1 /*
2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3  *
4  * This code is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License version 2 only, as
6  * published by the Free Software Foundation.  Oracle designates this
7  * particular file as subject to the "Classpath" exception as provided
8  * by Oracle in the LICENSE file that accompanied this code.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  */
24 
25 /*
26  * This file is available under and governed by the GNU General Public
27  * License version 2 only, as published by the Free Software Foundation.
28  * However, the following notice accompanied the original version of this
29  * file:
30  *
31  * Written by Doug Lea with assistance from members of JCP JSR-166
32  * Expert Group and released to the public domain, as explained at
33  * http://creativecommons.org/publicdomain/zero/1.0/
34  */
35 
36 package java.util.concurrent;
37 
38 import java.util.concurrent.atomic.AtomicReference;
39 import java.util.concurrent.locks.LockSupport;
40 
41 /**
42  * A reusable synchronization barrier, similar in functionality to
43  * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
44  * {@link java.util.concurrent.CountDownLatch CountDownLatch}
45  * but supporting more flexible usage.
46  *
47  * <p><b>Registration.</b> Unlike the case for other barriers, the
48  * number of parties <em>registered</em> to synchronize on a phaser
49  * may vary over time.  Tasks may be registered at any time (using
50  * methods {@link #register}, {@link #bulkRegister}, or forms of
51  * constructors establishing initial numbers of parties), and
52  * optionally deregistered upon any arrival (using {@link
53  * #arriveAndDeregister}).  As is the case with most basic
54  * synchronization constructs, registration and deregistration affect
55  * only internal counts; they do not establish any further internal
56  * bookkeeping, so tasks cannot query whether they are registered.
57  * (However, you can introduce such bookkeeping by subclassing this
58  * class.)
59  *
60  * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
61  * Phaser} may be repeatedly awaited.  Method {@link
62  * #arriveAndAwaitAdvance} has effect analogous to {@link
63  * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
64  * generation of a phaser has an associated phase number. The phase
65  * number starts at zero, and advances when all parties arrive at the
66  * phaser, wrapping around to zero after reaching {@code
67  * Integer.MAX_VALUE}. The use of phase numbers enables independent
68  * control of actions upon arrival at a phaser and upon awaiting
69  * others, via two kinds of methods that may be invoked by any
70  * registered party:
71  *
72  * <ul>
73  *
74  *   <li><b>Arrival.</b> Methods {@link #arrive} and
75  *       {@link #arriveAndDeregister} record arrival.  These methods
76  *       do not block, but return an associated <em>arrival phase
77  *       number</em>; that is, the phase number of the phaser to which
78  *       the arrival applied. When the final party for a given phase
79  *       arrives, an optional action is performed and the phase
80  *       advances.  These actions are performed by the party
81  *       triggering a phase advance, and are arranged by overriding
82  *       method {@link #onAdvance(int, int)}, which also controls
83  *       termination. Overriding this method is similar to, but more
84  *       flexible than, providing a barrier action to a {@code
85  *       CyclicBarrier}.
86  *
87  *   <li><b>Waiting.</b> Method {@link #awaitAdvance} requires an
88  *       argument indicating an arrival phase number, and returns when
89  *       the phaser advances to (or is already at) a different phase.
90  *       Unlike similar constructions using {@code CyclicBarrier},
91  *       method {@code awaitAdvance} continues to wait even if the
92  *       waiting thread is interrupted. Interruptible and timeout
93  *       versions are also available, but exceptions encountered while
94  *       tasks wait interruptibly or with timeout do not change the
95  *       state of the phaser. If necessary, you can perform any
96  *       associated recovery within handlers of those exceptions,
97  *       often after invoking {@code forceTermination}.  Phasers may
98  *       also be used by tasks executing in a {@link ForkJoinPool}.
99  *       Progress is ensured if the pool's parallelismLevel can
100  *       accommodate the maximum number of simultaneously blocked
101  *       parties.
102  *
103  * </ul>
104  *
105  * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
106  * state, that may be checked using method {@link #isTerminated}. Upon
107  * termination, all synchronization methods immediately return without
108  * waiting for advance, as indicated by a negative return value.
109  * Similarly, attempts to register upon termination have no effect.
110  * Termination is triggered when an invocation of {@code onAdvance}
111  * returns {@code true}. The default implementation returns {@code
112  * true} if a deregistration has caused the number of registered
113  * parties to become zero.  As illustrated below, when phasers control
114  * actions with a fixed number of iterations, it is often convenient
115  * to override this method to cause termination when the current phase
116  * number reaches a threshold. Method {@link #forceTermination} is
117  * also available to abruptly release waiting threads and allow them
118  * to terminate.
119  *
120  * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
121  * constructed in tree structures) to reduce contention. Phasers with
122  * large numbers of parties that would otherwise experience heavy
123  * synchronization contention costs may instead be set up so that
124  * groups of sub-phasers share a common parent.  This may greatly
125  * increase throughput even though it incurs greater per-operation
126  * overhead.
127  *
128  * <p>In a tree of tiered phasers, registration and deregistration of
129  * child phasers with their parent are managed automatically.
130  * Whenever the number of registered parties of a child phaser becomes
131  * non-zero (as established in the {@link #Phaser(Phaser,int)}
132  * constructor, {@link #register}, or {@link #bulkRegister}), the
133  * child phaser is registered with its parent.  Whenever the number of
134  * registered parties becomes zero as the result of an invocation of
135  * {@link #arriveAndDeregister}, the child phaser is deregistered
136  * from its parent.
