1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32 
33 // The original source code covered by the above license above has been modified
34 // significantly by Google Inc.
35 // Copyright 2014 the V8 project authors. All rights reserved.
36 
37 #ifndef V8_S390_ASSEMBLER_S390_INL_H_
38 #define V8_S390_ASSEMBLER_S390_INL_H_
39 
40 #include "src/s390/assembler-s390.h"
41 
42 #include "src/assembler.h"
43 #include "src/debug/debug.h"
44 
45 namespace v8 {
46 namespace internal {
47 
SupportsCrankshaft()48 bool CpuFeatures::SupportsCrankshaft() { return true; }
49 
SupportsSimd128()50 bool CpuFeatures::SupportsSimd128() { return false; }
51 
apply(intptr_t delta)52 void RelocInfo::apply(intptr_t delta) {
53   // Absolute code pointer inside code object moves with the code object.
54   if (IsInternalReference(rmode_)) {
55     // Jump table entry
56     Address target = Memory::Address_at(pc_);
57     Memory::Address_at(pc_) = target + delta;
58   } else if (IsCodeTarget(rmode_)) {
59     SixByteInstr instr =
60         Instruction::InstructionBits(reinterpret_cast<const byte*>(pc_));
61     int32_t dis = static_cast<int32_t>(instr & 0xFFFFFFFF) * 2  // halfwords
62                   - static_cast<int32_t>(delta);
63     instr >>= 32;  // Clear the 4-byte displacement field.
64     instr <<= 32;
65     instr |= static_cast<uint32_t>(dis / 2);
66     Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc_),
67                                                   instr);
68   } else {
69     // mov sequence
70     DCHECK(IsInternalReferenceEncoded(rmode_));
71     Address target = Assembler::target_address_at(pc_, host_);
72     Assembler::set_target_address_at(isolate_, pc_, host_, target + delta,
73                                      SKIP_ICACHE_FLUSH);
74   }
75 }
76 
target_internal_reference()77 Address RelocInfo::target_internal_reference() {
78   if (IsInternalReference(rmode_)) {
79     // Jump table entry
80     return Memory::Address_at(pc_);
81   } else {
82     // mov sequence
83     DCHECK(IsInternalReferenceEncoded(rmode_));
84     return Assembler::target_address_at(pc_, host_);
85   }
86 }
87 
target_internal_reference_address()88 Address RelocInfo::target_internal_reference_address() {
89   DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
90   return reinterpret_cast<Address>(pc_);
91 }
92 
target_address()93 Address RelocInfo::target_address() {
94   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
95   return Assembler::target_address_at(pc_, host_);
96 }
97 
target_address_address()98 Address RelocInfo::target_address_address() {
99   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) ||
100          rmode_ == EMBEDDED_OBJECT || rmode_ == EXTERNAL_REFERENCE);
101 
102   // Read the address of the word containing the target_address in an
103   // instruction stream.
104   // The only architecture-independent user of this function is the serializer.
105   // The serializer uses it to find out how many raw bytes of instruction to
106   // output before the next target.
107   // For an instruction like LIS/ORI where the target bits are mixed into the
108   // instruction bits, the size of the target will be zero, indicating that the
109   // serializer should not step forward in memory after a target is resolved
110   // and written.
111   return reinterpret_cast<Address>(pc_);
112 }
113 
constant_pool_entry_address()114 Address RelocInfo::constant_pool_entry_address() {
115   UNREACHABLE();
116   return NULL;
117 }
118 
target_address_size()119 int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; }
120 
target_address_from_return_address(Address pc)121 Address Assembler::target_address_from_return_address(Address pc) {
122   // Returns the address of the call target from the return address that will
123   // be returned to after a call.
