1 //===----- HexagonMCChecker.cpp - Instruction bundle checking -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the checking of insns inside a bundle according to the
11 // packet constraint rules of the Hexagon ISA.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "HexagonMCChecker.h"
16 
17 #include "HexagonBaseInfo.h"
18 
19 #include "llvm/MC/MCInstrDesc.h"
20 #include "llvm/MC/MCInstrInfo.h"
21 #include "llvm/Support/CommandLine.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/raw_ostream.h"
24 
25 using namespace llvm;
26 
27 static cl::opt<bool> RelaxNVChecks("relax-nv-checks", cl::init(false),
28   cl::ZeroOrMore, cl::Hidden, cl::desc("Relax checks of new-value validity"));
29 
30 const HexagonMCChecker::PredSense
31   HexagonMCChecker::Unconditional(Hexagon::NoRegister, false);
32 
init()33 void HexagonMCChecker::init() {
34   // Initialize read-only registers set.
35   ReadOnly.insert(Hexagon::PC);
36 
37   // Figure out the loop-registers definitions.
38   if (HexagonMCInstrInfo::isInnerLoop(MCB)) {
39     Defs[Hexagon::SA0].insert(Unconditional); // FIXME: define or change SA0?
40     Defs[Hexagon::LC0].insert(Unconditional);
41   }
42   if (HexagonMCInstrInfo::isOuterLoop(MCB)) {
43     Defs[Hexagon::SA1].insert(Unconditional); // FIXME: define or change SA0?
44     Defs[Hexagon::LC1].insert(Unconditional);
45   }
46 
47   if (HexagonMCInstrInfo::isBundle(MCB))
48     // Unfurl a bundle.
49     for (auto const&I : HexagonMCInstrInfo::bundleInstructions(MCB)) {
50       init(*I.getInst());
51     }
52   else
53     init(MCB);
54 }
55 
init(MCInst const & MCI)56 void HexagonMCChecker::init(MCInst const& MCI) {
57   const MCInstrDesc& MCID = HexagonMCInstrInfo::getDesc(MCII, MCI);
58   unsigned PredReg = Hexagon::NoRegister;
59   bool isTrue = false;
60 
61   // Get used registers.
62   for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i)
63     if (MCI.getOperand(i).isReg()) {
64       unsigned R = MCI.getOperand(i).getReg();
65 
66       if (HexagonMCInstrInfo::isPredicated(MCII, MCI) && isPredicateRegister(R)) {
67         // Note an used predicate register.
68         PredReg = R;
69         isTrue = HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI);
70 
71         // Note use of new predicate register.
72         if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI))
73           NewPreds.insert(PredReg);
74       }
75       else
76         // Note register use.  Super-registers are not tracked directly,
77         // but their components.
78         for(MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid());
79            SRI.isValid();
80            ++SRI)
81          if (!MCSubRegIterator(*SRI, &RI).isValid())
82            // Skip super-registers used indirectly.
83            Uses.insert(*SRI);
84     }
85 
86   // Get implicit register definitions.
87   if (const MCPhysReg *ImpDef = MCID.getImplicitDefs())
88     for (; *ImpDef; ++ImpDef) {
89       unsigned R = *ImpDef;
90 
91       if (Hexagon::R31 != R && MCID.isCall())
92         // Any register other than the LR and the PC are actually volatile ones
93         // as defined by the ABI, not modified implicitly by the call insn.
94         continue;
95       if (Hexagon::PC == R)
96         // Branches are the only insns that can change the PC,
97         // otherwise a read-only register.
98         continue;
99 
100       if (Hexagon::USR_OVF == R)
101         // Many insns change the USR implicitly, but only one or another flag.
102         // The instruction table models the USR.OVF flag, which can be implicitly
103         // modified more than once, but cannot be modified in the same packet
104         // with an instruction that modifies is explicitly. Deal with such situ-
105         // ations individually.
