1#! /usr/bin/env python 2 3""" 4Module difflib -- helpers for computing deltas between objects. 5 6Function get_close_matches(word, possibilities, n=3, cutoff=0.6): 7 Use SequenceMatcher to return list of the best "good enough" matches. 8 9Function context_diff(a, b): 10 For two lists of strings, return a delta in context diff format. 11 12Function ndiff(a, b): 13 Return a delta: the difference between `a` and `b` (lists of strings). 14 15Function restore(delta, which): 16 Return one of the two sequences that generated an ndiff delta. 17 18Function unified_diff(a, b): 19 For two lists of strings, return a delta in unified diff format. 20 21Class SequenceMatcher: 22 A flexible class for comparing pairs of sequences of any type. 23 24Class Differ: 25 For producing human-readable deltas from sequences of lines of text. 26 27Class HtmlDiff: 28 For producing HTML side by side comparison with change highlights. 29""" 30 31__all__ = ['get_close_matches', 'ndiff', 'restore', 'SequenceMatcher', 32 'Differ','IS_CHARACTER_JUNK', 'IS_LINE_JUNK', 'context_diff', 33 'unified_diff', 'HtmlDiff', 'Match'] 34 35import heapq 36from collections import namedtuple as _namedtuple 37from functools import reduce 38 39Match = _namedtuple('Match', 'a b size') 40 41def _calculate_ratio(matches, length): 42 if length: 43 return 2.0 * matches / length 44 return 1.0 45 46class SequenceMatcher: 47 48 """ 49 SequenceMatcher is a flexible class for comparing pairs of sequences of 50 any type, so long as the sequence elements are hashable. The basic 51 algorithm predates, and is a little fancier than, an algorithm 52 published in the late 1980's by Ratcliff and Obershelp under the 53 hyperbolic name "gestalt pattern matching". The basic idea is to find 54 the longest contiguous matching subsequence that contains no "junk" 55 elements (R-O doesn't address junk). The same idea is then applied 56 recursively to the pieces of the sequences to the left and to the right 57 of the matching subsequence. This does not yield minimal edit 58 sequences, but does tend to yield matches that "look right" to people. 59 60 SequenceMatcher tries to compute a "human-friendly diff" between two 61 sequences. Unlike e.g. UNIX(tm) diff, the fundamental notion is the 62 longest *contiguous* & junk-free matching subsequence. That's what 63 catches peoples' eyes. The Windows(tm) windiff has another interesting 64 notion, pairing up elements that appear uniquely in each sequence. 65 That, and the method here, appear to yield more intuitive difference 66 reports than does diff. This method appears to be the least vulnerable 67 to synching up on blocks of "junk lines", though (like blank lines in 68 ordinary text files, or maybe "<P>" lines in HTML files). That may be 69 because this is the only method of the 3 that has a *concept* of 70 "junk" <wink>. 71 72 Example, comparing two strings, and considering blanks to be "junk": 73 74 >>> s = SequenceMatcher(lambda x: x == " ", 75 ... "private Thread currentThread;", 76 ... "private volatile Thread currentThread;") 77 >>> 78 79 .ratio() returns a float in [0, 1], measuring the "similarity" of the 80 sequences. As a rule of thumb, a .ratio() value over 0.6 means the 81 sequences are close matches: 82 83 >>> print round(s.ratio(), 3) 84 0.866 85 >>> 86 87 If you're only interested in where the sequences match, 88 .get_matching_blocks() is handy: 89 90 >>> for block in s.get_matching_blocks(): 91 ... print "a[%d] and b[%d] match for %d elements" % block 92 a[0] and b[0] match for 8 elements 93 a[8] and b[17] match for 21 elements 94 a[29] and b[38] match for 0 elements 95 96 Note that the last tuple returned by .get_matching_blocks() is always a 97 dummy, (len(a), len(b), 0), and this is the only case in which the last 98 tuple element (number of elements matched) is 0. 99 100 If you want to know how to change the first sequence into the second, 101 use .get_opcodes(): 102 103 >>> for opcode in s.get_opcodes(): 104 ... print "%6s a[%d:%d] b[%d:%d]" % opcode 105 equal a[0:8] b[0:8] 106 insert a[8:8] b[8:17] 107 equal a[8:29] b[17:38] 108 109 See the Differ class for a fancy human-friendly file differencer, which 110 uses SequenceMatcher both to compare sequences of lines, and to compare 111 sequences of characters within similar (near-matching) lines. 112 113 See also function get_close_matches() in this module, which shows how 114 simple code building on SequenceMatcher can be used to do useful work. 115 116 Timing: Basic R-O is cubic time worst case and quadratic time expected 117 case. SequenceMatcher is quadratic time for the worst case and has 118 expected-case behavior dependent in a complicated way on how many 119 elements the sequences have in common; best case time is linear. 120 121 Methods: 122 123 __init__(isjunk=None, a='', b='') 124 Construct a SequenceMatcher. 125 126 set_seqs(a, b) 127 Set the two sequences to be compared. 128 129 set_seq1(a) 130 Set the first sequence to be compared. 131 132 set_seq2(b) 133 Set the second sequence to be compared. 134 135 find_longest_match(alo, ahi, blo, bhi) 136 Find longest matching block in a[alo:ahi] and b[blo:bhi]. 137 138 get_matching_blocks() 139 Return list of triples describing matching subsequences. 140 141 get_opcodes() 142 Return list of 5-tuples describing how to turn a into b. 143 144 ratio() 145 Return a measure of the sequences' similarity (float in [0,1]). 146 147 quick_ratio() 148 Return an upper bound on .ratio() relatively quickly. 149 150 real_quick_ratio() 151 Return an upper bound on ratio() very quickly. 152 """ 153 154 def __init__(self, isjunk=None, a='', b='', autojunk=True): 155 """Construct a SequenceMatcher. 156 157 Optional arg isjunk is None (the default), or a one-argument 158 function that takes a sequence element and returns true iff the 159 element is junk. None is equivalent to passing "lambda x: 0", i.e. 160 no elements are considered to be junk. For example, pass 161 lambda x: x in " \\t" 162 if you're comparing lines as sequences of characters, and don't 163 want to synch up on blanks or hard tabs. 164 165 Optional arg a is the first of two sequences to be compared. By 166 default, an empty string. The elements of a must be hashable. See 167 also .set_seqs() and .set_seq1(). 168 169 Optional arg b is the second of two sequences to be compared. By 170 default, an empty string. The elements of b must be hashable. See 171 also .set_seqs() and .set_seq2(). 172 173 Optional arg autojunk should be set to False to disable the 174 "automatic junk heuristic" that treats popular elements as junk 175 (see module documentation for more information). 176 """ 177 178 # Members: 179 # a 180 # first sequence 181 # b 182 # second sequence; differences are computed as "what do 183 # we need to do to 'a' to change it into 'b'?" 184 # b2j 185 # for x in b, b2j[x] is a list of the indices (into b) 186 # at which x appears; junk elements do not appear 187 # fullbcount 188 # for x in b, fullbcount[x] == the number of times x 189 # appears in b; only materialized if really needed (used 190 # only for computing quick_ratio()) 191 # matching_blocks 192 # a list of (i, j, k) triples, where a[i:i+k] == b[j:j+k]; 193 # ascending & non-overlapping in i and in j; terminated by 194 # a dummy (len(a), len(b), 0) sentinel 195 # opcodes 196 # a list of (tag, i1, i2, j1, j2) tuples, where tag is 197 # one of 198 # 'replace' a[i1:i2] should be replaced by b[j1:j2] 199 # 'delete' a[i1:i2] should be deleted 200 # 'insert' b[j1:j2] should be inserted 201 # 'equal' a[i1:i2] == b[j1:j2] 202 # isjunk 203 # a user-supplied function taking a sequence element and 204 # returning true iff the element is "junk" -- this has 205 # subtle but helpful effects on the algorithm, which I'll 206 # get around to writing up someday <0.9 wink>. 207 # DON'T USE! Only __chain_b uses this. Use isbjunk. 208 # isbjunk 209 # for x in b, isbjunk(x) == isjunk(x) but much faster; 210 # it's really the __contains__ method of a hidden dict. 211 # DOES NOT WORK for x in a! 212 # isbpopular 213 # for x in b, isbpopular(x) is true iff b is reasonably long 214 # (at least 200 elements) and x accounts for more than 1 + 1% of 215 # its elements (when autojunk is enabled). 216 # DOES NOT WORK for x in a! 217 218 self.isjunk = isjunk 219 self.a = self.b = None 220 self.autojunk = autojunk 221 self.set_seqs(a, b) 222 223 def set_seqs(self, a, b): 224 """Set the two sequences to be compared. 225 226 >>> s = SequenceMatcher() 227 >>> s.set_seqs("abcd", "bcde") 228 >>> s.ratio() 229 0.75 230 """ 231 232 self.set_seq1(a) 233 self.set_seq2(b) 234 235 def set_seq1(self, a): 236 """Set the first sequence to be compared. 237 238 The second sequence to be compared is not changed. 239 240 >>> s = SequenceMatcher(None, "abcd", "bcde") 241 >>> s.ratio() 242 0.75 243 >>> s.set_seq1("bcde") 244 >>> s.ratio() 245 1.0 246 >>> 247 248 SequenceMatcher computes and caches detailed information about the 249 second sequence, so if you want to compare one sequence S against 250 many sequences, use .set_seq2(S) once and call .set_seq1(x) 251 repeatedly for each of the other sequences. 252 253 See also set_seqs() and set_seq2(). 254 """ 255 256 if a is self.a: 257 return 258 self.a = a 259 self.matching_blocks = self.opcodes = None 260 261 def set_seq2(self, b): 262 """Set the second sequence to be compared. 