1 /*
2  * Copyright (c) 2015-2016 The Khronos Group Inc.
3  * Copyright (c) 2015-2016 Valve Corporation
4  * Copyright (c) 2015-2016 LunarG, Inc.
5  *
6  * Licensed under the Apache License, Version 2.0 (the "License");
7  * you may not use this file except in compliance with the License.
8  * You may obtain a copy of the License at
9  *
10  *     http://www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing, software
13  * distributed under the License is distributed on an "AS IS" BASIS,
14  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  * See the License for the specific language governing permissions and
16  * limitations under the License.
17  *
18  * Relicensed from the WTFPL (http://www.wtfpl.net/faq/).
19  */
20 
21 #ifndef LINMATH_H
22 #define LINMATH_H
23 
24 #include <math.h>
25 
26 // Converts degrees to radians.
27 #define degreesToRadians(angleDegrees) (angleDegrees * M_PI / 180.0)
28 
29 // Converts radians to degrees.
30 #define radiansToDegrees(angleRadians) (angleRadians * 180.0 / M_PI)
31 
32 typedef float vec3[3];
vec3_add(vec3 r,vec3 const a,vec3 const b)33 static inline void vec3_add(vec3 r, vec3 const a, vec3 const b) {
34     int i;
35     for (i = 0; i < 3; ++i)
36         r[i] = a[i] + b[i];
37 }
vec3_sub(vec3 r,vec3 const a,vec3 const b)38 static inline void vec3_sub(vec3 r, vec3 const a, vec3 const b) {
39     int i;
40     for (i = 0; i < 3; ++i)
41         r[i] = a[i] - b[i];
42 }
vec3_scale(vec3 r,vec3 const v,float const s)43 static inline void vec3_scale(vec3 r, vec3 const v, float const s) {
44     int i;
45     for (i = 0; i < 3; ++i)
46         r[i] = v[i] * s;
47 }
vec3_mul_inner(vec3 const a,vec3 const b)48 static inline float vec3_mul_inner(vec3 const a, vec3 const b) {
49     float p = 0.f;
50     int i;
51     for (i = 0; i < 3; ++i)
52         p += b[i] * a[i];
53     return p;
54 }
vec3_mul_cross(vec3 r,vec3 const a,vec3 const b)55 static inline void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b) {
56     r[0] = a[1] * b[2] - a[2] * b[1];
57     r[1] = a[2] * b[0] - a[0] * b[2];
58     r[2] = a[0] * b[1] - a[1] * b[0];
59 }
vec3_len(vec3 const v)60 static inline float vec3_len(vec3 const v) {
61     return sqrtf(vec3_mul_inner(v, v));
62 }
vec3_norm(vec3 r,vec3 const v)63 static inline void vec3_norm(vec3 r, vec3 const v) {
64     float k = 1.f / vec3_len(v);
65     vec3_scale(r, v, k);
66 }
vec3_reflect(vec3 r,vec3 const v,vec3 const n)67 static inline void vec3_reflect(vec3 r, vec3 const v, vec3 const n) {
68     float p = 2.f * vec3_mul_inner(v, n);
69     int i;
70     for (i = 0; i < 3; ++i)
71         r[i] = v[i] - p * n[i];
72 }
73 
74 typedef float vec4[4];
vec4_add(vec4 r,vec4 const a,vec4 const b)75 static inline void vec4_add(vec4 r, vec4 const a, vec4 const b) {
76     int i;
77     for (i = 0; i < 4; ++i)
78         r[i] = a[i] + b[i];
79 }
vec4_sub(vec4 r,vec4 const a,vec4 const b)80 static inline void vec4_sub(vec4 r, vec4 const a, vec4 const b) {
81     int i;
82     for (i = 0; i < 4; ++i)
83         r[i] = a[i] - b[i];
84 }
vec4_scale(vec4 r,vec4 v,float s)85 static inline void vec4_scale(vec4 r, vec4 v, float s) {
86     int i;
87     for (i = 0; i < 4; ++i)
88         r[i] = v[i] * s;
89 }
vec4_mul_inner(vec4 a,vec4 b)90 static inline float vec4_mul_inner(vec4 a, vec4 b) {
