1 /*
2 * Copyright 2016 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkCodec.h"
9 #include "SkCodecPriv.h"
10 #include "SkColorPriv.h"
11 #include "SkData.h"
12 #include "SkJpegCodec.h"
13 #include "SkMutex.h"
14 #include "SkRawCodec.h"
15 #include "SkRefCnt.h"
16 #include "SkStream.h"
17 #include "SkStreamPriv.h"
18 #include "SkSwizzler.h"
19 #include "SkTArray.h"
20 #include "SkTaskGroup.h"
21 #include "SkTemplates.h"
22 #include "SkTypes.h"
23
24 #include "dng_area_task.h"
25 #include "dng_color_space.h"
26 #include "dng_errors.h"
27 #include "dng_exceptions.h"
28 #include "dng_host.h"
29 #include "dng_info.h"
30 #include "dng_memory.h"
31 #include "dng_render.h"
32 #include "dng_stream.h"
33
34 #include "src/piex.h"
35
36 #include <cmath> // for std::round,floor,ceil
37 #include <limits>
38
39 namespace {
40
41 // Caluclates the number of tiles of tile_size that fit into the area in vertical and horizontal
42 // directions.
num_tiles_in_area(const dng_point & areaSize,const dng_point_real64 & tileSize)43 dng_point num_tiles_in_area(const dng_point &areaSize,
44 const dng_point_real64 &tileSize) {
45 // FIXME: Add a ceil_div() helper in SkCodecPriv.h
46 return dng_point(static_cast<int32>((areaSize.v + tileSize.v - 1) / tileSize.v),
47 static_cast<int32>((areaSize.h + tileSize.h - 1) / tileSize.h));
48 }
49
num_tasks_required(const dng_point & tilesInTask,const dng_point & tilesInArea)50 int num_tasks_required(const dng_point& tilesInTask,
51 const dng_point& tilesInArea) {
52 return ((tilesInArea.v + tilesInTask.v - 1) / tilesInTask.v) *
53 ((tilesInArea.h + tilesInTask.h - 1) / tilesInTask.h);
54 }
55
56 // Calculate the number of tiles to process per task, taking into account the maximum number of
57 // tasks. It prefers to increase horizontally for better locality of reference.
num_tiles_per_task(const int maxTasks,const dng_point & tilesInArea)58 dng_point num_tiles_per_task(const int maxTasks,
59 const dng_point &tilesInArea) {
60 dng_point tilesInTask = {1, 1};
61 while (num_tasks_required(tilesInTask, tilesInArea) > maxTasks) {
62 if (tilesInTask.h < tilesInArea.h) {
63 ++tilesInTask.h;
64 } else if (tilesInTask.v < tilesInArea.v) {
65 ++tilesInTask.v;
66 } else {
67 ThrowProgramError("num_tiles_per_task calculation is wrong.");
68 }
69 }
70 return tilesInTask;
71 }
72
compute_task_areas(const int maxTasks,const dng_rect & area,const dng_point & tileSize)73 std::vector<dng_rect> compute_task_areas(const int maxTasks, const dng_rect& area,
74 const dng_point& tileSize) {
75 std::vector<dng_rect> taskAreas;
76 const dng_point tilesInArea = num_tiles_in_area(area.Size(), tileSize);
77 const dng_point tilesPerTask = num_tiles_per_task(maxTasks, tilesInArea);
78 const dng_point taskAreaSize = {tilesPerTask.v * tileSize.v,
79 tilesPerTask.h * tileSize.h};
80 for (int v = 0; v < tilesInArea.v; v += tilesPerTask.v) {
81 for (int h = 0; h < tilesInArea.h; h += tilesPerTask.h) {
82 dng_rect taskArea;
83 taskArea.t = area.t + v * tileSize.v;
84 taskArea.l = area.l + h * tileSize.h;
85 taskArea.b = Min_int32(taskArea.t + taskAreaSize.v, area.b);
86 taskArea.r = Min_int32(taskArea.l + taskAreaSize.h, area.r);
87
88 taskAreas.push_back(taskArea);
89 }
90 }
91 return taskAreas;
92 }
93
94 class SkDngHost : public dng_host {
95 public:
SkDngHost(dng_memory_allocator * allocater)96 explicit SkDngHost(dng_memory_allocator* allocater) : dng_host(allocater) {}
97
PerformAreaTask(dng_area_task & task,const dng_rect & area)98 void PerformAreaTask(dng_area_task& task, const dng_rect& area) override {
99 // The area task gets split up into max_tasks sub-tasks. The max_tasks is defined by the
100 // dng-sdks default implementation of dng_area_task::MaxThreads() which returns 8 or 32
101 // sub-tasks depending on the architecture.
