1 //===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the declarations of classes that represent "derived
11 // types". These are things like "arrays of x" or "structure of x, y, z" or
12 // "function returning x taking (y,z) as parameters", etc...
13 //
14 // The implementations of these classes live in the Type.cpp file.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #ifndef LLVM_IR_DERIVEDTYPES_H
19 #define LLVM_IR_DERIVEDTYPES_H
20
21 #include "llvm/IR/Type.h"
22 #include "llvm/Support/Compiler.h"
23 #include "llvm/Support/DataTypes.h"
24
25 namespace llvm {
26
27 class Value;
28 class APInt;
29 class LLVMContext;
30 template<typename T> class ArrayRef;
31 class StringRef;
32
33 /// Class to represent integer types. Note that this class is also used to
34 /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
35 /// Int64Ty.
36 /// @brief Integer representation type
37 class IntegerType : public Type {
38 friend class LLVMContextImpl;
39
40 protected:
IntegerType(LLVMContext & C,unsigned NumBits)41 explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
42 setSubclassData(NumBits);
43 }
44
45 public:
46 /// This enum is just used to hold constants we need for IntegerType.
47 enum {
48 MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified
49 MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified
50 ///< Note that bit width is stored in the Type classes SubclassData field
51 ///< which has 23 bits. This yields a maximum bit width of 8,388,607 bits.
52 };
53
54 /// This static method is the primary way of constructing an IntegerType.
55 /// If an IntegerType with the same NumBits value was previously instantiated,
56 /// that instance will be returned. Otherwise a new one will be created. Only
57 /// one instance with a given NumBits value is ever created.
58 /// @brief Get or create an IntegerType instance.
59 static IntegerType *get(LLVMContext &C, unsigned NumBits);
60
61 /// @brief Get the number of bits in this IntegerType
getBitWidth()62 unsigned getBitWidth() const { return getSubclassData(); }
63
64 /// Return a bitmask with ones set for all of the bits that can be set by an
65 /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc.
getBitMask()66 uint64_t getBitMask() const {
67 return ~uint64_t(0UL) >> (64-getBitWidth());
68 }
69
70 /// Return a uint64_t with just the most significant bit set (the sign bit, if
71 /// the value is treated as a signed number).
getSignBit()72 uint64_t getSignBit() const {
73 return 1ULL << (getBitWidth()-1);
74 }
75
76 /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
77 /// @returns a bit mask with ones set for all the bits of this type.
78 /// @brief Get a bit mask for this type.
79 APInt getMask() const;
80
81 /// This method determines if the width of this IntegerType is a power-of-2
82 /// in terms of 8 bit bytes.
83 /// @returns true if this is a power-of-2 byte width.
84 /// @brief Is this a power-of-2 byte-width IntegerType ?
85 bool isPowerOf2ByteWidth() const;
86
87 /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)88 static inline bool classof(const Type *T) {
89 return T->getTypeID() == IntegerTyID;
90 }
91 };
92
getIntegerBitWidth()93 unsigned Type::getIntegerBitWidth() const {
94 return cast<IntegerType>(this)->getBitWidth();
95 }
96
97 /// Class to represent function types
98 ///
99 class FunctionType : public Type {
100 FunctionType(const FunctionType &) = delete;
101 const FunctionType &operator=(const FunctionType &) = delete;
102 FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
103
104 public:
105 /// This static method is the primary way of constructing a FunctionType.
106 static FunctionType *get(Type *Result,
107 ArrayRef<Type*> Params, bool isVarArg);
108
109 /// Create a FunctionType taking no parameters.
110 static FunctionType *get(Type *Result, bool isVarArg);
111
112 /// Return true if the specified type is valid as a return type.
113 static bool isValidReturnType(Type *RetTy);
114
115 /// Return true if the specified type is valid as an argument type.
116 static bool isValidArgumentType(Type *ArgTy);
117
isVarArg()118 bool isVarArg() const { return getSubclassData()!=0; }
getReturnType()119 Type *getReturnType() const { return ContainedTys[0]; }
120
121 typedef Type::subtype_iterator param_iterator;
param_begin()122 param_iterator param_begin() const { return ContainedTys + 1; }
param_end()123 param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
params()124 ArrayRef<Type *> params() const {
125 return makeArrayRef(param_begin(), param_end());
126 }
127
128 /// Parameter type accessors.
getParamType(unsigned i)129 Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
130
131 /// Return the number of fixed parameters this function type requires.
