1 // Copyright 2016 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 #include "src/code-stub-assembler.h"
5 #include "src/code-factory.h"
6 #include "src/frames-inl.h"
7 #include "src/frames.h"
8 #include "src/ic/handler-configuration.h"
9 #include "src/ic/stub-cache.h"
10 
11 namespace v8 {
12 namespace internal {
13 
14 using compiler::Node;
15 
CodeStubAssembler(Isolate * isolate,Zone * zone,const CallInterfaceDescriptor & descriptor,Code::Flags flags,const char * name,size_t result_size)16 CodeStubAssembler::CodeStubAssembler(Isolate* isolate, Zone* zone,
17                                      const CallInterfaceDescriptor& descriptor,
18                                      Code::Flags flags, const char* name,
19                                      size_t result_size)
20     : compiler::CodeAssembler(isolate, zone, descriptor, flags, name,
21                               result_size) {}
22 
CodeStubAssembler(Isolate * isolate,Zone * zone,int parameter_count,Code::Flags flags,const char * name)23 CodeStubAssembler::CodeStubAssembler(Isolate* isolate, Zone* zone,
24                                      int parameter_count, Code::Flags flags,
25                                      const char* name)
26     : compiler::CodeAssembler(isolate, zone, parameter_count, flags, name) {}
27 
Assert(ConditionBody codition_body,const char * message,const char * file,int line)28 void CodeStubAssembler::Assert(ConditionBody codition_body, const char* message,
29                                const char* file, int line) {
30 #if defined(DEBUG)
31   Label ok(this);
32   Label not_ok(this, Label::kDeferred);
33   if (message != nullptr && FLAG_code_comments) {
34     Comment("[ Assert: %s", message);
35   } else {
36     Comment("[ Assert");
37   }
38   Node* condition = codition_body();
39   DCHECK_NOT_NULL(condition);
40   Branch(condition, &ok, &not_ok);
41   Bind(&not_ok);
42   if (message != nullptr) {
43     char chars[1024];
44     Vector<char> buffer(chars);
45     if (file != nullptr) {
46       SNPrintF(buffer, "CSA_ASSERT failed: %s [%s:%d]\n", message, file, line);
47     } else {
48       SNPrintF(buffer, "CSA_ASSERT failed: %s\n", message);
49     }
50     CallRuntime(
51         Runtime::kGlobalPrint, SmiConstant(Smi::kZero),
52         HeapConstant(factory()->NewStringFromAsciiChecked(&(buffer[0]))));
53   }
54   DebugBreak();
55   Goto(&ok);
56   Bind(&ok);
57   Comment("] Assert");
58 #endif
59 }
60 
NoContextConstant()61 Node* CodeStubAssembler::NoContextConstant() { return NumberConstant(0); }
62 
63 #define HEAP_CONSTANT_ACCESSOR(rootName, name)     \
64   Node* CodeStubAssembler::name##Constant() {      \
65     return LoadRoot(Heap::k##rootName##RootIndex); \
66   }
67 HEAP_CONSTANT_LIST(HEAP_CONSTANT_ACCESSOR);
68 #undef HEAP_CONSTANT_ACCESSOR
69 
70 #define HEAP_CONSTANT_TEST(rootName, name)         \
71   Node* CodeStubAssembler::Is##name(Node* value) { \
72     return WordEqual(value, name##Constant());     \
73   }
74 HEAP_CONSTANT_LIST(HEAP_CONSTANT_TEST);
75 #undef HEAP_CONSTANT_TEST
76 
HashSeed()77 Node* CodeStubAssembler::HashSeed() {
78   return LoadAndUntagToWord32Root(Heap::kHashSeedRootIndex);
79 }
80 
StaleRegisterConstant()81 Node* CodeStubAssembler::StaleRegisterConstant() {
82   return LoadRoot(Heap::kStaleRegisterRootIndex);
83 }
84 
IntPtrOrSmiConstant(int value,ParameterMode mode)85 Node* CodeStubAssembler::IntPtrOrSmiConstant(int value, ParameterMode mode) {
86   if (mode == SMI_PARAMETERS) {
87     return SmiConstant(Smi::FromInt(value));
88   } else {
89     DCHECK(mode == INTEGER_PARAMETERS || mode == INTPTR_PARAMETERS);
90     return IntPtrConstant(value);
91   }
92 }
93 
IntPtrAddFoldConstants(Node * left,Node * right)94 Node* CodeStubAssembler::IntPtrAddFoldConstants(Node* left, Node* right) {
95   int32_t left_constant;
96   bool is_left_constant = ToInt32Constant(left, left_constant);
97   int32_t right_constant;