91     float p = 0.f;
92     int i;
93     for (i = 0; i < 4; ++i)
94         p += b[i] * a[i];
95     return p;
96 }
vec4_mul_cross(vec4 r,vec4 a,vec4 b)97 static inline void vec4_mul_cross(vec4 r, vec4 a, vec4 b) {
98     r[0] = a[1] * b[2] - a[2] * b[1];
99     r[1] = a[2] * b[0] - a[0] * b[2];
100     r[2] = a[0] * b[1] - a[1] * b[0];
101     r[3] = 1.f;
102 }
vec4_len(vec4 v)103 static inline float vec4_len(vec4 v) { return sqrtf(vec4_mul_inner(v, v)); }
vec4_norm(vec4 r,vec4 v)104 static inline void vec4_norm(vec4 r, vec4 v) {
105     float k = 1.f / vec4_len(v);
106     vec4_scale(r, v, k);
107 }
vec4_reflect(vec4 r,vec4 v,vec4 n)108 static inline void vec4_reflect(vec4 r, vec4 v, vec4 n) {
109     float p = 2.f * vec4_mul_inner(v, n);
110     int i;
111     for (i = 0; i < 4; ++i)
112         r[i] = v[i] - p * n[i];
113 }
114 
115 typedef vec4 mat4x4[4];
mat4x4_identity(mat4x4 M)116 static inline void mat4x4_identity(mat4x4 M) {
117     int i, j;
118     for (i = 0; i < 4; ++i)
119         for (j = 0; j < 4; ++j)
120             M[i][j] = i == j ? 1.f : 0.f;
121 }
mat4x4_dup(mat4x4 M,mat4x4 N)122 static inline void mat4x4_dup(mat4x4 M, mat4x4 N) {
123     int i, j;
124     for (i = 0; i < 4; ++i)
125         for (j = 0; j < 4; ++j)
126             M[i][j] = N[i][j];
127 }
mat4x4_row(vec4 r,mat4x4 M,int i)128 static inline void mat4x4_row(vec4 r, mat4x4 M, int i) {
129     int k;
130     for (k = 0; k < 4; ++k)
131         r[k] = M[k][i];
132 }
mat4x4_col(vec4 r,mat4x4 M,int i)133 static inline void mat4x4_col(vec4 r, mat4x4 M, int i) {
134     int k;
135     for (k = 0; k < 4; ++k)
136         r[k] = M[i][k];
137 }
mat4x4_transpose(mat4x4 M,mat4x4 N)138 static inline void mat4x4_transpose(mat4x4 M, mat4x4 N) {
139     int i, j;
140     for (j = 0; j < 4; ++j)
141         for (i = 0; i < 4; ++i)
142             M[i][j] = N[j][i];
143 }
mat4x4_add(mat4x4 M,mat4x4 a,mat4x4 b)144 static inline void mat4x4_add(mat4x4 M, mat4x4 a, mat4x4 b) {
145     int i;
146     for (i = 0; i < 4; ++i)
147         vec4_add(M[i], a[i], b[i]);
148 }
mat4x4_sub(mat4x4 M,mat4x4 a,mat4x4 b)149 static inline void mat4x4_sub(mat4x4 M, mat4x4 a, mat4x4 b) {
150     int i;
151     for (i = 0; i < 4; ++i)
152         vec4_sub(M[i], a[i], b[i]);
153 }
mat4x4_scale(mat4x4 M,mat4x4 a,float k)154 static inline void mat4x4_scale(mat4x4 M, mat4x4 a, float k) {
155     int i;
156     for (i = 0; i < 4; ++i)
157         vec4_scale(M[i], a[i], k);
158 }
mat4x4_scale_aniso(mat4x4 M,mat4x4 a,float x,float y,float z)159 static inline void mat4x4_scale_aniso(mat4x4 M, mat4x4 a, float x, float y,
160                                       float z) {
161     int i;
162     vec4_scale(M[0], a[0], x);
163     vec4_scale(M[1], a[1], y);
164     vec4_scale(M[2], a[2], z);
165     for (i = 0; i < 4; ++i) {
166         M[3][i] = a[3][i];
167     }
168 }
mat4x4_mul(mat4x4 M,mat4x4 a,mat4x4 b)169 static inline void mat4x4_mul(mat4x4 M, mat4x4 a, mat4x4 b) {
170     int k, r, c;
171     for (c = 0; c < 4; ++c)
172         for (r = 0; r < 4; ++r) {
173             M[c][r] = 0.f;
174             for (k = 0; k < 4; ++k)
175                 M[c][r] += a[k][r] * b[c][k];
176         }
177 }
mat4x4_mul_vec4(vec4 r,mat4x4 M,vec4 v)178 static inline void mat4x4_mul_vec4(vec4 r, mat4x4 M, vec4 v) {