132 /// This does not consider varargs.
getNumParams()133 unsigned getNumParams() const { return NumContainedTys - 1; }
134
135 /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)136 static inline bool classof(const Type *T) {
137 return T->getTypeID() == FunctionTyID;
138 }
139 };
140 static_assert(AlignOf<FunctionType>::Alignment >= AlignOf<Type *>::Alignment,
141 "Alignment sufficient for objects appended to FunctionType");
142
isFunctionVarArg()143 bool Type::isFunctionVarArg() const {
144 return cast<FunctionType>(this)->isVarArg();
145 }
146
getFunctionParamType(unsigned i)147 Type *Type::getFunctionParamType(unsigned i) const {
148 return cast<FunctionType>(this)->getParamType(i);
149 }
150
getFunctionNumParams()151 unsigned Type::getFunctionNumParams() const {
152 return cast<FunctionType>(this)->getNumParams();
153 }
154
155 /// Common super class of ArrayType, StructType, PointerType and VectorType.
156 class CompositeType : public Type {
157 protected:
CompositeType(LLVMContext & C,TypeID tid)158 explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) {}
159
160 public:
161 /// Given an index value into the type, return the type of the element.
162 Type *getTypeAtIndex(const Value *V) const;
163 Type *getTypeAtIndex(unsigned Idx) const;
164 bool indexValid(const Value *V) const;
165 bool indexValid(unsigned Idx) const;
166
167 /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)168 static inline bool classof(const Type *T) {
169 return T->getTypeID() == ArrayTyID ||
170 T->getTypeID() == StructTyID ||
171 T->getTypeID() == PointerTyID ||
172 T->getTypeID() == VectorTyID;
173 }
174 };
175
176 /// Class to represent struct types. There are two different kinds of struct
177 /// types: Literal structs and Identified structs.
178 ///
179 /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
180 /// always have a body when created. You can get one of these by using one of
181 /// the StructType::get() forms.
182 ///
183 /// Identified structs (e.g. %foo or %42) may optionally have a name and are not
184 /// uniqued. The names for identified structs are managed at the LLVMContext
185 /// level, so there can only be a single identified struct with a given name in
186 /// a particular LLVMContext. Identified structs may also optionally be opaque
187 /// (have no body specified). You get one of these by using one of the
188 /// StructType::create() forms.
189 ///
190 /// Independent of what kind of struct you have, the body of a struct type are
191 /// laid out in memory consequtively with the elements directly one after the
192 /// other (if the struct is packed) or (if not packed) with padding between the
193 /// elements as defined by DataLayout (which is required to match what the code
194 /// generator for a target expects).
195 ///
196 class StructType : public CompositeType {
197 StructType(const StructType &) = delete;
198 const StructType &operator=(const StructType &) = delete;
StructType(LLVMContext & C)199 StructType(LLVMContext &C)
200 : CompositeType(C, StructTyID), SymbolTableEntry(nullptr) {}
201 enum {
202 /// This is the contents of the SubClassData field.
203 SCDB_HasBody = 1,
204 SCDB_Packed = 2,
205 SCDB_IsLiteral = 4,
206 SCDB_IsSized = 8
207 };
208
209 /// For a named struct that actually has a name, this is a pointer to the
210 /// symbol table entry (maintained by LLVMContext) for the struct.
211 /// This is null if the type is an literal struct or if it is a identified
212 /// type that has an empty name.
213 void *SymbolTableEntry;
214
215 public:
216 /// This creates an identified struct.
217 static StructType *create(LLVMContext &Context, StringRef Name);
218 static StructType *create(LLVMContext &Context);
219
220 static StructType *create(ArrayRef<Type *> Elements, StringRef Name,
221 bool isPacked = false);
222 static StructType *create(ArrayRef<Type *> Elements);
223 static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements,
224 StringRef Name, bool isPacked = false);
225 static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements);
226 static StructType *create(StringRef Name, Type *elt1, ...) LLVM_END_WITH_NULL;
227
228 /// This static method is the primary way to create a literal StructType.
229 static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
230 bool isPacked = false);
231
232 /// Create an empty structure type.
233 static StructType *get(LLVMContext &Context, bool isPacked = false);
234
235 /// This static method is a convenience method for creating structure types by
236 /// specifying the elements as arguments. Note that this method always returns
237 /// a non-packed struct, and requires at least one element type.
238 static StructType *get(Type *elt1, ...) LLVM_END_WITH_NULL;
239
isPacked()240 bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
241
242 /// Return true if this type is uniqued by structural equivalence, false if it
243 /// is a struct definition.
isLiteral()244 bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
245
246 /// Return true if this is a type with an identity that has no body specified
247 /// yet. These prints as 'opaque' in .ll files.
isOpaque()248 bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
249
250 /// isSized - Return true if this is a sized type.
