1 /* 2 * Copyright 2017 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ANDROID_INTERPOLATOR_H 18 #define ANDROID_INTERPOLATOR_H 19 20 #include <map> 21 #include <sstream> 22 #include <unordered_map> 23 24 #include <binder/Parcel.h> 25 #include <utils/RefBase.h> 26 27 #pragma push_macro("LOG_TAG") 28 #undef LOG_TAG 29 #define LOG_TAG "Interpolator" 30 31 namespace android { 32 33 /* 34 * A general purpose spline interpolator class which takes a set of points 35 * and performs interpolation. This is used for the VolumeShaper class. 36 */ 37 38 template <typename S, typename T> 39 class Interpolator : public std::map<S, T> { 40 public: 41 // Polynomial spline interpolators 42 // Extend only at the end of enum, as this must match order in VolumeShapers.java. 43 enum InterpolatorType : int32_t { 44 INTERPOLATOR_TYPE_STEP, // Not continuous 45 INTERPOLATOR_TYPE_LINEAR, // C0 46 INTERPOLATOR_TYPE_CUBIC, // C1 47 INTERPOLATOR_TYPE_CUBIC_MONOTONIC, // C1 (to provide locally monotonic curves) 48 // INTERPOLATOR_TYPE_CUBIC_C2, // TODO - requires global computation / cache 49 }; 50 51 explicit Interpolator( 52 InterpolatorType interpolatorType = INTERPOLATOR_TYPE_LINEAR, 53 bool cache = true) mCache(cache)54 : mCache(cache) 55 , mFirstSlope(0) 56 , mLastSlope(0) { 57 setInterpolatorType(interpolatorType); 58 } 59 first()60 std::pair<S, T> first() const { 61 return *this->begin(); 62 } 63 last()64 std::pair<S, T> last() const { 65 return *this->rbegin(); 66 } 67 68 // find the corresponding Y point from a X point. findY(S x)69 T findY(S x) { // logically const, but modifies cache 70 auto high = this->lower_bound(x); 71 // greater than last point 72 if (high == this->end()) { 73 return this->rbegin()->second; 74 } 75 // at or before first point 76 if (high == this->begin()) { 77 return high->second; 78 } 79 // go lower. 80 auto low = high; 81 --low; 82 83 // now that we have two adjacent points: 84 switch (mInterpolatorType) { 85 case INTERPOLATOR_TYPE_STEP: 86 return high->first == x ? high->second : low->second; 87 case INTERPOLATOR_TYPE_LINEAR: 88 return ((high->first - x) * low->second + (x - low->first) * high->second) 89 / (high->first - low->first); 90 case INTERPOLATOR_TYPE_CUBIC: 91 case INTERPOLATOR_TYPE_CUBIC_MONOTONIC: 92 default: { 93 // See https://en.wikipedia.org/wiki/Cubic_Hermite_spline 94 95 const S interval = high->first - low->first; 96 97 // check to see if we've cached the polynomial coefficients 98 if (mMemo.count(low->first) != 0) { 99 const S t = (x - low->first) / interval; 100 const S t2 = t * t; 101 const auto &memo = mMemo[low->first]; 102 return low->second + std::get<0>(memo) * t 103 + (std::get<1>(memo) + std::get<2>(memo) * t) * t2; 104 } 105 106 // find the neighboring points (low2 < low < high < high2) 107 auto low2 = this->end(); 108 if (low != this->begin()) { 109 low2 = low; 110 --low2; // decrementing this->begin() is undefined 111 } 112 auto high2 = high; 113 ++high2; 114 115 // you could have catmullRom with monotonic or 116 // non catmullRom (finite difference) with regular cubic; 117 // the choices here minimize computation. 118 bool monotonic, catmullRom; 119 if (mInterpolatorType == INTERPOLATOR_TYPE_CUBIC_MONOTONIC) { 120 monotonic = true; 121 catmullRom = false; 122 } else { 123 monotonic = false; 124 catmullRom = true; 125 } 126 127 // secants are only needed for finite difference splines or 128 // monotonic computation. 