124   // Sequence is:
125   //    BRASL r14, RI
126   return pc - kCallTargetAddressOffset;
127 }
128 
return_address_from_call_start(Address pc)129 Address Assembler::return_address_from_call_start(Address pc) {
130   // Sequence is:
131   //    BRASL r14, RI
132   return pc + kCallTargetAddressOffset;
133 }
134 
code_target_object_handle_at(Address pc)135 Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
136   SixByteInstr instr =
137       Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
138   int index = instr & 0xFFFFFFFF;
139   return code_targets_[index];
140 }
141 
target_object()142 Object* RelocInfo::target_object() {
143   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
144   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
145 }
146 
target_object_handle(Assembler * origin)147 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
148   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
149   if (rmode_ == EMBEDDED_OBJECT) {
150     return Handle<Object>(
151         reinterpret_cast<Object**>(Assembler::target_address_at(pc_, host_)));
152   } else {
153     return origin->code_target_object_handle_at(pc_);
154   }
155 }
156 
set_target_object(Object * target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)157 void RelocInfo::set_target_object(Object* target,
158                                   WriteBarrierMode write_barrier_mode,
159                                   ICacheFlushMode icache_flush_mode) {
160   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
161   Assembler::set_target_address_at(isolate_, pc_, host_,
162                                    reinterpret_cast<Address>(target),
163                                    icache_flush_mode);
164   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
165       target->IsHeapObject()) {
166     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
167         host(), this, HeapObject::cast(target));
168     host()->GetHeap()->RecordWriteIntoCode(host(), this, target);
169   }
170 }
171 
target_external_reference()172 Address RelocInfo::target_external_reference() {
173   DCHECK(rmode_ == EXTERNAL_REFERENCE);
174   return Assembler::target_address_at(pc_, host_);
175 }
176 
target_runtime_entry(Assembler * origin)177 Address RelocInfo::target_runtime_entry(Assembler* origin) {
178   DCHECK(IsRuntimeEntry(rmode_));
179   return target_address();
180 }
181 
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)182 void RelocInfo::set_target_runtime_entry(Address target,
183                                          WriteBarrierMode write_barrier_mode,
184                                          ICacheFlushMode icache_flush_mode) {
185   DCHECK(IsRuntimeEntry(rmode_));
186   if (target_address() != target)
187     set_target_address(target, write_barrier_mode, icache_flush_mode);
188 }
189 
target_cell_handle()190 Handle<Cell> RelocInfo::target_cell_handle() {
191   DCHECK(rmode_ == RelocInfo::CELL);
192   Address address = Memory::Address_at(pc_);
193   return Handle<Cell>(reinterpret_cast<Cell**>(address));
194 }
195 
target_cell()196 Cell* RelocInfo::target_cell() {
197   DCHECK(rmode_ == RelocInfo::CELL);
198   return Cell::FromValueAddress(Memory::Address_at(pc_));
199 }
200 
set_target_cell(Cell * cell,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)201 void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode write_barrier_mode,
202                                 ICacheFlushMode icache_flush_mode) {
203   DCHECK(rmode_ == RelocInfo::CELL);
204   Address address = cell->address() + Cell::kValueOffset;
205   Memory::Address_at(pc_) = address;
206   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
207     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
208                                                                   cell);
209   }
210 }
211 
212 #if V8_TARGET_ARCH_S390X
213 // NOP(2byte) + PUSH + MOV + BASR =
214 // NOP + LAY + STG + IIHF + IILF + BASR
215 static const int kCodeAgingSequenceLength = 28;
216 static const int kCodeAgingTargetDelta = 14;  // Jump past NOP + PUSH to IIHF
217                                               // LAY + 4 * STG + LA
218 static const int kNoCodeAgeSequenceLength = 34;
219 #else
220 #if (V8_HOST_ARCH_S390)
221 // NOP + NILH + LAY + ST + IILF + BASR
222 static const int kCodeAgingSequenceLength = 24;
223 static const int kCodeAgingTargetDelta = 16;  // Jump past NOP to IILF
224 // NILH + LAY + 4 * ST + LA
225 static const int kNoCodeAgeSequenceLength = 30;
226 #else
227 // NOP + LAY + ST + IILF + BASR
228 static const int kCodeAgingSequenceLength = 20;
229 static const int kCodeAgingTargetDelta = 12;  // Jump past NOP to IILF
230 // LAY + 4 * ST + LA
231 static const int kNoCodeAgeSequenceLength = 26;
232 #endif
233 #endif
234 
code_age_stub_handle(Assembler * origin)235 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
