1# This contains most of the executable examples from Guido's descr 2# tutorial, once at 3# 4# http://www.python.org/2.2/descrintro.html 5# 6# A few examples left implicit in the writeup were fleshed out, a few were 7# skipped due to lack of interest (e.g., faking super() by hand isn't 8# of much interest anymore), and a few were fiddled to make the output 9# deterministic. 10 11from test.test_support import sortdict 12import pprint 13 14class defaultdict(dict): 15 def __init__(self, default=None): 16 dict.__init__(self) 17 self.default = default 18 19 def __getitem__(self, key): 20 try: 21 return dict.__getitem__(self, key) 22 except KeyError: 23 return self.default 24 25 def get(self, key, *args): 26 if not args: 27 args = (self.default,) 28 return dict.get(self, key, *args) 29 30 def merge(self, other): 31 for key in other: 32 if key not in self: 33 self[key] = other[key] 34 35test_1 = """ 36 37Here's the new type at work: 38 39 >>> print defaultdict # show our type 40 <class 'test.test_descrtut.defaultdict'> 41 >>> print type(defaultdict) # its metatype 42 <type 'type'> 43 >>> a = defaultdict(default=0.0) # create an instance 44 >>> print a # show the instance 45 {} 46 >>> print type(a) # show its type 47 <class 'test.test_descrtut.defaultdict'> 48 >>> print a.__class__ # show its class 49 <class 'test.test_descrtut.defaultdict'> 50 >>> print type(a) is a.__class__ # its type is its class 51 True 52 >>> a[1] = 3.25 # modify the instance 53 >>> print a # show the new value 54 {1: 3.25} 55 >>> print a[1] # show the new item 56 3.25 57 >>> print a[0] # a non-existent item 58 0.0 59 >>> a.merge({1:100, 2:200}) # use a dict method 60 >>> print sortdict(a) # show the result 61 {1: 3.25, 2: 200} 62 >>> 63 64We can also use the new type in contexts where classic only allows "real" 65dictionaries, such as the locals/globals dictionaries for the exec 66statement or the built-in function eval(): 67 68 >>> def sorted(seq): 69 ... seq.sort(key=str) 70 ... return seq 71 >>> print sorted(a.keys()) 72 [1, 2] 73 >>> exec "x = 3; print x" in a 74 3 75 >>> print sorted(a.keys()) 76 [1, 2, '__builtins__', 'x'] 77 >>> print a['x'] 78 3 79 >>> 80 81Now I'll show that defaultdict instances have dynamic instance variables, 82just like classic classes: 83 84 >>> a.default = -1 85 >>> print a["noway"] 86 -1 87 >>> a.default = -1000 88 >>> print a["noway"] 89 -1000 90 >>> 'default' in dir(a) 91 True 92 >>> a.x1 = 100 93 >>> a.x2 = 200 94 >>> print a.x1 95 100 96 >>> d = dir(a) 97 >>> 'default' in d and 'x1' in d and 'x2' in d 98 True 99 >>> print sortdict(a.__dict__) 100 {'default': -1000, 'x1': 100, 'x2': 200} 101 >>> 102""" 103 104class defaultdict2(dict): 105 __slots__ = ['default'] 106 107 def __init__(self, default=None): 108 dict.__init__(self) 109 self.default = default 110 111 def __getitem__(self, key): 112 try: 113 return dict.__getitem__(self, key) 114 except KeyError: 115 return self.default 116 117 def get(self, key, *args): 118 if not args: 119 args = (self.default,) 120 return dict.get(self, key, *args) 121 122 def merge(self, other): 123 for key in other: 124 if key not in self: 125 self[key] = other[key] 126 127test_2 = """ 128 129The __slots__ declaration takes a list of instance variables, and reserves 130space for exactly these in the instance. When __slots__ is used, other 131instance variables cannot be assigned to: 132 133 >>> a = defaultdict2(default=0.0) 134 >>> a[1] 135 0.0 136 >>> a.default = -1 137 >>> a[1] 138 -1 139 >>> a.x1 = 1 140 Traceback (most recent call last): 141 File "<stdin>", line 1, in ? 142 AttributeError: 'defaultdict2' object has no attribute 'x1' 143 >>> 144 145""" 146 147test_3 = """ 148 149Introspecting instances of built-in types 150 151For instance of built-in types, x.__class__ is now the same as type(x): 152 153 >>> type([]) 154 <type 'list'> 155 >>> [].