1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *  * Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in
12  *    the documentation and/or other materials provided with the
13  *    distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include "linker_phdr.h"
30 
31 #include <errno.h>
32 #include <string.h>
33 #include <sys/mman.h>
34 #include <sys/types.h>
35 #include <sys/stat.h>
36 #include <unistd.h>
37 
38 #include "linker.h"
39 #include "linker_dlwarning.h"
40 #include "linker_globals.h"
41 #include "linker_debug.h"
42 #include "linker_utils.h"
43 
44 #include "private/bionic_prctl.h"
45 #include "private/CFIShadow.h" // For kLibraryAlignment
46 
GetTargetElfMachine()47 static int GetTargetElfMachine() {
48 #if defined(__arm__)
49   return EM_ARM;
50 #elif defined(__aarch64__)
51   return EM_AARCH64;
52 #elif defined(__i386__)
53   return EM_386;
54 #elif defined(__mips__)
55   return EM_MIPS;
56 #elif defined(__x86_64__)
57   return EM_X86_64;
58 #endif
59 }
60 
61 /**
62   TECHNICAL NOTE ON ELF LOADING.
63 
64   An ELF file's program header table contains one or more PT_LOAD
65   segments, which corresponds to portions of the file that need to
66   be mapped into the process' address space.
67 
68   Each loadable segment has the following important properties:
69 
70     p_offset  -> segment file offset
71     p_filesz  -> segment file size
72     p_memsz   -> segment memory size (always >= p_filesz)
73     p_vaddr   -> segment's virtual address
74     p_flags   -> segment flags (e.g. readable, writable, executable)
75 
76   We will ignore the p_paddr and p_align fields of ElfW(Phdr) for now.
77 
78   The loadable segments can be seen as a list of [p_vaddr ... p_vaddr+p_memsz)
79   ranges of virtual addresses. A few rules apply:
80 
81   - the virtual address ranges should not overlap.
82 
83   - if a segment's p_filesz is smaller than its p_memsz, the extra bytes
84     between them should always be initialized to 0.
85 
86   - ranges do not necessarily start or end at page boundaries. Two distinct
87     segments can have their start and end on the same page. In this case, the
88     page inherits the mapping flags of the latter segment.
89 
90   Finally, the real load addrs of each segment is not p_vaddr. Instead the
91   loader decides where to load the first segment, then will load all others
92   relative to the first one to respect the initial range layout.
93 
94   For example, consider the following list:
95 
96     [ offset:0,      filesz:0x4000, memsz:0x4000, vaddr:0x30000 ],
97     [ offset:0x4000, filesz:0x2000, memsz:0x8000, vaddr:0x40000 ],
98 
99   This corresponds to two segments that cover these virtual address ranges:
100 
101        0x30000...0x34000
102        0x40000...0x48000
103 
104   If the loader decides to load the first segment at address 0xa0000000
105   then the segments' load address ranges will be:
106 
107        0xa0030000...0xa0034000
108        0xa0040000...0xa0048000
109 
110   In other words, all segments must be loaded at an address that has the same
111   constant offset from their p_vaddr value. This offset is computed as the
112   difference between the first segment's load address, and its p_vaddr value.
113 
114   However, in practice, segments do _not_ start at page boundaries. Since we
115   can only memory-map at page boundaries, this means that the bias is
116   computed as:
117 
118        load_bias = phdr0_load_address - PAGE_START(phdr0->p_vaddr)
119 
120   (NOTE: The value must be used as a 32-bit unsigned integer, to deal with
121           possible wrap around UINT32_MAX for possible large p_vaddr values).
122 
123   And that the phdr0_load_address must start at a page boundary, with
124   the segment's real content starting at:
125 
126        phdr0_load_address + PAGE_OFFSET(phdr0->p_vaddr)
127 
128   Note that ELF requires the following condition to make the mmap()-ing work:
129 
130       PAGE_OFFSET(phdr0->p_vaddr) == PAGE_OFFSET(phdr0->p_offset)
131 
132   The load_bias must be added to any p_vaddr value read from the ELF file to
133   determine the corresponding memory address.
134 
135  **/
136 
137 #define MAYBE_MAP_FLAG(x, from, to)  (((x) & (from)) ? (to) : 0)
138 #define PFLAGS_TO_PROT(x)            (MAYBE_MAP_FLAG((x), PF_X, PROT_EXEC) | \
139                                       MAYBE_MAP_FLAG((x), PF_R, PROT_READ) | \
140                                       MAYBE_MAP_FLAG((x), PF_W, PROT_WRITE))
141 
ElfReader()142 ElfReader::ElfReader()
143     : did_read_(false), did_load_(false), fd_(-1), file_offset_(0), file_size_(0), phdr_num_(0),
144       phdr_table_(nullptr), shdr_table_(nullptr), shdr_num_(0), dynamic_(nullptr), strtab_(nullptr),
145       strtab_size_(0), load_start_(nullptr), load_size_(0), load_bias_(0), loaded_phdr_(nullptr),
146       mapped_by_caller_(false) {
147 }
148 
Read(const char * name,int fd,off64_t file_offset,off64_t file_size)149 bool ElfReader::Read(const char* name, int fd, off64_t file_offset, off64_t file_size) {
150   CHECK(!did_read_);
151   CHECK(!did_load_);
152   name_ = name;
153   fd_ = fd;
154   file_offset_ = file_offset;
155   file_size_ = file_size;
156 
157   if (ReadElfHeader() &&
158       VerifyElfHeader() &&
159       ReadProgramHeaders() &&
160       ReadSectionHeaders() &&
161       ReadDynamicSection()) {
162     did_read_ = true;
163   }
164 
165   return did_read_;
166 }
167 
Load(const android_dlextinfo * extinfo)168 bool ElfReader::Load(const android_dlextinfo* extinfo) {
169   CHECK(did_read_);
170   CHECK(!did_load_);
171   if (ReserveAddressSpace(extinfo) &&
172       LoadSegments() &&
173       FindPhdr()) {
174     did_load_ = true;
175   }
176 
177   return did_load_;
178 }
179 
get_string(ElfW (Word)index) const180 const char* ElfReader::get_string(ElfW(Word) index) const {
181   CHECK(strtab_ != nullptr);
182   CHECK(index < strtab_size_);
183 
184   return strtab_ + index;
185 }
186 
ReadElfHeader()187 bool ElfReader::ReadElfHeader() {
188   ssize_t rc = TEMP_FAILURE_RETRY(pread64(fd_, &header_, sizeof(header_), file_offset_));
189   if (rc < 0) {
190     DL_ERR("can't read file \"%s\": %s", name_.c_str(), strerror(errno));
191     return false;
192   }
193 
194   if (rc != sizeof(header_)) {
195     DL_ERR("\"%s\" is too small to be an ELF executable: only found %zd bytes", name_.c_str(),
196            static_cast<size_t>(rc));
197     return false;
198   }
199   return true;
200 }
201 
VerifyElfHeader()202 bool ElfReader::VerifyElfHeader() {
203   if (memcmp(header_.e_ident, ELFMAG, SELFMAG) != 0) {
204     DL_ERR("\"%s\" has bad ELF magic", name_.c_str());
205     return false;
206   }
207 
208   // Try to give a clear diagnostic for ELF class mismatches, since they're
209   // an easy mistake to make during the 32-bit/64-bit transition period.