137  *
138  * <p><b>Monitoring.</b> While synchronization methods may be invoked
139  * only by registered parties, the current state of a phaser may be
140  * monitored by any caller.  At any given moment there are {@link
141  * #getRegisteredParties} parties in total, of which {@link
142  * #getArrivedParties} have arrived at the current phase ({@link
143  * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
144  * parties arrive, the phase advances.  The values returned by these
145  * methods may reflect transient states and so are not in general
146  * useful for synchronization control.  Method {@link #toString}
147  * returns snapshots of these state queries in a form convenient for
148  * informal monitoring.
149  *
150  * <p><b>Sample usages:</b>
151  *
152  * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
153  * to control a one-shot action serving a variable number of parties.
154  * The typical idiom is for the method setting this up to first
155  * register, then start the actions, then deregister, as in:
156  *
157  * <pre> {@code
158  * void runTasks(List<Runnable> tasks) {
159  *   final Phaser phaser = new Phaser(1); // "1" to register self
160  *   // create and start threads
161  *   for (final Runnable task : tasks) {
162  *     phaser.register();
163  *     new Thread() {
164  *       public void run() {
165  *         phaser.arriveAndAwaitAdvance(); // await all creation
166  *         task.run();
167  *       }
168  *     }.start();
169  *   }
170  *
171  *   // allow threads to start and deregister self
172  *   phaser.arriveAndDeregister();
173  * }}</pre>
174  *
175  * <p>One way to cause a set of threads to repeatedly perform actions
176  * for a given number of iterations is to override {@code onAdvance}:
177  *
178  * <pre> {@code
179  * void startTasks(List<Runnable> tasks, final int iterations) {
180  *   final Phaser phaser = new Phaser() {
181  *     protected boolean onAdvance(int phase, int registeredParties) {
182  *       return phase >= iterations || registeredParties == 0;
183  *     }
184  *   };
185  *   phaser.register();
186  *   for (final Runnable task : tasks) {
187  *     phaser.register();
188  *     new Thread() {
189  *       public void run() {
190  *         do {
191  *           task.run();
192  *           phaser.arriveAndAwaitAdvance();
193  *         } while (!phaser.isTerminated());
194  *       }
195  *     }.start();
196  *   }
197  *   phaser.arriveAndDeregister(); // deregister self, don't wait
198  * }}</pre>
199  *
200  * If the main task must later await termination, it
201  * may re-register and then execute a similar loop:
202  * <pre> {@code
203  *   // ...
204  *   phaser.register();
205  *   while (!phaser.isTerminated())
206  *     phaser.arriveAndAwaitAdvance();}</pre>
207  *
208  * <p>Related constructions may be used to await particular phase numbers
209  * in contexts where you are sure that the phase will never wrap around
210  * {@code Integer.MAX_VALUE}. For example:
211  *
212  * <pre> {@code
213  * void awaitPhase(Phaser phaser, int phase) {
214  *   int p = phaser.register(); // assumes caller not already registered
215  *   while (p < phase) {
216  *     if (phaser.isTerminated())
217  *       // ... deal with unexpected termination
218  *     else
219  *       p = phaser.arriveAndAwaitAdvance();
220  *   }
221  *   phaser.arriveAndDeregister();
222  * }}</pre>
223  *
224  *
225  * <p>To create a set of {@code n} tasks using a tree of phasers, you
226  * could use code of the following form, assuming a Task class with a
227  * constructor accepting a {@code Phaser} that it registers with upon
228  * construction. After invocation of {@code build(new Task[n], 0, n,
229  * new Phaser())}, these tasks could then be started, for example by
230  * submitting to a pool:
231  *
232  * <pre> {@code
233  * void build(Task[] tasks, int lo, int hi, Phaser ph) {
234  *   if (hi - lo > TASKS_PER_PHASER) {
235  *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
236  *       int j = Math.min(i + TASKS_PER_PHASER, hi);
237  *       build(tasks, i, j, new Phaser(ph));
238  *     }
239  *   } else {
240  *     for (int i = lo; i < hi; ++i)
241  *       tasks[i] = new Task(ph);
242  *       // assumes new Task(ph) performs ph.register()
243  *   }
244  * }}</pre>
245  *
246  * The best value of {@code TASKS_PER_PHASER} depends mainly on
247  * expected synchronization rates. A value as low as four may
248  * be appropriate for extremely small per-phase task bodies (thus
249  * high rates), or up to hundreds for extremely large ones.
250  *
251  * <p><b>Implementation notes</b>: This implementation restricts the
252  * maximum number of parties to 65535. Attempts to register additional
253  * parties result in {@code IllegalStateException}. However, you can and
254  * should create tiered phasers to accommodate arbitrarily large sets
255  * of participants.
256  *
257  * @since 1.7
258  * @author Doug Lea
259  */
260 public class Phaser {
261     /*
262      * This class implements an extension of X10 "clocks".  Thanks to
263      * Vijay Saraswat for the idea, and to Vivek Sarkar for
264      * enhancements to extend functionality.
