1 /*
2  * Copyright 2013 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkMipMap.h"
9 #include "SkBitmap.h"
10 #include "SkColorPriv.h"
11 #include "SkHalf.h"
12 #include "SkMathPriv.h"
13 #include "SkNx.h"
14 #include "SkPM4fPriv.h"
15 #include "SkSRGB.h"
16 #include "SkTypes.h"
17 
18 //
19 // ColorTypeFilter is the "Type" we pass to some downsample template functions.
20 // It controls how we expand a pixel into a large type, with space between each component,
21 // so we can then perform our simple filter (either box or triangle) and store the intermediates
22 // in the expanded type.
23 //
24 
25 struct ColorTypeFilter_8888 {
26     typedef uint32_t Type;
ExpandColorTypeFilter_888827     static Sk4h Expand(uint32_t x) {
28         return SkNx_cast<uint16_t>(Sk4b::Load(&x));
29     }
CompactColorTypeFilter_888830     static uint32_t Compact(const Sk4h& x) {
31         uint32_t r;
32         SkNx_cast<uint8_t>(x).store(&r);
33         return r;
34     }
35 };
36 
37 struct ColorTypeFilter_S32 {
38     typedef uint32_t Type;
ExpandColorTypeFilter_S3239     static Sk4h Expand(uint32_t x) {
40         return Sk4h(sk_linear12_from_srgb[(x      ) & 0xFF],
41                     sk_linear12_from_srgb[(x >>  8) & 0xFF],
42                     sk_linear12_from_srgb[(x >> 16) & 0xFF],
43                                           (x >> 24) <<   4);
44     }
CompactColorTypeFilter_S3245     static uint32_t Compact(const Sk4h& x) {
46         return sk_linear12_to_srgb[x[0]]       |
47                sk_linear12_to_srgb[x[1]] <<  8 |
48                sk_linear12_to_srgb[x[2]] << 16 |
49                (x[3] >> 4)               << 24;
50     }
51 };
52 
53 struct ColorTypeFilter_565 {
54     typedef uint16_t Type;
ExpandColorTypeFilter_56555     static uint32_t Expand(uint16_t x) {
56         return (x & ~SK_G16_MASK_IN_PLACE) | ((x & SK_G16_MASK_IN_PLACE) << 16);
57     }
CompactColorTypeFilter_56558     static uint16_t Compact(uint32_t x) {
59         return (x & ~SK_G16_MASK_IN_PLACE) | ((x >> 16) & SK_G16_MASK_IN_PLACE);
60     }
61 };
62 
63 struct ColorTypeFilter_4444 {
64     typedef uint16_t Type;
ExpandColorTypeFilter_444465     static uint32_t Expand(uint16_t x) {
66         return (x & 0xF0F) | ((x & ~0xF0F) << 12);
67     }
CompactColorTypeFilter_444468     static uint16_t Compact(uint32_t x) {
69         return (x & 0xF0F) | ((x >> 12) & ~0xF0F);
70     }
71 };
72 
73 struct ColorTypeFilter_8 {
74     typedef uint8_t Type;
ExpandColorTypeFilter_875     static unsigned Expand(unsigned x) {
76         return x;
77     }
CompactColorTypeFilter_878     static uint8_t Compact(unsigned x) {
79         return (uint8_t)x;
80     }
81 };
82 
83 struct ColorTypeFilter_F16 {
84     typedef uint64_t Type; // SkHalf x4
ExpandColorTypeFilter_F1685     static Sk4f Expand(uint64_t x) {
86         return SkHalfToFloat_finite_ftz(x);
87     }
CompactColorTypeFilter_F1688     static uint64_t Compact(const Sk4f& x) {
89         uint64_t r;
90         SkFloatToHalf_finite_ftz(x).store(&r);
91         return r;
92     }
93 };
94 
add_121(const T & a,const T & b,const T & c)95 template <typename T> T add_121(const T& a, const T& b, const T& c) {
96     return a + b + b + c;
97 }
98 
shift_right(const T & x,int bits)99 template <typename T> T shift_right(const T& x, int bits) {
100     return x >> bits;
101 }
102 
shift_right(const Sk4f & x,int bits)103 Sk4f shift_right(const Sk4f& x, int bits) {
104     return x * (1.0f / (1 << bits));
105 }
106 
shift_left(const T & x,int bits)107 template <typename T> T shift_left(const T& x, int bits) {
108     return x << bits;
109 }
110 
shift_left(const Sk4f & x,int bits)111 Sk4f shift_left(const Sk4f& x, int bits) {
112     return x * (1 << bits);
113 }
114 
115 //
116 //  To produce each mip level, we need to filter down by 1/2 (e.g. 100x100 -> 50,50)
117 //  If the starting dimension is odd, we floor the size of the lower level (e.g. 101 -> 50)
118 //  In those (odd) cases, we use a triangle filter, with 1-pixel overlap between samplings,
119 //  else for even cases, we just use a 2x box filter.