106         SoftDefs.insert(R);
107       else if (isPredicateRegister(R) &&
108                HexagonMCInstrInfo::isPredicateLate(MCII, MCI))
109         // Include implicit late predicates.
110         LatePreds.insert(R);
111       else
112         Defs[R].insert(PredSense(PredReg, isTrue));
113     }
114 
115   // Figure out explicit register definitions.
116   for (unsigned i = 0; i < MCID.getNumDefs(); ++i) {
117     unsigned R = MCI.getOperand(i).getReg(),
118              S = Hexagon::NoRegister;
119     // USR has subregisters (while C8 does not for technical reasons), so
120     // reset R to USR, since we know how to handle multiple defs of USR,
121     // taking into account its subregisters.
122     if (R == Hexagon::C8)
123       R = Hexagon::USR;
124 
125     // Note register definitions, direct ones as well as indirect side-effects.
126     // Super-registers are not tracked directly, but their components.
127     for(MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid());
128         SRI.isValid();
129         ++SRI) {
130       if (MCSubRegIterator(*SRI, &RI).isValid())
131         // Skip super-registers defined indirectly.
132         continue;
133 
134       if (R == *SRI) {
135         if (S == R)
136           // Avoid scoring the defined register multiple times.
137           continue;
138         else
139           // Note that the defined register has already been scored.
140           S = R;
141       }
142 
143       if (Hexagon::P3_0 != R && Hexagon::P3_0 == *SRI)
144         // P3:0 is a special case, since multiple predicate register definitions
145         // in a packet is allowed as the equivalent of their logical "and".
146         // Only an explicit definition of P3:0 is noted as such; if a
147         // side-effect, then note as a soft definition.
148         SoftDefs.insert(*SRI);
149       else if (HexagonMCInstrInfo::isPredicateLate(MCII, MCI) && isPredicateRegister(*SRI))
150         // Some insns produce predicates too late to be used in the same packet.
151         LatePreds.insert(*SRI);
152       else if (i == 0 && llvm::HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCVI_VM_CUR_LD)
153         // Current loads should be used in the same packet.
154         // TODO: relies on the impossibility of a current and a temporary loads
155         // in the same packet.
156         CurDefs.insert(*SRI), Defs[*SRI].insert(PredSense(PredReg, isTrue));
157       else if (i == 0 && llvm::HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCVI_VM_TMP_LD)
158         // Temporary loads should be used in the same packet, but don't commit
159         // results, so it should be disregarded if another insn changes the same
160         // register.
161         // TODO: relies on the impossibility of a current and a temporary loads
162         // in the same packet.
163         TmpDefs.insert(*SRI);
164       else if (i <= 1 && llvm::HexagonMCInstrInfo::hasNewValue2(MCII, MCI) )
165         // vshuff(Vx, Vy, Rx) <- Vx(0) and Vy(1) are both source and
166         // destination registers with this instruction. same for vdeal(Vx,Vy,Rx)
167         Uses.insert(*SRI);
168       else
169         Defs[*SRI].insert(PredSense(PredReg, isTrue));
170     }
171   }
172 
173   // Figure out register definitions that produce new values.
174   if (HexagonMCInstrInfo::hasNewValue(MCII, MCI)) {
175     unsigned R = HexagonMCInstrInfo::getNewValueOperand(MCII, MCI).getReg();
176 
177     if (HexagonMCInstrInfo::isCompound(MCII, MCI))
178       compoundRegisterMap(R); // Compound insns have a limited register range.
179 
180     for(MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid());
181         SRI.isValid();
182         ++SRI)
183       if (!MCSubRegIterator(*SRI, &RI).isValid())
184         // No super-registers defined indirectly.
185         NewDefs[*SRI].push_back(NewSense::Def(PredReg, HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI),
186                                               HexagonMCInstrInfo::isFloat(MCII, MCI)));
187 
188     // For fairly unique 2-dot-new producers, example:
189     // vdeal(V1, V9, R0) V1.new and V9.new can be used by consumers.
