1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
18 #define ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
19 
20 #include <map>
21 #include <unordered_set>
22 #include <vector>
23 
24 #include "art_field-inl.h"
25 #include "debug/dwarf/debug_abbrev_writer.h"
26 #include "debug/dwarf/debug_info_entry_writer.h"
27 #include "debug/elf_compilation_unit.h"
28 #include "debug/elf_debug_loc_writer.h"
29 #include "debug/method_debug_info.h"
30 #include "dex_file-inl.h"
31 #include "dex_file.h"
32 #include "elf_builder.h"
33 #include "linear_alloc.h"
34 #include "mirror/array.h"
35 #include "mirror/class-inl.h"
36 #include "mirror/class.h"
37 
38 namespace art {
39 namespace debug {
40 
41 typedef std::vector<DexFile::LocalInfo> LocalInfos;
42 
LocalInfoCallback(void * ctx,const DexFile::LocalInfo & entry)43 static void LocalInfoCallback(void* ctx, const DexFile::LocalInfo& entry) {
44   static_cast<LocalInfos*>(ctx)->push_back(entry);
45 }
46 
GetParamNames(const MethodDebugInfo * mi)47 static std::vector<const char*> GetParamNames(const MethodDebugInfo* mi) {
48   std::vector<const char*> names;
49   if (mi->code_item != nullptr) {
50     DCHECK(mi->dex_file != nullptr);
51     const uint8_t* stream = mi->dex_file->GetDebugInfoStream(mi->code_item);
52     if (stream != nullptr) {
53       DecodeUnsignedLeb128(&stream);  // line.
54       uint32_t parameters_size = DecodeUnsignedLeb128(&stream);
55       for (uint32_t i = 0; i < parameters_size; ++i) {
56         uint32_t id = DecodeUnsignedLeb128P1(&stream);
57         names.push_back(mi->dex_file->StringDataByIdx(dex::StringIndex(id)));
58       }
59     }
60   }
61   return names;
62 }
63 
64 // Helper class to write .debug_info and its supporting sections.
65 template<typename ElfTypes>
66 class ElfDebugInfoWriter {
67   using Elf_Addr = typename ElfTypes::Addr;
68 
69  public:
ElfDebugInfoWriter(ElfBuilder<ElfTypes> * builder)70   explicit ElfDebugInfoWriter(ElfBuilder<ElfTypes>* builder)
71       : builder_(builder),
72         debug_abbrev_(&debug_abbrev_buffer_) {
73   }
74 
Start()75   void Start() {
76     builder_->GetDebugInfo()->Start();
77   }
78 
End(bool write_oat_patches)79   void End(bool write_oat_patches) {
80     builder_->GetDebugInfo()->End();
81     if (write_oat_patches) {
82       builder_->WritePatches(".debug_info.oat_patches",
83                              ArrayRef<const uintptr_t>(debug_info_patches_));
84     }
85     builder_->WriteSection(".debug_abbrev", &debug_abbrev_buffer_);
86     if (!debug_loc_.empty()) {
87       builder_->WriteSection(".debug_loc", &debug_loc_);
88     }
89     if (!debug_ranges_.empty()) {
90       builder_->WriteSection(".debug_ranges", &debug_ranges_);
91     }
92   }
93 
94  private:
95   ElfBuilder<ElfTypes>* builder_;
96   std::vector<uintptr_t> debug_info_patches_;
97   std::vector<uint8_t> debug_abbrev_buffer_;
98   dwarf::DebugAbbrevWriter<> debug_abbrev_;
99   std::vector<uint8_t> debug_loc_;
100   std::vector<uint8_t> debug_ranges_;
101 
102   std::unordered_set<const char*> defined_dex_classes_;  // For CHECKs only.
103 
104   template<typename ElfTypes2>
105   friend class ElfCompilationUnitWriter;
106 };
107 
108 // Helper class to write one compilation unit.
109 // It holds helper methods and temporary state.
