1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // Intel License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000, Intel Corporation, all rights reserved.
14 // Third party copyrights are property of their respective owners.
15 //
16 // Redistribution and use in source and binary forms, with or without modification,
17 // are permitted provided that the following conditions are met:
18 //
19 // * Redistribution's of source code must retain the above copyright notice,
20 // this list of conditions and the following disclaimer.
21 //
22 // * Redistribution's in binary form must reproduce the above copyright notice,
23 // this list of conditions and the following disclaimer in the documentation
24 // and/or other materials provided with the distribution.
25 //
26 // * The name of Intel Corporation may not be used to endorse or promote products
27 // derived from this software without specific prior written permission.
28 //
29 // This software is provided by the copyright holders and contributors "as is" and
30 // any express or implied warranties, including, but not limited to, the implied
31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
32 // In no event shall the Intel Corporation or contributors be liable for any direct,
33 // indirect, incidental, special, exemplary, or consequential damages
34 // (including, but not limited to, procurement of substitute goods or services;
35 // loss of use, data, or profits; or business interruption) however caused
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
38 // the use of this software, even if advised of the possibility of such damage.
39 //
40 //M*/
41
42 /****************************************************************************************\
43
44 Calculation of a texture descriptors from GLCM (Grey Level Co-occurrence Matrix'es)
45 The code was submitted by Daniel Eaton [danieljameseaton@yahoo.com]
46
47 \****************************************************************************************/
48
49 #include "_cvaux.h"
50
51 #include <math.h>
52 #include <assert.h>
53
54 #define CV_MAX_NUM_GREY_LEVELS_8U 256
55
56 struct CvGLCM
57 {
58 int matrixSideLength;
59 int numMatrices;
60 double*** matrices;
61
62 int numLookupTableElements;
63 int forwardLookupTable[CV_MAX_NUM_GREY_LEVELS_8U];
64 int reverseLookupTable[CV_MAX_NUM_GREY_LEVELS_8U];
65
66 double** descriptors;
67 int numDescriptors;
68 int descriptorOptimizationType;
69 int optimizationType;
70 };
71
72
73 static void icvCreateGLCM_LookupTable_8u_C1R( const uchar* srcImageData, int srcImageStep,
74 CvSize srcImageSize, CvGLCM* destGLCM,
75 int* steps, int numSteps, int* memorySteps );
76
77 static void
78 icvCreateGLCMDescriptors_AllowDoubleNest( CvGLCM* destGLCM, int matrixIndex );
79
80
81 CV_IMPL CvGLCM*
cvCreateGLCM(const IplImage * srcImage,int stepMagnitude,const int * srcStepDirections,int numStepDirections,int optimizationType)82 cvCreateGLCM( const IplImage* srcImage,
83 int stepMagnitude,
84 const int* srcStepDirections,/* should be static array..
