1 
2 /*
3  * Copyright 2006 The Android Open Source Project
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 
10 #ifndef SkMatrix_DEFINED
11 #define SkMatrix_DEFINED
12 
13 #include "SkRect.h"
14 
15 struct SkRSXform;
16 class SkString;
17 
18 /** \class SkMatrix
19 
20     The SkMatrix class holds a 3x3 matrix for transforming coordinates.
21     SkMatrix does not have a constructor, so it must be explicitly initialized
22     using either reset() - to construct an identity matrix, or one of the set
23     functions (e.g. setTranslate, setRotate, etc.).
24 
25     SkMatrix is not thread safe unless you've first called SkMatrix::getType().
26 */
27 SK_BEGIN_REQUIRE_DENSE
28 class SK_API SkMatrix {
29 public:
MakeScale(SkScalar sx,SkScalar sy)30     static SkMatrix SK_WARN_UNUSED_RESULT MakeScale(SkScalar sx, SkScalar sy) {
31         SkMatrix m;
32         m.setScale(sx, sy);
33         return m;
34     }
35 
MakeScale(SkScalar scale)36     static SkMatrix SK_WARN_UNUSED_RESULT MakeScale(SkScalar scale) {
37         SkMatrix m;
38         m.setScale(scale, scale);
39         return m;
40     }
41 
MakeTrans(SkScalar dx,SkScalar dy)42     static SkMatrix SK_WARN_UNUSED_RESULT MakeTrans(SkScalar dx, SkScalar dy) {
43         SkMatrix m;
44         m.setTranslate(dx, dy);
45         return m;
46     }
47 
48     /** Enum of bit fields for the mask return by getType().
49         Use this to identify the complexity of the matrix.
50     */
51     enum TypeMask {
52         kIdentity_Mask      = 0,
53         kTranslate_Mask     = 0x01,  //!< set if the matrix has translation
54         kScale_Mask         = 0x02,  //!< set if the matrix has X or Y scale
55         kAffine_Mask        = 0x04,  //!< set if the matrix skews or rotates
56         kPerspective_Mask   = 0x08   //!< set if the matrix is in perspective
57     };
58 
59     /** Returns a bitfield describing the transformations the matrix may
60         perform. The bitfield is computed conservatively, so it may include
61         false positives. For example, when kPerspective_Mask is true, all
62         other bits may be set to true even in the case of a pure perspective
63         transform.
64    */
getType()65     TypeMask getType() const {
66         if (fTypeMask & kUnknown_Mask) {
67             fTypeMask = this->computeTypeMask();
68         }
69         // only return the public masks
70         return (TypeMask)(fTypeMask & 0xF);
71     }
72 
73     /** Returns true if the matrix is identity.
74     */
isIdentity()75     bool isIdentity() const {
76         return this->getType() == 0;
77     }
78 
isScaleTranslate()79     bool isScaleTranslate() const {
80         return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
81     }
82 
83     /** Returns true if will map a rectangle to another rectangle. This can be
84         true if the matrix is identity, scale-only, or rotates a multiple of
85         90 degrees, or mirrors in x or y.
86     */
rectStaysRect()87     bool rectStaysRect() const {
88         if (fTypeMask & kUnknown_Mask) {
89             fTypeMask = this->computeTypeMask();
90         }
91         return (fTypeMask & kRectStaysRect_Mask) != 0;
92     }
93     // alias for rectStaysRect()
preservesAxisAlignment()94     bool preservesAxisAlignment() const { return this->rectStaysRect(); }
95 
96     /**
97      *  Returns true if the matrix contains perspective elements.
98      */
hasPerspective()99     bool hasPerspective() const {
100         return SkToBool(this->getPerspectiveTypeMaskOnly() &
101                         kPerspective_Mask);
102     }
103 
104     /** Returns true if the matrix contains only translation, rotation/reflection or uniform scale
105         Returns false if other transformation types are included or is degenerate
106      */
107     bool isSimilarity(SkScalar tol = SK_ScalarNearlyZero) const;
108 
109     /** Returns true if the matrix contains only translation, rotation/reflection or scale
110         (non-uniform scale is allowed).
111         Returns false if other transformation types are included or is degenerate
112      */
113     bool preservesRightAngles(SkScalar tol = SK_ScalarNearlyZero) const;
114 
115     enum {
116         kMScaleX,
117         kMSkewX,
118         kMTransX,
119         kMSkewY,
120         kMScaleY,
121         kMTransY,
122         kMPersp0,
123         kMPersp1,
124         kMPersp2
125     };
126 
127     /** Affine arrays are in column major order
128         because that's how PDF and XPS like it.