236   UNREACHABLE();  // This should never be reached on S390.
237   return Handle<Object>();
238 }
239 
code_age_stub()240 Code* RelocInfo::code_age_stub() {
241   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
242   return Code::GetCodeFromTargetAddress(
243       Assembler::target_address_at(pc_ + kCodeAgingTargetDelta, host_));
244 }
245 
set_code_age_stub(Code * stub,ICacheFlushMode icache_flush_mode)246 void RelocInfo::set_code_age_stub(Code* stub,
247                                   ICacheFlushMode icache_flush_mode) {
248   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
249   Assembler::set_target_address_at(isolate_, pc_ + kCodeAgingTargetDelta, host_,
250                                    stub->instruction_start(),
251                                    icache_flush_mode);
252 }
253 
debug_call_address()254 Address RelocInfo::debug_call_address() {
255   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
256   return Assembler::target_address_at(pc_, host_);
257 }
258 
set_debug_call_address(Address target)259 void RelocInfo::set_debug_call_address(Address target) {
260   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
261   Assembler::set_target_address_at(isolate_, pc_, host_, target);
262   if (host() != NULL) {
263     Object* target_code = Code::GetCodeFromTargetAddress(target);
264     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
265         host(), this, HeapObject::cast(target_code));
266   }
267 }
268 
WipeOut()269 void RelocInfo::WipeOut() {
270   DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
271          IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
272          IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
273   if (IsInternalReference(rmode_)) {
274     // Jump table entry
275     Memory::Address_at(pc_) = NULL;
276   } else if (IsInternalReferenceEncoded(rmode_)) {
277     // mov sequence
278     // Currently used only by deserializer, no need to flush.
279     Assembler::set_target_address_at(isolate_, pc_, host_, NULL,
280                                      SKIP_ICACHE_FLUSH);
281   } else {
282     Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
283   }
284 }
285 
286 template <typename ObjectVisitor>
Visit(Isolate * isolate,ObjectVisitor * visitor)287 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
288   RelocInfo::Mode mode = rmode();
289   if (mode == RelocInfo::EMBEDDED_OBJECT) {
290     visitor->VisitEmbeddedPointer(this);
291   } else if (RelocInfo::IsCodeTarget(mode)) {
292     visitor->VisitCodeTarget(this);
293   } else if (mode == RelocInfo::CELL) {
294     visitor->VisitCell(this);
295   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
296     visitor->VisitExternalReference(this);
297   } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
298     visitor->VisitInternalReference(this);
299   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
300     visitor->VisitCodeAgeSequence(this);
301   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
302              IsPatchedDebugBreakSlotSequence()) {
303     visitor->VisitDebugTarget(this);
304   } else if (IsRuntimeEntry(mode)) {
305     visitor->VisitRuntimeEntry(this);
306   }
307 }
308 
309 template <typename StaticVisitor>
Visit(Heap * heap)310 void RelocInfo::Visit(Heap* heap) {
311   RelocInfo::Mode mode = rmode();
312   if (mode == RelocInfo::EMBEDDED_OBJECT) {
313     StaticVisitor::VisitEmbeddedPointer(heap, this);
314   } else if (RelocInfo::IsCodeTarget(mode)) {
315     StaticVisitor::VisitCodeTarget(heap, this);
316   } else if (mode == RelocInfo::CELL) {
317     StaticVisitor::VisitCell(heap, this);
318   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
319     StaticVisitor::VisitExternalReference(this);
320   } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
321     StaticVisitor::VisitInternalReference(this);
322   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
323     StaticVisitor::VisitCodeAgeSequence(heap, this);
324   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
325              IsPatchedDebugBreakSlotSequence()) {
326     StaticVisitor::VisitDebugTarget(heap, this);
327   } else if (IsRuntimeEntry(mode)) {
328     StaticVisitor::VisitRuntimeEntry(this);
329   }
330 }
331 
332 // Operand constructors
Operand(intptr_t immediate,RelocInfo::Mode rmode)333 Operand::Operand(intptr_t immediate, RelocInfo::Mode rmode) {
334   rm_ = no_reg;
335   imm_ = immediate;
336   rmode_ = rmode;
337 }
338 
Operand(const ExternalReference & f)339 Operand::Operand(const ExternalReference& f) {
340   rm_ = no_reg;
341   imm_ = reinterpret_cast<intptr_t>(f.address());
342   rmode_ = RelocInfo::EXTERNAL_REFERENCE;
343 }
344 
Operand(Smi * value)345 Operand::Operand(Smi* value) {
346   rm_ = no_reg;
347   imm_ = reinterpret_cast<intptr_t>(value);
348   rmode_ = kRelocInfo_NONEPTR;
349 }
350 
Operand(Register rm)351 Operand::Operand(Register rm) {
352   rm_ = rm;
353   rmode_ = kRelocInfo_NONEPTR;  // S390 -why doesn't ARM do this?
