch (alg) {
859 #ifndef OPENSSL_NO_MD5
860 	case CRYPTO_HASH_ALG_HMAC_MD5:
861 		md = EVP_md5();
862 		break;
863 #endif /* OPENSSL_NO_MD5 */
864 #ifndef OPENSSL_NO_SHA
865 	case CRYPTO_HASH_ALG_HMAC_SHA1:
866 		md = EVP_sha1();
867 		break;
868 #endif /* OPENSSL_NO_SHA */
869 #ifndef OPENSSL_NO_SHA256
870 #ifdef CONFIG_SHA256
871 	case CRYPTO_HASH_ALG_HMAC_SHA256:
872 		md = EVP_sha256();
873 		break;
874 #endif /* CONFIG_SHA256 */
875 #endif /* OPENSSL_NO_SHA256 */
876 	default:
877 		return NULL;
878 	}
879 
880 	ctx = os_zalloc(sizeof(*ctx));
881 	if (ctx == NULL)
882 		return NULL;
883 	ctx->ctx = HMAC_CTX_new();
884 	if (!ctx->ctx) {
885 		os_free(ctx);
886 		return NULL;
887 	}
888 
889 	if (HMAC_Init_ex(ctx->ctx, key, key_len, md, NULL) != 1) {
890 		HMAC_CTX_free(ctx->ctx);
891 		bin_clear_free(ctx, sizeof(*ctx));
892 		return NULL;
893 	}
894 
895 	return ctx;
896 }
897 
898 
crypto_hash_update(struct crypto_hash * ctx,const u8 * data,size_t len)899 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
900 {
901 	if (ctx == NULL)
902 		return;
903 	HMAC_Update(ctx->ctx, data, len);
904 }
905 
906 
crypto_hash_finish(struct crypto_hash * ctx,u8 * mac,size_t * len)907 int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
908 {
909 	unsigned int mdlen;
910 	int res;
911 
912 	if (ctx == NULL)
913 		return -2;
914 
915 	if (mac == NULL || len == NULL) {
916 		HMAC_CTX_free(ctx->ctx);
917 		bin_clear_free(ctx, sizeof(*ctx));
918 		return 0;
919 	}
920 
921 	mdlen = *len;
922 	res = HMAC_Final(ctx->ctx, mac, &mdlen);
923 	HMAC_CTX_free(ctx->ctx);
924 	bin_clear_free(ctx, sizeof(*ctx));
925 
926 	if (res == 1) {
927 		*len = mdlen;
928 		return 0;
929 	}
930 
931 	return -1;
932 }
933 
934 
openssl_hmac_vector(const EVP_MD * type,const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac,unsigned int mdlen)935 static int openssl_hmac_vector(const EVP_MD *type, const u8 *key,
936 			       size_t key_len, size_t num_elem,
937 			       const u8 *addr[], const size_t *len, u8 *mac,
938 			       unsigned int mdlen)
939 {
940 	HMAC_CTX *ctx;
941 	size_t i;
942 	int res;
943 
944 	if (TEST_FAIL())
945 		return -1;
946 
947 	ctx = HMAC_CTX_new();
948 	if (!ctx)
949 		return -1;
950 	res = HMAC_Init_ex(ctx, key, key_len, type, NULL);
951 	if (res != 1)
952 		goto done;
953 
954 	for (i = 0; i < num_elem; i++)
955 		HMAC_Update(ctx, addr[i], len[i]);
956 
957 	res = HMAC_Final(ctx, mac, &mdlen);
958 done:
959 	HMAC_CTX_free(ctx);
960 
961 	return res == 1 ? 0 : -1;
962 }
963 
964 
965 #ifndef CONFIG_FIPS
966 
hmac_md5_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)967 int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem,
968 		    const u8 *addr[], const size_t *len, u8 *mac)
969 {
970 	return openssl_hmac_vector(EVP_md5(), key ,key_len, num_elem, addr, len,
971 				   mac, 16);
972 }
973 
974 
hmac_md5(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)975 int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
976 	     u8 *mac)
977 {
978 	return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac);
979 }
980 
981 #endif /* CONFIG_FIPS */
982 
983 
pbkdf2_sha1(const char * passphrase,const u8 * ssid,size_t ssid_len,int iterations,u8 * buf,size_t buflen)984 int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