129      */
130     enum {
131         kAScaleX,
132         kASkewY,
133         kASkewX,
134         kAScaleY,
135         kATransX,
136         kATransY
137     };
138 
139     SkScalar operator[](int index) const {
140         SkASSERT((unsigned)index < 9);
141         return fMat[index];
142     }
143 
get(int index)144     SkScalar get(int index) const {
145         SkASSERT((unsigned)index < 9);
146         return fMat[index];
147     }
148 
getScaleX()149     SkScalar getScaleX() const { return fMat[kMScaleX]; }
getScaleY()150     SkScalar getScaleY() const { return fMat[kMScaleY]; }
getSkewY()151     SkScalar getSkewY() const { return fMat[kMSkewY]; }
getSkewX()152     SkScalar getSkewX() const { return fMat[kMSkewX]; }
getTranslateX()153     SkScalar getTranslateX() const { return fMat[kMTransX]; }
getTranslateY()154     SkScalar getTranslateY() const { return fMat[kMTransY]; }
getPerspX()155     SkScalar getPerspX() const { return fMat[kMPersp0]; }
getPerspY()156     SkScalar getPerspY() const { return fMat[kMPersp1]; }
157 
158     SkScalar& operator[](int index) {
159         SkASSERT((unsigned)index < 9);
160         this->setTypeMask(kUnknown_Mask);
161         return fMat[index];
162     }
163 
set(int index,SkScalar value)164     void set(int index, SkScalar value) {
165         SkASSERT((unsigned)index < 9);
166         fMat[index] = value;
167         this->setTypeMask(kUnknown_Mask);
168     }
169 
setScaleX(SkScalar v)170     void setScaleX(SkScalar v) { this->set(kMScaleX, v); }
setScaleY(SkScalar v)171     void setScaleY(SkScalar v) { this->set(kMScaleY, v); }
setSkewY(SkScalar v)172     void setSkewY(SkScalar v) { this->set(kMSkewY, v); }
setSkewX(SkScalar v)173     void setSkewX(SkScalar v) { this->set(kMSkewX, v); }
setTranslateX(SkScalar v)174     void setTranslateX(SkScalar v) { this->set(kMTransX, v); }
setTranslateY(SkScalar v)175     void setTranslateY(SkScalar v) { this->set(kMTransY, v); }
setPerspX(SkScalar v)176     void setPerspX(SkScalar v) { this->set(kMPersp0, v); }
setPerspY(SkScalar v)177     void setPerspY(SkScalar v) { this->set(kMPersp1, v); }
178 
setAll(SkScalar scaleX,SkScalar skewX,SkScalar transX,SkScalar skewY,SkScalar scaleY,SkScalar transY,SkScalar persp0,SkScalar persp1,SkScalar persp2)179     void setAll(SkScalar scaleX, SkScalar skewX,  SkScalar transX,
180                 SkScalar skewY,  SkScalar scaleY, SkScalar transY,
181                 SkScalar persp0, SkScalar persp1, SkScalar persp2) {
182         fMat[kMScaleX] = scaleX;
183         fMat[kMSkewX]  = skewX;
184         fMat[kMTransX] = transX;
185         fMat[kMSkewY]  = skewY;
186         fMat[kMScaleY] = scaleY;
187         fMat[kMTransY] = transY;
188         fMat[kMPersp0] = persp0;
189         fMat[kMPersp1] = persp1;
190         fMat[kMPersp2] = persp2;
191         this->setTypeMask(kUnknown_Mask);
192     }
193 
194     /**
195      *  Copy the 9 scalars for this matrix into buffer, in the same order as the kMScaleX
196      *  enum... scalex, skewx, transx, skewy, scaley, transy, persp0, persp1, persp2
197      */
get9(SkScalar buffer[9])198     void get9(SkScalar buffer[9]) const {
199         memcpy(buffer, fMat, 9 * sizeof(SkScalar));
200     }
201 
202     /**
203      *  Set this matrix to the 9 scalars from the buffer, in the same order as the kMScaleX
204      *  enum... scalex, skewx, transx, skewy, scaley, transy, persp0, persp1, persp2
205      *
206      *  Note: calling set9 followed by get9 may not return the exact same values. Since the matrix
207      *  is used to map non-homogeneous coordinates, it is free to rescale the 9 values as needed.