85 or if not the user should handle de-allocation */
86 int numStepDirections,
87 int optimizationType )
88 {
89 static const int defaultStepDirections[] = { 0,1, -1,1, -1,0, -1,-1 };
90
91 int* memorySteps = 0;
92 CvGLCM* newGLCM = 0;
93 int* stepDirections = 0;
94
95 CV_FUNCNAME( "cvCreateGLCM" );
96
97 __BEGIN__;
98
99 uchar* srcImageData = 0;
100 CvSize srcImageSize;
101 int srcImageStep;
102 int stepLoop;
103 const int maxNumGreyLevels8u = CV_MAX_NUM_GREY_LEVELS_8U;
104
105 if( !srcImage )
106 CV_ERROR( CV_StsNullPtr, "" );
107
108 if( srcImage->nChannels != 1 )
109 CV_ERROR( CV_BadNumChannels, "Number of channels must be 1");
110
111 if( srcImage->depth != IPL_DEPTH_8U )
112 CV_ERROR( CV_BadDepth, "Depth must be equal IPL_DEPTH_8U");
113
114 // no Directions provided, use the default ones - 0 deg, 45, 90, 135
115 if( !srcStepDirections )
116 {
117 srcStepDirections = defaultStepDirections;
118 }
119
120 CV_CALL( stepDirections = (int*)cvAlloc( numStepDirections*2*sizeof(stepDirections[0])));
121 memcpy( stepDirections, srcStepDirections, numStepDirections*2*sizeof(stepDirections[0]));
122
123 cvGetImageRawData( srcImage, &srcImageData, &srcImageStep, &srcImageSize );
124
125 // roll together Directions and magnitudes together with knowledge of image (step)
126 CV_CALL( memorySteps = (int*)cvAlloc( numStepDirections*sizeof(memorySteps[0])));
127
128 for( stepLoop = 0; stepLoop < numStepDirections; stepLoop++ )
129 {
130 stepDirections[stepLoop*2 + 0] *= stepMagnitude;
131 stepDirections[stepLoop*2 + 1] *= stepMagnitude;
132
133 memorySteps[stepLoop] = stepDirections[stepLoop*2 + 0]*srcImageStep +
134 stepDirections[stepLoop*2 + 1];
135 }
136
137 CV_CALL( newGLCM = (CvGLCM*)cvAlloc(sizeof(newGLCM)));
138 memset( newGLCM, 0, sizeof(newGLCM) );
139
140 newGLCM->matrices = 0;
141 newGLCM->numMatrices = numStepDirections;
142 newGLCM->optimizationType = optimizationType;
143
144 if( optimizationType <= CV_GLCM_OPTIMIZATION_LUT )
145 {
146 int lookupTableLoop, imageColLoop, imageRowLoop, lineOffset = 0;
147
148 // if optimization type is set to lut, then make one for the image
149 if( optimizationType == CV_GLCM_OPTIMIZATION_LUT )
150 {
151 for( imageRowLoop = 0; imageRowLoop < srcImageSize.height;
152 imageRowLoop++, lineOffset += srcImageStep )
153 {
154 for( imageColLoop = 0; imageColLoop < srcImageSize.width; imageColLoop++ )
155 {
156 newGLCM->forwardLookupTable[srcImageData[lineOffset+imageColLoop]]=1;
157 }
158 }
159
160 newGLCM->numLookupTableElements = 0;
161
162 for( lookupTableLoop = 0; lookupTableLoop < maxNumGreyLevels8u; lookupTableLoop++ )
163 {
164 if( newGLCM->forwardLookupTable[ lookupTableLoop ] != 0 )
165 {
166 newGLCM->forwardLookupTable[ lookupTableLoop ] =
167 newGLCM->numLookupTableElements;
168 newGLCM->reverseLookupTable[ newGLCM->numLookupTableElements ] =
169 lookupTableLoop;
170
171 newGLCM->numLookupTableElements++;
172 }
173 }
174 }
175 // otherwise make a "LUT" which contains all the gray-levels (for code-reuse)
176 else if( optimizationType == CV_GLCM_OPTIMIZATION_NONE )
177 {
178 for( lookupTableLoop = 0; lookupTableLoop <maxNumGreyLevels8u; lookupTableLoop++ )
179 {
180 newGLCM->forwardLookupTable[ lookupTableLoop ] = lookupTableLoop;
181 newGLCM->reverseLookupTable[ lookupTableLoop ] = lookupTableLoop;
182 }
183 newGLCM->numLookupTableElements = maxNumGreyLevels8u;
184 }
185
186 newGLCM->matrixSideLength = newGLCM->numLookupTableElements;
187 icvCreateGLCM_LookupTable_8u_C1R( srcImageData, srcImageStep, srcImageSize,
188 newGLCM, stepDirections,
189 numStepDirections, memorySteps );
190 }
191 else if( optimizationType == CV_GLCM_OPTIMIZATION_HISTOGRAM )
192 {
193 CV_ERROR( CV_StsBadFlag, "Histogram-based method is not implemented" );
194
195 /* newGLCM->numMatrices *= 2;
196 newGLCM->matrixSideLength = maxNumGreyLevels8u*2;
197
198 icvCreateGLCM_Histogram_8uC1R( srcImageStep, srcImageSize, srcImageData,
199 newGLCM, numStepDirections,
200 stepDirections, memorySteps );
201 */
202 }
203
204 __END__;
205
206 cvFree( &memorySteps );
207 cvFree( &stepDirections );
208
209 if( cvGetErrStatus() < 0 )
210 {
211 cvFree( &newGLCM );
212 }
213
214 return newGLCM;
215 }
216
217
218 CV_IMPL void
cvReleaseGLCM(CvGLCM ** GLCM,int flag)219 cvReleaseGLCM( CvGLCM** GLCM, int flag )
220 {
221 CV_FUNCNAME( "cvReleaseGLCM" );
222
223 __BEGIN__;
224
225 int matrixLoop;
226
227 if( !GLCM )
228 CV_ERROR( CV_StsNullPtr, "" );
229
230 if( *GLCM )
