1 /*
2  * EAP peer state machines (RFC 4137)
3  * Copyright (c) 2004-2014, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  *
8  * This file implements the Peer State Machine as defined in RFC 4137. The used
9  * states and state transitions match mostly with the RFC. However, there are
10  * couple of additional transitions for working around small issues noticed
11  * during testing. These exceptions are explained in comments within the
12  * functions in this file. The method functions, m.func(), are similar to the
13  * ones used in RFC 4137, but some small changes have used here to optimize
14  * operations and to add functionality needed for fast re-authentication
15  * (session resumption).
16  */
17 
18 #include "includes.h"
19 
20 #include "common.h"
21 #include "pcsc_funcs.h"
22 #include "state_machine.h"
23 #include "ext_password.h"
24 #include "crypto/crypto.h"
25 #include "crypto/tls.h"
26 #include "crypto/sha256.h"
27 #include "common/wpa_ctrl.h"
28 #include "eap_common/eap_wsc_common.h"
29 #include "eap_i.h"
30 #include "eap_config.h"
31 
32 #define STATE_MACHINE_DATA struct eap_sm
33 #define STATE_MACHINE_DEBUG_PREFIX "EAP"
34 
35 #define EAP_MAX_AUTH_ROUNDS 50
36 #define EAP_CLIENT_TIMEOUT_DEFAULT 60
37 
38 
39 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
40 				  EapType method);
41 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
42 static void eap_sm_processIdentity(struct eap_sm *sm,
43 				   const struct wpabuf *req);
44 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
45 static struct wpabuf * eap_sm_buildNotify(int id);
46 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
47 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
48 static const char * eap_sm_method_state_txt(EapMethodState state);
49 static const char * eap_sm_decision_txt(EapDecision decision);
50 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
51 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
52 			   const char *msg, size_t msglen);
53 
54 
55 
eapol_get_bool(struct eap_sm * sm,enum eapol_bool_var var)56 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
57 {
58 	return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
59 }
60 
61 
eapol_set_bool(struct eap_sm * sm,enum eapol_bool_var var,Boolean value)62 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
63 			   Boolean value)
64 {
65 	sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
66 }
67 
68 
eapol_get_int(struct eap_sm * sm,enum eapol_int_var var)69 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
70 {
71 	return sm->eapol_cb->get_int(sm->eapol_ctx, var);
72 }
73 
74 
eapol_set_int(struct eap_sm * sm,enum eapol_int_var var,unsigned int value)75 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
76 			  unsigned int value)
77 {
78 	sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
79 }
80 
81 
eapol_get_eapReqData(struct eap_sm * sm)82 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
83 {
84 	return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
85 }
86 
87 
eap_notify_status(struct eap_sm * sm,const char * status,const char * parameter)88 static void eap_notify_status(struct eap_sm *sm, const char *status,
89 				      const char *parameter)
90 {
91 	wpa_printf(MSG_DEBUG, "EAP: Status notification: %s (param=%s)",
92 		   status, parameter);
93 	if (sm->eapol_cb->notify_status)
94 		sm->eapol_cb->notify_status(sm->eapol_ctx, status, parameter);
95 }
96 
97 
eap_sm_free_key(struct eap_sm * sm)98 static void eap_sm_free_key(struct eap_sm *sm)
99 {
100 	if (sm->eapKeyData) {
101 		bin_clear_free(sm->eapKeyData, sm->eapKeyDataLen);
102 		sm->eapKeyData = NULL;
103 	}
104 }
105 
106 
eap_deinit_prev_method(struct eap_sm * sm,const char * txt)107 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
108 {
109 	ext_password_free(sm->ext_pw_buf);
110 	sm->ext_pw_buf = NULL;
111 
112 	if (sm->m == NULL || sm->eap_method_priv == NULL)
113 		return;
114 
115 	wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
116 		   "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
117 	sm->m->deinit(sm, sm->eap_method_priv);
118 	sm->eap_method_priv = NULL;
119 	sm->m = NULL;
120 }
121 
122 
123 /**
124  * eap_allowed_method - Check whether EAP method is allowed
125  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
126  * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
127  * @method: EAP type
128  * Returns: 1 = allowed EAP method, 0 = not allowed
129  */
eap_allowed_method(struct eap_sm * sm,int vendor,u32 method)130 int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
131 {
132 	struct eap_peer_config *config = eap_get_config(sm);
133 	int i;
134 	struct eap_method_type *m;
135 
136 	if (config == NULL || config->eap_methods == NULL)
137 		return 1;
138 
139 	m = config->eap_methods;
140 	for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
141 		     m[i].method != EAP_TYPE_NONE; i++) {
142 		if (m[i].vendor == vendor && m[i].method == method)
143 			return 1;
144 	}
145 	return 0;
146 }
147 
148 
149 /*
150  * This state initializes state machine variables when the machine is
151  * activated (portEnabled = TRUE). This is also used when re-starting
152  * authentication (eapRestart == TRUE).
153  */
SM_STATE(EAP,INITIALIZE)154 SM_STATE(EAP, INITIALIZE)
155 {
156 	SM_ENTRY(EAP, INITIALIZE);
157 	if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
158 	    sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
159 	    !sm->prev_failure &&
160 	    sm->last_config == eap_get_config(sm)) {
161 		wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
162 			   "fast reauthentication");
163 		sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
164 	} else {
165 		sm->last_config = eap_get_config(sm);
166 		eap_deinit_prev_method(sm, "INITIALIZE");
167 	}
168 	sm->selectedMethod = EAP_TYPE_NONE;
169 	sm->methodState = METHOD_NONE;
170 	sm->allowNotifications = TRUE;
171 	sm->decision = DECISION_FAIL;
172 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
173 	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
174 	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
175 	eapol_set_bool(sm, EAPOL_eapFail, FALSE);
176 	eap_sm_free_key(sm);
177 	os_free(sm->eapSessionId);
178 	sm->eapSessionId = NULL;
179 	sm->eapKeyAvailable = FALSE;
180 	eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
181 	sm->lastId = -1; /* new session - make sure this does not match with
182 			  * the first EAP-Packet */
183 	/*
184 	 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
185 	 * seemed to be able to trigger cases where both were set and if EAPOL
186 	 * state machine uses eapNoResp first, it may end up not sending a real
187 	 * reply correctly. This occurred when the workaround in FAIL state set
188 	 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
189 	 * something else(?)
190 	 */
191 	eapol_set_bool(sm, EAPOL_eapResp, FALSE);
192 	eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
193 	/*
194 	 * RFC 4137 does not reset ignore here, but since it is possible for
195 	 * some method code paths to end up not setting ignore=FALSE, clear the
196 	 * value here to avoid issues if a previous authentication attempt
197 	 * failed with ignore=TRUE being left behind in the last
198 	 * m.check(eapReqData) operation.
199 	 */
200 	sm->ignore = 0;
201 	sm->num_rounds = 0;
202 	sm->prev_failure = 0;
203 	sm->expected_failure = 0;
204 	sm->reauthInit = FALSE;
205 	sm->erp_seq = (u32) -1;
206 }
207 
208 
209 /*
210  * This state is reached whenever service from the lower layer is interrupted
211  * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
212  * occurs when the port becomes enabled.
213  */
SM_STATE(EAP,DISABLED)214 SM_STATE(EAP, DISABLED)
215 {
216 	SM_ENTRY(EAP, DISABLED);
217 	sm->num_rounds = 0;
218 	/*
219 	 * RFC 4137 does not describe clearing of idleWhile here, but doing so
220 	 * allows the timer tick to be stopped more quickly when EAP is not in
221 	 * use.
222 	 */
223 	eapol_set_int(sm, EAPOL_idleWhile, 0);
224 }
225 
226 
227 /*
228  * The state machine spends most of its time here, waiting for something to
229  * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
230  * SEND_RESPONSE states.
231  */
SM_STATE(EAP,IDLE)232 SM_STATE(EAP, IDLE)
233 {
234 	SM_ENTRY(EAP, IDLE);
235 }
236 
237 
238 /*
239  * This state is entered when an EAP packet is received (eapReq == TRUE) to
240  * parse the packet header.
241  */
SM_STATE(EAP,RECEIVED)242 SM_STATE(EAP, RECEIVED)
243 {
244 	const struct wpabuf *eapReqData;
245 
246 	SM_ENTRY(EAP, RECEIVED);
247 	eapReqData = eapol_get_eapReqData(sm);
248 	/* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
249 	eap_sm_parseEapReq(sm, eapReqData);
250 	sm->num_rounds++;
251 }
252 
253 
254 /*
255  * This state is entered when a request for a new type comes in. Either the
256  * correct method is started, or a Nak response is built.
257  */
SM_STATE(EAP,GET_METHOD)258 SM_STATE(EAP, GET_METHOD)
259 {
260 	int reinit;
261 	EapType method;
262 	const struct eap_method *eap_method;
263 
264 	SM_ENTRY(EAP, GET_METHOD);
265 
266 	if (sm->reqMethod == EAP_TYPE_EXPANDED)
267 		method = sm->reqVendorMethod;
268 	else
269 		method = sm->reqMethod;
270 
271 	eap_method = eap_peer_get_eap_method(sm->reqVendor, method);
272 
273 	if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
274 		wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
275 			   sm->reqVendor, method);
276 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
277 			"vendor=%u method=%u -> NAK",
278 			sm->reqVendor, method);
279 		eap_notify_status(sm, "refuse proposed method",
280 				  eap_method ?  eap_method->name : "unknown");
281 		goto nak;
282 	}
283 
284 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
285 		"vendor=%u method=%u", sm->reqVendor, method);
286 
287 	eap_notify_status(sm, "accept proposed method",
288 			  eap_method ?  eap_method->name : "unknown");
289 	/*
290 	 * RFC 4137 does not define specific operation for fast
291 	 * re-authentication (session resumption). The design here is to allow
292 	 * the previously used method data to be maintained for
293 	 * re-authentication if the method support session resumption.
294 	 * Otherwise, the previously used method data is freed and a new method
295 	 * is allocated here.
296 	 */
297 	if (sm->fast_reauth &&
298 	    sm->m && sm->m->vendor == sm->reqVendor &&
299 	    sm->m->method == method &&
300 	    sm->m->has_reauth_data &&
301 	    sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
302 		wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
303 			   " for fast re-authentication");
304 		reinit = 1;
305 	} else {
306 		eap_deinit_prev_method(sm, "GET_METHOD");
307 		reinit = 0;
308 	}
309 
310 	sm->selectedMethod = sm->reqMethod;
311 	if (sm->m == NULL)
312 		sm->m = eap_method;
313 	if (!sm->m) {
314 		wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
315 			   "vendor %d method %d",
316 			   sm->reqVendor, method);
317 		goto nak;
318 	}
319 
320 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
321 
322 	wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
323 		   "vendor %u method %u (%s)",
324 		   sm->reqVendor, method, sm->m->name);
325 	if (reinit) {
326 		sm->eap_method_priv = sm->m->init_for_reauth(
327 			sm, sm->eap_method_priv);
328 	} else {
329 		sm->waiting_ext_cert_check = 0;
330 		sm->ext_cert_check = 0;
331 		sm->eap_method_priv = sm->m->init(sm);
332 	}
333 
334 	if (sm->eap_method_priv == NULL) {
335 		struct eap_peer_config *config = eap_get_config(sm);
336 		wpa_msg(sm->msg_ctx, MSG_INFO,
337 			"EAP: Failed to initialize EAP method: vendor %u "
338 			"method %u (%s)",
339 			sm->reqVendor, method, sm->m->name);
340 		sm->m = NULL;
341 		sm->methodState = METHOD_NONE;
342 		sm->selectedMethod = EAP_TYPE_NONE;
343 		if (sm->reqMethod == EAP_TYPE_TLS && config &&
344 		    (config->pending_req_pin ||
345 		     config->pending_req_passphrase)) {
346 			/*
347 			 * Return without generating Nak in order to allow
348 			 * entering of PIN code or passphrase to retry the
349 			 * current EAP packet.