208      */
209     void set9(const SkScalar buffer[9]);
210 
211     /** Set the matrix to identity
212     */
213     void reset();
214     // alias for reset()
setIdentity()215     void setIdentity() { this->reset(); }
216 
217     /** Set the matrix to translate by (dx, dy).
218     */
219     void setTranslate(SkScalar dx, SkScalar dy);
setTranslate(const SkVector & v)220     void setTranslate(const SkVector& v) { this->setTranslate(v.fX, v.fY); }
221 
222     /** Set the matrix to scale by sx and sy, with a pivot point at (px, py).
223         The pivot point is the coordinate that should remain unchanged by the
224         specified transformation.
225     */
226     void setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
227     /** Set the matrix to scale by sx and sy.
228     */
229     void setScale(SkScalar sx, SkScalar sy);
230     /** Set the matrix to scale by 1/divx and 1/divy. Returns false and doesn't
231         touch the matrix if either divx or divy is zero.
232     */
233     bool setIDiv(int divx, int divy);
234     /** Set the matrix to rotate by the specified number of degrees, with a
235         pivot point at (px, py). The pivot point is the coordinate that should
236         remain unchanged by the specified transformation.
237     */
238     void setRotate(SkScalar degrees, SkScalar px, SkScalar py);
239     /** Set the matrix to rotate about (0,0) by the specified number of degrees.
240     */
241     void setRotate(SkScalar degrees);
242     /** Set the matrix to rotate by the specified sine and cosine values, with
243         a pivot point at (px, py). The pivot point is the coordinate that
244         should remain unchanged by the specified transformation.
245     */
246     void setSinCos(SkScalar sinValue, SkScalar cosValue,
247                    SkScalar px, SkScalar py);
248     /** Set the matrix to rotate by the specified sine and cosine values.
249     */
250     void setSinCos(SkScalar sinValue, SkScalar cosValue);
251 
252     SkMatrix& setRSXform(const SkRSXform&);
253 
254     /** Set the matrix to skew by sx and sy, with a pivot point at (px, py).
255         The pivot point is the coordinate that should remain unchanged by the
256         specified transformation.
257     */
258     void setSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
259     /** Set the matrix to skew by sx and sy.
260     */
261     void setSkew(SkScalar kx, SkScalar ky);
262     /** Set the matrix to the concatenation of the two specified matrices.
263         Either of the two matrices may also be the target matrix.
264         *this = a * b;
265     */
266     void setConcat(const SkMatrix& a, const SkMatrix& b);
267 
268     /** Preconcats the matrix with the specified translation.
269         M' = M * T(dx, dy)
270     */
271     void preTranslate(SkScalar dx, SkScalar dy);
272     /** Preconcats the matrix with the specified scale.
273         M' = M * S(sx, sy, px, py)
274     */
275     void preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
276     /** Preconcats the matrix with the specified scale.
277         M' = M * S(sx, sy)
278     */
279     void preScale(SkScalar sx, SkScalar sy);
280     /** Preconcats the matrix with the specified rotation.
281         M' = M * R(degrees, px, py)
282     */
283     void preRotate(SkScalar degrees, SkScalar px, SkScalar py);
284     /** Preconcats the matrix with the specified rotation.
285         M' = M * R(degrees)
286     */
287     void preRotate(SkScalar degrees);
288     /** Preconcats the matrix with the specified skew.
289         M' = M * K(kx, ky, px, py)
290     */
291     void preSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
292     /** Preconcats the matrix with the specified skew.
293         M' = M * K(kx, ky)
294     */
295     void preSkew(SkScalar kx, SkScalar ky);
296     /** Preconcats the matrix with the specified matrix.
297         M' = M * other
298     */
299     void preConcat(const SkMatrix& other);
300 
301     /** Postconcats the matrix with the specified translation.
302         M' = T(dx, dy) * M
303     */
304     void postTranslate(SkScalar dx, SkScalar dy);
305     /** Postconcats the matrix with the specified scale.
306         M' = S(sx, sy, px, py) * M
307     */
308     void postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py);
309     /** Postconcats the matrix with the specified scale.
310         M' = S(sx, sy) * M
311     */
312     void postScale(SkScalar sx, SkScalar sy);
313     /** Postconcats the matrix by dividing it by the specified integers.
314         M' = S(1/divx, 1/divy, 0, 0) * M
315     */
316     bool postIDiv(int divx, int divy);
317     /** Postconcats the matrix with the specified rotation.
