1 /*
2  * Copyright 2016 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkCodec.h"
9 #include "SkCodecPriv.h"
10 #include "SkColorPriv.h"
11 #include "SkData.h"
12 #include "SkJpegCodec.h"
13 #include "SkMutex.h"
14 #include "SkRawCodec.h"
15 #include "SkRefCnt.h"
16 #include "SkStream.h"
17 #include "SkStreamPriv.h"
18 #include "SkSwizzler.h"
19 #include "SkTArray.h"
20 #include "SkTaskGroup.h"
21 #include "SkTemplates.h"
22 #include "SkTypes.h"
23 
24 #include "dng_area_task.h"
25 #include "dng_color_space.h"
26 #include "dng_errors.h"
27 #include "dng_exceptions.h"
28 #include "dng_host.h"
29 #include "dng_info.h"
30 #include "dng_memory.h"
31 #include "dng_render.h"
32 #include "dng_stream.h"
33 
34 #include "src/piex.h"
35 
36 #include <cmath>  // for std::round,floor,ceil
37 #include <limits>
38 
39 namespace {
40 
41 // Caluclates the number of tiles of tile_size that fit into the area in vertical and horizontal
42 // directions.
num_tiles_in_area(const dng_point & areaSize,const dng_point_real64 & tileSize)43 dng_point num_tiles_in_area(const dng_point &areaSize,
44                             const dng_point_real64 &tileSize) {
45   // FIXME: Add a ceil_div() helper in SkCodecPriv.h
46   return dng_point(static_cast<int32>((areaSize.v + tileSize.v - 1) / tileSize.v),
47                    static_cast<int32>((areaSize.h + tileSize.h - 1) / tileSize.h));
48 }
49 
num_tasks_required(const dng_point & tilesInTask,const dng_point & tilesInArea)50 int num_tasks_required(const dng_point& tilesInTask,
51                          const dng_point& tilesInArea) {
52   return ((tilesInArea.v + tilesInTask.v - 1) / tilesInTask.v) *
53          ((tilesInArea.h + tilesInTask.h - 1) / tilesInTask.h);
54 }
55 
56 // Calculate the number of tiles to process per task, taking into account the maximum number of
57 // tasks. It prefers to increase horizontally for better locality of reference.
num_tiles_per_task(const int maxTasks,const dng_point & tilesInArea)58 dng_point num_tiles_per_task(const int maxTasks,
59                              const dng_point &tilesInArea) {
60   dng_point tilesInTask = {1, 1};
61   while (num_tasks_required(tilesInTask, tilesInArea) > maxTasks) {
62       if (tilesInTask.h < tilesInArea.h) {
63           ++tilesInTask.h;
64       } else if (tilesInTask.v < tilesInArea.v) {
65           ++tilesInTask.v;
66       } else {
67           ThrowProgramError("num_tiles_per_task calculation is wrong.");
68       }
69   }
70   return tilesInTask;
71 }
72 
compute_task_areas(const int maxTasks,const dng_rect & area,const dng_point & tileSize)73 std::vector<dng_rect> compute_task_areas(const int maxTasks, const dng_rect& area,
74                                          const dng_point& tileSize) {
75   std::vector<dng_rect> taskAreas;
76   const dng_point tilesInArea = num_tiles_in_area(area.Size(), tileSize);
77   const dng_point tilesPerTask = num_tiles_per_task(maxTasks, tilesInArea);
78   const dng_point taskAreaSize = {tilesPerTask.v * tileSize.v,
79                                     tilesPerTask.h * tileSize.h};
80   for (int v = 0; v < tilesInArea.v; v += tilesPerTask.v) {
81     for (int h = 0; h < tilesInArea.h; h += tilesPerTask.h) {
82       dng_rect taskArea;
83       taskArea.t = area.t + v * tileSize.v;
84       taskArea.l = area.l + h * tileSize.h;
85       taskArea.b = Min_int32(taskArea.t + taskAreaSize.v, area.b);
86       taskArea.r = Min_int32(taskArea.l + taskAreaSize.h, area.r);
87 
88       taskAreas.push_back(taskArea);
89     }
90   }
91   return taskAreas;
92 }
93 
94 class SkDngHost : public dng_host {
95 public:
SkDngHost(dng_memory_allocator * allocater)96     explicit SkDngHost(dng_memory_allocator* allocater) : dng_host(allocater) {}
97 
PerformAreaTask(dng_area_task & task,const dng_rect & area)98     void PerformAreaTask(dng_area_task& task, const dng_rect& area) override {
99         // The area task gets split up into max_tasks sub-tasks. The max_tasks is defined by the
100         // dng-sdks default implementation of dng_area_task::MaxThreads() which returns 8 or 32
101         // sub-tasks depending on the architecture.