179     int i, j;
180     for (j = 0; j < 4; ++j) {
181         r[j] = 0.f;
182         for (i = 0; i < 4; ++i)
183             r[j] += M[i][j] * v[i];
184     }
185 }
mat4x4_translate(mat4x4 T,float x,float y,float z)186 static inline void mat4x4_translate(mat4x4 T, float x, float y, float z) {
187     mat4x4_identity(T);
188     T[3][0] = x;
189     T[3][1] = y;
190     T[3][2] = z;
191 }
mat4x4_translate_in_place(mat4x4 M,float x,float y,float z)192 static inline void mat4x4_translate_in_place(mat4x4 M, float x, float y,
193                                              float z) {
194     vec4 t = {x, y, z, 0};
195     vec4 r;
196     int i;
197     for (i = 0; i < 4; ++i) {
198         mat4x4_row(r, M, i);
199         M[3][i] += vec4_mul_inner(r, t);
200     }
201 }
mat4x4_from_vec3_mul_outer(mat4x4 M,vec3 a,vec3 b)202 static inline void mat4x4_from_vec3_mul_outer(mat4x4 M, vec3 a, vec3 b) {
203     int i, j;
204     for (i = 0; i < 4; ++i)
205         for (j = 0; j < 4; ++j)
206             M[i][j] = i < 3 && j < 3 ? a[i] * b[j] : 0.f;
207 }
mat4x4_rotate(mat4x4 R,mat4x4 M,float x,float y,float z,float angle)208 static inline void mat4x4_rotate(mat4x4 R, mat4x4 M, float x, float y, float z,
209                                  float angle) {
210     float s = sinf(angle);
211     float c = cosf(angle);
212     vec3 u = {x, y, z};
213 
214     if (vec3_len(u) > 1e-4) {
215         vec3_norm(u, u);
216         mat4x4 T;
217         mat4x4_from_vec3_mul_outer(T, u, u);
218 
219         mat4x4 S = {{0, u[2], -u[1], 0},
220                     {-u[2], 0, u[0], 0},
221                     {u[1], -u[0], 0, 0},
222                     {0, 0, 0, 0}};
223         mat4x4_scale(S, S, s);
224 
225         mat4x4 C;
226         mat4x4_identity(C);
227         mat4x4_sub(C, C, T);
228 
229         mat4x4_scale(C, C, c);
230 
231         mat4x4_add(T, T, C);
232         mat4x4_add(T, T, S);
233 
234         T[3][3] = 1.;
235         mat4x4_mul(R, M, T);
236     } else {
237         mat4x4_dup(R, M);
238     }
239 }
mat4x4_rotate_X(mat4x4 Q,mat4x4 M,float angle)240 static inline void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, float angle) {
241     float s = sinf(angle);
242     float c = cosf(angle);
243     mat4x4 R = {{1.f, 0.f, 0.f, 0.f},
244                 {0.f, c, s, 0.f},
245                 {0.f, -s, c, 0.f},
246                 {0.f, 0.f, 0.f, 1.f}};
247     mat4x4_mul(Q, M, R);
248 }
mat4x4_rotate_Y(mat4x4 Q,mat4x4 M,float angle)249 static inline void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, float angle) {
250     float s = sinf(angle);
251     float c = cosf(angle);
252     mat4x4 R = {{c, 0.f, s, 0.f},
253                 {0.f, 1.f, 0.f, 0.f},
254                 {-s, 0.f, c, 0.f},
255                 {0.f, 0.f, 0.f, 1.f}};
256     mat4x4_mul(Q, M, R);
257 }
mat4x4_rotate_Z(mat4x4 Q,mat4x4 M,float angle)258 static inline void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, float angle) {
259     float s = sinf(angle);
260     float c = cosf(angle);
261     mat4x4 R = {{c, s, 0.f, 0.f},
262                 {-s, c, 0.f, 0.f},
263                 {0.f, 0.f, 1.f, 0.f},
264                 {0.f, 0.f, 0.f, 1.f}};
265     mat4x4_mul(Q, M, R);
266 }