318         M' = R(degrees, px, py) * M
319     */
320     void postRotate(SkScalar degrees, SkScalar px, SkScalar py);
321     /** Postconcats the matrix with the specified rotation.
322         M' = R(degrees) * M
323     */
324     void postRotate(SkScalar degrees);
325     /** Postconcats the matrix with the specified skew.
326         M' = K(kx, ky, px, py) * M
327     */
328     void postSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py);
329     /** Postconcats the matrix with the specified skew.
330         M' = K(kx, ky) * M
331     */
332     void postSkew(SkScalar kx, SkScalar ky);
333     /** Postconcats the matrix with the specified matrix.
334         M' = other * M
335     */
336     void postConcat(const SkMatrix& other);
337 
338     enum ScaleToFit {
339         /**
340          * Scale in X and Y independently, so that src matches dst exactly.
341          * This may change the aspect ratio of the src.
342          */
343         kFill_ScaleToFit,
344         /**
345          * Compute a scale that will maintain the original src aspect ratio,
346          * but will also ensure that src fits entirely inside dst. At least one
347          * axis (X or Y) will fit exactly. kStart aligns the result to the
348          * left and top edges of dst.
349          */
350         kStart_ScaleToFit,
351         /**
352          * Compute a scale that will maintain the original src aspect ratio,
353          * but will also ensure that src fits entirely inside dst. At least one
354          * axis (X or Y) will fit exactly. The result is centered inside dst.
355          */
356         kCenter_ScaleToFit,
357         /**
358          * Compute a scale that will maintain the original src aspect ratio,
359          * but will also ensure that src fits entirely inside dst. At least one
360          * axis (X or Y) will fit exactly. kEnd aligns the result to the
361          * right and bottom edges of dst.
362          */
363         kEnd_ScaleToFit
364     };
365 
366     /** Set the matrix to the scale and translate values that map the source
367         rectangle to the destination rectangle, returning true if the the result
368         can be represented.
369         @param src the source rectangle to map from.
370         @param dst the destination rectangle to map to.
371         @param stf the ScaleToFit option
372         @return true if the matrix can be represented by the rectangle mapping.
373     */
374     bool setRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf);
MakeRectToRect(const SkRect & src,const SkRect & dst,ScaleToFit stf)375     static SkMatrix MakeRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf) {
376         SkMatrix m;
377         m.setRectToRect(src, dst, stf);
378         return m;
379     }
380 
381     /** Set the matrix such that the specified src points would map to the
382         specified dst points. count must be within [0..4].
383         @param src  The array of src points
384         @param dst  The array of dst points
385         @param count The number of points to use for the transformation
386         @return true if the matrix was set to the specified transformation
387     */
388     bool setPolyToPoly(const SkPoint src[], const SkPoint dst[], int count);
389 
390     /** If this matrix can be inverted, return true and if inverse is not null,
391         set inverse to be the inverse of this matrix. If this matrix cannot be
392         inverted, ignore inverse and return false
393     */
invert(SkMatrix * inverse)394     bool SK_WARN_UNUSED_RESULT invert(SkMatrix* inverse) const {
395         // Allow the trivial case to be inlined.
396         if (this->isIdentity()) {
397             if (inverse) {
398                 inverse->reset();
399             }
400             return true;
401         }
402         return this->invertNonIdentity(inverse);
403     }
404 
405     /** Fills the passed array with affine identity values
406         in column major order.
407         @param affine  The array to fill with affine identity values.
408         Must not be NULL.
409     */
410     static void SetAffineIdentity(SkScalar affine[6]);
411 
412     /** Fills the passed array with the affine values in column major order.
413         If the matrix is a perspective transform, returns false
414         and does not change the passed array.
415         @param affine  The array to fill with affine values. Ignored if NULL.
416     */
417     bool SK_WARN_UNUSED_RESULT asAffine(SkScalar affine[6]) const;
418 
419     /** Set the matrix to the specified affine values.
420      *  Note: these are passed in column major order.
421      */
422     void setAffine(const SkScalar affine[6]);
423 
424     /** Apply this matrix to the array of points specified by src, and write
425         the transformed points into the array of points specified by dst.
426         dst[] = M * src[]
427         @param dst  Where the transformed coordinates are written. It must
428                     contain at least count entries
429         @param src  The original coordinates that are to be transformed. It
430                     must contain at least count entries
431         @param count The number of points in src to read, and then transform
432                      into dst.