350 			 */
351 			wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
352 				   "request - skip Nak");
353 			return;
354 		}
355 
356 		goto nak;
357 	}
358 
359 	sm->methodState = METHOD_INIT;
360 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
361 		"EAP vendor %u method %u (%s) selected",
362 		sm->reqVendor, method, sm->m->name);
363 	return;
364 
365 nak:
366 	wpabuf_free(sm->eapRespData);
367 	sm->eapRespData = NULL;
368 	sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
369 }
370 
371 
372 #ifdef CONFIG_ERP
373 
eap_home_realm(struct eap_sm * sm)374 static char * eap_home_realm(struct eap_sm *sm)
375 {
376 	struct eap_peer_config *config = eap_get_config(sm);
377 	char *realm;
378 	size_t i, realm_len;
379 
380 	if (!config)
381 		return NULL;
382 
383 	if (config->identity) {
384 		for (i = 0; i < config->identity_len; i++) {
385 			if (config->identity[i] == '@')
386 				break;
387 		}
388 		if (i < config->identity_len) {
389 			realm_len = config->identity_len - i - 1;
390 			realm = os_malloc(realm_len + 1);
391 			if (realm == NULL)
392 				return NULL;
393 			os_memcpy(realm, &config->identity[i + 1], realm_len);
394 			realm[realm_len] = '\0';
395 			return realm;
396 		}
397 	}
398 
399 	if (config->anonymous_identity) {
400 		for (i = 0; i < config->anonymous_identity_len; i++) {
401 			if (config->anonymous_identity[i] == '@')
402 				break;
403 		}
404 		if (i < config->anonymous_identity_len) {
405 			realm_len = config->anonymous_identity_len - i - 1;
406 			realm = os_malloc(realm_len + 1);
407 			if (realm == NULL)
408 				return NULL;
409 			os_memcpy(realm, &config->anonymous_identity[i + 1],
410 				  realm_len);
411 			realm[realm_len] = '\0';
412 			return realm;
413 		}
414 	}
415 
416 	return os_strdup("");
417 }
418 
419 
420 static struct eap_erp_key *
eap_erp_get_key(struct eap_sm * sm,const char * realm)421 eap_erp_get_key(struct eap_sm *sm, const char *realm)
422 {
423 	struct eap_erp_key *erp;
424 
425 	dl_list_for_each(erp, &sm->erp_keys, struct eap_erp_key, list) {
426 		char *pos;
427 
428 		pos = os_strchr(erp->keyname_nai, '@');
429 		if (!pos)
430 			continue;
431 		pos++;
432 		if (os_strcmp(pos, realm) == 0)
433 			return erp;
434 	}
435 
436 	return NULL;
437 }
438 
439 
440 static struct eap_erp_key *
eap_erp_get_key_nai(struct eap_sm * sm,const char * nai)441 eap_erp_get_key_nai(struct eap_sm *sm, const char *nai)
442 {
443 	struct eap_erp_key *erp;
444 
445 	dl_list_for_each(erp, &sm->erp_keys, struct eap_erp_key, list) {
446 		if (os_strcmp(erp->keyname_nai, nai) == 0)
447 			return erp;
448 	}
449 
450 	return NULL;
451 }
452 
453 
eap_peer_erp_free_key(struct eap_erp_key * erp)454 static void eap_peer_erp_free_key(struct eap_erp_key *erp)
455 {
456 	dl_list_del(&erp->list);
457 	bin_clear_free(erp, sizeof(*erp));
458 }
459 
460 
eap_erp_remove_keys_realm(struct eap_sm * sm,const char * realm)461 static void eap_erp_remove_keys_realm(struct eap_sm *sm, const char *realm)
462 {
463 	struct eap_erp_key *erp;
464 
465 	while ((erp = eap_erp_get_key(sm, realm)) != NULL) {
466 		wpa_printf(MSG_DEBUG, "EAP: Delete old ERP key %s",
467 			   erp->keyname_nai);
468 		eap_peer_erp_free_key(erp);
469 	}
470 }
471 
472 #endif /* CONFIG_ERP */
473 
474 
eap_peer_erp_free_keys(struct eap_sm * sm)475 void eap_peer_erp_free_keys(struct eap_sm *sm)
476 {
477 #ifdef CONFIG_ERP
478 	struct eap_erp_key *erp, *tmp;
479 
480 	dl_list_for_each_safe(erp, tmp, &sm->erp_keys, struct eap_erp_key, list)
481 		eap_peer_erp_free_key(erp);
482 #endif /* CONFIG_ERP */
483 }
484 
485 
eap_peer_erp_init(struct eap_sm * sm)486 static void eap_peer_erp_init(struct eap_sm *sm)
487 {
488 #ifdef CONFIG_ERP
489 	u8 *emsk = NULL;
490 	size_t emsk_len = 0;
491 	u8 EMSKname[EAP_EMSK_NAME_LEN];
492 	u8 len[2], ctx[3];
493 	char *realm;
494 	size_t realm_len, nai_buf_len;
495 	struct eap_erp_key *erp = NULL;
496 	int pos;
497 
498 	realm = eap_home_realm(sm);
499 	if (!realm)
500 		return;
501 	realm_len = os_strlen(realm);
502 	wpa_printf(MSG_DEBUG, "EAP: Realm for ERP keyName-NAI: %s", realm);
503 	eap_erp_remove_keys_realm(sm, realm);
504 
505 	nai_buf_len = 2 * EAP_EMSK_NAME_LEN + 1 + realm_len;
506 	if (nai_buf_len > 253) {
507 		/*
508 		 * keyName-NAI has a maximum length of 253 octet to fit in
509 		 * RADIUS attributes.
510 		 */
511 		wpa_printf(MSG_DEBUG,
512 			   "EAP: Too long realm for ERP keyName-NAI maximum length");
513 		goto fail;
514 	}
515 	nai_buf_len++; /* null termination */
516 	erp = os_zalloc(sizeof(*erp) + nai_buf_len);
517 	if (erp == NULL)
518 		goto fail;
519 
520 	emsk = sm->m->get_emsk(sm, sm->eap_method_priv, &emsk_len);
521 	if (!emsk || emsk_len == 0 || emsk_len > ERP_MAX_KEY_LEN) {
522 		wpa_printf(MSG_DEBUG,
523 			   "EAP: No suitable EMSK available for ERP");
524 		goto fail;
525 	}
526 
527 	wpa_hexdump_key(MSG_DEBUG, "EAP: EMSK", emsk, emsk_len);
528 
529 	WPA_PUT_BE16(len, EAP_EMSK_NAME_LEN);
530 	if (hmac_sha256_kdf(sm->eapSessionId, sm->eapSessionIdLen, "EMSK",
531 			    len, sizeof(len),
532 			    EMSKname, EAP_EMSK_NAME_LEN) < 0) {
533 		wpa_printf(MSG_DEBUG, "EAP: Could not derive EMSKname");
534 		goto fail;
535 	}
536 	wpa_hexdump(MSG_DEBUG, "EAP: EMSKname", EMSKname, EAP_EMSK_NAME_LEN);
537 
538 	pos = wpa_snprintf_hex(erp->keyname_nai, nai_buf_len,
539 			       EMSKname, EAP_EMSK_NAME_LEN);
540 	erp->keyname_nai[pos] = '@';
541 	os_memcpy(&erp->keyname_nai[pos + 1], realm, realm_len);
542 
543 	WPA_PUT_BE16(len, emsk_len);
544 	if (hmac_sha256_kdf(emsk, emsk_len,
545 			    "EAP Re-authentication Root Key@ietf.org",
546 			    len, sizeof(len), erp->rRK, emsk_len) < 0) {
547 		wpa_printf(MSG_DEBUG, "EAP: Could not derive rRK for ERP");
548 		goto fail;
549 	}
550 	erp->rRK_len = emsk_len;
551 	wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rRK", erp->rRK, erp->rRK_len);
552 
553 	ctx[0] = EAP_ERP_CS_HMAC_SHA256_128;
554 	WPA_PUT_BE16(&ctx[1], erp->rRK_len);
555 	if (hmac_sha256_kdf(erp->rRK, erp->rRK_len,
556 			    "Re-authentication Integrity Key@ietf.org",
557 			    ctx, sizeof(ctx), erp->rIK, erp->rRK_len) < 0) {
558 		wpa_printf(MSG_DEBUG, "EAP: Could not derive rIK for ERP");
559 		goto fail;
560 	}
561 	erp->rIK_len = erp->rRK_len;
562 	wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rIK", erp->rIK, erp->rIK_len);
563 
564 	wpa_printf(MSG_DEBUG, "EAP: Stored ERP keys %s", erp->keyname_nai);
565 	dl_list_add(&sm->erp_keys, &erp->list);
566 	erp = NULL;
567 fail:
568 	bin_clear_free(emsk, emsk_len);
569 	bin_clear_free(erp, sizeof(*erp));
570 	os_free(realm);
571 #endif /* CONFIG_ERP */
572 }
573 
574 
575 #ifdef CONFIG_ERP
eap_peer_build_erp_reauth_start(struct eap_sm * sm,u8 eap_id)576 struct wpabuf * eap_peer_build_erp_reauth_start(struct eap_sm *sm, u8 eap_id)
577 {
578 	char *realm;
579 	struct eap_erp_key *erp;
580 	struct wpabuf *msg;
581 	u8 hash[SHA256_MAC_LEN];
582 
583 	realm = eap_home_realm(sm);
584 	if (!realm)
585 		return NULL;
586 
587 	erp = eap_erp_get_key(sm, realm);
588 	os_free(realm);
589 	realm = NULL;
590 	if (!erp)
591 		return NULL;
592 
593 	if (erp->next_seq >= 65536)
594 		return NULL; /* SEQ has range of 0..65535 */
595 
596 	/* TODO: check rRK lifetime expiration */
597 
598 	wpa_printf(MSG_DEBUG, "EAP: Valid ERP key found %s (SEQ=%u)",
599 		   erp->keyname_nai, erp->next_seq);
600 
601 	msg = eap_msg_alloc(EAP_VENDOR_IETF, (EapType) EAP_ERP_TYPE_REAUTH,
602 			    1 + 2 + 2 + os_strlen(erp->keyname_nai) + 1 + 16,
603 			    EAP_CODE_INITIATE, eap_id);
604 	if (msg == NULL)
605 		return NULL;
606 
607 	wpabuf_put_u8(msg, 0x20); /* Flags: R=0 B=0 L=1 */
608 	wpabuf_put_be16(msg, erp->next_seq);
609 
610 	wpabuf_put_u8(msg, EAP_ERP_TLV_KEYNAME_NAI);
611 	wpabuf_put_u8(msg, os_strlen(erp->keyname_nai));
612 	wpabuf_put_str(msg, erp->keyname_nai);
613 
614 	wpabuf_put_u8(msg, EAP_ERP_CS_HMAC_SHA256_128); /* Cryptosuite */
615 
616 	if (hmac_sha256(erp->rIK, erp->rIK_len,
617 			wpabuf_head(msg), wpabuf_len(msg), hash) < 0) {
618 		wpabuf_free(msg);
619 		return NULL;
620 	}
621 	wpabuf_put_data(msg, hash, 16);
622 
623 	sm->erp_seq = erp->next_seq;
624 	erp->next_seq++;
625 
626 	wpa_hexdump_buf(MSG_DEBUG, "ERP: EAP-Initiate/Re-auth", msg);
627 
628 	return msg;
629 }
630 
631 
eap_peer_erp_reauth_start(struct eap_sm * sm,u8 eap_id)632 static int eap_peer_erp_reauth_start(struct eap_sm *sm, u8 eap_id)
633 {
634 	struct wpabuf *msg;
635 
636 	msg = eap_peer_build_erp_reauth_start(sm, eap_id);
637 	if (!msg)
638 		return -1;
639 
640 	wpa_printf(MSG_DEBUG, "EAP: Sending EAP-Initiate/Re-auth");
641 	wpabuf_free(sm->eapRespData);
642 	sm->eapRespData = msg;
643 	sm->reauthInit = TRUE;
644 	return 0;
645 }
646 #endif /* CONFIG_ERP */
647 
648 
649 /*
650  * The method processing happens here. The request from the authenticator is
651  * processed, and an appropriate response packet is built.
652  */
SM_STATE(EAP,METHOD)653 SM_STATE(EAP, METHOD)
654 {
655 	struct wpabuf *eapReqData;
656 	struct eap_method_ret ret;
657 	int min_len = 1;
658 
659 	SM_ENTRY(EAP, METHOD);
660 	if (sm->m == NULL) {
661 		wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
662 		return;
663 	}
664 
665 	eapReqData = eapol_get_eapReqData(sm);
666 	if (sm->m->vendor == EAP_VENDOR_IETF && sm->m->method == EAP_TYPE_LEAP)
667 		min_len = 0; /* LEAP uses EAP-Success without payload */
668 	if (!eap_hdr_len_valid(eapReqData, min_len))
669 		return;
670 
671 	/*
672 	 * Get ignore, methodState, decision, allowNotifications, and
673 	 * eapRespData. RFC 4137 uses three separate method procedure (check,
674 	 * process, and buildResp) in this state. These have been combined into
675 	 * a single function call to m->process() in order to optimize EAP
676 	 * method implementation interface a bit. These procedures are only
677 	 * used from within this METHOD state, so there is no need to keep
678 	 * these as separate C functions.
679 	 *
680 	 * The RFC 4137 procedures return values as follows:
681 	 * ignore = m.check(eapReqData)
682 	 * (methodState, decision, allowNotifications) = m.process(eapReqData)
683 	 * eapRespData = m.buildResp(reqId)
684 	 */
685 	os_memset(&ret, 0, sizeof(ret));
686 	ret.ignore = sm->ignore;
687 	ret.methodState = sm->methodState;
688 	ret.decision = sm->decision;
689 	ret.allowNotifications = sm->allowNotifications;
690 	wpabuf_free(sm->eapRespData);
691 	sm->eapRespData = NULL;
692 	sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
693 					 eapReqData);
694 	wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
695 		   "methodState=%s decision=%s eapRespData=%p",
696 		   ret.ignore ? "TRUE" : "FALSE",
697 		   eap_sm_method_state_txt(ret.methodState),
698 		   eap_sm_decision_txt(ret.decision),
699 		   sm->eapRespData);
700 
701 	sm->ignore = ret.ignore;
702 	if (sm->ignore)
703 		return;
704 	sm->methodState = ret.methodState;
705 	sm->decision = ret.decision;
706 	sm->allowNotifications = ret.allowNotifications;
707 
708 	if (sm->m->isKeyAvailable && sm->m->getKey &&
709 	    sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
710 		struct eap_peer_config *config = eap_get_config(sm);
711 
712 		eap_sm_free_key(sm);
713 		sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
714 					       &sm->eapKeyDataLen);
715 		os_free(sm->eapSessionId);
716 		sm->eapSessionId = NULL;
717 		if (sm->m->getSessionId) {
718 			sm->eapSessionId = sm->m->getSessionId(
719 				sm, sm->eap_method_priv,
720 				&sm->eapSessionIdLen);
721 			wpa_hexdump(MSG_DEBUG, "EAP: Session-Id",
722 				    sm->eapSessionId, sm->eapSessionIdLen);
723 		}
724 		if (config->erp && sm->m->get_emsk && sm->eapSessionId)
725 			eap_peer_erp_init(sm);
726 	}
727 }
728 
729 
730 /*
731  * This state signals the lower layer that a response packet is ready to be
732  * sent.