190     if (HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) {
191       unsigned R2 = HexagonMCInstrInfo::getNewValueOperand2(MCII, MCI).getReg();
192 
193       for(MCRegAliasIterator SRI(R2, &RI, !MCSubRegIterator(R2, &RI).isValid());
194           SRI.isValid();
195           ++SRI)
196         if (!MCSubRegIterator(*SRI, &RI).isValid())
197           NewDefs[*SRI].push_back(NewSense::Def(PredReg, HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI),
198                                                 HexagonMCInstrInfo::isFloat(MCII, MCI)));
199     }
200   }
201 
202   // Figure out definitions of new predicate registers.
203   if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI))
204     for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i)
205       if (MCI.getOperand(i).isReg()) {
206         unsigned P = MCI.getOperand(i).getReg();
207 
208         if (isPredicateRegister(P))
209           NewPreds.insert(P);
210       }
211 
212   // Figure out uses of new values.
213   if (HexagonMCInstrInfo::isNewValue(MCII, MCI)) {
214     unsigned N = HexagonMCInstrInfo::getNewValueOperand(MCII, MCI).getReg();
215 
216     if (!MCSubRegIterator(N, &RI).isValid()) {
217       // Super-registers cannot use new values.
218       if (MCID.isBranch())
219         NewUses[N] = NewSense::Jmp(llvm::HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeNV);
220       else
221         NewUses[N] = NewSense::Use(PredReg, HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI));
222     }
223   }
224 }
225 
HexagonMCChecker(MCInstrInfo const & MCII,MCSubtargetInfo const & STI,MCInst & mcb,MCInst & mcbdx,MCRegisterInfo const & ri)226 HexagonMCChecker::HexagonMCChecker(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, MCInst &mcb, MCInst &mcbdx,
227                                    MCRegisterInfo const &ri)
228     : MCB(mcb), MCBDX(mcbdx), RI(ri), MCII(MCII), STI(STI),
229       bLoadErrInfo(false) {
230   init();
231 }
232 
check()233 bool HexagonMCChecker::check() {
234   bool chkB = checkBranches();
235   bool chkP = checkPredicates();
236   bool chkNV = checkNewValues();
237   bool chkR = checkRegisters();
238   bool chkS = checkSolo();
239   bool chkSh = checkShuffle();
240   bool chkSl = checkSlots();
241   bool chk = chkB && chkP && chkNV && chkR && chkS && chkSh && chkSl;
242 
243   return chk;
244 }
245 
checkSlots()246 bool HexagonMCChecker::checkSlots()
247 
248 {
249   unsigned slotsUsed = 0;
250   for (auto HMI: HexagonMCInstrInfo::bundleInstructions(MCBDX)) {
251     MCInst const& MCI = *HMI.getInst();
252     if (HexagonMCInstrInfo::isImmext(MCI))
253       continue;
254     if (HexagonMCInstrInfo::isDuplex(MCII, MCI))
255       slotsUsed += 2;
256     else
257       ++slotsUsed;
258   }
259 
260   if (slotsUsed > HEXAGON_PACKET_SIZE) {
261     HexagonMCErrInfo errInfo;
262     errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_NOSLOTS);
263     addErrInfo(errInfo);
264     return false;
265   }
266   return true;
267 }
268 
269 // Check legal use of branches.