985 		int iterations, u8 *buf, size_t buflen)
986 {
987 	if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid,
988 				   ssid_len, iterations, buflen, buf) != 1)
989 		return -1;
990 	return 0;
991 }
992 
993 
hmac_sha1_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)994 int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
995 		     const u8 *addr[], const size_t *len, u8 *mac)
996 {
997 	return openssl_hmac_vector(EVP_sha1(), key, key_len, num_elem, addr,
998 				   len, mac, 20);
999 }
1000 
1001 
hmac_sha1(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)1002 int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
1003 	       u8 *mac)
1004 {
1005 	return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
1006 }
1007 
1008 
1009 #ifdef CONFIG_SHA256
1010 
hmac_sha256_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)1011 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
1012 		       const u8 *addr[], const size_t *len, u8 *mac)
1013 {
1014 	return openssl_hmac_vector(EVP_sha256(), key, key_len, num_elem, addr,
1015 				   len, mac, 32);
1016 }
1017 
1018 
hmac_sha256(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)1019 int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
1020 		size_t data_len, u8 *mac)
1021 {
1022 	return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
1023 }
1024 
1025 #endif /* CONFIG_SHA256 */
1026 
1027 
1028 #ifdef CONFIG_SHA384
1029 
hmac_sha384_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)1030 int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem,
1031 		       const u8 *addr[], const size_t *len, u8 *mac)
1032 {
1033 	return openssl_hmac_vector(EVP_sha384(), key, key_len, num_elem, addr,
1034 				   len, mac, 48);
1035 }
1036 
1037 
hmac_sha384(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)1038 int hmac_sha384(const u8 *key, size_t key_len, const u8 *data,
1039 		size_t data_len, u8 *mac)
1040 {
1041 	return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac);
1042 }
1043 
1044 #endif /* CONFIG_SHA384 */
1045 
1046 
crypto_get_random(void * buf,size_t len)1047 int crypto_get_random(void *buf, size_t len)
1048 {
1049 	if (RAND_bytes(buf, len) != 1)
1050 		return -1;
1051 	return 0;
1052 }
1053 
1054 
1055 #ifdef CONFIG_OPENSSL_CMAC
omac1_aes_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)1056 int omac1_aes_vector(const u8 *key, size_t key_len, size_t num_elem,
1057 		     const u8 *addr[], const size_t *len, u8 *mac)
1058 {
1059 	CMAC_CTX *ctx;
1060 	int ret = -1;
1061 	size_t outlen, i;
1062 
1063 	if (TEST_FAIL())
1064 		return -1;
1065 
1066 	ctx = CMAC_CTX_new();
1067 	if (ctx == NULL)
1068 		return -1;
1069 
1070 	if (key_len == 32) {
1071 		if (!CMAC_Init(ctx, key, 32, EVP_aes_256_cbc(), NULL))
1072 			goto fail;
1073 	} else if (key_len == 16) {
1074 		if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL))
1075 			goto fail;
1076 	} else {
1077 		goto fail;
1078 	}
1079 	for (i = 0; i < num_elem; i++) {
1080 		if (!CMAC_Update(ctx, addr[i], len[i]))
1081 			goto fail;
1082 	}
1083 	if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16)
1084 		goto fail;
1085 
1086 	ret = 0;
1087 fail:
1088 	CMAC_CTX_free(ctx);
1089 	return ret;
1090 }
1091 
1092 
omac1_aes_128_vector(const u8 * key,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)1093 int omac1_aes_128_vector(const u8 *key, size_t num_elem,
