• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef GrXferProcessor_DEFINED
9 #define GrXferProcessor_DEFINED
10 
11 #include "GrBlend.h"
12 #include "GrColor.h"
13 #include "GrProcessor.h"
14 #include "GrProcessorSet.h"
15 #include "GrTexture.h"
16 #include "GrTypes.h"
17 
18 class GrShaderCaps;
19 class GrGLSLXferProcessor;
20 
21 /**
22  * Barriers for blending. When a shader reads the dst directly, an Xfer barrier is sometimes
23  * required after a pixel has been written, before it can be safely read again.
24  */
25 enum GrXferBarrierType {
26     kNone_GrXferBarrierType = 0, //<! No barrier is required
27     kTexture_GrXferBarrierType,  //<! Required when a shader reads and renders to the same texture.
28     kBlend_GrXferBarrierType,    //<! Required by certain blend extensions.
29 };
30 /** Should be able to treat kNone as false in boolean expressions */
31 GR_STATIC_ASSERT(SkToBool(kNone_GrXferBarrierType) == false);
32 
33 /**
34  * GrXferProcessor is responsible for implementing the xfer mode that blends the src color and dst
35  * color, and for applying any coverage. It does this by emitting fragment shader code and
36  * controlling the fixed-function blend state. When dual-source blending is available, it may also
37  * write a seconday fragment shader output color. GrXferProcessor has two modes of operation:
38  *
39  * Dst read: When allowed by the backend API, or when supplied a texture of the destination, the
40  * GrXferProcessor may read the destination color. While operating in this mode, the subclass only
41  * provides shader code that blends the src and dst colors, and the base class applies coverage.
42  *
43  * No dst read: When not performing a dst read, the subclass is given full control of the fixed-
44  * function blend state and/or secondary output, and is responsible to apply coverage on its own.
45  *
46  * A GrXferProcessor is never installed directly into our draw state, but instead is created from a
47  * GrXPFactory once we have finalized the state of our draw.
48  */
49 class GrXferProcessor : public GrProcessor {
50 public:
51     using FragmentProcessorAnalysis = GrProcessorSet::FragmentProcessorAnalysis;
52 
53     /**
54      * A texture that contains the dst pixel values and an integer coord offset from device space
55      * to the space of the texture. Depending on GPU capabilities a DstTexture may be used by a
56      * GrXferProcessor for blending in the fragment shader.
57      */
58     class DstTexture {
59     public:
DstTexture()60         DstTexture() { fOffset.set(0, 0); }
61 
DstTexture(const DstTexture & other)62         DstTexture(const DstTexture& other) {
63             *this = other;
64         }
65 
DstTexture(GrTexture * texture,const SkIPoint & offset)66         DstTexture(GrTexture* texture, const SkIPoint& offset)
67                 : fTexture(SkSafeRef(texture)), fOffset(texture ? offset : SkIPoint{0, 0}) {}
68 
69         DstTexture& operator=(const DstTexture& other) {
70             fTexture = other.fTexture;
71             fOffset = other.fOffset;
72             return *this;
73         }
74 
75         bool operator==(const DstTexture& that) const {
76             return fTexture == that.fTexture && fOffset == that.fOffset;
77         }
78         bool operator!=(const DstTexture& that) const { return !(*this == that); }
79 
offset()80         const SkIPoint& offset() const { return fOffset; }
81 
setOffset(const SkIPoint & offset)82         void setOffset(const SkIPoint& offset) { fOffset = offset; }
setOffset(int ox,int oy)83         void setOffset(int ox, int oy) { fOffset.set(ox, oy); }
84 
texture()85         GrTexture* texture() const { return fTexture.get(); }
86 
setTexture(sk_sp<GrTexture> texture)87         void setTexture(sk_sp<GrTexture> texture) {
88             fTexture = std::move(texture);
89             if (!fTexture) {
90                 fOffset = {0, 0};
91             }
92         }
93 
94     private:
95         sk_sp<GrTexture> fTexture;
96         SkIPoint         fOffset;
97     };
98 
99     /**
100      * Sets a unique key on the GrProcessorKeyBuilder calls onGetGLSLProcessorKey(...) to get the
101      * specific subclass's key.
102      */
103     void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const;
104 
105     /** Returns a new instance of the appropriate *GL* implementation class
106         for the given GrXferProcessor; caller is responsible for deleting
107         the object. */
108     virtual GrGLSLXferProcessor* createGLSLInstance() const = 0;
109 
110     /**
111      * Optimizations for blending / coverage that an OptDrawState should apply to itself.
112      */
113     enum OptFlags {
114         /**
115          * GrXferProcessor will ignore color, thus no need to provide
116          */
117         kIgnoreColor_OptFlag = 0x1,
118         /**
119          * Can tweak alpha for coverage.