120 //
121 //  This produces 4 possible isotropic filters: 2x2 2x3 3x2 3x3 where WxH indicates the number of
122 //  src pixels we need to sample in each dimension to produce 1 dst pixel.
123 //
124 //  OpenGL expects a full mipmap stack to contain anisotropic space as well.
125 //  This means a 100x1 image would continue down to a 50x1 image, 25x1 image...
126 //  Because of this, we need 4 more anisotropic filters: 1x2, 1x3, 2x1, 3x1.
127 
downsample_1_2(void * dst,const void * src,size_t srcRB,int count)128 template <typename F> void downsample_1_2(void* dst, const void* src, size_t srcRB, int count) {
129     SkASSERT(count > 0);
130     auto p0 = static_cast<const typename F::Type*>(src);
131     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
132     auto d = static_cast<typename F::Type*>(dst);
133 
134     for (int i = 0; i < count; ++i) {
135         auto c00 = F::Expand(p0[0]);
136         auto c10 = F::Expand(p1[0]);
137 
138         auto c = c00 + c10;
139         d[i] = F::Compact(shift_right(c, 1));
140         p0 += 2;
141         p1 += 2;
142     }
143 }
144 
downsample_1_3(void * dst,const void * src,size_t srcRB,int count)145 template <typename F> void downsample_1_3(void* dst, const void* src, size_t srcRB, int count) {
146     SkASSERT(count > 0);
147     auto p0 = static_cast<const typename F::Type*>(src);
148     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
149     auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
150     auto d = static_cast<typename F::Type*>(dst);
151 
152     for (int i = 0; i < count; ++i) {
153         auto c00 = F::Expand(p0[0]);
154         auto c10 = F::Expand(p1[0]);
155         auto c20 = F::Expand(p2[0]);
156 
157         auto c = add_121(c00, c10, c20);
158         d[i] = F::Compact(shift_right(c, 2));
159         p0 += 2;
160         p1 += 2;
161         p2 += 2;
162     }
163 }
164 
downsample_2_1(void * dst,const void * src,size_t srcRB,int count)165 template <typename F> void downsample_2_1(void* dst, const void* src, size_t srcRB, int count) {
166     SkASSERT(count > 0);
167     auto p0 = static_cast<const typename F::Type*>(src);
168     auto d = static_cast<typename F::Type*>(dst);
169 
170     for (int i = 0; i < count; ++i) {
171         auto c00 = F::Expand(p0[0]);
172         auto c01 = F::Expand(p0[1]);
173 
174         auto c = c00 + c01;
175         d[i] = F::Compact(shift_right(c, 1));
176         p0 += 2;
177     }
178 }
179 
downsample_2_2(void * dst,const void * src,size_t srcRB,int count)180 template <typename F> void downsample_2_2(void* dst, const void* src, size_t srcRB, int count) {
181     SkASSERT(count > 0);
182     auto p0 = static_cast<const typename F::Type*>(src);
183     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
184     auto d = static_cast<typename F::Type*>(dst);
185 
186     for (int i = 0; i < count; ++i) {
187         auto c00 = F::Expand(p0[0]);
188         auto c01 = F::Expand(p0[1]);
189         auto c10 = F::Expand(p1[0]);
190         auto c11 = F::Expand(p1[1]);
191 
192         auto c = c00 + c10 + c01 + c11;
193         d[i] = F::Compact(shift_right(c, 2));
194         p0 += 2;
195         p1 += 2;
196     }
197 }
198 