mat4x4_invert(mat4x4 T,mat4x4 M)267 static inline void mat4x4_invert(mat4x4 T, mat4x4 M) {
268     float s[6];
269     float c[6];
270     s[0] = M[0][0] * M[1][1] - M[1][0] * M[0][1];
271     s[1] = M[0][0] * M[1][2] - M[1][0] * M[0][2];
272     s[2] = M[0][0] * M[1][3] - M[1][0] * M[0][3];
273     s[3] = M[0][1] * M[1][2] - M[1][1] * M[0][2];
274     s[4] = M[0][1] * M[1][3] - M[1][1] * M[0][3];
275     s[5] = M[0][2] * M[1][3] - M[1][2] * M[0][3];
276 
277     c[0] = M[2][0] * M[3][1] - M[3][0] * M[2][1];
278     c[1] = M[2][0] * M[3][2] - M[3][0] * M[2][2];
279     c[2] = M[2][0] * M[3][3] - M[3][0] * M[2][3];
280     c[3] = M[2][1] * M[3][2] - M[3][1] * M[2][2];
281     c[4] = M[2][1] * M[3][3] - M[3][1] * M[2][3];
282     c[5] = M[2][2] * M[3][3] - M[3][2] * M[2][3];
283 
284     /* Assumes it is invertible */
285     float idet = 1.0f / (s[0] * c[5] - s[1] * c[4] + s[2] * c[3] + s[3] * c[2] -
286                          s[4] * c[1] + s[5] * c[0]);
287 
288     T[0][0] = (M[1][1] * c[5] - M[1][2] * c[4] + M[1][3] * c[3]) * idet;
289     T[0][1] = (-M[0][1] * c[5] + M[0][2] * c[4] - M[0][3] * c[3]) * idet;
290     T[0][2] = (M[3][1] * s[5] - M[3][2] * s[4] + M[3][3] * s[3]) * idet;
291     T[0][3] = (-M[2][1] * s[5] + M[2][2] * s[4] - M[2][3] * s[3]) * idet;
292 
293     T[1][0] = (-M[1][0] * c[5] + M[1][2] * c[2] - M[1][3] * c[1]) * idet;
294     T[1][1] = (M[0][0] * c[5] - M[0][2] * c[2] + M[0][3] * c[1]) * idet;
295     T[1][2] = (-M[3][0] * s[5] + M[3][2] * s[2] - M[3][3] * s[1]) * idet;
296     T[1][3] = (M[2][0] * s[5] - M[2][2] * s[2] + M[2][3] * s[1]) * idet;
297 
298     T[2][0] = (M[1][0] * c[4] - M[1][1] * c[2] + M[1][3] * c[0]) * idet;
299     T[2][1] = (-M[0][0] * c[4] + M[0][1] * c[2] - M[0][3] * c[0]) * idet;
300     T[2][2] = (M[3][0] * s[4] - M[3][1] * s[2] + M[3][3] * s[0]) * idet;
301     T[2][3] = (-M[2][0] * s[4] + M[2][1] * s[2] - M[2][3] * s[0]) * idet;
302 
303     T[3][0] = (-M[1][0] * c[3] + M[1][1] * c[1] - M[1][2] * c[0]) * idet;
304     T[3][1] = (M[0][0] * c[3] - M[0][1] * c[1] + M[0][2] * c[0]) * idet;
305     T[3][2] = (-M[3][0] * s[3] + M[3][1] * s[1] - M[3][2] * s[0]) * idet;
306     T[3][3] = (M[2][0] * s[3] - M[2][1] * s[1] + M[2][2] * s[0]) * idet;
307 }
mat4x4_orthonormalize(mat4x4 R,mat4x4 M)308 static inline void mat4x4_orthonormalize(mat4x4 R, mat4x4 M) {
309     mat4x4_dup(R, M);
310     float s = 1.;
311     vec3 h;
312 
313     vec3_norm(R[2], R[2]);
314 
315     s = vec3_mul_inner(R[1], R[2]);
316     vec3_scale(h, R[2], s);
317     vec3_sub(R[1], R[1], h);
318     vec3_norm(R[2], R[2]);
319 
320     s = vec3_mul_inner(R[1], R[2]);
321     vec3_scale(h, R[2], s);
322     vec3_sub(R[1], R[1], h);
323     vec3_norm(R[1], R[1]);
324 
325     s = vec3_mul_inner(R[0], R[1]);
326     vec3_scale(h, R[1], s);
327     vec3_sub(R[0], R[0], h);
328     vec3_norm(R[0], R[0]);
329 }
330 
mat4x4_frustum(mat4x4 M,float l,float r,float b,float t,float n,float f)331 static inline void mat4x4_frustum(mat4x4 M, float l, float r, float b, float t,
332                                   float n, float f) {
333     M[0][0] = 2.f * n / (r - l);
334     M[0][1] = M[0][2] = M[0][3] = 0.f;
335 
336     M[1][1] = 2.f * n / (t - b);
337     M[1][0] = M[1][2] = M[1][3] = 0.f;
338 
339     M[2][0] = (r + l) / (r - l);