102 const int maxTasks = static_cast<int>(task.MaxThreads());
103
104 SkTaskGroup taskGroup;
105
106 // tileSize is typically 256x256
107 const dng_point tileSize(task.FindTileSize(area));
108 const std::vector<dng_rect> taskAreas = compute_task_areas(maxTasks, area, tileSize);
109 const int numTasks = static_cast<int>(taskAreas.size());
110
111 SkMutex mutex;
112 SkTArray<dng_exception> exceptions;
113 task.Start(numTasks, tileSize, &Allocator(), Sniffer());
114 for (int taskIndex = 0; taskIndex < numTasks; ++taskIndex) {
115 taskGroup.add([&mutex, &exceptions, &task, this, taskIndex, taskAreas, tileSize] {
116 try {
117 task.ProcessOnThread(taskIndex, taskAreas[taskIndex], tileSize, this->Sniffer());
118 } catch (dng_exception& exception) {
119 SkAutoMutexAcquire lock(mutex);
120 exceptions.push_back(exception);
121 } catch (...) {
122 SkAutoMutexAcquire lock(mutex);
123 exceptions.push_back(dng_exception(dng_error_unknown));
124 }
125 });
126 }
127
128 taskGroup.wait();
129 task.Finish(numTasks);
130
131 // Currently we only re-throw the first catched exception.
132 if (!exceptions.empty()) {
133 Throw_dng_error(exceptions.front().ErrorCode(), nullptr, nullptr);
134 }
135 }
136
PerformAreaTaskThreads()137 uint32 PerformAreaTaskThreads() override {
138 // FIXME: Need to get the real amount of available threads used in the SkTaskGroup.
139 return kMaxMPThreads;
140 }
141
142 private:
143 typedef dng_host INHERITED;
144 };
145
146 // T must be unsigned type.
147 template <class T>
safe_add_to_size_t(T arg1,T arg2,size_t * result)148 bool safe_add_to_size_t(T arg1, T arg2, size_t* result) {
149 SkASSERT(arg1 >= 0);
150 SkASSERT(arg2 >= 0);
151 if (arg1 >= 0 && arg2 <= std::numeric_limits<T>::max() - arg1) {
152 T sum = arg1 + arg2;
153 if (sum <= std::numeric_limits<size_t>::max()) {
154 *result = static_cast<size_t>(sum);
155 return true;
156 }
157 }
158 return false;
159 }
160
161 class SkDngMemoryAllocator : public dng_memory_allocator {
162 public:
~SkDngMemoryAllocator()163 ~SkDngMemoryAllocator() override {}
164
Allocate(uint32 size)165 dng_memory_block* Allocate(uint32 size) override {
166 // To avoid arbitary allocation requests which might lead to out-of-memory, limit the
167 // amount of memory that can be allocated at once. The memory limit is based on experiments
168 // and supposed to be sufficient for all valid DNG images.
169 if (size > 300 * 1024 * 1024) { // 300 MB
170 ThrowMemoryFull();
171 }
172 return dng_memory_allocator::Allocate(size);
173 }
174 };
175
is_asset_stream(const SkStream & stream)176 bool is_asset_stream(const SkStream& stream) {
177 return stream.hasLength() && stream.hasPosition();
178 }
179
180 } // namespace
181
182 class SkRawStream {
183 public:
~SkRawStream()184 virtual ~SkRawStream() {}
185
186 /*
187 * Gets the length of the stream. Depending on the type of stream, this may require reading to
188 * the end of the stream.
189 */
190 virtual uint64 getLength() = 0;
191
192 virtual bool read(void* data, size_t offset, size_t length) = 0;
193
194 /*
195 * Creates an SkMemoryStream from the offset with size.
196 * Note: for performance reason, this function is destructive to the SkRawStream. One should
197 * abandon current object after the function call.