231 EXIT; // repeated deallocation: just skip it.
232
233 if( (flag == CV_GLCM_GLCM || flag == CV_GLCM_ALL) && (*GLCM)->matrices )
234 {
235 for( matrixLoop = 0; matrixLoop < (*GLCM)->numMatrices; matrixLoop++ )
236 {
237 if( (*GLCM)->matrices[ matrixLoop ] )
238 {
239 cvFree( (*GLCM)->matrices[matrixLoop] );
240 cvFree( (*GLCM)->matrices + matrixLoop );
241 }
242 }
243
244 cvFree( &((*GLCM)->matrices) );
245 }
246
247 if( (flag == CV_GLCM_DESC || flag == CV_GLCM_ALL) && (*GLCM)->descriptors )
248 {
249 for( matrixLoop = 0; matrixLoop < (*GLCM)->numMatrices; matrixLoop++ )
250 {
251 cvFree( (*GLCM)->descriptors + matrixLoop );
252 }
253 cvFree( &((*GLCM)->descriptors) );
254 }
255
256 if( flag == CV_GLCM_ALL )
257 {
258 cvFree( GLCM );
259 }
260
261 __END__;
262 }
263
264
265 static void
icvCreateGLCM_LookupTable_8u_C1R(const uchar * srcImageData,int srcImageStep,CvSize srcImageSize,CvGLCM * destGLCM,int * steps,int numSteps,int * memorySteps)266 icvCreateGLCM_LookupTable_8u_C1R( const uchar* srcImageData,
267 int srcImageStep,
268 CvSize srcImageSize,
269 CvGLCM* destGLCM,
270 int* steps,
271 int numSteps,
272 int* memorySteps )
273 {
274 int* stepIncrementsCounter = 0;
275
276 CV_FUNCNAME( "icvCreateGLCM_LookupTable_8u_C1R" );
277
278 __BEGIN__;
279
280 int matrixSideLength = destGLCM->matrixSideLength;
281 int stepLoop, sideLoop1, sideLoop2;
282 int colLoop, rowLoop, lineOffset = 0;
283 double*** matrices = 0;
284
285 // allocate memory to the matrices
286 CV_CALL( destGLCM->matrices = (double***)cvAlloc( sizeof(matrices[0])*numSteps ));
287 matrices = destGLCM->matrices;
288
289 for( stepLoop=0; stepLoop<numSteps; stepLoop++ )
290 {
291 CV_CALL( matrices[stepLoop] = (double**)cvAlloc( sizeof(matrices[0])*matrixSideLength ));
292 CV_CALL( matrices[stepLoop][0] = (double*)cvAlloc( sizeof(matrices[0][0])*
293 matrixSideLength*matrixSideLength ));
294
295 memset( matrices[stepLoop][0], 0, matrixSideLength*matrixSideLength*
296 sizeof(matrices[0][0]) );
297
298 for( sideLoop1 = 1; sideLoop1 < matrixSideLength; sideLoop1++ )
299 {
300 matrices[stepLoop][sideLoop1] = matrices[stepLoop][sideLoop1-1] + matrixSideLength;
301 }
302 }
303
304 CV_CALL( stepIncrementsCounter = (int*)cvAlloc( numSteps*sizeof(stepIncrementsCounter[0])));
305 memset( stepIncrementsCounter, 0, numSteps*sizeof(stepIncrementsCounter[0]) );
306
307 // generate GLCM for each step
308 for( rowLoop=0; rowLoop<srcImageSize.height; rowLoop++, lineOffset+=srcImageStep )
309 {
310 for( colLoop=0; colLoop<srcImageSize.width; colLoop++ )
311 {
312 int pixelValue1 = destGLCM->forwardLookupTable[srcImageData[lineOffset + colLoop]];
313