110 template<typename ElfTypes>
111 class ElfCompilationUnitWriter {
112   using Elf_Addr = typename ElfTypes::Addr;
113 
114  public:
ElfCompilationUnitWriter(ElfDebugInfoWriter<ElfTypes> * owner)115   explicit ElfCompilationUnitWriter(ElfDebugInfoWriter<ElfTypes>* owner)
116     : owner_(owner),
117       info_(Is64BitInstructionSet(owner_->builder_->GetIsa()), &owner->debug_abbrev_) {
118   }
119 
Write(const ElfCompilationUnit & compilation_unit)120   void Write(const ElfCompilationUnit& compilation_unit) {
121     CHECK(!compilation_unit.methods.empty());
122     const Elf_Addr base_address = compilation_unit.is_code_address_text_relative
123         ? owner_->builder_->GetText()->GetAddress()
124         : 0;
125     const uint64_t cu_size = compilation_unit.code_end - compilation_unit.code_address;
126     using namespace dwarf;  // NOLINT. For easy access to DWARF constants.
127 
128     info_.StartTag(DW_TAG_compile_unit);
129     info_.WriteString(DW_AT_producer, "Android dex2oat");
130     info_.WriteData1(DW_AT_language, DW_LANG_Java);
131     info_.WriteString(DW_AT_comp_dir, "$JAVA_SRC_ROOT");
132     info_.WriteAddr(DW_AT_low_pc, base_address + compilation_unit.code_address);
133     info_.WriteUdata(DW_AT_high_pc, dchecked_integral_cast<uint32_t>(cu_size));
134     info_.WriteSecOffset(DW_AT_stmt_list, compilation_unit.debug_line_offset);
135 
136     const char* last_dex_class_desc = nullptr;
137     for (auto mi : compilation_unit.methods) {
138       DCHECK(mi->dex_file != nullptr);
139       const DexFile* dex = mi->dex_file;
140       const DexFile::CodeItem* dex_code = mi->code_item;
141       const DexFile::MethodId& dex_method = dex->GetMethodId(mi->dex_method_index);
142       const DexFile::ProtoId& dex_proto = dex->GetMethodPrototype(dex_method);
143       const DexFile::TypeList* dex_params = dex->GetProtoParameters(dex_proto);
144       const char* dex_class_desc = dex->GetMethodDeclaringClassDescriptor(dex_method);
145       const bool is_static = (mi->access_flags & kAccStatic) != 0;
146 
147       // Enclose the method in correct class definition.
148       if (last_dex_class_desc != dex_class_desc) {
149         if (last_dex_class_desc != nullptr) {
150           EndClassTag();
151         }
152         // Write reference tag for the class we are about to declare.
153         size_t reference_tag_offset = info_.StartTag(DW_TAG_reference_type);
154         type_cache_.emplace(std::string(dex_class_desc), reference_tag_offset);
155         size_t type_attrib_offset = info_.size();
156         info_.WriteRef4(DW_AT_type, 0);
157         info_.EndTag();
158         // Declare the class that owns this method.
159         size_t class_offset = StartClassTag(dex_class_desc);
160         info_.UpdateUint32(type_attrib_offset, class_offset);
161         info_.WriteFlagPresent(DW_AT_declaration);
162         // Check that each class is defined only once.
163         bool unique = owner_->defined_dex_classes_.insert(dex_class_desc).second;
164         CHECK(unique) << "Redefinition of " << dex_class_desc;
165         last_dex_class_desc = dex_class_desc;
166       }
167 
168       int start_depth = info_.Depth();
169       info_.StartTag(DW_TAG_subprogram);
170       WriteName(dex->GetMethodName(dex_method));
171       info_.WriteAddr(DW_AT_low_pc, base_address + mi->code_address);
172       info_.WriteUdata(DW_AT_high_pc, mi->code_size);
173       std::vector<uint8_t> expr_buffer;
174       Expression expr(&expr_buffer);
175       expr.WriteOpCallFrameCfa();
176       info_.WriteExprLoc(DW_AT_frame_base, expr);
177       WriteLazyType(dex->GetReturnTypeDescriptor(dex_proto));
178 
179       // Decode dex register locations for all stack maps.
180       // It might be expensive, so do it just once and reuse the result.