98   bool is_right_constant = ToInt32Constant(right, right_constant);
99   if (is_left_constant) {
100     if (is_right_constant) {
101       return IntPtrConstant(left_constant + right_constant);
102     }
103     if (left_constant == 0) {
104       return right;
105     }
106   } else if (is_right_constant) {
107     if (right_constant == 0) {
108       return left;
109     }
110   }
111   return IntPtrAdd(left, right);
112 }
113 
IntPtrSubFoldConstants(Node * left,Node * right)114 Node* CodeStubAssembler::IntPtrSubFoldConstants(Node* left, Node* right) {
115   int32_t left_constant;
116   bool is_left_constant = ToInt32Constant(left, left_constant);
117   int32_t right_constant;
118   bool is_right_constant = ToInt32Constant(right, right_constant);
119   if (is_left_constant) {
120     if (is_right_constant) {
121       return IntPtrConstant(left_constant - right_constant);
122     }
123   } else if (is_right_constant) {
124     if (right_constant == 0) {
125       return left;
126     }
127   }
128   return IntPtrSub(left, right);
129 }
130 
IntPtrRoundUpToPowerOfTwo32(Node * value)131 Node* CodeStubAssembler::IntPtrRoundUpToPowerOfTwo32(Node* value) {
132   Comment("IntPtrRoundUpToPowerOfTwo32");
133   CSA_ASSERT(this, UintPtrLessThanOrEqual(value, IntPtrConstant(0x80000000u)));
134   value = IntPtrSub(value, IntPtrConstant(1));
135   for (int i = 1; i <= 16; i *= 2) {
136     value = WordOr(value, WordShr(value, IntPtrConstant(i)));
137   }
138   return IntPtrAdd(value, IntPtrConstant(1));
139 }
140 
WordIsPowerOfTwo(Node * value)141 Node* CodeStubAssembler::WordIsPowerOfTwo(Node* value) {
142   // value && !(value & (value - 1))
143   return WordEqual(
144       Select(WordEqual(value, IntPtrConstant(0)), IntPtrConstant(1),
145              WordAnd(value, IntPtrSub(value, IntPtrConstant(1))),
146              MachineType::PointerRepresentation()),
147       IntPtrConstant(0));
148 }
149 
Float64Round(Node * x)150 Node* CodeStubAssembler::Float64Round(Node* x) {
151   Node* one = Float64Constant(1.0);
152   Node* one_half = Float64Constant(0.5);
153 
154   Variable var_x(this, MachineRepresentation::kFloat64);
155   Label return_x(this);
156 
157   // Round up {x} towards Infinity.
158   var_x.Bind(Float64Ceil(x));
159 
160   GotoIf(Float64LessThanOrEqual(Float64Sub(var_x.value(), one_half), x),
161          &return_x);
162   var_x.Bind(Float64Sub(var_x.value(), one));
163   Goto(&return_x);
164 
165   Bind(&return_x);
166   return var_x.value();
167 }
168 
Float64Ceil(Node * x)169 Node* CodeStubAssembler::Float64Ceil(Node* x) {
170   if (IsFloat64RoundUpSupported()) {
171     return Float64RoundUp(x);
172   }
173 
174   Node* one = Float64Constant(1.0);
175   Node* zero = Float64Constant(0.0);
176   Node* two_52 = Float64Constant(4503599627370496.0E0);
177   Node* minus_two_52 = Float64Constant(-4503599627370496.0E0);
178 
179   Variable var_x(this, MachineRepresentation::kFloat64);
180   Label return_x(this), return_minus_x(this);
181   var_x.Bind(x);
182 
183   // Check if {x} is greater than zero.
184   Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this);
185   Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero,
186          &if_xnotgreaterthanzero);
187 
188   Bind(&if_xgreaterthanzero);
189   {
190     // Just return {x} unless it's in the range ]0,2^52[.
191     GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x);
192 
193     // Round positive {x} towards Infinity.
194     var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52));
195     GotoUnless(Float64LessThan(var_x.value(), x), &return_x);
196     var_x.Bind(Float64Add(var_x.value(), one));
197     Goto(&return_x);
198   }
199 
200   Bind(&if_xnotgreaterthanzero);
201   {
202     // Just return {x} unless it's in the range ]-2^52,0[
203     GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x);
204     GotoUnless(Float64LessThan(x, zero), &return_x);
205 
206     // Round negated {x} towards Infinity and return the result negated.