263 264 The first sequence to be compared is not changed. 265 266 >>> s = SequenceMatcher(None, "abcd", "bcde") 267 >>> s.ratio() 268 0.75 269 >>> s.set_seq2("abcd") 270 >>> s.ratio() 271 1.0 272 >>> 273 274 SequenceMatcher computes and caches detailed information about the 275 second sequence, so if you want to compare one sequence S against 276 many sequences, use .set_seq2(S) once and call .set_seq1(x) 277 repeatedly for each of the other sequences. 278 279 See also set_seqs() and set_seq1(). 280 """ 281 282 if b is self.b: 283 return 284 self.b = b 285 self.matching_blocks = self.opcodes = None 286 self.fullbcount = None 287 self.__chain_b() 288 289 # For each element x in b, set b2j[x] to a list of the indices in 290 # b where x appears; the indices are in increasing order; note that 291 # the number of times x appears in b is len(b2j[x]) ... 292 # when self.isjunk is defined, junk elements don't show up in this 293 # map at all, which stops the central find_longest_match method 294 # from starting any matching block at a junk element ... 295 # also creates the fast isbjunk function ... 296 # b2j also does not contain entries for "popular" elements, meaning 297 # elements that account for more than 1 + 1% of the total elements, and 298 # when the sequence is reasonably large (>= 200 elements); this can 299 # be viewed as an adaptive notion of semi-junk, and yields an enormous 300 # speedup when, e.g., comparing program files with hundreds of 301 # instances of "return NULL;" ... 302 # note that this is only called when b changes; so for cross-product 303 # kinds of matches, it's best to call set_seq2 once, then set_seq1 304 # repeatedly 305 306 def __chain_b(self): 307 # Because isjunk is a user-defined (not C) function, and we test 308 # for junk a LOT, it's important to minimize the number of calls. 309 # Before the tricks described here, __chain_b was by far the most 310 # time-consuming routine in the whole module! If anyone sees 311 # Jim Roskind, thank him again for profile.py -- I never would 312 # have guessed that. 313 # The first trick is to build b2j ignoring the possibility 314 # of junk. I.e., we don't call isjunk at all yet. Throwing 315 # out the junk later is much cheaper than building b2j "right" 316 # from the start. 317 b = self.b 318 self.b2j = b2j = {} 319 320 for i, elt in enumerate(b): 321 indices = b2j.setdefault(elt, []) 322 indices.append(i) 323 324 # Purge junk elements 325 junk = set() 326 isjunk = self.isjunk 327 if isjunk: 328 for elt in list(b2j.keys()): # using list() since b2j is modified 329 if isjunk(elt): 330 junk.add(elt) 331 del b2j[elt] 332 333 # Purge popular elements that are not junk 334 popular = set() 335 n = len(b) 336 if self.autojunk and n >= 200: 337 ntest = n // 100 + 1 338 for elt, idxs in list(b2j.items()): 339 if len(idxs) > ntest: 340 popular.add(elt) 341 del b2j[elt] 342 343 # Now for x in b, isjunk(x) == x in junk, but the latter is much faster. 344 # Sicne the number of *unique* junk elements is probably small, the 345 # memory burden of keeping this set alive is likely trivial compared to 346 # the size of b2j. 347 self.isbjunk = junk.__contains__ 348 self.isbpopular = popular.__contains__ 349 350 def find_longest_match(self, alo, ahi, blo, bhi): 351 """Find longest matching block in a[alo:ahi] and b[blo:bhi]. 352 353 If isjunk is not defined: 354 355 Return (i,j,k) such that a[i:i+k] is equal to b[j:j+k], where 356 alo <= i <= i+k <= ahi 357 blo <= j <= j+k <= bhi 358 and for all (i',j',k') meeting those conditions, 359 k >= k' 360 i <= i' 361 and if i == i', j <= j' 362 363 In other words, of all maximal matching blocks, return one that 364 starts earliest in a, and of all those maximal matching blocks that 365 start earliest in a, return the one that starts earliest in b. 366 367 >>> s = SequenceMatcher(None, " abcd", "abcd abcd") 368 >>> s.find_longest_match(0, 5, 0, 9) 369 Match(a=0, b=4, size=5) 370 371 If isjunk is defined, first the longest matching block is 372 determined as above, but with the additional restriction that no 373 junk element appears in the block. Then that block is extended as 374 far as possible by matching (only) junk elements on both sides. So 375 the resulting block never matches on junk except as identical junk 376 happens to be adjacent to an "interesting" match. 377 378 Here's the same example as before, but considering blanks to be 379 junk. That prevents " abcd" from matching the " abcd" at the tail 380 end of the second sequence directly. Instead only the "abcd" can 381 match, and matches the leftmost "abcd" in the second sequence: 382 383 >>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd") 384 >>> s.find_longest_match(0, 5, 0, 9) 385 Match(a=1, b=0, size=4) 386 387 If no blocks match, return (alo, blo, 0). 388 389 >>> s = SequenceMatcher(None, "ab", "c") 390 >>> s.find_longest_match(0, 2, 0, 1) 391 Match(a=0, b=0, size=0) 392 """ 393 394 # CAUTION: stripping common prefix or suffix would be incorrect. 395 # E.g., 396 # ab 397 # acab 398 # Longest matching block is "ab", but if common prefix is 399 # stripped, it's "a" (tied with "b"). UNIX(tm) diff does so 400 # strip, so ends up claiming that ab is changed to acab by 401 # inserting "ca" in the middle. That's minimal but unintuitive: 402 # "it's obvious" that someone inserted "ac" at the front. 403 # Windiff ends up at the same place as diff, but by pairing up 404 # the unique 'b's and then matching the first two 'a's. 405 406 a, b, b2j, isbjunk = self.a, self.b, self.b2j, self.isbjunk 407 besti, bestj, bestsize = alo, blo, 0 408 # find longest junk-free match 409 # during an iteration of the loop, j2len[j] = length of longest 410 # junk-free match ending with a[i-1] and b[j] 411 j2len = {} 412 nothing = [] 413 for i in xrange(alo, ahi): 414 # look at all instances of a[i] in b; note that because 415 # b2j has no junk keys, the loop is skipped if a[i] is junk 416 j2lenget = j2len.get 417 newj2len = {} 418 for j in b2j.get(a[i], nothing): 419 # a[i] matches b[j] 420 if j < blo: 421 continue 422 if j >= bhi: 423 break 424 k = newj2len[j] = j2lenget(j-1, 0) + 1 425 if k > bestsize: 426 besti, bestj, bestsize = i-k+1, j-k+1, k 427 j2len = newj2len 428 429 # Extend the best by non-junk elements on each end. In particular, 430 # "popular" non-junk elements aren't in b2j, which greatly speeds 431 # the inner loop above, but also means "the best" match so far 432 # doesn't contain any junk *or* popular non-junk elements. 433 while besti > alo and bestj > blo and \ 434 not isbjunk(b[bestj-1]) and \ 435 a[besti-1] == b[bestj-1]: 436 besti, bestj, bestsize = besti-1, bestj-1, bestsize+1 437 while besti+bestsize < ahi and bestj+bestsize < bhi and \ 438 not isbjunk(b[bestj+bestsize]) and \ 439 a[besti+bestsize] == b[bestj+bestsize]: 440 bestsize += 1 441 442 # Now that we have a wholly interesting match (albeit possibly 443 # empty!), we may as well suck up the matching junk on each 444 # side of it too. Can't think of a good reason not to, and it 445 # saves post-processing the (possibly considerable) expense of 446 # figuring out what to do with it. In the case of an empty 447 # interesting match, this is clearly the right thing to do, 448 # because no other kind of match is possible in the regions. 449 while besti > alo and bestj > blo and \ 450 isbjunk(b[bestj-1]) and \ 451 a[besti-1] == b[bestj-1]: 452 besti, bestj, bestsize = besti-1, bestj-1, bestsize+1 453 while besti+bestsize < ahi and bestj+bestsize < bhi and \ 454 isbjunk(b[bestj+bestsize]) and \ 455 a[besti+bestsize] == b[bestj+bestsize]: 456 bestsize = bestsize + 1 457 458 return Match(besti, bestj, bestsize) 459 460 def get_matching_blocks(self): 461 """Return list of triples describing matching subsequences. 462 463 Each triple is of the form (i, j, n), and means that 464 a[i:i+n] == b[j:j+n]. The triples are monotonically increasing in 465 i and in j. New in Python 2.5, it's also guaranteed that if 466 (i, j, n) and (i', j', n') are adjacent triples in the list, and 467 the second is not the last triple in the list, then i+n != i' or 468 j+n != j'. IOW, adjacent triples never describe adjacent equal 469 blocks. 470 471 The last triple is a dummy, (len(a), len(b), 0), and is the only 472 triple with n==0. 473 474 >>> s = SequenceMatcher(None, "abxcd", "abcd") 475 >>> s.get_matching_blocks() 476 [Match(a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)] 477 """ 478 479 if self.matching_blocks is not None: 480 return self.matching_blocks 481 la, lb = len(self.a), len(self.b) 482 483 # This is most naturally expressed as a recursive algorithm, but 484 # at least one user bumped into extreme use cases that exceeded 485 # the recursion limit on their box. So, now we maintain a list 486 # ('queue`) of blocks we still need to look at, and append partial 487 # results to `matching_blocks` in a loop; the matches are sorted 488 # at the end. 489 queue = [(0, la, 0, lb)] 490 matching_blocks = [] 491 while queue: 492 alo, ahi, blo, bhi = queue.pop() 493 i, j, k = x = self.find_longest_match(alo, ahi, blo, bhi) 494 # a[alo:i] vs b[blo:j] unknown 495 # a[i:i+k] same as b[j:j+k] 496 # a[i+k:ahi] vs b[j+k:bhi] unknown 497 if k: # if k is 0, there was no matching block 498 matching_blocks.append(x) 499 if alo < i and blo < j: 500 queue.append((alo, i, blo, j)) 501 if i+k < ahi and j+k < bhi: 502 queue.append((i+k, ahi, j+k, bhi)) 503 matching_blocks.sort() 504 505 # It's possible that we have adjacent equal blocks in the 506 # matching_blocks list now. Starting with 2.5, this code was added 507 # to collapse them. 508 i1 = j1 = k1 = 0 509 non_adjacent = [] 510 for i2, j2, k2 in matching_blocks: 511 # Is this block adjacent to i1, j1, k1? 