downsample_2_3(void * dst,const void * src,size_t srcRB,int count)199 template <typename F> void downsample_2_3(void* dst, const void* src, size_t srcRB, int count) {
200     SkASSERT(count > 0);
201     auto p0 = static_cast<const typename F::Type*>(src);
202     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
203     auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
204     auto d = static_cast<typename F::Type*>(dst);
205 
206     for (int i = 0; i < count; ++i) {
207         auto c00 = F::Expand(p0[0]);
208         auto c01 = F::Expand(p0[1]);
209         auto c10 = F::Expand(p1[0]);
210         auto c11 = F::Expand(p1[1]);
211         auto c20 = F::Expand(p2[0]);
212         auto c21 = F::Expand(p2[1]);
213 
214         auto c = add_121(c00, c10, c20) + add_121(c01, c11, c21);
215         d[i] = F::Compact(shift_right(c, 3));
216         p0 += 2;
217         p1 += 2;
218         p2 += 2;
219     }
220 }
221 
downsample_3_1(void * dst,const void * src,size_t srcRB,int count)222 template <typename F> void downsample_3_1(void* dst, const void* src, size_t srcRB, int count) {
223     SkASSERT(count > 0);
224     auto p0 = static_cast<const typename F::Type*>(src);
225     auto d = static_cast<typename F::Type*>(dst);
226 
227     auto c02 = F::Expand(p0[0]);
228     for (int i = 0; i < count; ++i) {
229         auto c00 = c02;
230         auto c01 = F::Expand(p0[1]);
231              c02 = F::Expand(p0[2]);
232 
233         auto c = add_121(c00, c01, c02);
234         d[i] = F::Compact(shift_right(c, 2));
235         p0 += 2;
236     }
237 }
238 
downsample_3_2(void * dst,const void * src,size_t srcRB,int count)239 template <typename F> void downsample_3_2(void* dst, const void* src, size_t srcRB, int count) {
240     SkASSERT(count > 0);
241     auto p0 = static_cast<const typename F::Type*>(src);
242     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
243     auto d = static_cast<typename F::Type*>(dst);
244 
245     auto c02 = F::Expand(p0[0]);
246     auto c12 = F::Expand(p1[0]);
247     for (int i = 0; i < count; ++i) {
248         auto c00 = c02;
249         auto c01 = F::Expand(p0[1]);
250              c02 = F::Expand(p0[2]);
251         auto c10 = c12;
252         auto c11 = F::Expand(p1[1]);
253              c12 = F::Expand(p1[2]);
254 
255         auto c = add_121(c00, c01, c02) + add_121(c10, c11, c12);
256         d[i] = F::Compact(shift_right(c, 3));
257         p0 += 2;
258         p1 += 2;
259     }
260 }
261 
downsample_3_3(void * dst,const void * src,size_t srcRB,int count)262 template <typename F> void downsample_3_3(void* dst, const void* src, size_t srcRB, int count) {
263     SkASSERT(count > 0);
264     auto p0 = static_cast<const typename F::Type*>(src);
265     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
266     auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
267     auto d = static_cast<typename F::Type*>(dst);
268 
269     // Given pixels:
270     // a0 b0 c0 d0 e0 ...
271     // a1 b1 c1 d1 e1 ...
272     // a2 b2 c2 d2 e2 ...
273     // We want:
274     // (a0 + 2*b0 + c0 + 2*a1 + 4*b1 + 2*c1 + a2 + 2*b2 + c2) / 16
275     // (c0 + 2*d0 + e0 + 2*c1 + 4*d1 + 2*e1 + c2 + 2*d2 + e2) / 16
276     // ...
