1 //===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the declarations of classes that represent "derived
11 // types".  These are things like "arrays of x" or "structure of x, y, z" or
12 // "function returning x taking (y,z) as parameters", etc...
13 //
14 // The implementations of these classes live in the Type.cpp file.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #ifndef LLVM_IR_DERIVEDTYPES_H
19 #define LLVM_IR_DERIVEDTYPES_H
20 
21 #include "llvm/IR/Type.h"
22 #include "llvm/Support/Compiler.h"
23 #include "llvm/Support/DataTypes.h"
24 
25 namespace llvm {
26 
27 class Value;
28 class APInt;
29 class LLVMContext;
30 template<typename T> class ArrayRef;
31 class StringRef;
32 
33 /// Class to represent integer types. Note that this class is also used to
34 /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
35 /// Int64Ty.
36 /// @brief Integer representation type
37 class IntegerType : public Type {
38   friend class LLVMContextImpl;
39 
40 protected:
IntegerType(LLVMContext & C,unsigned NumBits)41   explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
42     setSubclassData(NumBits);
43   }
44 
45 public:
46   /// This enum is just used to hold constants we need for IntegerType.
47   enum {
48     MIN_INT_BITS = 1,        ///< Minimum number of bits that can be specified
49     MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified
50       ///< Note that bit width is stored in the Type classes SubclassData field
51       ///< which has 23 bits. This yields a maximum bit width of 8,388,607 bits.
52   };
53 
54   /// This static method is the primary way of constructing an IntegerType.
55   /// If an IntegerType with the same NumBits value was previously instantiated,
56   /// that instance will be returned. Otherwise a new one will be created. Only
57   /// one instance with a given NumBits value is ever created.
58   /// @brief Get or create an IntegerType instance.
59   static IntegerType *get(LLVMContext &C, unsigned NumBits);
60 
61   /// @brief Get the number of bits in this IntegerType
getBitWidth()62   unsigned getBitWidth() const { return getSubclassData(); }
63 
64   /// Return a bitmask with ones set for all of the bits that can be set by an
65   /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc.
getBitMask()66   uint64_t getBitMask() const {
67     return ~uint64_t(0UL) >> (64-getBitWidth());
68   }
69 
70   /// Return a uint64_t with just the most significant bit set (the sign bit, if
71   /// the value is treated as a signed number).
getSignBit()72   uint64_t getSignBit() const {
73     return 1ULL << (getBitWidth()-1);
74   }
75 
76   /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
77   /// @returns a bit mask with ones set for all the bits of this type.
78   /// @brief Get a bit mask for this type.
79   APInt getMask() const;
80 
81   /// This method determines if the width of this IntegerType is a power-of-2
82   /// in terms of 8 bit bytes.
83   /// @returns true if this is a power-of-2 byte width.
84   /// @brief Is this a power-of-2 byte-width IntegerType ?
85   bool isPowerOf2ByteWidth() const;
86 
87   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)88   static inline bool classof(const Type *T) {
89     return T->getTypeID() == IntegerTyID;
90   }
91 };
92 
getIntegerBitWidth()93 unsigned Type::getIntegerBitWidth() const {
94   return cast<IntegerType>(this)->getBitWidth();
95 }
96 
97 /// Class to represent function types
98 ///
99 class FunctionType : public Type {
100   FunctionType(const FunctionType &) = delete;
101   const FunctionType &operator=(const FunctionType &) = delete;
102   FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
103 
104 public:
105   /// This static method is the primary way of constructing a FunctionType.
106   static FunctionType *get(Type *Result,
107                            ArrayRef<Type*> Params, bool isVarArg);
108 
109   /// Create a FunctionType taking no parameters.
110   static FunctionType *get(Type *Result, bool isVarArg);
111 
112   /// Return true if the specified type is valid as a return type.
113   static bool isValidReturnType(Type *RetTy);
114 
115   /// Return true if the specified type is valid as an argument type.
116   static bool isValidArgumentType(Type *ArgTy);
117 
isVarArg()118   bool isVarArg() const { return getSubclassData()!=0; }
getReturnType()119   Type *getReturnType() const { return ContainedTys[0]; }
120 
121   typedef Type::subtype_iterator param_iterator;
param_begin()122   param_iterator param_begin() const { return ContainedTys + 1; }
param_end()123   param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
params()124   ArrayRef<Type *> params() const {
125     return makeArrayRef(param_begin(), param_end());
126   }
127 
128   /// Parameter type accessors.
getParamType(unsigned i)129   Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
130 
131   /// Return the number of fixed parameters this function type requires.
