1 //===-- llvm/CallingConvLower.h - Calling Conventions -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the CCState and CCValAssign classes, used for lowering
11 // and implementing calling conventions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CODEGEN_CALLINGCONVLOWER_H
16 #define LLVM_CODEGEN_CALLINGCONVLOWER_H
17 
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/IR/CallingConv.h"
22 #include "llvm/MC/MCRegisterInfo.h"
23 #include "llvm/Target/TargetCallingConv.h"
24 
25 namespace llvm {
26 class CCState;
27 class MVT;
28 class TargetMachine;
29 class TargetRegisterInfo;
30 
31 /// CCValAssign - Represent assignment of one arg/retval to a location.
32 class CCValAssign {
33 public:
34   enum LocInfo {
35     Full,      // The value fills the full location.
36     SExt,      // The value is sign extended in the location.
37     ZExt,      // The value is zero extended in the location.
38     AExt,      // The value is extended with undefined upper bits.
39     SExtUpper, // The value is in the upper bits of the location and should be
40                // sign extended when retrieved.
41     ZExtUpper, // The value is in the upper bits of the location and should be
42                // zero extended when retrieved.
43     AExtUpper, // The value is in the upper bits of the location and should be
44                // extended with undefined upper bits when retrieved.
45     BCvt,      // The value is bit-converted in the location.
46     VExt,      // The value is vector-widened in the location.
47                // FIXME: Not implemented yet. Code that uses AExt to mean
48                // vector-widen should be fixed to use VExt instead.
49     FPExt,     // The floating-point value is fp-extended in the location.
50     Indirect   // The location contains pointer to the value.
51     // TODO: a subset of the value is in the location.
52   };
53 
54 private:
55   /// ValNo - This is the value number begin assigned (e.g. an argument number).
56   unsigned ValNo;
57 
58   /// Loc is either a stack offset or a register number.
59   unsigned Loc;
60 
61   /// isMem - True if this is a memory loc, false if it is a register loc.
62   unsigned isMem : 1;
63 
64   /// isCustom - True if this arg/retval requires special handling.
65   unsigned isCustom : 1;
66 
67   /// Information about how the value is assigned.
68   LocInfo HTP : 6;
69 
70   /// ValVT - The type of the value being assigned.
71   MVT ValVT;
72 
73   /// LocVT - The type of the location being assigned to.
74   MVT LocVT;
75 public:
76 
getReg(unsigned ValNo,MVT ValVT,unsigned RegNo,MVT LocVT,LocInfo HTP)77   static CCValAssign getReg(unsigned ValNo, MVT ValVT,
78                             unsigned RegNo, MVT LocVT,
79                             LocInfo HTP) {
80     CCValAssign Ret;
81     Ret.ValNo = ValNo;
82     Ret.Loc = RegNo;
83     Ret.isMem = false;
84     Ret.isCustom = false;
85     Ret.HTP = HTP;
86     Ret.ValVT = ValVT;
87     Ret.LocVT = LocVT;
88     return Ret;
89   }
90 
getCustomReg(unsigned ValNo,MVT ValVT,unsigned RegNo,MVT LocVT,LocInfo HTP)91   static CCValAssign getCustomReg(unsigned ValNo, MVT ValVT,
92                                   unsigned RegNo, MVT LocVT,
93                                   LocInfo HTP) {
94     CCValAssign Ret;
95     Ret = getReg(ValNo, ValVT, RegNo, LocVT, HTP);
96     Ret.isCustom = true;
97     return Ret;
98   }
99 
getMem(unsigned ValNo,MVT ValVT,unsigned Offset,MVT LocVT,LocInfo HTP)100   static CCValAssign getMem(unsigned ValNo, MVT ValVT,
101                             unsigned Offset, MVT LocVT,
102                             LocInfo HTP) {
103     CCValAssign Ret;
104     Ret.ValNo = ValNo;
105     Ret.Loc = Offset;
106     Ret.isMem = true;
107     Ret.isCustom = false;
108     Ret.HTP = HTP;
109     Ret.ValVT = ValVT;
110     Ret.LocVT = LocVT;
111     return Ret;
112   }
113 
getCustomMem(unsigned ValNo,MVT ValVT,unsigned Offset,MVT LocVT,LocInfo HTP)114   static CCValAssign getCustomMem(unsigned ValNo, MVT ValVT,
115                                   unsigned Offset, MVT LocVT,
116                                   LocInfo HTP) {
117     CCValAssign Ret;
118     Ret = getMem(ValNo, ValVT, Offset, LocVT, HTP);
119     Ret.isCustom = true;
120     return Ret;
121   }
122 
123   // There is no need to differentiate between a pending CCValAssign and other
124   // kinds, as they are stored in a different list.