198 */
199 virtual SkMemoryStream* transferBuffer(size_t offset, size_t size) = 0;
200 };
201
202 class SkRawLimitedDynamicMemoryWStream : public SkDynamicMemoryWStream {
203 public:
~SkRawLimitedDynamicMemoryWStream()204 ~SkRawLimitedDynamicMemoryWStream() override {}
205
write(const void * buffer,size_t size)206 bool write(const void* buffer, size_t size) override {
207 size_t newSize;
208 if (!safe_add_to_size_t(this->bytesWritten(), size, &newSize) ||
209 newSize > kMaxStreamSize)
210 {
211 SkCodecPrintf("Error: Stream size exceeds the limit.\n");
212 return false;
213 }
214 return this->INHERITED::write(buffer, size);
215 }
216
217 private:
218 // Most of valid RAW images will not be larger than 100MB. This limit is helpful to avoid
219 // streaming too large data chunk. We can always adjust the limit here if we need.
220 const size_t kMaxStreamSize = 100 * 1024 * 1024; // 100MB
221
222 typedef SkDynamicMemoryWStream INHERITED;
223 };
224
225 // Note: the maximum buffer size is 100MB (limited by SkRawLimitedDynamicMemoryWStream).
226 class SkRawBufferedStream : public SkRawStream {
227 public:
228 // Will take the ownership of the stream.
SkRawBufferedStream(SkStream * stream)229 explicit SkRawBufferedStream(SkStream* stream)
230 : fStream(stream)
231 , fWholeStreamRead(false)
232 {
233 // Only use SkRawBufferedStream when the stream is not an asset stream.
234 SkASSERT(!is_asset_stream(*stream));
235 }
236
~SkRawBufferedStream()237 ~SkRawBufferedStream() override {}
238
getLength()239 uint64 getLength() override {
240 if (!this->bufferMoreData(kReadToEnd)) { // read whole stream
241 ThrowReadFile();
242 }
243 return fStreamBuffer.bytesWritten();
244 }
245
read(void * data,size_t offset,size_t length)246 bool read(void* data, size_t offset, size_t length) override {
247 if (length == 0) {
248 return true;
249 }
250
251 size_t sum;
252 if (!safe_add_to_size_t(offset, length, &sum)) {
253 return false;
254 }
255
256 return this->bufferMoreData(sum) && fStreamBuffer.read(data, offset, length);
257 }
258
transferBuffer(size_t offset,size_t size)259 SkMemoryStream* transferBuffer(size_t offset, size_t size) override {
260 sk_sp<SkData> data(SkData::MakeUninitialized(size));
261 if (offset > fStreamBuffer.bytesWritten()) {
262 // If the offset is not buffered, read from fStream directly and skip the buffering.
263 const size_t skipLength = offset - fStreamBuffer.bytesWritten();
264 if (fStream->skip(skipLength) != skipLength) {
265 return nullptr;
266 }
267 const size_t bytesRead = fStream->read(data->writable_data(), size);
268 if (bytesRead < size) {
269 data = SkData::MakeSubset(data.get(), 0, bytesRead);
270 }
271 } else {
272 const size_t alreadyBuffered = SkTMin(fStreamBuffer.bytesWritten() - offset, size);
273 if (alreadyBuffered > 0 &&
274 !fStreamBuffer.read(data->writable_data(), offset, alreadyBuffered)) {
275 return nullptr;
276 }
277
278 const size_t remaining = size - alreadyBuffered;
279 if (remaining) {
280 auto* dst = static_cast<uint8_t*>(data->writable_data()) + alreadyBuffered;
281 const size_t bytesRead = fStream->read(dst, remaining);
282 size_t newSize;
283 if (bytesRead < remaining) {
284 if (!safe_add_to_size_t(alreadyBuffered, bytesRead, &newSize)) {
285 return nullptr;
286 }
287 data = SkData::MakeSubset(data.get(), 0, newSize);
288 }
289 }
290 }
291 return new SkMemoryStream(data);
292 }
293
294 private:
295 // Note: if the newSize == kReadToEnd (0), this function will read to the end of stream.
bufferMoreData(size_t newSize)296 bool bufferMoreData(size_t newSize) {
297 if (newSize == kReadToEnd) {
298 if (fWholeStreamRead) { // already read-to-end.
299 return true;
300 }
301
302 // TODO: optimize for the special case when the input is SkMemoryStream.