132   /// This does not consider varargs.
getNumParams()133   unsigned getNumParams() const { return NumContainedTys - 1; }
134 
135   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)136   static inline bool classof(const Type *T) {
137     return T->getTypeID() == FunctionTyID;
138   }
139 };
140 static_assert(AlignOf<FunctionType>::Alignment >= AlignOf<Type *>::Alignment,
141               "Alignment sufficient for objects appended to FunctionType");
142 
isFunctionVarArg()143 bool Type::isFunctionVarArg() const {
144   return cast<FunctionType>(this)->isVarArg();
145 }
146 
getFunctionParamType(unsigned i)147 Type *Type::getFunctionParamType(unsigned i) const {
148   return cast<FunctionType>(this)->getParamType(i);
149 }
150 
getFunctionNumParams()151 unsigned Type::getFunctionNumParams() const {
152   return cast<FunctionType>(this)->getNumParams();
153 }
154 
155 /// Common super class of ArrayType, StructType, PointerType and VectorType.
156 class CompositeType : public Type {
157 protected:
CompositeType(LLVMContext & C,TypeID tid)158   explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) {}
159 
160 public:
161   /// Given an index value into the type, return the type of the element.
162   Type *getTypeAtIndex(const Value *V) const;
163   Type *getTypeAtIndex(unsigned Idx) const;
164   bool indexValid(const Value *V) const;
165   bool indexValid(unsigned Idx) const;
166 
167   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)168   static inline bool classof(const Type *T) {
169     return T->getTypeID() == ArrayTyID ||
170            T->getTypeID() == StructTyID ||
171            T->getTypeID() == PointerTyID ||
172            T->getTypeID() == VectorTyID;
173   }
174 };
175 
176 /// Class to represent struct types. There are two different kinds of struct
177 /// types: Literal structs and Identified structs.
178 ///
179 /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
180 /// always have a body when created.  You can get one of these by using one of
181 /// the StructType::get() forms.
182 ///
183 /// Identified structs (e.g. %foo or %42) may optionally have a name and are not
184 /// uniqued.  The names for identified structs are managed at the LLVMContext
185 /// level, so there can only be a single identified struct with a given name in
186 /// a particular LLVMContext.  Identified structs may also optionally be opaque
187 /// (have no body specified).  You get one of these by using one of the
188 /// StructType::create() forms.
189 ///
190 /// Independent of what kind of struct you have, the body of a struct type are
191 /// laid out in memory consequtively with the elements directly one after the
192 /// other (if the struct is packed) or (if not packed) with padding between the
193 /// elements as defined by DataLayout (which is required to match what the code
194 /// generator for a target expects).
195 ///
196 class StructType : public CompositeType {
197   StructType(const StructType &) = delete;
198   const StructType &operator=(const StructType &) = delete;
StructType(LLVMContext & C)199   StructType(LLVMContext &C)
200     : CompositeType(C, StructTyID), SymbolTableEntry(nullptr) {}
201   enum {
202     /// This is the contents of the SubClassData field.
203     SCDB_HasBody = 1,
204     SCDB_Packed = 2,
205     SCDB_IsLiteral = 4,
206     SCDB_IsSized = 8
207   };
208 
209   /// For a named struct that actually has a name, this is a pointer to the
210   /// symbol table entry (maintained by LLVMContext) for the struct.
211   /// This is null if the type is an literal struct or if it is a identified
212   /// type that has an empty name.
213   void *SymbolTableEntry;
214 
215 public:
216   /// This creates an identified struct.
217   static StructType *create(LLVMContext &Context, StringRef Name);
218   static StructType *create(LLVMContext &Context);
219 
220   static StructType *create(ArrayRef<Type *> Elements, StringRef Name,
221                             bool isPacked = false);
222   static StructType *create(ArrayRef<Type *> Elements);
223   static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements,
224                             StringRef Name, bool isPacked = false);
225   static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements);
226   static StructType *create(StringRef Name, Type *elt1, ...) LLVM_END_WITH_NULL;
227 
228   /// This static method is the primary way to create a literal StructType.
229   static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
230                          bool isPacked = false);
231 
232   /// Create an empty structure type.
233   static StructType *get(LLVMContext &Context, bool isPacked = false);
234 
235   /// This static method is a convenience method for creating structure types by
236   /// specifying the elements as arguments. Note that this method always returns
237   /// a non-packed struct, and requires at least one element type.