433     */
mapPoints(SkPoint dst[],const SkPoint src[],int count)434     void mapPoints(SkPoint dst[], const SkPoint src[], int count) const {
435         SkASSERT((dst && src && count > 0) || 0 == count);
436         // no partial overlap
437         SkASSERT(src == dst || &dst[count] <= &src[0] || &src[count] <= &dst[0]);
438         this->getMapPtsProc()(*this, dst, src, count);
439     }
440 
441     /** Apply this matrix to the array of points, overwriting it with the
442         transformed values.
443         dst[] = M * pts[]
444         @param pts  The points to be transformed. It must contain at least
445                     count entries
446         @param count The number of points in pts.
447     */
mapPoints(SkPoint pts[],int count)448     void mapPoints(SkPoint pts[], int count) const {
449         this->mapPoints(pts, pts, count);
450     }
451 
452     /** Like mapPoints but with custom byte stride between the points. Stride
453      *  should be a multiple of sizeof(SkScalar).
454      */
mapPointsWithStride(SkPoint pts[],size_t stride,int count)455     void mapPointsWithStride(SkPoint pts[], size_t stride, int count) const {
456         SkASSERT(stride >= sizeof(SkPoint));
457         SkASSERT(0 == stride % sizeof(SkScalar));
458         for (int i = 0; i < count; ++i) {
459             this->mapPoints(pts, pts, 1);
460             pts = (SkPoint*)((intptr_t)pts + stride);
461         }
462     }
463 
464     /** Like mapPoints but with custom byte stride between the points.
465     */
mapPointsWithStride(SkPoint dst[],const SkPoint src[],size_t stride,int count)466     void mapPointsWithStride(SkPoint dst[], const SkPoint src[], size_t stride, int count) const {
467         SkASSERT(stride >= sizeof(SkPoint));
468         SkASSERT(0 == stride % sizeof(SkScalar));
469         for (int i = 0; i < count; ++i) {
470             this->mapPoints(dst, src, 1);
471             src = (SkPoint*)((intptr_t)src + stride);
472             dst = (SkPoint*)((intptr_t)dst + stride);
473         }
474     }
475 
476     /** Apply this matrix to the array of homogeneous points, specified by src,
477         where a homogeneous point is defined by 3 contiguous scalar values,
478         and write the transformed points into the array of scalars specified by dst.
479         dst[] = M * src[]
480         @param dst  Where the transformed coordinates are written. It must
481                     contain at least 3 * count entries
482         @param src  The original coordinates that are to be transformed. It
483                     must contain at least 3 * count entries
484         @param count The number of triples (homogeneous points) in src to read,
485                      and then transform into dst.
486     */
487     void mapHomogeneousPoints(SkScalar dst[], const SkScalar src[], int count) const;
488 
mapXY(SkScalar x,SkScalar y,SkPoint * result)489     void mapXY(SkScalar x, SkScalar y, SkPoint* result) const {
490         SkASSERT(result);
491         this->getMapXYProc()(*this, x, y, result);
492     }
493 
mapXY(SkScalar x,SkScalar y)494     SkPoint mapXY(SkScalar x, SkScalar y) const {
495         SkPoint result;
496         this->getMapXYProc()(*this, x, y, &result);
497         return result;
498     }
499 
500     /** Apply this matrix to the array of vectors specified by src, and write
501         the transformed vectors into the array of vectors specified by dst.
502         This is similar to mapPoints, but ignores any translation in the matrix.
503         @param dst  Where the transformed coordinates are written. It must
504                     contain at least count entries
505         @param src  The original coordinates that are to be transformed. It
506                     must contain at least count entries
507         @param count The number of vectors in src to read, and then transform
508                      into dst.
509     */
510     void mapVectors(SkVector dst[], const SkVector src[], int count) const;
511 
512     /** Apply this matrix to the array of vectors specified by src, and write
513         the transformed vectors into the array of vectors specified by dst.
514         This is similar to mapPoints, but ignores any translation in the matrix.
515         @param vecs The vectors to be transformed. It must contain at least
516                     count entries
517         @param count The number of vectors in vecs.