512 if i1 + k1 == i2 and j1 + k1 == j2: 513 # Yes, so collapse them -- this just increases the length of 514 # the first block by the length of the second, and the first 515 # block so lengthened remains the block to compare against. 516 k1 += k2 517 else: 518 # Not adjacent. Remember the first block (k1==0 means it's 519 # the dummy we started with), and make the second block the 520 # new block to compare against. 521 if k1: 522 non_adjacent.append((i1, j1, k1)) 523 i1, j1, k1 = i2, j2, k2 524 if k1: 525 non_adjacent.append((i1, j1, k1)) 526 527 non_adjacent.append( (la, lb, 0) ) 528 self.matching_blocks = non_adjacent 529 return map(Match._make, self.matching_blocks) 530 531 def get_opcodes(self): 532 """Return list of 5-tuples describing how to turn a into b. 533 534 Each tuple is of the form (tag, i1, i2, j1, j2). The first tuple 535 has i1 == j1 == 0, and remaining tuples have i1 == the i2 from the 536 tuple preceding it, and likewise for j1 == the previous j2. 537 538 The tags are strings, with these meanings: 539 540 'replace': a[i1:i2] should be replaced by b[j1:j2] 541 'delete': a[i1:i2] should be deleted. 542 Note that j1==j2 in this case. 543 'insert': b[j1:j2] should be inserted at a[i1:i1]. 544 Note that i1==i2 in this case. 545 'equal': a[i1:i2] == b[j1:j2] 546 547 >>> a = "qabxcd" 548 >>> b = "abycdf" 549 >>> s = SequenceMatcher(None, a, b) 550 >>> for tag, i1, i2, j1, j2 in s.get_opcodes(): 551 ... print ("%7s a[%d:%d] (%s) b[%d:%d] (%s)" % 552 ... (tag, i1, i2, a[i1:i2], j1, j2, b[j1:j2])) 553 delete a[0:1] (q) b[0:0] () 554 equal a[1:3] (ab) b[0:2] (ab) 555 replace a[3:4] (x) b[2:3] (y) 556 equal a[4:6] (cd) b[3:5] (cd) 557 insert a[6:6] () b[5:6] (f) 558 """ 559 560 if self.opcodes is not None: 561 return self.opcodes 562 i = j = 0 563 self.opcodes = answer = [] 564 for ai, bj, size in self.get_matching_blocks(): 565 # invariant: we've pumped out correct diffs to change 566 # a[:i] into b[:j], and the next matching block is 567 # a[ai:ai+size] == b[bj:bj+size]. So we need to pump 568 # out a diff to change a[i:ai] into b[j:bj], pump out 569 # the matching block, and move (i,j) beyond the match 570 tag = '' 571 if i < ai and j < bj: 572 tag = 'replace' 573 elif i < ai: 574 tag = 'delete' 575 elif j < bj: 576 tag = 'insert' 577 if tag: 578 answer.append( (tag, i, ai, j, bj) ) 579 i, j = ai+size, bj+size 580 # the list of matching blocks is terminated by a 581 # sentinel with size 0 582 if size: 583 answer.append( ('equal', ai, i, bj, j) ) 584 return answer 585 586 def get_grouped_opcodes(self, n=3): 587 """ Isolate change clusters by eliminating ranges with no changes. 588 589 Return a generator of groups with upto n lines of context. 590 Each group is in the same format as returned by get_opcodes(). 591 592 >>> from pprint import pprint 593 >>> a = map(str, range(1,40)) 594 >>> b = a[:] 595 >>> b[8:8] = ['i'] # Make an insertion 596 >>> b[20] += 'x' # Make a replacement 597 >>> b[23:28] = [] # Make a deletion 598 >>> b[30] += 'y' # Make another replacement 599 >>> pprint(list(SequenceMatcher(None,a,b).get_grouped_opcodes())) 600 [[('equal', 5, 8, 5, 8), ('insert', 8, 8, 8, 9), ('equal', 8, 11, 9, 12)], 601 [('equal', 16, 19, 17, 20), 602 ('replace', 19, 20, 20, 21), 603 ('equal', 20, 22, 21, 23), 604 ('delete', 22, 27, 23, 23), 605 ('equal', 27, 30, 23, 26)], 606 [('equal', 31, 34, 27, 30), 607 ('replace', 34, 35, 30, 31), 608 ('equal', 35, 38, 31, 34)]] 609 """ 610 611 codes = self.get_opcodes() 612 if not codes: 613 codes = [("equal", 0, 1, 0, 1)] 614 # Fixup leading and trailing groups if they show no changes. 615 if codes[0][0] == 'equal': 616 tag, i1, i2, j1, j2 = codes[0] 617 codes[0] = tag, max(i1, i2-n), i2, max(j1, j2-n), j2 618 if codes[-1][0] == 'equal': 619 tag, i1, i2, j1, j2 = codes[-1] 620 codes[-1] = tag, i1, min(i2, i1+n), j1, min(j2, j1+n) 621 622 nn = n + n 623 group = [] 624 for tag, i1, i2, j1, j2 in codes: 625 # End the current group and start a new one whenever 626 # there is a large range with no changes. 627 if tag == 'equal' and i2-i1 > nn: 628 group.append((tag, i1, min(i2, i1+n), j1, min(j2, j1+n))) 629 yield group 630 group = [] 631 i1, j1 = max(i1, i2-n), max(j1, j2-n) 632 group.append((tag, i1, i2, j1 ,j2)) 633 if group and not (len(group)==1 and group[0][0] == 'equal'): 634 yield group 635 636 def ratio(self): 637 """Return a measure of the sequences' similarity (float in [0,1]). 638 639 Where T is the total number of elements in both sequences, and 640 M is the number of matches, this is 2.0*M / T. 641 Note that this is 1 if the sequences are identical, and 0 if 642 they have nothing in common. 643 644 .ratio() is expensive to compute if you haven't already computed 645 .get_matching_blocks() or .get_opcodes(), in which case you may 646 want to try .quick_ratio() or .real_quick_ratio() first to get an 647 upper bound. 648 649 >>> s = SequenceMatcher(None, "abcd", "bcde") 650 >>> s.ratio() 651 0.75 652 >>> s.quick_ratio() 653 0.75 654 >>> s.real_quick_ratio() 655 1.0 656 """ 657 658 matches = reduce(lambda sum, triple: sum + triple[-1], 659 self.get_matching_blocks(), 0) 660 return _calculate_ratio(matches, len(self.a) + len(self.b)) 661 662 def quick_ratio(self): 663 """Return an upper bound on ratio() relatively quickly. 664 665 This isn't defined beyond that it is an upper bound on .ratio(), and 666 is faster to compute. 667 """ 668 669 # viewing a and b as multisets, set matches to the cardinality 670 # of their intersection; this counts the number of matches 671 # without regard to order, so is clearly an upper bound 672 if self.fullbcount is None: 673 self.fullbcount = fullbcount = {} 674 for elt in self.b: 675 fullbcount[elt] = fullbcount.get(elt, 0) + 1 676 fullbcount = self.fullbcount 677 # avail[x] is the number of times x appears in 'b' less the 678 # number of times we've seen it in 'a' so far ... kinda 679 avail = {} 680 availhas, matches = avail.__contains__, 0 681 for elt in self.a: 682 if availhas(elt): 683 numb = avail[elt] 684 else: 685 numb = fullbcount.get(elt, 0) 686 avail[elt] = numb - 1 687 if numb > 0: 688 matches = matches + 1 689 return _calculate_ratio(matches, len(self.a) + len(self.b)) 690 691 def real_quick_ratio(self): 692 """Return an upper bound on ratio() very quickly. 693 694 This isn't defined beyond that it is an upper bound on .ratio(), and 695 is faster to compute than either .ratio() or .quick_ratio(). 696 """ 697 698 la, lb = len(self.a), len(self.b) 699 # can't have more matches than the number of elements in the 700 # shorter sequence 701 return _calculate_ratio(min(la, lb), la + lb) 702 703def get_close_matches(word, possibilities, n=3, cutoff=0.6): 704 """Use SequenceMatcher to return list of the best "good enough" matches. 705 706 word is a sequence for which close matches are desired (typically a 707 string). 708 709 possibilities is a list of sequences against which to match word 710 (typically a list of strings). 711 712 Optional arg n (default 3) is the maximum number of close matches to 713 return. n must be > 0. 714 715 Optional arg cutoff (default 0.6) is a float in [0, 1]. Possibilities 716 that don't score at least that similar to word are ignored. 717 718 The best (no more than n) matches among the possibilities are returned 719 in a list, sorted by similarity score, most similar first. 720 721 >>> get_close_matches("appel", ["ape", "apple", "peach", "puppy"]) 722 ['apple', 'ape'] 723 >>> import keyword as _keyword 724 >>> get_close_matches("wheel", _keyword.kwlist) 725 ['while'] 726 >>> get_close_matches("apple", _keyword.kwlist) 727 [] 728 >>> get_close_matches("accept", _keyword.kwlist) 729 ['except'] 730 """ 731 732 if not n > 0: 733 raise ValueError("n must be > 0: %r" % (n,)) 734 if not 0.0 <= cutoff <= 1.0: 735 raise ValueError("cutoff must be in [0.0, 1.0]: %r" % (cutoff,)) 736 result = [] 737 s = SequenceMatcher() 738 s.set_seq2(word) 739 for x in possibilities: 740 s.set_seq1(x) 741 if s.real_quick_ratio() >= cutoff and \ 742 s.quick_ratio() >= cutoff and \ 743 s.ratio() >= cutoff: 744 result.append((s.ratio(), x)) 745 746 # Move the best scorers to head of list 747 result = heapq.nlargest(n, result) 748 # Strip scores for the best n matches 749 return [x for score, x in result] 750 751def _count_leading(line, ch): 752 """ 753 Return number of `ch` characters at the start of `line`. 754 755 Example: 756 757 >>> _count_leading(' abc', ' ') 758 3 759 """ 760 761 i, n = 0, len(line) 762 while i < n and line[i] == ch: 763 i += 1 764 return i 765 766class Differ: 767 r""" 768 Differ is a class for comparing sequences of lines of text, and 769 producing human-readable differences or deltas. Differ uses 770 SequenceMatcher both to compare sequences of lines, and to compare 771 sequences of characters within similar (near-matching) lines. 