181       std::vector<DexRegisterMap> dex_reg_maps;
182       if (mi->code_info != nullptr) {
183         const CodeInfo code_info(mi->code_info);
184         CodeInfoEncoding encoding = code_info.ExtractEncoding();
185         for (size_t s = 0; s < code_info.GetNumberOfStackMaps(encoding); ++s) {
186           const StackMap& stack_map = code_info.GetStackMapAt(s, encoding);
187           dex_reg_maps.push_back(code_info.GetDexRegisterMapOf(
188               stack_map, encoding, dex_code->registers_size_));
189         }
190       }
191 
192       // Write parameters. DecodeDebugLocalInfo returns them as well, but it does not
193       // guarantee order or uniqueness so it is safer to iterate over them manually.
194       // DecodeDebugLocalInfo might not also be available if there is no debug info.
195       std::vector<const char*> param_names = GetParamNames(mi);
196       uint32_t arg_reg = 0;
197       if (!is_static) {
198         info_.StartTag(DW_TAG_formal_parameter);
199         WriteName("this");
200         info_.WriteFlagPresent(DW_AT_artificial);
201         WriteLazyType(dex_class_desc);
202         if (dex_code != nullptr) {
203           // Write the stack location of the parameter.
204           const uint32_t vreg = dex_code->registers_size_ - dex_code->ins_size_ + arg_reg;
205           const bool is64bitValue = false;
206           WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address);
207         }
208         arg_reg++;
209         info_.EndTag();
210       }
211       if (dex_params != nullptr) {
212         for (uint32_t i = 0; i < dex_params->Size(); ++i) {
213           info_.StartTag(DW_TAG_formal_parameter);
214           // Parameter names may not be always available.
215           if (i < param_names.size()) {
216             WriteName(param_names[i]);
217           }
218           // Write the type.
219           const char* type_desc = dex->StringByTypeIdx(dex_params->GetTypeItem(i).type_idx_);
220           WriteLazyType(type_desc);
221           const bool is64bitValue = type_desc[0] == 'D' || type_desc[0] == 'J';
222           if (dex_code != nullptr) {
223             // Write the stack location of the parameter.
224             const uint32_t vreg = dex_code->registers_size_ - dex_code->ins_size_ + arg_reg;
225             WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address);
226           }
227           arg_reg += is64bitValue ? 2 : 1;
228           info_.EndTag();
229         }
230         if (dex_code != nullptr) {
231           DCHECK_EQ(arg_reg, dex_code->ins_size_);
232         }
233       }
234 
235       // Write local variables.
236       LocalInfos local_infos;
237       if (dex->DecodeDebugLocalInfo(dex_code,
238                                     is_static,
239                                     mi->dex_method_index,
240                                     LocalInfoCallback,
241                                     &local_infos)) {
242         for (const DexFile::LocalInfo& var : local_infos) {
243           if (var.reg_ < dex_code->registers_size_ - dex_code->ins_size_) {
244             info_.StartTag(DW_TAG_variable);
245             WriteName(var.name_);
246             WriteLazyType(var.descriptor_);
247             bool is64bitValue = var.descriptor_[0] == 'D' || var.descriptor_[0] == 'J';
248             WriteRegLocation(mi,
249                              dex_reg_maps,
250                              var.reg_,
251                              is64bitValue,
252                              compilation_unit.code_address,
253                              var.start_address_,
254                              var.end_address_);
255             info_.EndTag();
256           }
257         }
258       }
259 
260       info_.EndTag();
261       CHECK_EQ(info_.Depth(), start_depth);  // Balanced start/end.
262     }
263     if (last_dex_class_desc != nullptr) {
264       EndClassTag();
265     }
266     FinishLazyTypes();
267     CloseNamespacesAboveDepth(0);
268     info_.EndTag();  // DW_TAG_compile_unit
269     CHECK_EQ(info_.Depth(), 0);
270     std::vector<uint8_t> buffer;
271     buffer.reserve(info_.data()->size() + KB);
272     const size_t offset = owner_->builder_->GetDebugInfo()->GetSize();
273     // All compilation units share single table which is at the start of .debug_abbrev.
274     const size_t debug_abbrev_offset = 0;
275     WriteDebugInfoCU(debug_abbrev_offset, info_, offset, &buffer, &owner_->debug_info_patches_);
276     owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
277   }
278 
Write(const ArrayRef<mirror::Class * > & types)279   void Write(const ArrayRef<mirror::Class*>& types) REQUIRES_SHARED(Locks::mutator_lock_) {
280     using namespace dwarf;  // NOLINT. For easy access to DWARF constants.