210   int elf_class = header_.e_ident[EI_CLASS];
211 #if defined(__LP64__)
212   if (elf_class != ELFCLASS64) {
213     if (elf_class == ELFCLASS32) {
214       DL_ERR("\"%s\" is 32-bit instead of 64-bit", name_.c_str());
215     } else {
216       DL_ERR("\"%s\" has unknown ELF class: %d", name_.c_str(), elf_class);
217     }
218     return false;
219   }
220 #else
221   if (elf_class != ELFCLASS32) {
222     if (elf_class == ELFCLASS64) {
223       DL_ERR("\"%s\" is 64-bit instead of 32-bit", name_.c_str());
224     } else {
225       DL_ERR("\"%s\" has unknown ELF class: %d", name_.c_str(), elf_class);
226     }
227     return false;
228   }
229 #endif
230 
231   if (header_.e_ident[EI_DATA] != ELFDATA2LSB) {
232     DL_ERR("\"%s\" not little-endian: %d", name_.c_str(), header_.e_ident[EI_DATA]);
233     return false;
234   }
235 
236   if (header_.e_type != ET_DYN) {
237     DL_ERR("\"%s\" has unexpected e_type: %d", name_.c_str(), header_.e_type);
238     return false;
239   }
240 
241   if (header_.e_version != EV_CURRENT) {
242     DL_ERR("\"%s\" has unexpected e_version: %d", name_.c_str(), header_.e_version);
243     return false;
244   }
245 
246   if (header_.e_machine != GetTargetElfMachine()) {
247     DL_ERR("\"%s\" has unexpected e_machine: %d", name_.c_str(), header_.e_machine);
248     return false;
249   }
250 
251   if (header_.e_shentsize != sizeof(ElfW(Shdr))) {
252     // Fail if app is targeting Android O or above
253     if (get_application_target_sdk_version() >= __ANDROID_API_O__) {
254       DL_ERR_AND_LOG("\"%s\" has unsupported e_shentsize: 0x%x (expected 0x%zx)",
255                      name_.c_str(), header_.e_shentsize, sizeof(ElfW(Shdr)));
256       return false;
257     }
258     DL_WARN("\"%s\" has unsupported e_shentsize: 0x%x (expected 0x%zx)",
259             name_.c_str(), header_.e_shentsize, sizeof(ElfW(Shdr)));
260     add_dlwarning(name_.c_str(), "has invalid ELF header");
261   }
262 
263   if (header_.e_shstrndx == 0) {
264     // Fail if app is targeting Android O or above
265     if (get_application_target_sdk_version() >= __ANDROID_API_O__) {
266       DL_ERR_AND_LOG("\"%s\" has invalid e_shstrndx", name_.c_str());
267       return false;
268     }
269 
270     DL_WARN("\"%s\" has invalid e_shstrndx", name_.c_str());
271     add_dlwarning(name_.c_str(), "has invalid ELF header");
272   }
273 
274   return true;
275 }
276 
CheckFileRange(ElfW (Addr)offset,size_t size,size_t alignment)277 bool ElfReader::CheckFileRange(ElfW(Addr) offset, size_t size, size_t alignment) {
278   off64_t range_start;
279   off64_t range_end;
280 
281   // Only header can be located at the 0 offset... This function called to
282   // check DYNSYM and DYNAMIC sections and phdr/shdr - none of them can be
283   // at offset 0.
284 
285   return offset > 0 &&
286          safe_add(&range_start, file_offset_, offset) &&
287          safe_add(&range_end, range_start, size) &&
288          (range_start < file_size_) &&
289          (range_end <= file_size_) &&
290          ((offset % alignment) == 0);
291 }
292 
293 // Loads the program header table from an ELF file into a read-only private
294 // anonymous mmap-ed block.
ReadProgramHeaders()295 bool ElfReader::ReadProgramHeaders() {
296   phdr_num_ = header_.e_phnum;
297 
298   // Like the kernel, we only accept program header tables that
299   // are smaller than 64KiB.