207     Node* minus_x = Float64Neg(x);
208     var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52));
209     GotoUnless(Float64GreaterThan(var_x.value(), minus_x), &return_minus_x);
210     var_x.Bind(Float64Sub(var_x.value(), one));
211     Goto(&return_minus_x);
212   }
213 
214   Bind(&return_minus_x);
215   var_x.Bind(Float64Neg(var_x.value()));
216   Goto(&return_x);
217 
218   Bind(&return_x);
219   return var_x.value();
220 }
221 
Float64Floor(Node * x)222 Node* CodeStubAssembler::Float64Floor(Node* x) {
223   if (IsFloat64RoundDownSupported()) {
224     return Float64RoundDown(x);
225   }
226 
227   Node* one = Float64Constant(1.0);
228   Node* zero = Float64Constant(0.0);
229   Node* two_52 = Float64Constant(4503599627370496.0E0);
230   Node* minus_two_52 = Float64Constant(-4503599627370496.0E0);
231 
232   Variable var_x(this, MachineRepresentation::kFloat64);
233   Label return_x(this), return_minus_x(this);
234   var_x.Bind(x);
235 
236   // Check if {x} is greater than zero.
237   Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this);
238   Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero,
239          &if_xnotgreaterthanzero);
240 
241   Bind(&if_xgreaterthanzero);
242   {
243     // Just return {x} unless it's in the range ]0,2^52[.
244     GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x);
245 
246     // Round positive {x} towards -Infinity.
247     var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52));
248     GotoUnless(Float64GreaterThan(var_x.value(), x), &return_x);
249     var_x.Bind(Float64Sub(var_x.value(), one));
250     Goto(&return_x);
251   }
252 
253   Bind(&if_xnotgreaterthanzero);
254   {
255     // Just return {x} unless it's in the range ]-2^52,0[
256     GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x);
257     GotoUnless(Float64LessThan(x, zero), &return_x);
258 
259     // Round negated {x} towards -Infinity and return the result negated.
260     Node* minus_x = Float64Neg(x);
261     var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52));
262     GotoUnless(Float64LessThan(var_x.value(), minus_x), &return_minus_x);
263     var_x.Bind(Float64Add(var_x.value(), one));
264     Goto(&return_minus_x);
265   }
266 
267   Bind(&return_minus_x);
268   var_x.Bind(Float64Neg(var_x.value()));
269   Goto(&return_x);
270 
271   Bind(&return_x);
272   return var_x.value();
273 }
274 
Float64RoundToEven(Node * x)275 Node* CodeStubAssembler::Float64RoundToEven(Node* x) {
276   if (IsFloat64RoundTiesEvenSupported()) {
277     return Float64RoundTiesEven(x);
278   }
279   // See ES#sec-touint8clamp for details.
280   Node* f = Float64Floor(x);
281   Node* f_and_half = Float64Add(f, Float64Constant(0.5));
282 
283   Variable var_result(this, MachineRepresentation::kFloat64);
284   Label return_f(this), return_f_plus_one(this), done(this);
285 
286   GotoIf(Float64LessThan(f_and_half, x), &return_f_plus_one);
287   GotoIf(Float64LessThan(x, f_and_half), &return_f);
288   {
289     Node* f_mod_2 = Float64Mod(f, Float64Constant(2.0));
290     Branch(Float64Equal(f_mod_2, Float64Constant(0.0)), &return_f,
291            &return_f_plus_one);
292   }
293 
294   Bind(&return_f);
295   var_result.Bind(f);
296   Goto(&done);
297 
298   Bind(&return_f_plus_one);
299   var_result.Bind(Float64Add(f, Float64Constant(1.0)));
300   Goto(&done);
301 
302   Bind(&done);
303   return var_result.value();
304 }
305 
Float64Trunc(Node * x)306 Node* CodeStubAssembler::Float64Trunc(Node* x) {
307   if (IsFloat64RoundTruncateSupported()) {
308     return Float64RoundTruncate(x);
309   }
310 
311   Node* one = Float64Constant(1.0);
312   Node* zero = Float64Constant(0.0);
313   Node* two_52 = Float64Constant(4503599627370496.0E0);
314   Node* minus_two_52 = Float64Constant(-4503599627370496.0E0);
315 
316   Variable var_x(this, MachineRepresentation::kFloat64);
317   Label return_x(this), return_minus_x(this);
318   var_x.Bind(x);
319 
320   // Check if {x} is greater than 0.
321   Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this);
322   Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero,
323          &if_xnotgreaterthanzero);
324 
325   Bind(&if_xgreaterthanzero);
326   {
327     if (IsFloat64RoundDownSupported()) {
328       var_x.Bind(Float64RoundDown(x));
329     } else {
330       // Just return {x} unless it's in the range ]0,2^52[.
331       GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x);
332 
333       // Round positive {x} towards -Infinity.