265      */
266 
267     /**
268      * Primary state representation, holding four bit-fields:
269      *
270      * unarrived  -- the number of parties yet to hit barrier (bits  0-15)
271      * parties    -- the number of parties to wait            (bits 16-31)
272      * phase      -- the generation of the barrier            (bits 32-62)
273      * terminated -- set if barrier is terminated             (bit  63 / sign)
274      *
275      * Except that a phaser with no registered parties is
276      * distinguished by the otherwise illegal state of having zero
277      * parties and one unarrived parties (encoded as EMPTY below).
278      *
279      * To efficiently maintain atomicity, these values are packed into
280      * a single (atomic) long. Good performance relies on keeping
281      * state decoding and encoding simple, and keeping race windows
282      * short.
283      *
284      * All state updates are performed via CAS except initial
285      * registration of a sub-phaser (i.e., one with a non-null
286      * parent).  In this (relatively rare) case, we use built-in
287      * synchronization to lock while first registering with its
288      * parent.
289      *
290      * The phase of a subphaser is allowed to lag that of its
291      * ancestors until it is actually accessed -- see method
292      * reconcileState.
293      */
294     private volatile long state;
295 
296     private static final int  MAX_PARTIES     = 0xffff;
297     private static final int  MAX_PHASE       = Integer.MAX_VALUE;
298     private static final int  PARTIES_SHIFT   = 16;
299     private static final int  PHASE_SHIFT     = 32;
300     private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
301     private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
302     private static final long COUNTS_MASK     = 0xffffffffL;
303     private static final long TERMINATION_BIT = 1L << 63;
304 
305     // some special values
306     private static final int  ONE_ARRIVAL     = 1;
307     private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
308     private static final int  ONE_DEREGISTER  = ONE_ARRIVAL|ONE_PARTY;
309     private static final int  EMPTY           = 1;
310 
311     // The following unpacking methods are usually manually inlined
312 
unarrivedOf(long s)313     private static int unarrivedOf(long s) {
314         int counts = (int)s;
315         return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
316     }
317 
partiesOf(long s)318     private static int partiesOf(long s) {
319         return (int)s >>> PARTIES_SHIFT;
320     }
321 
phaseOf(long s)322     private static int phaseOf(long s) {
323         return (int)(s >>> PHASE_SHIFT);
324     }
325 
arrivedOf(long s)326     private static int arrivedOf(long s) {
327         int counts = (int)s;
328         return (counts == EMPTY) ? 0 :
329             (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
330     }
331 
332     /**
333      * The parent of this phaser, or null if none.
334      */
335     private final Phaser parent;
336 
337     /**
338      * The root of phaser tree. Equals this if not in a tree.
339      */
340     private final Phaser root;
341 
342     /**
343      * Heads of Treiber stacks for waiting threads. To eliminate
344      * contention when releasing some threads while adding others, we
345      * use two of them, alternating across even and odd phases.
346      * Subphasers share queues with root to speed up releases.
347      */
348     private final AtomicReference<QNode> evenQ;
349     private final AtomicReference<QNode> oddQ;
350 
queueFor(int phase)351     private AtomicReference<QNode> queueFor(int phase) {
352         return ((phase & 1) == 0) ? evenQ : oddQ;
353     }
354 
355     /**
356      * Returns message string for bounds exceptions on arrival.
357      */
badArrive(long s)358     private String badArrive(long s) {
359         return "Attempted arrival of unregistered party for " +
360             stateToString(s);
361     }
362 
363     /**
364      * Returns message string for bounds exceptions on registration.
365      */
badRegister(long s)366     private String badRegister(long s) {
367         return "Attempt to register more than " +
368             MAX_PARTIES + " parties for " + stateToString(s);
369     }
370 
371     /**
372      * Main implementation for methods arrive and arriveAndDeregister.
373      * Manually tuned to speed up and minimize race windows for the
374      * common case of just decrementing unarrived field.
375      *
376      * @param adjust value to subtract from state;
377      *               ONE_ARRIVAL for arrive,
378      *               ONE_DEREGISTER for arriveAndDeregister
379      */
doArrive(int adjust)380     private int doArrive(int adjust) {
381         final Phaser root = this.root;
382         for (;;) {
383             long s = (root == this) ? state : reconcileState();
384             int phase = (int)(s >>> PHASE_SHIFT);
385             if (phase < 0)
386                 return phase;
387             int counts = (int)s;
388             int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
389             if (unarrived <= 0)
390                 throw new IllegalStateException(badArrive(s));
391             if (U.compareAndSwapLong(this, STATE, s, s-=adjust)) {
392                 if (unarrived == 1) {
393                     long n = s & PARTIES_MASK;  // base of next state
394                     int nextUnarrived = (int)n >>> PARTIES_SHIFT;
395                     if (root == this) {
396                         if (onAdvance(phase, nextUnarrived))
397                             n |= TERMINATION_BIT;
398                         else if (nextUnarrived == 0)
399                             n |= EMPTY;
400                         else
401                             n |= nextUnarrived;
402                         int nextPhase = (phase + 1) & MAX_PHASE;
403                         n |= (long)nextPhase << PHASE_SHIFT;
404                         U.compareAndSwapLong(this, STATE, s, n);
405                         releaseWaiters(phase);
406                     }
407                     else if (nextUnarrived == 0) { // propagate deregistration
408                         phase = parent.doArrive(ONE_DEREGISTER);
409                         U.compareAndSwapLong(this, STATE, s, s | EMPTY);
410                     }
411                     else
412                         phase = parent.doArrive(ONE_ARRIVAL);
413                 }
414                 return phase;
415             }
416         }
417     }
418 
419     /**
420      * Implementation of register, bulkRegister.