251 bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const;
252
253 /// Return true if this is a named struct that has a non-empty name.
hasName()254 bool hasName() const { return SymbolTableEntry != nullptr; }
255
256 /// Return the name for this struct type if it has an identity.
257 /// This may return an empty string for an unnamed struct type. Do not call
258 /// this on an literal type.
259 StringRef getName() const;
260
261 /// Change the name of this type to the specified name, or to a name with a
262 /// suffix if there is a collision. Do not call this on an literal type.
263 void setName(StringRef Name);
264
265 /// Specify a body for an opaque identified type.
266 void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
267 void setBody(Type *elt1, ...) LLVM_END_WITH_NULL;
268
269 /// Return true if the specified type is valid as a element type.
270 static bool isValidElementType(Type *ElemTy);
271
272 // Iterator access to the elements.
273 typedef Type::subtype_iterator element_iterator;
element_begin()274 element_iterator element_begin() const { return ContainedTys; }
element_end()275 element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
elements()276 ArrayRef<Type *> const elements() const {
277 return makeArrayRef(element_begin(), element_end());
278 }
279
280 /// Return true if this is layout identical to the specified struct.
281 bool isLayoutIdentical(StructType *Other) const;
282
283 /// Random access to the elements
getNumElements()284 unsigned getNumElements() const { return NumContainedTys; }
getElementType(unsigned N)285 Type *getElementType(unsigned N) const {
286 assert(N < NumContainedTys && "Element number out of range!");
287 return ContainedTys[N];
288 }
289
290 /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)291 static inline bool classof(const Type *T) {
292 return T->getTypeID() == StructTyID;
293 }
294 };
295
getStructName()296 StringRef Type::getStructName() const {
297 return cast<StructType>(this)->getName();
298 }
299
getStructNumElements()300 unsigned Type::getStructNumElements() const {
301 return cast<StructType>(this)->getNumElements();
302 }
303
getStructElementType(unsigned N)304 Type *Type::getStructElementType(unsigned N) const {
305 return cast<StructType>(this)->getElementType(N);
306 }
307
308 /// This is the superclass of the array, pointer and vector type classes.
309 /// All of these represent "arrays" in memory. The array type represents a
310 /// specifically sized array, pointer types are unsized/unknown size arrays,
311 /// vector types represent specifically sized arrays that allow for use of SIMD
312 /// instructions. SequentialType holds the common features of all, which stem
313 /// from the fact that all three lay their components out in memory identically.
314 class SequentialType : public CompositeType {
315 Type *ContainedType; ///< Storage for the single contained type.
316 SequentialType(const SequentialType &) = delete;
317 const SequentialType &operator=(const SequentialType &) = delete;
318
319 protected:
SequentialType(TypeID TID,Type * ElType)320 SequentialType(TypeID TID, Type *ElType)
321 : CompositeType(ElType->getContext(), TID), ContainedType(ElType) {
322 ContainedTys = &ContainedType;
323 NumContainedTys = 1;
324 }
325
326 public:
getElementType()327 Type *getElementType() const { return getSequentialElementType(); }
328
329 /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)330 static inline bool classof(const Type *T) {
331 return T->getTypeID() == ArrayTyID ||
332 T->getTypeID() == PointerTyID ||
333 T->getTypeID() == VectorTyID;
334 }
335 };
336
337 /// Class to represent array types.
338 class ArrayType : public SequentialType {
339 uint64_t NumElements;
340
341 ArrayType(const ArrayType &) = delete;
342 const ArrayType &operator=(const ArrayType &) = delete;
343 ArrayType(Type *ElType, uint64_t NumEl);
344
345 public:
346 /// This static method is the primary way to construct an ArrayType
347 static ArrayType *get(Type *ElementType, uint64_t NumElements);
348
349 /// Return true if the specified type is valid as a element type.
350 static bool isValidElementType(Type *ElemTy);
351
getNumElements()352 uint64_t getNumElements() const { return NumElements; }
353
354 /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)355 static inline bool classof(const Type *T) {
356 return T->getTypeID() == ArrayTyID;
357 }
358 };
359
getArrayNumElements()360 uint64_t Type::getArrayNumElements() const {
361 return cast<ArrayType>(this)->getNumElements();
362 }
363
364 /// Class to represent vector types.