277 
278     auto c0 = F::Expand(p0[0]);
279     auto c1 = F::Expand(p1[0]);
280     auto c2 = F::Expand(p2[0]);
281     auto c = add_121(c0, c1, c2);
282     for (int i = 0; i < count; ++i) {
283         auto a = c;
284 
285         auto b0 = F::Expand(p0[1]);
286         auto b1 = F::Expand(p1[1]);
287         auto b2 = F::Expand(p2[1]);
288         auto b = shift_left(add_121(b0, b1, b2), 1);
289 
290         c0 = F::Expand(p0[2]);
291         c1 = F::Expand(p1[2]);
292         c2 = F::Expand(p2[2]);
293         c = add_121(c0, c1, c2);
294 
295         auto sum = a + b + c;
296         d[i] = F::Compact(shift_right(sum, 4));
297         p0 += 2;
298         p1 += 2;
299         p2 += 2;
300     }
301 }
302 
303 ///////////////////////////////////////////////////////////////////////////////////////////////////
304 
305 // Some sRGB specific performance optimizations.
306 
downsample_2_2_srgb(void * dst,const void * src,size_t srcRB,int count)307 void downsample_2_2_srgb(void* dst, const void* src, size_t srcRB, int count) {
308     const uint8_t* p0 = ((const uint8_t*) src);
309     const uint8_t* p1 = ((const uint8_t*) src) + srcRB;
310     uint8_t* d = (uint8_t*) dst;
311 
312     // Given pixels:
313     // a0 b0 c0 d0 ...
314     // a1 b1 c1 d1 ...
315     // We want:
316     // (a0 + b0 + a1 + b1) / 4
317     // (c0 + d0 + c1 + d1) / 4
318     // ...
319     while (count >= 2) {
320         Sk8h a0c0 = Sk8h(sk_linear12_from_srgb[p0[ 0]],
321                          sk_linear12_from_srgb[p0[ 1]],
322                          sk_linear12_from_srgb[p0[ 2]],
323                          p0[ 3] << 4                  ,
324                          sk_linear12_from_srgb[p0[ 8]],
325                          sk_linear12_from_srgb[p0[ 9]],
326                          sk_linear12_from_srgb[p0[10]],
327                          p0[11] << 4               );
328         Sk8h b0d0 = Sk8h(sk_linear12_from_srgb[p0[ 4]],
329                          sk_linear12_from_srgb[p0[ 5]],
330                          sk_linear12_from_srgb[p0[ 6]],
331                          p0[ 7] << 4                  ,
332                          sk_linear12_from_srgb[p0[12]],
333                          sk_linear12_from_srgb[p0[13]],
334                          sk_linear12_from_srgb[p0[14]],
335                          p0[15] << 4                 );
336         Sk8h a1c1 = Sk8h(sk_linear12_from_srgb[p1[ 0]],
337                          sk_linear12_from_srgb[p1[ 1]],
338                          sk_linear12_from_srgb[p1[ 2]],
339                          p1[ 3] << 4                  ,
340                          sk_linear12_from_srgb[p1[ 8]],
341                          sk_linear12_from_srgb[p1[ 9]],
342                          sk_linear12_from_srgb[p1[10]],
343                          p1[11] << 4                 );
344         Sk8h b1d1 = Sk8h(sk_linear12_from_srgb[p1[ 4]],
345                          sk_linear12_from_srgb[p1[ 5]],
346                          sk_linear12_from_srgb[p1[ 6]],
347                          p1[ 7] << 4                  ,
348                          sk_linear12_from_srgb[p1[12]],
349                          sk_linear12_from_srgb[p1[13]],
350                          sk_linear12_from_srgb[p1[14]],
351                          p1[15] << 4                 );
352 
353         Sk8h avg = (a0c0 + b0d0 + a1c1 + b1d1) >> 2;
354         d[0] = sk_linear12_to_srgb[avg[0]];
355         d[1] = sk_linear12_to_srgb[avg[1]];
356         d[2] = sk_linear12_to_srgb[avg[2]];
357         d[3] = avg[3] >> 4;
358         d[4] = sk_linear12_to_srgb[avg[4]];
359         d[5] = sk_linear12_to_srgb[avg[5]];
360         d[6] = sk_linear12_to_srgb[avg[6]];