102         const int maxTasks = static_cast<int>(task.MaxThreads());
103 
104         SkTaskGroup taskGroup;
105 
106         // tileSize is typically 256x256
107         const dng_point tileSize(task.FindTileSize(area));
108         const std::vector<dng_rect> taskAreas = compute_task_areas(maxTasks, area, tileSize);
109         const int numTasks = static_cast<int>(taskAreas.size());
110 
111         SkMutex mutex;
112         SkTArray<dng_exception> exceptions;
113         task.Start(numTasks, tileSize, &Allocator(), Sniffer());
114         for (int taskIndex = 0; taskIndex < numTasks; ++taskIndex) {
115             taskGroup.add([&mutex, &exceptions, &task, this, taskIndex, taskAreas, tileSize] {
116                 try {
117                     task.ProcessOnThread(taskIndex, taskAreas[taskIndex], tileSize, this->Sniffer());
118                 } catch (dng_exception& exception) {
119                     SkAutoMutexAcquire lock(mutex);
120                     exceptions.push_back(exception);
121                 } catch (...) {
122                     SkAutoMutexAcquire lock(mutex);
123                     exceptions.push_back(dng_exception(dng_error_unknown));
124                 }
125             });
126         }
127 
128         taskGroup.wait();
129         task.Finish(numTasks);
130 
131         // Currently we only re-throw the first catched exception.
132         if (!exceptions.empty()) {
133             Throw_dng_error(exceptions.front().ErrorCode(), nullptr, nullptr);
134         }
135     }
136 
PerformAreaTaskThreads()137     uint32 PerformAreaTaskThreads() override {
138         // FIXME: Need to get the real amount of available threads used in the SkTaskGroup.
139         return kMaxMPThreads;
140     }
141 
142 private:
143     typedef dng_host INHERITED;
144 };
145 
146 // T must be unsigned type.
147 template <class T>
safe_add_to_size_t(T arg1,T arg2,size_t * result)148 bool safe_add_to_size_t(T arg1, T arg2, size_t* result) {
149     SkASSERT(arg1 >= 0);
150     SkASSERT(arg2 >= 0);
151     if (arg1 >= 0 && arg2 <= std::numeric_limits<T>::max() - arg1) {
152         T sum = arg1 + arg2;
153         if (sum <= std::numeric_limits<size_t>::max()) {
154             *result = static_cast<size_t>(sum);
155             return true;
156         }
157     }
158     return false;
159 }
160 
161 class SkDngMemoryAllocator : public dng_memory_allocator {
162 public:
~SkDngMemoryAllocator()163     ~SkDngMemoryAllocator() override {}
164 
Allocate(uint32 size)165     dng_memory_block* Allocate(uint32 size) override {
166         // To avoid arbitary allocation requests which might lead to out-of-memory, limit the
167         // amount of memory that can be allocated at once. The memory limit is based on experiments
168         // and supposed to be sufficient for all valid DNG images.
169         if (size > 300 * 1024 * 1024) {  // 300 MB
170             ThrowMemoryFull();
171         }
172         return dng_memory_allocator::Allocate(size);
173     }
174 };
175 
is_asset_stream(const SkStream & stream)176 bool is_asset_stream(const SkStream& stream) {
177     return stream.hasLength() && stream.hasPosition();
178 }
179 
180 }  // namespace
181 
182 class SkRawStream {
183 public:
~SkRawStream()184     virtual ~SkRawStream() {}
185 
186    /*
187     * Gets the length of the stream. Depending on the type of stream, this may require reading to
188     * the end of the stream.
189     */
190    virtual uint64 getLength() = 0;
191 
192    virtual bool read(void* data, size_t offset, size_t length) = 0;
193 
194     /*
195      * Creates an SkMemoryStream from the offset with size.
196      * Note: for performance reason, this function is destructive to the SkRawStream. One should
197      *       abandon current object after the function call.