281 
282     info_.StartTag(DW_TAG_compile_unit);
283     info_.WriteString(DW_AT_producer, "Android dex2oat");
284     info_.WriteData1(DW_AT_language, DW_LANG_Java);
285 
286     // Base class references to be patched at the end.
287     std::map<size_t, mirror::Class*> base_class_references;
288 
289     // Already written declarations or definitions.
290     std::map<mirror::Class*, size_t> class_declarations;
291 
292     std::vector<uint8_t> expr_buffer;
293     for (mirror::Class* type : types) {
294       if (type->IsPrimitive()) {
295         // For primitive types the definition and the declaration is the same.
296         if (type->GetPrimitiveType() != Primitive::kPrimVoid) {
297           WriteTypeDeclaration(type->GetDescriptor(nullptr));
298         }
299       } else if (type->IsArrayClass()) {
300         mirror::Class* element_type = type->GetComponentType();
301         uint32_t component_size = type->GetComponentSize();
302         uint32_t data_offset = mirror::Array::DataOffset(component_size).Uint32Value();
303         uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
304 
305         CloseNamespacesAboveDepth(0);  // Declare in root namespace.
306         info_.StartTag(DW_TAG_array_type);
307         std::string descriptor_string;
308         WriteLazyType(element_type->GetDescriptor(&descriptor_string));
309         WriteLinkageName(type);
310         info_.WriteUdata(DW_AT_data_member_location, data_offset);
311         info_.StartTag(DW_TAG_subrange_type);
312         Expression count_expr(&expr_buffer);
313         count_expr.WriteOpPushObjectAddress();
314         count_expr.WriteOpPlusUconst(length_offset);
315         count_expr.WriteOpDerefSize(4);  // Array length is always 32-bit wide.
316         info_.WriteExprLoc(DW_AT_count, count_expr);
317         info_.EndTag();  // DW_TAG_subrange_type.
318         info_.EndTag();  // DW_TAG_array_type.
319       } else if (type->IsInterface()) {
320         // Skip.  Variables cannot have an interface as a dynamic type.
321         // We do not expose the interface information to the debugger in any way.
322       } else {
323         std::string descriptor_string;
324         const char* desc = type->GetDescriptor(&descriptor_string);
325         size_t class_offset = StartClassTag(desc);
326         class_declarations.emplace(type, class_offset);
327 
328         if (!type->IsVariableSize()) {
329           info_.WriteUdata(DW_AT_byte_size, type->GetObjectSize());
330         }
331 
332         WriteLinkageName(type);
333 
334         if (type->IsObjectClass()) {
335           // Generate artificial member which is used to get the dynamic type of variable.
336           // The run-time value of this field will correspond to linkage name of some type.
337           // We need to do it only once in j.l.Object since all other types inherit it.
338           info_.StartTag(DW_TAG_member);
339           WriteName(".dynamic_type");
340           WriteLazyType(sizeof(uintptr_t) == 8 ? "J" : "I");
341           info_.WriteFlagPresent(DW_AT_artificial);
342           // Create DWARF expression to get the value of the methods_ field.
343           Expression expr(&expr_buffer);
344           // The address of the object has been implicitly pushed on the stack.
345           // Dereference the klass_ field of Object (32-bit; possibly poisoned).
346           DCHECK_EQ(type->ClassOffset().Uint32Value(), 0u);
347           DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Class>), 4u);
348           expr.WriteOpDerefSize(4);
349           if (kPoisonHeapReferences) {
350             expr.WriteOpNeg();
351             // DWARF stack is pointer sized. Ensure that the high bits are clear.
352             expr.WriteOpConstu(0xFFFFFFFF);
353             expr.WriteOpAnd();
354           }
355           // Add offset to the methods_ field.
356           expr.WriteOpPlusUconst(mirror::Class::MethodsOffset().Uint32Value());
357           // Top of stack holds the location of the field now.
358           info_.WriteExprLoc(DW_AT_data_member_location, expr);
359           info_.EndTag();  // DW_TAG_member.
360         }
361 
362         // Base class.
363         mirror::Class* base_class = type->GetSuperClass();
364         if (base_class != nullptr) {
365           info_.StartTag(DW_TAG_inheritance);
366           base_class_references.emplace(info_.size(), base_class);
367           info_.WriteRef4(DW_AT_type, 0);
368           info_.WriteUdata(DW_AT_data_member_location, 0);
369           info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public);
370           info_.EndTag();  // DW_TAG_inheritance.