314 for( stepLoop=0; stepLoop<numSteps; stepLoop++ )
315 {
316 int col2, row2;
317 row2 = rowLoop + steps[stepLoop*2 + 0];
318 col2 = colLoop + steps[stepLoop*2 + 1];
319
320 if( col2>=0 && row2>=0 && col2<srcImageSize.width && row2<srcImageSize.height )
321 {
322 int memoryStep = memorySteps[ stepLoop ];
323 int pixelValue2 = destGLCM->forwardLookupTable[ srcImageData[ lineOffset + colLoop + memoryStep ] ];
324
325 // maintain symmetry
326 matrices[stepLoop][pixelValue1][pixelValue2] ++;
327 matrices[stepLoop][pixelValue2][pixelValue1] ++;
328
329 // incremenet counter of total number of increments
330 stepIncrementsCounter[stepLoop] += 2;
331 }
332 }
333 }
334 }
335
336 // normalize matrices. each element is a probability of gray value i,j adjacency in direction/magnitude k
337 for( sideLoop1=0; sideLoop1<matrixSideLength; sideLoop1++ )
338 {
339 for( sideLoop2=0; sideLoop2<matrixSideLength; sideLoop2++ )
340 {
341 for( stepLoop=0; stepLoop<numSteps; stepLoop++ )
342 {
343 matrices[stepLoop][sideLoop1][sideLoop2] /= double(stepIncrementsCounter[stepLoop]);
344 }
345 }
346 }
347
348 destGLCM->matrices = matrices;
349
350 __END__;
351
352 cvFree( &stepIncrementsCounter );
353
354 if( cvGetErrStatus() < 0 )
355 cvReleaseGLCM( &destGLCM, CV_GLCM_GLCM );
356 }
357
358
359 CV_IMPL void
cvCreateGLCMDescriptors(CvGLCM * destGLCM,int descriptorOptimizationType)360 cvCreateGLCMDescriptors( CvGLCM* destGLCM, int descriptorOptimizationType )
361 {
362 CV_FUNCNAME( "cvCreateGLCMDescriptors" );
363
364 __BEGIN__;
365
366 int matrixLoop;
367
368 if( !destGLCM )
369 CV_ERROR( CV_StsNullPtr, "" );
370
371 if( !(destGLCM->matrices) )
372 CV_ERROR( CV_StsNullPtr, "Matrices are not allocated" );
373
374 CV_CALL( cvReleaseGLCM( &destGLCM, CV_GLCM_DESC ));
375
376 if( destGLCM->optimizationType != CV_GLCM_OPTIMIZATION_HISTOGRAM )
377 {
378 destGLCM->descriptorOptimizationType = destGLCM->numDescriptors = descriptorOptimizationType;
379 }
380 else
381 {
382 CV_ERROR( CV_StsBadFlag, "Histogram-based method is not implemented" );
383 // destGLCM->descriptorOptimizationType = destGLCM->numDescriptors = CV_GLCMDESC_OPTIMIZATION_HISTOGRAM;
384 }
385
386 CV_CALL( destGLCM->descriptors = (double**)
387 cvAlloc( destGLCM->numMatrices*sizeof(destGLCM->descriptors[0])));
388
389 for( matrixLoop = 0; matrixLoop < destGLCM->numMatrices; matrixLoop ++ )
390 {
391 CV_CALL( destGLCM->descriptors[ matrixLoop ] =
392 (double*)cvAlloc( destGLCM->numDescriptors*sizeof(destGLCM->descriptors[0][0])));
393 memset( destGLCM->descriptors[matrixLoop], 0, destGLCM->numDescriptors*sizeof(double) );
394
395 switch( destGLCM->descriptorOptimizationType )
396 {