125   static CCValAssign getPending(unsigned ValNo, MVT ValVT, MVT LocVT,
126                                 LocInfo HTP, unsigned ExtraInfo = 0) {
127     return getReg(ValNo, ValVT, ExtraInfo, LocVT, HTP);
128   }
129 
convertToReg(unsigned RegNo)130   void convertToReg(unsigned RegNo) {
131     Loc = RegNo;
132     isMem = false;
133   }
134 
convertToMem(unsigned Offset)135   void convertToMem(unsigned Offset) {
136     Loc = Offset;
137     isMem = true;
138   }
139 
getValNo()140   unsigned getValNo() const { return ValNo; }
getValVT()141   MVT getValVT() const { return ValVT; }
142 
isRegLoc()143   bool isRegLoc() const { return !isMem; }
isMemLoc()144   bool isMemLoc() const { return isMem; }
145 
needsCustom()146   bool needsCustom() const { return isCustom; }
147 
getLocReg()148   unsigned getLocReg() const { assert(isRegLoc()); return Loc; }
getLocMemOffset()149   unsigned getLocMemOffset() const { assert(isMemLoc()); return Loc; }
getExtraInfo()150   unsigned getExtraInfo() const { return Loc; }
getLocVT()151   MVT getLocVT() const { return LocVT; }
152 
getLocInfo()153   LocInfo getLocInfo() const { return HTP; }
isExtInLoc()154   bool isExtInLoc() const {
155     return (HTP == AExt || HTP == SExt || HTP == ZExt);
156   }
157 
isUpperBitsInLoc()158   bool isUpperBitsInLoc() const {
159     return HTP == AExtUpper || HTP == SExtUpper || HTP == ZExtUpper;
160   }
161 };
162 
163 /// Describes a register that needs to be forwarded from the prologue to a
164 /// musttail call.
165 struct ForwardedRegister {
ForwardedRegisterForwardedRegister166   ForwardedRegister(unsigned VReg, MCPhysReg PReg, MVT VT)
167       : VReg(VReg), PReg(PReg), VT(VT) {}
168   unsigned VReg;
169   MCPhysReg PReg;
170   MVT VT;
171 };
172 
173 /// CCAssignFn - This function assigns a location for Val, updating State to
174 /// reflect the change.  It returns 'true' if it failed to handle Val.
175 typedef bool CCAssignFn(unsigned ValNo, MVT ValVT,
176                         MVT LocVT, CCValAssign::LocInfo LocInfo,
177                         ISD::ArgFlagsTy ArgFlags, CCState &State);
178 
179 /// CCCustomFn - This function assigns a location for Val, possibly updating
180 /// all args to reflect changes and indicates if it handled it. It must set
181 /// isCustom if it handles the arg and returns true.
182 typedef bool CCCustomFn(unsigned &ValNo, MVT &ValVT,
183                         MVT &LocVT, CCValAssign::LocInfo &LocInfo,
184                         ISD::ArgFlagsTy &ArgFlags, CCState &State);
185 
186 /// ParmContext - This enum tracks whether calling convention lowering is in
187 /// the context of prologue or call generation. Not all backends make use of
188 /// this information.