300   if (phdr_num_ < 1 || phdr_num_ > 65536/sizeof(ElfW(Phdr))) {
301     DL_ERR("\"%s\" has invalid e_phnum: %zd", name_.c_str(), phdr_num_);
302     return false;
303   }
304 
305   // Boundary checks
306   size_t size = phdr_num_ * sizeof(ElfW(Phdr));
307   if (!CheckFileRange(header_.e_phoff, size, alignof(ElfW(Phdr)))) {
308     DL_ERR_AND_LOG("\"%s\" has invalid phdr offset/size: %zu/%zu",
309                    name_.c_str(),
310                    static_cast<size_t>(header_.e_phoff),
311                    size);
312     return false;
313   }
314 
315   if (!phdr_fragment_.Map(fd_, file_offset_, header_.e_phoff, size)) {
316     DL_ERR("\"%s\" phdr mmap failed: %s", name_.c_str(), strerror(errno));
317     return false;
318   }
319 
320   phdr_table_ = static_cast<ElfW(Phdr)*>(phdr_fragment_.data());
321   return true;
322 }
323 
ReadSectionHeaders()324 bool ElfReader::ReadSectionHeaders() {
325   shdr_num_ = header_.e_shnum;
326 
327   if (shdr_num_ == 0) {
328     DL_ERR_AND_LOG("\"%s\" has no section headers", name_.c_str());
329     return false;
330   }
331 
332   size_t size = shdr_num_ * sizeof(ElfW(Shdr));
333   if (!CheckFileRange(header_.e_shoff, size, alignof(const ElfW(Shdr)))) {
334     DL_ERR_AND_LOG("\"%s\" has invalid shdr offset/size: %zu/%zu",
335                    name_.c_str(),
336                    static_cast<size_t>(header_.e_shoff),
337                    size);
338     return false;
339   }
340 
341   if (!shdr_fragment_.Map(fd_, file_offset_, header_.e_shoff, size)) {
342     DL_ERR("\"%s\" shdr mmap failed: %s", name_.c_str(), strerror(errno));
343     return false;
344   }
345 
346   shdr_table_ = static_cast<const ElfW(Shdr)*>(shdr_fragment_.data());
347   return true;
348 }
349 
ReadDynamicSection()350 bool ElfReader::ReadDynamicSection() {
351   // 1. Find .dynamic section (in section headers)
352   const ElfW(Shdr)* dynamic_shdr = nullptr;
353   for (size_t i = 0; i < shdr_num_; ++i) {
354     if (shdr_table_[i].sh_type == SHT_DYNAMIC) {
355       dynamic_shdr = &shdr_table_ [i];
356       break;
357     }
358   }
359 
360   if (dynamic_shdr == nullptr) {
361     DL_ERR_AND_LOG("\"%s\" .dynamic section header was not found", name_.c_str());
362     return false;
363   }
364 
365   // Make sure dynamic_shdr offset and size matches PT_DYNAMIC phdr
366   size_t pt_dynamic_offset = 0;
367   size_t pt_dynamic_filesz = 0;
368   for (size_t i = 0; i < phdr_num_; ++i) {
369     const ElfW(Phdr)* phdr = &phdr_table_[i];
370     if (phdr->p_type == PT_DYNAMIC) {
371       pt_dynamic_offset = phdr->p_offset;
372       pt_dynamic_filesz = phdr->p_filesz;
373     }
374   }
375 
376   if (pt_dynamic_offset != dynamic_shdr->sh_offset) {
377     if (get_application_target_sdk_version() >= __ANDROID_API_O__) {
378       DL_ERR_AND_LOG("\"%s\" .dynamic section has invalid offset: 0x%zx, "
379                      "expected to match PT_DYNAMIC offset: 0x%zx",
380                      name_.c_str(),
381                      static_cast<size_t>(dynamic_shdr->sh_offset),
382                      pt_dynamic_offset);
383       return false;
384     }
385     DL_WARN("\"%s\" .dynamic section has invalid offset: 0x%zx, "
386             "expected to match PT_DYNAMIC offset: 0x%zx",
387             name_.c_str(),
388             static_cast<size_t>(dynamic_shdr->sh_offset),
389             pt_dynamic_offset);
390     add_dlwarning(name_.c_str(), "invalid .dynamic section");
391   }
392 
393   if (pt_dynamic_filesz != dynamic_shdr->sh_size) {
394     if (get_application_target_sdk_version() >= __ANDROID_API_O__) {
395       DL_ERR_AND_LOG("\"%s\" .dynamic section has invalid size: 0x%zx, "
396                      "expected to match PT_DYNAMIC filesz: 0x%zx",
397                      name_.c_str(),
398                      static_cast<size_t>(dynamic_shdr->sh_size),
399                      pt_dynamic_filesz);
400       return false;
401     }
402     DL_WARN("\"%s\" .dynamic section has invalid size: 0x%zx, "
403             "expected to match PT_DYNAMIC filesz: 0x%zx",
404             name_.c_str(),
405             static_cast<size_t>(dynamic_shdr->sh_size),
406             pt_dynamic_filesz);
407     add_dlwarning(name_.c_str(), "invalid .dynamic section");
408   }
409 
410   if (dynamic_shdr->sh_link >= shdr_num_) {
411     DL_ERR_AND_LOG("\"%s\" .dynamic section has invalid sh_link: %d",
412                    name_.c_str(),
413                    dynamic_shdr->sh_link);
414     return false;
415   }
416 
417   const ElfW(Shdr)* strtab_shdr = &shdr_table_[dynamic_shdr->sh_link];
418 
419   if (strtab_shdr->sh_type != SHT_STRTAB) {
420     DL_ERR_AND_LOG("\"%s\" .dynamic section has invalid link(%d) sh_type: %d (expected SHT_STRTAB)",
421                    name_.c_str(), dynamic_shdr->sh_link, strtab_shdr->sh_type);
422     return false;
423   }
424 
425   if (!CheckFileRange(dynamic_shdr->sh_offset, dynamic_shdr->sh_size, alignof(const ElfW(Dyn)))) {
426     DL_ERR_AND_LOG("\"%s\" has invalid offset/size of .dynamic section", name_.c_str());
427     return false;
428   }
429 
430   if (!dynamic_fragment_.Map(fd_, file_offset_, dynamic_shdr->sh_offset, dynamic_shdr->sh_size)) {
431     DL_ERR("\"%s\" dynamic section mmap failed: %s", name_.c_str(), strerror(errno));
432     return false;
433   }
434 
435   dynamic_ = static_cast<const ElfW(Dyn)*>(dynamic_fragment_.data());
436 
437   if (!CheckFileRange(strtab_shdr->sh_offset, strtab_shdr->sh_size, alignof(const char))) {
438     DL_ERR_AND_LOG("\"%s\" has invalid offset/size of the .strtab section linked from .dynamic section",
439                    name_.c_str());
440     return false;
441   }
442 
443   if (!strtab_fragment_.Map(fd_, file_offset_, strtab_shdr->sh_offset, strtab_shdr->sh_size)) {
444     DL_ERR("\"%s\" strtab section mmap failed: %s", name_.c_str(), strerror(errno));
445     return false;
446   }
447 
448   strtab_ = static_cast<const char*>(strtab_fragment_.data());
449   strtab_size_ = strtab_fragment_.size();
450   return true;
451 }
452 
453 /* Returns the size of the extent of all the possibly non-contiguous
454  * loadable segments in an ELF program header table. This corresponds
455  * to the page-aligned size in bytes that needs to be reserved in the
456  * process' address space. If there are no loadable segments, 0 is
457  * returned.