__class__ 156 <type 'list'> 157 >>> list 158 <type 'list'> 159 >>> isinstance([], list) 160 True 161 >>> isinstance([], dict) 162 False 163 >>> isinstance([], object) 164 True 165 >>> 166 167Under the new proposal, the __methods__ attribute no longer exists: 168 169 >>> [].__methods__ 170 Traceback (most recent call last): 171 File "<stdin>", line 1, in ? 172 AttributeError: 'list' object has no attribute '__methods__' 173 >>> 174 175Instead, you can get the same information from the list type: 176 177 >>> pprint.pprint(dir(list)) # like list.__dict__.keys(), but sorted 178 ['__add__', 179 '__class__', 180 '__contains__', 181 '__delattr__', 182 '__delitem__', 183 '__delslice__', 184 '__doc__', 185 '__eq__', 186 '__format__', 187 '__ge__', 188 '__getattribute__', 189 '__getitem__', 190 '__getslice__', 191 '__gt__', 192 '__hash__', 193 '__iadd__', 194 '__imul__', 195 '__init__', 196 '__iter__', 197 '__le__', 198 '__len__', 199 '__lt__', 200 '__mul__', 201 '__ne__', 202 '__new__', 203 '__reduce__', 204 '__reduce_ex__', 205 '__repr__', 206 '__reversed__', 207 '__rmul__', 208 '__setattr__', 209 '__setitem__', 210 '__setslice__', 211 '__sizeof__', 212 '__str__', 213 '__subclasshook__', 214 'append', 215 'count', 216 'extend', 217 'index', 218 'insert', 219 'pop', 220 'remove', 221 'reverse', 222 'sort'] 223 224The new introspection API gives more information than the old one: in 225addition to the regular methods, it also shows the methods that are 226normally invoked through special notations, e.g. __iadd__ (+=), __len__ 227(len), __ne__ (!=). You can invoke any method from this list directly: 228 229 >>> a = ['tic', 'tac'] 230 >>> list.__len__(a) # same as len(a) 231 2 232 >>> a.__len__() # ditto 233 2 234 >>> list.append(a, 'toe') # same as a.append('toe') 235 >>> a 236 ['tic', 'tac', 'toe'] 237 >>> 238 239This is just like it is for user-defined classes. 240""" 241 242test_4 = """ 243 244Static methods and class methods 245 246The new introspection API makes it possible to add static methods and class 247methods. Static methods are easy to describe: they behave pretty much like 248static methods in C++ or Java. Here's an example: 249 250 >>> class C: 251 ... 252 ... @staticmethod 253 ... def foo(x, y): 254 ... print "staticmethod", x, y 255 256 >>> C.foo(1, 2) 257 staticmethod 1 2 258 >>> c = C() 259 >>> c.foo(1, 2) 260 staticmethod 1 2 261 262Class methods use a similar pattern to declare methods that receive an 263implicit first argument that is the *class* for which they are invoked. 264 265 >>> class C: 266 ... @classmethod 267 ... def foo(cls, y): 268 ... print "classmethod", cls, y 269 270 >>> C.foo(1) 271 classmethod test.test_descrtut.C 1 272 >>> c = C() 273 >>> c.foo(1) 274 classmethod test.test_descrtut.C 1 275 276 >>> class D(C): 277 ... pass 278 279 >>> D.foo(1) 280 classmethod test.test_descrtut.D 1 281 >>> d = D() 282 >>> d.foo(1) 283 classmethod test.test_descrtut.D 1 284 285This prints "classmethod __main__.D 1" both times; in other words, the 286class passed as the first argument of foo() is the class involved in the 287call, not the class involved in the definition of foo(). 288 289But notice this: 290 291 >>> class E(C): 292 ... @classmethod 293 ... def foo(cls, y): # override C.foo 294 ... print "E.foo() called" 295 ... C.foo(y) 296 297 >>> E.foo(1) 298 E.foo() called 299 classmethod test.test_descrtut.C 1 300 >>> e = E() 301 >>> e.foo(1) 302 E.foo() called 303 classmethod test.test_descrtut.C 1 304 305In this example, the call to C.foo() from E.foo() will see class C as its 306first argument, not class E. This is to be expected, since the call 307specifies the class C. But it stresses the difference between these class 308methods and methods defined in metaclasses (where an upcall to a metamethod 309would pass the target class as an explicit first argument). 310""" 311 312test_5 = """ 313 314Attributes defined by get/set methods 315 316 317 >>> class property(object): 318 ... 