198      */
199    virtual SkMemoryStream* transferBuffer(size_t offset, size_t size) = 0;
200 };
201 
202 class SkRawLimitedDynamicMemoryWStream : public SkDynamicMemoryWStream {
203 public:
~SkRawLimitedDynamicMemoryWStream()204     ~SkRawLimitedDynamicMemoryWStream() override {}
205 
write(const void * buffer,size_t size)206     bool write(const void* buffer, size_t size) override {
207         size_t newSize;
208         if (!safe_add_to_size_t(this->bytesWritten(), size, &newSize) ||
209             newSize > kMaxStreamSize)
210         {
211             SkCodecPrintf("Error: Stream size exceeds the limit.\n");
212             return false;
213         }
214         return this->INHERITED::write(buffer, size);
215     }
216 
217 private:
218     // Most of valid RAW images will not be larger than 100MB. This limit is helpful to avoid
219     // streaming too large data chunk. We can always adjust the limit here if we need.
220     const size_t kMaxStreamSize = 100 * 1024 * 1024;  // 100MB
221 
222     typedef SkDynamicMemoryWStream INHERITED;
223 };
224 
225 // Note: the maximum buffer size is 100MB (limited by SkRawLimitedDynamicMemoryWStream).
226 class SkRawBufferedStream : public SkRawStream {
227 public:
228     // Will take the ownership of the stream.
SkRawBufferedStream(SkStream * stream)229     explicit SkRawBufferedStream(SkStream* stream)
230         : fStream(stream)
231         , fWholeStreamRead(false)
232     {
233         // Only use SkRawBufferedStream when the stream is not an asset stream.
234         SkASSERT(!is_asset_stream(*stream));
235     }
236 
~SkRawBufferedStream()237     ~SkRawBufferedStream() override {}
238 
getLength()239     uint64 getLength() override {
240         if (!this->bufferMoreData(kReadToEnd)) {  // read whole stream
241             ThrowReadFile();
242         }
243         return fStreamBuffer.bytesWritten();
244     }
245 
read(void * data,size_t offset,size_t length)246     bool read(void* data, size_t offset, size_t length) override {
247         if (length == 0) {
248             return true;
249         }
250 
251         size_t sum;
252         if (!safe_add_to_size_t(offset, length, &sum)) {
253             return false;
254         }
255 
256         return this->bufferMoreData(sum) && fStreamBuffer.read(data, offset, length);
257     }
258 
transferBuffer(size_t offset,size_t size)259     SkMemoryStream* transferBuffer(size_t offset, size_t size) override {
260         sk_sp<SkData> data(SkData::MakeUninitialized(size));
261         if (offset > fStreamBuffer.bytesWritten()) {
262             // If the offset is not buffered, read from fStream directly and skip the buffering.
263             const size_t skipLength = offset - fStreamBuffer.bytesWritten();
264             if (fStream->skip(skipLength) != skipLength) {
265                 return nullptr;
266             }
267             const size_t bytesRead = fStream->read(data->writable_data(), size);
268             if (bytesRead < size) {
269                 data = SkData::MakeSubset(data.get(), 0, bytesRead);
270             }
271         } else {
272             const size_t alreadyBuffered = SkTMin(fStreamBuffer.bytesWritten() - offset, size);
273             if (alreadyBuffered > 0 &&
274                 !fStreamBuffer.read(data->writable_data(), offset, alreadyBuffered)) {
275                 return nullptr;
276             }
277 
278             const size_t remaining = size - alreadyBuffered;
279             if (remaining) {
280                 auto* dst = static_cast<uint8_t*>(data->writable_data()) + alreadyBuffered;
281                 const size_t bytesRead = fStream->read(dst, remaining);
282                 size_t newSize;
283                 if (bytesRead < remaining) {
284                     if (!safe_add_to_size_t(alreadyBuffered, bytesRead, &newSize)) {
285                         return nullptr;
286                     }
287                     data = SkData::MakeSubset(data.get(), 0, newSize);
288                 }
289             }
290         }
291         return new SkMemoryStream(data);
292     }
293 
294 private:
295     // Note: if the newSize == kReadToEnd (0), this function will read to the end of stream.
bufferMoreData(size_t newSize)296     bool bufferMoreData(size_t newSize) {
297         if (newSize == kReadToEnd) {
298             if (fWholeStreamRead) {  // already read-to-end.
299                 return true;
300             }
301 
302             // TODO: optimize for the special case when the input is SkMemoryStream.