303 return SkStreamCopy(&fStreamBuffer, fStream.get());
304 }
305
306 if (newSize <= fStreamBuffer.bytesWritten()) { // already buffered to newSize
307 return true;
308 }
309 if (fWholeStreamRead) { // newSize is larger than the whole stream.
310 return false;
311 }
312
313 // Try to read at least 8192 bytes to avoid to many small reads.
314 const size_t kMinSizeToRead = 8192;
315 const size_t sizeRequested = newSize - fStreamBuffer.bytesWritten();
316 const size_t sizeToRead = SkTMax(kMinSizeToRead, sizeRequested);
317 SkAutoSTMalloc<kMinSizeToRead, uint8> tempBuffer(sizeToRead);
318 const size_t bytesRead = fStream->read(tempBuffer.get(), sizeToRead);
319 if (bytesRead < sizeRequested) {
320 return false;
321 }
322 return fStreamBuffer.write(tempBuffer.get(), bytesRead);
323 }
324
325 std::unique_ptr<SkStream> fStream;
326 bool fWholeStreamRead;
327
328 // Use a size-limited stream to avoid holding too huge buffer.
329 SkRawLimitedDynamicMemoryWStream fStreamBuffer;
330
331 const size_t kReadToEnd = 0;
332 };
333
334 class SkRawAssetStream : public SkRawStream {
335 public:
336 // Will take the ownership of the stream.
SkRawAssetStream(SkStream * stream)337 explicit SkRawAssetStream(SkStream* stream)
338 : fStream(stream)
339 {
340 // Only use SkRawAssetStream when the stream is an asset stream.
341 SkASSERT(is_asset_stream(*stream));
342 }
343
~SkRawAssetStream()344 ~SkRawAssetStream() override {}
345
getLength()346 uint64 getLength() override {
347 return fStream->getLength();
348 }
349
350
read(void * data,size_t offset,size_t length)351 bool read(void* data, size_t offset, size_t length) override {
352 if (length == 0) {
353 return true;
354 }
355
356 size_t sum;
357 if (!safe_add_to_size_t(offset, length, &sum)) {
358 return false;
359 }
360
361 return fStream->seek(offset) && (fStream->read(data, length) == length);
362 }
363
transferBuffer(size_t offset,size_t size)364 SkMemoryStream* transferBuffer(size_t offset, size_t size) override {
365 if (fStream->getLength() < offset) {
366 return nullptr;
367 }
368
369 size_t sum;
370 if (!safe_add_to_size_t(offset, size, &sum)) {
371 return nullptr;
372 }
373
374 // This will allow read less than the requested "size", because the JPEG codec wants to
375 // handle also a partial JPEG file.
376 const size_t bytesToRead = SkTMin(sum, fStream->getLength()) - offset;
377 if (bytesToRead == 0) {
378 return nullptr;
379 }
380
381 if (fStream->getMemoryBase()) { // directly copy if getMemoryBase() is available.
382 sk_sp<SkData> data(SkData::MakeWithCopy(
383 static_cast<const uint8_t*>(fStream->getMemoryBase()) + offset, bytesToRead));
384 fStream.reset();
385 return new SkMemoryStream(data);
386 } else {
387 sk_sp<SkData> data(SkData::MakeUninitialized(bytesToRead));
388 if (!fStream->seek(offset)) {
389 return nullptr;
390 }
391 const size_t bytesRead = fStream->read(data->writable_data(), bytesToRead);
392 if (bytesRead < bytesToRead) {
393 data = SkData::MakeSubset(data.get(), 0, bytesRead);
394 }
395 return new SkMemoryStream(data);
396 }
397 }
398 private:
399 std::unique_ptr<SkStream> fStream;
400 };
401
402 class SkPiexStream : public ::piex::StreamInterface {
403 public:
404 // Will NOT take the ownership of the stream.
SkPiexStream(SkRawStream * stream)405 explicit SkPiexStream(SkRawStream* stream) : fStream(stream) {}
406
~SkPiexStream()407 ~SkPiexStream() override {}
408
GetData(const size_t offset,const size_t length,uint8 * data)409 ::piex::Error GetData(const size_t offset, const size_t length,
410 uint8* data) override {
411 return fStream->read(static_cast<void*>(data), offset, length) ?