354 }
355 
CheckBuffer()356 void Assembler::CheckBuffer() {
357   if (buffer_space() <= kGap) {
358     GrowBuffer();
359   }
360 }
361 
emit_code_target(Handle<Code> target,RelocInfo::Mode rmode,TypeFeedbackId ast_id)362 int32_t Assembler::emit_code_target(Handle<Code> target, RelocInfo::Mode rmode,
363                                     TypeFeedbackId ast_id) {
364   DCHECK(RelocInfo::IsCodeTarget(rmode));
365   if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
366     SetRecordedAstId(ast_id);
367     RecordRelocInfo(RelocInfo::CODE_TARGET_WITH_ID);
368   } else {
369     RecordRelocInfo(rmode);
370   }
371 
372   int current = code_targets_.length();
373   if (current > 0 && code_targets_.last().is_identical_to(target)) {
374     // Optimization if we keep jumping to the same code target.
375     current--;
376   } else {
377     code_targets_.Add(target);
378   }
379   return current;
380 }
381 
382 // Helper to emit the binary encoding of a 2 byte instruction
emit2bytes(uint16_t x)383 void Assembler::emit2bytes(uint16_t x) {
384   CheckBuffer();
385 #if V8_TARGET_LITTLE_ENDIAN
386   // We need to emit instructions in big endian format as disassembler /
387   // simulator require the first byte of the instruction in order to decode
388   // the instruction length.  Swap the bytes.
389   x = ((x & 0x00FF) << 8) | ((x & 0xFF00) >> 8);
390 #endif
391   *reinterpret_cast<uint16_t*>(pc_) = x;
392   pc_ += 2;
393 }
394 
395 // Helper to emit the binary encoding of a 4 byte instruction
emit4bytes(uint32_t x)396 void Assembler::emit4bytes(uint32_t x) {
397   CheckBuffer();
398 #if V8_TARGET_LITTLE_ENDIAN
399   // We need to emit instructions in big endian format as disassembler /
400   // simulator require the first byte of the instruction in order to decode
401   // the instruction length.  Swap the bytes.
402   x = ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) |
403       ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24);
404 #endif
405   *reinterpret_cast<uint32_t*>(pc_) = x;
406   pc_ += 4;
407 }
408 
409 // Helper to emit the binary encoding of a 6 byte instruction
emit6bytes(uint64_t x)410 void Assembler::emit6bytes(uint64_t x) {
411   CheckBuffer();
412 #if V8_TARGET_LITTLE_ENDIAN
413   // We need to emit instructions in big endian format as disassembler /
414   // simulator require the first byte of the instruction in order to decode
415   // the instruction length.  Swap the bytes.
416   x = (static_cast<uint64_t>(x & 0xFF) << 40) |
417       (static_cast<uint64_t>((x >> 8) & 0xFF) << 32) |
418       (static_cast<uint64_t>((x >> 16) & 0xFF) << 24) |
419       (static_cast<uint64_t>((x >> 24) & 0xFF) << 16) |
420       (static_cast<uint64_t>((x >> 32) & 0xFF) << 8) |
421       (static_cast<uint64_t>((x >> 40) & 0xFF));
422   x |= (*reinterpret_cast<uint64_t*>(pc_) >> 48) << 48;
423 #else
424   // We need to pad two bytes of zeros in order to get the 6-bytes
425   // stored from low address.
426   x = x << 16;
427   x |= *reinterpret_cast<uint64_t*>(pc_) & 0xFFFF;
428 #endif
429   // It is safe to store 8-bytes, as CheckBuffer() guarantees we have kGap
430   // space left over.
431   *reinterpret_cast<uint64_t*>(pc_) = x;
432   pc_ += 6;
433 }
434 
is_reg()435 bool Operand::is_reg() const { return rm_.is_valid(); }
436 
437 // Fetch the 32bit value from the FIXED_SEQUENCE IIHF / IILF
target_address_at(Address pc,Address constant_pool)438 Address Assembler::target_address_at(Address pc, Address constant_pool) {
439   // S390 Instruction!
440   // We want to check for instructions generated by Asm::mov()
441   Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc));
442   SixByteInstr instr_1 =
443       Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
444 
445   if (BRASL == op1 || BRCL == op1) {
446     int32_t dis = static_cast<int32_t>(instr_1 & 0xFFFFFFFF) * 2;
447     return reinterpret_cast<Address>(reinterpret_cast<uint64_t>(pc) + dis);
448   }
449 
450 #if V8_TARGET_ARCH_S390X
451   int instr1_length =
452       Instruction::InstructionLength(reinterpret_cast<const byte*>(pc));
453   Opcode op2 = Instruction::S390OpcodeValue(
454       reinterpret_cast<const byte*>(pc + instr1_length));
455   SixByteInstr instr_2 = Instruction::InstructionBits(
456       reinterpret_cast<const byte*>(pc + instr1_length));
457   // IIHF for hi_32, IILF for lo_32
458   if (IIHF == op1 && IILF == op2) {
459     return reinterpret_cast<Address>(((instr_1 & 0xFFFFFFFF) << 32) |
460                                      ((instr_2 & 0xFFFFFFFF)));
461   }
462 #else
463   // IILF loads 32-bits
464   if (IILF == op1 || CFI == op1) {
465     return reinterpret_cast<Address>((instr_1 & 0xFFFFFFFF));
466   }
467 #endif
468 
469   UNIMPLEMENTED();
470   return (Address)0;
471 }
472 
473 // This sets the branch destination (which gets loaded at the call address).