303             return SkStreamCopy(&fStreamBuffer, fStream.get());
304         }
305 
306         if (newSize <= fStreamBuffer.bytesWritten()) {  // already buffered to newSize
307             return true;
308         }
309         if (fWholeStreamRead) {  // newSize is larger than the whole stream.
310             return false;
311         }
312 
313         // Try to read at least 8192 bytes to avoid to many small reads.
314         const size_t kMinSizeToRead = 8192;
315         const size_t sizeRequested = newSize - fStreamBuffer.bytesWritten();
316         const size_t sizeToRead = SkTMax(kMinSizeToRead, sizeRequested);
317         SkAutoSTMalloc<kMinSizeToRead, uint8> tempBuffer(sizeToRead);
318         const size_t bytesRead = fStream->read(tempBuffer.get(), sizeToRead);
319         if (bytesRead < sizeRequested) {
320             return false;
321         }
322         return fStreamBuffer.write(tempBuffer.get(), bytesRead);
323     }
324 
325     std::unique_ptr<SkStream> fStream;
326     bool fWholeStreamRead;
327 
328     // Use a size-limited stream to avoid holding too huge buffer.
329     SkRawLimitedDynamicMemoryWStream fStreamBuffer;
330 
331     const size_t kReadToEnd = 0;
332 };
333 
334 class SkRawAssetStream : public SkRawStream {
335 public:
336     // Will take the ownership of the stream.
SkRawAssetStream(SkStream * stream)337     explicit SkRawAssetStream(SkStream* stream)
338         : fStream(stream)
339     {
340         // Only use SkRawAssetStream when the stream is an asset stream.
341         SkASSERT(is_asset_stream(*stream));
342     }
343 
~SkRawAssetStream()344     ~SkRawAssetStream() override {}
345 
getLength()346     uint64 getLength() override {
347         return fStream->getLength();
348     }
349 
350 
read(void * data,size_t offset,size_t length)351     bool read(void* data, size_t offset, size_t length) override {
352         if (length == 0) {
353             return true;
354         }
355 
356         size_t sum;
357         if (!safe_add_to_size_t(offset, length, &sum)) {
358             return false;
359         }
360 
361         return fStream->seek(offset) && (fStream->read(data, length) == length);
362     }
363 
transferBuffer(size_t offset,size_t size)364     SkMemoryStream* transferBuffer(size_t offset, size_t size) override {
365         if (fStream->getLength() < offset) {
366             return nullptr;
367         }
368 
369         size_t sum;
370         if (!safe_add_to_size_t(offset, size, &sum)) {
371             return nullptr;
372         }
373 
374         // This will allow read less than the requested "size", because the JPEG codec wants to
375         // handle also a partial JPEG file.
376         const size_t bytesToRead = SkTMin(sum, fStream->getLength()) - offset;
377         if (bytesToRead == 0) {
378             return nullptr;
379         }
380 
381         if (fStream->getMemoryBase()) {  // directly copy if getMemoryBase() is available.
382             sk_sp<SkData> data(SkData::MakeWithCopy(
383                 static_cast<const uint8_t*>(fStream->getMemoryBase()) + offset, bytesToRead));
384             fStream.reset();
385             return new SkMemoryStream(data);
386         } else {
387             sk_sp<SkData> data(SkData::MakeUninitialized(bytesToRead));
388             if (!fStream->seek(offset)) {
389                 return nullptr;
390             }
391             const size_t bytesRead = fStream->read(data->writable_data(), bytesToRead);
392             if (bytesRead < bytesToRead) {
393                 data = SkData::MakeSubset(data.get(), 0, bytesRead);
394             }
395             return new SkMemoryStream(data);
396         }
397     }
398 private:
399     std::unique_ptr<SkStream> fStream;
400 };
401 
402 class SkPiexStream : public ::piex::StreamInterface {
403 public:
404     // Will NOT take the ownership of the stream.
SkPiexStream(SkRawStream * stream)405     explicit SkPiexStream(SkRawStream* stream) : fStream(stream) {}
406 
~SkPiexStream()407     ~SkPiexStream() override {}
408 
GetData(const size_t offset,const size_t length,uint8 * data)409     ::piex::Error GetData(const size_t offset, const size_t length,
410                           uint8* data) override {
411         return fStream->read(static_cast<void*>(data), offset, length) ?