397 case CV_GLCMDESC_OPTIMIZATION_ALLOWDOUBLENEST:
398 icvCreateGLCMDescriptors_AllowDoubleNest( destGLCM, matrixLoop );
399 break;
400 default:
401 CV_ERROR( CV_StsBadFlag,
402 "descriptorOptimizationType different from CV_GLCMDESC_OPTIMIZATION_ALLOWDOUBLENEST\n"
403 "is not supported" );
404 /*
405 case CV_GLCMDESC_OPTIMIZATION_ALLOWTRIPLENEST:
406 icvCreateGLCMDescriptors_AllowTripleNest( destGLCM, matrixLoop );
407 break;
408 case CV_GLCMDESC_OPTIMIZATION_HISTOGRAM:
409 if(matrixLoop < destGLCM->numMatrices>>1)
410 icvCreateGLCMDescriptors_Histogram( destGLCM, matrixLoop);
411 break;
412 */
413 }
414 }
415
416 __END__;
417
418 if( cvGetErrStatus() < 0 )
419 cvReleaseGLCM( &destGLCM, CV_GLCM_DESC );
420 }
421
422
423 static void
icvCreateGLCMDescriptors_AllowDoubleNest(CvGLCM * destGLCM,int matrixIndex)424 icvCreateGLCMDescriptors_AllowDoubleNest( CvGLCM* destGLCM, int matrixIndex )
425 {
426 int sideLoop1, sideLoop2;
427 int matrixSideLength = destGLCM->matrixSideLength;
428
429 double** matrix = destGLCM->matrices[ matrixIndex ];
430 double* descriptors = destGLCM->descriptors[ matrixIndex ];
431
432 double* marginalProbability =
433 (double*)cvAlloc( matrixSideLength * sizeof(marginalProbability[0]));
434 memset( marginalProbability, 0, matrixSideLength * sizeof(double) );
435
436 double maximumProbability = 0;
437 double marginalProbabilityEntropy = 0;
438 double correlationMean = 0, correlationStdDeviation = 0, correlationProductTerm = 0;
439
440 for( sideLoop1=0; sideLoop1<matrixSideLength; sideLoop1++ )
441 {
442 int actualSideLoop1 = destGLCM->reverseLookupTable[ sideLoop1 ];
443
444 for( sideLoop2=0; sideLoop2<matrixSideLength; sideLoop2++ )
445 {
446 double entryValue = matrix[ sideLoop1 ][ sideLoop2 ];
447
448 int actualSideLoop2 = destGLCM->reverseLookupTable[ sideLoop2 ];
449 int sideLoopDifference = actualSideLoop1 - actualSideLoop2;
450 int sideLoopDifferenceSquared = sideLoopDifference*sideLoopDifference;
451
452 marginalProbability[ sideLoop1 ] += entryValue;
453 correlationMean += actualSideLoop1*entryValue;
454
455 maximumProbability = MAX( maximumProbability, entryValue );
456
457 if( actualSideLoop2 > actualSideLoop1 )
458 {
459 descriptors[ CV_GLCMDESC_CONTRAST ] += sideLoopDifferenceSquared * entryValue;
460 }
461
462 descriptors[ CV_GLCMDESC_HOMOGENITY ] += entryValue / ( 1.0 + sideLoopDifferenceSquared );
463
464 if( entryValue > 0 )
465 {
466 descriptors[ CV_GLCMDESC_ENTROPY ] += entryValue * log( entryValue );
467 }
468
469 descriptors[ CV_GLCMDESC_ENERGY ] += entryValue*entryValue;
470 }
471
472 if( marginalProbability )
473 marginalProbabilityEntropy += marginalProbability[ actualSideLoop1 ]*log(marginalProbability[ actualSideLoop1 ]);