421      *
422      * @param registrations number to add to both parties and
423      * unarrived fields. Must be greater than zero.
424      */
doRegister(int registrations)425     private int doRegister(int registrations) {
426         // adjustment to state
427         long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
428         final Phaser parent = this.parent;
429         int phase;
430         for (;;) {
431             long s = (parent == null) ? state : reconcileState();
432             int counts = (int)s;
433             int parties = counts >>> PARTIES_SHIFT;
434             int unarrived = counts & UNARRIVED_MASK;
435             if (registrations > MAX_PARTIES - parties)
436                 throw new IllegalStateException(badRegister(s));
437             phase = (int)(s >>> PHASE_SHIFT);
438             if (phase < 0)
439                 break;
440             if (counts != EMPTY) {                  // not 1st registration
441                 if (parent == null || reconcileState() == s) {
442                     if (unarrived == 0)             // wait out advance
443                         root.internalAwaitAdvance(phase, null);
444                     else if (U.compareAndSwapLong(this, STATE, s, s + adjust))
445                         break;
446                 }
447             }
448             else if (parent == null) {              // 1st root registration
449                 long next = ((long)phase << PHASE_SHIFT) | adjust;
450                 if (U.compareAndSwapLong(this, STATE, s, next))
451                     break;
452             }
453             else {
454                 synchronized (this) {               // 1st sub registration
455                     if (state == s) {               // recheck under lock
456                         phase = parent.doRegister(1);
457                         if (phase < 0)
458                             break;
459                         // finish registration whenever parent registration
460                         // succeeded, even when racing with termination,
461                         // since these are part of the same "transaction".
462                         while (!U.compareAndSwapLong
463                                (this, STATE, s,
464                                 ((long)phase << PHASE_SHIFT) | adjust)) {
465                             s = state;
466                             phase = (int)(root.state >>> PHASE_SHIFT);
467                             // assert (int)s == EMPTY;
468                         }
469                         break;
470                     }
471                 }
472             }
473         }
474         return phase;
475     }
476 
477     /**
478      * Resolves lagged phase propagation from root if necessary.
479      * Reconciliation normally occurs when root has advanced but
480      * subphasers have not yet done so, in which case they must finish
481      * their own advance by setting unarrived to parties (or if
482      * parties is zero, resetting to unregistered EMPTY state).
483      *
484      * @return reconciled state
485      */
reconcileState()486     private long reconcileState() {
487         final Phaser root = this.root;
488         long s = state;
489         if (root != this) {
490             int phase, p;
491             // CAS to root phase with current parties, tripping unarrived
492             while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
493                    (int)(s >>> PHASE_SHIFT) &&
494                    !U.compareAndSwapLong
495                    (this, STATE, s,
496                     s = (((long)phase << PHASE_SHIFT) |
497                          ((phase < 0) ? (s & COUNTS_MASK) :
498                           (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
499                            ((s & PARTIES_MASK) | p))))))
500                 s = state;
501         }
502         return s;
503     }
504 
505     /**
506      * Creates a new phaser with no initially registered parties, no
507      * parent, and initial phase number 0. Any thread using this
508      * phaser will need to first register for it.
509      */
Phaser()510     public Phaser() {
511         this(null, 0);
512     }
513 
514     /**
515      * Creates a new phaser with the given number of registered
516      * unarrived parties, no parent, and initial phase number 0.
517      *
518      * @param parties the number of parties required to advance to the
519      * next phase
520      * @throws IllegalArgumentException if parties less than zero
521      * or greater than the maximum number of parties supported
522      */
Phaser(int parties)523     public Phaser(int parties) {
524         this(null, parties);
525     }
526 
527     /**
528      * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
529      *
530      * @param parent the parent phaser
531      */
Phaser(Phaser parent)532     public Phaser(Phaser parent) {
533         this(parent, 0);
534     }
535 
536     /**
537      * Creates a new phaser with the given parent and number of
538      * registered unarrived parties.  When the given parent is non-null
539      * and the given number of parties is greater than zero, this
540      * child phaser is registered with its parent.
541      *
542      * @param parent the parent phaser
543      * @param parties the number of parties required to advance to the
544      * next phase
545      * @throws IllegalArgumentException if parties less than zero
546      * or greater than the maximum number of parties supported
547      */
Phaser(Phaser parent, int parties)548     public Phaser(Phaser parent, int parties) {
549         if (parties >>> PARTIES_SHIFT != 0)
550             throw new IllegalArgumentException("Illegal number of parties");
551         int phase = 0;
552         this.parent = parent;
553         if (parent != null) {
554             final Phaser root = parent.root;
555             this.root = root;
556             this.evenQ = root.evenQ;
557             this.oddQ = root.oddQ;
558             if (parties != 0)
559                 phase = parent.doRegister(1);
560         }
561         else {
562             this.root = this;
563             this.evenQ = new AtomicReference<QNode>();
564             this.oddQ = new AtomicReference<QNode>();
565         }
566         this.state = (parties == 0) ? (long)EMPTY :
567             ((long)phase << PHASE_SHIFT) |
568             ((long)parties << PARTIES_SHIFT) |
569             ((long)parties);
570     }
571 
572     /**
573      * Adds a new unarrived party to this phaser.  If an ongoing
574      * invocation of {@link #onAdvance} is in progress, this method
575      * may await its completion before returning.  If this phaser has
576      * a parent, and this phaser previously had no registered parties,
577      * this child phaser is also registered with its parent. If
578      * this phaser is terminated, the attempt to register has
579      * no effect, and a negative value is returned.