458  *
459  * If out_min_vaddr or out_max_vaddr are not null, they will be
460  * set to the minimum and maximum addresses of pages to be reserved,
461  * or 0 if there is nothing to load.
462  */
phdr_table_get_load_size(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)* out_min_vaddr,ElfW (Addr)* out_max_vaddr)463 size_t phdr_table_get_load_size(const ElfW(Phdr)* phdr_table, size_t phdr_count,
464                                 ElfW(Addr)* out_min_vaddr,
465                                 ElfW(Addr)* out_max_vaddr) {
466   ElfW(Addr) min_vaddr = UINTPTR_MAX;
467   ElfW(Addr) max_vaddr = 0;
468 
469   bool found_pt_load = false;
470   for (size_t i = 0; i < phdr_count; ++i) {
471     const ElfW(Phdr)* phdr = &phdr_table[i];
472 
473     if (phdr->p_type != PT_LOAD) {
474       continue;
475     }
476     found_pt_load = true;
477 
478     if (phdr->p_vaddr < min_vaddr) {
479       min_vaddr = phdr->p_vaddr;
480     }
481 
482     if (phdr->p_vaddr + phdr->p_memsz > max_vaddr) {
483       max_vaddr = phdr->p_vaddr + phdr->p_memsz;
484     }
485   }
486   if (!found_pt_load) {
487     min_vaddr = 0;
488   }
489 
490   min_vaddr = PAGE_START(min_vaddr);
491   max_vaddr = PAGE_END(max_vaddr);
492 
493   if (out_min_vaddr != nullptr) {
494     *out_min_vaddr = min_vaddr;
495   }
496   if (out_max_vaddr != nullptr) {
497     *out_max_vaddr = max_vaddr;
498   }
499   return max_vaddr - min_vaddr;
500 }
501 
502 // Reserve a virtual address range such that if it's limits were extended to the next 2**align
503 // boundary, it would not overlap with any existing mappings.
ReserveAligned(void * hint,size_t size,size_t align)504 static void* ReserveAligned(void* hint, size_t size, size_t align) {
505   int mmap_flags = MAP_PRIVATE | MAP_ANONYMOUS;
506   // Address hint is only used in Art for the image mapping, and it is pretty important. Don't mess
507   // with it.
508   // FIXME: try an aligned allocation and fall back to plain mmap() if the former does not provide a
509   // mapping at the requested address?
510   if (align == PAGE_SIZE || hint != nullptr) {
511     void* mmap_ptr = mmap(hint, size, PROT_NONE, mmap_flags, -1, 0);
512     if (mmap_ptr == MAP_FAILED) {
513       return nullptr;
514     }
515     return mmap_ptr;
516   }
517 
518   // Allocate enough space so that the end of the desired region aligned up is still inside the
519   // mapping.
520   size_t mmap_size = align_up(size, align) + align - PAGE_SIZE;
521   uint8_t* mmap_ptr =
522       reinterpret_cast<uint8_t*>(mmap(nullptr, mmap_size, PROT_NONE, mmap_flags, -1, 0));
523   if (mmap_ptr == MAP_FAILED) {
524     return nullptr;
525   }
526 
527   uint8_t* first = align_up(mmap_ptr, align);
528   uint8_t* last = align_down(mmap_ptr + mmap_size, align) - size;
529   size_t n = arc4random_uniform((last - first) / PAGE_SIZE + 1);
530   uint8_t* start = first + n * PAGE_SIZE;
531   munmap(mmap_ptr, start - mmap_ptr);
532   munmap(start + size, mmap_ptr + mmap_size - (start + size));
533   return start;
534 }
535 
536 // Reserve a virtual address range big enough to hold all loadable
537 // segments of a program header table. This is done by creating a
538 // private anonymous mmap() with PROT_NONE.