474 }
475
476 marginalProbabilityEntropy = -marginalProbabilityEntropy;
477
478 descriptors[ CV_GLCMDESC_CONTRAST ] += descriptors[ CV_GLCMDESC_CONTRAST ];
479 descriptors[ CV_GLCMDESC_ENTROPY ] = -descriptors[ CV_GLCMDESC_ENTROPY ];
480 descriptors[ CV_GLCMDESC_MAXIMUMPROBABILITY ] = maximumProbability;
481
482 double HXY = 0, HXY1 = 0, HXY2 = 0;
483
484 HXY = descriptors[ CV_GLCMDESC_ENTROPY ];
485
486 for( sideLoop1=0; sideLoop1<matrixSideLength; sideLoop1++ )
487 {
488 double sideEntryValueSum = 0;
489 int actualSideLoop1 = destGLCM->reverseLookupTable[ sideLoop1 ];
490
491 for( sideLoop2=0; sideLoop2<matrixSideLength; sideLoop2++ )
492 {
493 double entryValue = matrix[ sideLoop1 ][ sideLoop2 ];
494
495 sideEntryValueSum += entryValue;
496
497 int actualSideLoop2 = destGLCM->reverseLookupTable[ sideLoop2 ];
498
499 correlationProductTerm += (actualSideLoop1 - correlationMean) * (actualSideLoop2 - correlationMean) * entryValue;
500
501 double clusterTerm = actualSideLoop1 + actualSideLoop2 - correlationMean - correlationMean;
502
503 descriptors[ CV_GLCMDESC_CLUSTERTENDENCY ] += clusterTerm * clusterTerm * entryValue;
504 descriptors[ CV_GLCMDESC_CLUSTERSHADE ] += clusterTerm * clusterTerm * clusterTerm * entryValue;
505
506 double HXYValue = marginalProbability[ actualSideLoop1 ] * marginalProbability[ actualSideLoop2 ];
507 if( HXYValue>0 )
508 {
509 double HXYValueLog = log( HXYValue );
510 HXY1 += entryValue * HXYValueLog;
511 HXY2 += HXYValue * HXYValueLog;
512 }
513 }
514
515 correlationStdDeviation += (actualSideLoop1-correlationMean) * (actualSideLoop1-correlationMean) * sideEntryValueSum;
516 }
517
518 HXY1 = -HXY1;
519 HXY2 = -HXY2;
520
521 descriptors[ CV_GLCMDESC_CORRELATIONINFO1 ] = ( HXY - HXY1 ) / ( correlationMean );
522 descriptors[ CV_GLCMDESC_CORRELATIONINFO2 ] = sqrt( 1.0 - exp( -2.0 * (HXY2 - HXY ) ) );
523
524 correlationStdDeviation = sqrt( correlationStdDeviation );
525
526 descriptors[ CV_GLCMDESC_CORRELATION ] = correlationProductTerm / (correlationStdDeviation*correlationStdDeviation );
527
528 delete [] marginalProbability;
529 }
530
531
cvGetGLCMDescriptor(CvGLCM * GLCM,int step,int descriptor)532 CV_IMPL double cvGetGLCMDescriptor( CvGLCM* GLCM, int step, int descriptor )
533 {
534 double value = DBL_MAX;
535
536 CV_FUNCNAME( "cvGetGLCMDescriptor" );
537
538 __BEGIN__;
539
540 if( !GLCM )
541 CV_ERROR( CV_StsNullPtr, "" );
542
543 if( !(GLCM->descriptors) )
544 CV_ERROR( CV_StsNullPtr, "" );
545
546 if( (unsigned)step >= (unsigned)(GLCM->numMatrices))
547 CV_ERROR( CV_StsOutOfRange, "step is not in 0 .. GLCM->numMatrices - 1" );
548