733  */
SM_STATE(EAP,SEND_RESPONSE)734 SM_STATE(EAP, SEND_RESPONSE)
735 {
736 	SM_ENTRY(EAP, SEND_RESPONSE);
737 	wpabuf_free(sm->lastRespData);
738 	if (sm->eapRespData) {
739 		if (sm->workaround)
740 			os_memcpy(sm->last_sha1, sm->req_sha1, 20);
741 		sm->lastId = sm->reqId;
742 		sm->lastRespData = wpabuf_dup(sm->eapRespData);
743 		eapol_set_bool(sm, EAPOL_eapResp, TRUE);
744 	} else {
745 		wpa_printf(MSG_DEBUG, "EAP: No eapRespData available");
746 		sm->lastRespData = NULL;
747 	}
748 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
749 	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
750 	sm->reauthInit = FALSE;
751 }
752 
753 
754 /*
755  * This state signals the lower layer that the request was discarded, and no
756  * response packet will be sent at this time.
757  */
SM_STATE(EAP,DISCARD)758 SM_STATE(EAP, DISCARD)
759 {
760 	SM_ENTRY(EAP, DISCARD);
761 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
762 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
763 }
764 
765 
766 /*
767  * Handles requests for Identity method and builds a response.
768  */
SM_STATE(EAP,IDENTITY)769 SM_STATE(EAP, IDENTITY)
770 {
771 	const struct wpabuf *eapReqData;
772 
773 	SM_ENTRY(EAP, IDENTITY);
774 	eapReqData = eapol_get_eapReqData(sm);
775 	if (!eap_hdr_len_valid(eapReqData, 1))
776 		return;
777 	eap_sm_processIdentity(sm, eapReqData);
778 	wpabuf_free(sm->eapRespData);
779 	sm->eapRespData = NULL;
780 	sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
781 }
782 
783 
784 /*
785  * Handles requests for Notification method and builds a response.
786  */
SM_STATE(EAP,NOTIFICATION)787 SM_STATE(EAP, NOTIFICATION)
788 {
789 	const struct wpabuf *eapReqData;
790 
791 	SM_ENTRY(EAP, NOTIFICATION);
792 	eapReqData = eapol_get_eapReqData(sm);
793 	if (!eap_hdr_len_valid(eapReqData, 1))
794 		return;
795 	eap_sm_processNotify(sm, eapReqData);
796 	wpabuf_free(sm->eapRespData);
797 	sm->eapRespData = NULL;
798 	sm->eapRespData = eap_sm_buildNotify(sm->reqId);
799 }
800 
801 
802 /*
803  * This state retransmits the previous response packet.
804  */
SM_STATE(EAP,RETRANSMIT)805 SM_STATE(EAP, RETRANSMIT)
806 {
807 	SM_ENTRY(EAP, RETRANSMIT);
808 	wpabuf_free(sm->eapRespData);
809 	if (sm->lastRespData)
810 		sm->eapRespData = wpabuf_dup(sm->lastRespData);
811 	else
812 		sm->eapRespData = NULL;
813 }
814 
815 
816 /*
817  * This state is entered in case of a successful completion of authentication
818  * and state machine waits here until port is disabled or EAP authentication is
819  * restarted.
820  */
SM_STATE(EAP,SUCCESS)821 SM_STATE(EAP, SUCCESS)
822 {
823 	SM_ENTRY(EAP, SUCCESS);
824 	if (sm->eapKeyData != NULL)
825 		sm->eapKeyAvailable = TRUE;
826 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
827 
828 	/*
829 	 * RFC 4137 does not clear eapReq here, but this seems to be required
830 	 * to avoid processing the same request twice when state machine is
831 	 * initialized.
832 	 */
833 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
834 
835 	/*
836 	 * RFC 4137 does not set eapNoResp here, but this seems to be required
837 	 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
838 	 * addition, either eapResp or eapNoResp is required to be set after
839 	 * processing the received EAP frame.
840 	 */
841 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
842 
843 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
844 		"EAP authentication completed successfully");
845 }
846 
847 
848 /*
849  * This state is entered in case of a failure and state machine waits here
850  * until port is disabled or EAP authentication is restarted.
851  */
SM_STATE(EAP,FAILURE)852 SM_STATE(EAP, FAILURE)
853 {
854 	SM_ENTRY(EAP, FAILURE);
855 	eapol_set_bool(sm, EAPOL_eapFail, TRUE);
856 
857 	/*
858 	 * RFC 4137 does not clear eapReq here, but this seems to be required
859 	 * to avoid processing the same request twice when state machine is
860 	 * initialized.
861 	 */
862 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
863 
864 	/*
865 	 * RFC 4137 does not set eapNoResp here. However, either eapResp or
866 	 * eapNoResp is required to be set after processing the received EAP
867 	 * frame.
868 	 */
869 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
870 
871 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
872 		"EAP authentication failed");
873 
874 	sm->prev_failure = 1;
875 }
876 
877 
eap_success_workaround(struct eap_sm * sm,int reqId,int lastId)878 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
879 {
880 	/*
881 	 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
882 	 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
883 	 * RFC 4137 require that reqId == lastId. In addition, it looks like
884 	 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
885 	 *
886 	 * Accept this kind of Id if EAP workarounds are enabled. These are
887 	 * unauthenticated plaintext messages, so this should have minimal
888 	 * security implications (bit easier to fake EAP-Success/Failure).
889 	 */
890 	if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
891 			       reqId == ((lastId + 2) & 0xff))) {
892 		wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
893 			   "identifier field in EAP Success: "
894 			   "reqId=%d lastId=%d (these are supposed to be "
895 			   "same)", reqId, lastId);
896 		return 1;
897 	}
898 	wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
899 		   "lastId=%d", reqId, lastId);
900 	return 0;
901 }
902 
903 
904 /*
905  * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
906  */
907 
eap_peer_sm_step_idle(struct eap_sm * sm)908 static void eap_peer_sm_step_idle(struct eap_sm *sm)
909 {
910 	/*
911 	 * The first three transitions are from RFC 4137. The last two are
912 	 * local additions to handle special cases with LEAP and PEAP server
913 	 * not sending EAP-Success in some cases.
914 	 */
915 	if (eapol_get_bool(sm, EAPOL_eapReq))
916 		SM_ENTER(EAP, RECEIVED);
917 	else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
918 		  sm->decision != DECISION_FAIL) ||
919 		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
920 		  sm->decision == DECISION_UNCOND_SUCC))
921 		SM_ENTER(EAP, SUCCESS);
922 	else if (eapol_get_bool(sm, EAPOL_altReject) ||
923 		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
924 		  sm->decision != DECISION_UNCOND_SUCC) ||
925 		 (eapol_get_bool(sm, EAPOL_altAccept) &&
926 		  sm->methodState != METHOD_CONT &&
927 		  sm->decision == DECISION_FAIL))
928 		SM_ENTER(EAP, FAILURE);
929 	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
930 		 sm->leap_done && sm->decision != DECISION_FAIL &&
931 		 sm->methodState == METHOD_DONE)
932 		SM_ENTER(EAP, SUCCESS);
933 	else if (sm->selectedMethod == EAP_TYPE_PEAP &&
934 		 sm->peap_done && sm->decision != DECISION_FAIL &&
935 		 sm->methodState == METHOD_DONE)
936 		SM_ENTER(EAP, SUCCESS);
937 }
938 
939 
eap_peer_req_is_duplicate(struct eap_sm * sm)940 static int eap_peer_req_is_duplicate(struct eap_sm *sm)
941 {
942 	int duplicate;
943 
944 	duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
945 	if (sm->workaround && duplicate &&
946 	    os_memcmp(sm->req_sha1, sm->last_sha1, 20) != 0) {
947 		/*
948 		 * RFC 4137 uses (reqId == lastId) as the only verification for
949 		 * duplicate EAP requests. However, this misses cases where the
950 		 * AS is incorrectly using the same id again; and
951 		 * unfortunately, such implementations exist. Use SHA1 hash as
952 		 * an extra verification for the packets being duplicate to
953 		 * workaround these issues.
954 		 */
955 		wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
956 			   "EAP packets were not identical");
957 		wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
958 			   "duplicate packet");
959 		duplicate = 0;
960 	}
961 
962 	return duplicate;
963 }
964 
965 
eap_peer_sm_allow_canned(struct eap_sm * sm)966 static int eap_peer_sm_allow_canned(struct eap_sm *sm)
967 {
968 	struct eap_peer_config *config = eap_get_config(sm);
969 
970 	return config && config->phase1 &&
971 		os_strstr(config->phase1, "allow_canned_success=1");
972 }
973 
974 
eap_peer_sm_step_received(struct eap_sm * sm)975 static void eap_peer_sm_step_received(struct eap_sm *sm)
976 {
977 	int duplicate = eap_peer_req_is_duplicate(sm);
978 
979 	/*
980 	 * Two special cases below for LEAP are local additions to work around
981 	 * odd LEAP behavior (EAP-Success in the middle of authentication and
982 	 * then swapped roles). Other transitions are based on RFC 4137.
983 	 */
984 	if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
985 	    (sm->reqId == sm->lastId ||
986 	     eap_success_workaround(sm, sm->reqId, sm->lastId)))
987 		SM_ENTER(EAP, SUCCESS);
988 	else if (sm->workaround && sm->lastId == -1 && sm->rxSuccess &&
989 		 !sm->rxFailure && !sm->rxReq && eap_peer_sm_allow_canned(sm))
990 		SM_ENTER(EAP, SUCCESS); /* EAP-Success prior any EAP method */
991 	else if (sm->workaround && sm->lastId == -1 && sm->rxFailure &&
992 		 !sm->rxReq && sm->methodState != METHOD_CONT &&
993 		 eap_peer_sm_allow_canned(sm))
994 		SM_ENTER(EAP, FAILURE); /* EAP-Failure prior any EAP method */
995 	else if (sm->workaround && sm->rxSuccess && !sm->rxFailure &&
996 		 !sm->rxReq && sm->methodState != METHOD_CONT &&
997 		 eap_peer_sm_allow_canned(sm))
998 		SM_ENTER(EAP, SUCCESS); /* EAP-Success after Identity */
999 	else if (sm->methodState != METHOD_CONT &&
1000 		 ((sm->rxFailure &&
1001 		   sm->decision != DECISION_UNCOND_SUCC) ||
1002 		  (sm->rxSuccess && sm->decision == DECISION_FAIL &&
1003 		   (sm->selectedMethod != EAP_TYPE_LEAP ||
1004 		    sm->methodState != METHOD_MAY_CONT))) &&
1005 		 (sm->reqId == sm->lastId ||
1006 		  eap_success_workaround(sm, sm->reqId, sm->lastId)))
1007 		SM_ENTER(EAP, FAILURE);
1008 	else if (sm->rxReq && duplicate)
1009 		SM_ENTER(EAP, RETRANSMIT);
1010 	else if (sm->rxReq && !duplicate &&
1011 		 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
1012 		 sm->allowNotifications)
1013 		SM_ENTER(EAP, NOTIFICATION);
1014 	else if (sm->rxReq && !duplicate &&
1015 		 sm->selectedMethod == EAP_TYPE_NONE &&
1016 		 sm->reqMethod == EAP_TYPE_IDENTITY)
1017 		SM_ENTER(EAP, IDENTITY);
1018 	else if (sm->rxReq && !duplicate &&
1019 		 sm->selectedMethod == EAP_TYPE_NONE &&
1020 		 sm->reqMethod != EAP_TYPE_IDENTITY &&
1021 		 sm->reqMethod != EAP_TYPE_NOTIFICATION)
1022 		SM_ENTER(EAP, GET_METHOD);
1023 	else if (sm->rxReq && !duplicate &&
1024 		 sm->reqMethod == sm->selectedMethod &&
1025 		 sm->methodState != METHOD_DONE)
1026 		SM_ENTER(EAP, METHOD);
1027 	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
1028 		 (sm->rxSuccess || sm->rxResp))
1029 		SM_ENTER(EAP, METHOD);
1030 	else if (sm->reauthInit)
1031 		SM_ENTER(EAP, SEND_RESPONSE);
1032 	else
1033 		SM_ENTER(EAP, DISCARD);
1034 }
1035 
1036 
eap_peer_sm_step_local(struct eap_sm * sm)1037 static void eap_peer_sm_step_local(struct eap_sm *sm)
1038 {
1039 	switch (sm->EAP_state) {
1040 	case EAP_INITIALIZE:
1041 		SM_ENTER(EAP, IDLE);
1042 		break;
1043 	case EAP_DISABLED:
1044 		if (eapol_get_bool(sm, EAPOL_portEnabled) &&
1045 		    !sm->force_disabled)
1046 			SM_ENTER(EAP, INITIALIZE);
1047 		break;
1048 	case EAP_IDLE:
1049 		eap_peer_sm_step_idle(sm);
1050 		break;
1051 	case EAP_RECEIVED:
1052 		eap_peer_sm_step_received(sm);
1053 		break;
1054 	case EAP_GET_METHOD:
1055 		if (sm->selectedMethod == sm->reqMethod)
1056 			SM_ENTER(EAP, METHOD);
1057 		else
1058 			SM_ENTER(EAP, SEND_RESPONSE);
1059 		break;
1060 	case EAP_METHOD:
1061 		/*
1062 		 * Note: RFC 4137 uses methodState == DONE && decision == FAIL
1063 		 * as the condition. eapRespData == NULL here is used to allow
1064 		 * final EAP method response to be sent without having to change
1065 		 * all methods to either use methodState MAY_CONT or leaving
1066 		 * decision to something else than FAIL in cases where the only
1067 		 * expected response is EAP-Failure.