1094 			 const u8 *addr[], const size_t *len, u8 *mac)
1095 {
1096 	return omac1_aes_vector(key, 16, num_elem, addr, len, mac);
1097 }
1098 
1099 
omac1_aes_128(const u8 * key,const u8 * data,size_t data_len,u8 * mac)1100 int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
1101 {
1102 	return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
1103 }
1104 
1105 
omac1_aes_256(const u8 * key,const u8 * data,size_t data_len,u8 * mac)1106 int omac1_aes_256(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
1107 {
1108 	return omac1_aes_vector(key, 32, 1, &data, &data_len, mac);
1109 }
1110 #endif /* CONFIG_OPENSSL_CMAC */
1111 
1112 
crypto_bignum_init(void)1113 struct crypto_bignum * crypto_bignum_init(void)
1114 {
1115 	if (TEST_FAIL())
1116 		return NULL;
1117 	return (struct crypto_bignum *) BN_new();
1118 }
1119 
1120 
crypto_bignum_init_set(const u8 * buf,size_t len)1121 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
1122 {
1123 	BIGNUM *bn;
1124 
1125 	if (TEST_FAIL())
1126 		return NULL;
1127 
1128 	bn = BN_bin2bn(buf, len, NULL);
1129 	return (struct crypto_bignum *) bn;
1130 }
1131 
1132 
crypto_bignum_deinit(struct crypto_bignum * n,int clear)1133 void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
1134 {
1135 	if (clear)
1136 		BN_clear_free((BIGNUM *) n);
1137 	else
1138 		BN_free((BIGNUM *) n);
1139 }
1140 
1141 
crypto_bignum_to_bin(const struct crypto_bignum * a,u8 * buf,size_t buflen,size_t padlen)1142 int crypto_bignum_to_bin(const struct crypto_bignum *a,
1143 			 u8 *buf, size_t buflen, size_t padlen)
1144 {
1145 	int num_bytes, offset;
1146 
1147 	if (TEST_FAIL())
1148 		return -1;
1149 
1150 	if (padlen > buflen)
1151 		return -1;
1152 
1153 	num_bytes = BN_num_bytes((const BIGNUM *) a);
1154 	if ((size_t) num_bytes > buflen)
1155 		return -1;
1156 	if (padlen > (size_t) num_bytes)
1157 		offset = padlen - num_bytes;
1158 	else
1159 		offset = 0;
1160 
1161 	os_memset(buf, 0, offset);
1162 	BN_bn2bin((const BIGNUM *) a, buf + offset);
1163 
1164 	return num_bytes + offset;
1165 }
1166 
1167 
crypto_bignum_add(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1168 int crypto_bignum_add(const struct crypto_bignum *a,
1169 		      const struct crypto_bignum *b,
1170 		      struct crypto_bignum *c)
1171 {
1172 	return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
1173 		0 : -1;
1174 }
1175 
1176 
crypto_bignum_mod(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1177 int crypto_bignum_mod(const struct crypto_bignum *a,
1178 		      const struct crypto_bignum *b,
1179 		      struct crypto_bignum *c)
1180 {
1181 	int res;
1182 	BN_CTX *bnctx;
1183 
1184 	bnctx = BN_CTX_new();
1185 	if (bnctx == NULL)
1186 		return -1;
1187 	res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b,
1188 		     bnctx);
1189 	BN_CTX_free(bnctx);
1190 
1191 	return res ? 0 : -1;
1192 }
1193 
1194 
crypto_bignum_exptmod(const struct crypto_bignum * a,const struct crypto_bignum * b,const struct crypto_bignum * c,struct crypto_bignum * d)1195 int crypto_bignum_exptmod(const struct crypto_bignum *a,
1196 			  const struct crypto_bignum *b,
1197 			  const struct crypto_bignum *c,
1198 			  struct crypto_bignum *d)
1199 {
1200 	int res;
1201 	BN_CTX *bnctx;