772 773 Each line of a Differ delta begins with a two-letter code: 774 775 '- ' line unique to sequence 1 776 '+ ' line unique to sequence 2 777 ' ' line common to both sequences 778 '? ' line not present in either input sequence 779 780 Lines beginning with '? ' attempt to guide the eye to intraline 781 differences, and were not present in either input sequence. These lines 782 can be confusing if the sequences contain tab characters. 783 784 Note that Differ makes no claim to produce a *minimal* diff. To the 785 contrary, minimal diffs are often counter-intuitive, because they synch 786 up anywhere possible, sometimes accidental matches 100 pages apart. 787 Restricting synch points to contiguous matches preserves some notion of 788 locality, at the occasional cost of producing a longer diff. 789 790 Example: Comparing two texts. 791 792 First we set up the texts, sequences of individual single-line strings 793 ending with newlines (such sequences can also be obtained from the 794 `readlines()` method of file-like objects): 795 796 >>> text1 = ''' 1. Beautiful is better than ugly. 797 ... 2. Explicit is better than implicit. 798 ... 3. Simple is better than complex. 799 ... 4. Complex is better than complicated. 800 ... '''.splitlines(1) 801 >>> len(text1) 802 4 803 >>> text1[0][-1] 804 '\n' 805 >>> text2 = ''' 1. Beautiful is better than ugly. 806 ... 3. Simple is better than complex. 807 ... 4. Complicated is better than complex. 808 ... 5. Flat is better than nested. 809 ... '''.splitlines(1) 810 811 Next we instantiate a Differ object: 812 813 >>> d = Differ() 814 815 Note that when instantiating a Differ object we may pass functions to 816 filter out line and character 'junk'. See Differ.__init__ for details. 817 818 Finally, we compare the two: 819 820 >>> result = list(d.compare(text1, text2)) 821 822 'result' is a list of strings, so let's pretty-print it: 823 824 >>> from pprint import pprint as _pprint 825 >>> _pprint(result) 826 [' 1. Beautiful is better than ugly.\n', 827 '- 2. Explicit is better than implicit.\n', 828 '- 3. Simple is better than complex.\n', 829 '+ 3. Simple is better than complex.\n', 830 '? ++\n', 831 '- 4. Complex is better than complicated.\n', 832 '? ^ ---- ^\n', 833 '+ 4. Complicated is better than complex.\n', 834 '? ++++ ^ ^\n', 835 '+ 5. Flat is better than nested.\n'] 836 837 As a single multi-line string it looks like this: 838 839 >>> print ''.join(result), 840 1. Beautiful is better than ugly. 841 - 2. Explicit is better than implicit. 842 - 3. Simple is better than complex. 843 + 3. Simple is better than complex. 844 ? ++ 845 - 4. Complex is better than complicated. 846 ? ^ ---- ^ 847 + 4. Complicated is better than complex. 848 ? ++++ ^ ^ 849 + 5. Flat is better than nested. 850 851 Methods: 852 853 __init__(linejunk=None, charjunk=None) 854 Construct a text differencer, with optional filters. 855 856 compare(a, b) 857 Compare two sequences of lines; generate the resulting delta. 858 """ 859 860 def __init__(self, linejunk=None, charjunk=None): 861 """ 862 Construct a text differencer, with optional filters. 863 864 The two optional keyword parameters are for filter functions: 865 866 - `linejunk`: A function that should accept a single string argument, 867 and return true iff the string is junk. The module-level function 868 `IS_LINE_JUNK` may be used to filter out lines without visible 869 characters, except for at most one splat ('#'). It is recommended 870 to leave linejunk None; as of Python 2.3, the underlying 871 SequenceMatcher class has grown an adaptive notion of "noise" lines 872 that's better than any static definition the author has ever been 873 able to craft. 874 875 - `charjunk`: A function that should accept a string of length 1. The 876 module-level function `IS_CHARACTER_JUNK` may be used to filter out 877 whitespace characters (a blank or tab; **note**: bad idea to include 878 newline in this!). Use of IS_CHARACTER_JUNK is recommended. 879 """ 880 881 self.linejunk = linejunk 882 self.charjunk = charjunk 883 884 def compare(self, a, b): 885 r""" 886 Compare two sequences of lines; generate the resulting delta. 887 888 Each sequence must contain individual single-line strings ending with 889 newlines. Such sequences can be obtained from the `readlines()` method 890 of file-like objects. The delta generated also consists of newline- 891 terminated strings, ready to be printed as-is via the writeline() 892 method of a file-like object. 893 894 Example: 895 896 >>> print ''.join(Differ().compare('one\ntwo\nthree\n'.splitlines(1), 897 ... 'ore\ntree\nemu\n'.splitlines(1))), 898 - one 899 ? ^ 900 + ore 901 ? ^ 902 - two 903 - three 904 ? - 905 + tree 906 + emu 907 """ 908 909 cruncher = SequenceMatcher(self.linejunk, a, b) 910 for tag, alo, ahi, blo, bhi in cruncher.get_opcodes(): 911 if tag == 'replace': 912 g = self._fancy_replace(a, alo, ahi, b, blo, bhi) 913 elif tag == 'delete': 914 g = self._dump('-', a, alo, ahi) 915 elif tag == 'insert': 916 g = self._dump('+', b, blo, bhi) 917 elif tag == 'equal': 918 g = self._dump(' ', a, alo, ahi) 919 else: 920 raise ValueError, 'unknown tag %r' % (tag,) 921 922 for line in g: 923 yield line 924 925 def _dump(self, tag, x, lo, hi): 926 """Generate comparison results for a same-tagged range.""" 927 for i in xrange(lo, hi): 928 yield '%s %s' % (tag, x[i]) 929 930 def _plain_replace(self, a, alo, ahi, b, blo, bhi): 931 assert alo < ahi and blo < bhi 932 # dump the shorter block first -- reduces the burden on short-term 933 # memory if the blocks are of very different sizes 934 if bhi - blo < ahi - alo: 935 first = self._dump('+', b, blo, bhi) 936 second = self._dump('-', a, alo, ahi) 937 else: 938 first = self._dump('-', a, alo, ahi) 939 second = self._dump('+', b, blo, bhi) 940 941 for g in first, second: 942 for line in g: 943 yield line 944 945 def _fancy_replace(self, a, alo, ahi, b, blo, bhi): 946 r""" 947 When replacing one block of lines with another, search the blocks 948 for *similar* lines; the best-matching pair (if any) is used as a 949 synch point, and intraline difference marking is done on the 950 similar pair. Lots of work, but often worth it. 951 952 Example: 953 954 >>> d = Differ() 955 >>> results = d._fancy_replace(['abcDefghiJkl\n'], 0, 1, 956 ... ['abcdefGhijkl\n'], 0, 1) 957 >>> print ''.join(results), 958 - abcDefghiJkl 959 ? ^ ^ ^ 960 + abcdefGhijkl 961 ? ^ ^ ^ 962 """ 963 964 # don't synch up unless the lines have a similarity score of at 965 # least cutoff; best_ratio tracks the best score seen so far 966 best_ratio, cutoff = 0.74, 0.75 967 cruncher = SequenceMatcher(self.charjunk) 968 eqi, eqj = None, None # 1st indices of equal lines (if any) 969 970 # search for the pair that matches best without being identical 971 # (identical lines must be junk lines, & we don't want to synch up 972 # on junk -- unless we have to) 973 for j in xrange(blo, bhi): 974 bj = b[j] 975 cruncher.set_seq2(bj) 976 for i in xrange(alo, ahi): 977 ai = a[i] 978 if ai == bj: 979 if eqi is None: 980 eqi, eqj = i, j 981 continue 982 cruncher.set_seq1(ai) 983 # computing similarity is expensive, so use the quick 984 # upper bounds first -- have seen this speed up messy 985 # compares by a factor of 3. 986 # note that ratio() is only expensive to compute the first 987 # time it's called on a sequence pair; the expensive part 988 # of the computation is cached by cruncher 989 if cruncher.real_quick_ratio() > best_ratio and \ 990 cruncher.quick_ratio() > best_ratio and \ 991 cruncher.ratio() > best_ratio: 992 best_ratio, best_i, best_j = cruncher.ratio(), i, j 993 if best_ratio < cutoff: 994 # no non-identical "pretty close" pair 995 if eqi is None: 996 # no identical pair either -- treat it as a straight replace 997 for line in self._plain_replace(a, alo, ahi, b, blo, bhi): 998 yield line 999 return 1000 # no close pair, but an identical pair -- synch up on that 1001 best_i, best_j, best_ratio = eqi, eqj, 1.0 1002 else: 1003 # there's a close pair, so forget the identical pair (if any) 1004 eqi = None 1005 1006 # a[best_i] very similar to b[best_j]; eqi is None iff they're not 1007 # identical 1008 1009 # pump out diffs from before the synch point 1010 for line in self._fancy_helper(a, alo, best_i, b, blo, best_j): 1011 yield line 1012 1013 # do intraline marking on the synch pair 1014 aelt, belt = a[best_i], b[best_j] 1015 if eqi is None: 1016 # pump out a '-', '?', '+', '?' quad for the synched lines 1017 atags = btags = "" 1018 cruncher.set_seqs(aelt, belt) 1019 for tag, ai1, ai2, bj1, bj2 in cruncher.get_opcodes(): 1020 la, lb = ai2 - ai1, bj2 - bj1 1021 if tag == 'replace': 1022 atags += '^' * la 1023 btags += '^' * lb 1024 elif tag == 'delete': 1025 atags += '-' * la 1026 elif tag == 'insert': 1027 btags += '+' * lb 1028 elif tag == 'equal': 1029 atags += ' ' * la 1030 btags += ' ' * lb 1031 else: 1032 raise ValueError, 'unknown tag %r' % (tag,) 1033 for line in self._qformat(aelt, belt, atags, btags): 1034 yield line 1035 else: 1036 # the synch pair is identical 1037 yield ' ' + aelt 1038 1039 # pump out diffs from after the synch point 1040 for line in self._fancy_helper(a, best_i+1, ahi, b, best_j+1, bhi): 1041 yield line 1042 1043 def _fancy_helper(self, a, alo, ahi, b, blo, bhi): 1044 g = [] 1045 if alo < ahi: 1046 if blo < bhi: 1047 g = self._fancy_replace(a, alo, ahi, b, blo, bhi) 1048 else: 1049 g = self._dump('-', a, alo, ahi) 1050 elif blo < bhi: 1051 g = self._dump('+', b, blo, bhi) 1052 1053 for line in g: 1054 yield line 1055 1056 def _qformat(self, aline, bline, atags, btags): 1057 r""" 1058 Format "?" output and deal with leading tabs. 1059 1060 Example: 1061 1062 >>> d = Differ() 1063 >>> results = d._qformat('\tabcDefghiJkl\n', '\tabcdefGhijkl\n', 1064 ... ' ^ ^ ^ ', ' ^ ^ ^ ') 1065 >>> for line in results: print repr(line) 1066 ... 