1068 		 */
1069 		if (sm->ignore)
1070 			SM_ENTER(EAP, DISCARD);
1071 		else if (sm->methodState == METHOD_DONE &&
1072 			 sm->decision == DECISION_FAIL && !sm->eapRespData)
1073 			SM_ENTER(EAP, FAILURE);
1074 		else
1075 			SM_ENTER(EAP, SEND_RESPONSE);
1076 		break;
1077 	case EAP_SEND_RESPONSE:
1078 		SM_ENTER(EAP, IDLE);
1079 		break;
1080 	case EAP_DISCARD:
1081 		SM_ENTER(EAP, IDLE);
1082 		break;
1083 	case EAP_IDENTITY:
1084 		SM_ENTER(EAP, SEND_RESPONSE);
1085 		break;
1086 	case EAP_NOTIFICATION:
1087 		SM_ENTER(EAP, SEND_RESPONSE);
1088 		break;
1089 	case EAP_RETRANSMIT:
1090 		SM_ENTER(EAP, SEND_RESPONSE);
1091 		break;
1092 	case EAP_SUCCESS:
1093 		break;
1094 	case EAP_FAILURE:
1095 		break;
1096 	}
1097 }
1098 
1099 
SM_STEP(EAP)1100 SM_STEP(EAP)
1101 {
1102 	/* Global transitions */
1103 	if (eapol_get_bool(sm, EAPOL_eapRestart) &&
1104 	    eapol_get_bool(sm, EAPOL_portEnabled))
1105 		SM_ENTER_GLOBAL(EAP, INITIALIZE);
1106 	else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
1107 		SM_ENTER_GLOBAL(EAP, DISABLED);
1108 	else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
1109 		/* RFC 4137 does not place any limit on number of EAP messages
1110 		 * in an authentication session. However, some error cases have
1111 		 * ended up in a state were EAP messages were sent between the
1112 		 * peer and server in a loop (e.g., TLS ACK frame in both
1113 		 * direction). Since this is quite undesired outcome, limit the
1114 		 * total number of EAP round-trips and abort authentication if
1115 		 * this limit is exceeded.
1116 		 */
1117 		if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
1118 			wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
1119 				"authentication rounds - abort",
1120 				EAP_MAX_AUTH_ROUNDS);
1121 			sm->num_rounds++;
1122 			SM_ENTER_GLOBAL(EAP, FAILURE);
1123 		}
1124 	} else {
1125 		/* Local transitions */
1126 		eap_peer_sm_step_local(sm);
1127 	}
1128 }
1129 
1130 
eap_sm_allowMethod(struct eap_sm * sm,int vendor,EapType method)1131 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
1132 				  EapType method)
1133 {
1134 	if (!eap_allowed_method(sm, vendor, method)) {
1135 		wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
1136 			   "vendor %u method %u", vendor, method);
1137 		return FALSE;
1138 	}
1139 	if (eap_peer_get_eap_method(vendor, method))
1140 		return TRUE;
1141 	wpa_printf(MSG_DEBUG, "EAP: not included in build: "
1142 		   "vendor %u method %u", vendor, method);
1143 	return FALSE;
1144 }
1145 
1146 
eap_sm_build_expanded_nak(struct eap_sm * sm,int id,const struct eap_method * methods,size_t count)1147 static struct wpabuf * eap_sm_build_expanded_nak(
1148 	struct eap_sm *sm, int id, const struct eap_method *methods,
1149 	size_t count)
1150 {
1151 	struct wpabuf *resp;
1152 	int found = 0;
1153 	const struct eap_method *m;
1154 
1155 	wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
1156 
1157 	/* RFC 3748 - 5.3.2: Expanded Nak */
1158 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
1159 			     8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
1160 	if (resp == NULL)
1161 		return NULL;
1162 
1163 	wpabuf_put_be24(resp, EAP_VENDOR_IETF);
1164 	wpabuf_put_be32(resp, EAP_TYPE_NAK);
1165 
1166 	for (m = methods; m; m = m->next) {
1167 		if (sm->reqVendor == m->vendor &&
1168 		    sm->reqVendorMethod == m->method)
1169 			continue; /* do not allow the current method again */
1170 		if (eap_allowed_method(sm, m->vendor, m->method)) {
1171 			wpa_printf(MSG_DEBUG, "EAP: allowed type: "
1172 				   "vendor=%u method=%u",
1173 				   m->vendor, m->method);
1174 			wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
1175 			wpabuf_put_be24(resp, m->vendor);
1176 			wpabuf_put_be32(resp, m->method);
1177 
1178 			found++;
1179 		}
1180 	}
1181 	if (!found) {
1182 		wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
1183 		wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
1184 		wpabuf_put_be24(resp, EAP_VENDOR_IETF);
1185 		wpabuf_put_be32(resp, EAP_TYPE_NONE);
1186 	}
1187 
1188 	eap_update_len(resp);
1189 
1190 	return resp;
1191 }
1192 
1193 
eap_sm_buildNak(struct eap_sm * sm,int id)1194 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
1195 {
1196 	struct wpabuf *resp;
1197 	u8 *start;
1198 	int found = 0, expanded_found = 0;
1199 	size_t count;
1200 	const struct eap_method *methods, *m;
1201 
1202 	wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
1203 		   "vendor=%u method=%u not allowed)", sm->reqMethod,
1204 		   sm->reqVendor, sm->reqVendorMethod);
1205 	methods = eap_peer_get_methods(&count);
1206 	if (methods == NULL)
1207 		return NULL;
1208 	if (sm->reqMethod == EAP_TYPE_EXPANDED)
1209 		return eap_sm_build_expanded_nak(sm, id, methods, count);
1210 
1211 	/* RFC 3748 - 5.3.1: Legacy Nak */
1212 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
1213 			     sizeof(struct eap_hdr) + 1 + count + 1,
1214 			     EAP_CODE_RESPONSE, id);
1215 	if (resp == NULL)
1216 		return NULL;
1217 
1218 	start = wpabuf_put(resp, 0);
1219 	for (m = methods; m; m = m->next) {
1220 		if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
1221 			continue; /* do not allow the current method again */
1222 		if (eap_allowed_method(sm, m->vendor, m->method)) {
1223 			if (m->vendor != EAP_VENDOR_IETF) {
1224 				if (expanded_found)
1225 					continue;
1226 				expanded_found = 1;
1227 				wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
1228 			} else
1229 				wpabuf_put_u8(resp, m->method);
1230 			found++;
1231 		}
1232 	}
1233 	if (!found)
1234 		wpabuf_put_u8(resp, EAP_TYPE_NONE);
1235 	wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
1236 
1237 	eap_update_len(resp);
1238 
1239 	return resp;
1240 }
1241 
1242 
eap_sm_processIdentity(struct eap_sm * sm,const struct wpabuf * req)1243 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
1244 {
1245 	const u8 *pos;
1246 	size_t msg_len;
1247 
1248 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
1249 		"EAP authentication started");
1250 	eap_notify_status(sm, "started", "");
1251 
1252 	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, req,
1253 			       &msg_len);
1254 	if (pos == NULL)
1255 		return;
1256 
1257 	/*
1258 	 * RFC 3748 - 5.1: Identity
1259 	 * Data field may contain a displayable message in UTF-8. If this
1260 	 * includes NUL-character, only the data before that should be
1261 	 * displayed. Some EAP implementasitons may piggy-back additional
1262 	 * options after the NUL.
1263 	 */
1264 	/* TODO: could save displayable message so that it can be shown to the
1265 	 * user in case of interaction is required */
1266 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
1267 			  pos, msg_len);
1268 }
1269 
1270 
1271 #ifdef PCSC_FUNCS
1272 
1273 /*
1274  * Rules for figuring out MNC length based on IMSI for SIM cards that do not
1275  * include MNC length field.
1276  */
mnc_len_from_imsi(const char * imsi)1277 static int mnc_len_from_imsi(const char *imsi)
1278 {
1279 	char mcc_str[4];
1280 	unsigned int mcc;
1281 
1282 	os_memcpy(mcc_str, imsi, 3);
1283 	mcc_str[3] = '\0';
1284 	mcc = atoi(mcc_str);
1285 
1286 	if (mcc == 228)
1287 		return 2; /* Networks in Switzerland use 2-digit MNC */
1288 	if (mcc == 244)
1289 		return 2; /* Networks in Finland use 2-digit MNC */
1290 
1291 	return -1;
1292 }
1293 
1294 
eap_sm_append_3gpp_realm(struct eap_sm * sm,char * imsi,size_t max_len,size_t * imsi_len)1295 static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi,
1296 				    size_t max_len, size_t *imsi_len)
1297 {
1298 	int mnc_len;
1299 	char *pos, mnc[4];
1300 
1301 	if (*imsi_len + 36 > max_len) {
1302 		wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer");
1303 		return -1;
1304 	}
1305 
1306 	/* MNC (2 or 3 digits) */
1307 	mnc_len = scard_get_mnc_len(sm->scard_ctx);
1308 	if (mnc_len < 0)
1309 		mnc_len = mnc_len_from_imsi(imsi);
1310 	if (mnc_len < 0) {
1311 		wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM "
1312 			   "assuming 3");
1313 		mnc_len = 3;
1314 	}
1315 
1316 	if (mnc_len == 2) {
1317 		mnc[0] = '0';
1318 		mnc[1] = imsi[3];
1319 		mnc[2] = imsi[4];
1320 	} else if (mnc_len == 3) {
1321 		mnc[0] = imsi[3];
1322 		mnc[1] = imsi[4];
1323 		mnc[2] = imsi[5];
1324 	}
1325 	mnc[3] = '\0';
1326 
1327 	pos = imsi + *imsi_len;
1328 	pos += os_snprintf(pos, imsi + max_len - pos,
1329 			   "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org",
1330 			   mnc, imsi[0], imsi[1], imsi[2]);
1331 	*imsi_len = pos - imsi;
1332 
1333 	return 0;
1334 }
1335 
1336 
eap_sm_imsi_identity(struct eap_sm * sm,struct eap_peer_config * conf)1337 static int eap_sm_imsi_identity(struct eap_sm *sm,
1338 				struct eap_peer_config *conf)
1339 {
1340 	enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM;
1341 	char imsi[100];
1342 	size_t imsi_len;
1343 	struct eap_method_type *m = conf->eap_methods;
1344 	int i;
1345 
1346 	imsi_len = sizeof(imsi);
1347 	if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
1348 		wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
1349 		return -1;
1350 	}
1351 
1352 	wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
1353 
1354 	if (imsi_len < 7) {
1355 		wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity");
1356 		return -1;
1357 	}
1358 
1359 	if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len) < 0) {
1360 		wpa_printf(MSG_WARNING, "Could not add realm to SIM identity");
1361 		return -1;
1362 	}
1363 	wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len);
1364 
1365 	for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
1366 			  m[i].method != EAP_TYPE_NONE); i++) {
1367 		if (m[i].vendor == EAP_VENDOR_IETF &&
1368 		    m[i].method == EAP_TYPE_AKA_PRIME) {
1369 			method = EAP_SM_AKA_PRIME;
1370 			break;
1371 		}
1372 
1373 		if (m[i].vendor == EAP_VENDOR_IETF &&
1374 		    m[i].method == EAP_TYPE_AKA) {
1375 			method = EAP_SM_AKA;
1376 			break;
1377 		}
1378 	}
1379 
1380 	os_free(conf->identity);
1381 	conf->identity = os_malloc(1 + imsi_len);
1382 	if (conf->identity == NULL) {
1383 		wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
1384 			   "IMSI-based identity");
1385 		return -1;
1386 	}
1387 
1388 	switch (method) {
1389 	case EAP_SM_SIM:
1390 		conf->identity[0] = '1';
1391 		break;
1392 	case EAP_SM_AKA:
1393 		conf->identity[0] = '0';
1394 		break;
1395 	case EAP_SM_AKA_PRIME:
1396 		conf->identity[0] = '6';
1397 		break;
1398 	}
1399 	os_memcpy(conf->identity + 1, imsi, imsi_len);
1400 	conf->identity_len = 1 + imsi_len;
1401 
1402 	return 0;
1403 }
1404 
1405 
eap_sm_set_scard_pin(struct eap_sm * sm,struct eap_peer_config * conf)1406 static int eap_sm_set_scard_pin(struct eap_sm *sm,
1407 				struct eap_peer_config *conf)
1408 {
1409 	if (scard_set_pin(sm->scard_ctx, conf->pin)) {
1410 		/*
1411 		 * Make sure the same PIN is not tried again in order to avoid
1412 		 * blocking SIM.
1413 		 */
1414 		os_free(conf->pin);
1415 		conf->pin = NULL;
1416 
1417 		wpa_printf(MSG_WARNING, "PIN validation failed");
1418 		eap_sm_request_pin(sm);
1419 		return -1;
1420 	}
1421 	return 0;
1422 }
1423 
1424 
eap_sm_get_scard_identity(struct eap_sm * sm,struct eap_peer_config * conf)1425 static int eap_sm_get_scard_identity(struct eap_sm *sm,
1426 				     struct eap_peer_config *conf)
1427 {
1428 	if (eap_sm_set_scard_pin(sm, conf))
1429 		return -1;
1430 
1431 	return eap_sm_imsi_identity(sm, conf);
1432 }
1433 
1434 #endif /* PCSC_FUNCS */
1435 
1436 
1437 /**
1438  * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
1439  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1440  * @id: EAP identifier for the packet
1441  * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
1442  * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
1443  * failure
1444  *
1445  * This function allocates and builds an EAP-Identity/Response packet for the
1446  * current network. The caller is responsible for freeing the returned data.