361         d[7] = avg[7] >> 4;
362 
363         p0 += 16;
364         p1 += 16;
365         d += 8;
366         count -= 2;
367     }
368 
369     if (count) {
370         downsample_2_2<ColorTypeFilter_S32>(d, p0, srcRB, count);
371     }
372 }
373 
374 ///////////////////////////////////////////////////////////////////////////////////////////////////
375 
AllocLevelsSize(int levelCount,size_t pixelSize)376 size_t SkMipMap::AllocLevelsSize(int levelCount, size_t pixelSize) {
377     if (levelCount < 0) {
378         return 0;
379     }
380     int64_t size = sk_64_mul(levelCount + 1, sizeof(Level)) + pixelSize;
381     if (!sk_64_isS32(size)) {
382         return 0;
383     }
384     return sk_64_asS32(size);
385 }
386 
Build(const SkPixmap & src,SkDestinationSurfaceColorMode colorMode,SkDiscardableFactoryProc fact)387 SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDestinationSurfaceColorMode colorMode,
388                           SkDiscardableFactoryProc fact) {
389     typedef void FilterProc(void*, const void* srcPtr, size_t srcRB, int count);
390 
391     FilterProc* proc_1_2 = nullptr;
392     FilterProc* proc_1_3 = nullptr;
393     FilterProc* proc_2_1 = nullptr;
394     FilterProc* proc_2_2 = nullptr;
395     FilterProc* proc_2_3 = nullptr;
396     FilterProc* proc_3_1 = nullptr;
397     FilterProc* proc_3_2 = nullptr;
398     FilterProc* proc_3_3 = nullptr;
399 
400     const SkColorType ct = src.colorType();
401     const SkAlphaType at = src.alphaType();
402     const bool srgbGamma = (SkDestinationSurfaceColorMode::kGammaAndColorSpaceAware == colorMode)
403                             && src.info().gammaCloseToSRGB();
404 
405     switch (ct) {
406         case kRGBA_8888_SkColorType:
407         case kBGRA_8888_SkColorType:
408             if (srgbGamma) {
409                 proc_1_2 = downsample_1_2<ColorTypeFilter_S32>;
410                 proc_1_3 = downsample_1_3<ColorTypeFilter_S32>;
411                 proc_2_1 = downsample_2_1<ColorTypeFilter_S32>;
412                 proc_2_2 = downsample_2_2_srgb;
413                 proc_2_3 = downsample_2_3<ColorTypeFilter_S32>;
414                 proc_3_1 = downsample_3_1<ColorTypeFilter_S32>;
415                 proc_3_2 = downsample_3_2<ColorTypeFilter_S32>;
416                 proc_3_3 = downsample_3_3<ColorTypeFilter_S32>;
417             } else {
418                 proc_1_2 = downsample_1_2<ColorTypeFilter_8888>;
419                 proc_1_3 = downsample_1_3<ColorTypeFilter_8888>;
420                 proc_2_1 = downsample_2_1<ColorTypeFilter_8888>;
421                 proc_2_2 = downsample_2_2<ColorTypeFilter_8888>;
422                 proc_2_3 = downsample_2_3<ColorTypeFilter_8888>;
423                 proc_3_1 = downsample_3_1<ColorTypeFilter_8888>;
424                 proc_3_2 = downsample_3_2<ColorTypeFilter_8888>;
425                 proc_3_3 = downsample_3_3<ColorTypeFilter_8888>;
426             }
427             break;
428         case kRGB_565_SkColorType:
429             proc_1_2 = downsample_1_2<ColorTypeFilter_565>;
430             proc_1_3 = downsample_1_3<ColorTypeFilter_565>;
431             proc_2_1 = downsample_2_1<ColorTypeFilter_565>;
432             proc_2_2 = downsample_2_2<ColorTypeFilter_565>;
433             proc_2_3 = downsample_2_3<ColorTypeFilter_565>;
434             proc_3_1 = downsample_3_1<ColorTypeFilter_565>;
435             proc_3_2 = downsample_3_2<ColorTypeFilter_565>;
436             proc_3_3 = downsample_3_3<ColorTypeFilter_565>;
437             break;
438         case kARGB_4444_SkColorType:
439             proc_1_2 = downsample_1_2<ColorTypeFilter_4444>;
440             proc_1_3 = downsample_1_3<ColorTypeFilter_4444>;