129 // we use lazy computation here - if we precompute in 130 // a single pass, duplicate secant computations may be avoided. 131 S sec, sec0, sec1; 132 if (!catmullRom || monotonic) { 133 sec = (high->second - low->second) / interval; 134 sec0 = low2 != this->end() 135 ? (low->second - low2->second) / (low->first - low2->first) 136 : mFirstSlope; 137 sec1 = high2 != this->end() 138 ? (high2->second - high->second) / (high2->first - high->first) 139 : mLastSlope; 140 } 141 142 // compute the tangent slopes at the control points 143 S m0, m1; 144 if (catmullRom) { 145 // Catmull-Rom spline 146 m0 = low2 != this->end() 147 ? (high->second - low2->second) / (high->first - low2->first) 148 : mFirstSlope; 149 150 m1 = high2 != this->end() 151 ? (high2->second - low->second) / (high2->first - low->first) 152 : mLastSlope; 153 } else { 154 // finite difference spline 155 m0 = (sec0 + sec) * 0.5f; 156 m1 = (sec1 + sec) * 0.5f; 157 } 158 159 if (monotonic) { 160 // https://en.wikipedia.org/wiki/Monotone_cubic_interpolation 161 // A sufficient condition for Fritsch–Carlson monotonicity is constraining 162 // (1) the normalized slopes to be within the circle of radius 3, or 163 // (2) the normalized slopes to be within the square of radius 3. 164 // Condition (2) is more generous and easier to compute. 165 const S maxSlope = 3 * sec; 166 m0 = constrainSlope(m0, maxSlope); 167 m1 = constrainSlope(m1, maxSlope); 168 169 m0 = constrainSlope(m0, 3 * sec0); 170 m1 = constrainSlope(m1, 3 * sec1); 171 } 172 173 const S t = (x - low->first) / interval; 174 const S t2 = t * t; 175 if (mCache) { 176 // convert to cubic polynomial coefficients and compute 177 m0 *= interval; 178 m1 *= interval; 179 const T dy = high->second - low->second; 180 const S c0 = low->second; 181 const S c1 = m0; 182 const S c2 = 3 * dy - 2 * m0 - m1; 183 const S c3 = m0 + m1 - 2 * dy; 184 mMemo[low->first] = std::make_tuple(c1, c2, c3); 185 return c0 + c1 * t + (c2 + c3 * t) * t2; 186 } else { 187 // classic Hermite interpolation 188 const S t3 = t2 * t; 189 const S h00 = 2 * t3 - 3 * t2 + 1; 190 const S h10 = t3 - 2 * t2 + t ; 191 const S h01 = -2 * t3 + 3 * t2 ; 192 const S h11 = t3 - t2 ; 193 return h00 * low->second + (h10 * m0 + h11 * m1) * interval + h01 * high->second; 194 } 195 } // default 196 } 197 } 198 getInterpolatorType()199 InterpolatorType getInterpolatorType() const { 200 return mInterpolatorType; 201 } 202 setInterpolatorType(InterpolatorType interpolatorType)203 status_t setInterpolatorType(InterpolatorType interpolatorType) { 204 switch (interpolatorType) { 205 case INTERPOLATOR_TYPE_STEP: // Not continuous 206 case INTERPOLATOR_TYPE_LINEAR: // C0 207 case INTERPOLATOR_TYPE_CUBIC: // C1 208 case INTERPOLATOR_TYPE_CUBIC_MONOTONIC: // C1 + other constraints 209 // case INTERPOLATOR_TYPE_CUBIC_C2: 210 mInterpolatorType = interpolatorType; 211 return NO_ERROR; 212 default: 213 ALOGE("invalid interpolatorType: %d", interpolatorType); 214 return BAD_VALUE; 215 } 216 } 217 getFirstSlope()218 T getFirstSlope() const { 219 return mFirstSlope; 220 } 221 setFirstSlope(T slope)222 void setFirstSlope(T slope) { 223 mFirstSlope = slope; 224 } 225 