1202 
1203 	if (TEST_FAIL())
1204 		return -1;
1205 
1206 	bnctx = BN_CTX_new();
1207 	if (bnctx == NULL)
1208 		return -1;
1209 	res = BN_mod_exp((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
1210 			 (const BIGNUM *) c, bnctx);
1211 	BN_CTX_free(bnctx);
1212 
1213 	return res ? 0 : -1;
1214 }
1215 
1216 
crypto_bignum_inverse(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1217 int crypto_bignum_inverse(const struct crypto_bignum *a,
1218 			  const struct crypto_bignum *b,
1219 			  struct crypto_bignum *c)
1220 {
1221 	BIGNUM *res;
1222 	BN_CTX *bnctx;
1223 
1224 	if (TEST_FAIL())
1225 		return -1;
1226 	bnctx = BN_CTX_new();
1227 	if (bnctx == NULL)
1228 		return -1;
1229 	res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a,
1230 			     (const BIGNUM *) b, bnctx);
1231 	BN_CTX_free(bnctx);
1232 
1233 	return res ? 0 : -1;
1234 }
1235 
1236 
crypto_bignum_sub(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1237 int crypto_bignum_sub(const struct crypto_bignum *a,
1238 		      const struct crypto_bignum *b,
1239 		      struct crypto_bignum *c)
1240 {
1241 	if (TEST_FAIL())
1242 		return -1;
1243 	return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
1244 		0 : -1;
1245 }
1246 
1247 
crypto_bignum_div(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1248 int crypto_bignum_div(const struct crypto_bignum *a,
1249 		      const struct crypto_bignum *b,
1250 		      struct crypto_bignum *c)
1251 {
1252 	int res;
1253 
1254 	BN_CTX *bnctx;
1255 
1256 	if (TEST_FAIL())
1257 		return -1;
1258 
1259 	bnctx = BN_CTX_new();
1260 	if (bnctx == NULL)
1261 		return -1;
1262 	res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a,
1263 		     (const BIGNUM *) b, bnctx);
1264 	BN_CTX_free(bnctx);
1265 
1266 	return res ? 0 : -1;
1267 }
1268 
1269 
crypto_bignum_mulmod(const struct crypto_bignum * a,const struct crypto_bignum * b,const struct crypto_bignum * c,struct crypto_bignum * d)1270 int crypto_bignum_mulmod(const struct crypto_bignum *a,
1271 			 const struct crypto_bignum *b,
1272 			 const struct crypto_bignum *c,
1273 			 struct crypto_bignum *d)
1274 {
1275 	int res;
1276 
1277 	BN_CTX *bnctx;
1278 
1279 	if (TEST_FAIL())
1280 		return -1;
1281 
1282 	bnctx = BN_CTX_new();
1283 	if (bnctx == NULL)
1284 		return -1;
1285 	res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
1286 			 (const BIGNUM *) c, bnctx);
1287 	BN_CTX_free(bnctx);
1288 
1289 	return res ? 0 : -1;
1290 }
1291 
1292 
crypto_bignum_cmp(const struct crypto_bignum * a,const struct crypto_bignum * b)1293 int crypto_bignum_cmp(const struct crypto_bignum *a,
1294 		      const struct crypto_bignum *b)
1295 {
1296 	return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b);
1297 }
1298 
1299 
crypto_bignum_bits(const struct crypto_bignum * a)1300 int crypto_bignum_bits(const struct crypto_bignum *a)
1301 {
1302 	return BN_num_bits((const BIGNUM *) a);
1303 }
1304 
1305 
crypto_bignum_is_zero(const struct crypto_bignum * a)1306 int crypto_bignum_is_zero(const struct crypto_bignum *a)
1307 {
1308 	return BN_is_zero((const BIGNUM *) a);
1309 }
1310 
1311 
crypto_bignum_is_one(const struct crypto_bignum * a)1312 int crypto_bignum_is_one(const struct crypto_bignum *a)
1313 {
1314 	return BN_is_one((const BIGNUM *) a);
1315 }
1316 
1317 