412 ::piex::Error::kOk : ::piex::Error::kFail;
413 }
414
415 private:
416 SkRawStream* fStream;
417 };
418
419 class SkDngStream : public dng_stream {
420 public:
421 // Will NOT take the ownership of the stream.
SkDngStream(SkRawStream * stream)422 SkDngStream(SkRawStream* stream) : fStream(stream) {}
423
~SkDngStream()424 ~SkDngStream() override {}
425
DoGetLength()426 uint64 DoGetLength() override { return fStream->getLength(); }
427
DoRead(void * data,uint32 count,uint64 offset)428 void DoRead(void* data, uint32 count, uint64 offset) override {
429 size_t sum;
430 if (!safe_add_to_size_t(static_cast<uint64>(count), offset, &sum) ||
431 !fStream->read(data, static_cast<size_t>(offset), static_cast<size_t>(count))) {
432 ThrowReadFile();
433 }
434 }
435
436 private:
437 SkRawStream* fStream;
438 };
439
440 class SkDngImage {
441 public:
442 /*
443 * Initializes the object with the information from Piex in a first attempt. This way it can
444 * save time and storage to obtain the DNG dimensions and color filter array (CFA) pattern
445 * which is essential for the demosaicing of the sensor image.
446 * Note: this will take the ownership of the stream.
447 */
NewFromStream(SkRawStream * stream)448 static SkDngImage* NewFromStream(SkRawStream* stream) {
449 std::unique_ptr<SkDngImage> dngImage(new SkDngImage(stream));
450 if (!dngImage->isTiffHeaderValid()) {
451 return nullptr;
452 }
453
454 if (!dngImage->initFromPiex()) {
455 if (!dngImage->readDng()) {
456 return nullptr;
457 }
458 }
459
460 return dngImage.release();
461 }
462
463 /*
464 * Renders the DNG image to the size. The DNG SDK only allows scaling close to integer factors
465 * down to 80 pixels on the short edge. The rendered image will be close to the specified size,
466 * but there is no guarantee that any of the edges will match the requested size. E.g.
467 * 100% size: 4000 x 3000
468 * requested size: 1600 x 1200
469 * returned size could be: 2000 x 1500
470 */
render(int width,int height)471 dng_image* render(int width, int height) {
472 if (!fHost || !fInfo || !fNegative || !fDngStream) {
473 if (!this->readDng()) {
474 return nullptr;
475 }
476 }
477
478 // DNG SDK preserves the aspect ratio, so it only needs to know the longer dimension.
479 const int preferredSize = SkTMax(width, height);
480 try {
481 // render() takes ownership of fHost, fInfo, fNegative and fDngStream when available.
482 std::unique_ptr<dng_host> host(fHost.release());
483 std::unique_ptr<dng_info> info(fInfo.release());
484 std::unique_ptr<dng_negative> negative(fNegative.release());
485 std::unique_ptr<dng_stream> dngStream(fDngStream.release());
486
487 host->SetPreferredSize(preferredSize);
488 host->ValidateSizes();
489
490 negative->ReadStage1Image(*host, *dngStream, *info);
491
492 if (info->fMaskIndex != -1) {
493 negative->ReadTransparencyMask(*host, *dngStream, *info);
494 }
495
496 negative->ValidateRawImageDigest(*host);
497 if (negative->IsDamaged()) {
498 return nullptr;
499 }
500
501 const int32 kMosaicPlane = -1;
502 negative->BuildStage2Image(*host);
503 negative->BuildStage3Image(*host, kMosaicPlane);
504
505 dng_render render(*host, *negative);
506 render.SetFinalSpace(dng_space_sRGB::Get());
507 render.SetFinalPixelType(ttByte);
508
509 dng_point stage3_size = negative->Stage3Image()->Size();
510 render.SetMaximumSize(SkTMax(stage3_size.h, stage3_size.v));
511
512 return render.Render();
513 } catch (...) {
514 return nullptr;
515 }
516 }
517
getEncodedInfo() const518 const SkEncodedInfo& getEncodedInfo() const {
519 return fEncodedInfo;
520 }
521
width() const522 int width() const {
523 return fWidth;
524 }
525
height() const526 int height() const {
527 return fHeight;
528 }
529
isScalable() const530 bool isScalable() const {
531 return fIsScalable;
532 }
533
isXtransImage() const534 bool isXtransImage() const {
535 return fIsXtransImage;
536 }
537
538 private:
539 // Quick check if the image contains a valid TIFF header as requested by DNG format.
isTiffHeaderValid() const540 bool isTiffHeaderValid() const {
541 const size_t kHeaderSize = 4;
542 SkAutoSTMalloc<kHeaderSize, unsigned char> header(kHeaderSize);
543 if (!fStream->read(header.get(), 0 /* offset */, kHeaderSize)) {
544 return false;
545 }
546
547 // Check if the header is valid (endian info and magic number "42").