1447  */
eap_sm_buildIdentity(struct eap_sm * sm,int id,int encrypted)1448 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
1449 {
1450 	struct eap_peer_config *config = eap_get_config(sm);
1451 	struct wpabuf *resp;
1452 	const u8 *identity;
1453 	size_t identity_len;
1454 
1455 	if (config == NULL) {
1456 		wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
1457 			   "was not available");
1458 		return NULL;
1459 	}
1460 
1461 	if (sm->m && sm->m->get_identity &&
1462 	    (identity = sm->m->get_identity(sm, sm->eap_method_priv,
1463 					    &identity_len)) != NULL) {
1464 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
1465 				  "identity", identity, identity_len);
1466 	} else if (!encrypted && config->anonymous_identity) {
1467 		identity = config->anonymous_identity;
1468 		identity_len = config->anonymous_identity_len;
1469 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
1470 				  identity, identity_len);
1471 	} else {
1472 		identity = config->identity;
1473 		identity_len = config->identity_len;
1474 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
1475 				  identity, identity_len);
1476 	}
1477 
1478 	if (config->pcsc) {
1479 #ifdef PCSC_FUNCS
1480 		if (!identity) {
1481 			if (eap_sm_get_scard_identity(sm, config) < 0)
1482 				return NULL;
1483 			identity = config->identity;
1484 			identity_len = config->identity_len;
1485 			wpa_hexdump_ascii(MSG_DEBUG,
1486 					  "permanent identity from IMSI",
1487 					  identity, identity_len);
1488 		} else if (eap_sm_set_scard_pin(sm, config) < 0) {
1489 			return NULL;
1490 		}
1491 #else /* PCSC_FUNCS */
1492 		return NULL;
1493 #endif /* PCSC_FUNCS */
1494 	} else if (!identity) {
1495 		wpa_printf(MSG_WARNING,
1496 			"EAP: buildIdentity: identity configuration was not available");
1497 		eap_sm_request_identity(sm);
1498 		return NULL;
1499 	}
1500 
1501 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
1502 			     EAP_CODE_RESPONSE, id);
1503 	if (resp == NULL)
1504 		return NULL;
1505 
1506 	wpabuf_put_data(resp, identity, identity_len);
1507 
1508 	return resp;
1509 }
1510 
1511 
eap_sm_processNotify(struct eap_sm * sm,const struct wpabuf * req)1512 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
1513 {
1514 	const u8 *pos;
1515 	char *msg;
1516 	size_t i, msg_len;
1517 
1518 	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
1519 			       &msg_len);
1520 	if (pos == NULL)
1521 		return;
1522 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
1523 			  pos, msg_len);
1524 
1525 	msg = os_malloc(msg_len + 1);
1526 	if (msg == NULL)
1527 		return;
1528 	for (i = 0; i < msg_len; i++)
1529 		msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
1530 	msg[msg_len] = '\0';
1531 	wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
1532 		WPA_EVENT_EAP_NOTIFICATION, msg);
1533 	os_free(msg);
1534 }
1535 
1536 
eap_sm_buildNotify(int id)1537 static struct wpabuf * eap_sm_buildNotify(int id)
1538 {
1539 	wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
1540 	return eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
1541 			EAP_CODE_RESPONSE, id);
1542 }
1543 
1544 
eap_peer_initiate(struct eap_sm * sm,const struct eap_hdr * hdr,size_t len)1545 static void eap_peer_initiate(struct eap_sm *sm, const struct eap_hdr *hdr,
1546 			      size_t len)
1547 {
1548 #ifdef CONFIG_ERP
1549 	const u8 *pos = (const u8 *) (hdr + 1);
1550 	const u8 *end = ((const u8 *) hdr) + len;
1551 	struct erp_tlvs parse;
1552 
1553 	if (len < sizeof(*hdr) + 1) {
1554 		wpa_printf(MSG_DEBUG, "EAP: Ignored too short EAP-Initiate");
1555 		return;
1556 	}
1557 
1558 	if (*pos != EAP_ERP_TYPE_REAUTH_START) {
1559 		wpa_printf(MSG_DEBUG,
1560 			   "EAP: Ignored unexpected EAP-Initiate Type=%u",
1561 			   *pos);
1562 		return;
1563 	}
1564 
1565 	pos++;
1566 	if (pos >= end) {
1567 		wpa_printf(MSG_DEBUG,
1568 			   "EAP: Too short EAP-Initiate/Re-auth-Start");
1569 		return;
1570 	}
1571 	pos++; /* Reserved */
1572 	wpa_hexdump(MSG_DEBUG, "EAP: EAP-Initiate/Re-auth-Start TVs/TLVs",
1573 		    pos, end - pos);
1574 
1575 	if (erp_parse_tlvs(pos, end, &parse, 0) < 0)
1576 		goto invalid;
1577 
1578 	if (parse.domain) {
1579 		wpa_hexdump_ascii(MSG_DEBUG,
1580 				  "EAP: EAP-Initiate/Re-auth-Start - Domain name",
1581 				  parse.domain, parse.domain_len);
1582 		/* TODO: Derivation of domain specific keys for local ER */
1583 	}
1584 
1585 	if (eap_peer_erp_reauth_start(sm, hdr->identifier) == 0)
1586 		return;
1587 
1588 invalid:
1589 #endif /* CONFIG_ERP */
1590 	wpa_printf(MSG_DEBUG,
1591 		   "EAP: EAP-Initiate/Re-auth-Start - No suitable ERP keys available - try to start full EAP authentication");
1592 	eapol_set_bool(sm, EAPOL_eapTriggerStart, TRUE);
1593 }
1594 
1595 
eap_peer_finish(struct eap_sm * sm,const struct eap_hdr * hdr,size_t len)1596 void eap_peer_finish(struct eap_sm *sm, const struct eap_hdr *hdr, size_t len)
1597 {
1598 #ifdef CONFIG_ERP
1599 	const u8 *pos = (const u8 *) (hdr + 1);
1600 	const u8 *end = ((const u8 *) hdr) + len;
1601 	const u8 *start;
1602 	struct erp_tlvs parse;
1603 	u8 flags;
1604 	u16 seq;
1605 	u8 hash[SHA256_MAC_LEN];
1606 	size_t hash_len;
1607 	struct eap_erp_key *erp;
1608 	int max_len;
1609 	char nai[254];
1610 	u8 seed[4];
1611 	int auth_tag_ok = 0;
1612 
1613 	if (len < sizeof(*hdr) + 1) {
1614 		wpa_printf(MSG_DEBUG, "EAP: Ignored too short EAP-Finish");
1615 		return;
1616 	}
1617 
1618 	if (*pos != EAP_ERP_TYPE_REAUTH) {
1619 		wpa_printf(MSG_DEBUG,
1620 			   "EAP: Ignored unexpected EAP-Finish Type=%u", *pos);
1621 		return;
1622 	}
1623 
1624 	if (len < sizeof(*hdr) + 4) {
1625 		wpa_printf(MSG_DEBUG,
1626 			   "EAP: Ignored too short EAP-Finish/Re-auth");
1627 		return;
1628 	}
1629 
1630 	pos++;
1631 	flags = *pos++;
1632 	seq = WPA_GET_BE16(pos);
1633 	pos += 2;
1634 	wpa_printf(MSG_DEBUG, "EAP: Flags=0x%x SEQ=%u", flags, seq);
1635 
1636 	if (seq != sm->erp_seq) {
1637 		wpa_printf(MSG_DEBUG,
1638 			   "EAP: Unexpected EAP-Finish/Re-auth SEQ=%u", seq);
1639 		return;
1640 	}
1641 
1642 	/*
1643 	 * Parse TVs/TLVs. Since we do not yet know the length of the
1644 	 * Authentication Tag, stop parsing if an unknown TV/TLV is seen and
1645 	 * just try to find the keyName-NAI first so that we can check the
1646 	 * Authentication Tag.
1647 	 */
1648 	if (erp_parse_tlvs(pos, end, &parse, 1) < 0)
1649 		return;
1650 
1651 	if (!parse.keyname) {
1652 		wpa_printf(MSG_DEBUG,
1653 			   "EAP: No keyName-NAI in EAP-Finish/Re-auth Packet");
1654 		return;
1655 	}
1656 
1657 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Finish/Re-auth - keyName-NAI",
1658 			  parse.keyname, parse.keyname_len);
1659 	if (parse.keyname_len > 253) {
1660 		wpa_printf(MSG_DEBUG,
1661 			   "EAP: Too long keyName-NAI in EAP-Finish/Re-auth");
1662 		return;
1663 	}
1664 	os_memcpy(nai, parse.keyname, parse.keyname_len);
1665 	nai[parse.keyname_len] = '\0';
1666 
1667 	erp = eap_erp_get_key_nai(sm, nai);
1668 	if (!erp) {
1669 		wpa_printf(MSG_DEBUG, "EAP: No matching ERP key found for %s",
1670 			   nai);
1671 		return;
1672 	}
1673 
1674 	/* Is there enough room for Cryptosuite and Authentication Tag? */
1675 	start = parse.keyname + parse.keyname_len;
1676 	max_len = end - start;
1677 	hash_len = 16;
1678 	if (max_len < 1 + (int) hash_len) {
1679 		wpa_printf(MSG_DEBUG,
1680 			   "EAP: Not enough room for Authentication Tag");
1681 		if (flags & 0x80)
1682 			goto no_auth_tag;
1683 		return;
1684 	}
1685 	if (end[-17] != EAP_ERP_CS_HMAC_SHA256_128) {
1686 		wpa_printf(MSG_DEBUG, "EAP: Different Cryptosuite used");
1687 		if (flags & 0x80)
1688 			goto no_auth_tag;
1689 		return;
1690 	}
1691 
1692 	if (hmac_sha256(erp->rIK, erp->rIK_len, (const u8 *) hdr,
1693 			end - ((const u8 *) hdr) - hash_len, hash) < 0)
1694 		return;
1695 	if (os_memcmp(end - hash_len, hash, hash_len) != 0) {
1696 		wpa_printf(MSG_DEBUG,
1697 			   "EAP: Authentication Tag mismatch");
1698 		return;
1699 	}
1700 	auth_tag_ok = 1;
1701 	end -= 1 + hash_len;
1702 
1703 no_auth_tag:
1704 	/*
1705 	 * Parse TVs/TLVs again now that we know the exact part of the buffer
1706 	 * that contains them.
1707 	 */
1708 	wpa_hexdump(MSG_DEBUG, "EAP: EAP-Finish/Re-Auth TVs/TLVs",
1709 		    pos, end - pos);
1710 	if (erp_parse_tlvs(pos, end, &parse, 0) < 0)
1711 		return;
1712 
1713 	if (flags & 0x80 || !auth_tag_ok) {
1714 		wpa_printf(MSG_DEBUG,
1715 			   "EAP: EAP-Finish/Re-auth indicated failure");
1716 		eapol_set_bool(sm, EAPOL_eapFail, TRUE);
1717 		eapol_set_bool(sm, EAPOL_eapReq, FALSE);
1718 		eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
1719 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
1720 			"EAP authentication failed");
1721 		sm->prev_failure = 1;
1722 		wpa_printf(MSG_DEBUG,
1723 			   "EAP: Drop ERP key to try full authentication on next attempt");
1724 		eap_peer_erp_free_key(erp);
1725 		return;
1726 	}
1727 
1728 	eap_sm_free_key(sm);
1729 	sm->eapKeyDataLen = 0;
1730 	sm->eapKeyData = os_malloc(erp->rRK_len);
1731 	if (!sm->eapKeyData)
1732 		return;
1733 	sm->eapKeyDataLen = erp->rRK_len;
1734 
1735 	WPA_PUT_BE16(seed, seq);
1736 	WPA_PUT_BE16(&seed[2], erp->rRK_len);
1737 	if (hmac_sha256_kdf(erp->rRK, erp->rRK_len,
1738 			    "Re-authentication Master Session Key@ietf.org",
1739 			    seed, sizeof(seed),
1740 			    sm->eapKeyData, erp->rRK_len) < 0) {
1741 		wpa_printf(MSG_DEBUG, "EAP: Could not derive rMSK for ERP");
1742 		eap_sm_free_key(sm);
1743 		return;
1744 	}
1745 	wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rMSK",
1746 			sm->eapKeyData, sm->eapKeyDataLen);
1747 	sm->eapKeyAvailable = TRUE;
1748 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
1749 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
1750 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
1751 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
1752 		"EAP re-authentication completed successfully");
1753 #endif /* CONFIG_ERP */
1754 }
1755 
1756 
eap_sm_parseEapReq(struct eap_sm * sm,const struct wpabuf * req)1757 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
1758 {
1759 	const struct eap_hdr *hdr;
1760 	size_t plen;
1761 	const u8 *pos;
1762 
1763 	sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
1764 	sm->reqId = 0;
1765 	sm->reqMethod = EAP_TYPE_NONE;
1766 	sm->reqVendor = EAP_VENDOR_IETF;
1767 	sm->reqVendorMethod = EAP_TYPE_NONE;
1768 
1769 	if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
1770 		return;
1771 
1772 	hdr = wpabuf_head(req);
1773 	plen = be_to_host16(hdr->length);
1774 	if (plen > wpabuf_len(req)) {
1775 		wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
1776 			   "(len=%lu plen=%lu)",
1777 			   (unsigned long) wpabuf_len(req),
1778 			   (unsigned long) plen);
1779 		return;
1780 	}
1781 
1782 	sm->reqId = hdr->identifier;
1783 
1784 	if (sm->workaround) {
1785 		const u8 *addr[1];
1786 		addr[0] = wpabuf_head(req);
1787 		sha1_vector(1, addr, &plen, sm->req_sha1);
1788 	}
1789 
1790 	switch (hdr->code) {
1791 	case EAP_CODE_REQUEST:
1792 		if (plen < sizeof(*hdr) + 1) {
1793 			wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
1794 				   "no Type field");
1795 			return;
1796 		}
1797 		sm->rxReq = TRUE;
1798 		pos = (const u8 *) (hdr + 1);
1799 		sm->reqMethod = *pos++;
1800 		if (sm->reqMethod == EAP_TYPE_EXPANDED) {
1801 			if (plen < sizeof(*hdr) + 8) {
1802 				wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
1803 					   "expanded EAP-Packet (plen=%lu)",
1804 					   (unsigned long) plen);
1805 				return;
1806 			}
1807 			sm->reqVendor = WPA_GET_BE24(pos);
1808 			pos += 3;
1809 			sm->reqVendorMethod = WPA_GET_BE32(pos);
1810 		}
1811 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
1812 			   "method=%u vendor=%u vendorMethod=%u",
1813 			   sm->reqId, sm->reqMethod, sm->reqVendor,
1814 			   sm->reqVendorMethod);
1815 		break;
1816 	case EAP_CODE_RESPONSE:
1817 		if (sm->selectedMethod == EAP_TYPE_LEAP) {
1818 			/*
1819 			 * LEAP differs from RFC 4137 by using reversed roles
1820 			 * for mutual authentication and because of this, we
1821 			 * need to accept EAP-Response frames if LEAP is used.