189 typedef enum { Unknown, Prologue, Call } ParmContext;
190 
191 /// CCState - This class holds information needed while lowering arguments and
192 /// return values.  It captures which registers are already assigned and which
193 /// stack slots are used.  It provides accessors to allocate these values.
194 class CCState {
195 private:
196   CallingConv::ID CallingConv;
197   bool IsVarArg;
198   bool AnalyzingMustTailForwardedRegs = false;
199   MachineFunction &MF;
200   const TargetRegisterInfo &TRI;
201   SmallVectorImpl<CCValAssign> &Locs;
202   LLVMContext &Context;
203 
204   unsigned StackOffset;
205   unsigned MaxStackArgAlign;
206   SmallVector<uint32_t, 16> UsedRegs;
207   SmallVector<CCValAssign, 4> PendingLocs;
208 
209   // ByValInfo and SmallVector<ByValInfo, 4> ByValRegs:
210   //
211   // Vector of ByValInfo instances (ByValRegs) is introduced for byval registers
212   // tracking.
213   // Or, in another words it tracks byval parameters that are stored in
214   // general purpose registers.
215   //
216   // For 4 byte stack alignment,
217   // instance index means byval parameter number in formal
218   // arguments set. Assume, we have some "struct_type" with size = 4 bytes,
219   // then, for function "foo":
220   //
221   // i32 foo(i32 %p, %struct_type* %r, i32 %s, %struct_type* %t)
222   //
223   // ByValRegs[0] describes how "%r" is stored (Begin == r1, End == r2)
224   // ByValRegs[1] describes how "%t" is stored (Begin == r3, End == r4).
225   //
226   // In case of 8 bytes stack alignment,
227   // ByValRegs may also contain information about wasted registers.
228   // In function shown above, r3 would be wasted according to AAPCS rules.
229   // And in that case ByValRegs[1].Waste would be "true".
230   // ByValRegs vector size still would be 2,
231   // while "%t" goes to the stack: it wouldn't be described in ByValRegs.
232   //
233   // Supposed use-case for this collection:
234   // 1. Initially ByValRegs is empty, InRegsParamsProcessed is 0.
235   // 2. HandleByVal fillups ByValRegs.
236   // 3. Argument analysis (LowerFormatArguments, for example). After
237   // some byval argument was analyzed, InRegsParamsProcessed is increased.
238   struct ByValInfo {
239     ByValInfo(unsigned B, unsigned E, bool IsWaste = false) :
BeginByValInfo240       Begin(B), End(E), Waste(IsWaste) {}
241     // First register allocated for current parameter.
242     unsigned Begin;
243 
244     // First after last register allocated for current parameter.
245     unsigned End;
246 
247     // Means that current range of registers doesn't belong to any
248     // parameters. It was wasted due to stack alignment rules.
249     // For more information see:
250     // AAPCS, 5.5 Parameter Passing, Stage C, C.3.
251     bool Waste;
252   };
253   SmallVector<ByValInfo, 4 > ByValRegs;
254 
255   // InRegsParamsProcessed - shows how many instances of ByValRegs was proceed
256   // during argument analysis.
257   unsigned InRegsParamsProcessed;
258 
259 protected:
260   ParmContext CallOrPrologue;
261 
262 public:
263   CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
264           SmallVectorImpl<CCValAssign> &locs, LLVMContext &C);
265 
addLoc(const CCValAssign & V)266   void addLoc(const CCValAssign &V) {
267     Locs.push_back(V);
268   }
269 
getContext()270   LLVMContext &getContext() const { return Context; }
getMachineFunction()271   MachineFunction &getMachineFunction() const { return MF; }
getCallingConv()272   CallingConv::ID getCallingConv() const { return CallingConv; }
isVarArg()273   bool isVarArg() const { return IsVarArg; }
274 
275   /// getNextStackOffset - Return the next stack offset such that all stack
276   /// slots satisfy their alignment requirements.