334       var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52));
335       GotoUnless(Float64GreaterThan(var_x.value(), x), &return_x);
336       var_x.Bind(Float64Sub(var_x.value(), one));
337     }
338     Goto(&return_x);
339   }
340 
341   Bind(&if_xnotgreaterthanzero);
342   {
343     if (IsFloat64RoundUpSupported()) {
344       var_x.Bind(Float64RoundUp(x));
345       Goto(&return_x);
346     } else {
347       // Just return {x} unless its in the range ]-2^52,0[.
348       GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x);
349       GotoUnless(Float64LessThan(x, zero), &return_x);
350 
351       // Round negated {x} towards -Infinity and return result negated.
352       Node* minus_x = Float64Neg(x);
353       var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52));
354       GotoUnless(Float64GreaterThan(var_x.value(), minus_x), &return_minus_x);
355       var_x.Bind(Float64Sub(var_x.value(), one));
356       Goto(&return_minus_x);
357     }
358   }
359 
360   Bind(&return_minus_x);
361   var_x.Bind(Float64Neg(var_x.value()));
362   Goto(&return_x);
363 
364   Bind(&return_x);
365   return var_x.value();
366 }
367 
SmiShiftBitsConstant()368 Node* CodeStubAssembler::SmiShiftBitsConstant() {
369   return IntPtrConstant(kSmiShiftSize + kSmiTagSize);
370 }
371 
SmiFromWord32(Node * value)372 Node* CodeStubAssembler::SmiFromWord32(Node* value) {
373   value = ChangeInt32ToIntPtr(value);
374   return BitcastWordToTaggedSigned(WordShl(value, SmiShiftBitsConstant()));
375 }
376 
SmiTag(Node * value)377 Node* CodeStubAssembler::SmiTag(Node* value) {
378   int32_t constant_value;
379   if (ToInt32Constant(value, constant_value) && Smi::IsValid(constant_value)) {
380     return SmiConstant(Smi::FromInt(constant_value));
381   }
382   return BitcastWordToTaggedSigned(WordShl(value, SmiShiftBitsConstant()));
383 }
384 
SmiUntag(Node * value)385 Node* CodeStubAssembler::SmiUntag(Node* value) {
386   return WordSar(BitcastTaggedToWord(value), SmiShiftBitsConstant());
387 }
388 
SmiToWord32(Node * value)389 Node* CodeStubAssembler::SmiToWord32(Node* value) {
390   Node* result = SmiUntag(value);
391   if (Is64()) {
392     result = TruncateInt64ToInt32(result);
393   }
394   return result;
395 }
396 
SmiToFloat64(Node * value)397 Node* CodeStubAssembler::SmiToFloat64(Node* value) {
398   return ChangeInt32ToFloat64(SmiToWord32(value));
399 }
400 
SmiAdd(Node * a,Node * b)401 Node* CodeStubAssembler::SmiAdd(Node* a, Node* b) {
402   return BitcastWordToTaggedSigned(
403       IntPtrAdd(BitcastTaggedToWord(a), BitcastTaggedToWord(b)));
404 }
405 
SmiSub(Node * a,Node * b)406 Node* CodeStubAssembler::SmiSub(Node* a, Node* b) {
407   return BitcastWordToTaggedSigned(
408       IntPtrSub(BitcastTaggedToWord(a), BitcastTaggedToWord(b)));
409 }
410 
SmiEqual(Node * a,Node * b)411 Node* CodeStubAssembler::SmiEqual(Node* a, Node* b) {
412   return WordEqual(BitcastTaggedToWord(a), BitcastTaggedToWord(b));
413 }
414 
SmiAbove(Node * a,Node * b)415 Node* CodeStubAssembler::SmiAbove(Node* a, Node* b) {
416   return UintPtrGreaterThan(BitcastTaggedToWord(a), BitcastTaggedToWord(b));
417 }
418 
SmiAboveOrEqual(Node * a,Node * b)419 Node* CodeStubAssembler::SmiAboveOrEqual(Node* a, Node* b) {
420   return UintPtrGreaterThanOrEqual(BitcastTaggedToWord(a),
421                                    BitcastTaggedToWord(b));
422 }
423 
SmiBelow(Node * a,Node * b)424 Node* CodeStubAssembler::SmiBelow(Node* a, Node* b) {
425   return UintPtrLessThan(BitcastTaggedToWord(a), BitcastTaggedToWord(b));
426 }
427 
SmiLessThan(Node * a,Node * b)428 Node* CodeStubAssembler::SmiLessThan(Node* a, Node* b) {
429   return IntPtrLessThan(BitcastTaggedToWord(a), BitcastTaggedToWord(b));
430 }
431 
SmiLessThanOrEqual(Node * a,Node * b)432 Node* CodeStubAssembler::SmiLessThanOrEqual(Node* a, Node* b) {
433   return IntPtrLessThanOrEqual(BitcastTaggedToWord(a), BitcastTaggedToWord(b));
434 }
435 
SmiMax(Node * a,Node * b)436 Node* CodeStubAssembler::SmiMax(Node* a, Node* b) {
437   return Select(SmiLessThan(a, b), b, a);
438 }
439 
SmiMin(Node * a,Node * b)440 Node* CodeStubAssembler::SmiMin(Node* a, Node* b) {
441   return Select(SmiLessThan(a, b), a, b);
442 }
443 
SmiMod(Node * a,Node * b)444 Node* CodeStubAssembler::SmiMod(Node* a, Node* b) {
445   Variable var_result(this, MachineRepresentation::kTagged);
446   Label return_result(this, &var_result),
447       return_minuszero(this, Label::kDeferred),
448       return_nan(this, Label::kDeferred);
449 
450   // Untag {a} and {b}.