1067 '- \tabcDefghiJkl\n' 1068 '? \t ^ ^ ^\n' 1069 '+ \tabcdefGhijkl\n' 1070 '? \t ^ ^ ^\n' 1071 """ 1072 1073 # Can hurt, but will probably help most of the time. 1074 common = min(_count_leading(aline, "\t"), 1075 _count_leading(bline, "\t")) 1076 common = min(common, _count_leading(atags[:common], " ")) 1077 common = min(common, _count_leading(btags[:common], " ")) 1078 atags = atags[common:].rstrip() 1079 btags = btags[common:].rstrip() 1080 1081 yield "- " + aline 1082 if atags: 1083 yield "? %s%s\n" % ("\t" * common, atags) 1084 1085 yield "+ " + bline 1086 if btags: 1087 yield "? %s%s\n" % ("\t" * common, btags) 1088 1089# With respect to junk, an earlier version of ndiff simply refused to 1090# *start* a match with a junk element. The result was cases like this: 1091# before: private Thread currentThread; 1092# after: private volatile Thread currentThread; 1093# If you consider whitespace to be junk, the longest contiguous match 1094# not starting with junk is "e Thread currentThread". So ndiff reported 1095# that "e volatil" was inserted between the 't' and the 'e' in "private". 1096# While an accurate view, to people that's absurd. The current version 1097# looks for matching blocks that are entirely junk-free, then extends the 1098# longest one of those as far as possible but only with matching junk. 1099# So now "currentThread" is matched, then extended to suck up the 1100# preceding blank; then "private" is matched, and extended to suck up the 1101# following blank; then "Thread" is matched; and finally ndiff reports 1102# that "volatile " was inserted before "Thread". The only quibble 1103# remaining is that perhaps it was really the case that " volatile" 1104# was inserted after "private". I can live with that <wink>. 1105 1106import re 1107 1108def IS_LINE_JUNK(line, pat=re.compile(r"\s*#?\s*$").match): 1109 r""" 1110 Return 1 for ignorable line: iff `line` is blank or contains a single '#'. 1111 1112 Examples: 1113 1114 >>> IS_LINE_JUNK('\n') 1115 True 1116 >>> IS_LINE_JUNK(' # \n') 1117 True 1118 >>> IS_LINE_JUNK('hello\n') 1119 False 1120 """ 1121 1122 return pat(line) is not None 1123 1124def IS_CHARACTER_JUNK(ch, ws=" \t"): 1125 r""" 1126 Return 1 for ignorable character: iff `ch` is a space or tab. 1127 1128 Examples: 1129 1130 >>> IS_CHARACTER_JUNK(' ') 1131 True 1132 >>> IS_CHARACTER_JUNK('\t') 1133 True 1134 >>> IS_CHARACTER_JUNK('\n') 1135 False 1136 >>> IS_CHARACTER_JUNK('x') 1137 False 1138 """ 1139 1140 return ch in ws 1141 1142 1143######################################################################## 1144### Unified Diff 1145######################################################################## 1146 1147def _format_range_unified(start, stop): 1148 'Convert range to the "ed" format' 1149 # Per the diff spec at http://www.unix.org/single_unix_specification/ 1150 beginning = start + 1 # lines start numbering with one 1151 length = stop - start 1152 if length == 1: 1153 return '{}'.format(beginning) 1154 if not length: 1155 beginning -= 1 # empty ranges begin at line just before the range 1156 return '{},{}'.format(beginning, length) 1157 1158def unified_diff(a, b, fromfile='', tofile='', fromfiledate='', 1159 tofiledate='', n=3, lineterm='\n'): 1160 r""" 1161 Compare two sequences of lines; generate the delta as a unified diff. 1162 1163 Unified diffs are a compact way of showing line changes and a few 1164 lines of context. The number of context lines is set by 'n' which 1165 defaults to three. 1166 1167 By default, the diff control lines (those with ---, +++, or @@) are 1168 created with a trailing newline. This is helpful so that inputs 1169 created from file.readlines() result in diffs that are suitable for 1170 file.writelines() since both the inputs and outputs have trailing 1171 newlines. 1172 1173 For inputs that do not have trailing newlines, set the lineterm 1174 argument to "" so that the output will be uniformly newline free. 1175 1176 The unidiff format normally has a header for filenames and modification 1177 times. Any or all of these may be specified using strings for 1178 'fromfile', 'tofile', 'fromfiledate', and 'tofiledate'. 1179 The modification times are normally expressed in the ISO 8601 format. 1180 1181 Example: 1182 1183 >>> for line in unified_diff('one two three four'.split(), 1184 ... 'zero one tree four'.split(), 'Original', 'Current', 1185 ... '2005-01-26 23:30:50', '2010-04-02 10:20:52', 1186 ... lineterm=''): 1187 ... print line # doctest: +NORMALIZE_WHITESPACE 1188 --- Original 2005-01-26 23:30:50 1189 +++ Current 2010-04-02 10:20:52 1190 @@ -1,4 +1,4 @@ 1191 +zero 1192 one 1193 -two 1194 -three 1195 +tree 1196 four 1197 """ 1198 1199 started = False 1200 for group in SequenceMatcher(None,a,b).get_grouped_opcodes(n): 1201 if not started: 1202 started = True 1203 fromdate = '\t{}'.format(fromfiledate) if fromfiledate else '' 1204 todate = '\t{}'.format(tofiledate) if tofiledate else '' 1205 yield '--- {}{}{}'.format(fromfile, fromdate, lineterm) 1206 yield '+++ {}{}{}'.format(tofile, todate, lineterm) 1207 1208 first, last = group[0], group[-1] 1209 file1_range = _format_range_unified(first[1], last[2]) 1210 file2_range = _format_range_unified(first[3], last[4]) 1211 yield '@@ -{} +{} @@{}'.format(file1_range, file2_range, lineterm) 1212 1213 for tag, i1, i2, j1, j2 in group: 1214 if tag == 'equal': 1215 for line in a[i1:i2]: 1216 yield ' ' + line 1217 continue 1218 if tag in ('replace', 'delete'): 1219 for line in a[i1:i2]: 1220 yield '-' + line 1221 if tag in ('replace', 'insert'): 1222 for line in b[j1:j2]: 1223 yield '+' + line 1224 1225 1226######################################################################## 1227### Context Diff 1228######################################################################## 1229 1230def _format_range_context(start, stop): 1231 'Convert range to the "ed" format' 1232 # Per the diff spec at http://www.unix.org/single_unix_specification/ 1233 beginning = start + 1 # lines start numbering with one 1234 length = stop - start 1235 if not length: 1236 beginning -= 1 # empty ranges begin at line just before the range 1237 if length <= 1: 1238 return '{}'.format(beginning) 1239 return '{},{}'.format(beginning, beginning + length - 1) 1240 1241# See http://www.unix.org/single_unix_specification/ 1242def context_diff(a, b, fromfile='', tofile='', 1243 fromfiledate='', tofiledate='', n=3, lineterm='\n'): 1244 r""" 1245 Compare two sequences of lines; generate the delta as a context diff. 1246 1247 Context diffs are a compact way of showing line changes and a few 1248 lines of context. The number of context lines is set by 'n' which 1249 defaults to three. 1250 1251 By default, the diff control lines (those with *** or ---) are 1252 created with a trailing newline. This is helpful so that inputs 1253 created from file.readlines() result in diffs that are suitable for 1254 file.writelines() since both the inputs and outputs have trailing 1255 newlines. 1256 1257 For inputs that do not have trailing newlines, set the lineterm 1258 argument to "" so that the output will be uniformly newline free. 1259 1260 The context diff format normally has a header for filenames and 1261 modification times. Any or all of these may be specified using 1262 strings for 'fromfile', 'tofile', 'fromfiledate', and 'tofiledate'. 1263 The modification times are normally expressed in the ISO 8601 format. 1264 If not specified, the strings default to blanks. 1265 1266 Example: 1267 1268 >>> print ''.join(context_diff('one\ntwo\nthree\nfour\n'.splitlines(1), 1269 ... 'zero\none\ntree\nfour\n'.splitlines(1), 'Original', 'Current')), 1270 *** Original 1271 --- Current 1272 *************** 1273 *** 1,4 **** 1274 one 1275 ! two 1276 ! three 1277 four 1278 --- 1,4 ---- 1279 + zero 1280 one 1281 ! tree 1282 four 1283 """ 1284 1285 prefix = dict(insert='+ ', delete='- ', replace='! ', equal=' ') 1286 started = False 1287 for group in SequenceMatcher(None,a,b).get_grouped_opcodes(n): 1288 if not started: 1289 started = True 1290 fromdate = '\t{}'.format(fromfiledate) if fromfiledate else '' 1291 todate = '\t{}'.format(tofiledate) if tofiledate else '' 1292 yield '*** {}{}{}'.format(fromfile, fromdate, lineterm) 1293 yield '--- {}{}{}'.format(tofile, todate, lineterm) 1294 1295 first, last = group[0], group[-1] 1296 yield '***************' + lineterm 1297 1298 file1_range = _format_range_context(first[1], last[2]) 1299 yield '*** {} ****{}'.format(file1_range, lineterm) 1300 1301 if any(tag in ('replace', 'delete') for tag, _, _, _, _ in group): 1302 for tag, i1, i2, _, _ in group: 1303 if tag != 'insert': 1304 for line in a[i1:i2]: 1305 yield prefix[tag] + line 1306 1307 file2_range = _format_range_context(first[3], last[4]) 1308 yield '--- {} ----{}'.format(file2_range, lineterm) 1309 1310 if any(tag in ('replace', 'insert') for tag, _, _, _, _ in group): 1311 for tag, _, _, j1, j2 in group: 1312 if tag != 'delete': 1313 for line in b[j1:j2]: 1314 yield prefix[tag] + line 1315 1316def ndiff(a, b, linejunk=None, charjunk=IS_CHARACTER_JUNK): 1317 r""" 1318 Compare `a` and `b` (lists of strings); return a `Differ`-style delta. 