getNextStackOffset()277   unsigned getNextStackOffset() const {
278     return StackOffset;
279   }
280 
281   /// getAlignedCallFrameSize - Return the size of the call frame needed to
282   /// be able to store all arguments and such that the alignment requirement
283   /// of each of the arguments is satisfied.
getAlignedCallFrameSize()284   unsigned getAlignedCallFrameSize() const {
285     return alignTo(StackOffset, MaxStackArgAlign);
286   }
287 
288   /// isAllocated - Return true if the specified register (or an alias) is
289   /// allocated.
isAllocated(unsigned Reg)290   bool isAllocated(unsigned Reg) const {
291     return UsedRegs[Reg/32] & (1 << (Reg&31));
292   }
293 
294   /// AnalyzeFormalArguments - Analyze an array of argument values,
295   /// incorporating info about the formals into this state.
296   void AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
297                               CCAssignFn Fn);
298 
299   /// AnalyzeReturn - Analyze the returned values of a return,
300   /// incorporating info about the result values into this state.
301   void AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
302                      CCAssignFn Fn);
303 
304   /// CheckReturn - Analyze the return values of a function, returning
305   /// true if the return can be performed without sret-demotion, and
306   /// false otherwise.
307   bool CheckReturn(const SmallVectorImpl<ISD::OutputArg> &ArgsFlags,
308                    CCAssignFn Fn);
309 
310   /// AnalyzeCallOperands - Analyze the outgoing arguments to a call,
311   /// incorporating info about the passed values into this state.
312   void AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
313                            CCAssignFn Fn);
314 
315   /// AnalyzeCallOperands - Same as above except it takes vectors of types
316   /// and argument flags.
317   void AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs,
318                            SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
319                            CCAssignFn Fn);
320 
321   /// AnalyzeCallResult - Analyze the return values of a call,
322   /// incorporating info about the passed values into this state.
323   void AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
324                          CCAssignFn Fn);
325 
326   /// AnalyzeCallResult - Same as above except it's specialized for calls which
327   /// produce a single value.
328   void AnalyzeCallResult(MVT VT, CCAssignFn Fn);
329 
330   /// getFirstUnallocated - Return the index of the first unallocated register
331   /// in the set, or Regs.size() if they are all allocated.
getFirstUnallocated(ArrayRef<MCPhysReg> Regs)332   unsigned getFirstUnallocated(ArrayRef<MCPhysReg> Regs) const {
333     for (unsigned i = 0; i < Regs.size(); ++i)
334       if (!isAllocated(Regs[i]))
335         return i;
336     return Regs.size();
337   }
338 
339   /// AllocateReg - Attempt to allocate one register.  If it is not available,
340   /// return zero.  Otherwise, return the register, marking it and any aliases
341   /// as allocated.
AllocateReg(unsigned Reg)342   unsigned AllocateReg(unsigned Reg) {
343     if (isAllocated(Reg)) return 0;
344     MarkAllocated(Reg);
345     return Reg;
346   }
347 
348   /// Version of AllocateReg with extra register to be shadowed.
AllocateReg(unsigned Reg,unsigned ShadowReg)349   unsigned AllocateReg(unsigned Reg, unsigned ShadowReg) {
350     if (isAllocated(Reg)) return 0;
351     MarkAllocated(Reg);
352     MarkAllocated(ShadowReg);
353     return Reg;
354   }
355 
356   /// AllocateReg - Attempt to allocate one of the specified registers.  If none
357   /// are available, return zero.  Otherwise, return the first one available,
358   /// marking it and any aliases as allocated.
AllocateReg(ArrayRef<MCPhysReg> Regs)359   unsigned AllocateReg(ArrayRef<MCPhysReg> Regs) {
360     unsigned FirstUnalloc = getFirstUnallocated(Regs);
361     if (FirstUnalloc == Regs.size())
362       return 0;    // Didn't find the reg.
363 
364     // Mark the register and any aliases as allocated.