451   a = SmiToWord32(a);
452   b = SmiToWord32(b);
453 
454   // Return NaN if {b} is zero.
455   GotoIf(Word32Equal(b, Int32Constant(0)), &return_nan);
456 
457   // Check if {a} is non-negative.
458   Label if_aisnotnegative(this), if_aisnegative(this, Label::kDeferred);
459   Branch(Int32LessThanOrEqual(Int32Constant(0), a), &if_aisnotnegative,
460          &if_aisnegative);
461 
462   Bind(&if_aisnotnegative);
463   {
464     // Fast case, don't need to check any other edge cases.
465     Node* r = Int32Mod(a, b);
466     var_result.Bind(SmiFromWord32(r));
467     Goto(&return_result);
468   }
469 
470   Bind(&if_aisnegative);
471   {
472     if (SmiValuesAre32Bits()) {
473       // Check if {a} is kMinInt and {b} is -1 (only relevant if the
474       // kMinInt is actually representable as a Smi).
475       Label join(this);
476       GotoUnless(Word32Equal(a, Int32Constant(kMinInt)), &join);
477       GotoIf(Word32Equal(b, Int32Constant(-1)), &return_minuszero);
478       Goto(&join);
479       Bind(&join);
480     }
481 
482     // Perform the integer modulus operation.
483     Node* r = Int32Mod(a, b);
484 
485     // Check if {r} is zero, and if so return -0, because we have to
486     // take the sign of the left hand side {a}, which is negative.
487     GotoIf(Word32Equal(r, Int32Constant(0)), &return_minuszero);
488 
489     // The remainder {r} can be outside the valid Smi range on 32bit
490     // architectures, so we cannot just say SmiFromWord32(r) here.
491     var_result.Bind(ChangeInt32ToTagged(r));
492     Goto(&return_result);
493   }
494 
495   Bind(&return_minuszero);
496   var_result.Bind(MinusZeroConstant());
497   Goto(&return_result);
498 
499   Bind(&return_nan);
500   var_result.Bind(NanConstant());
501   Goto(&return_result);
502 
503   Bind(&return_result);
504   return var_result.value();
505 }
506 
SmiMul(Node * a,Node * b)507 Node* CodeStubAssembler::SmiMul(Node* a, Node* b) {
508   Variable var_result(this, MachineRepresentation::kTagged);
509   Variable var_lhs_float64(this, MachineRepresentation::kFloat64),
510       var_rhs_float64(this, MachineRepresentation::kFloat64);
511   Label return_result(this, &var_result);
512 
513   // Both {a} and {b} are Smis. Convert them to integers and multiply.
514   Node* lhs32 = SmiToWord32(a);
515   Node* rhs32 = SmiToWord32(b);
516   Node* pair = Int32MulWithOverflow(lhs32, rhs32);
517 
518   Node* overflow = Projection(1, pair);
519 
520   // Check if the multiplication overflowed.
521   Label if_overflow(this, Label::kDeferred), if_notoverflow(this);
522   Branch(overflow, &if_overflow, &if_notoverflow);
523   Bind(&if_notoverflow);
524   {
525     // If the answer is zero, we may need to return -0.0, depending on the
526     // input.