1822 			 */
1823 			if (plen < sizeof(*hdr) + 1) {
1824 				wpa_printf(MSG_DEBUG, "EAP: Too short "
1825 					   "EAP-Response - no Type field");
1826 				return;
1827 			}
1828 			sm->rxResp = TRUE;
1829 			pos = (const u8 *) (hdr + 1);
1830 			sm->reqMethod = *pos;
1831 			wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
1832 				   "LEAP method=%d id=%d",
1833 				   sm->reqMethod, sm->reqId);
1834 			break;
1835 		}
1836 		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
1837 		break;
1838 	case EAP_CODE_SUCCESS:
1839 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
1840 		eap_notify_status(sm, "completion", "success");
1841 		sm->rxSuccess = TRUE;
1842 		break;
1843 	case EAP_CODE_FAILURE:
1844 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
1845 		eap_notify_status(sm, "completion", "failure");
1846 		sm->rxFailure = TRUE;
1847 		break;
1848 	case EAP_CODE_INITIATE:
1849 		eap_peer_initiate(sm, hdr, plen);
1850 		break;
1851 	case EAP_CODE_FINISH:
1852 		eap_peer_finish(sm, hdr, plen);
1853 		break;
1854 	default:
1855 		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
1856 			   "code %d", hdr->code);
1857 		break;
1858 	}
1859 }
1860 
1861 
eap_peer_sm_tls_event(void * ctx,enum tls_event ev,union tls_event_data * data)1862 static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
1863 				  union tls_event_data *data)
1864 {
1865 	struct eap_sm *sm = ctx;
1866 	char *hash_hex = NULL;
1867 
1868 	switch (ev) {
1869 	case TLS_CERT_CHAIN_SUCCESS:
1870 		eap_notify_status(sm, "remote certificate verification",
1871 				  "success");
1872 		if (sm->ext_cert_check) {
1873 			sm->waiting_ext_cert_check = 1;
1874 			eap_sm_request(sm, WPA_CTRL_REQ_EXT_CERT_CHECK,
1875 				       NULL, 0);
1876 		}
1877 		break;
1878 	case TLS_CERT_CHAIN_FAILURE:
1879 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
1880 			"reason=%d depth=%d subject='%s' err='%s'",
1881 			data->cert_fail.reason,
1882 			data->cert_fail.depth,
1883 			data->cert_fail.subject,
1884 			data->cert_fail.reason_txt);
1885 		eap_notify_status(sm, "remote certificate verification",
1886 				  data->cert_fail.reason_txt);
1887 		break;
1888 	case TLS_PEER_CERTIFICATE:
1889 		if (!sm->eapol_cb->notify_cert)
1890 			break;
1891 
1892 		if (data->peer_cert.hash) {
1893 			size_t len = data->peer_cert.hash_len * 2 + 1;
1894 			hash_hex = os_malloc(len);
1895 			if (hash_hex) {
1896 				wpa_snprintf_hex(hash_hex, len,
1897 						 data->peer_cert.hash,
1898 						 data->peer_cert.hash_len);
1899 			}
1900 		}
1901 
1902 		sm->eapol_cb->notify_cert(sm->eapol_ctx,
1903 					  data->peer_cert.depth,
1904 					  data->peer_cert.subject,
1905 					  data->peer_cert.altsubject,
1906 					  data->peer_cert.num_altsubject,
1907 					  hash_hex, data->peer_cert.cert);
1908 		break;
1909 	case TLS_ALERT:
1910 		if (data->alert.is_local)
1911 			eap_notify_status(sm, "local TLS alert",
1912 					  data->alert.description);
1913 		else
1914 			eap_notify_status(sm, "remote TLS alert",
1915 					  data->alert.description);
1916 		break;
1917 	}
1918 
1919 	os_free(hash_hex);
1920 }
1921 
1922 
1923 /**
1924  * eap_peer_sm_init - Allocate and initialize EAP peer state machine
1925  * @eapol_ctx: Context data to be used with eapol_cb calls
1926  * @eapol_cb: Pointer to EAPOL callback functions
1927  * @msg_ctx: Context data for wpa_msg() calls
1928  * @conf: EAP configuration
1929  * Returns: Pointer to the allocated EAP state machine or %NULL on failure
1930  *
1931  * This function allocates and initializes an EAP state machine. In addition,
1932  * this initializes TLS library for the new EAP state machine. eapol_cb pointer
1933  * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
1934  * state machine. Consequently, the caller must make sure that this data
1935  * structure remains alive while the EAP state machine is active.
1936  */
eap_peer_sm_init(void * eapol_ctx,const struct eapol_callbacks * eapol_cb,void * msg_ctx,struct eap_config * conf)1937 struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
1938 				 const struct eapol_callbacks *eapol_cb,
1939 				 void *msg_ctx, struct eap_config *conf)
1940 {
1941 	struct eap_sm *sm;
1942 	struct tls_config tlsconf;
1943 
1944 	sm = os_zalloc(sizeof(*sm));
1945 	if (sm == NULL)
1946 		return NULL;
1947 	sm->eapol_ctx = eapol_ctx;
1948 	sm->eapol_cb = eapol_cb;
1949 	sm->msg_ctx = msg_ctx;
1950 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
1951 	sm->wps = conf->wps;
1952 	dl_list_init(&sm->erp_keys);
1953 
1954 	os_memset(&tlsconf, 0, sizeof(tlsconf));
1955 	tlsconf.opensc_engine_path = conf->opensc_engine_path;
1956 	tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
1957 	tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
1958 	tlsconf.openssl_ciphers = conf->openssl_ciphers;
1959 #ifdef CONFIG_FIPS
1960 	tlsconf.fips_mode = 1;
1961 #endif /* CONFIG_FIPS */
1962 	tlsconf.event_cb = eap_peer_sm_tls_event;
1963 	tlsconf.cb_ctx = sm;
1964 	tlsconf.cert_in_cb = conf->cert_in_cb;
1965 	sm->ssl_ctx = tls_init(&tlsconf);
1966 	if (sm->ssl_ctx == NULL) {
1967 		wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
1968 			   "context.");
1969 		os_free(sm);
1970 		return NULL;
1971 	}
1972 
1973 	sm->ssl_ctx2 = tls_init(&tlsconf);
1974 	if (sm->ssl_ctx2 == NULL) {
1975 		wpa_printf(MSG_INFO, "SSL: Failed to initialize TLS "
1976 			   "context (2).");
1977 		/* Run without separate TLS context within TLS tunnel */
1978 	}
1979 
1980 	return sm;
1981 }
1982 
1983 
1984 /**
1985  * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
1986  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1987  *
1988  * This function deinitializes EAP state machine and frees all allocated
1989  * resources.
1990  */
eap_peer_sm_deinit(struct eap_sm * sm)1991 void eap_peer_sm_deinit(struct eap_sm *sm)
1992 {
1993 	if (sm == NULL)
1994 		return;
1995 	eap_deinit_prev_method(sm, "EAP deinit");
1996 	eap_sm_abort(sm);
1997 	if (sm->ssl_ctx2)
1998 		tls_deinit(sm->ssl_ctx2);
1999 	tls_deinit(sm->ssl_ctx);
2000 	eap_peer_erp_free_keys(sm);
2001 	os_free(sm);
2002 }
2003 
2004 
2005 /**
2006  * eap_peer_sm_step - Step EAP peer state machine
2007  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2008  * Returns: 1 if EAP state was changed or 0 if not
2009  *
2010  * This function advances EAP state machine to a new state to match with the
2011  * current variables. This should be called whenever variables used by the EAP
2012  * state machine have changed.
2013  */
eap_peer_sm_step(struct eap_sm * sm)2014 int eap_peer_sm_step(struct eap_sm *sm)
2015 {
2016 	int res = 0;
2017 	do {
2018 		sm->changed = FALSE;
2019 		SM_STEP_RUN(EAP);
2020 		if (sm->changed)
2021 			res = 1;
2022 	} while (sm->changed);
2023 	return res;
2024 }
2025 
2026 
2027 /**
2028  * eap_sm_abort - Abort EAP authentication
2029  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2030  *
2031  * Release system resources that have been allocated for the authentication
2032  * session without fully deinitializing the EAP state machine.
2033  */
eap_sm_abort(struct eap_sm * sm)2034 void eap_sm_abort(struct eap_sm *sm)
2035 {
2036 	wpabuf_free(sm->lastRespData);
2037 	sm->lastRespData = NULL;
2038 	wpabuf_free(sm->eapRespData);
2039 	sm->eapRespData = NULL;
2040 	eap_sm_free_key(sm);
2041 	os_free(sm->eapSessionId);
2042 	sm->eapSessionId = NULL;
2043 
2044 	/* This is not clearly specified in the EAP statemachines draft, but
2045 	 * it seems necessary to make sure that some of the EAPOL variables get
2046 	 * cleared for the next authentication. */
2047 	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
2048 }
2049 
2050 
2051 #ifdef CONFIG_CTRL_IFACE
eap_sm_state_txt(int state)2052 static const char * eap_sm_state_txt(int state)
2053 {
2054 	switch (state) {
2055 	case EAP_INITIALIZE:
2056 		return "INITIALIZE";
2057 	case EAP_DISABLED:
2058 		return "DISABLED";
2059 	case EAP_IDLE:
2060 		return "IDLE";
2061 	case EAP_RECEIVED:
2062 		return "RECEIVED";
2063 	case EAP_GET_METHOD:
2064 		return "GET_METHOD";
2065 	case EAP_METHOD:
2066 		return "METHOD";
2067 	case EAP_SEND_RESPONSE:
2068 		return "SEND_RESPONSE";
2069 	case EAP_DISCARD:
2070 		return "DISCARD";
2071 	case EAP_IDENTITY:
2072 		return "IDENTITY";
2073 	case EAP_NOTIFICATION:
2074 		return "NOTIFICATION";
2075 	case EAP_RETRANSMIT:
2076 		return "RETRANSMIT";
2077 	case EAP_SUCCESS:
2078 		return "SUCCESS";
2079 	case EAP_FAILURE:
2080 		return "FAILURE";
2081 	default:
2082 		return "UNKNOWN";
2083 	}
2084 }
2085 #endif /* CONFIG_CTRL_IFACE */
2086 
2087 
2088 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
eap_sm_method_state_txt(EapMethodState state)2089 static const char * eap_sm_method_state_txt(EapMethodState state)
2090 {
2091 	switch (state) {
2092 	case METHOD_NONE:
2093 		return "NONE";
2094 	case METHOD_INIT:
2095 		return "INIT";
2096 	case METHOD_CONT:
2097 		return "CONT";
2098 	case METHOD_MAY_CONT:
2099 		return "MAY_CONT";
2100 	case METHOD_DONE:
2101 		return "DONE";
2102 	default:
2103 		return "UNKNOWN";
2104 	}
2105 }
2106 
2107 
eap_sm_decision_txt(EapDecision decision)2108 static const char * eap_sm_decision_txt(EapDecision decision)
2109 {
2110 	switch (decision) {
2111 	case DECISION_FAIL:
2112 		return "FAIL";
2113 	case DECISION_COND_SUCC:
2114 		return "COND_SUCC";
2115 	case DECISION_UNCOND_SUCC:
2116 		return "UNCOND_SUCC";
2117 	default:
2118 		return "UNKNOWN";
2119 	}
2120 }
2121 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
2122 
2123 
2124 #ifdef CONFIG_CTRL_IFACE
2125 
2126 /**
2127  * eap_sm_get_status - Get EAP state machine status
2128  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2129  * @buf: Buffer for status information
2130  * @buflen: Maximum buffer length
2131  * @verbose: Whether to include verbose status information
2132  * Returns: Number of bytes written to buf.
2133  *
2134  * Query EAP state machine for status information. This function fills in a
2135  * text area with current status information from the EAPOL state machine. If
2136  * the buffer (buf) is not large enough, status information will be truncated
2137  * to fit the buffer.