365     unsigned Reg = Regs[FirstUnalloc];
366     MarkAllocated(Reg);
367     return Reg;
368   }
369 
370   /// AllocateRegBlock - Attempt to allocate a block of RegsRequired consecutive
371   /// registers. If this is not possible, return zero. Otherwise, return the first
372   /// register of the block that were allocated, marking the entire block as allocated.
AllocateRegBlock(ArrayRef<MCPhysReg> Regs,unsigned RegsRequired)373   unsigned AllocateRegBlock(ArrayRef<MCPhysReg> Regs, unsigned RegsRequired) {
374     if (RegsRequired > Regs.size())
375       return 0;
376 
377     for (unsigned StartIdx = 0; StartIdx <= Regs.size() - RegsRequired;
378          ++StartIdx) {
379       bool BlockAvailable = true;
380       // Check for already-allocated regs in this block
381       for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
382         if (isAllocated(Regs[StartIdx + BlockIdx])) {
383           BlockAvailable = false;
384           break;
385         }
386       }
387       if (BlockAvailable) {
388         // Mark the entire block as allocated
389         for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
390           MarkAllocated(Regs[StartIdx + BlockIdx]);
391         }
392         return Regs[StartIdx];
393       }
394     }
395     // No block was available
396     return 0;
397   }
398 
399   /// Version of AllocateReg with list of registers to be shadowed.
AllocateReg(ArrayRef<MCPhysReg> Regs,const MCPhysReg * ShadowRegs)400   unsigned AllocateReg(ArrayRef<MCPhysReg> Regs, const MCPhysReg *ShadowRegs) {
401     unsigned FirstUnalloc = getFirstUnallocated(Regs);
402     if (FirstUnalloc == Regs.size())
403       return 0;    // Didn't find the reg.
404 
405     // Mark the register and any aliases as allocated.
406     unsigned Reg = Regs[FirstUnalloc], ShadowReg = ShadowRegs[FirstUnalloc];
407     MarkAllocated(Reg);
408     MarkAllocated(ShadowReg);
409     return Reg;
410   }
411 
412   /// AllocateStack - Allocate a chunk of stack space with the specified size
413   /// and alignment.
AllocateStack(unsigned Size,unsigned Align)414   unsigned AllocateStack(unsigned Size, unsigned Align) {
415     assert(Align && ((Align - 1) & Align) == 0); // Align is power of 2.
416     StackOffset = alignTo(StackOffset, Align);
417     unsigned Result = StackOffset;
418     StackOffset += Size;
419     MaxStackArgAlign = std::max(Align, MaxStackArgAlign);
420     ensureMaxAlignment(Align);
421     return Result;
422   }
423 
ensureMaxAlignment(unsigned Align)424   void ensureMaxAlignment(unsigned Align) {
425     if (!AnalyzingMustTailForwardedRegs)
426       MF.getFrameInfo()->ensureMaxAlignment(Align);
427   }
428 
429   /// Version of AllocateStack with extra register to be shadowed.
AllocateStack(unsigned Size,unsigned Align,unsigned ShadowReg)430   unsigned AllocateStack(unsigned Size, unsigned Align, unsigned ShadowReg) {
431     MarkAllocated(ShadowReg);
432     return AllocateStack(Size, Align);
433   }
434 
435   /// Version of AllocateStack with list of extra registers to be shadowed.
436   /// Note that, unlike AllocateReg, this shadows ALL of the shadow registers.
AllocateStack(unsigned Size,unsigned Align,ArrayRef<MCPhysReg> ShadowRegs)437   unsigned AllocateStack(unsigned Size, unsigned Align,
438                          ArrayRef<MCPhysReg> ShadowRegs) {
439     for (unsigned i = 0; i < ShadowRegs.size(); ++i)
440       MarkAllocated(ShadowRegs[i]);
441     return AllocateStack(Size, Align);
442   }
443 
444   // HandleByVal - Allocate a stack slot large enough to pass an argument by
445   // value. The size and alignment information of the argument is encoded in its
446   // parameter attribute.