365 class VectorType : public SequentialType {
366 unsigned NumElements;
367
368 VectorType(const VectorType &) = delete;
369 const VectorType &operator=(const VectorType &) = delete;
370 VectorType(Type *ElType, unsigned NumEl);
371
372 public:
373 /// This static method is the primary way to construct an VectorType.
374 static VectorType *get(Type *ElementType, unsigned NumElements);
375
376 /// This static method gets a VectorType with the same number of elements as
377 /// the input type, and the element type is an integer type of the same width
378 /// as the input element type.
getInteger(VectorType * VTy)379 static VectorType *getInteger(VectorType *VTy) {
380 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
381 assert(EltBits && "Element size must be of a non-zero size");
382 Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
383 return VectorType::get(EltTy, VTy->getNumElements());
384 }
385
386 /// This static method is like getInteger except that the element types are
387 /// twice as wide as the elements in the input type.
getExtendedElementVectorType(VectorType * VTy)388 static VectorType *getExtendedElementVectorType(VectorType *VTy) {
389 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
390 Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2);
391 return VectorType::get(EltTy, VTy->getNumElements());
392 }
393
394 /// This static method is like getInteger except that the element types are
395 /// half as wide as the elements in the input type.
getTruncatedElementVectorType(VectorType * VTy)396 static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
397 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
398 assert((EltBits & 1) == 0 &&
399 "Cannot truncate vector element with odd bit-width");
400 Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
401 return VectorType::get(EltTy, VTy->getNumElements());
402 }
403
404 /// This static method returns a VectorType with half as many elements as the
405 /// input type and the same element type.
getHalfElementsVectorType(VectorType * VTy)406 static VectorType *getHalfElementsVectorType(VectorType *VTy) {
407 unsigned NumElts = VTy->getNumElements();
408 assert ((NumElts & 1) == 0 &&
409 "Cannot halve vector with odd number of elements.");
410 return VectorType::get(VTy->getElementType(), NumElts/2);
411 }
412
413 /// This static method returns a VectorType with twice as many elements as the
414 /// input type and the same element type.
getDoubleElementsVectorType(VectorType * VTy)415 static VectorType *getDoubleElementsVectorType(VectorType *VTy) {
416 unsigned NumElts = VTy->getNumElements();
417 return VectorType::get(VTy->getElementType(), NumElts*2);
418 }
419
420 /// Return true if the specified type is valid as a element type.
421 static bool isValidElementType(Type *ElemTy);
422
423 /// Return the number of elements in the Vector type.
getNumElements()424 unsigned getNumElements() const { return NumElements; }
425
426 /// Return the number of bits in the Vector type.
427 /// Returns zero when the vector is a vector of pointers.
getBitWidth()428 unsigned getBitWidth() const {
429 return NumElements * getElementType()->getPrimitiveSizeInBits();
430 }
431
432 /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)433 static inline bool classof(const Type *T) {
434 return T->getTypeID() == VectorTyID;
435 }
436 };
437
getVectorNumElements()438 unsigned Type::getVectorNumElements() const {
439 return cast<VectorType>(this)->getNumElements();
440 }
441
442 /// Class to represent pointers.
443 class PointerType : public SequentialType {
444 PointerType(const PointerType &) = delete;
445 const PointerType &operator=(const PointerType &) = delete;
446 explicit PointerType(Type *ElType, unsigned AddrSpace);
447
448 public:
449 /// This constructs a pointer to an object of the specified type in a numbered
450 /// address space.
451 static PointerType *get(Type *ElementType, unsigned AddressSpace);
452
453 /// This constructs a pointer to an object of the specified type in the
454 /// generic address space (address space zero).
getUnqual(Type * ElementType)455 static PointerType *getUnqual(Type *ElementType) {
456 return PointerType::get(ElementType, 0);
457 }
458
459 /// Return true if the specified type is valid as a element type.
460 static bool isValidElementType(Type *ElemTy);
461
462 /// Return true if we can load or store from a pointer to this type.
463 static bool isLoadableOrStorableType(Type *ElemTy);
464
465 /// Return the address space of the Pointer type.
getAddressSpace()466 inline unsigned getAddressSpace() const { return getSubclassData(); }
467
468 /// Implement support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)469 static inline bool classof(const Type *T) {
470 return T->getTypeID() == PointerTyID;
471 }
472 };
473
getPointerAddressSpace()474 unsigned Type::getPointerAddressSpace() const {
475 return cast<PointerType>(getScalarType())->getAddressSpace();
476 }
477
478 } // End llvm namespace
479
480 #endif
481