238   static StructType *get(Type *elt1, ...) LLVM_END_WITH_NULL;
239 
isPacked()240   bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
241 
242   /// Return true if this type is uniqued by structural equivalence, false if it
243   /// is a struct definition.
isLiteral()244   bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
245 
246   /// Return true if this is a type with an identity that has no body specified
247   /// yet. These prints as 'opaque' in .ll files.
isOpaque()248   bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
249 
250   /// isSized - Return true if this is a sized type.
251   bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const;
252 
253   /// Return true if this is a named struct that has a non-empty name.
hasName()254   bool hasName() const { return SymbolTableEntry != nullptr; }
255 
256   /// Return the name for this struct type if it has an identity.
257   /// This may return an empty string for an unnamed struct type.  Do not call
258   /// this on an literal type.
259   StringRef getName() const;
260 
261   /// Change the name of this type to the specified name, or to a name with a
262   /// suffix if there is a collision. Do not call this on an literal type.
263   void setName(StringRef Name);
264 
265   /// Specify a body for an opaque identified type.
266   void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
267   void setBody(Type *elt1, ...) LLVM_END_WITH_NULL;
268 
269   /// Return true if the specified type is valid as a element type.
270   static bool isValidElementType(Type *ElemTy);
271 
272   // Iterator access to the elements.
273   typedef Type::subtype_iterator element_iterator;
element_begin()274   element_iterator element_begin() const { return ContainedTys; }
element_end()275   element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
elements()276   ArrayRef<Type *> const elements() const {
277     return makeArrayRef(element_begin(), element_end());
278   }
279 
280   /// Return true if this is layout identical to the specified struct.
281   bool isLayoutIdentical(StructType *Other) const;
282 
283   /// Random access to the elements
getNumElements()284   unsigned getNumElements() const { return NumContainedTys; }
getElementType(unsigned N)285   Type *getElementType(unsigned N) const {
286     assert(N < NumContainedTys && "Element number out of range!");
287     return ContainedTys[N];
288   }
289 
290   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)291   static inline bool classof(const Type *T) {
292     return T->getTypeID() == StructTyID;
293   }
294 };
295 
getStructName()296 StringRef Type::getStructName() const {
297   return cast<StructType>(this)->getName();
298 }
299 
getStructNumElements()300 unsigned Type::getStructNumElements() const {
301   return cast<StructType>(this)->getNumElements();
302 }
303 
getStructElementType(unsigned N)304 Type *Type::getStructElementType(unsigned N) const {
305   return cast<StructType>(this)->getElementType(N);
306 }
307 
308 /// This is the superclass of the array, pointer and vector type classes.
309 /// All of these represent "arrays" in memory. The array type represents a
310 /// specifically sized array, pointer types are unsized/unknown size arrays,
311 /// vector types represent specifically sized arrays that allow for use of SIMD
312 /// instructions. SequentialType holds the common features of all, which stem
313 /// from the fact that all three lay their components out in memory identically.
314 class SequentialType : public CompositeType {
315   Type *ContainedType;               ///< Storage for the single contained type.
316   SequentialType(const SequentialType &) = delete;
317   const SequentialType &operator=(const SequentialType &) = delete;
318 
319 protected:
SequentialType(TypeID TID,Type * ElType)320   SequentialType(TypeID TID, Type *ElType)
321     : CompositeType(ElType->getContext(), TID), ContainedType(ElType) {
322     ContainedTys = &ContainedType;
323     NumContainedTys = 1;
324   }
325 
326 public:
getElementType()327   Type *getElementType() const { return getSequentialElementType(); }
328 
329   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)330   static inline bool classof(const Type *T) {
331     return T->getTypeID() == ArrayTyID ||
332            T->getTypeID() == PointerTyID ||
333            T->getTypeID() == VectorTyID;
334   }
335 };
336 
337 /// Class to represent array types.
338 class ArrayType : public SequentialType {
339   uint64_t NumElements;
340 
341   ArrayType(const ArrayType &) = delete;
342   const ArrayType &operator=(const ArrayType &) = delete;
343   ArrayType(Type *ElType, uint64_t NumEl);
344 
345 public:
346   /// This static method is the primary way to construct an ArrayType
347   static ArrayType *get(Type *ElementType, uint64_t NumElements);
348 
349   /// Return true if the specified type is valid as a element type.
350   static bool isValidElementType(Type *ElemTy);
351 
getNumElements()352   uint64_t getNumElements() const { return NumElements; }
353 
354   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)355   static inline bool classof(const Type *T) {
356     return T->getTypeID() == ArrayTyID;
357   }
358 };
359 
getArrayNumElements()360 uint64_t Type::getArrayNumElements() const {
361   return cast<ArrayType>(this)->getNumElements();
362 }
363 
364 /// Class to represent vector types.