1319 1320 Optional keyword parameters `linejunk` and `charjunk` are for filter 1321 functions (or None): 1322 1323 - linejunk: A function that should accept a single string argument, and 1324 return true iff the string is junk. The default is None, and is 1325 recommended; as of Python 2.3, an adaptive notion of "noise" lines is 1326 used that does a good job on its own. 1327 1328 - charjunk: A function that should accept a string of length 1. The 1329 default is module-level function IS_CHARACTER_JUNK, which filters out 1330 whitespace characters (a blank or tab; note: bad idea to include newline 1331 in this!). 1332 1333 Tools/scripts/ndiff.py is a command-line front-end to this function. 1334 1335 Example: 1336 1337 >>> diff = ndiff('one\ntwo\nthree\n'.splitlines(1), 1338 ... 'ore\ntree\nemu\n'.splitlines(1)) 1339 >>> print ''.join(diff), 1340 - one 1341 ? ^ 1342 + ore 1343 ? ^ 1344 - two 1345 - three 1346 ? - 1347 + tree 1348 + emu 1349 """ 1350 return Differ(linejunk, charjunk).compare(a, b) 1351 1352def _mdiff(fromlines, tolines, context=None, linejunk=None, 1353 charjunk=IS_CHARACTER_JUNK): 1354 r"""Returns generator yielding marked up from/to side by side differences. 1355 1356 Arguments: 1357 fromlines -- list of text lines to compared to tolines 1358 tolines -- list of text lines to be compared to fromlines 1359 context -- number of context lines to display on each side of difference, 1360 if None, all from/to text lines will be generated. 1361 linejunk -- passed on to ndiff (see ndiff documentation) 1362 charjunk -- passed on to ndiff (see ndiff documentation) 1363 1364 This function returns an interator which returns a tuple: 1365 (from line tuple, to line tuple, boolean flag) 1366 1367 from/to line tuple -- (line num, line text) 1368 line num -- integer or None (to indicate a context separation) 1369 line text -- original line text with following markers inserted: 1370 '\0+' -- marks start of added text 1371 '\0-' -- marks start of deleted text 1372 '\0^' -- marks start of changed text 1373 '\1' -- marks end of added/deleted/changed text 1374 1375 boolean flag -- None indicates context separation, True indicates 1376 either "from" or "to" line contains a change, otherwise False. 1377 1378 This function/iterator was originally developed to generate side by side 1379 file difference for making HTML pages (see HtmlDiff class for example 1380 usage). 1381 1382 Note, this function utilizes the ndiff function to generate the side by 1383 side difference markup. Optional ndiff arguments may be passed to this 1384 function and they in turn will be passed to ndiff. 1385 """ 1386 import re 1387 1388 # regular expression for finding intraline change indices 1389 change_re = re.compile('(\++|\-+|\^+)') 1390 1391 # create the difference iterator to generate the differences 1392 diff_lines_iterator = ndiff(fromlines,tolines,linejunk,charjunk) 1393 1394 def _make_line(lines, format_key, side, num_lines=[0,0]): 1395 """Returns line of text with user's change markup and line formatting. 1396 1397 lines -- list of lines from the ndiff generator to produce a line of 1398 text from. When producing the line of text to return, the 1399 lines used are removed from this list. 1400 format_key -- '+' return first line in list with "add" markup around 1401 the entire line. 1402 '-' return first line in list with "delete" markup around 1403 the entire line. 1404 '?' return first line in list with add/delete/change 1405 intraline markup (indices obtained from second line) 1406 None return first line in list with no markup 1407 side -- indice into the num_lines list (0=from,1=to) 1408 num_lines -- from/to current line number. This is NOT intended to be a 1409 passed parameter. It is present as a keyword argument to 1410 maintain memory of the current line numbers between calls 1411 of this function. 1412 1413 Note, this function is purposefully not defined at the module scope so 1414 that data it needs from its parent function (within whose context it 1415 is defined) does not need to be of module scope. 1416 """ 1417 num_lines[side] += 1 1418 # Handle case where no user markup is to be added, just return line of 1419 # text with user's line format to allow for usage of the line number. 1420 if format_key is None: 1421 return (num_lines[side],lines.pop(0)[2:]) 1422 # Handle case of intraline changes 1423 if format_key == '?': 1424 text, markers = lines.pop(0), lines.pop(0) 1425 # find intraline changes (store change type and indices in tuples) 1426 sub_info = [] 1427 def record_sub_info(match_object,sub_info=sub_info): 1428 sub_info.append([match_object.group(1)[0],match_object.span()]) 1429 return match_object.group(1) 1430 change_re.sub(record_sub_info,markers) 1431 # process each tuple inserting our special marks that won't be 1432 # noticed by an xml/html escaper. 1433 for key,(begin,end) in sub_info[::-1]: 1434 text = text[0:begin]+'\0'+key+text[begin:end]+'\1'+text[end:] 1435 text = text[2:] 1436 # Handle case of add/delete entire line 1437 else: 1438 text = lines.pop(0)[2:] 1439 # if line of text is just a newline, insert a space so there is 1440 # something for the user to highlight and see. 1441 if not text: 1442 text = ' ' 1443 # insert marks that won't be noticed by an xml/html escaper. 1444 text = '\0' + format_key + text + '\1' 1445 # Return line of text, first allow user's line formatter to do its 1446 # thing (such as adding the line number) then replace the special 1447 # marks with what the user's change markup. 1448 return (num_lines[side],text) 1449 1450 def _line_iterator(): 1451 """Yields from/to lines of text with a change indication. 1452 1453 This function is an iterator. It itself pulls lines from a 1454 differencing iterator, processes them and yields them. When it can 1455 it yields both a "from" and a "to" line, otherwise it will yield one 1456 or the other. In addition to yielding the lines of from/to text, a 1457 boolean flag is yielded to indicate if the text line(s) have 1458 differences in them. 1459 1460 Note, this function is purposefully not defined at the module scope so 1461 that data it needs from its parent function (within whose context it 1462 is defined) does not need to be of module scope. 1463 """ 1464 lines = [] 1465 num_blanks_pending, num_blanks_to_yield = 0, 0 1466 while True: 1467 # Load up next 4 lines so we can look ahead, create strings which 1468 # are a concatenation of the first character of each of the 4 lines 1469 # so we can do some very readable comparisons. 1470 while len(lines) < 4: 1471 try: 1472 lines.append(diff_lines_iterator.next()) 1473 except StopIteration: 1474 lines.append('X') 1475 s = ''.join([line[0] for line in lines]) 1476 if s.startswith('X'): 1477 # When no more lines, pump out any remaining blank lines so the 1478 # corresponding add/delete lines get a matching blank line so 1479 # all line pairs get yielded at the next level. 1480 num_blanks_to_yield = num_blanks_pending 1481 elif s.startswith('-?+?'): 1482 # simple intraline change 1483 yield _make_line(lines,'?',0), _make_line(lines,'?',1), True 1484 continue 1485 elif s.startswith('--++'): 1486 # in delete block, add block coming: we do NOT want to get 1487 # caught up on blank lines yet, just process the delete line 1488 num_blanks_pending -= 1 1489 yield _make_line(lines,'-',0), None, True 1490 continue 1491 elif s.startswith(('--?+', '--+', '- ')): 1492 # in delete block and see a intraline change or unchanged line 1493 # coming: yield the delete line and then blanks 1494 from_line,to_line = _make_line(lines,'-',0), None 1495 num_blanks_to_yield,num_blanks_pending = num_blanks_pending-1,0 1496 elif s.startswith('-+?'): 1497 # intraline change 1498 yield _make_line(lines,None,0), _make_line(lines,'?',1), True 1499 continue 1500 elif s.startswith('-?+'): 1501 # intraline change 1502 yield _make_line(lines,'?',0), _make_line(lines,None,1), True 1503 continue 1504 elif s.startswith('-'): 1505 # delete FROM line 1506 num_blanks_pending -= 1 1507 yield _make_line(lines,'-',0), None, True 1508 continue 1509 elif s.startswith('+--'): 1510 # in add block, delete block coming: we do NOT want to get 1511 # caught up on blank lines yet, just process the add line 1512 num_blanks_pending += 1 1513 yield None, _make_line(lines,'+',1), True 1514 continue 1515 elif s.startswith(('+ ', '+-')): 1516 # will be leaving an add block: yield blanks then add line 1517 from_line, to_line = None, _make_line(lines,'+',1) 1518 num_blanks_to_yield,num_blanks_pending = num_blanks_pending+1,0 1519 elif s.startswith('+'): 1520 # inside an add block, yield the add line 1521 num_blanks_pending += 1 1522 yield None, _make_line(lines,'+',1), True 1523 continue 1524 elif s.startswith(' '): 1525 # unchanged text, yield it to both sides 1526 yield _make_line(lines[:],None,0),_make_line(lines,None,1),False 1527 continue 1528 # Catch up on the blank lines so when we yield the next from/to 1529 # pair, they are lined up. 1530 while(num_blanks_to_yield < 0): 1531 num_blanks_to_yield += 1 1532 yield None,('','\n'),True 1533 while(num_blanks_to_yield > 0): 1534 num_blanks_to_yield -= 1 1535 yield ('','\n'),None,True 1536 if s.startswith('X'): 1537 raise StopIteration 1538 else: 1539 yield from_line,to_line,True 1540 1541 def _line_pair_iterator(): 1542 """Yields from/to lines of text with a change indication. 