580      *
581      * @return the arrival phase number to which this registration
582      * applied.  If this value is negative, then this phaser has
583      * terminated, in which case registration has no effect.
584      * @throws IllegalStateException if attempting to register more
585      * than the maximum supported number of parties
586      */
register()587     public int register() {
588         return doRegister(1);
589     }
590 
591     /**
592      * Adds the given number of new unarrived parties to this phaser.
593      * If an ongoing invocation of {@link #onAdvance} is in progress,
594      * this method may await its completion before returning.  If this
595      * phaser has a parent, and the given number of parties is greater
596      * than zero, and this phaser previously had no registered
597      * parties, this child phaser is also registered with its parent.
598      * If this phaser is terminated, the attempt to register has no
599      * effect, and a negative value is returned.
600      *
601      * @param parties the number of additional parties required to
602      * advance to the next phase
603      * @return the arrival phase number to which this registration
604      * applied.  If this value is negative, then this phaser has
605      * terminated, in which case registration has no effect.
606      * @throws IllegalStateException if attempting to register more
607      * than the maximum supported number of parties
608      * @throws IllegalArgumentException if {@code parties < 0}
609      */
bulkRegister(int parties)610     public int bulkRegister(int parties) {
611         if (parties < 0)
612             throw new IllegalArgumentException();
613         if (parties == 0)
614             return getPhase();
615         return doRegister(parties);
616     }
617 
618     /**
619      * Arrives at this phaser, without waiting for others to arrive.
620      *
621      * <p>It is a usage error for an unregistered party to invoke this
622      * method.  However, this error may result in an {@code
623      * IllegalStateException} only upon some subsequent operation on
624      * this phaser, if ever.
625      *
626      * @return the arrival phase number, or a negative value if terminated
627      * @throws IllegalStateException if not terminated and the number
628      * of unarrived parties would become negative
629      */
arrive()630     public int arrive() {
631         return doArrive(ONE_ARRIVAL);
632     }
633 
634     /**
635      * Arrives at this phaser and deregisters from it without waiting
636      * for others to arrive. Deregistration reduces the number of
637      * parties required to advance in future phases.  If this phaser
638      * has a parent, and deregistration causes this phaser to have
639      * zero parties, this phaser is also deregistered from its parent.
640      *
641      * <p>It is a usage error for an unregistered party to invoke this
642      * method.  However, this error may result in an {@code
643      * IllegalStateException} only upon some subsequent operation on
644      * this phaser, if ever.
645      *
646      * @return the arrival phase number, or a negative value if terminated
647      * @throws IllegalStateException if not terminated and the number
648      * of registered or unarrived parties would become negative
649      */
arriveAndDeregister()650     public int arriveAndDeregister() {
651         return doArrive(ONE_DEREGISTER);
652     }
653 
654     /**
655      * Arrives at this phaser and awaits others. Equivalent in effect
656      * to {@code awaitAdvance(arrive())}.  If you need to await with
657      * interruption or timeout, you can arrange this with an analogous
658      * construction using one of the other forms of the {@code
659      * awaitAdvance} method.  If instead you need to deregister upon
660      * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
661      *
662      * <p>It is a usage error for an unregistered party to invoke this
663      * method.  However, this error may result in an {@code
664      * IllegalStateException} only upon some subsequent operation on
665      * this phaser, if ever.
666      *
667      * @return the arrival phase number, or the (negative)
668      * {@linkplain #getPhase() current phase} if terminated
669      * @throws IllegalStateException if not terminated and the number
670      * of unarrived parties would become negative
671      */
arriveAndAwaitAdvance()672     public int arriveAndAwaitAdvance() {
673         // Specialization of doArrive+awaitAdvance eliminating some reads/paths
674         final Phaser root = this.root;
675         for (;;) {
676             long s = (root == this) ? state : reconcileState();
677             int phase = (int)(s >>> PHASE_SHIFT);
678             if (phase < 0)
679                 return phase;
680             int counts = (int)s;
681             int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
682             if (unarrived <= 0)
683                 throw new IllegalStateException(badArrive(s));
684             if (U.compareAndSwapLong(this, STATE, s, s -= ONE_ARRIVAL)) {
685                 if (unarrived > 1)
686                     return root.internalAwaitAdvance(phase, null);
687                 if (root != this)
688                     return parent.arriveAndAwaitAdvance();
689                 long n = s & PARTIES_MASK;  // base of next state
690                 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
691                 if (onAdvance(phase, nextUnarrived))
692                     n |= TERMINATION_BIT;
693                 else if (nextUnarrived == 0)
694                     n |= EMPTY;
695                 else
696                     n |= nextUnarrived;
697                 int nextPhase = (phase + 1) & MAX_PHASE;
698                 n |= (long)nextPhase << PHASE_SHIFT;
699                 if (!U.compareAndSwapLong(this, STATE, s, n))
700                     return (int)(state >>> PHASE_SHIFT); // terminated
701                 releaseWaiters(phase);
702                 return nextPhase;
703             }
704         }
705     }
706 
707     /**
708      * Awaits the phase of this phaser to advance from the given phase
709      * value, returning immediately if the current phase is not equal
710      * to the given phase value or this phaser is terminated.