365 class VectorType : public SequentialType {
366   unsigned NumElements;
367 
368   VectorType(const VectorType &) = delete;
369   const VectorType &operator=(const VectorType &) = delete;
370   VectorType(Type *ElType, unsigned NumEl);
371 
372 public:
373   /// This static method is the primary way to construct an VectorType.
374   static VectorType *get(Type *ElementType, unsigned NumElements);
375 
376   /// This static method gets a VectorType with the same number of elements as
377   /// the input type, and the element type is an integer type of the same width
378   /// as the input element type.
getInteger(VectorType * VTy)379   static VectorType *getInteger(VectorType *VTy) {
380     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
381     assert(EltBits && "Element size must be of a non-zero size");
382     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
383     return VectorType::get(EltTy, VTy->getNumElements());
384   }
385 
386   /// This static method is like getInteger except that the element types are
387   /// twice as wide as the elements in the input type.
getExtendedElementVectorType(VectorType * VTy)388   static VectorType *getExtendedElementVectorType(VectorType *VTy) {
389     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
390     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2);
391     return VectorType::get(EltTy, VTy->getNumElements());
392   }
393 
394   /// This static method is like getInteger except that the element types are
395   /// half as wide as the elements in the input type.
getTruncatedElementVectorType(VectorType * VTy)396   static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
397     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
398     assert((EltBits & 1) == 0 &&
399            "Cannot truncate vector element with odd bit-width");
400     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
401     return VectorType::get(EltTy, VTy->getNumElements());
402   }
403 
404   /// This static method returns a VectorType with half as many elements as the
405   /// input type and the same element type.
getHalfElementsVectorType(VectorType * VTy)406   static VectorType *getHalfElementsVectorType(VectorType *VTy) {
407     unsigned NumElts = VTy->getNumElements();
408     assert ((NumElts & 1) == 0 &&
409             "Cannot halve vector with odd number of elements.");
410     return VectorType::get(VTy->getElementType(), NumElts/2);
411   }
412 
413   /// This static method returns a VectorType with twice as many elements as the
414   /// input type and the same element type.
getDoubleElementsVectorType(VectorType * VTy)415   static VectorType *getDoubleElementsVectorType(VectorType *VTy) {
416     unsigned NumElts = VTy->getNumElements();
417     return VectorType::get(VTy->getElementType(), NumElts*2);
418   }
419 
420   /// Return true if the specified type is valid as a element type.
421   static bool isValidElementType(Type *ElemTy);
422 
423   /// Return the number of elements in the Vector type.
getNumElements()424   unsigned getNumElements() const { return NumElements; }
425 
426   /// Return the number of bits in the Vector type.
427   /// Returns zero when the vector is a vector of pointers.
getBitWidth()428   unsigned getBitWidth() const {
429     return NumElements * getElementType()->getPrimitiveSizeInBits();
430   }
431 
432   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)433   static inline bool classof(const Type *T) {
434     return T->getTypeID() == VectorTyID;
435   }
436 };
437 
getVectorNumElements()438 unsigned Type::getVectorNumElements() const {
439   return cast<VectorType>(this)->getNumElements();
440 }
441 
442 /// Class to represent pointers.
443 class PointerType : public SequentialType {
444   PointerType(const PointerType &) = delete;
445   const PointerType &operator=(const PointerType &) = delete;
446   explicit PointerType(Type *ElType, unsigned AddrSpace);
447 
448 public:
449   /// This constructs a pointer to an object of the specified type in a numbered
450   /// address space.
451   static PointerType *get(Type *ElementType, unsigned AddressSpace);
452 
453   /// This constructs a pointer to an object of the specified type in the
454   /// generic address space (address space zero).
getUnqual(Type * ElementType)455   static PointerType *getUnqual(Type *ElementType) {
456     return PointerType::get(ElementType, 0);
457   }
458 
459   /// Return true if the specified type is valid as a element type.
460   static bool isValidElementType(Type *ElemTy);
461 
462   /// Return true if we can load or store from a pointer to this type.
463   static bool isLoadableOrStorableType(Type *ElemTy);
464 
465   /// Return the address space of the Pointer type.
getAddressSpace()466   inline unsigned getAddressSpace() const { return getSubclassData(); }
467 
468   /// Implement support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)469   static inline bool classof(const Type *T) {
470     return T->getTypeID() == PointerTyID;
471   }
472 };
473 
getPointerAddressSpace()474 unsigned Type::getPointerAddressSpace() const {
475   return cast<PointerType>(getScalarType())->getAddressSpace();
476 }
477 
478 } // End llvm namespace
479 
480 #endif
481