1543 1544 This function is an iterator. It itself pulls lines from the line 1545 iterator. Its difference from that iterator is that this function 1546 always yields a pair of from/to text lines (with the change 1547 indication). If necessary it will collect single from/to lines 1548 until it has a matching pair from/to pair to yield. 1549 1550 Note, this function is purposefully not defined at the module scope so 1551 that data it needs from its parent function (within whose context it 1552 is defined) does not need to be of module scope. 1553 """ 1554 line_iterator = _line_iterator() 1555 fromlines,tolines=[],[] 1556 while True: 1557 # Collecting lines of text until we have a from/to pair 1558 while (len(fromlines)==0 or len(tolines)==0): 1559 from_line, to_line, found_diff =line_iterator.next() 1560 if from_line is not None: 1561 fromlines.append((from_line,found_diff)) 1562 if to_line is not None: 1563 tolines.append((to_line,found_diff)) 1564 # Once we have a pair, remove them from the collection and yield it 1565 from_line, fromDiff = fromlines.pop(0) 1566 to_line, to_diff = tolines.pop(0) 1567 yield (from_line,to_line,fromDiff or to_diff) 1568 1569 # Handle case where user does not want context differencing, just yield 1570 # them up without doing anything else with them. 1571 line_pair_iterator = _line_pair_iterator() 1572 if context is None: 1573 while True: 1574 yield line_pair_iterator.next() 1575 # Handle case where user wants context differencing. We must do some 1576 # storage of lines until we know for sure that they are to be yielded. 1577 else: 1578 context += 1 1579 lines_to_write = 0 1580 while True: 1581 # Store lines up until we find a difference, note use of a 1582 # circular queue because we only need to keep around what 1583 # we need for context. 1584 index, contextLines = 0, [None]*(context) 1585 found_diff = False 1586 while(found_diff is False): 1587 from_line, to_line, found_diff = line_pair_iterator.next() 1588 i = index % context 1589 contextLines[i] = (from_line, to_line, found_diff) 1590 index += 1 1591 # Yield lines that we have collected so far, but first yield 1592 # the user's separator. 1593 if index > context: 1594 yield None, None, None 1595 lines_to_write = context 1596 else: 1597 lines_to_write = index 1598 index = 0 1599 while(lines_to_write): 1600 i = index % context 1601 index += 1 1602 yield contextLines[i] 1603 lines_to_write -= 1 1604 # Now yield the context lines after the change 1605 lines_to_write = context-1 1606 while(lines_to_write): 1607 from_line, to_line, found_diff = line_pair_iterator.next() 1608 # If another change within the context, extend the context 1609 if found_diff: 1610 lines_to_write = context-1 1611 else: 1612 lines_to_write -= 1 1613 yield from_line, to_line, found_diff 1614 1615 1616_file_template = """ 1617<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 1618 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 1619 1620<html> 1621 1622<head> 1623 <meta http-equiv="Content-Type" 1624 content="text/html; charset=ISO-8859-1" /> 1625 <title></title> 1626 <style type="text/css">%(styles)s 1627 </style> 1628</head> 1629 1630<body> 1631 %(table)s%(legend)s 1632</body> 1633 1634</html>""" 1635 1636_styles = """ 1637 table.diff {font-family:Courier; border:medium;} 1638 .diff_header {background-color:#e0e0e0} 1639 td.diff_header {text-align:right} 1640 .diff_next {background-color:#c0c0c0} 1641 .diff_add {background-color:#aaffaa} 1642 .diff_chg {background-color:#ffff77} 1643 .diff_sub {background-color:#ffaaaa}""" 1644 1645_table_template = """ 1646 <table class="diff" id="difflib_chg_%(prefix)s_top" 1647 cellspacing="0" cellpadding="0" rules="groups" > 1648 <colgroup></colgroup> <colgroup></colgroup> <colgroup></colgroup> 1649 <colgroup></colgroup> <colgroup></colgroup> <colgroup></colgroup> 1650 %(header_row)s 1651 <tbody> 1652%(data_rows)s </tbody> 1653 </table>""" 1654 1655_legend = """ 1656 <table class="diff" summary="Legends"> 1657 <tr> <th colspan="2"> Legends </th> </tr> 1658 <tr> <td> <table border="" summary="Colors"> 1659 <tr><th> Colors </th> </tr> 1660 <tr><td class="diff_add"> Added </td></tr> 1661 <tr><td class="diff_chg">Changed</td> </tr> 1662 <tr><td class="diff_sub">Deleted</td> </tr> 1663 </table></td> 1664 <td> <table border="" summary="Links"> 1665 <tr><th colspan="2"> Links </th> </tr> 1666 <tr><td>(f)irst change</td> </tr> 1667 <tr><td>(n)ext change</td> </tr> 1668 <tr><td>(t)op</td> </tr> 1669 </table></td> </tr> 1670 </table>""" 1671 1672class HtmlDiff(object): 1673 """For producing HTML side by side comparison with change highlights. 1674 1675 This class can be used to create an HTML table (or a complete HTML file 1676 containing the table) showing a side by side, line by line comparison 1677 of text with inter-line and intra-line change highlights. The table can 1678 be generated in either full or contextual difference mode. 1679 1680 The following methods are provided for HTML generation: 1681 1682 make_table -- generates HTML for a single side by side table 1683 make_file -- generates complete HTML file with a single side by side table 1684 1685 See tools/scripts/diff.py for an example usage of this class. 1686 """ 1687 1688 _file_template = _file_template 1689 _styles = _styles 1690 _table_template = _table_template 1691 _legend = _legend 1692 _default_prefix = 0 1693 1694 def __init__(self,tabsize=8,wrapcolumn=None,linejunk=None, 1695 charjunk=IS_CHARACTER_JUNK): 1696 """HtmlDiff instance initializer 1697 1698 Arguments: 1699 tabsize -- tab stop spacing, defaults to 8. 1700 wrapcolumn -- column number where lines are broken and wrapped, 1701 defaults to None where lines are not wrapped. 1702 linejunk,charjunk -- keyword arguments passed into ndiff() (used to by 1703 HtmlDiff() to generate the side by side HTML differences). See 1704 ndiff() documentation for argument default values and descriptions. 1705 """ 1706 self._tabsize = tabsize 1707 self._wrapcolumn = wrapcolumn 1708 self._linejunk = linejunk 1709 self._charjunk = charjunk 1710 1711 def make_file(self,fromlines,tolines,fromdesc='',todesc='',context=False, 1712 numlines=5): 1713 """Returns HTML file of side by side comparison with change highlights 1714 1715 Arguments: 1716 fromlines -- list of "from" lines 1717 tolines -- list of "to" lines 1718 fromdesc -- "from" file column header string 1719 todesc -- "to" file column header string 1720 context -- set to True for contextual differences (defaults to False 1721 which shows full differences). 1722 numlines -- number of context lines. When context is set True, 1723 controls number of lines displayed before and after the change. 1724 When context is False, controls the number of lines to place 1725 the "next" link anchors before the next change (so click of 1726 "next" link jumps to just before the change). 1727 """ 1728 1729 return self._file_template % dict( 1730 styles = self._styles, 1731 legend = self._legend, 1732 table = self.make_table(fromlines,tolines,fromdesc,todesc, 1733 context=context,numlines=numlines)) 1734 1735 def _tab_newline_replace(self,fromlines,tolines): 1736 """Returns from/to line lists with tabs expanded and newlines removed. 1737 1738 Instead of tab characters being replaced by the number of spaces 1739 needed to fill in to the next tab stop, this function will fill 1740 the space with tab characters. This is done so that the difference 1741 algorithms can identify changes in a file when tabs are replaced by 1742 spaces and vice versa. At the end of the HTML generation, the tab 1743 characters will be replaced with a nonbreakable space. 1744 """ 1745 def expand_tabs(line): 1746 # hide real spaces 1747 line = line.replace(' ','\0') 1748 # expand tabs into spaces 1749 line = line.expandtabs(self._tabsize) 1750 # replace spaces from expanded tabs back into tab characters 1751 # (we'll replace them with markup after we do differencing) 1752 line = line.replace(' ','\t') 1753 return line.replace('\0',' ').rstrip('\n') 1754 fromlines = [expand_tabs(line) for line in fromlines] 1755 tolines = [expand_tabs(line) for line in tolines] 1756 return fromlines,tolines 1757 1758 def _split_line(self,data_list,line_num,text): 1759 """Builds list of text lines by splitting text lines at wrap point 1760 1761 This function will determine if the input text line needs to be 1762 wrapped (split) into separate lines. If so, the first wrap point 1763 will be determined and the first line appended to the output 1764 text line list. This function is used recursively to handle 1765 the second part of the split line to further split it. 1766 """ 1767 # if blank line or context separator, just add it to the output list 1768 if not line_num: 1769 data_list.append((line_num,text)) 1770 return 1771 1772 # if line text doesn't need wrapping, just add it to the output list 1773 size = len(text) 1774 max = self._wrapcolumn 1775 if (size <= max) or ((size -(text.count('\0')*3)) <= max): 1776 data_list.append((line_num,text)) 1777 return 1778 1779 # scan text looking for the wrap point, keeping track if the wrap 1780 # point is inside markers 1781 i = 0 1782 n = 0 1783 mark = '' 1784 while n < max and i < size: 1785 if text[i] == '\0': 1786 i += 1 1787 mark = text[i] 1788 i += 1 1789 elif text[i] == '\1': 1790 i += 1 1791 mark = '' 1792 else: 1793 i += 1 1794 n += 1 1795 1796 # wrap point is inside text, break it up into separate lines 1797 line1 = text[:i] 1798 line2 = text[i:] 1799 1800 # if wrap point is inside markers, place end marker at end of first 1801 # line and start marker at beginning of second line because each 1802 # line will have its own table tag markup around it. 1803 if mark: 1804 line1 = line1 + '\1' 1805 line2 = '\0' + mark + line2 1806 1807 # tack on first line onto the output list 1808 data_list.append((line_num,line1)) 1809 1810 # use this routine again to wrap the remaining text 1811 self._split_line(data_list,'>',line2) 1812 1813 def _line_wrapper(self,diffs): 1814 """Returns iterator that splits (wraps) mdiff text lines""" 1815 1816 # pull from/to data and flags from mdiff iterator 1817 for fromdata,todata,flag in diffs: 1818 # check for context separators and pass them through 1819 if flag is None: 1820 yield fromdata,todata,flag 1821 continue 1822 (fromline,fromtext),(toline,totext) = fromdata,todata 1823 # for each from/to line split it at the wrap column to form 1824 # list of text lines. 