getLastSlope()226 T getLastSlope() const { 227 return mLastSlope; 228 } 229 setLastSlope(T slope)230 void setLastSlope(T slope) { 231 mLastSlope = slope; 232 } 233 clearCache()234 void clearCache() { 235 mMemo.clear(); 236 } 237 writeToParcel(Parcel * parcel)238 status_t writeToParcel(Parcel *parcel) const { 239 if (parcel == nullptr) { 240 return BAD_VALUE; 241 } 242 status_t res = parcel->writeInt32(mInterpolatorType) 243 ?: parcel->writeFloat(mFirstSlope) 244 ?: parcel->writeFloat(mLastSlope) 245 ?: parcel->writeUint32((uint32_t)this->size()); // silent truncation 246 if (res != NO_ERROR) { 247 return res; 248 } 249 for (const auto &pt : *this) { 250 res = parcel->writeFloat(pt.first) 251 ?: parcel->writeFloat(pt.second); 252 if (res != NO_ERROR) { 253 return res; 254 } 255 } 256 return NO_ERROR; 257 } 258 readFromParcel(const Parcel & parcel)259 status_t readFromParcel(const Parcel &parcel) { 260 this->clear(); 261 int32_t type; 262 uint32_t size; 263 status_t res = parcel.readInt32(&type) 264 ?: parcel.readFloat(&mFirstSlope) 265 ?: parcel.readFloat(&mLastSlope) 266 ?: parcel.readUint32(&size) 267 ?: setInterpolatorType((InterpolatorType)type); 268 if (res != NO_ERROR) { 269 return res; 270 } 271 // Note: We don't need to check size is within some bounds as 272 // the Parcel read will fail if size is incorrectly specified too large. 273 float lastx; 274 for (uint32_t i = 0; i < size; ++i) { 275 float x, y; 276 res = parcel.readFloat(&x) 277 ?: parcel.readFloat(&y); 278 if (res != NO_ERROR) { 279 return res; 280 } 281 if (i > 0 && !(x > lastx) /* handle nan */ 282 || y != y /* handle nan */) { 283 // This is a std::map object which imposes sorted order 284 // automatically on emplace. 285 // Nevertheless for reading from a Parcel, 286 // we require that the points be specified monotonic in x. 287 return BAD_VALUE; 288 } 289 this->emplace(x, y); 290 lastx = x; 291 } 292 return NO_ERROR; 293 } 294 toString()295 std::string toString() const { 296 std::stringstream ss; 297 ss << "Interpolator{mInterpolatorType=" << static_cast<int32_t>(mInterpolatorType); 298 ss << ", mFirstSlope=" << mFirstSlope; 299 ss << ", mLastSlope=" << mLastSlope; 300 ss << ", {"; 301 bool first = true; 302 for (const auto &pt : *this) { 303 if (first) { 304 first = false; 305 ss << "{"; 306 } else { 307 ss << ", {"; 308 } 309 ss << pt.first << ", " << pt.second << "}"; 310 } 311 ss << "}}"; 312 return ss.str(); 313 } 314 315 private: constrainSlope(S slope,S maxSlope)316 static S constrainSlope(S slope, S maxSlope) { 317 if (maxSlope > 0) { 318 slope = std::min(slope, maxSlope); 319 slope = std::max(slope, S(0)); // not globally monotonic 320 } else { 321 slope = std::max(slope, maxSlope); 322 slope = std::min(slope, S(0)); // not globally monotonic 323 } 324 return slope; 325 } 326 327 InterpolatorType mInterpolatorType; 328 bool mCache; // whether we cache spline coefficient computation 329 330 // for cubic interpolation, the boundary conditions in slope. 331 S mFirstSlope; 332 S mLastSlope; 333 334 // spline cubic polynomial coefficient cache 335 std::unordered_map<S, std::tuple<S /* c1 */, S /* c2 */, S /* c3 */>> mMemo; 336 }; // Interpolator 337 338 } // namespace android 339 340 #pragma pop_macro("LOG_TAG") 341 342 #endif // ANDROID_INTERPOLATOR_H 343