ReserveAddressSpace(const android_dlextinfo * extinfo)539 bool ElfReader::ReserveAddressSpace(const android_dlextinfo* extinfo) {
540   ElfW(Addr) min_vaddr;
541   load_size_ = phdr_table_get_load_size(phdr_table_, phdr_num_, &min_vaddr);
542   if (load_size_ == 0) {
543     DL_ERR("\"%s\" has no loadable segments", name_.c_str());
544     return false;
545   }
546 
547   uint8_t* addr = reinterpret_cast<uint8_t*>(min_vaddr);
548   void* start;
549   size_t reserved_size = 0;
550   bool reserved_hint = true;
551   bool strict_hint = false;
552   // Assume position independent executable by default.
553   void* mmap_hint = nullptr;
554 
555   if (extinfo != nullptr) {
556     if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS) {
557       reserved_size = extinfo->reserved_size;
558       reserved_hint = false;
559     } else if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS_HINT) {
560       reserved_size = extinfo->reserved_size;
561     }
562 
563     if (addr != nullptr && (extinfo->flags & ANDROID_DLEXT_FORCE_FIXED_VADDR) != 0) {
564       mmap_hint = addr;
565     } else if ((extinfo->flags & ANDROID_DLEXT_LOAD_AT_FIXED_ADDRESS) != 0) {
566       mmap_hint = extinfo->reserved_addr;
567       strict_hint = true;
568     }
569   }
570 
571   if (load_size_ > reserved_size) {
572     if (!reserved_hint) {
573       DL_ERR("reserved address space %zd smaller than %zd bytes needed for \"%s\"",
574              reserved_size - load_size_, load_size_, name_.c_str());
575       return false;
576     }
577     start = ReserveAligned(mmap_hint, load_size_, kLibraryAlignment);
578     if (start == nullptr) {
579       DL_ERR("couldn't reserve %zd bytes of address space for \"%s\"", load_size_, name_.c_str());
580       return false;
581     }
582     if (strict_hint && (start != mmap_hint)) {
583       munmap(start, load_size_);
584       DL_ERR("couldn't reserve %zd bytes of address space at %p for \"%s\"",
585              load_size_, mmap_hint, name_.c_str());
586       return false;
587     }
588   } else {
589     start = extinfo->reserved_addr;
590     mapped_by_caller_ = true;
591   }
592 
593   load_start_ = start;
594   load_bias_ = reinterpret_cast<uint8_t*>(start) - addr;
595   return true;
596 }
597 
LoadSegments()598 bool ElfReader::LoadSegments() {
599   for (size_t i = 0; i < phdr_num_; ++i) {
600     const ElfW(Phdr)* phdr = &phdr_table_[i];
601 
602     if (phdr->p_type != PT_LOAD) {
603       continue;
604     }
605 
606     // Segment addresses in memory.
607     ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_;
608     ElfW(Addr) seg_end   = seg_start + phdr->p_memsz;
609 
610     ElfW(Addr) seg_page_start = PAGE_START(seg_start);
611     ElfW(Addr) seg_page_end   = PAGE_END(seg_end);
612 
613     ElfW(Addr) seg_file_end   = seg_start + phdr->p_filesz;
614 
615     // File offsets.
616     ElfW(Addr) file_start = phdr->p_offset;
617     ElfW(Addr) file_end   = file_start + phdr->p_filesz;
618 
619     ElfW(Addr) file_page_start = PAGE_START(file_start);
620     ElfW(Addr) file_length = file_end - file_page_start;
621 
622     if (file_size_ <= 0) {
623       DL_ERR("\"%s\" invalid file size: %" PRId64, name_.c_str(), file_size_);
624       return false;
625     }
626 
627     if (file_end > static_cast<size_t>(file_size_)) {
628       DL_ERR("invalid ELF file \"%s\" load segment[%zd]:"
629           " p_offset (%p) + p_filesz (%p) ( = %p) past end of file (0x%" PRIx64 ")",
630           name_.c_str(), i, reinterpret_cast<void*>(phdr->p_offset),
631           reinterpret_cast<void*>(phdr->p_filesz),
632           reinterpret_cast<void*>(file_end), file_size_);
633       return false;
634     }
635 
636     if (file_length != 0) {
637       int prot = PFLAGS_TO_PROT(phdr->p_flags);
638       if ((prot & (PROT_EXEC | PROT_WRITE)) == (PROT_EXEC | PROT_WRITE)) {
639         // W + E PT_LOAD segments are not allowed in O.
640         if (get_application_target_sdk_version() >= __ANDROID_API_O__) {
641           DL_ERR_AND_LOG("\"%s\": W + E load segments are not allowed", name_.c_str());
642           return false;
643         }
644         DL_WARN("\"%s\": W + E load segments are not allowed", name_.c_str());
645         add_dlwarning(name_.c_str(), "W+E load segments");
646       }
647 
648       void* seg_addr = mmap64(reinterpret_cast<void*>(seg_page_start),
649                             file_length,
650                             prot,
651                             MAP_FIXED|MAP_PRIVATE,
652                             fd_,
653                             file_offset_ + file_page_start);
654       if (seg_addr == MAP_FAILED) {
655         DL_ERR("couldn't map \"%s\" segment %zd: %s", name_.c_str(), i, strerror(errno));
656         return false;
657       }
658     }
659 
660     // if the segment is writable, and does not end on a page boundary,
661     // zero-fill it until the page limit.
662     if ((phdr->p_flags & PF_W) != 0 && PAGE_OFFSET(seg_file_end) > 0) {
663       memset(reinterpret_cast<void*>(seg_file_end), 0, PAGE_SIZE - PAGE_OFFSET(seg_file_end));
664     }
665 
666     seg_file_end = PAGE_END(seg_file_end);
667 
668     // seg_file_end is now the first page address after the file
669     // content. If seg_end is larger, we need to zero anything
670     // between them. This is done by using a private anonymous
671     // map for all extra pages.