1825 fromlist,tolist = [],[] 1826 self._split_line(fromlist,fromline,fromtext) 1827 self._split_line(tolist,toline,totext) 1828 # yield from/to line in pairs inserting blank lines as 1829 # necessary when one side has more wrapped lines 1830 while fromlist or tolist: 1831 if fromlist: 1832 fromdata = fromlist.pop(0) 1833 else: 1834 fromdata = ('',' ') 1835 if tolist: 1836 todata = tolist.pop(0) 1837 else: 1838 todata = ('',' ') 1839 yield fromdata,todata,flag 1840 1841 def _collect_lines(self,diffs): 1842 """Collects mdiff output into separate lists 1843 1844 Before storing the mdiff from/to data into a list, it is converted 1845 into a single line of text with HTML markup. 1846 """ 1847 1848 fromlist,tolist,flaglist = [],[],[] 1849 # pull from/to data and flags from mdiff style iterator 1850 for fromdata,todata,flag in diffs: 1851 try: 1852 # store HTML markup of the lines into the lists 1853 fromlist.append(self._format_line(0,flag,*fromdata)) 1854 tolist.append(self._format_line(1,flag,*todata)) 1855 except TypeError: 1856 # exceptions occur for lines where context separators go 1857 fromlist.append(None) 1858 tolist.append(None) 1859 flaglist.append(flag) 1860 return fromlist,tolist,flaglist 1861 1862 def _format_line(self,side,flag,linenum,text): 1863 """Returns HTML markup of "from" / "to" text lines 1864 1865 side -- 0 or 1 indicating "from" or "to" text 1866 flag -- indicates if difference on line 1867 linenum -- line number (used for line number column) 1868 text -- line text to be marked up 1869 """ 1870 try: 1871 linenum = '%d' % linenum 1872 id = ' id="%s%s"' % (self._prefix[side],linenum) 1873 except TypeError: 1874 # handle blank lines where linenum is '>' or '' 1875 id = '' 1876 # replace those things that would get confused with HTML symbols 1877 text=text.replace("&","&").replace(">",">").replace("<","<") 1878 1879 # make space non-breakable so they don't get compressed or line wrapped 1880 text = text.replace(' ',' ').rstrip() 1881 1882 return '<td class="diff_header"%s>%s</td><td nowrap="nowrap">%s</td>' \ 1883 % (id,linenum,text) 1884 1885 def _make_prefix(self): 1886 """Create unique anchor prefixes""" 1887 1888 # Generate a unique anchor prefix so multiple tables 1889 # can exist on the same HTML page without conflicts. 1890 fromprefix = "from%d_" % HtmlDiff._default_prefix 1891 toprefix = "to%d_" % HtmlDiff._default_prefix 1892 HtmlDiff._default_prefix += 1 1893 # store prefixes so line format method has access 1894 self._prefix = [fromprefix,toprefix] 1895 1896 def _convert_flags(self,fromlist,tolist,flaglist,context,numlines): 1897 """Makes list of "next" links""" 1898 1899 # all anchor names will be generated using the unique "to" prefix 1900 toprefix = self._prefix[1] 1901 1902 # process change flags, generating middle column of next anchors/links 1903 next_id = ['']*len(flaglist) 1904 next_href = ['']*len(flaglist) 1905 num_chg, in_change = 0, False 1906 last = 0 1907 for i,flag in enumerate(flaglist): 1908 if flag: 1909 if not in_change: 1910 in_change = True 1911 last = i 1912 # at the beginning of a change, drop an anchor a few lines 1913 # (the context lines) before the change for the previous 1914 # link 1915 i = max([0,i-numlines]) 1916 next_id[i] = ' id="difflib_chg_%s_%d"' % (toprefix,num_chg) 1917 # at the beginning of a change, drop a link to the next 1918 # change 1919 num_chg += 1 1920 next_href[last] = '<a href="#difflib_chg_%s_%d">n</a>' % ( 1921 toprefix,num_chg) 1922 else: 1923 in_change = False 1924 # check for cases where there is no content to avoid exceptions 1925 if not flaglist: 1926 flaglist = [False] 1927 next_id = [''] 1928 next_href = [''] 1929 last = 0 1930 if context: 1931 fromlist = ['<td></td><td> No Differences Found </td>'] 1932 tolist = fromlist 1933 else: 1934 fromlist = tolist = ['<td></td><td> Empty File </td>'] 1935 # if not a change on first line, drop a link 1936 if not flaglist[0]: 1937 next_href[0] = '<a href="#difflib_chg_%s_0">f</a>' % toprefix 1938 # redo the last link to link to the top 1939 next_href[last] = '<a href="#difflib_chg_%s_top">t</a>' % (toprefix) 1940 1941 return fromlist,tolist,flaglist,next_href,next_id 1942 1943 def make_table(self,fromlines,tolines,fromdesc='',todesc='',context=False, 1944 numlines=5): 1945 """Returns HTML table of side by side comparison with change highlights 1946 1947 Arguments: 1948 fromlines -- list of "from" lines 1949 tolines -- list of "to" lines 1950 fromdesc -- "from" file column header string 1951 todesc -- "to" file column header string 1952 context -- set to True for contextual differences (defaults to False 1953 which shows full differences). 1954 numlines -- number of context lines. When context is set True, 1955 controls number of lines displayed before and after the change. 1956 When context is False, controls the number of lines to place 1957 the "next" link anchors before the next change (so click of 1958 "next" link jumps to just before the change). 1959 """ 1960 1961 # make unique anchor prefixes so that multiple tables may exist 1962 # on the same page without conflict. 1963 self._make_prefix() 1964 1965 # change tabs to spaces before it gets more difficult after we insert 1966 # markkup 1967 fromlines,tolines = self._tab_newline_replace(fromlines,tolines) 1968 1969 # create diffs iterator which generates side by side from/to data 1970 if context: 1971 context_lines = numlines 1972 else: 1973 context_lines = None 1974 diffs = _mdiff(fromlines,tolines,context_lines,linejunk=self._linejunk, 1975 charjunk=self._charjunk) 1976 1977 # set up iterator to wrap lines that exceed desired width 1978 if self._wrapcolumn: 1979 diffs = self._line_wrapper(diffs) 1980 1981 # collect up from/to lines and flags into lists (also format the lines) 1982 fromlist,tolist,flaglist = self._collect_lines(diffs) 1983 1984 # process change flags, generating middle column of next anchors/links 1985 fromlist,tolist,flaglist,next_href,next_id = self._convert_flags( 1986 fromlist,tolist,flaglist,context,numlines) 1987 1988 s = [] 1989 fmt = ' <tr><td class="diff_next"%s>%s</td>%s' + \ 1990 '<td class="diff_next">%s</td>%s</tr>\n' 1991 for i in range(len(flaglist)): 1992 if flaglist[i] is None: 1993 # mdiff yields None on separator lines skip the bogus ones 1994 # generated for the first line 1995 if i > 0: 1996 s.append(' </tbody> \n <tbody>\n') 1997 else: 1998 s.append( fmt % (next_id[i],next_href[i],fromlist[i], 1999 next_href[i],tolist[i])) 2000 if fromdesc or todesc: 2001 header_row = '<thead><tr>%s%s%s%s</tr></thead>' % ( 2002 '<th class="diff_next"><br /></th>', 2003 '<th colspan="2" class="diff_header">%s</th>' % fromdesc, 2004 '<th class="diff_next"><br /></th>', 2005 '<th colspan="2" class="diff_header">%s</th>' % todesc) 2006 else: 2007 header_row = '' 2008 2009 table = self._table_template % dict( 2010 data_rows=''.join(s), 2011 header_row=header_row, 2012 prefix=self._prefix[1]) 2013 2014 return table.replace('\0+','<span class="diff_add">'). \ 2015 replace('\0-','<span class="diff_sub">'). \ 2016 replace('\0^','<span class="diff_chg">'). \ 2017 replace('\1','</span>'). \ 2018 replace('\t',' ') 2019 2020del re 2021 2022def restore(delta, which): 2023 r""" 2024 Generate one of the two sequences that generated a delta. 2025 2026 Given a `delta` produced by `Differ.compare()` or `ndiff()`, extract 2027 lines originating from file 1 or 2 (parameter `which`), stripping off line 2028 prefixes. 2029 2030 Examples: 2031 2032 >>> diff = ndiff('one\ntwo\nthree\n'.splitlines(1), 2033 ... 'ore\ntree\nemu\n'.splitlines(1)) 2034 >>> diff = list(diff) 2035 >>> print ''.join(restore(diff, 1)), 2036 one 2037 two 2038 three 2039 >>> print ''.join(restore(diff, 2)), 2040 ore 2041 tree 2042 emu 2043 """ 2044 try: 2045 tag = {1: "- ", 2: "+ "}[int(which)] 2046 except KeyError: 2047 raise ValueError, ('unknown delta choice (must be 1 or 2): %r' 2048 % which) 2049 prefixes = (" ", tag) 2050 for line in delta: 2051 if line[:2] in prefixes: 2052 yield line[2:] 2053 2054def _test(): 2055 import doctest, difflib 2056 return doctest.testmod(difflib) 2057 2058if __name__ == "__main__": 2059 _test() 2060