2138  */
eap_sm_get_status(struct eap_sm * sm,char * buf,size_t buflen,int verbose)2139 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
2140 {
2141 	int len, ret;
2142 
2143 	if (sm == NULL)
2144 		return 0;
2145 
2146 	len = os_snprintf(buf, buflen,
2147 			  "EAP state=%s\n",
2148 			  eap_sm_state_txt(sm->EAP_state));
2149 	if (os_snprintf_error(buflen, len))
2150 		return 0;
2151 
2152 	if (sm->selectedMethod != EAP_TYPE_NONE) {
2153 		const char *name;
2154 		if (sm->m) {
2155 			name = sm->m->name;
2156 		} else {
2157 			const struct eap_method *m =
2158 				eap_peer_get_eap_method(EAP_VENDOR_IETF,
2159 							sm->selectedMethod);
2160 			if (m)
2161 				name = m->name;
2162 			else
2163 				name = "?";
2164 		}
2165 		ret = os_snprintf(buf + len, buflen - len,
2166 				  "selectedMethod=%d (EAP-%s)\n",
2167 				  sm->selectedMethod, name);
2168 		if (os_snprintf_error(buflen - len, ret))
2169 			return len;
2170 		len += ret;
2171 
2172 		if (sm->m && sm->m->get_status) {
2173 			len += sm->m->get_status(sm, sm->eap_method_priv,
2174 						 buf + len, buflen - len,
2175 						 verbose);
2176 		}
2177 	}
2178 
2179 	if (verbose) {
2180 		ret = os_snprintf(buf + len, buflen - len,
2181 				  "reqMethod=%d\n"
2182 				  "methodState=%s\n"
2183 				  "decision=%s\n"
2184 				  "ClientTimeout=%d\n",
2185 				  sm->reqMethod,
2186 				  eap_sm_method_state_txt(sm->methodState),
2187 				  eap_sm_decision_txt(sm->decision),
2188 				  sm->ClientTimeout);
2189 		if (os_snprintf_error(buflen - len, ret))
2190 			return len;
2191 		len += ret;
2192 	}
2193 
2194 	return len;
2195 }
2196 #endif /* CONFIG_CTRL_IFACE */
2197 
2198 
eap_sm_request(struct eap_sm * sm,enum wpa_ctrl_req_type field,const char * msg,size_t msglen)2199 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
2200 			   const char *msg, size_t msglen)
2201 {
2202 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
2203 	struct eap_peer_config *config;
2204 	const char *txt = NULL;
2205 	char *tmp;
2206 
2207 	if (sm == NULL)
2208 		return;
2209 	config = eap_get_config(sm);
2210 	if (config == NULL)
2211 		return;
2212 
2213 	switch (field) {
2214 	case WPA_CTRL_REQ_EAP_IDENTITY:
2215 		config->pending_req_identity++;
2216 		break;
2217 	case WPA_CTRL_REQ_EAP_PASSWORD:
2218 		config->pending_req_password++;
2219 		break;
2220 	case WPA_CTRL_REQ_EAP_NEW_PASSWORD:
2221 		config->pending_req_new_password++;
2222 		break;
2223 	case WPA_CTRL_REQ_EAP_PIN:
2224 		config->pending_req_pin++;
2225 		break;
2226 	case WPA_CTRL_REQ_EAP_OTP:
2227 		if (msg) {
2228 			tmp = os_malloc(msglen + 3);
2229 			if (tmp == NULL)
2230 				return;
2231 			tmp[0] = '[';
2232 			os_memcpy(tmp + 1, msg, msglen);
2233 			tmp[msglen + 1] = ']';
2234 			tmp[msglen + 2] = '\0';
2235 			txt = tmp;
2236 			os_free(config->pending_req_otp);
2237 			config->pending_req_otp = tmp;
2238 			config->pending_req_otp_len = msglen + 3;
2239 		} else {
2240 			if (config->pending_req_otp == NULL)
2241 				return;
2242 			txt = config->pending_req_otp;
2243 		}
2244 		break;
2245 	case WPA_CTRL_REQ_EAP_PASSPHRASE:
2246 		config->pending_req_passphrase++;
2247 		break;
2248 	case WPA_CTRL_REQ_SIM:
2249 		config->pending_req_sim++;
2250 		txt = msg;
2251 		break;
2252 	case WPA_CTRL_REQ_EXT_CERT_CHECK:
2253 		break;
2254 	default:
2255 		return;
2256 	}
2257 
2258 	if (sm->eapol_cb->eap_param_needed)
2259 		sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
2260 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
2261 }
2262 
2263 
eap_sm_get_method_name(struct eap_sm * sm)2264 const char * eap_sm_get_method_name(struct eap_sm *sm)
2265 {
2266 	if (sm->m == NULL)
2267 		return "UNKNOWN";
2268 	return sm->m->name;
2269 }
2270 
2271 
2272 /**
2273  * eap_sm_request_identity - Request identity from user (ctrl_iface)
2274  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2275  *
2276  * EAP methods can call this function to request identity information for the
2277  * current network. This is normally called when the identity is not included
2278  * in the network configuration. The request will be sent to monitor programs
2279  * through the control interface.
2280  */
eap_sm_request_identity(struct eap_sm * sm)2281 void eap_sm_request_identity(struct eap_sm *sm)
2282 {
2283 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0);
2284 }
2285 
2286 
2287 /**
2288  * eap_sm_request_password - Request password from user (ctrl_iface)
2289  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2290  *
2291  * EAP methods can call this function to request password information for the
2292  * current network. This is normally called when the password is not included
2293  * in the network configuration. The request will be sent to monitor programs
2294  * through the control interface.
2295  */
eap_sm_request_password(struct eap_sm * sm)2296 void eap_sm_request_password(struct eap_sm *sm)
2297 {
2298 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0);
2299 }
2300 
2301 
2302 /**
2303  * eap_sm_request_new_password - Request new password from user (ctrl_iface)
2304  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2305  *
2306  * EAP methods can call this function to request new password information for
2307  * the current network. This is normally called when the EAP method indicates
2308  * that the current password has expired and password change is required. The
2309  * request will be sent to monitor programs through the control interface.
2310  */
eap_sm_request_new_password(struct eap_sm * sm)2311 void eap_sm_request_new_password(struct eap_sm *sm)
2312 {
2313 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0);
2314 }
2315 
2316 
2317 /**
2318  * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
2319  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2320  *
2321  * EAP methods can call this function to request SIM or smart card PIN
2322  * information for the current network. This is normally called when the PIN is
2323  * not included in the network configuration. The request will be sent to
2324  * monitor programs through the control interface.
2325  */
eap_sm_request_pin(struct eap_sm * sm)2326 void eap_sm_request_pin(struct eap_sm *sm)
2327 {
2328 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0);
2329 }
2330 
2331 
2332 /**
2333  * eap_sm_request_otp - Request one time password from user (ctrl_iface)
2334  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2335  * @msg: Message to be displayed to the user when asking for OTP
2336  * @msg_len: Length of the user displayable message
2337  *
2338  * EAP methods can call this function to request open time password (OTP) for
2339  * the current network. The request will be sent to monitor programs through
2340  * the control interface.
2341  */
eap_sm_request_otp(struct eap_sm * sm,const char * msg,size_t msg_len)2342 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
2343 {
2344 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len);
2345 }
2346 
2347 
2348 /**
2349  * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
2350  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2351  *
2352  * EAP methods can call this function to request passphrase for a private key
2353  * for the current network. This is normally called when the passphrase is not
2354  * included in the network configuration. The request will be sent to monitor
2355  * programs through the control interface.
2356  */
eap_sm_request_passphrase(struct eap_sm * sm)2357 void eap_sm_request_passphrase(struct eap_sm *sm)
2358 {
2359 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0);
2360 }
2361 
2362 
2363 /**
2364  * eap_sm_request_sim - Request external SIM processing
2365  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2366  * @req: EAP method specific request
2367  */
eap_sm_request_sim(struct eap_sm * sm,const char * req)2368 void eap_sm_request_sim(struct eap_sm *sm, const char *req)
2369 {
2370 	eap_sm_request(sm, WPA_CTRL_REQ_SIM, req, os_strlen(req));
2371 }
2372 
2373 
2374 /**
2375  * eap_sm_notify_ctrl_attached - Notification of attached monitor
2376  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2377  *
2378  * Notify EAP state machines that a monitor was attached to the control
2379  * interface to trigger re-sending of pending requests for user input.
2380  */
eap_sm_notify_ctrl_attached(struct eap_sm * sm)2381 void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
2382 {
2383 	struct eap_peer_config *config = eap_get_config(sm);
2384 
2385 	if (config == NULL)
2386 		return;
2387 
2388 	/* Re-send any pending requests for user data since a new control
2389 	 * interface was added. This handles cases where the EAP authentication
2390 	 * starts immediately after system startup when the user interface is
2391 	 * not yet running. */
2392 	if (config->pending_req_identity)
2393 		eap_sm_request_identity(sm);
2394 	if (config->pending_req_password)
2395 		eap_sm_request_password(sm);
2396 	if (config->pending_req_new_password)
2397 		eap_sm_request_new_password(sm);
2398 	if (config->pending_req_otp)
2399 		eap_sm_request_otp(sm, NULL, 0);
2400 	if (config->pending_req_pin)
2401 		eap_sm_request_pin(sm);
2402 	if (config->pending_req_passphrase)
2403 		eap_sm_request_passphrase(sm);
2404 }
2405 
2406 
eap_allowed_phase2_type(int vendor,int type)2407 static int eap_allowed_phase2_type(int vendor, int type)
2408 {
2409 	if (vendor != EAP_VENDOR_IETF)
2410 		return 0;
2411 	return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
2412 		type != EAP_TYPE_FAST;
2413 }
2414 
2415 
2416 /**
2417  * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
2418  * @name: EAP method name, e.g., MD5
2419  * @vendor: Buffer for returning EAP Vendor-Id
2420  * Returns: EAP method type or %EAP_TYPE_NONE if not found
2421  *
2422  * This function maps EAP type names into EAP type numbers that are allowed for
2423  * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
2424  * EAP-PEAP, EAP-TTLS, and EAP-FAST.
2425  */
eap_get_phase2_type(const char * name,int * vendor)2426 u32 eap_get_phase2_type(const char *name, int *vendor)
2427 {
2428 	int v;
2429 	u32 type = eap_peer_get_type(name, &v);
2430 	if (eap_allowed_phase2_type(v, type)) {
2431 		*vendor = v;
2432 		return type;
2433 	}
2434 	*vendor = EAP_VENDOR_IETF;
2435 	return EAP_TYPE_NONE;
2436 }
2437 
2438 
2439 /**
2440  * eap_get_phase2_types - Get list of allowed EAP phase 2 types
2441  * @config: Pointer to a network configuration
2442  * @count: Pointer to a variable to be filled with number of returned EAP types
2443  * Returns: Pointer to allocated type list or %NULL on failure
2444  *
2445  * This function generates an array of allowed EAP phase 2 (tunneled) types for
2446  * the given network configuration.
2447  */
eap_get_phase2_types(struct eap_peer_config * config,size_t * count)2448 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
2449 					      size_t *count)
2450 {
2451 	struct eap_method_type *buf;
2452 	u32 method;
2453 	int vendor;
2454 	size_t mcount;
2455 	const struct eap_method *methods, *m;
2456 
2457 	methods = eap_peer_get_methods(&mcount);
2458 	if (methods == NULL)
2459 		return NULL;
2460 	*count = 0;
2461 	buf = os_malloc(mcount * sizeof(struct eap_method_type));
2462 	if (buf == NULL)
2463 		return NULL;
2464 
2465 	for (m = methods; m; m = m->next) {
2466 		vendor = m->vendor;
2467 		method = m->method;
2468 		if (eap_allowed_phase2_type(vendor, method)) {
2469 			if (vendor == EAP_VENDOR_IETF &&
2470 			    method == EAP_TYPE_TLS && config &&
2471 			    config->private_key2 == NULL)
2472 				continue;
2473 			buf[*count].vendor = vendor;
2474 			buf[*count].method = method;
2475 			(*count)++;
2476 		}
2477 	}
2478 
2479 	return buf;
2480 }
2481 
2482 
2483 /**
2484  * eap_set_fast_reauth - Update fast_reauth setting
2485  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2486  * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
2487  */
eap_set_fast_reauth(struct eap_sm * sm,int enabled)2488 void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
2489 {
2490 	sm->fast_reauth = enabled;
2491 }
2492 
2493 
2494 /**
2495  * eap_set_workaround - Update EAP workarounds setting
2496  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2497  * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
2498  */
eap_set_workaround(struct eap_sm * sm,unsigned int workaround)2499 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
2500 {
2501 	sm->workaround = workaround;
2502 }
2503 
2504 
2505 /**
2506  * eap_get_config - Get current network configuration
2507  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2508  * Returns: Pointer to the current network configuration or %NULL if not found
2509  *
2510  * EAP peer methods should avoid using this function if they can use other
2511  * access functions, like eap_get_config_identity() and
2512  * eap_get_config_password(), that do not require direct access to
2513  * struct eap_peer_config.
2514  */
eap_get_config(struct eap_sm * sm)2515 struct eap_peer_config * eap_get_config(struct eap_sm *sm)
2516 {
2517 	return sm->eapol_cb->get_config(sm->eapol_ctx);
2518 }
2519 
2520 
2521 /**
2522  * eap_get_config_identity - Get identity from the network configuration
2523  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2524  * @len: Buffer for the length of the identity
2525  * Returns: Pointer to the identity or %NULL if not found
2526  */
eap_get_config_identity(struct eap_sm * sm,size_t * len)2527 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
2528 {
2529 	struct eap_peer_config *config = eap_get_config(sm);
2530 	if (config == NULL)
2531 		return NULL;
2532 	*len = config->identity_len;
2533 	return config->identity;
2534 }
2535 
2536 
eap_get_ext_password(struct eap_sm * sm,struct eap_peer_config * config)2537 static int eap_get_ext_password(struct eap_sm *sm,
2538 				struct eap_peer_config *config)
2539 {
2540 	char *name;
2541 
2542 	if (config->password == NULL)
2543 		return -1;
2544 
2545 	name = os_zalloc(config->password_len + 1);
2546 	if (name == NULL)
2547 		return -1;
2548 	os_memcpy(name, config->password, config->password_len);
2549 
2550 	ext_password_free(sm->ext_pw_buf);
2551 	sm->ext_pw_buf = ext_password_get(sm->ext_pw, name);
2552 	os_free(name);
2553 
2554 	return sm->ext_pw_buf == NULL ? -1 : 0;
2555 }
2556 
2557 
2558 /**
2559  * eap_get_config_password - Get password from the network configuration
2560  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2561  * @len: Buffer for the length of the password
2562  * Returns: Pointer to the password or %NULL if not found
2563  */
eap_get_config_password(struct eap_sm * sm,size_t * len)2564 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
2565 {
2566 	struct eap_peer_config *config = eap_get_config(sm);
2567 	if (config == NULL)
2568 		return NULL;
2569 
2570 	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2571 		if (eap_get_ext_password(sm, config) < 0)
2572 			return NULL;
2573 		*len = wpabuf_len(sm->ext_pw_buf);
2574 		return wpabuf_head(sm->ext_pw_buf);
2575 	}
2576 
2577 	*len = config->password_len;
2578 	return config->password;
2579 }
2580 
2581 
2582 /**
2583  * eap_get_config_password2 - Get password from the network configuration
2584  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2585  * @len: Buffer for the length of the password
2586  * @hash: Buffer for returning whether the password is stored as a
2587  * NtPasswordHash instead of plaintext password; can be %NULL if this
2588  * information is not needed
2589  * Returns: Pointer to the password or %NULL if not found
2590  */
eap_get_config_password2(struct eap_sm * sm,size_t * len,int * hash)2591 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
2592 {
2593 	struct eap_peer_config *config = eap_get_config(sm);
2594 	if (config == NULL)
2595 		return NULL;
2596 
2597 	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2598 		if (eap_get_ext_password(sm, config) < 0)
2599 			return NULL;
2600 		if (hash)
2601 			*hash = 0;
2602 		*len = wpabuf_len(sm->ext_pw_buf);
2603 		return wpabuf_head(sm->ext_pw_buf);
2604 	}
2605 
2606 	*len = config->password_len;
2607 	if (hash)
2608 		*hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
2609 	return config->password;
2610 }
2611 
2612 
2613 /**
2614  * eap_get_config_new_password - Get new password from network configuration
2615  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2616  * @len: Buffer for the length of the new password
2617  * Returns: Pointer to the new password or %NULL if not found
2618  */
eap_get_config_new_password(struct eap_sm * sm,size_t * len)2619 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
2620 {
2621 	struct eap_peer_config *config = eap_get_config(sm);
2622 	if (config == NULL)
2623 		return NULL;
2624 	*len = config->new_password_len;
2625 	return config->new_password;
2626 }
2627 
2628 
2629 /**
2630  * eap_get_config_otp - Get one-time password from the network configuration
2631  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2632  * @len: Buffer for the length of the one-time password
2633  * Returns: Pointer to the one-time password or %NULL if not found
2634  */
eap_get_config_otp(struct eap_sm * sm,size_t * len)2635 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
2636 {
2637 	struct eap_peer_config *config = eap_get_config(sm);
2638 	if (config == NULL)
2639 		return NULL;
2640 	*len = config->otp_len;
2641 	return config->otp;
2642 }
2643 
2644 
2645 /**
2646  * eap_clear_config_otp - Clear used one-time password
2647  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2648  *
2649  * This function clears a used one-time password (OTP) from the current network
2650  * configuration. This should be called when the OTP has been used and is not
2651  * needed anymore.