711      *
712      * @param phase an arrival phase number, or negative value if
713      * terminated; this argument is normally the value returned by a
714      * previous call to {@code arrive} or {@code arriveAndDeregister}.
715      * @return the next arrival phase number, or the argument if it is
716      * negative, or the (negative) {@linkplain #getPhase() current phase}
717      * if terminated
718      */
awaitAdvance(int phase)719     public int awaitAdvance(int phase) {
720         final Phaser root = this.root;
721         long s = (root == this) ? state : reconcileState();
722         int p = (int)(s >>> PHASE_SHIFT);
723         if (phase < 0)
724             return phase;
725         if (p == phase)
726             return root.internalAwaitAdvance(phase, null);
727         return p;
728     }
729 
730     /**
731      * Awaits the phase of this phaser to advance from the given phase
732      * value, throwing {@code InterruptedException} if interrupted
733      * while waiting, or returning immediately if the current phase is
734      * not equal to the given phase value or this phaser is
735      * terminated.
736      *
737      * @param phase an arrival phase number, or negative value if
738      * terminated; this argument is normally the value returned by a
739      * previous call to {@code arrive} or {@code arriveAndDeregister}.
740      * @return the next arrival phase number, or the argument if it is
741      * negative, or the (negative) {@linkplain #getPhase() current phase}
742      * if terminated
743      * @throws InterruptedException if thread interrupted while waiting
744      */
awaitAdvanceInterruptibly(int phase)745     public int awaitAdvanceInterruptibly(int phase)
746         throws InterruptedException {
747         final Phaser root = this.root;
748         long s = (root == this) ? state : reconcileState();
749         int p = (int)(s >>> PHASE_SHIFT);
750         if (phase < 0)
751             return phase;
752         if (p == phase) {
753             QNode node = new QNode(this, phase, true, false, 0L);
754             p = root.internalAwaitAdvance(phase, node);
755             if (node.wasInterrupted)
756                 throw new InterruptedException();
757         }
758         return p;
759     }
760 
761     /**
762      * Awaits the phase of this phaser to advance from the given phase
763      * value or the given timeout to elapse, throwing {@code
764      * InterruptedException} if interrupted while waiting, or
765      * returning immediately if the current phase is not equal to the
766      * given phase value or this phaser is terminated.
767      *
768      * @param phase an arrival phase number, or negative value if
769      * terminated; this argument is normally the value returned by a
770      * previous call to {@code arrive} or {@code arriveAndDeregister}.
771      * @param timeout how long to wait before giving up, in units of
772      *        {@code unit}
773      * @param unit a {@code TimeUnit} determining how to interpret the
774      *        {@code timeout} parameter
775      * @return the next arrival phase number, or the argument if it is
776      * negative, or the (negative) {@linkplain #getPhase() current phase}
777      * if terminated
778      * @throws InterruptedException if thread interrupted while waiting
779      * @throws TimeoutException if timed out while waiting
780      */
awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)781     public int awaitAdvanceInterruptibly(int phase,
782                                          long timeout, TimeUnit unit)
783         throws InterruptedException, TimeoutException {
784         long nanos = unit.toNanos(timeout);
785         final Phaser root = this.root;
786         long s = (root == this) ? state : reconcileState();
787         int p = (int)(s >>> PHASE_SHIFT);
788         if (phase < 0)
789             return phase;
790         if (p == phase) {
791             QNode node = new QNode(this, phase, true, true, nanos);
792             p = root.internalAwaitAdvance(phase, node);
793             if (node.wasInterrupted)
794                 throw new InterruptedException();
795             else if (p == phase)
796                 throw new TimeoutException();
797         }
798         return p;
799     }
800 
801     /**
802      * Forces this phaser to enter termination state.  Counts of
803      * registered parties are unaffected.  If this phaser is a member
804      * of a tiered set of phasers, then all of the phasers in the set
805      * are terminated.  If this phaser is already terminated, this
806      * method has no effect.  This method may be useful for
807      * coordinating recovery after one or more tasks encounter
808      * unexpected exceptions.
809      */
forceTermination()810     public void forceTermination() {
811         // Only need to change root state
812         final Phaser root = this.root;
813         long s;
814         while ((s = root.state) >= 0) {
815             if (U.compareAndSwapLong(root, STATE, s, s | TERMINATION_BIT)) {
816                 // signal all threads
817                 releaseWaiters(0); // Waiters on evenQ
818                 releaseWaiters(1); // Waiters on oddQ
819                 return;
820             }
821         }
822     }
823 
824     /**
825      * Returns the current phase number. The maximum phase number is
826      * {@code Integer.MAX_VALUE}, after which it restarts at
827      * zero. Upon termination, the phase number is negative,
828      * in which case the prevailing phase prior to termination
829      * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
830      *
831      * @return the phase number, or a negative value if terminated
832      */
getPhase()833     public final int getPhase() {
834         return (int)(root.state >>> PHASE_SHIFT);
835     }
836 
837     /**
838      * Returns the number of parties registered at this phaser.
839      *
840      * @return the number of parties
841      */
getRegisteredParties()842     public int getRegisteredParties() {
843         return partiesOf(state);
844     }
845 
846     /**
847      * Returns the number of registered parties that have arrived at
848      * the current phase of this phaser. If this phaser has terminated,
849      * the returned value is meaningless and arbitrary.