412             ::piex::Error::kOk : ::piex::Error::kFail;
413     }
414 
415 private:
416     SkRawStream* fStream;
417 };
418 
419 class SkDngStream : public dng_stream {
420 public:
421     // Will NOT take the ownership of the stream.
SkDngStream(SkRawStream * stream)422     SkDngStream(SkRawStream* stream) : fStream(stream) {}
423 
~SkDngStream()424     ~SkDngStream() override {}
425 
DoGetLength()426     uint64 DoGetLength() override { return fStream->getLength(); }
427 
DoRead(void * data,uint32 count,uint64 offset)428     void DoRead(void* data, uint32 count, uint64 offset) override {
429         size_t sum;
430         if (!safe_add_to_size_t(static_cast<uint64>(count), offset, &sum) ||
431             !fStream->read(data, static_cast<size_t>(offset), static_cast<size_t>(count))) {
432             ThrowReadFile();
433         }
434     }
435 
436 private:
437     SkRawStream* fStream;
438 };
439 
440 class SkDngImage {
441 public:
442     /*
443      * Initializes the object with the information from Piex in a first attempt. This way it can
444      * save time and storage to obtain the DNG dimensions and color filter array (CFA) pattern
445      * which is essential for the demosaicing of the sensor image.
446      * Note: this will take the ownership of the stream.
447      */
NewFromStream(SkRawStream * stream)448     static SkDngImage* NewFromStream(SkRawStream* stream) {
449         std::unique_ptr<SkDngImage> dngImage(new SkDngImage(stream));
450         if (!dngImage->isTiffHeaderValid()) {
451             return nullptr;
452         }
453 
454         if (!dngImage->initFromPiex()) {
455             if (!dngImage->readDng()) {
456                 return nullptr;
457             }
458         }
459 
460         return dngImage.release();
461     }
462 
463     /*
464      * Renders the DNG image to the size. The DNG SDK only allows scaling close to integer factors
465      * down to 80 pixels on the short edge. The rendered image will be close to the specified size,
466      * but there is no guarantee that any of the edges will match the requested size. E.g.
467      *   100% size:              4000 x 3000
468      *   requested size:         1600 x 1200
469      *   returned size could be: 2000 x 1500
470      */
render(int width,int height)471     dng_image* render(int width, int height) {
472         if (!fHost || !fInfo || !fNegative || !fDngStream) {
473             if (!this->readDng()) {
474                 return nullptr;
475             }
476         }
477 
478         // DNG SDK preserves the aspect ratio, so it only needs to know the longer dimension.
479         const int preferredSize = SkTMax(width, height);
480         try {
481             // render() takes ownership of fHost, fInfo, fNegative and fDngStream when available.
482             std::unique_ptr<dng_host> host(fHost.release());
483             std::unique_ptr<dng_info> info(fInfo.release());
484             std::unique_ptr<dng_negative> negative(fNegative.release());
485             std::unique_ptr<dng_stream> dngStream(fDngStream.release());
486 
487             host->SetPreferredSize(preferredSize);
488             host->ValidateSizes();
489 
490             negative->ReadStage1Image(*host, *dngStream, *info);
491 
492             if (info->fMaskIndex != -1) {
493                 negative->ReadTransparencyMask(*host, *dngStream, *info);
494             }
495 
496             negative->ValidateRawImageDigest(*host);
497             if (negative->IsDamaged()) {
498                 return nullptr;
499             }
500 
501             const int32 kMosaicPlane = -1;
502             negative->BuildStage2Image(*host);
503             negative->BuildStage3Image(*host, kMosaicPlane);
504 
505             dng_render render(*host, *negative);
506             render.SetFinalSpace(dng_space_sRGB::Get());
507             render.SetFinalPixelType(ttByte);
508 
509             dng_point stage3_size = negative->Stage3Image()->Size();
510             render.SetMaximumSize(SkTMax(stage3_size.h, stage3_size.v));
511 
512             return render.Render();
513         } catch (...) {
514             return nullptr;
515         }
516     }
517 
getEncodedInfo() const518     const SkEncodedInfo& getEncodedInfo() const {
519         return fEncodedInfo;
520     }
521 
width() const522     int width() const {
523         return fWidth;
524     }
525 
height() const526     int height() const {
527         return fHeight;
528     }
529 
isScalable() const530     bool isScalable() const {
531         return fIsScalable;
532     }
533 
isXtransImage() const534     bool isXtransImage() const {
535         return fIsXtransImage;
536     }
537 
538 private:
539     // Quick check if the image contains a valid TIFF header as requested by DNG format.
isTiffHeaderValid() const540     bool isTiffHeaderValid() const {
541         const size_t kHeaderSize = 4;
542         SkAutoSTMalloc<kHeaderSize, unsigned char> header(kHeaderSize);
543         if (!fStream->read(header.get(), 0 /* offset */, kHeaderSize)) {
544             return false;
545         }
546 
547         // Check if the header is valid (endian info and magic number "42").