crypto_bignum_legendre(const struct crypto_bignum * a,const struct crypto_bignum * p)1318 int crypto_bignum_legendre(const struct crypto_bignum *a,
1319 			   const struct crypto_bignum *p)
1320 {
1321 	BN_CTX *bnctx;
1322 	BIGNUM *exp = NULL, *tmp = NULL;
1323 	int res = -2;
1324 
1325 	if (TEST_FAIL())
1326 		return -2;
1327 
1328 	bnctx = BN_CTX_new();
1329 	if (bnctx == NULL)
1330 		return -2;
1331 
1332 	exp = BN_new();
1333 	tmp = BN_new();
1334 	if (!exp || !tmp ||
1335 	    /* exp = (p-1) / 2 */
1336 	    !BN_sub(exp, (const BIGNUM *) p, BN_value_one()) ||
1337 	    !BN_rshift1(exp, exp) ||
1338 	    !BN_mod_exp(tmp, (const BIGNUM *) a, exp, (const BIGNUM *) p,
1339 			bnctx))
1340 		goto fail;
1341 
1342 	if (BN_is_word(tmp, 1))
1343 		res = 1;
1344 	else if (BN_is_zero(tmp))
1345 		res = 0;
1346 	else
1347 		res = -1;
1348 
1349 fail:
1350 	BN_clear_free(tmp);
1351 	BN_clear_free(exp);
1352 	BN_CTX_free(bnctx);
1353 	return res;
1354 }
1355 
1356 
1357 #ifdef CONFIG_ECC
1358 
1359 struct crypto_ec {
1360 	EC_GROUP *group;
1361 	BN_CTX *bnctx;
1362 	BIGNUM *prime;
1363 	BIGNUM *order;
1364 	BIGNUM *a;
1365 	BIGNUM *b;
1366 };
1367 
crypto_ec_init(int group)1368 struct crypto_ec * crypto_ec_init(int group)
1369 {
1370 	struct crypto_ec *e;
1371 	int nid;
1372 
1373 	/* Map from IANA registry for IKE D-H groups to OpenSSL NID */
1374 	switch (group) {
1375 	case 19:
1376 		nid = NID_X9_62_prime256v1;
1377 		break;
1378 	case 20:
1379 		nid = NID_secp384r1;
1380 		break;
1381 	case 21:
1382 		nid = NID_secp521r1;
1383 		break;
1384 	case 25:
1385 		nid = NID_X9_62_prime192v1;
1386 		break;
1387 	case 26:
1388 		nid = NID_secp224r1;
1389 		break;
1390 #ifdef NID_brainpoolP224r1
1391 	case 27:
1392 		nid = NID_brainpoolP224r1;
1393 		break;
1394 #endif /* NID_brainpoolP224r1 */
1395 #ifdef NID_brainpoolP256r1
1396 	case 28:
1397 		nid = NID_brainpoolP256r1;
1398 		break;
1399 #endif /* NID_brainpoolP256r1 */
1400 #ifdef NID_brainpoolP384r1
1401 	case 29:
1402 		nid = NID_brainpoolP384r1;
1403 		break;
1404 #endif /* NID_brainpoolP384r1 */
1405 #ifdef NID_brainpoolP512r1
1406 	case 30:
1407 		nid = NID_brainpoolP512r1;
1408 		break;
1409 #endif /* NID_brainpoolP512r1 */
1410 	default:
1411 		return NULL;
1412 	}
1413 
1414 	e = os_zalloc(sizeof(*e));
1415 	if (e == NULL)
1416 		return NULL;
1417 
1418 	e->bnctx = BN_CTX_new();
1419 	e->group = EC_GROUP_new_by_curve_name(nid);
1420 	e->prime = BN_new();
1421 	e->order = BN_new();
1422 	e->a = BN_new();
1423 	e->b = BN_new();
1424 	if (e->group == NULL || e->bnctx == NULL || e->prime == NULL ||
1425 	    e->order == NULL || e->a == NULL || e->b == NULL ||
1426 	    !EC_GROUP_get_curve_GFp(e->group, e->prime, e->a, e->b, e->bnctx) ||
1427 	    !EC_GROUP_get_order(e->group, e->order, e->bnctx)) {
1428 		crypto_ec_deinit(e);
1429 		e = NULL;
1430 	}
1431 
1432 	return e;
1433 }
1434 
1435 
crypto_ec_deinit(struct crypto_ec * e)1436 void crypto_ec_deinit(struct crypto_ec *e)
1437 {
1438 	if (e == NULL)
1439 		return;
1440 	BN_clear_free(e->b);
1441 	BN_clear_free(e->a);
1442 	BN_clear_free(e->order);
1443 	BN_clear_free(e->prime);
1444 	EC_GROUP_free(e->group);
1445 	BN_CTX_free(e->bnctx);
1446 	os_free(e);
1447 }
1448 
1449 
crypto_ec_point_init(struct crypto_ec * e)1450 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