120          */
121         kCanTweakAlphaForCoverage_OptFlag = 0x2,
122     };
123 
124     static const OptFlags kNone_OptFlags = (OptFlags)0;
125 
126     GR_DECL_BITFIELD_OPS_FRIENDS(OptFlags);
127 
128     /**
129      * Determines which optimizations (as described by the ptFlags above) can be performed by
130      * the draw with this xfer processor. If this function is called, the xfer processor may change
131      * its state to reflected the given blend optimizations. Callers are required to honor the
132      * returned OptFlags.
133      */
134     OptFlags getOptimizations(const FragmentProcessorAnalysis&) const;
135 
136     /**
137      * Returns whether this XP will require an Xfer barrier on the given rt. If true, outBarrierType
138      * is updated to contain the type of barrier needed.
139      */
140     GrXferBarrierType xferBarrierType(const GrRenderTarget* rt, const GrCaps& caps) const;
141 
142     struct BlendInfo {
resetBlendInfo143         void reset() {
144             fEquation = kAdd_GrBlendEquation;
145             fSrcBlend = kOne_GrBlendCoeff;
146             fDstBlend = kZero_GrBlendCoeff;
147             fBlendConstant = 0;
148             fWriteColor = true;
149         }
150 
151         SkDEBUGCODE(SkString dump() const;)
152 
153         GrBlendEquation fEquation;
154         GrBlendCoeff    fSrcBlend;
155         GrBlendCoeff    fDstBlend;
156         GrColor         fBlendConstant;
157         bool            fWriteColor;
158     };
159 
160     void getBlendInfo(BlendInfo* blendInfo) const;
161 
willReadDstColor()162     bool willReadDstColor() const { return fWillReadDstColor; }
163 
164     /**
165      * Returns the texture to be used as the destination when reading the dst in the fragment
166      * shader. If the returned texture is NULL then the XP is either not reading the dst or we have
167      * extentions that support framebuffer fetching and thus don't need a copy of the dst texture.
168      */
getDstTexture()169     const GrTexture* getDstTexture() const { return fDstTexture.texture(); }
170 
171     /**
172      * Returns the offset in device coords to use when accessing the dst texture to get the dst
173      * pixel color in the shader. This value is only valid if getDstTexture() != NULL.
174      */
dstTextureOffset()175     const SkIPoint& dstTextureOffset() const {
176         SkASSERT(this->getDstTexture());
177         return fDstTextureOffset;
178     }
179 
180     /**
181      * If we are performing a dst read, returns whether the base class will use mixed samples to
182      * antialias the shader's final output. If not doing a dst read, the subclass is responsible
183      * for antialiasing and this returns false.
184      */
dstReadUsesMixedSamples()185     bool dstReadUsesMixedSamples() const { return fDstReadUsesMixedSamples; }
186 
187     /**
188      * Returns whether or not this xferProcossor will set a secondary output to be used with dual
189      * source blending.
190      */
191     bool hasSecondaryOutput() const;
192 
193     /** Returns true if this and other processor conservatively draw identically. It can only return
194         true when the two processor are of the same subclass (i.e. they return the same object from
195         from getFactory()).
196 
197         A return value of true from isEqual() should not be used to test whether the processor would
198         generate the same shader code. To test for identical code generation use getGLSLProcessorKey
199       */
200 
isEqual(const GrXferProcessor & that)201     bool isEqual(const GrXferProcessor& that) const {
202         if (this->classID() != that.classID()) {
203             return false;
204         }
205         if (this->fWillReadDstColor != that.fWillReadDstColor) {
206             return false;
207         }
208         if (this->fDstTexture.texture() != that.fDstTexture.texture()) {
209             return false;
210         }
211         if (this->fDstTextureOffset != that.fDstTextureOffset) {
212             return false;
213         }
214         if (this->fDstReadUsesMixedSamples != that.fDstReadUsesMixedSamples) {
215             return false;
216         }
217         return this->onIsEqual(that);
218     }
219 
220 protected:
221     GrXferProcessor();
222     GrXferProcessor(const DstTexture*, bool willReadDstColor, bool hasMixedSamples);
223 
224 private:
notifyRefCntIsZero()225     void notifyRefCntIsZero() const final {}
226 
227     virtual OptFlags onGetOptimizations(const FragmentProcessorAnalysis&) const = 0;
228 
229     /**
230      * Sets a unique key on the GrProcessorKeyBuilder that is directly associated with this xfer
231      * processor's GL backend implementation.
232      */
233     virtual void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const = 0;
234 
235     /**
236      * Determines the type of barrier (if any) required by the subclass. Note that the possibility
237      * that a kTexture type barrier is required is handled by the base class and need not be
238      * considered by subclass overrides of this function.
239      */
onXferBarrier(const GrRenderTarget *,const GrCaps &)240     virtual GrXferBarrierType onXferBarrier(const GrRenderTarget*, const GrCaps&) const {
241         return kNone_GrXferBarrierType;
242     }
243 
244     /**
245      * If we are not performing a dst read, returns whether the subclass will set a secondary
246      * output. When using dst reads, the base class controls the secondary output and this method
247      * will not be called.