441             proc_2_1 = downsample_2_1<ColorTypeFilter_4444>;
442             proc_2_2 = downsample_2_2<ColorTypeFilter_4444>;
443             proc_2_3 = downsample_2_3<ColorTypeFilter_4444>;
444             proc_3_1 = downsample_3_1<ColorTypeFilter_4444>;
445             proc_3_2 = downsample_3_2<ColorTypeFilter_4444>;
446             proc_3_3 = downsample_3_3<ColorTypeFilter_4444>;
447             break;
448         case kAlpha_8_SkColorType:
449         case kGray_8_SkColorType:
450             proc_1_2 = downsample_1_2<ColorTypeFilter_8>;
451             proc_1_3 = downsample_1_3<ColorTypeFilter_8>;
452             proc_2_1 = downsample_2_1<ColorTypeFilter_8>;
453             proc_2_2 = downsample_2_2<ColorTypeFilter_8>;
454             proc_2_3 = downsample_2_3<ColorTypeFilter_8>;
455             proc_3_1 = downsample_3_1<ColorTypeFilter_8>;
456             proc_3_2 = downsample_3_2<ColorTypeFilter_8>;
457             proc_3_3 = downsample_3_3<ColorTypeFilter_8>;
458             break;
459         case kRGBA_F16_SkColorType:
460             proc_1_2 = downsample_1_2<ColorTypeFilter_F16>;
461             proc_1_3 = downsample_1_3<ColorTypeFilter_F16>;
462             proc_2_1 = downsample_2_1<ColorTypeFilter_F16>;
463             proc_2_2 = downsample_2_2<ColorTypeFilter_F16>;
464             proc_2_3 = downsample_2_3<ColorTypeFilter_F16>;
465             proc_3_1 = downsample_3_1<ColorTypeFilter_F16>;
466             proc_3_2 = downsample_3_2<ColorTypeFilter_F16>;
467             proc_3_3 = downsample_3_3<ColorTypeFilter_F16>;
468             break;
469         default:
470             // TODO: We could build miplevels for kIndex8 if the levels were in 8888.
471             //       Means using more ram, but the quality would be fine.
472             return nullptr;
473     }
474 
475     if (src.width() <= 1 && src.height() <= 1) {
476         return nullptr;
477     }
478     // whip through our loop to compute the exact size needed
479     size_t size = 0;
480     int countLevels = ComputeLevelCount(src.width(), src.height());
481     for (int currentMipLevel = countLevels; currentMipLevel >= 0; currentMipLevel--) {
482         SkISize mipSize = ComputeLevelSize(src.width(), src.height(), currentMipLevel);
483         size += SkColorTypeMinRowBytes(ct, mipSize.fWidth) * mipSize.fHeight;
484     }
485 
486     size_t storageSize = SkMipMap::AllocLevelsSize(countLevels, size);
487     if (0 == storageSize) {
488         return nullptr;
489     }
490 
491     SkMipMap* mipmap;
492     if (fact) {
493         SkDiscardableMemory* dm = fact(storageSize);
494         if (nullptr == dm) {
495             return nullptr;
496         }
497         mipmap = new SkMipMap(storageSize, dm);
498     } else {
499         mipmap = new SkMipMap(sk_malloc_throw(storageSize), storageSize);
500     }
501 
502     // init
503     mipmap->fCS = sk_ref_sp(src.info().colorSpace());
504     mipmap->fCount = countLevels;
505     mipmap->fLevels = (Level*)mipmap->writable_data();
506     SkASSERT(mipmap->fLevels);
507 
508     Level* levels = mipmap->fLevels;
509     uint8_t*    baseAddr = (uint8_t*)&levels[countLevels];
510     uint8_t*    addr = baseAddr;
511     int         width = src.width();
512     int         height = src.height();
513     uint32_t    rowBytes;
514     SkPixmap    srcPM(src);
515 
516     for (int i = 0; i < countLevels; ++i) {
517         FilterProc* proc;
518         if (height & 1) {
519             if (height == 1) {        // src-height is 1
520                 if (width & 1) {      // src-width is 3
521                     proc = proc_3_1;
522                 } else {              // src-width is 2
523                     proc = proc_2_1;