548 bool littleEndian;
549 if (!is_valid_endian_marker(header, &littleEndian)) {
550 return false;
551 }
552
553 return 0x2A == get_endian_short(header + 2, littleEndian);
554 }
555
init(int width,int height,const dng_point & cfaPatternSize)556 bool init(int width, int height, const dng_point& cfaPatternSize) {
557 fWidth = width;
558 fHeight = height;
559
560 // The DNG SDK scales only during demosaicing, so scaling is only possible when
561 // a mosaic info is available.
562 fIsScalable = cfaPatternSize.v != 0 && cfaPatternSize.h != 0;
563 fIsXtransImage = fIsScalable ? (cfaPatternSize.v == 6 && cfaPatternSize.h == 6) : false;
564
565 return width > 0 && height > 0;
566 }
567
initFromPiex()568 bool initFromPiex() {
569 // Does not take the ownership of rawStream.
570 SkPiexStream piexStream(fStream.get());
571 ::piex::PreviewImageData imageData;
572 if (::piex::IsRaw(&piexStream)
573 && ::piex::GetPreviewImageData(&piexStream, &imageData) == ::piex::Error::kOk)
574 {
575 dng_point cfaPatternSize(imageData.cfa_pattern_dim[1], imageData.cfa_pattern_dim[0]);
576 return this->init(static_cast<int>(imageData.full_width),
577 static_cast<int>(imageData.full_height), cfaPatternSize);
578 }
579 return false;
580 }
581
readDng()582 bool readDng() {
583 try {
584 // Due to the limit of DNG SDK, we need to reset host and info.
585 fHost.reset(new SkDngHost(&fAllocator));
586 fInfo.reset(new dng_info);
587 fDngStream.reset(new SkDngStream(fStream.get()));
588
589 fHost->ValidateSizes();
590 fInfo->Parse(*fHost, *fDngStream);
591 fInfo->PostParse(*fHost);
592 if (!fInfo->IsValidDNG()) {
593 return false;
594 }
595
596 fNegative.reset(fHost->Make_dng_negative());
597 fNegative->Parse(*fHost, *fDngStream, *fInfo);
598 fNegative->PostParse(*fHost, *fDngStream, *fInfo);
599 fNegative->SynchronizeMetadata();
600
601 dng_point cfaPatternSize(0, 0);
602 if (fNegative->GetMosaicInfo() != nullptr) {
603 cfaPatternSize = fNegative->GetMosaicInfo()->fCFAPatternSize;
604 }
605 return this->init(static_cast<int>(fNegative->DefaultCropSizeH().As_real64()),
606 static_cast<int>(fNegative->DefaultCropSizeV().As_real64()),
607 cfaPatternSize);
608 } catch (...) {
609 return false;
610 }
611 }
612
SkDngImage(SkRawStream * stream)613 SkDngImage(SkRawStream* stream)
614 : fStream(stream)
615 , fEncodedInfo(SkEncodedInfo::Make(SkEncodedInfo::kRGB_Color,
616 SkEncodedInfo::kOpaque_Alpha, 8))
617 {}
618
619 SkDngMemoryAllocator fAllocator;
620 std::unique_ptr<SkRawStream> fStream;
621 std::unique_ptr<dng_host> fHost;
622 std::unique_ptr<dng_info> fInfo;
623 std::unique_ptr<dng_negative> fNegative;
624 std::unique_ptr<dng_stream> fDngStream;
625
626 int fWidth;
627 int fHeight;
628 SkEncodedInfo fEncodedInfo;
629 bool fIsScalable;
630 bool fIsXtransImage;
631 };
632
633 /*
634 * Tries to handle the image with PIEX. If PIEX returns kOk and finds the preview image, create a
635 * SkJpegCodec. If PIEX returns kFail, then the file is invalid, return nullptr. In other cases,
636 * fallback to create SkRawCodec for DNG images.