371         }
372 
373         // Member variables.
374         for (uint32_t i = 0, count = type->NumInstanceFields(); i < count; ++i) {
375           ArtField* field = type->GetInstanceField(i);
376           info_.StartTag(DW_TAG_member);
377           WriteName(field->GetName());
378           WriteLazyType(field->GetTypeDescriptor());
379           info_.WriteUdata(DW_AT_data_member_location, field->GetOffset().Uint32Value());
380           uint32_t access_flags = field->GetAccessFlags();
381           if (access_flags & kAccPublic) {
382             info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public);
383           } else if (access_flags & kAccProtected) {
384             info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_protected);
385           } else if (access_flags & kAccPrivate) {
386             info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private);
387           }
388           info_.EndTag();  // DW_TAG_member.
389         }
390 
391         if (type->IsStringClass()) {
392           // Emit debug info about an artifical class member for java.lang.String which represents
393           // the first element of the data stored in a string instance. Consumers of the debug
394           // info will be able to read the content of java.lang.String based on the count (real
395           // field) and based on the location of this data member.
396           info_.StartTag(DW_TAG_member);
397           WriteName("value");
398           // We don't support fields with C like array types so we just say its type is java char.
399           WriteLazyType("C");  // char.
400           info_.WriteUdata(DW_AT_data_member_location,
401                            mirror::String::ValueOffset().Uint32Value());
402           info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private);
403           info_.EndTag();  // DW_TAG_member.
404         }
405 
406         EndClassTag();
407       }
408     }
409 
410     // Write base class declarations.
411     for (const auto& base_class_reference : base_class_references) {
412       size_t reference_offset = base_class_reference.first;
413       mirror::Class* base_class = base_class_reference.second;
414       const auto& it = class_declarations.find(base_class);
415       if (it != class_declarations.end()) {
416         info_.UpdateUint32(reference_offset, it->second);
417       } else {
418         // Declare base class.  We can not use the standard WriteLazyType
419         // since we want to avoid the DW_TAG_reference_tag wrapping.
420         std::string tmp_storage;
421         const char* base_class_desc = base_class->GetDescriptor(&tmp_storage);
422         size_t base_class_declaration_offset = StartClassTag(base_class_desc);
423         info_.WriteFlagPresent(DW_AT_declaration);
424         WriteLinkageName(base_class);
425         EndClassTag();
426         class_declarations.emplace(base_class, base_class_declaration_offset);
427         info_.UpdateUint32(reference_offset, base_class_declaration_offset);
428       }
429     }
430 
431     FinishLazyTypes();
432     CloseNamespacesAboveDepth(0);
433     info_.EndTag();  // DW_TAG_compile_unit.
434     CHECK_EQ(info_.Depth(), 0);
435     std::vector<uint8_t> buffer;
436     buffer.reserve(info_.data()->size() + KB);
437     const size_t offset = owner_->builder_->GetDebugInfo()->GetSize();
438     // All compilation units share single table which is at the start of .debug_abbrev.
439     const size_t debug_abbrev_offset = 0;
440     WriteDebugInfoCU(debug_abbrev_offset, info_, offset, &buffer, &owner_->debug_info_patches_);
441     owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
442   }
443 
444   // Write table into .debug_loc which describes location of dex register.
445   // The dex register might be valid only at some points and it might
446   // move between machine registers and stack.
447   void WriteRegLocation(const MethodDebugInfo* method_info,
448                         const std::vector<DexRegisterMap>& dex_register_maps,
449                         uint16_t vreg,
450                         bool is64bitValue,
451                         uint64_t compilation_unit_code_address,
452                         uint32_t dex_pc_low = 0,
453                         uint32_t dex_pc_high = 0xFFFFFFFF) {
454     WriteDebugLocEntry(method_info,
455                        dex_register_maps,
456                        vreg,
457                        is64bitValue,
458                        compilation_unit_code_address,
459                        dex_pc_low,
460                        dex_pc_high,
461                        owner_->builder_->GetIsa(),
462                        &info_,
463                        &owner_->debug_loc_,
464                        &owner_->debug_ranges_);
465   }
466 
467   // Linkage name uniquely identifies type.