518     */
mapVectors(SkVector vecs[],int count)519     void mapVectors(SkVector vecs[], int count) const {
520         this->mapVectors(vecs, vecs, count);
521     }
522 
mapVector(SkScalar dx,SkScalar dy,SkVector * result)523     void mapVector(SkScalar dx, SkScalar dy, SkVector* result) const {
524         SkVector vec = { dx, dy };
525         this->mapVectors(result, &vec, 1);
526     }
527 
mapVector(SkScalar dx,SkScalar dy)528     SkVector mapVector(SkScalar dx, SkScalar dy) const {
529         SkVector vec = { dx, dy };
530         this->mapVectors(&vec, &vec, 1);
531         return vec;
532     }
533 
534     /** Apply this matrix to the src rectangle, and write the transformed
535         rectangle into dst. This is accomplished by transforming the 4 corners
536         of src, and then setting dst to the bounds of those points.
537         @param dst  Where the transformed rectangle is written.
538         @param src  The original rectangle to be transformed.
539         @return the result of calling rectStaysRect()
540     */
541     bool mapRect(SkRect* dst, const SkRect& src) const;
542 
543     /** Apply this matrix to the rectangle, and write the transformed rectangle
544         back into it. This is accomplished by transforming the 4 corners of
545         rect, and then setting it to the bounds of those points
546         @param rect The rectangle to transform.
547         @return the result of calling rectStaysRect()
548     */
mapRect(SkRect * rect)549     bool mapRect(SkRect* rect) const {
550         return this->mapRect(rect, *rect);
551     }
552 
553     /** Apply this matrix to the src rectangle, and write the four transformed
554         points into dst. The points written to dst will be the original top-left, top-right,
555         bottom-right, and bottom-left points transformed by the matrix.
556         @param dst  Where the transformed quad is written.
557         @param rect The original rectangle to be transformed.
558     */
mapRectToQuad(SkPoint dst[4],const SkRect & rect)559     void mapRectToQuad(SkPoint dst[4], const SkRect& rect) const {
560         // This could potentially be faster if we only transformed each x and y of the rect once.
561         rect.toQuad(dst);
562         this->mapPoints(dst, 4);
563     }
564 
565     /**
566      *  Maps a rect to another rect, asserting (in debug mode) that the matrix only contains
567      *  scale and translate elements. If it contains other elements, the results are undefined.
568      */
569     void mapRectScaleTranslate(SkRect* dst, const SkRect& src) const;
570 
571     /** Return the mean radius of a circle after it has been mapped by
572         this matrix. NOTE: in perspective this value assumes the circle
573         has its center at the origin.
574     */
575     SkScalar mapRadius(SkScalar radius) const;
576 
577     typedef void (*MapXYProc)(const SkMatrix& mat, SkScalar x, SkScalar y,
578                                  SkPoint* result);
579 
GetMapXYProc(TypeMask mask)580     static MapXYProc GetMapXYProc(TypeMask mask) {
581         SkASSERT((mask & ~kAllMasks) == 0);
582         return gMapXYProcs[mask & kAllMasks];
583     }
584 
getMapXYProc()585     MapXYProc getMapXYProc() const {
586         return GetMapXYProc(this->getType());
587     }
588 
589     typedef void (*MapPtsProc)(const SkMatrix& mat, SkPoint dst[],
590                                   const SkPoint src[], int count);
591 
GetMapPtsProc(TypeMask mask)592     static MapPtsProc GetMapPtsProc(TypeMask mask) {
593         SkASSERT((mask & ~kAllMasks) == 0);
594         return gMapPtsProcs[mask & kAllMasks];
595     }
596 
getMapPtsProc()597     MapPtsProc getMapPtsProc() const {
598         return GetMapPtsProc(this->getType());
599     }
600 
601     /** Returns true if the matrix can be stepped in X (not complex
602         perspective).
603     */
604     bool isFixedStepInX() const;
605 
606     /** If the matrix can be stepped in X (not complex perspective)
607         then return the step value.
608         If it cannot, behavior is undefined.
609     */
610     SkVector fixedStepInX(SkScalar y) const;
611 
612     /** Efficient comparison of two matrices. It distinguishes between zero and
613      *  negative zero. It will return false when the sign of zero values is the
614      *  only difference between the two matrices. It considers NaN values to be
615      *  equal to themselves. So a matrix full of NaNs is "cheap equal" to
616      *  another matrix full of NaNs iff the NaN values are bitwise identical
617      *  while according to strict the strict == test a matrix with a NaN value
618      *  is equal to nothing, including itself.