checkBranches()270 bool HexagonMCChecker::checkBranches() {
271   HexagonMCErrInfo errInfo;
272   if (HexagonMCInstrInfo::isBundle(MCB)) {
273     bool hasConditional = false;
274     unsigned Branches = 0, Returns = 0, NewIndirectBranches = 0,
275              NewValueBranches = 0, Conditional = HEXAGON_PRESHUFFLE_PACKET_SIZE,
276              Unconditional = HEXAGON_PRESHUFFLE_PACKET_SIZE;
277 
278     for (unsigned i = HexagonMCInstrInfo::bundleInstructionsOffset;
279          i < MCB.size(); ++i) {
280       MCInst const &MCI = *MCB.begin()[i].getInst();
281 
282       if (HexagonMCInstrInfo::isImmext(MCI))
283         continue;
284       if (HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch() ||
285           HexagonMCInstrInfo::getDesc(MCII, MCI).isCall()) {
286         ++Branches;
287         if (HexagonMCInstrInfo::getDesc(MCII, MCI).isIndirectBranch() &&
288             HexagonMCInstrInfo::isPredicatedNew(MCII, MCI))
289           ++NewIndirectBranches;
290         if (HexagonMCInstrInfo::isNewValue(MCII, MCI))
291           ++NewValueBranches;
292 
293         if (HexagonMCInstrInfo::isPredicated(MCII, MCI) ||
294             HexagonMCInstrInfo::isPredicatedNew(MCII, MCI)) {
295           hasConditional = true;
296           Conditional = i; // Record the position of the conditional branch.
297         } else {
298           Unconditional = i; // Record the position of the unconditional branch.
299         }
300       }
301       if (HexagonMCInstrInfo::getDesc(MCII, MCI).isReturn() &&
302           HexagonMCInstrInfo::getDesc(MCII, MCI).mayLoad())
303         ++Returns;
304     }
305 
306     if (Branches) // FIXME: should "Defs.count(Hexagon::PC)" be here too?
307       if (HexagonMCInstrInfo::isInnerLoop(MCB) ||
308           HexagonMCInstrInfo::isOuterLoop(MCB)) {
309         // Error out if there's any branch in a loop-end packet.
310         errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_ENDLOOP, Hexagon::PC);
311         addErrInfo(errInfo);
312         return false;
313       }
314     if (Branches > 1)
315       if (!hasConditional || Conditional > Unconditional) {
316         // Error out if more than one unconditional branch or
317         // the conditional branch appears after the unconditional one.
318         errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_BRANCHES);
319         addErrInfo(errInfo);
320         return false;
321       }
322   }
323 
324   return true;
325 }
326 
327 // Check legal use of predicate registers.
checkPredicates()328 bool HexagonMCChecker::checkPredicates() {
329   HexagonMCErrInfo errInfo;
330   // Check for proper use of new predicate registers.
331   for (const auto& I : NewPreds) {
332     unsigned P = I;
333 
334     if (!Defs.count(P) || LatePreds.count(P)) {
335       // Error out if the new predicate register is not defined,
336       // or defined "late"
337       // (e.g., "{ if (p3.new)... ; p3 = sp1loop0(#r7:2, Rs) }").
338       errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_NEWP, P);
339       addErrInfo(errInfo);
340       return false;
341     }
342   }
343 
344   // Check for proper use of auto-anded of predicate registers.
345   for (const auto& I : LatePreds) {
346     unsigned P = I;
347 
348     if (LatePreds.count(P) > 1 || Defs.count(P)) {
349       // Error out if predicate register defined "late" multiple times or
350       // defined late and regularly defined
351       // (e.g., "{ p3 = sp1loop0(...); p3 = cmp.eq(...) }".
352       errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, P);
353       addErrInfo(errInfo);
354       return false;
355     }
356   }
357 
358   return true;
359 }
360 
361 // Check legal use of new values.
checkNewValues()362 bool HexagonMCChecker::checkNewValues() {
363   HexagonMCErrInfo errInfo;
364   memset(&errInfo, 0, sizeof(errInfo));
365   for (auto& I : NewUses) {
366     unsigned R = I.first;
367     NewSense &US = I.second;
368 
369     if (!hasValidNewValueDef(US, NewDefs[R])) {
370       errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_NEWV, R);
371       addErrInfo(errInfo);
372       return false;
373     }
374   }
375 
376   return true;
377 }
378 
379 // Check for legal register uses and definitions.
checkRegisters()380 bool HexagonMCChecker::checkRegisters() {
381   HexagonMCErrInfo errInfo;
382   // Check for proper register definitions.