527     Label answer_zero(this), answer_not_zero(this);
528     Node* answer = Projection(0, pair);
529     Node* zero = Int32Constant(0);
530     Branch(WordEqual(answer, zero), &answer_zero, &answer_not_zero);
531     Bind(&answer_not_zero);
532     {
533       var_result.Bind(ChangeInt32ToTagged(answer));
534       Goto(&return_result);
535     }
536     Bind(&answer_zero);
537     {
538       Node* or_result = Word32Or(lhs32, rhs32);
539       Label if_should_be_negative_zero(this), if_should_be_zero(this);
540       Branch(Int32LessThan(or_result, zero), &if_should_be_negative_zero,
541              &if_should_be_zero);
542       Bind(&if_should_be_negative_zero);
543       {
544         var_result.Bind(MinusZeroConstant());
545         Goto(&return_result);
546       }
547       Bind(&if_should_be_zero);
548       {
549         var_result.Bind(zero);
550         Goto(&return_result);
551       }
552     }
553   }
554   Bind(&if_overflow);
555   {
556     var_lhs_float64.Bind(SmiToFloat64(a));
557     var_rhs_float64.Bind(SmiToFloat64(b));
558     Node* value = Float64Mul(var_lhs_float64.value(), var_rhs_float64.value());
559     Node* result = AllocateHeapNumberWithValue(value);
560     var_result.Bind(result);
561     Goto(&return_result);
562   }
563 
564   Bind(&return_result);
565   return var_result.value();
566 }
567 
TaggedIsSmi(Node * a)568 Node* CodeStubAssembler::TaggedIsSmi(Node* a) {
569   return WordEqual(WordAnd(BitcastTaggedToWord(a), IntPtrConstant(kSmiTagMask)),
570                    IntPtrConstant(0));
571 }
572 
WordIsPositiveSmi(Node * a)573 Node* CodeStubAssembler::WordIsPositiveSmi(Node* a) {
574   return WordEqual(WordAnd(a, IntPtrConstant(kSmiTagMask | kSmiSignMask)),
575                    IntPtrConstant(0));
576 }
577 
WordIsWordAligned(Node * word)578 Node* CodeStubAssembler::WordIsWordAligned(Node* word) {
579   return WordEqual(IntPtrConstant(0),
580                    WordAnd(word, IntPtrConstant((1 << kPointerSizeLog2) - 1)));
581 }
582 
BranchIfSimd128Equal(Node * lhs,Node * lhs_map,Node * rhs,Node * rhs_map,Label * if_equal,Label * if_notequal)583 void CodeStubAssembler::BranchIfSimd128Equal(Node* lhs, Node* lhs_map,
584                                              Node* rhs, Node* rhs_map,
585                                              Label* if_equal,
586                                              Label* if_notequal) {
587   Label if_mapsame(this), if_mapnotsame(this);
588   Branch(WordEqual(lhs_map, rhs_map), &if_mapsame, &if_mapnotsame);
589 
590   Bind(&if_mapsame);
591   {
592     // Both {lhs} and {rhs} are Simd128Values with the same map, need special
593     // handling for Float32x4 because of NaN comparisons.
594     Label if_float32x4(this), if_notfloat32x4(this);
595     Node* float32x4_map = HeapConstant(factory()->float32x4_map());
596     Branch(WordEqual(lhs_map, float32x4_map), &if_float32x4, &if_notfloat32x4);
597 
598     Bind(&if_float32x4);
599     {
600       // Both {lhs} and {rhs} are Float32x4, compare the lanes individually
601       // using a floating point comparison.
602       for (int offset = Float32x4::kValueOffset - kHeapObjectTag;
603            offset < Float32x4::kSize - kHeapObjectTag;
604            offset += sizeof(float)) {
605         // Load the floating point values for {lhs} and {rhs}.
606         Node* lhs_value =
607             Load(MachineType::Float32(), lhs, IntPtrConstant(offset));
608         Node* rhs_value =
609             Load(MachineType::Float32(), rhs, IntPtrConstant(offset));
610 
611         // Perform a floating point comparison.
612         Label if_valueequal(this), if_valuenotequal(this);
613         Branch(Float32Equal(lhs_value, rhs_value), &if_valueequal,
614                &if_valuenotequal);
615         Bind(&if_valuenotequal);
616         Goto(if_notequal);
617         Bind(&if_valueequal);
618       }
619 
620       // All 4 lanes match, {lhs} and {rhs} considered equal.
621       Goto(if_equal);
622     }
623 
624     Bind(&if_notfloat32x4);
625     {
626       // For other Simd128Values we just perform a bitwise comparison.
627       for (int offset = Simd128Value::kValueOffset - kHeapObjectTag;
628            offset < Simd128Value::kSize - kHeapObjectTag;
629            offset += kPointerSize) {
630         // Load the word values for {lhs} and {rhs}.
631         Node* lhs_value =
632             Load(MachineType::Pointer(), lhs, IntPtrConstant(offset));
633         Node* rhs_value =
634             Load(MachineType::Pointer(), rhs, IntPtrConstant(offset));
635 
636         // Perform a bitwise word-comparison.