1451 {
1452 	if (TEST_FAIL())
1453 		return NULL;
1454 	if (e == NULL)
1455 		return NULL;
1456 	return (struct crypto_ec_point *) EC_POINT_new(e->group);
1457 }
1458 
1459 
crypto_ec_prime_len(struct crypto_ec * e)1460 size_t crypto_ec_prime_len(struct crypto_ec *e)
1461 {
1462 	return BN_num_bytes(e->prime);
1463 }
1464 
1465 
crypto_ec_prime_len_bits(struct crypto_ec * e)1466 size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
1467 {
1468 	return BN_num_bits(e->prime);
1469 }
1470 
1471 
crypto_ec_get_prime(struct crypto_ec * e)1472 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
1473 {
1474 	return (const struct crypto_bignum *) e->prime;
1475 }
1476 
1477 
crypto_ec_get_order(struct crypto_ec * e)1478 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
1479 {
1480 	return (const struct crypto_bignum *) e->order;
1481 }
1482 
1483 
crypto_ec_point_deinit(struct crypto_ec_point * p,int clear)1484 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
1485 {
1486 	if (clear)
1487 		EC_POINT_clear_free((EC_POINT *) p);
1488 	else
1489 		EC_POINT_free((EC_POINT *) p);
1490 }
1491 
1492 
crypto_ec_point_to_bin(struct crypto_ec * e,const struct crypto_ec_point * point,u8 * x,u8 * y)1493 int crypto_ec_point_to_bin(struct crypto_ec *e,
1494 			   const struct crypto_ec_point *point, u8 *x, u8 *y)
1495 {
1496 	BIGNUM *x_bn, *y_bn;
1497 	int ret = -1;
1498 	int len = BN_num_bytes(e->prime);
1499 
1500 	if (TEST_FAIL())
1501 		return -1;
1502 
1503 	x_bn = BN_new();
1504 	y_bn = BN_new();
1505 
1506 	if (x_bn && y_bn &&
1507 	    EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point,
1508 						x_bn, y_bn, e->bnctx)) {
1509 		if (x) {
1510 			crypto_bignum_to_bin((struct crypto_bignum *) x_bn,
1511 					     x, len, len);
1512 		}
1513 		if (y) {
1514 			crypto_bignum_to_bin((struct crypto_bignum *) y_bn,
1515 					     y, len, len);
1516 		}
1517 		ret = 0;
1518 	}
1519 
1520 	BN_clear_free(x_bn);
1521 	BN_clear_free(y_bn);
1522 	return ret;
1523 }
1524 
1525 
crypto_ec_point_from_bin(struct crypto_ec * e,const u8 * val)1526 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
1527 						  const u8 *val)
1528 {
1529 	BIGNUM *x, *y;
1530 	EC_POINT *elem;
1531 	int len = BN_num_bytes(e->prime);
1532 
1533 	if (TEST_FAIL())
1534 		return NULL;
1535 
1536 	x = BN_bin2bn(val, len, NULL);
1537 	y = BN_bin2bn(val + len, len, NULL);
1538 	elem = EC_POINT_new(e->group);
1539 	if (x == NULL || y == NULL || elem == NULL) {
1540 		BN_clear_free(x);
1541 		BN_clear_free(y);
1542 		EC_POINT_clear_free(elem);
1543 		return NULL;
1544 	}
1545 
1546 	if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y,
1547 						 e->bnctx)) {
1548 		EC_POINT_clear_free(elem);
1549 		elem = NULL;
1550 	}
1551 
1552 	BN_clear_free(x);
1553 	BN_clear_free(y);
1554 
1555 	return (struct crypto_ec_point *) elem;
1556 }
1557 
1558 
crypto_ec_point_add(struct crypto_ec * e,const struct crypto_ec_point * a,const struct crypto_ec_point * b,struct crypto_ec_point * c)1559 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
1560 			const struct crypto_ec_point *b,
1561 			struct crypto_ec_point *c)
1562 {
1563 	if (TEST_FAIL())
1564 		return -1;
1565 	return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a,
1566 			    (const EC_POINT *) b, e->bnctx) ? 0 : -1;