383   for (const auto& I : Defs) {
384     unsigned R = I.first;
385 
386     if (ReadOnly.count(R)) {
387       // Error out for definitions of read-only registers.
388       errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_READONLY, R);
389       addErrInfo(errInfo);
390       return false;
391     }
392     if (isLoopRegister(R) && Defs.count(R) > 1 &&
393         (HexagonMCInstrInfo::isInnerLoop(MCB) ||
394          HexagonMCInstrInfo::isOuterLoop(MCB))) {
395       // Error out for definitions of loop registers at the end of a loop.
396       errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_LOOP, R);
397       addErrInfo(errInfo);
398       return false;
399     }
400     if (SoftDefs.count(R)) {
401       // Error out for explicit changes to registers also weakly defined
402       // (e.g., "{ usr = r0; r0 = sfadd(...) }").
403       unsigned UsrR = Hexagon::USR; // Silence warning about mixed types in ?:.
404       unsigned BadR = RI.isSubRegister(Hexagon::USR, R) ? UsrR : R;
405       errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, BadR);
406       addErrInfo(errInfo);
407       return false;
408     }
409     if (!isPredicateRegister(R) && Defs[R].size() > 1) {
410       // Check for multiple register definitions.
411       PredSet &PM = Defs[R];
412 
413       // Check for multiple unconditional register definitions.
414       if (PM.count(Unconditional)) {
415         // Error out on an unconditional change when there are any other
416         // changes, conditional or not.
417         unsigned UsrR = Hexagon::USR;
418         unsigned BadR = RI.isSubRegister(Hexagon::USR, R) ? UsrR : R;
419         errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, BadR);
420         addErrInfo(errInfo);
421         return false;
422       }
423       // Check for multiple conditional register definitions.
424       for (const auto& J : PM) {
425         PredSense P = J;
426 
427         // Check for multiple uses of the same condition.
428         if (PM.count(P) > 1) {
429           // Error out on conditional changes based on the same predicate
430           // (e.g., "{ if (!p0) r0 =...; if (!p0) r0 =... }").
431           errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, R);
432           addErrInfo(errInfo);
433           return false;
434         }
435         // Check for the use of the complementary condition.
436         P.second = !P.second;
437         if (PM.count(P) && PM.size() > 2) {
438           // Error out on conditional changes based on the same predicate
439           // multiple times
440           // (e.g., "{ if (p0) r0 =...; if (!p0) r0 =... }; if (!p0) r0 =... }").
441           errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, R);
442           addErrInfo(errInfo);
443           return false;
444         }
445       }
446     }
447   }
448 
449   // Check for use of current definitions.
450   for (const auto& I : CurDefs) {
451     unsigned R = I;
452 
453     if (!Uses.count(R)) {
454       // Warn on an unused current definition.
455       errInfo.setWarning(HexagonMCErrInfo::CHECK_WARN_CURRENT, R);
456       addErrInfo(errInfo);
457       return true;
458     }
459   }
460 
461   // Check for use of temporary definitions.
462   for (const auto& I : TmpDefs) {
463     unsigned R = I;
464 
465     if (!Uses.count(R)) {
466       // special case for vhist
467       bool vHistFound = false;
468       for (auto const&HMI : HexagonMCInstrInfo::bundleInstructions(MCB)) {
469         if(llvm::HexagonMCInstrInfo::getType(MCII, *HMI.getInst()) == HexagonII::TypeCVI_HIST) {
470           vHistFound = true;  // vhist() implicitly uses ALL REGxx.tmp
471           break;
472         }
473       }
474       // Warn on an unused temporary definition.