340     M[2][1] = (t + b) / (t - b);
341     M[2][2] = -(f + n) / (f - n);
342     M[2][3] = -1.f;
343 
344     M[3][2] = -2.f * (f * n) / (f - n);
345     M[3][0] = M[3][1] = M[3][3] = 0.f;
346 }
mat4x4_ortho(mat4x4 M,float l,float r,float b,float t,float n,float f)347 static inline void mat4x4_ortho(mat4x4 M, float l, float r, float b, float t,
348                                 float n, float f) {
349     M[0][0] = 2.f / (r - l);
350     M[0][1] = M[0][2] = M[0][3] = 0.f;
351 
352     M[1][1] = 2.f / (t - b);
353     M[1][0] = M[1][2] = M[1][3] = 0.f;
354 
355     M[2][2] = -2.f / (f - n);
356     M[2][0] = M[2][1] = M[2][3] = 0.f;
357 
358     M[3][0] = -(r + l) / (r - l);
359     M[3][1] = -(t + b) / (t - b);
360     M[3][2] = -(f + n) / (f - n);
361     M[3][3] = 1.f;
362 }
mat4x4_perspective(mat4x4 m,float y_fov,float aspect,float n,float f)363 static inline void mat4x4_perspective(mat4x4 m, float y_fov, float aspect,
364                                       float n, float f) {
365     /* NOTE: Degrees are an unhandy unit to work with.
366      * linmath.h uses radians for everything! */
367     float const a = (float)(1.f / tan(y_fov / 2.f));
368 
369     m[0][0] = a / aspect;
370     m[0][1] = 0.f;
371     m[0][2] = 0.f;
372     m[0][3] = 0.f;
373 
374     m[1][0] = 0.f;
375     m[1][1] = a;
376     m[1][2] = 0.f;
377     m[1][3] = 0.f;
378 
379     m[2][0] = 0.f;
380     m[2][1] = 0.f;
381     m[2][2] = -((f + n) / (f - n));
382     m[2][3] = -1.f;
383 
384     m[3][0] = 0.f;
385     m[3][1] = 0.f;
386     m[3][2] = -((2.f * f * n) / (f - n));
387     m[3][3] = 0.f;
388 }
mat4x4_look_at(mat4x4 m,vec3 eye,vec3 center,vec3 up)389 static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up) {
390     /* Adapted from Android's OpenGL Matrix.java.                        */
391     /* See the OpenGL GLUT documentation for gluLookAt for a description */
392     /* of the algorithm. We implement it in a straightforward way:       */
393 
394     /* TODO: The negation of of can be spared by swapping the order of
395      *       operands in the following cross products in the right way. */
396     vec3 f;
397     vec3_sub(f, center, eye);
398     vec3_norm(f, f);
399 
400     vec3 s;
401     vec3_mul_cross(s, f, up);
402     vec3_norm(s, s);
403 
404     vec3 t;
405     vec3_mul_cross(t, s, f);
406 
407     m[0][0] = s[0];
408     m[0][1] = t[0];
409     m[0][2] = -f[0];
410     m[0][3] = 0.f;
411 
412     m[1][0] = s[1];
413     m[1][1] = t[1];
414     m[1][2] = -f[1];
415     m[1][3] = 0.f;
416 
417     m[2][0] = s[2];
418     m[2][1] = t[2];
419     m[2][2] = -f[2];
420     m[2][3] = 0.f;
421 
422     m[3][0] = 0.f;
423     m[3][1] = 0.f;
424     m[3][2] = 0.f;
425     m[3][3] = 1.f;
426 
427     mat4x4_translate_in_place(m, -eye[0], -eye[1], -eye[2]);
428 }
429 
430 typedef float quat[4];
quat_identity(quat q)431 static inline void quat_identity(quat q) {
432     q[0] = q[1] = q[2] = 0.f;
433     q[3] = 1.f;
434 }
quat_add(quat r,quat a,quat b)435 static inline void quat_add(quat r, quat a, quat b) {
436     int i;
437     for (i = 0; i < 4; ++i)
438         r[i] = a[i] + b[i];
439 }
quat_sub(quat r,quat a,quat b)440 static inline void quat_sub(quat r, quat a, quat b) {
441     int i;
442     for (i = 0; i < 4; ++i)