1567 }
1568 
1569 
crypto_ec_point_mul(struct crypto_ec * e,const struct crypto_ec_point * p,const struct crypto_bignum * b,struct crypto_ec_point * res)1570 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
1571 			const struct crypto_bignum *b,
1572 			struct crypto_ec_point *res)
1573 {
1574 	if (TEST_FAIL())
1575 		return -1;
1576 	return EC_POINT_mul(e->group, (EC_POINT *) res, NULL,
1577 			    (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx)
1578 		? 0 : -1;
1579 }
1580 
1581 
crypto_ec_point_invert(struct crypto_ec * e,struct crypto_ec_point * p)1582 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
1583 {
1584 	if (TEST_FAIL())
1585 		return -1;
1586 	return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1;
1587 }
1588 
1589 
crypto_ec_point_solve_y_coord(struct crypto_ec * e,struct crypto_ec_point * p,const struct crypto_bignum * x,int y_bit)1590 int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
1591 				  struct crypto_ec_point *p,
1592 				  const struct crypto_bignum *x, int y_bit)
1593 {
1594 	if (TEST_FAIL())
1595 		return -1;
1596 	if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p,
1597 						     (const BIGNUM *) x, y_bit,
1598 						     e->bnctx) ||
1599 	    !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx))
1600 		return -1;
1601 	return 0;
1602 }
1603 
1604 
1605 struct crypto_bignum *
crypto_ec_point_compute_y_sqr(struct crypto_ec * e,const struct crypto_bignum * x)1606 crypto_ec_point_compute_y_sqr(struct crypto_ec *e,
1607 			      const struct crypto_bignum *x)
1608 {
1609 	BIGNUM *tmp, *tmp2, *y_sqr = NULL;
1610 
1611 	if (TEST_FAIL())
1612 		return NULL;
1613 
1614 	tmp = BN_new();
1615 	tmp2 = BN_new();
1616 
1617 	/* y^2 = x^3 + ax + b */
1618 	if (tmp && tmp2 &&
1619 	    BN_mod_sqr(tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
1620 	    BN_mod_mul(tmp, tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
1621 	    BN_mod_mul(tmp2, e->a, (const BIGNUM *) x, e->prime, e->bnctx) &&
1622 	    BN_mod_add_quick(tmp2, tmp2, tmp, e->prime) &&
1623 	    BN_mod_add_quick(tmp2, tmp2, e->b, e->prime)) {
1624 		y_sqr = tmp2;
1625 		tmp2 = NULL;
1626 	}
1627 
1628 	BN_clear_free(tmp);
1629 	BN_clear_free(tmp2);
1630 
1631 	return (struct crypto_bignum *) y_sqr;
1632 }
1633 
1634 
crypto_ec_point_is_at_infinity(struct crypto_ec * e,const struct crypto_ec_point * p)1635 int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
1636 				   const struct crypto_ec_point *p)
1637 {
1638 	return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p);
1639 }
1640 
1641 
crypto_ec_point_is_on_curve(struct crypto_ec * e,const struct crypto_ec_point * p)1642 int crypto_ec_point_is_on_curve(struct crypto_ec *e,
1643 				const struct crypto_ec_point *p)
1644 {
1645 	return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p,
1646 				    e->bnctx) == 1;
1647 }
1648 
1649 
crypto_ec_point_cmp(const struct crypto_ec * e,const struct crypto_ec_point * a,const struct crypto_ec_point * b)1650 int crypto_ec_point_cmp(const struct crypto_ec *e,
1651 			const struct crypto_ec_point *a,
1652 			const struct crypto_ec_point *b)
1653 {
1654 	return EC_POINT_cmp(e->group, (const EC_POINT *) a,
1655 			    (const EC_POINT *) b, e->bnctx);
1656 }
1657 
1658 #endif /* CONFIG_ECC */
1659