672     if (seg_page_end > seg_file_end) {
673       size_t zeromap_size = seg_page_end - seg_file_end;
674       void* zeromap = mmap(reinterpret_cast<void*>(seg_file_end),
675                            zeromap_size,
676                            PFLAGS_TO_PROT(phdr->p_flags),
677                            MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE,
678                            -1,
679                            0);
680       if (zeromap == MAP_FAILED) {
681         DL_ERR("couldn't zero fill \"%s\" gap: %s", name_.c_str(), strerror(errno));
682         return false;
683       }
684 
685       prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, zeromap, zeromap_size, ".bss");
686     }
687   }
688   return true;
689 }
690 
691 /* Used internally. Used to set the protection bits of all loaded segments
692  * with optional extra flags (i.e. really PROT_WRITE). Used by
693  * phdr_table_protect_segments and phdr_table_unprotect_segments.
694  */
_phdr_table_set_load_prot(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int extra_prot_flags)695 static int _phdr_table_set_load_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count,
696                                      ElfW(Addr) load_bias, int extra_prot_flags) {
697   const ElfW(Phdr)* phdr = phdr_table;
698   const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
699 
700   for (; phdr < phdr_limit; phdr++) {
701     if (phdr->p_type != PT_LOAD || (phdr->p_flags & PF_W) != 0) {
702       continue;
703     }
704 
705     ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
706     ElfW(Addr) seg_page_end   = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
707 
708     int prot = PFLAGS_TO_PROT(phdr->p_flags);
709     if ((extra_prot_flags & PROT_WRITE) != 0) {
710       // make sure we're never simultaneously writable / executable
711       prot &= ~PROT_EXEC;
712     }
713 
714     int ret = mprotect(reinterpret_cast<void*>(seg_page_start),
715                        seg_page_end - seg_page_start,
716                        prot | extra_prot_flags);
717     if (ret < 0) {
718       return -1;
719     }
720   }
721   return 0;
722 }
723 
724 /* Restore the original protection modes for all loadable segments.
725  * You should only call this after phdr_table_unprotect_segments and
726  * applying all relocations.
727  *
728  * Input:
729  *   phdr_table  -> program header table
730  *   phdr_count  -> number of entries in tables
731  *   load_bias   -> load bias
732  * Return:
733  *   0 on error, -1 on failure (error code in errno).
734  */
phdr_table_protect_segments(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias)735 int phdr_table_protect_segments(const ElfW(Phdr)* phdr_table,
736                                 size_t phdr_count, ElfW(Addr) load_bias) {
737   return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, 0);
738 }
739 
740 /* Change the protection of all loaded segments in memory to writable.
741  * This is useful before performing relocations. Once completed, you
742  * will have to call phdr_table_protect_segments to restore the original
743  * protection flags on all segments.
744  *
745  * Note that some writable segments can also have their content turned
746  * to read-only by calling phdr_table_protect_gnu_relro. This is no
747  * performed here.
748  *
749  * Input:
750  *   phdr_table  -> program header table
751  *   phdr_count  -> number of entries in tables
752  *   load_bias   -> load bias
753  * Return:
754  *   0 on error, -1 on failure (error code in errno).
755  */
phdr_table_unprotect_segments(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias)756 int phdr_table_unprotect_segments(const ElfW(Phdr)* phdr_table,
757                                   size_t phdr_count, ElfW(Addr) load_bias) {
758   return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, PROT_WRITE);
759 }
760 
761 /* Used internally by phdr_table_protect_gnu_relro and
762  * phdr_table_unprotect_gnu_relro.
763  */
_phdr_table_set_gnu_relro_prot(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int prot_flags)764 static int _phdr_table_set_gnu_relro_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count,
765                                           ElfW(Addr) load_bias, int prot_flags) {
766   const ElfW(Phdr)* phdr = phdr_table;
767   const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
768 
769   for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
770     if (phdr->p_type != PT_GNU_RELRO) {
771       continue;
772     }
773 
774     // Tricky: what happens when the relro segment does not start
775     // or end at page boundaries? We're going to be over-protective
776     // here and put every page touched by the segment as read-only.
777 
778     // This seems to match Ian Lance Taylor's description of the
779     // feature at http://www.airs.com/blog/archives/189.
780 
781     //    Extract:
782     //       Note that the current dynamic linker code will only work
783     //       correctly if the PT_GNU_RELRO segment starts on a page
784     //       boundary. This is because the dynamic linker rounds the
785     //       p_vaddr field down to the previous page boundary. If
786     //       there is anything on the page which should not be read-only,
787     //       the program is likely to fail at runtime. So in effect the
788     //       linker must only emit a PT_GNU_RELRO segment if it ensures
789     //       that it starts on a page boundary.
790     ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
791     ElfW(Addr) seg_page_end   = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
792 
793     int ret = mprotect(reinterpret_cast<void*>(seg_page_start),
794                        seg_page_end - seg_page_start,
795                        prot_flags);
796     if (ret < 0) {
797       return -1;
798     }
799   }
800   return 0;
801 }
802 
803 /* Apply GNU relro protection if specified by the program header. This will
804  * turn some of the pages of a writable PT_LOAD segment to read-only, as
805  * specified by one or more PT_GNU_RELRO segments. This must be always
806  * performed after relocations.
807  *
808  * The areas typically covered are .got and .data.rel.ro, these are
809  * read-only from the program's POV, but contain absolute addresses
810  * that need to be relocated before use.
811  *
812  * Input:
813  *   phdr_table  -> program header table
814  *   phdr_count  -> number of entries in tables
815  *   load_bias   -> load bias
816  * Return:
817  *   0 on error, -1 on failure (error code in errno).
818  */
phdr_table_protect_gnu_relro(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias)819 int phdr_table_protect_gnu_relro(const ElfW(Phdr)* phdr_table,
820                                  size_t phdr_count, ElfW(Addr) load_bias) {
821   return _phdr_table_set_gnu_relro_prot(phdr_table, phdr_count, load_bias, PROT_READ);
822 }
823 
824 /* Serialize the GNU relro segments to the given file descriptor. This can be
825  * performed after relocations to allow another process to later share the
826  * relocated segment, if it was loaded at the same address.