524                 }
525             } else {                  // src-height is 3
526                 if (width & 1) {
527                     if (width == 1) { // src-width is 1
528                         proc = proc_1_3;
529                     } else {          // src-width is 3
530                         proc = proc_3_3;
531                     }
532                 } else {              // src-width is 2
533                     proc = proc_2_3;
534                 }
535             }
536         } else {                      // src-height is 2
537             if (width & 1) {
538                 if (width == 1) {     // src-width is 1
539                     proc = proc_1_2;
540                 } else {              // src-width is 3
541                     proc = proc_3_2;
542                 }
543             } else {                  // src-width is 2
544                 proc = proc_2_2;
545             }
546         }
547         width = SkTMax(1, width >> 1);
548         height = SkTMax(1, height >> 1);
549         rowBytes = SkToU32(SkColorTypeMinRowBytes(ct, width));
550 
551         // We make the Info w/o any colorspace, since that storage is not under our control, and
552         // will not be deleted in a controlled fashion. When the caller is given the pixmap for
553         // a given level, we augment this pixmap with fCS (which we do manage).
554         new (&levels[i].fPixmap) SkPixmap(SkImageInfo::Make(width, height, ct, at), addr, rowBytes);
555         levels[i].fScale  = SkSize::Make(SkIntToScalar(width)  / src.width(),
556                                          SkIntToScalar(height) / src.height());
557 
558         const SkPixmap& dstPM = levels[i].fPixmap;
559         const void* srcBasePtr = srcPM.addr();
560         void* dstBasePtr = dstPM.writable_addr();
561 
562         const size_t srcRB = srcPM.rowBytes();
563         for (int y = 0; y < height; y++) {
564             proc(dstBasePtr, srcBasePtr, srcRB, width);
565             srcBasePtr = (char*)srcBasePtr + srcRB * 2; // jump two rows
566             dstBasePtr = (char*)dstBasePtr + dstPM.rowBytes();
567         }
568         srcPM = dstPM;
569         addr += height * rowBytes;
570     }
571     SkASSERT(addr == baseAddr + size);
572 
573     SkASSERT(mipmap->fLevels);
574     return mipmap;
575 }
576 
ComputeLevelCount(int baseWidth,int baseHeight)577 int SkMipMap::ComputeLevelCount(int baseWidth, int baseHeight) {
578     if (baseWidth < 1 || baseHeight < 1) {
579         return 0;
580     }
581 
582     // OpenGL's spec requires that each mipmap level have height/width equal to
583     // max(1, floor(original_height / 2^i)
584     // (or original_width) where i is the mipmap level.
585     // Continue scaling down until both axes are size 1.
586 
587     const int largestAxis = SkTMax(baseWidth, baseHeight);
588     if (largestAxis < 2) {
589         // SkMipMap::Build requires a minimum size of 2.
590         return 0;
591     }
592     const int leadingZeros = SkCLZ(static_cast<uint32_t>(largestAxis));
593     // If the value 00011010 has 3 leading 0s then it has 5 significant bits
594     // (the bits which are not leading zeros)
595     const int significantBits = (sizeof(uint32_t) * 8) - leadingZeros;
596     // This is making the assumption that the size of a byte is 8 bits
597     // and that sizeof(uint32_t)'s implementation-defined behavior is 4.
598     int mipLevelCount = significantBits;
599 
600     // SkMipMap does not include the base mip level.
601     // For example, it contains levels 1-x instead of 0-x.
602     // This is because the image used to create SkMipMap is the base level.
603     // So subtract 1 from the mip level count.