475       if (vHistFound == false) {
476         errInfo.setWarning(HexagonMCErrInfo::CHECK_WARN_TEMPORARY, R);
477         addErrInfo(errInfo);
478         return true;
479       }
480     }
481   }
482 
483   return true;
484 }
485 
486 // Check for legal use of solo insns.
checkSolo()487 bool HexagonMCChecker::checkSolo() {
488   HexagonMCErrInfo errInfo;
489   if (HexagonMCInstrInfo::isBundle(MCB) &&
490       HexagonMCInstrInfo::bundleSize(MCB) > 1) {
491     for (auto const&I : HexagonMCInstrInfo::bundleInstructions(MCB)) {
492       if (llvm::HexagonMCInstrInfo::isSolo(MCII, *I.getInst())) {
493         errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_SOLO);
494         addErrInfo(errInfo);
495         return false;
496       }
497     }
498   }
499 
500   return true;
501 }
502 
checkShuffle()503 bool HexagonMCChecker::checkShuffle() {
504   HexagonMCErrInfo errInfo;
505   // Branch info is lost when duplexing. The unduplexed insns must be
506   // checked and only branch errors matter for this case.
507   HexagonMCShuffler MCS(MCII, STI, MCB);
508   if (!MCS.check()) {
509     if (MCS.getError() == HexagonShuffler::SHUFFLE_ERROR_BRANCHES) {
510       errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_SHUFFLE);
511       errInfo.setShuffleError(MCS.getError());
512       addErrInfo(errInfo);
513       return false;
514     }
515   }
516   HexagonMCShuffler MCSDX(MCII, STI, MCBDX);
517   if (!MCSDX.check()) {
518     errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_SHUFFLE);
519     errInfo.setShuffleError(MCSDX.getError());
520     addErrInfo(errInfo);
521     return false;
522   }
523   return true;
524 }
525 
compoundRegisterMap(unsigned & Register)526 void HexagonMCChecker::compoundRegisterMap(unsigned& Register) {
527   switch (Register) {
528   default:
529     break;
530   case Hexagon::R15:
531     Register = Hexagon::R23;
532     break;
533   case Hexagon::R14:
534     Register = Hexagon::R22;
535     break;
536   case Hexagon::R13:
537     Register = Hexagon::R21;
538     break;
539   case Hexagon::R12:
540     Register = Hexagon::R20;
541     break;
542   case Hexagon::R11:
543     Register = Hexagon::R19;
544     break;
545   case Hexagon::R10:
546     Register = Hexagon::R18;
547     break;
548   case Hexagon::R9:
549     Register = Hexagon::R17;
550     break;
551   case Hexagon::R8:
552     Register = Hexagon::R16;
553     break;
554   }
555 }
556 
hasValidNewValueDef(const NewSense & Use,const NewSenseList & Defs) const557 bool HexagonMCChecker::hasValidNewValueDef(const NewSense &Use,
558       const NewSenseList &Defs) const {
559   bool Strict = !RelaxNVChecks;
560 
561   for (unsigned i = 0, n = Defs.size(); i < n; ++i) {
562     const NewSense &Def = Defs[i];
563     // NVJ cannot use a new FP value [7.6.1]
564     if (Use.IsNVJ && (Def.IsFloat || Def.PredReg != 0))
565       continue;
566     // If the definition was not predicated, then it does not matter if
567     // the use is.
568     if (Def.PredReg == 0)
569       return true;
570     // With the strict checks, both the definition and the use must be
571     // predicated on the same register and condition.
572     if (Strict) {
573       if (Def.PredReg == Use.PredReg && Def.Cond == Use.Cond)
574         return true;
575     } else {
576       // With the relaxed checks, if the definition was predicated, the only
577       // detectable violation is if the use is predicated on the opposing
578       // condition, otherwise, it's ok.
579       if (Def.PredReg != Use.PredReg || Def.Cond == Use.Cond)
580         return true;
581     }
582   }
583   return false;
584 }
585 
586