827  *
828  * Input:
829  *   phdr_table  -> program header table
830  *   phdr_count  -> number of entries in tables
831  *   load_bias   -> load bias
832  *   fd          -> writable file descriptor to use
833  * Return:
834  *   0 on error, -1 on failure (error code in errno).
835  */
phdr_table_serialize_gnu_relro(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int fd)836 int phdr_table_serialize_gnu_relro(const ElfW(Phdr)* phdr_table,
837                                    size_t phdr_count,
838                                    ElfW(Addr) load_bias,
839                                    int fd) {
840   const ElfW(Phdr)* phdr = phdr_table;
841   const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
842   ssize_t file_offset = 0;
843 
844   for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
845     if (phdr->p_type != PT_GNU_RELRO) {
846       continue;
847     }
848 
849     ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
850     ElfW(Addr) seg_page_end   = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
851     ssize_t size = seg_page_end - seg_page_start;
852 
853     ssize_t written = TEMP_FAILURE_RETRY(write(fd, reinterpret_cast<void*>(seg_page_start), size));
854     if (written != size) {
855       return -1;
856     }
857     void* map = mmap(reinterpret_cast<void*>(seg_page_start), size, PROT_READ,
858                      MAP_PRIVATE|MAP_FIXED, fd, file_offset);
859     if (map == MAP_FAILED) {
860       return -1;
861     }
862     file_offset += size;
863   }
864   return 0;
865 }
866 
867 /* Where possible, replace the GNU relro segments with mappings of the given
868  * file descriptor. This can be performed after relocations to allow a file
869  * previously created by phdr_table_serialize_gnu_relro in another process to
870  * replace the dirty relocated pages, saving memory, if it was loaded at the
871  * same address. We have to compare the data before we map over it, since some
872  * parts of the relro segment may not be identical due to other libraries in
873  * the process being loaded at different addresses.
874  *
875  * Input:
876  *   phdr_table  -> program header table
877  *   phdr_count  -> number of entries in tables
878  *   load_bias   -> load bias
879  *   fd          -> readable file descriptor to use
880  * Return:
881  *   0 on error, -1 on failure (error code in errno).
882  */
phdr_table_map_gnu_relro(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int fd)883 int phdr_table_map_gnu_relro(const ElfW(Phdr)* phdr_table,
884                              size_t phdr_count,
885                              ElfW(Addr) load_bias,
886                              int fd) {
887   // Map the file at a temporary location so we can compare its contents.
888   struct stat file_stat;
889   if (TEMP_FAILURE_RETRY(fstat(fd, &file_stat)) != 0) {
890     return -1;
891   }
892   off_t file_size = file_stat.st_size;
893   void* temp_mapping = nullptr;
894   if (file_size > 0) {
895     temp_mapping = mmap(nullptr, file_size, PROT_READ, MAP_PRIVATE, fd, 0);
896     if (temp_mapping == MAP_FAILED) {
897       return -1;
898     }
899   }
900   size_t file_offset = 0;
901 
902   // Iterate over the relro segments and compare/remap the pages.
903   const ElfW(Phdr)* phdr = phdr_table;
904   const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
905 
906   for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
907     if (phdr->p_type != PT_GNU_RELRO) {
908       continue;
909     }
910 
911     ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
912     ElfW(Addr) seg_page_end   = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
913 
914     char* file_base = static_cast<char*>(temp_mapping) + file_offset;
915     char* mem_base = reinterpret_cast<char*>(seg_page_start);
916     size_t match_offset = 0;
917     size_t size = seg_page_end - seg_page_start;
918 
919     if (file_size - file_offset < size) {
920       // File is too short to compare to this segment. The contents are likely
921       // different as well (it's probably for a different library version) so
922       // just don't bother checking.
923       break;
924     }
925 
926     while (match_offset < size) {
927       // Skip over dissimilar pages.
928       while (match_offset < size &&
929              memcmp(mem_base + match_offset, file_base + match_offset, PAGE_SIZE) != 0) {
930         match_offset += PAGE_SIZE;
931       }
932 
933       // Count similar pages.
934       size_t mismatch_offset = match_offset;
935       while (mismatch_offset < size &&
936              memcmp(mem_base + mismatch_offset, file_base + mismatch_offset, PAGE_SIZE) == 0) {
937         mismatch_offset += PAGE_SIZE;
938       }
939 
940       // Map over similar pages.
941       if (mismatch_offset > match_offset) {
942         void* map = mmap(mem_base + match_offset, mismatch_offset - match_offset,
943                          PROT_READ, MAP_PRIVATE|MAP_FIXED, fd, match_offset);
944         if (map == MAP_FAILED) {
945           munmap(temp_mapping, file_size);
946           return -1;
947         }
948       }
949 
950       match_offset = mismatch_offset;
951     }
952 
953     // Add to the base file offset in case there are multiple relro segments.
954     file_offset += size;
955   }
956   munmap(temp_mapping, file_size);
957   return 0;
958 }
959 
960 
961 #if defined(__arm__)
962 
963 #  ifndef PT_ARM_EXIDX
964 #    define PT_ARM_EXIDX    0x70000001      /* .ARM.exidx segment */
965 #  endif
966 
967 /* Return the address and size of the .ARM.exidx section in memory,
968  * if present.
969  *
970  * Input:
971  *   phdr_table  -> program header table
972  *   phdr_count  -> number of entries in tables
973  *   load_bias   -> load bias
974  * Output:
975  *   arm_exidx       -> address of table in memory (null on failure).
976  *   arm_exidx_count -> number of items in table (0 on failure).