474 // This is for calls and branches within generated code.  The serializer
475 // has already deserialized the mov instructions etc.
476 // There is a FIXED_SEQUENCE assumption here
deserialization_set_special_target_at(Isolate * isolate,Address instruction_payload,Code * code,Address target)477 void Assembler::deserialization_set_special_target_at(
478     Isolate* isolate, Address instruction_payload, Code* code, Address target) {
479   set_target_address_at(isolate, instruction_payload, code, target);
480 }
481 
deserialization_set_target_internal_reference_at(Isolate * isolate,Address pc,Address target,RelocInfo::Mode mode)482 void Assembler::deserialization_set_target_internal_reference_at(
483     Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
484   if (RelocInfo::IsInternalReferenceEncoded(mode)) {
485     Code* code = NULL;
486     set_target_address_at(isolate, pc, code, target, SKIP_ICACHE_FLUSH);
487   } else {
488     Memory::Address_at(pc) = target;
489   }
490 }
491 
492 // This code assumes the FIXED_SEQUENCE of IIHF/IILF
set_target_address_at(Isolate * isolate,Address pc,Address constant_pool,Address target,ICacheFlushMode icache_flush_mode)493 void Assembler::set_target_address_at(Isolate* isolate, Address pc,
494                                       Address constant_pool, Address target,
495                                       ICacheFlushMode icache_flush_mode) {
496   // Check for instructions generated by Asm::mov()
497   Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc));
498   SixByteInstr instr_1 =
499       Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
500   bool patched = false;
501 
502   if (BRASL == op1 || BRCL == op1) {
503     instr_1 >>= 32;  // Zero out the lower 32-bits
504     instr_1 <<= 32;
505     int32_t halfwords = (target - pc) / 2;  // number of halfwords
506     instr_1 |= static_cast<uint32_t>(halfwords);
507     Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
508                                                   instr_1);
509     if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
510       Assembler::FlushICache(isolate, pc, 6);
511     }
512     patched = true;
513   } else {
514 #if V8_TARGET_ARCH_S390X
515     int instr1_length =
516         Instruction::InstructionLength(reinterpret_cast<const byte*>(pc));
517     Opcode op2 = Instruction::S390OpcodeValue(
518         reinterpret_cast<const byte*>(pc + instr1_length));
519     SixByteInstr instr_2 = Instruction::InstructionBits(
520         reinterpret_cast<const byte*>(pc + instr1_length));
521     // IIHF for hi_32, IILF for lo_32
522     if (IIHF == op1 && IILF == op2) {
523       // IIHF
524       instr_1 >>= 32;  // Zero out the lower 32-bits
525       instr_1 <<= 32;
526       instr_1 |= reinterpret_cast<uint64_t>(target) >> 32;
527 
528       Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
529                                                     instr_1);
530 
531       // IILF
532       instr_2 >>= 32;
533       instr_2 <<= 32;
534       instr_2 |= reinterpret_cast<uint64_t>(target) & 0xFFFFFFFF;
535 
536       Instruction::SetInstructionBits<SixByteInstr>(
537           reinterpret_cast<byte*>(pc + instr1_length), instr_2);
538       if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
539         Assembler::FlushICache(isolate, pc, 12);
540       }
541       patched = true;
542     }
543 #else
544     // IILF loads 32-bits
545     if (IILF == op1 || CFI == op1) {
546       instr_1 >>= 32;  // Zero out the lower 32-bits
547       instr_1 <<= 32;
548       instr_1 |= reinterpret_cast<uint32_t>(target);
549 
550       Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
551                                                     instr_1);
552       if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
553         Assembler::FlushICache(isolate, pc, 6);
554       }
555       patched = true;
556     }
557 #endif
558   }
559   if (!patched) UNREACHABLE();
560 }
561 
562 }  // namespace internal
563 }  // namespace v8
564 
565 #endif  // V8_S390_ASSEMBLER_S390_INL_H_
566