447   void HandleByVal(unsigned ValNo, MVT ValVT,
448                    MVT LocVT, CCValAssign::LocInfo LocInfo,
449                    int MinSize, int MinAlign, ISD::ArgFlagsTy ArgFlags);
450 
451   // Returns count of byval arguments that are to be stored (even partly)
452   // in registers.
getInRegsParamsCount()453   unsigned getInRegsParamsCount() const { return ByValRegs.size(); }
454 
455   // Returns count of byval in-regs arguments proceed.
getInRegsParamsProcessed()456   unsigned getInRegsParamsProcessed() const { return InRegsParamsProcessed; }
457 
458   // Get information about N-th byval parameter that is stored in registers.
459   // Here "ByValParamIndex" is N.
getInRegsParamInfo(unsigned InRegsParamRecordIndex,unsigned & BeginReg,unsigned & EndReg)460   void getInRegsParamInfo(unsigned InRegsParamRecordIndex,
461                           unsigned& BeginReg, unsigned& EndReg) const {
462     assert(InRegsParamRecordIndex < ByValRegs.size() &&
463            "Wrong ByVal parameter index");
464 
465     const ByValInfo& info = ByValRegs[InRegsParamRecordIndex];
466     BeginReg = info.Begin;
467     EndReg = info.End;
468   }
469 
470   // Add information about parameter that is kept in registers.
addInRegsParamInfo(unsigned RegBegin,unsigned RegEnd)471   void addInRegsParamInfo(unsigned RegBegin, unsigned RegEnd) {
472     ByValRegs.push_back(ByValInfo(RegBegin, RegEnd));
473   }
474 
475   // Goes either to next byval parameter (excluding "waste" record), or
476   // to the end of collection.
477   // Returns false, if end is reached.
nextInRegsParam()478   bool nextInRegsParam() {
479     unsigned e = ByValRegs.size();
480     if (InRegsParamsProcessed < e)
481       ++InRegsParamsProcessed;
482     return InRegsParamsProcessed < e;
483   }
484 
485   // Clear byval registers tracking info.
clearByValRegsInfo()486   void clearByValRegsInfo() {
487     InRegsParamsProcessed = 0;
488     ByValRegs.clear();
489   }
490 
491   // Rewind byval registers tracking info.
rewindByValRegsInfo()492   void rewindByValRegsInfo() {
493     InRegsParamsProcessed = 0;
494   }
495 
getCallOrPrologue()496   ParmContext getCallOrPrologue() const { return CallOrPrologue; }
497 
498   // Get list of pending assignments
getPendingLocs()499   SmallVectorImpl<llvm::CCValAssign> &getPendingLocs() {
500     return PendingLocs;
501   }
502 
503   /// Compute the remaining unused register parameters that would be used for
504   /// the given value type. This is useful when varargs are passed in the
505   /// registers that normal prototyped parameters would be passed in, or for
506   /// implementing perfect forwarding.
507   void getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs, MVT VT,
508                                    CCAssignFn Fn);
509 
510   /// Compute the set of registers that need to be preserved and forwarded to
511   /// any musttail calls.
512   void analyzeMustTailForwardedRegisters(
513       SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes,
514       CCAssignFn Fn);
515 
516   /// Returns true if the results of the two calling conventions are compatible.
517   /// This is usually part of the check for tailcall eligibility.
518   static bool resultsCompatible(CallingConv::ID CalleeCC,
519                                 CallingConv::ID CallerCC, MachineFunction &MF,
520                                 LLVMContext &C,
521                                 const SmallVectorImpl<ISD::InputArg> &Ins,
522                                 CCAssignFn CalleeFn, CCAssignFn CallerFn);
523 
524 private:
525   /// MarkAllocated - Mark a register and all of its aliases as allocated.
526   void MarkAllocated(unsigned Reg);
527 };
528 
529 
530 
531 } // end namespace llvm
532 
533 #endif
534