549 if( (unsigned)descriptor >= (unsigned)(GLCM->numDescriptors))
550 CV_ERROR( CV_StsOutOfRange, "descriptor is not in 0 .. GLCM->numDescriptors - 1" );
551
552 value = GLCM->descriptors[step][descriptor];
553
554 __END__;
555
556 return value;
557 }
558
559
560 CV_IMPL void
cvGetGLCMDescriptorStatistics(CvGLCM * GLCM,int descriptor,double * _average,double * _standardDeviation)561 cvGetGLCMDescriptorStatistics( CvGLCM* GLCM, int descriptor,
562 double* _average, double* _standardDeviation )
563 {
564 CV_FUNCNAME( "cvGetGLCMDescriptorStatistics" );
565
566 if( _average )
567 *_average = DBL_MAX;
568
569 if( _standardDeviation )
570 *_standardDeviation = DBL_MAX;
571
572 __BEGIN__;
573
574 int matrixLoop, numMatrices;
575 double average = 0, squareSum = 0;
576
577 if( !GLCM )
578 CV_ERROR( CV_StsNullPtr, "" );
579
580 if( !(GLCM->descriptors))
581 CV_ERROR( CV_StsNullPtr, "Descriptors are not calculated" );
582
583 if( (unsigned)descriptor >= (unsigned)(GLCM->numDescriptors) )
584 CV_ERROR( CV_StsOutOfRange, "Descriptor index is out of range" );
585
586 numMatrices = GLCM->numMatrices;
587
588 for( matrixLoop = 0; matrixLoop < numMatrices; matrixLoop++ )
589 {
590 double temp = GLCM->descriptors[ matrixLoop ][ descriptor ];
591 average += temp;
592 squareSum += temp*temp;
593 }
594
595 average /= numMatrices;
596
597 if( _average )
598 *_average = average;
599
600 if( _standardDeviation )
601 *_standardDeviation = sqrt( (squareSum - average*average*numMatrices)/(numMatrices-1));
602
603 __END__;
604 }
605
606
607 CV_IMPL IplImage*
cvCreateGLCMImage(CvGLCM * GLCM,int step)608 cvCreateGLCMImage( CvGLCM* GLCM, int step )
609 {
610 IplImage* dest = 0;
611
612 CV_FUNCNAME( "cvCreateGLCMImage" );
613
614 __BEGIN__;
615
616 float* destData;
617 int sideLoop1, sideLoop2;
618
619 if( !GLCM )
620 CV_ERROR( CV_StsNullPtr, "" );
621
622 if( !(GLCM->matrices) )
623 CV_ERROR( CV_StsNullPtr, "Matrices are not allocated" );
624
625 if( (unsigned)step >= (unsigned)(GLCM->numMatrices) )
626 CV_ERROR( CV_StsOutOfRange, "The step index is out of range" );
627
628 dest = cvCreateImage( cvSize( GLCM->matrixSideLength, GLCM->matrixSideLength ), IPL_DEPTH_32F, 1 );
629 destData = (float*)(dest->imageData);
630
631 for( sideLoop1 = 0; sideLoop1 < GLCM->matrixSideLength;
632 sideLoop1++, (float*&)destData += dest->widthStep )
633 {
634 for( sideLoop2=0; sideLoop2 < GLCM->matrixSideLength; sideLoop2++ )
635 {
636 double matrixValue = GLCM->matrices[step][sideLoop1][sideLoop2];
637 destData[ sideLoop2 ] = (float)matrixValue;
638 }
639 }
640
641 __END__;
642
643 if( cvGetErrStatus() < 0 )
644 cvReleaseImage( &dest );
645
646 return dest;
647 }
648
649