548         bool littleEndian;
549         if (!is_valid_endian_marker(header, &littleEndian)) {
550             return false;
551         }
552 
553         return 0x2A == get_endian_short(header + 2, littleEndian);
554     }
555 
init(int width,int height,const dng_point & cfaPatternSize)556     bool init(int width, int height, const dng_point& cfaPatternSize) {
557         fWidth = width;
558         fHeight = height;
559 
560         // The DNG SDK scales only during demosaicing, so scaling is only possible when
561         // a mosaic info is available.
562         fIsScalable = cfaPatternSize.v != 0 && cfaPatternSize.h != 0;
563         fIsXtransImage = fIsScalable ? (cfaPatternSize.v == 6 && cfaPatternSize.h == 6) : false;
564 
565         return width > 0 && height > 0;
566     }
567 
initFromPiex()568     bool initFromPiex() {
569         // Does not take the ownership of rawStream.
570         SkPiexStream piexStream(fStream.get());
571         ::piex::PreviewImageData imageData;
572         if (::piex::IsRaw(&piexStream)
573             && ::piex::GetPreviewImageData(&piexStream, &imageData) == ::piex::Error::kOk)
574         {
575             dng_point cfaPatternSize(imageData.cfa_pattern_dim[1], imageData.cfa_pattern_dim[0]);
576             return this->init(static_cast<int>(imageData.full_width),
577                               static_cast<int>(imageData.full_height), cfaPatternSize);
578         }
579         return false;
580     }
581 
readDng()582     bool readDng() {
583         try {
584             // Due to the limit of DNG SDK, we need to reset host and info.
585             fHost.reset(new SkDngHost(&fAllocator));
586             fInfo.reset(new dng_info);
587             fDngStream.reset(new SkDngStream(fStream.get()));
588 
589             fHost->ValidateSizes();
590             fInfo->Parse(*fHost, *fDngStream);
591             fInfo->PostParse(*fHost);
592             if (!fInfo->IsValidDNG()) {
593                 return false;
594             }
595 
596             fNegative.reset(fHost->Make_dng_negative());
597             fNegative->Parse(*fHost, *fDngStream, *fInfo);
598             fNegative->PostParse(*fHost, *fDngStream, *fInfo);
599             fNegative->SynchronizeMetadata();
600 
601             dng_point cfaPatternSize(0, 0);
602             if (fNegative->GetMosaicInfo() != nullptr) {
603                 cfaPatternSize = fNegative->GetMosaicInfo()->fCFAPatternSize;
604             }
605             return this->init(static_cast<int>(fNegative->DefaultCropSizeH().As_real64()),
606                               static_cast<int>(fNegative->DefaultCropSizeV().As_real64()),
607                               cfaPatternSize);
608         } catch (...) {
609             return false;
610         }
611     }
612 
SkDngImage(SkRawStream * stream)613     SkDngImage(SkRawStream* stream)
614         : fStream(stream)
615         , fEncodedInfo(SkEncodedInfo::Make(SkEncodedInfo::kRGB_Color,
616                                            SkEncodedInfo::kOpaque_Alpha, 8))
617     {}
618 
619     SkDngMemoryAllocator fAllocator;
620     std::unique_ptr<SkRawStream> fStream;
621     std::unique_ptr<dng_host> fHost;
622     std::unique_ptr<dng_info> fInfo;
623     std::unique_ptr<dng_negative> fNegative;
624     std::unique_ptr<dng_stream> fDngStream;
625 
626     int fWidth;
627     int fHeight;
628     SkEncodedInfo fEncodedInfo;
629     bool fIsScalable;
630     bool fIsXtransImage;
631 };
632 
633 /*
634  * Tries to handle the image with PIEX. If PIEX returns kOk and finds the preview image, create a
635  * SkJpegCodec. If PIEX returns kFail, then the file is invalid, return nullptr. In other cases,
636  * fallback to create SkRawCodec for DNG images.