637 */
NewFromStream(SkStream * stream)638 SkCodec* SkRawCodec::NewFromStream(SkStream* stream) {
639 std::unique_ptr<SkRawStream> rawStream;
640 if (is_asset_stream(*stream)) {
641 rawStream.reset(new SkRawAssetStream(stream));
642 } else {
643 rawStream.reset(new SkRawBufferedStream(stream));
644 }
645
646 // Does not take the ownership of rawStream.
647 SkPiexStream piexStream(rawStream.get());
648 ::piex::PreviewImageData imageData;
649 if (::piex::IsRaw(&piexStream)) {
650 ::piex::Error error = ::piex::GetPreviewImageData(&piexStream, &imageData);
651 if (error == ::piex::Error::kFail) {
652 return nullptr;
653 }
654
655 sk_sp<SkColorSpace> colorSpace;
656 switch (imageData.color_space) {
657 case ::piex::PreviewImageData::kSrgb:
658 colorSpace = SkColorSpace::MakeSRGB();
659 break;
660 case ::piex::PreviewImageData::kAdobeRgb:
661 colorSpace = SkColorSpace_Base::MakeNamed(SkColorSpace_Base::kAdobeRGB_Named);
662 break;
663 }
664
665 // Theoretically PIEX can return JPEG compressed image or uncompressed RGB image. We only
666 // handle the JPEG compressed preview image here.
667 if (error == ::piex::Error::kOk && imageData.preview.length > 0 &&
668 imageData.preview.format == ::piex::Image::kJpegCompressed)
669 {
670 // transferBuffer() is destructive to the rawStream. Abandon the rawStream after this
671 // function call.
672 // FIXME: one may avoid the copy of memoryStream and use the buffered rawStream.
673 SkMemoryStream* memoryStream =
674 rawStream->transferBuffer(imageData.preview.offset, imageData.preview.length);
675 return memoryStream ? SkJpegCodec::NewFromStream(memoryStream, std::move(colorSpace))
676 : nullptr;
677 }
678 }
679
680 // Takes the ownership of the rawStream.
681 std::unique_ptr<SkDngImage> dngImage(SkDngImage::NewFromStream(rawStream.release()));
682 if (!dngImage) {
683 return nullptr;
684 }
685
686 return new SkRawCodec(dngImage.release());
687 }
688
onGetPixels(const SkImageInfo & dstInfo,void * dst,size_t dstRowBytes,const Options & options,SkPMColor ctable[],int * ctableCount,int * rowsDecoded)689 SkCodec::Result SkRawCodec::onGetPixels(const SkImageInfo& dstInfo, void* dst,
690 size_t dstRowBytes, const Options& options,
691 SkPMColor ctable[], int* ctableCount,
692 int* rowsDecoded) {
693 if (!conversion_possible(dstInfo, this->getInfo()) ||
694 !this->initializeColorXform(dstInfo, options.fPremulBehavior))
695 {
696 SkCodecPrintf("Error: cannot convert input type to output type.\n");
697 return kInvalidConversion;
698 }
699
700 static const SkColorType kXformSrcColorType = kRGBA_8888_SkColorType;
701 SkImageInfo swizzlerInfo = dstInfo;
702 std::unique_ptr<uint32_t[]> xformBuffer = nullptr;
703 if (this->colorXform()) {
704 swizzlerInfo = swizzlerInfo.makeColorType(kXformSrcColorType);
705 xformBuffer.reset(new uint32_t[dstInfo.width()]);
706 }
707
708 std::unique_ptr<SkSwizzler> swizzler(SkSwizzler::CreateSwizzler(
709 this->getEncodedInfo(), nullptr, swizzlerInfo, options));
710 SkASSERT(swizzler);
711
712 const int width = dstInfo.width();
713 const int height = dstInfo.height();
714 std::unique_ptr<dng_image> image(fDngImage->render(width, height));
715 if (!image) {
716 return kInvalidInput;
717 }
718
719 // Because the DNG SDK can not guarantee to render to requested size, we allow a small
720 // difference. Only the overlapping region will be converted.