977  * Return:
978  *   0 on error, -1 on failure (_no_ error code in errno)
979  */
phdr_table_get_arm_exidx(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,ElfW (Addr)** arm_exidx,size_t * arm_exidx_count)980 int phdr_table_get_arm_exidx(const ElfW(Phdr)* phdr_table, size_t phdr_count,
981                              ElfW(Addr) load_bias,
982                              ElfW(Addr)** arm_exidx, size_t* arm_exidx_count) {
983   const ElfW(Phdr)* phdr = phdr_table;
984   const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
985 
986   for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
987     if (phdr->p_type != PT_ARM_EXIDX) {
988       continue;
989     }
990 
991     *arm_exidx = reinterpret_cast<ElfW(Addr)*>(load_bias + phdr->p_vaddr);
992     *arm_exidx_count = phdr->p_memsz / 8;
993     return 0;
994   }
995   *arm_exidx = nullptr;
996   *arm_exidx_count = 0;
997   return -1;
998 }
999 #endif
1000 
1001 /* Return the address and size of the ELF file's .dynamic section in memory,
1002  * or null if missing.
1003  *
1004  * Input:
1005  *   phdr_table  -> program header table
1006  *   phdr_count  -> number of entries in tables
1007  *   load_bias   -> load bias
1008  * Output:
1009  *   dynamic       -> address of table in memory (null on failure).
1010  *   dynamic_flags -> protection flags for section (unset on failure)
1011  * Return:
1012  *   void
1013  */
phdr_table_get_dynamic_section(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,ElfW (Dyn)** dynamic,ElfW (Word)* dynamic_flags)1014 void phdr_table_get_dynamic_section(const ElfW(Phdr)* phdr_table, size_t phdr_count,
1015                                     ElfW(Addr) load_bias, ElfW(Dyn)** dynamic,
1016                                     ElfW(Word)* dynamic_flags) {
1017   *dynamic = nullptr;
1018   for (size_t i = 0; i<phdr_count; ++i) {
1019     const ElfW(Phdr)& phdr = phdr_table[i];
1020     if (phdr.p_type == PT_DYNAMIC) {
1021       *dynamic = reinterpret_cast<ElfW(Dyn)*>(load_bias + phdr.p_vaddr);
1022       if (dynamic_flags) {
1023         *dynamic_flags = phdr.p_flags;
1024       }
1025       return;
1026     }
1027   }
1028 }
1029 
1030 /* Return the program interpreter string, or nullptr if missing.
1031  *
1032  * Input:
1033  *   phdr_table  -> program header table
1034  *   phdr_count  -> number of entries in tables
1035  *   load_bias   -> load bias
1036  * Return:
1037  *   pointer to the program interpreter string.
1038  */
phdr_table_get_interpreter_name(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias)1039 const char* phdr_table_get_interpreter_name(const ElfW(Phdr) * phdr_table, size_t phdr_count,
1040                                             ElfW(Addr) load_bias) {
1041   for (size_t i = 0; i<phdr_count; ++i) {
1042     const ElfW(Phdr)& phdr = phdr_table[i];
1043     if (phdr.p_type == PT_INTERP) {
1044       return reinterpret_cast<const char*>(load_bias + phdr.p_vaddr);
1045     }
1046   }
1047   return nullptr;
1048 }
1049 
1050 // Sets loaded_phdr_ to the address of the program header table as it appears
1051 // in the loaded segments in memory. This is in contrast with phdr_table_,
1052 // which is temporary and will be released before the library is relocated.
FindPhdr()1053 bool ElfReader::FindPhdr() {
1054   const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_;
1055 
1056   // If there is a PT_PHDR, use it directly.
1057   for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
1058     if (phdr->p_type == PT_PHDR) {
1059       return CheckPhdr(load_bias_ + phdr->p_vaddr);
1060     }
1061   }
1062 
1063   // Otherwise, check the first loadable segment. If its file offset
1064   // is 0, it starts with the ELF header, and we can trivially find the
1065   // loaded program header from it.
1066   for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
1067     if (phdr->p_type == PT_LOAD) {
1068       if (phdr->p_offset == 0) {
1069         ElfW(Addr)  elf_addr = load_bias_ + phdr->p_vaddr;
1070         const ElfW(Ehdr)* ehdr = reinterpret_cast<const ElfW(Ehdr)*>(elf_addr);
1071         ElfW(Addr)  offset = ehdr->e_phoff;
1072         return CheckPhdr(reinterpret_cast<ElfW(Addr)>(ehdr) + offset);
1073       }
1074       break;
1075     }
1076   }
1077 
1078   DL_ERR("can't find loaded phdr for \"%s\"", name_.c_str());
1079   return false;
1080 }
1081 
1082 // Ensures that our program header is actually within a loadable
1083 // segment. This should help catch badly-formed ELF files that
1084 // would cause the linker to crash later when trying to access it.
CheckPhdr(ElfW (Addr)loaded)1085 bool ElfReader::CheckPhdr(ElfW(Addr) loaded) {
1086   const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_;
1087   ElfW(Addr) loaded_end = loaded + (phdr_num_ * sizeof(ElfW(Phdr)));
1088   for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
1089     if (phdr->p_type != PT_LOAD) {
1090       continue;
1091     }
1092     ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_;
1093     ElfW(Addr) seg_end = phdr->p_filesz + seg_start;
1094     if (seg_start <= loaded && loaded_end <= seg_end) {
1095       loaded_phdr_ = reinterpret_cast<const ElfW(Phdr)*>(loaded);
1096       return true;
1097     }
1098   }
1099   DL_ERR("\"%s\" loaded phdr %p not in loadable segment",
1100          name_.c_str(), reinterpret_cast<void*>(loaded));
1101   return false;
1102 }
1103