319 ... def __init__(self, get, set=None): 320 ... self.__get = get 321 ... self.__set = set 322 ... 323 ... def __get__(self, inst, type=None): 324 ... return self.__get(inst) 325 ... 326 ... def __set__(self, inst, value): 327 ... if self.__set is None: 328 ... raise AttributeError, "this attribute is read-only" 329 ... return self.__set(inst, value) 330 331Now let's define a class with an attribute x defined by a pair of methods, 332getx() and and setx(): 333 334 >>> class C(object): 335 ... 336 ... def __init__(self): 337 ... self.__x = 0 338 ... 339 ... def getx(self): 340 ... return self.__x 341 ... 342 ... def setx(self, x): 343 ... if x < 0: x = 0 344 ... self.__x = x 345 ... 346 ... x = property(getx, setx) 347 348Here's a small demonstration: 349 350 >>> a = C() 351 >>> a.x = 10 352 >>> print a.x 353 10 354 >>> a.x = -10 355 >>> print a.x 356 0 357 >>> 358 359Hmm -- property is builtin now, so let's try it that way too. 360 361 >>> del property # unmask the builtin 362 >>> property 363 <type 'property'> 364 365 >>> class C(object): 366 ... def __init__(self): 367 ... self.__x = 0 368 ... def getx(self): 369 ... return self.__x 370 ... def setx(self, x): 371 ... if x < 0: x = 0 372 ... self.__x = x 373 ... x = property(getx, setx) 374 375 376 >>> a = C() 377 >>> a.x = 10 378 >>> print a.x 379 10 380 >>> a.x = -10 381 >>> print a.x 382 0 383 >>> 384""" 385 386test_6 = """ 387 388Method resolution order 389 390This example is implicit in the writeup. 391 392>>> class A: # classic class 393... def save(self): 394... print "called A.save()" 395>>> class B(A): 396... pass 397>>> class C(A): 398... def save(self): 399... print "called C.save()" 400>>> class D(B, C): 401... pass 402 403>>> D().save() 404called A.save() 405 406>>> class A(object): # new class 407... def save(self): 408... print "called A.save()" 409>>> class B(A): 410... pass 411>>> class C(A): 412... def save(self): 413... print "called C.save()" 414>>> class D(B, C): 415... pass 416 417>>> D().save() 418called C.save() 419""" 420 421class A(object): 422 def m(self): 423 return "A" 424 425class B(A): 426 def m(self): 427 return "B" + super(B, self).m() 428 429class C(A): 430 def m(self): 431 return "C" + super(C, self).m() 432 433class D(C, B): 434 def m(self): 435 return "D" + super(D, self).m() 436 437 438test_7 = """ 439 440Cooperative methods and "super" 441 442>>> print D().m() # "DCBA" 443DCBA 444""" 445 446test_8 = """ 447 448Backwards incompatibilities 449 450>>> class A: 451... def foo(self): 452... print "called A.foo()" 453 454>>> class B(A): 455... pass 456 457>>> class C(A): 458... def foo(self): 459... B.foo(self) 460 461>>> C().foo() 462Traceback (most recent call last): 463 ... 464TypeError: unbound method foo() must be called with B instance as first argument (got C instance instead) 465 466>>> class C(A): 467... def foo(self): 468... A.foo(self) 469>>> C().foo() 470called A.foo() 471""" 472 473__test__ = {"tut1": test_1, 474 "tut2": test_2, 475 "tut3": test_3, 476 "tut4": test_4, 477 "tut5": test_5, 478 "tut6": test_6, 479 "tut7": test_7, 480 "tut8": test_8} 481 482# Magic test name that regrtest.py invokes *after* importing this module. 483# This worms around a bootstrap problem. 484# Note that doctest and regrtest both look in sys.argv for a "-v" argument, 485# so this works as expected in both ways of running regrtest. 486def test_main(verbose=None): 487 # Obscure: import this module as test.test_descrtut instead of as 488 # plain test_descrtut because the name of this module works its way 489 # into the doctest examples, and unless the full test.test_descrtut 490 # business is used the name can change depending on how the test is 491 # invoked. 492 from test import test_support, test_descrtut 493 test_support.run_doctest(test_descrtut, verbose) 494 495# This part isn't needed for regrtest, but for running the test directly. 496if __name__ == "__main__": 497 test_main(1) 498