721 const float maxDiffRatio = 1.03f;
722 const dng_point& imageSize = image->Size();
723 if (imageSize.h / (float) width > maxDiffRatio || imageSize.h < width ||
724 imageSize.v / (float) height > maxDiffRatio || imageSize.v < height) {
725 return SkCodec::kInvalidScale;
726 }
727
728 void* dstRow = dst;
729 SkAutoTMalloc<uint8_t> srcRow(width * 3);
730
731 dng_pixel_buffer buffer;
732 buffer.fData = &srcRow[0];
733 buffer.fPlane = 0;
734 buffer.fPlanes = 3;
735 buffer.fColStep = buffer.fPlanes;
736 buffer.fPlaneStep = 1;
737 buffer.fPixelType = ttByte;
738 buffer.fPixelSize = sizeof(uint8_t);
739 buffer.fRowStep = width * 3;
740
741 for (int i = 0; i < height; ++i) {
742 buffer.fArea = dng_rect(i, 0, i + 1, width);
743
744 try {
745 image->Get(buffer, dng_image::edge_zero);
746 } catch (...) {
747 *rowsDecoded = i;
748 return kIncompleteInput;
749 }
750
751 if (this->colorXform()) {
752 swizzler->swizzle(xformBuffer.get(), &srcRow[0]);
753
754 const SkColorSpaceXform::ColorFormat srcFormat =
755 select_xform_format(kXformSrcColorType);
756 const SkColorSpaceXform::ColorFormat dstFormat =
757 select_xform_format(dstInfo.colorType());
758 this->colorXform()->apply(dstFormat, dstRow, srcFormat, xformBuffer.get(),
759 dstInfo.width(), kOpaque_SkAlphaType);
760 dstRow = SkTAddOffset<void>(dstRow, dstRowBytes);
761 } else {
762 swizzler->swizzle(dstRow, &srcRow[0]);
763 dstRow = SkTAddOffset<void>(dstRow, dstRowBytes);
764 }
765 }
766 return kSuccess;
767 }
768
onGetScaledDimensions(float desiredScale) const769 SkISize SkRawCodec::onGetScaledDimensions(float desiredScale) const {
770 SkASSERT(desiredScale <= 1.f);
771
772 const SkISize dim = this->getInfo().dimensions();
773 SkASSERT(dim.fWidth != 0 && dim.fHeight != 0);
774
775 if (!fDngImage->isScalable()) {
776 return dim;
777 }
778
779 // Limits the minimum size to be 80 on the short edge.
780 const float shortEdge = static_cast<float>(SkTMin(dim.fWidth, dim.fHeight));
781 if (desiredScale < 80.f / shortEdge) {
782 desiredScale = 80.f / shortEdge;
783 }
784
785 // For Xtrans images, the integer-factor scaling does not support the half-size scaling case
786 // (stronger downscalings are fine). In this case, returns the factor "3" scaling instead.
787 if (fDngImage->isXtransImage() && desiredScale > 1.f / 3.f && desiredScale < 1.f) {
788 desiredScale = 1.f / 3.f;
789 }
790
791 // Round to integer-factors.
792 const float finalScale = std::floor(1.f/ desiredScale);
793 return SkISize::Make(static_cast<int32_t>(std::floor(dim.fWidth / finalScale)),
794 static_cast<int32_t>(std::floor(dim.fHeight / finalScale)));
795 }
796
onDimensionsSupported(const SkISize & dim)797 bool SkRawCodec::onDimensionsSupported(const SkISize& dim) {
798 const SkISize fullDim = this->getInfo().dimensions();
799 const float fullShortEdge = static_cast<float>(SkTMin(fullDim.fWidth, fullDim.fHeight));
800 const float shortEdge = static_cast<float>(SkTMin(dim.fWidth, dim.fHeight));
801
802 SkISize sizeFloor = this->onGetScaledDimensions(1.f / std::floor(fullShortEdge / shortEdge));
803 SkISize sizeCeil = this->onGetScaledDimensions(1.f / std::ceil(fullShortEdge / shortEdge));
804 return sizeFloor == dim || sizeCeil == dim;
805 }
806
~SkRawCodec()807 SkRawCodec::~SkRawCodec() {}
808
SkRawCodec(SkDngImage * dngImage)809 SkRawCodec::SkRawCodec(SkDngImage* dngImage)
810 : INHERITED(dngImage->width(), dngImage->height(), dngImage->getEncodedInfo(), nullptr,
811 SkColorSpace::MakeSRGB())
812 , fDngImage(dngImage) {}
813