850      *
851      * @return the number of arrived parties
852      */
getArrivedParties()853     public int getArrivedParties() {
854         return arrivedOf(reconcileState());
855     }
856 
857     /**
858      * Returns the number of registered parties that have not yet
859      * arrived at the current phase of this phaser. If this phaser has
860      * terminated, the returned value is meaningless and arbitrary.
861      *
862      * @return the number of unarrived parties
863      */
getUnarrivedParties()864     public int getUnarrivedParties() {
865         return unarrivedOf(reconcileState());
866     }
867 
868     /**
869      * Returns the parent of this phaser, or {@code null} if none.
870      *
871      * @return the parent of this phaser, or {@code null} if none
872      */
getParent()873     public Phaser getParent() {
874         return parent;
875     }
876 
877     /**
878      * Returns the root ancestor of this phaser, which is the same as
879      * this phaser if it has no parent.
880      *
881      * @return the root ancestor of this phaser
882      */
getRoot()883     public Phaser getRoot() {
884         return root;
885     }
886 
887     /**
888      * Returns {@code true} if this phaser has been terminated.
889      *
890      * @return {@code true} if this phaser has been terminated
891      */
isTerminated()892     public boolean isTerminated() {
893         return root.state < 0L;
894     }
895 
896     /**
897      * Overridable method to perform an action upon impending phase
898      * advance, and to control termination. This method is invoked
899      * upon arrival of the party advancing this phaser (when all other
900      * waiting parties are dormant).  If this method returns {@code
901      * true}, this phaser will be set to a final termination state
902      * upon advance, and subsequent calls to {@link #isTerminated}
903      * will return true. Any (unchecked) Exception or Error thrown by
904      * an invocation of this method is propagated to the party
905      * attempting to advance this phaser, in which case no advance
906      * occurs.
907      *
908      * <p>The arguments to this method provide the state of the phaser
909      * prevailing for the current transition.  The effects of invoking
910      * arrival, registration, and waiting methods on this phaser from
911      * within {@code onAdvance} are unspecified and should not be
912      * relied on.
913      *
914      * <p>If this phaser is a member of a tiered set of phasers, then
915      * {@code onAdvance} is invoked only for its root phaser on each
916      * advance.
917      *
918      * <p>To support the most common use cases, the default
919      * implementation of this method returns {@code true} when the
920      * number of registered parties has become zero as the result of a
921      * party invoking {@code arriveAndDeregister}.  You can disable
922      * this behavior, thus enabling continuation upon future
923      * registrations, by overriding this method to always return
924      * {@code false}:
925      *
926      * <pre> {@code
927      * Phaser phaser = new Phaser() {
928      *   protected boolean onAdvance(int phase, int parties) { return false; }
929      * }}</pre>
930      *
931      * @param phase the current phase number on entry to this method,
932      * before this phaser is advanced
933      * @param registeredParties the current number of registered parties
934      * @return {@code true} if this phaser should terminate
935      */
onAdvance(int phase, int registeredParties)936     protected boolean onAdvance(int phase, int registeredParties) {
937         return registeredParties == 0;
938     }
939 
940     /**
941      * Returns a string identifying this phaser, as well as its
942      * state.  The state, in brackets, includes the String {@code
943      * "phase = "} followed by the phase number, {@code "parties = "}
944      * followed by the number of registered parties, and {@code
945      * "arrived = "} followed by the number of arrived parties.
946      *
947      * @return a string identifying this phaser, as well as its state
948      */
toString()949     public String toString() {
950         return stateToString(reconcileState());
951     }
952 
953     /**
954      * Implementation of toString and string-based error messages.
955      */
stateToString(long s)956     private String stateToString(long s) {
957         return super.toString() +
958             "[phase = " + phaseOf(s) +
959             " parties = " + partiesOf(s) +
960             " arrived = " + arrivedOf(s) + "]";
961     }
962 
963     // Waiting mechanics
964 
965     /**
966      * Removes and signals threads from queue for phase.
967      */
releaseWaiters(int phase)968     private void releaseWaiters(int phase) {
969         QNode q;   // first element of queue
970         Thread t;  // its thread
971         AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
972         while ((q = head.get()) != null &&
973                q.phase != (int)(root.state >>> PHASE_SHIFT)) {
974             if (head.compareAndSet(q, q.next) &&
975                 (t = q.thread) != null) {
976                 q.thread = null;
977                 LockSupport.unpark(t);
978             }
979         }
980     }
981 
982     /**
983      * Variant of releaseWaiters that additionally tries to remove any
984      * nodes no longer waiting for advance due to timeout or
985      * interrupt. Currently, nodes are removed only if they are at
986      * head of queue, which suffices to reduce memory footprint in
987      * most usages.