619      */
cheapEqualTo(const SkMatrix & m)620     bool cheapEqualTo(const SkMatrix& m) const {
621         return 0 == memcmp(fMat, m.fMat, sizeof(fMat));
622     }
623 
624     friend SK_API bool operator==(const SkMatrix& a, const SkMatrix& b);
625     friend SK_API bool operator!=(const SkMatrix& a, const SkMatrix& b) {
626         return !(a == b);
627     }
628 
629     enum {
630         // writeTo/readFromMemory will never return a value larger than this
631         kMaxFlattenSize = 9 * sizeof(SkScalar) + sizeof(uint32_t)
632     };
633     // return the number of bytes written, whether or not buffer is null
634     size_t writeToMemory(void* buffer) const;
635     /**
636      * Reads data from the buffer parameter
637      *
638      * @param buffer Memory to read from
639      * @param length Amount of memory available in the buffer
640      * @return number of bytes read (must be a multiple of 4) or
641      *         0 if there was not enough memory available
642      */
643     size_t readFromMemory(const void* buffer, size_t length);
644 
645     void dump() const;
646     void toString(SkString*) const;
647 
648     /**
649      * Calculates the minimum scaling factor of the matrix as computed from the SVD of the upper
650      * left 2x2. If the max scale factor cannot be computed (for example overflow or perspective)
651      * -1 is returned.
652      *
653      * @return minimum scale factor
654      */
655     SkScalar getMinScale() const;
656 
657     /**
658      * Calculates the maximum scaling factor of the matrix as computed from the SVD of the upper
659      * left 2x2. If the max scale factor cannot be computed (for example overflow or perspective)
660      * -1 is returned.
661      *
662      * @return maximum scale factor
663      */
664     SkScalar getMaxScale() const;
665 
666     /**
667      * Gets both the min and max scale factors. The min scale factor is scaleFactors[0] and the max
668      * is scaleFactors[1]. If the min/max scale factors cannot be computed false is returned and the
669      * values of scaleFactors[] are undefined.
670      */
671     bool SK_WARN_UNUSED_RESULT getMinMaxScales(SkScalar scaleFactors[2]) const;
672 
673     /**
674      *  Attempt to decompose this matrix into a scale-only component and whatever remains, where
675      *  the scale component is to be applied first.
676      *
677      *  M -> Remaining * Scale
678      *
679      *  On success, return true and assign the scale and remaining components (assuming their
680      *  respective parameters are not null). On failure return false and ignore the parameters.
681      *
682      *  Possible reasons to fail: perspective, one or more scale factors are zero.
683      */
684     bool decomposeScale(SkSize* scale, SkMatrix* remaining = NULL) const;
685 
686     /**
687      *  Return a reference to a const identity matrix
688      */
689     static const SkMatrix& I();
690 
691     /**
692      *  Return a reference to a const matrix that is "invalid", one that could
693      *  never be used.
694      */
695     static const SkMatrix& InvalidMatrix();
696 
697     /**
698      * Return the concatenation of two matrices, a * b.
699      */
Concat(const SkMatrix & a,const SkMatrix & b)700     static SkMatrix Concat(const SkMatrix& a, const SkMatrix& b) {
701         SkMatrix result;
702         result.setConcat(a, b);
703         return result;
704     }
705 
706     /**
707      * Testing routine; the matrix's type cache should never need to be
708      * manually invalidated during normal use.
709      */
dirtyMatrixTypeCache()710     void dirtyMatrixTypeCache() {
711         this->setTypeMask(kUnknown_Mask);
712     }
713 
714     /**
715      *  Initialize the matrix to be scale + post-translate.
716      */
setScaleTranslate(SkScalar sx,SkScalar sy,SkScalar tx,SkScalar ty)717     void setScaleTranslate(SkScalar sx, SkScalar sy, SkScalar tx, SkScalar ty) {
718         fMat[kMScaleX] = sx;
719         fMat[kMSkewX]  = 0;
720         fMat[kMTransX] = tx;
721 
722         fMat[kMSkewY]  = 0;
723         fMat[kMScaleY] = sy;
724         fMat[kMTransY] = ty;
725 
726         fMat[kMPersp0] = 0;
727         fMat[kMPersp1] = 0;
728         fMat[kMPersp2] = 1;
729 
730         unsigned mask = 0;
731         if (sx != 1 || sy != 1) {
732             mask |= kScale_Mask;
733         }
734         if (tx || ty) {
735             mask |= kTranslate_Mask;
736         }
737         this->setTypeMask(mask | kRectStaysRect_Mask);
738     }
739 
740     /**
741      *  Are all elements of the matrix finite?