2652  */
eap_clear_config_otp(struct eap_sm * sm)2653 void eap_clear_config_otp(struct eap_sm *sm)
2654 {
2655 	struct eap_peer_config *config = eap_get_config(sm);
2656 	if (config == NULL)
2657 		return;
2658 	os_memset(config->otp, 0, config->otp_len);
2659 	os_free(config->otp);
2660 	config->otp = NULL;
2661 	config->otp_len = 0;
2662 }
2663 
2664 
2665 /**
2666  * eap_get_config_phase1 - Get phase1 data from the network configuration
2667  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2668  * Returns: Pointer to the phase1 data or %NULL if not found
2669  */
eap_get_config_phase1(struct eap_sm * sm)2670 const char * eap_get_config_phase1(struct eap_sm *sm)
2671 {
2672 	struct eap_peer_config *config = eap_get_config(sm);
2673 	if (config == NULL)
2674 		return NULL;
2675 	return config->phase1;
2676 }
2677 
2678 
2679 /**
2680  * eap_get_config_phase2 - Get phase2 data from the network configuration
2681  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2682  * Returns: Pointer to the phase1 data or %NULL if not found
2683  */
eap_get_config_phase2(struct eap_sm * sm)2684 const char * eap_get_config_phase2(struct eap_sm *sm)
2685 {
2686 	struct eap_peer_config *config = eap_get_config(sm);
2687 	if (config == NULL)
2688 		return NULL;
2689 	return config->phase2;
2690 }
2691 
2692 
eap_get_config_fragment_size(struct eap_sm * sm)2693 int eap_get_config_fragment_size(struct eap_sm *sm)
2694 {
2695 	struct eap_peer_config *config = eap_get_config(sm);
2696 	if (config == NULL)
2697 		return -1;
2698 	return config->fragment_size;
2699 }
2700 
2701 
2702 /**
2703  * eap_key_available - Get key availability (eapKeyAvailable variable)
2704  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2705  * Returns: 1 if EAP keying material is available, 0 if not
2706  */
eap_key_available(struct eap_sm * sm)2707 int eap_key_available(struct eap_sm *sm)
2708 {
2709 	return sm ? sm->eapKeyAvailable : 0;
2710 }
2711 
2712 
2713 /**
2714  * eap_notify_success - Notify EAP state machine about external success trigger
2715  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2716  *
2717  * This function is called when external event, e.g., successful completion of
2718  * WPA-PSK key handshake, is indicating that EAP state machine should move to
2719  * success state. This is mainly used with security modes that do not use EAP
2720  * state machine (e.g., WPA-PSK).
2721  */
eap_notify_success(struct eap_sm * sm)2722 void eap_notify_success(struct eap_sm *sm)
2723 {
2724 	if (sm) {
2725 		sm->decision = DECISION_COND_SUCC;
2726 		sm->EAP_state = EAP_SUCCESS;
2727 	}
2728 }
2729 
2730 
2731 /**
2732  * eap_notify_lower_layer_success - Notification of lower layer success
2733  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2734  *
2735  * Notify EAP state machines that a lower layer has detected a successful
2736  * authentication. This is used to recover from dropped EAP-Success messages.
2737  */
eap_notify_lower_layer_success(struct eap_sm * sm)2738 void eap_notify_lower_layer_success(struct eap_sm *sm)
2739 {
2740 	if (sm == NULL)
2741 		return;
2742 
2743 	if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
2744 	    sm->decision == DECISION_FAIL ||
2745 	    (sm->methodState != METHOD_MAY_CONT &&
2746 	     sm->methodState != METHOD_DONE))
2747 		return;
2748 
2749 	if (sm->eapKeyData != NULL)
2750 		sm->eapKeyAvailable = TRUE;
2751 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
2752 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
2753 		"EAP authentication completed successfully (based on lower "
2754 		"layer success)");
2755 }
2756 
2757 
2758 /**
2759  * eap_get_eapSessionId - Get Session-Id from EAP state machine
2760  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2761  * @len: Pointer to variable that will be set to number of bytes in the session
2762  * Returns: Pointer to the EAP Session-Id or %NULL on failure
2763  *
2764  * Fetch EAP Session-Id from the EAP state machine. The Session-Id is available
2765  * only after a successful authentication. EAP state machine continues to manage
2766  * the Session-Id and the caller must not change or free the returned data.
2767  */
eap_get_eapSessionId(struct eap_sm * sm,size_t * len)2768 const u8 * eap_get_eapSessionId(struct eap_sm *sm, size_t *len)
2769 {
2770 	if (sm == NULL || sm->eapSessionId == NULL) {
2771 		*len = 0;
2772 		return NULL;
2773 	}
2774 
2775 	*len = sm->eapSessionIdLen;
2776 	return sm->eapSessionId;
2777 }
2778 
2779 
2780 /**
2781  * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
2782  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2783  * @len: Pointer to variable that will be set to number of bytes in the key
2784  * Returns: Pointer to the EAP keying data or %NULL on failure
2785  *
2786  * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
2787  * key is available only after a successful authentication. EAP state machine
2788  * continues to manage the key data and the caller must not change or free the
2789  * returned data.
2790  */
eap_get_eapKeyData(struct eap_sm * sm,size_t * len)2791 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
2792 {
2793 	if (sm == NULL || sm->eapKeyData == NULL) {
2794 		*len = 0;
2795 		return NULL;
2796 	}
2797 
2798 	*len = sm->eapKeyDataLen;
2799 	return sm->eapKeyData;
2800 }
2801 
2802 
2803 /**
2804  * eap_get_eapKeyData - Get EAP response data
2805  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2806  * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
2807  *
2808  * Fetch EAP response (eapRespData) from the EAP state machine. This data is
2809  * available when EAP state machine has processed an incoming EAP request. The
2810  * EAP state machine does not maintain a reference to the response after this
2811  * function is called and the caller is responsible for freeing the data.
2812  */
eap_get_eapRespData(struct eap_sm * sm)2813 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
2814 {
2815 	struct wpabuf *resp;
2816 
2817 	if (sm == NULL || sm->eapRespData == NULL)
2818 		return NULL;
2819 
2820 	resp = sm->eapRespData;
2821 	sm->eapRespData = NULL;
2822 
2823 	return resp;
2824 }
2825 
2826 
2827 /**
2828  * eap_sm_register_scard_ctx - Notification of smart card context
2829  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2830  * @ctx: Context data for smart card operations
2831  *
2832  * Notify EAP state machines of context data for smart card operations. This
2833  * context data will be used as a parameter for scard_*() functions.
2834  */
eap_register_scard_ctx(struct eap_sm * sm,void * ctx)2835 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
2836 {
2837 	if (sm)
2838 		sm->scard_ctx = ctx;
2839 }
2840 
2841 
2842 /**
2843  * eap_set_config_blob - Set or add a named configuration blob
2844  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2845  * @blob: New value for the blob
2846  *
2847  * Adds a new configuration blob or replaces the current value of an existing
2848  * blob.
2849  */
eap_set_config_blob(struct eap_sm * sm,struct wpa_config_blob * blob)2850 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
2851 {
2852 #ifndef CONFIG_NO_CONFIG_BLOBS
2853 	sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
2854 #endif /* CONFIG_NO_CONFIG_BLOBS */
2855 }
2856 
2857 
2858 /**
2859  * eap_get_config_blob - Get a named configuration blob
2860  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2861  * @name: Name of the blob
2862  * Returns: Pointer to blob data or %NULL if not found
2863  */
eap_get_config_blob(struct eap_sm * sm,const char * name)2864 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
2865 						   const char *name)
2866 {
2867 #ifndef CONFIG_NO_CONFIG_BLOBS
2868 	return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
2869 #else /* CONFIG_NO_CONFIG_BLOBS */
2870 	return NULL;
2871 #endif /* CONFIG_NO_CONFIG_BLOBS */
2872 }
2873 
2874 
2875 /**
2876  * eap_set_force_disabled - Set force_disabled flag
2877  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2878  * @disabled: 1 = EAP disabled, 0 = EAP enabled
2879  *
2880  * This function is used to force EAP state machine to be disabled when it is
2881  * not in use (e.g., with WPA-PSK or plaintext connections).
2882  */
eap_set_force_disabled(struct eap_sm * sm,int disabled)2883 void eap_set_force_disabled(struct eap_sm *sm, int disabled)
2884 {
2885 	sm->force_disabled = disabled;
2886 }
2887 
2888 
2889 /**
2890  * eap_set_external_sim - Set external_sim flag
2891  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2892  * @external_sim: Whether external SIM/USIM processing is used
2893  */
eap_set_external_sim(struct eap_sm * sm,int external_sim)2894 void eap_set_external_sim(struct eap_sm *sm, int external_sim)
2895 {
2896 	sm->external_sim = external_sim;
2897 }
2898 
2899 
2900  /**
2901  * eap_notify_pending - Notify that EAP method is ready to re-process a request
2902  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2903  *
2904  * An EAP method can perform a pending operation (e.g., to get a response from
2905  * an external process). Once the response is available, this function can be
2906  * used to request EAPOL state machine to retry delivering the previously
2907  * received (and still unanswered) EAP request to EAP state machine.
2908  */
eap_notify_pending(struct eap_sm * sm)2909 void eap_notify_pending(struct eap_sm *sm)
2910 {
2911 	sm->eapol_cb->notify_pending(sm->eapol_ctx);
2912 }
2913 
2914 
2915 /**
2916  * eap_invalidate_cached_session - Mark cached session data invalid
2917  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2918  */
eap_invalidate_cached_session(struct eap_sm * sm)2919 void eap_invalidate_cached_session(struct eap_sm *sm)
2920 {
2921 	if (sm)
2922 		eap_deinit_prev_method(sm, "invalidate");
2923 }
2924 
2925 
eap_is_wps_pbc_enrollee(struct eap_peer_config * conf)2926 int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
2927 {
2928 	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2929 	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2930 		return 0; /* Not a WPS Enrollee */
2931 
2932 	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
2933 		return 0; /* Not using PBC */
2934 
2935 	return 1;
2936 }
2937 
2938 
eap_is_wps_pin_enrollee(struct eap_peer_config * conf)2939 int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
2940 {
2941 	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2942 	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2943 		return 0; /* Not a WPS Enrollee */
2944 
2945 	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
2946 		return 0; /* Not using PIN */
2947 
2948 	return 1;
2949 }
2950 
2951 
eap_sm_set_ext_pw_ctx(struct eap_sm * sm,struct ext_password_data * ext)2952 void eap_sm_set_ext_pw_ctx(struct eap_sm *sm, struct ext_password_data *ext)
2953 {
2954 	ext_password_free(sm->ext_pw_buf);
2955 	sm->ext_pw_buf = NULL;
2956 	sm->ext_pw = ext;
2957 }
2958 
2959 
2960 /**
2961  * eap_set_anon_id - Set or add anonymous identity
2962  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2963  * @id: Anonymous identity (e.g., EAP-SIM pseudonym) or %NULL to clear
2964  * @len: Length of anonymous identity in octets
2965  */
eap_set_anon_id(struct eap_sm * sm,const u8 * id,size_t len)2966 void eap_set_anon_id(struct eap_sm *sm, const u8 *id, size_t len)
2967 {
2968 	if (sm->eapol_cb->set_anon_id)
2969 		sm->eapol_cb->set_anon_id(sm->eapol_ctx, id, len);
2970 }
2971 
2972 
eap_peer_was_failure_expected(struct eap_sm * sm)2973 int eap_peer_was_failure_expected(struct eap_sm *sm)
2974 {
2975 	return sm->expected_failure;
2976 }
2977