443         r[i] = a[i] - b[i];
444 }
quat_mul(quat r,quat p,quat q)445 static inline void quat_mul(quat r, quat p, quat q) {
446     vec3 w;
447     vec3_mul_cross(r, p, q);
448     vec3_scale(w, p, q[3]);
449     vec3_add(r, r, w);
450     vec3_scale(w, q, p[3]);
451     vec3_add(r, r, w);
452     r[3] = p[3] * q[3] - vec3_mul_inner(p, q);
453 }
quat_scale(quat r,quat v,float s)454 static inline void quat_scale(quat r, quat v, float s) {
455     int i;
456     for (i = 0; i < 4; ++i)
457         r[i] = v[i] * s;
458 }
quat_inner_product(quat a,quat b)459 static inline float quat_inner_product(quat a, quat b) {
460     float p = 0.f;
461     int i;
462     for (i = 0; i < 4; ++i)
463         p += b[i] * a[i];
464     return p;
465 }
quat_conj(quat r,quat q)466 static inline void quat_conj(quat r, quat q) {
467     int i;
468     for (i = 0; i < 3; ++i)
469         r[i] = -q[i];
470     r[3] = q[3];
471 }
472 #define quat_norm vec4_norm
quat_mul_vec3(vec3 r,quat q,vec3 v)473 static inline void quat_mul_vec3(vec3 r, quat q, vec3 v) {
474     quat v_ = {v[0], v[1], v[2], 0.f};
475 
476     quat_conj(r, q);
477     quat_norm(r, r);
478     quat_mul(r, v_, r);
479     quat_mul(r, q, r);
480 }
mat4x4_from_quat(mat4x4 M,quat q)481 static inline void mat4x4_from_quat(mat4x4 M, quat q) {
482     float a = q[3];
483     float b = q[0];
484     float c = q[1];
485     float d = q[2];
486     float a2 = a * a;
487     float b2 = b * b;
488     float c2 = c * c;
489     float d2 = d * d;
490 
491     M[0][0] = a2 + b2 - c2 - d2;
492     M[0][1] = 2.f * (b * c + a * d);
493     M[0][2] = 2.f * (b * d - a * c);
494     M[0][3] = 0.f;
495 
496     M[1][0] = 2 * (b * c - a * d);
497     M[1][1] = a2 - b2 + c2 - d2;
498     M[1][2] = 2.f * (c * d + a * b);
499     M[1][3] = 0.f;
500 
501     M[2][0] = 2.f * (b * d + a * c);
502     M[2][1] = 2.f * (c * d - a * b);
503     M[2][2] = a2 - b2 - c2 + d2;
504     M[2][3] = 0.f;
505 
506     M[3][0] = M[3][1] = M[3][2] = 0.f;
507     M[3][3] = 1.f;
508 }
509 
mat4x4o_mul_quat(mat4x4 R,mat4x4 M,quat q)510 static inline void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q) {
511     /*  XXX: The way this is written only works for othogonal matrices. */
512     /* TODO: Take care of non-orthogonal case. */
513     quat_mul_vec3(R[0], q, M[0]);
514     quat_mul_vec3(R[1], q, M[1]);
515     quat_mul_vec3(R[2], q, M[2]);
516 
517     R[3][0] = R[3][1] = R[3][2] = 0.f;
518     R[3][3] = 1.f;
519 }
quat_from_mat4x4(quat q,mat4x4 M)520 static inline void quat_from_mat4x4(quat q, mat4x4 M) {
521     float r = 0.f;
522     int i;
523 
524     int perm[] = {0, 1, 2, 0, 1};
525     int *p = perm;
526 
527     for (i = 0; i < 3; i++) {
528         float m = M[i][i];
529         if (m < r)
530             continue;
531         m = r;
532         p = &perm[i];
533     }
534 
535     r = sqrtf(1.f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]]);
536 
537     if (r < 1e-6) {
538         q[0] = 1.f;
539         q[1] = q[2] = q[3] = 0.f;
540         return;
541     }
542 
543     q[0] = r / 2.f;
544     q[1] = (M[p[0]][p[1]] - M[p[1]][p[0]]) / (2.f * r);
545     q[2] = (M[p[2]][p[0]] - M[p[0]][p[2]]) / (2.f * r);
546     q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]]) / (2.f * r);
547 }
548 
549 #endif
550