742      */
isFinite()743     bool isFinite() const { return SkScalarsAreFinite(fMat, 9); }
744 
745 private:
746     enum {
747         /** Set if the matrix will map a rectangle to another rectangle. This
748             can be true if the matrix is scale-only, or rotates a multiple of
749             90 degrees.
750 
751             This bit will be set on identity matrices
752         */
753         kRectStaysRect_Mask = 0x10,
754 
755         /** Set if the perspective bit is valid even though the rest of
756             the matrix is Unknown.
757         */
758         kOnlyPerspectiveValid_Mask = 0x40,
759 
760         kUnknown_Mask = 0x80,
761 
762         kORableMasks =  kTranslate_Mask |
763                         kScale_Mask |
764                         kAffine_Mask |
765                         kPerspective_Mask,
766 
767         kAllMasks = kTranslate_Mask |
768                     kScale_Mask |
769                     kAffine_Mask |
770                     kPerspective_Mask |
771                     kRectStaysRect_Mask
772     };
773 
774     SkScalar         fMat[9];
775     mutable uint32_t fTypeMask;
776 
777     static void ComputeInv(SkScalar dst[9], const SkScalar src[9], double invDet, bool isPersp);
778 
779     uint8_t computeTypeMask() const;
780     uint8_t computePerspectiveTypeMask() const;
781 
setTypeMask(int mask)782     void setTypeMask(int mask) {
783         // allow kUnknown or a valid mask
784         SkASSERT(kUnknown_Mask == mask || (mask & kAllMasks) == mask ||
785                  ((kUnknown_Mask | kOnlyPerspectiveValid_Mask) & mask)
786                  == (kUnknown_Mask | kOnlyPerspectiveValid_Mask));
787         fTypeMask = SkToU8(mask);
788     }
789 
orTypeMask(int mask)790     void orTypeMask(int mask) {
791         SkASSERT((mask & kORableMasks) == mask);
792         fTypeMask = SkToU8(fTypeMask | mask);
793     }
794 
clearTypeMask(int mask)795     void clearTypeMask(int mask) {
796         // only allow a valid mask
797         SkASSERT((mask & kAllMasks) == mask);
798         fTypeMask = fTypeMask & ~mask;
799     }
800 
getPerspectiveTypeMaskOnly()801     TypeMask getPerspectiveTypeMaskOnly() const {
802         if ((fTypeMask & kUnknown_Mask) &&
803             !(fTypeMask & kOnlyPerspectiveValid_Mask)) {
804             fTypeMask = this->computePerspectiveTypeMask();
805         }
806         return (TypeMask)(fTypeMask & 0xF);
807     }
808 
809     /** Returns true if we already know that the matrix is identity;
810         false otherwise.
811     */
isTriviallyIdentity()812     bool isTriviallyIdentity() const {
813         if (fTypeMask & kUnknown_Mask) {
814             return false;
815         }
816         return ((fTypeMask & 0xF) == 0);
817     }
818 
updateTranslateMask()819     inline void updateTranslateMask() {
820         if ((fMat[kMTransX] != 0) | (fMat[kMTransY] != 0)) {
821             fTypeMask |= kTranslate_Mask;
822         } else {
823             fTypeMask &= ~kTranslate_Mask;
824         }
825     }
826 
827     bool SK_WARN_UNUSED_RESULT invertNonIdentity(SkMatrix* inverse) const;
828 
829     static bool Poly2Proc(const SkPoint[], SkMatrix*, const SkPoint& scale);
830     static bool Poly3Proc(const SkPoint[], SkMatrix*, const SkPoint& scale);
831     static bool Poly4Proc(const SkPoint[], SkMatrix*, const SkPoint& scale);
832 
833     static void Identity_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
834     static void Trans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
835     static void Scale_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
836     static void ScaleTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
837     static void Rot_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
838     static void RotTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
839     static void Persp_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*);
840 
841     static const MapXYProc gMapXYProcs[];
842 
843     static void Identity_pts(const SkMatrix&, SkPoint[], const SkPoint[], int);
844     static void Trans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
845     static void Scale_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
846     static void ScaleTrans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[],
847                                int count);
848     static void Persp_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
849 
850     static void Affine_vpts(const SkMatrix&, SkPoint dst[], const SkPoint[], int);
851 
852     static const MapPtsProc gMapPtsProcs[];
853 
854     friend class SkPerspIter;
855     friend class SkMatrixPriv;
856 };
857 SK_END_REQUIRE_DENSE
858 
859 #endif
860