468   // It is used to determine the dynamic type of objects.
469   // We use the methods_ field of class since it is unique and it is not moved by the GC.
WriteLinkageName(mirror::Class * type)470   void WriteLinkageName(mirror::Class* type) REQUIRES_SHARED(Locks::mutator_lock_) {
471     auto* methods_ptr = type->GetMethodsPtr();
472     if (methods_ptr == nullptr) {
473       // Some types might have no methods.  Allocate empty array instead.
474       LinearAlloc* allocator = Runtime::Current()->GetLinearAlloc();
475       void* storage = allocator->Alloc(Thread::Current(), sizeof(LengthPrefixedArray<ArtMethod>));
476       methods_ptr = new (storage) LengthPrefixedArray<ArtMethod>(0);
477       type->SetMethodsPtr(methods_ptr, 0, 0);
478       DCHECK(type->GetMethodsPtr() != nullptr);
479     }
480     char name[32];
481     snprintf(name, sizeof(name), "0x%" PRIXPTR, reinterpret_cast<uintptr_t>(methods_ptr));
482     info_.WriteString(dwarf::DW_AT_linkage_name, name);
483   }
484 
485   // Some types are difficult to define as we go since they need
486   // to be enclosed in the right set of namespaces. Therefore we
487   // just define all types lazily at the end of compilation unit.
WriteLazyType(const char * type_descriptor)488   void WriteLazyType(const char* type_descriptor) {
489     if (type_descriptor != nullptr && type_descriptor[0] != 'V') {
490       lazy_types_.emplace(std::string(type_descriptor), info_.size());
491       info_.WriteRef4(dwarf::DW_AT_type, 0);
492     }
493   }
494 
FinishLazyTypes()495   void FinishLazyTypes() {
496     for (const auto& lazy_type : lazy_types_) {
497       info_.UpdateUint32(lazy_type.second, WriteTypeDeclaration(lazy_type.first));
498     }
499     lazy_types_.clear();
500   }
501 
502  private:
WriteName(const char * name)503   void WriteName(const char* name) {
504     if (name != nullptr) {
505       info_.WriteString(dwarf::DW_AT_name, name);
506     }
507   }
508 
509   // Convert dex type descriptor to DWARF.
510   // Returns offset in the compilation unit.
WriteTypeDeclaration(const std::string & desc)511   size_t WriteTypeDeclaration(const std::string& desc) {
512     using namespace dwarf;  // NOLINT. For easy access to DWARF constants.
513 
514     DCHECK(!desc.empty());
515     const auto& it = type_cache_.find(desc);
516     if (it != type_cache_.end()) {
517       return it->second;
518     }
519 
520     size_t offset;
521     if (desc[0] == 'L') {
522       // Class type. For example: Lpackage/name;
523       size_t class_offset = StartClassTag(desc.c_str());
524       info_.WriteFlagPresent(DW_AT_declaration);
525       EndClassTag();
526       // Reference to the class type.
527       offset = info_.StartTag(DW_TAG_reference_type);
528       info_.WriteRef(DW_AT_type, class_offset);
529       info_.EndTag();
530     } else if (desc[0] == '[') {
531       // Array type.
532       size_t element_type = WriteTypeDeclaration(desc.substr(1));
533       CloseNamespacesAboveDepth(0);  // Declare in root namespace.
534       size_t array_type = info_.StartTag(DW_TAG_array_type);
535       info_.WriteFlagPresent(DW_AT_declaration);
536       info_.WriteRef(DW_AT_type, element_type);
537       info_.EndTag();
538       offset = info_.StartTag(DW_TAG_reference_type);
539       info_.WriteRef4(DW_AT_type, array_type);
540       info_.EndTag();
541     } else {
542       // Primitive types.