637  */
NewFromStream(SkStream * stream)638 SkCodec* SkRawCodec::NewFromStream(SkStream* stream) {
639     std::unique_ptr<SkRawStream> rawStream;
640     if (is_asset_stream(*stream)) {
641         rawStream.reset(new SkRawAssetStream(stream));
642     } else {
643         rawStream.reset(new SkRawBufferedStream(stream));
644     }
645 
646     // Does not take the ownership of rawStream.
647     SkPiexStream piexStream(rawStream.get());
648     ::piex::PreviewImageData imageData;
649     if (::piex::IsRaw(&piexStream)) {
650         ::piex::Error error = ::piex::GetPreviewImageData(&piexStream, &imageData);
651         if (error == ::piex::Error::kFail) {
652             return nullptr;
653         }
654 
655         sk_sp<SkColorSpace> colorSpace;
656         switch (imageData.color_space) {
657             case ::piex::PreviewImageData::kSrgb:
658                 colorSpace = SkColorSpace::MakeSRGB();
659                 break;
660             case ::piex::PreviewImageData::kAdobeRgb:
661                 colorSpace = SkColorSpace_Base::MakeNamed(SkColorSpace_Base::kAdobeRGB_Named);
662                 break;
663         }
664 
665         //  Theoretically PIEX can return JPEG compressed image or uncompressed RGB image. We only
666         //  handle the JPEG compressed preview image here.
667         if (error == ::piex::Error::kOk && imageData.preview.length > 0 &&
668             imageData.preview.format == ::piex::Image::kJpegCompressed)
669         {
670             // transferBuffer() is destructive to the rawStream. Abandon the rawStream after this
671             // function call.
672             // FIXME: one may avoid the copy of memoryStream and use the buffered rawStream.
673             SkMemoryStream* memoryStream =
674                 rawStream->transferBuffer(imageData.preview.offset, imageData.preview.length);
675             return memoryStream ? SkJpegCodec::NewFromStream(memoryStream, std::move(colorSpace))
676                                 : nullptr;
677         }
678     }
679 
680     // Takes the ownership of the rawStream.
681     std::unique_ptr<SkDngImage> dngImage(SkDngImage::NewFromStream(rawStream.release()));
682     if (!dngImage) {
683         return nullptr;
684     }
685 
686     return new SkRawCodec(dngImage.release());
687 }
688 
onGetPixels(const SkImageInfo & dstInfo,void * dst,size_t dstRowBytes,const Options & options,SkPMColor ctable[],int * ctableCount,int * rowsDecoded)689 SkCodec::Result SkRawCodec::onGetPixels(const SkImageInfo& dstInfo, void* dst,
690                                         size_t dstRowBytes, const Options& options,
691                                         SkPMColor ctable[], int* ctableCount,
692                                         int* rowsDecoded) {
693     if (!conversion_possible(dstInfo, this->getInfo()) ||
694         !this->initializeColorXform(dstInfo, options.fPremulBehavior))
695     {
696         SkCodecPrintf("Error: cannot convert input type to output type.\n");
697         return kInvalidConversion;
698     }
699 
700     static const SkColorType kXformSrcColorType = kRGBA_8888_SkColorType;
701     SkImageInfo swizzlerInfo = dstInfo;
702     std::unique_ptr<uint32_t[]> xformBuffer = nullptr;
703     if (this->colorXform()) {
704         swizzlerInfo = swizzlerInfo.makeColorType(kXformSrcColorType);
705         xformBuffer.reset(new uint32_t[dstInfo.width()]);
706     }
707 
708     std::unique_ptr<SkSwizzler> swizzler(SkSwizzler::CreateSwizzler(
709             this->getEncodedInfo(), nullptr, swizzlerInfo, options));
710     SkASSERT(swizzler);
711 
712     const int width = dstInfo.width();
713     const int height = dstInfo.height();
714     std::unique_ptr<dng_image> image(fDngImage->render(width, height));
715     if (!image) {
716         return kInvalidInput;
717     }
718 
719     // Because the DNG SDK can not guarantee to render to requested size, we allow a small
720     // difference. Only the overlapping region will be converted.