637         Label if_valueequal(this), if_valuenotequal(this);
638         Branch(WordEqual(lhs_value, rhs_value), &if_valueequal,
639                &if_valuenotequal);
640         Bind(&if_valuenotequal);
641         Goto(if_notequal);
642         Bind(&if_valueequal);
643       }
644 
645       // Bitwise comparison succeeded, {lhs} and {rhs} considered equal.
646       Goto(if_equal);
647     }
648   }
649 
650   Bind(&if_mapnotsame);
651   Goto(if_notequal);
652 }
653 
BranchIfPrototypesHaveNoElements(Node * receiver_map,Label * definitely_no_elements,Label * possibly_elements)654 void CodeStubAssembler::BranchIfPrototypesHaveNoElements(
655     Node* receiver_map, Label* definitely_no_elements,
656     Label* possibly_elements) {
657   Variable var_map(this, MachineRepresentation::kTagged);
658   var_map.Bind(receiver_map);
659   Label loop_body(this, &var_map);
660   Node* empty_elements = LoadRoot(Heap::kEmptyFixedArrayRootIndex);
661   Goto(&loop_body);
662 
663   Bind(&loop_body);
664   {
665     Node* map = var_map.value();
666     Node* prototype = LoadMapPrototype(map);
667     GotoIf(WordEqual(prototype, NullConstant()), definitely_no_elements);
668     Node* prototype_map = LoadMap(prototype);
669     // Pessimistically assume elements if a Proxy, Special API Object,
670     // or JSValue wrapper is found on the prototype chain. After this
671     // instance type check, it's not necessary to check for interceptors or
672     // access checks.
673     GotoIf(Int32LessThanOrEqual(LoadMapInstanceType(prototype_map),
674                                 Int32Constant(LAST_CUSTOM_ELEMENTS_RECEIVER)),
675            possibly_elements);
676     GotoIf(WordNotEqual(LoadElements(prototype), empty_elements),
677            possibly_elements);
678     var_map.Bind(prototype_map);
679     Goto(&loop_body);
680   }
681 }
682 
BranchIfJSReceiver(Node * object,Label * if_true,Label * if_false)683 void CodeStubAssembler::BranchIfJSReceiver(Node* object, Label* if_true,
684                                            Label* if_false) {
685   GotoIf(TaggedIsSmi(object), if_false);
686   STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
687   Branch(Int32GreaterThanOrEqual(LoadInstanceType(object),
688                                  Int32Constant(FIRST_JS_RECEIVER_TYPE)),
689          if_true, if_false);
690 }
691 
BranchIfJSObject(Node * object,Label * if_true,Label * if_false)692 void CodeStubAssembler::BranchIfJSObject(Node* object, Label* if_true,
693                                          Label* if_false) {
694   GotoIf(TaggedIsSmi(object), if_false);
695   STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE);
696   Branch(Int32GreaterThanOrEqual(LoadInstanceType(object),
697                                  Int32Constant(FIRST_JS_OBJECT_TYPE)),
698          if_true, if_false);
699 }
700 
BranchIfFastJSArray(Node * object,Node * context,Label * if_true,Label * if_false)701 void CodeStubAssembler::BranchIfFastJSArray(Node* object, Node* context,
702                                             Label* if_true, Label* if_false) {
703   // Bailout if receiver is a Smi.
704   GotoIf(TaggedIsSmi(object), if_false);
705 
706   Node* map = LoadMap(object);
707 
708   // Bailout if instance type is not JS_ARRAY_TYPE.
709   GotoIf(WordNotEqual(LoadMapInstanceType(map), Int32Constant(JS_ARRAY_TYPE)),
710          if_false);
711 
712   Node* elements_kind = LoadMapElementsKind(map);
713 
714   // Bailout if receiver has slow elements.
715   GotoUnless(IsFastElementsKind(elements_kind), if_false);
716 
717   // Check prototype chain if receiver does not have packed elements.
718   GotoUnless(IsHoleyFastElementsKind(elements_kind), if_true);
719 
720   BranchIfPrototypesHaveNoElements(map, if_true, if_false);
721 }
722 
AllocateRawUnaligned(Node * size_in_bytes,AllocationFlags flags,Node * top_address,Node * limit_address)723 Node* CodeStubAssembler::AllocateRawUnaligned(Node* size_in_bytes,
724                                               AllocationFlags flags,
725                                               Node* top_address,
726                                               Node* limit_address) {
727   Node* top = Load(MachineType::Pointer(), top_address);
728   Node* limit = Load(MachineType::Pointer(), limit_address);
729 
730   // If there's not enough space, call the runtime.