988      *
989      * @return current phase on exit
990      */
abortWait(int phase)991     private int abortWait(int phase) {
992         AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
993         for (;;) {
994             Thread t;
995             QNode q = head.get();
996             int p = (int)(root.state >>> PHASE_SHIFT);
997             if (q == null || ((t = q.thread) != null && q.phase == p))
998                 return p;
999             if (head.compareAndSet(q, q.next) && t != null) {
1000                 q.thread = null;
1001                 LockSupport.unpark(t);
1002             }
1003         }
1004     }
1005 
1006     /** The number of CPUs, for spin control */
1007     private static final int NCPU = Runtime.getRuntime().availableProcessors();
1008 
1009     /**
1010      * The number of times to spin before blocking while waiting for
1011      * advance, per arrival while waiting. On multiprocessors, fully
1012      * blocking and waking up a large number of threads all at once is
1013      * usually a very slow process, so we use rechargeable spins to
1014      * avoid it when threads regularly arrive: When a thread in
1015      * internalAwaitAdvance notices another arrival before blocking,
1016      * and there appear to be enough CPUs available, it spins
1017      * SPINS_PER_ARRIVAL more times before blocking. The value trades
1018      * off good-citizenship vs big unnecessary slowdowns.
1019      */
1020     static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
1021 
1022     /**
1023      * Possibly blocks and waits for phase to advance unless aborted.
1024      * Call only on root phaser.
1025      *
1026      * @param phase current phase
1027      * @param node if non-null, the wait node to track interrupt and timeout;
1028      * if null, denotes noninterruptible wait
1029      * @return current phase
1030      */
internalAwaitAdvance(int phase, QNode node)1031     private int internalAwaitAdvance(int phase, QNode node) {
1032         // assert root == this;
1033         releaseWaiters(phase-1);          // ensure old queue clean
1034         boolean queued = false;           // true when node is enqueued
1035         int lastUnarrived = 0;            // to increase spins upon change
1036         int spins = SPINS_PER_ARRIVAL;
1037         long s;
1038         int p;
1039         while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1040             if (node == null) {           // spinning in noninterruptible mode
1041                 int unarrived = (int)s & UNARRIVED_MASK;
1042                 if (unarrived != lastUnarrived &&
1043                     (lastUnarrived = unarrived) < NCPU)
1044                     spins += SPINS_PER_ARRIVAL;
1045                 boolean interrupted = Thread.interrupted();
1046                 if (interrupted || --spins < 0) { // need node to record intr
1047                     node = new QNode(this, phase, false, false, 0L);
1048                     node.wasInterrupted = interrupted;
1049                 }
1050             }
1051             else if (node.isReleasable()) // done or aborted
1052                 break;
1053             else if (!queued) {           // push onto queue
1054                 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1055                 QNode q = node.next = head.get();
1056                 if ((q == null || q.phase == phase) &&
1057                     (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1058                     queued = head.compareAndSet(q, node);
1059             }
1060             else {
1061                 try {
1062                     ForkJoinPool.managedBlock(node);
1063                 } catch (InterruptedException cantHappen) {
1064                     node.wasInterrupted = true;
1065                 }
1066             }
1067         }
1068 
1069         if (node != null) {
1070             if (node.thread != null)
1071                 node.thread = null;       // avoid need for unpark()
1072             if (node.wasInterrupted && !node.interruptible)
1073                 Thread.currentThread().interrupt();
1074             if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1075                 return abortWait(phase); // possibly clean up on abort
1076         }
1077         releaseWaiters(phase);
1078         return p;
1079     }
1080 
1081     /**
1082      * Wait nodes for Treiber stack representing wait queue.
1083      */
1084     static final class QNode implements ForkJoinPool.ManagedBlocker {
1085         final Phaser phaser;
1086         final int phase;
1087         final boolean interruptible;
1088         final boolean timed;
1089         boolean wasInterrupted;
1090         long nanos;
1091         final long deadline;
1092         volatile Thread thread; // nulled to cancel wait
1093         QNode next;
1094 
QNode(Phaser phaser, int phase, boolean interruptible, boolean timed, long nanos)1095         QNode(Phaser phaser, int phase, boolean interruptible,
1096               boolean timed, long nanos) {
1097             this.phaser = phaser;
1098             this.phase = phase;
1099             this.interruptible = interruptible;
1100             this.nanos = nanos;
1101             this.timed = timed;
1102             this.deadline = timed ? System.nanoTime() + nanos : 0L;
1103             thread = Thread.currentThread();
1104         }
1105 
isReleasable()1106         public boolean isReleasable() {
1107             if (thread == null)
1108                 return true;
1109             if (phaser.getPhase() != phase) {
1110                 thread = null;
1111                 return true;
1112             }
1113             if (Thread.interrupted())
1114                 wasInterrupted = true;
1115             if (wasInterrupted && interruptible) {
1116                 thread = null;
1117                 return true;
1118             }
1119             if (timed &&
1120                 (nanos <= 0L || (nanos = deadline - System.nanoTime()) <= 0L)) {
1121                 thread = null;
1122                 return true;
1123             }
1124             return false;
1125         }
1126 
block()1127         public boolean block() {
1128             while (!isReleasable()) {
1129                 if (timed)
1130                     LockSupport.parkNanos(this, nanos);
1131                 else
1132                     LockSupport.park(this);
1133             }
1134             return true;
1135         }
1136     }
1137 
1138     // Unsafe mechanics
1139 
1140     private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1141     private static final long STATE;
1142     static {
1143         try {
1144             STATE = U.objectFieldOffset
1145                 (Phaser.class.getDeclaredField("state"));
1146         } catch (ReflectiveOperationException e) {
1147             throw new Error(e);
1148         }
1149 
1150         // Reduce the risk of rare disastrous classloading in first call to
1151         // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1152         Class<?> ensureLoaded = LockSupport.class;
1153     }
1154 }
1155