721     const float maxDiffRatio = 1.03f;
722     const dng_point& imageSize = image->Size();
723     if (imageSize.h / (float) width > maxDiffRatio || imageSize.h < width ||
724         imageSize.v / (float) height > maxDiffRatio || imageSize.v < height) {
725         return SkCodec::kInvalidScale;
726     }
727 
728     void* dstRow = dst;
729     SkAutoTMalloc<uint8_t> srcRow(width * 3);
730 
731     dng_pixel_buffer buffer;
732     buffer.fData = &srcRow[0];
733     buffer.fPlane = 0;
734     buffer.fPlanes = 3;
735     buffer.fColStep = buffer.fPlanes;
736     buffer.fPlaneStep = 1;
737     buffer.fPixelType = ttByte;
738     buffer.fPixelSize = sizeof(uint8_t);
739     buffer.fRowStep = width * 3;
740 
741     for (int i = 0; i < height; ++i) {
742         buffer.fArea = dng_rect(i, 0, i + 1, width);
743 
744         try {
745             image->Get(buffer, dng_image::edge_zero);
746         } catch (...) {
747             *rowsDecoded = i;
748             return kIncompleteInput;
749         }
750 
751         if (this->colorXform()) {
752             swizzler->swizzle(xformBuffer.get(), &srcRow[0]);
753 
754             const SkColorSpaceXform::ColorFormat srcFormat =
755                     select_xform_format(kXformSrcColorType);
756             const SkColorSpaceXform::ColorFormat dstFormat =
757                     select_xform_format(dstInfo.colorType());
758             this->colorXform()->apply(dstFormat, dstRow, srcFormat, xformBuffer.get(),
759                                       dstInfo.width(), kOpaque_SkAlphaType);
760             dstRow = SkTAddOffset<void>(dstRow, dstRowBytes);
761         } else {
762             swizzler->swizzle(dstRow, &srcRow[0]);
763             dstRow = SkTAddOffset<void>(dstRow, dstRowBytes);
764         }
765     }
766     return kSuccess;
767 }
768 
onGetScaledDimensions(float desiredScale) const769 SkISize SkRawCodec::onGetScaledDimensions(float desiredScale) const {
770     SkASSERT(desiredScale <= 1.f);
771 
772     const SkISize dim = this->getInfo().dimensions();
773     SkASSERT(dim.fWidth != 0 && dim.fHeight != 0);
774 
775     if (!fDngImage->isScalable()) {
776         return dim;
777     }
778 
779     // Limits the minimum size to be 80 on the short edge.
780     const float shortEdge = static_cast<float>(SkTMin(dim.fWidth, dim.fHeight));
781     if (desiredScale < 80.f / shortEdge) {
782         desiredScale = 80.f / shortEdge;
783     }
784 
785     // For Xtrans images, the integer-factor scaling does not support the half-size scaling case
786     // (stronger downscalings are fine). In this case, returns the factor "3" scaling instead.
787     if (fDngImage->isXtransImage() && desiredScale > 1.f / 3.f && desiredScale < 1.f) {
788         desiredScale = 1.f / 3.f;
789     }
790 
791     // Round to integer-factors.
792     const float finalScale = std::floor(1.f/ desiredScale);
793     return SkISize::Make(static_cast<int32_t>(std::floor(dim.fWidth / finalScale)),
794                          static_cast<int32_t>(std::floor(dim.fHeight / finalScale)));
795 }
796 
onDimensionsSupported(const SkISize & dim)797 bool SkRawCodec::onDimensionsSupported(const SkISize& dim) {
798     const SkISize fullDim = this->getInfo().dimensions();
799     const float fullShortEdge = static_cast<float>(SkTMin(fullDim.fWidth, fullDim.fHeight));
800     const float shortEdge = static_cast<float>(SkTMin(dim.fWidth, dim.fHeight));
801 
802     SkISize sizeFloor = this->onGetScaledDimensions(1.f / std::floor(fullShortEdge / shortEdge));
803     SkISize sizeCeil = this->onGetScaledDimensions(1.f / std::ceil(fullShortEdge / shortEdge));
804     return sizeFloor == dim || sizeCeil == dim;
805 }
806 
~SkRawCodec()807 SkRawCodec::~SkRawCodec() {}
808 
SkRawCodec(SkDngImage * dngImage)809 SkRawCodec::SkRawCodec(SkDngImage* dngImage)
810     : INHERITED(dngImage->width(), dngImage->height(), dngImage->getEncodedInfo(), nullptr,
811                 SkColorSpace::MakeSRGB())
812     , fDngImage(dngImage) {}
813