543       DCHECK_EQ(desc.size(), 1u);
544 
545       const char* name;
546       uint32_t encoding;
547       uint32_t byte_size;
548       switch (desc[0]) {
549       case 'B':
550         name = "byte";
551         encoding = DW_ATE_signed;
552         byte_size = 1;
553         break;
554       case 'C':
555         name = "char";
556         encoding = DW_ATE_UTF;
557         byte_size = 2;
558         break;
559       case 'D':
560         name = "double";
561         encoding = DW_ATE_float;
562         byte_size = 8;
563         break;
564       case 'F':
565         name = "float";
566         encoding = DW_ATE_float;
567         byte_size = 4;
568         break;
569       case 'I':
570         name = "int";
571         encoding = DW_ATE_signed;
572         byte_size = 4;
573         break;
574       case 'J':
575         name = "long";
576         encoding = DW_ATE_signed;
577         byte_size = 8;
578         break;
579       case 'S':
580         name = "short";
581         encoding = DW_ATE_signed;
582         byte_size = 2;
583         break;
584       case 'Z':
585         name = "boolean";
586         encoding = DW_ATE_boolean;
587         byte_size = 1;
588         break;
589       case 'V':
590         LOG(FATAL) << "Void type should not be encoded";
591         UNREACHABLE();
592       default:
593         LOG(FATAL) << "Unknown dex type descriptor: \"" << desc << "\"";
594         UNREACHABLE();
595       }
596       CloseNamespacesAboveDepth(0);  // Declare in root namespace.
597       offset = info_.StartTag(DW_TAG_base_type);
598       WriteName(name);
599       info_.WriteData1(DW_AT_encoding, encoding);
600       info_.WriteData1(DW_AT_byte_size, byte_size);
601       info_.EndTag();
602     }
603 
604     type_cache_.emplace(desc, offset);
605     return offset;
606   }
607 
608   // Start DW_TAG_class_type tag nested in DW_TAG_namespace tags.
609   // Returns offset of the class tag in the compilation unit.
StartClassTag(const char * desc)610   size_t StartClassTag(const char* desc) {
611     std::string name = SetNamespaceForClass(desc);
612     size_t offset = info_.StartTag(dwarf::DW_TAG_class_type);
613     WriteName(name.c_str());
614     return offset;
615   }
616 
EndClassTag()617   void EndClassTag() {
618     info_.EndTag();
619   }
620 
621   // Set the current namespace nesting to one required by the given class.
622   // Returns the class name with namespaces, 'L', and ';' stripped.
SetNamespaceForClass(const char * desc)623   std::string SetNamespaceForClass(const char* desc) {
624     DCHECK(desc != nullptr && desc[0] == 'L');
625     desc++;  // Skip the initial 'L'.
626     size_t depth = 0;
627     for (const char* end; (end = strchr(desc, '/')) != nullptr; desc = end + 1, ++depth) {
628       // Check whether the name at this depth is already what we need.
629       if (depth < current_namespace_.size()) {
630         const std::string& name = current_namespace_[depth];
631         if (name.compare(0, name.size(), desc, end - desc) == 0) {
632           continue;
633         }
634       }
635       // Otherwise we need to open a new namespace tag at this depth.
636       CloseNamespacesAboveDepth(depth);
637       info_.StartTag(dwarf::DW_TAG_namespace);
638       std::string name(desc, end - desc);
639       WriteName(name.c_str());
640       current_namespace_.push_back(std::move(name));
641     }
642     CloseNamespacesAboveDepth(depth);
643     return std::string(desc, strchr(desc, ';') - desc);
644   }
645 
646   // Close namespace tags to reach the given nesting depth.
CloseNamespacesAboveDepth(size_t depth)647   void CloseNamespacesAboveDepth(size_t depth) {
648     DCHECK_LE(depth, current_namespace_.size());
649     while (current_namespace_.size() > depth) {
650       info_.EndTag();
651       current_namespace_.pop_back();
652     }
653   }
654 
655   // For access to the ELF sections.
656   ElfDebugInfoWriter<ElfTypes>* owner_;
657   // Temporary buffer to create and store the entries.
658   dwarf::DebugInfoEntryWriter<> info_;
659   // Cache of already translated type descriptors.
660   std::map<std::string, size_t> type_cache_;  // type_desc -> definition_offset.
661   // 32-bit references which need to be resolved to a type later.
662   // Given type may be used multiple times.  Therefore we need a multimap.
663   std::multimap<std::string, size_t> lazy_types_;  // type_desc -> patch_offset.
664   // The current set of open namespace tags which are active and not closed yet.
665   std::vector<std::string> current_namespace_;
666 };
667 
668 }  // namespace debug
669 }  // namespace art
670 
671 #endif  // ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
672 
673