604     if (mipLevelCount > 0) {
605         --mipLevelCount;
606     }
607 
608     return mipLevelCount;
609 }
610 
ComputeLevelSize(int baseWidth,int baseHeight,int level)611 SkISize SkMipMap::ComputeLevelSize(int baseWidth, int baseHeight, int level) {
612     if (baseWidth < 1 || baseHeight < 1) {
613         return SkISize::Make(0, 0);
614     }
615 
616     int maxLevelCount = ComputeLevelCount(baseWidth, baseHeight);
617     if (level >= maxLevelCount || level < 0) {
618         return SkISize::Make(0, 0);
619     }
620     // OpenGL's spec requires that each mipmap level have height/width equal to
621     // max(1, floor(original_height / 2^i)
622     // (or original_width) where i is the mipmap level.
623 
624     // SkMipMap does not include the base mip level.
625     // For example, it contains levels 1-x instead of 0-x.
626     // This is because the image used to create SkMipMap is the base level.
627     // So subtract 1 from the mip level to get the index stored by SkMipMap.
628     int width = SkTMax(1, baseWidth >> (level + 1));
629     int height = SkTMax(1, baseHeight >> (level + 1));
630 
631     return SkISize::Make(width, height);
632 }
633 
634 ///////////////////////////////////////////////////////////////////////////////
635 
extractLevel(const SkSize & scaleSize,Level * levelPtr) const636 bool SkMipMap::extractLevel(const SkSize& scaleSize, Level* levelPtr) const {
637     if (nullptr == fLevels) {
638         return false;
639     }
640 
641     SkASSERT(scaleSize.width() >= 0 && scaleSize.height() >= 0);
642 
643 #ifndef SK_SUPPORT_LEGACY_ANISOTROPIC_MIPMAP_SCALE
644     // Use the smallest scale to match the GPU impl.
645     const SkScalar scale = SkTMin(scaleSize.width(), scaleSize.height());
646 #else
647     // Ideally we'd pick the smaller scale, to match Ganesh.  But ignoring one of the
648     // scales can produce some atrocious results, so for now we use the geometric mean.
649     // (https://bugs.chromium.org/p/skia/issues/detail?id=4863)
650     const SkScalar scale = SkScalarSqrt(scaleSize.width() * scaleSize.height());
651 #endif
652 
653     if (scale >= SK_Scalar1 || scale <= 0 || !SkScalarIsFinite(scale)) {
654         return false;
655     }
656 
657     SkScalar L = -SkScalarLog2(scale);
658     if (!SkScalarIsFinite(L)) {
659         return false;
660     }
661     SkASSERT(L >= 0);
662     int level = SkScalarFloorToInt(L);
663 
664     SkASSERT(level >= 0);
665     if (level <= 0) {
666         return false;
667     }
668 
669     if (level > fCount) {
670         level = fCount;
671     }
672     if (levelPtr) {
673         *levelPtr = fLevels[level - 1];
674         // need to augment with our colorspace
675         levelPtr->fPixmap.setColorSpace(fCS);
676     }
677     return true;
678 }
679 
680 // Helper which extracts a pixmap from the src bitmap
681 //
Build(const SkBitmap & src,SkDestinationSurfaceColorMode colorMode,SkDiscardableFactoryProc fact)682 SkMipMap* SkMipMap::Build(const SkBitmap& src, SkDestinationSurfaceColorMode colorMode,
683                           SkDiscardableFactoryProc fact) {
684     SkAutoPixmapUnlock srcUnlocker;
685     if (!src.requestLock(&srcUnlocker)) {
686         return nullptr;
687     }
688     const SkPixmap& srcPixmap = srcUnlocker.pixmap();
689     // Try to catch where we might have returned nullptr for src crbug.com/492818
690     if (nullptr == srcPixmap.addr()) {
691         sk_throw();
692     }
693     return Build(srcPixmap, colorMode, fact);
694 }
695 
countLevels() const696 int SkMipMap::countLevels() const {
697     return fCount;
698 }
699 
getLevel(int index,Level * levelPtr) const700 bool SkMipMap::getLevel(int index, Level* levelPtr) const {
701     if (NULL == fLevels) {
702         return false;
703     }
704     if (index < 0) {
705         return false;
706     }
707     if (index > fCount - 1) {
708         return false;
709     }
710     if (levelPtr) {
711         *levelPtr = fLevels[index];
712     }
713     return true;
714 }
715