248      */
onHasSecondaryOutput()249     virtual bool onHasSecondaryOutput() const { return false; }
250 
251     /**
252      * If we are not performing a dst read, retrieves the fixed-function blend state required by the
253      * subclass. When using dst reads, the base class controls the fixed-function blend state and
254      * this method will not be called. The BlendInfo struct comes initialized to "no blending".
255      */
onGetBlendInfo(BlendInfo *)256     virtual void onGetBlendInfo(BlendInfo*) const {}
257 
258     virtual bool onIsEqual(const GrXferProcessor&) const = 0;
259 
260     bool                    fWillReadDstColor;
261     bool                    fDstReadUsesMixedSamples;
262     SkIPoint                fDstTextureOffset;
263     TextureSampler          fDstTexture;
264 
265     typedef GrFragmentProcessor INHERITED;
266 };
267 
268 GR_MAKE_BITFIELD_OPS(GrXferProcessor::OptFlags);
269 
270 ///////////////////////////////////////////////////////////////////////////////
271 
272 /**
273  * We install a GrXPFactory (XPF) early on in the pipeline before all the final draw information is
274  * known (e.g. whether there is fractional pixel coverage, will coverage be 1 or 4 channel, is the
275  * draw opaque, etc.). Once the state of the draw is finalized, we use the XPF along with all the
276  * draw information to create a GrXferProcessor (XP) which can implement the desired blending for
277  * the draw.
278  *
279  * Before the XP is created, the XPF is able to answer queries about what functionality the XPs it
280  * creates will have. For example, can it create an XP that supports RGB coverage or will the XP
281  * blend with the destination color.
282  *
283  * GrXPFactories are intended to be static immutable objects. We pass them around as raw pointers
284  * and expect the pointers to always be valid and for the factories to be reusable and thread safe.
285  * Equality is tested for using pointer comparison. GrXPFactory destructors must be no-ops.
286  */
287 
288 // In order to construct GrXPFactory subclass instances as constexpr the subclass, and therefore
289 // GrXPFactory, must be a literal type. One requirement is having a trivial destructor. This is ok
290 // since these objects have no need for destructors. However, GCC and clang throw a warning when a
291 // class has virtual functions and a non-virtual destructor. We suppress that warning here and
292 // for the subclasses.
293 #if defined(__GNUC__) || defined(__clang)
294 #pragma GCC diagnostic push
295 #pragma GCC diagnostic ignored "-Wnon-virtual-dtor"
296 #endif
297 class GrXPFactory {
298 public:
299     using FragmentProcessorAnalysis = GrProcessorSet::FragmentProcessorAnalysis;
300 
301     typedef GrXferProcessor::DstTexture DstTexture;
302 
303     GrXferProcessor* createXferProcessor(const FragmentProcessorAnalysis&,
304                                          bool hasMixedSamples,
305                                          const DstTexture*,
306                                          const GrCaps& caps) const;
307 
308     /**
309     * This will return true if the xfer processor needs the dst color in the shader and the way
310     * that the color will be made available to the xfer processor is by sampling a texture.
311     */
312     static bool WillNeedDstTexture(const GrXPFactory*,
313                                    const GrCaps&,
314                                    const FragmentProcessorAnalysis&);
315 
316     static bool CompatibleWithCoverageAsAlpha(const GrXPFactory*, bool colorIsOpaque);
317 
318     /**
319      * This indicates whether the the xfer processor will produce the same bleneded color result
320      * if a series of overlapping stencil and cover operations are replaced by a series of stencil
321      * operations and a single cover. A uniform src color is assumed.
322      **/
323     static bool CanCombineOverlappedStencilAndCover(const GrXPFactory*, bool colorIsOpaque);
324 
325 protected:
GrXPFactory()326     constexpr GrXPFactory() {}
327 
328 private:
329     virtual GrXferProcessor* onCreateXferProcessor(const GrCaps& caps,
330                                                    const FragmentProcessorAnalysis&,
331                                                    bool hasMixedSamples,
332                                                    const DstTexture*) const = 0;
333 
334     /**
335      *  Returns true if the XP generated by this factory will explicitly read dst in the fragment
336      *  shader.
337      */
338     virtual bool willReadDstInShader(const GrCaps&, const FragmentProcessorAnalysis&) const = 0;
339 
340     virtual bool compatibleWithCoverageAsAlpha(bool colorIsOpaque) const = 0;
canCombineOverlappedStencilAndCover(bool colorIsOpaque)341     virtual bool canCombineOverlappedStencilAndCover(bool colorIsOpaque) const { return false; }
342 };
343 #if defined(__GNUC__) || defined(__clang)
344 #pragma GCC diagnostic pop
345 #endif
346 
347 #endif
348 
349