731   Variable result(this, MachineRepresentation::kTagged);
732   Label runtime_call(this, Label::kDeferred), no_runtime_call(this);
733   Label merge_runtime(this, &result);
734 
735   Node* new_top = IntPtrAdd(top, size_in_bytes);
736   Branch(UintPtrGreaterThanOrEqual(new_top, limit), &runtime_call,
737          &no_runtime_call);
738 
739   Bind(&runtime_call);
740   Node* runtime_result;
741   if (flags & kPretenured) {
742     Node* runtime_flags = SmiConstant(
743         Smi::FromInt(AllocateDoubleAlignFlag::encode(false) |
744                      AllocateTargetSpace::encode(AllocationSpace::OLD_SPACE)));
745     runtime_result =
746         CallRuntime(Runtime::kAllocateInTargetSpace, NoContextConstant(),
747                     SmiTag(size_in_bytes), runtime_flags);
748   } else {
749     runtime_result = CallRuntime(Runtime::kAllocateInNewSpace,
750                                  NoContextConstant(), SmiTag(size_in_bytes));
751   }
752   result.Bind(runtime_result);
753   Goto(&merge_runtime);
754 
755   // When there is enough space, return `top' and bump it up.
756   Bind(&no_runtime_call);
757   Node* no_runtime_result = top;
758   StoreNoWriteBarrier(MachineType::PointerRepresentation(), top_address,
759                       new_top);
760   no_runtime_result = BitcastWordToTagged(
761       IntPtrAdd(no_runtime_result, IntPtrConstant(kHeapObjectTag)));
762   result.Bind(no_runtime_result);
763   Goto(&merge_runtime);
764 
765   Bind(&merge_runtime);
766   return result.value();
767 }
768 
AllocateRawAligned(Node * size_in_bytes,AllocationFlags flags,Node * top_address,Node * limit_address)769 Node* CodeStubAssembler::AllocateRawAligned(Node* size_in_bytes,
770                                             AllocationFlags flags,
771                                             Node* top_address,
772                                             Node* limit_address) {
773   Node* top = Load(MachineType::Pointer(), top_address);
774   Node* limit = Load(MachineType::Pointer(), limit_address);
775   Variable adjusted_size(this, MachineType::PointerRepresentation());
776   adjusted_size.Bind(size_in_bytes);
777   if (flags & kDoubleAlignment) {
778     // TODO(epertoso): Simd128 alignment.
779     Label aligned(this), not_aligned(this), merge(this, &adjusted_size);
780     Branch(WordAnd(top, IntPtrConstant(kDoubleAlignmentMask)), &not_aligned,
781            &aligned);
782 
783     Bind(&not_aligned);
784     Node* not_aligned_size =
785         IntPtrAdd(size_in_bytes, IntPtrConstant(kPointerSize));
786     adjusted_size.Bind(not_aligned_size);
787     Goto(&merge);
788 
789     Bind(&aligned);
790     Goto(&merge);
791 
792     Bind(&merge);
793   }
794 
795   Variable address(this, MachineRepresentation::kTagged);
796   address.Bind(AllocateRawUnaligned(adjusted_size.value(), kNone, top, limit));
797 
798   Label needs_filler(this), doesnt_need_filler(this),
799       merge_address(this, &address);
800   Branch(IntPtrEqual(adjusted_size.value(), size_in_bytes), &doesnt_need_filler,
801          &needs_filler);
802 
803   Bind(&needs_filler);
804   // Store a filler and increase the address by kPointerSize.
805   // TODO(epertoso): this code assumes that we only align to kDoubleSize. Change
806   // it when Simd128 alignment is supported.
807   StoreNoWriteBarrier(MachineType::PointerRepresentation(), top,
808                       LoadRoot(Heap::kOnePointerFillerMapRootIndex));
809   address.Bind(BitcastWordToTagged(
810       IntPtrAdd(address.value(), IntPtrConstant(kPointerSize))));
811   Goto(&merge_address);
812 
813   Bind(&doesnt_need_filler);
814   Goto(&merge_address);
815 
816   Bind(&merge_address);
817   // Update the top.
818   StoreNoWriteBarrier(MachineType::PointerRepresentation(), top_address,
819                       IntPtrAdd(top, adjusted_size.value()));
820   return address.value();
821 }
822 
Allocate(Node * size_in_bytes,AllocationFlags flags)823 Node* CodeStubAssembler::Allocate(Node* size_in_bytes, AllocationFlags flags) {
824   Comment("Allocate");
825   bool const new_space = !(flags & kPretenured);
826   Node* top_address = ExternalConstant(
827       new_space
828           ? ExternalReference::new_space_allocation_top_address(isolate())
829           : ExternalReference::old_space_allocation_top_address(isolate()));
830   Node* limit_address = ExternalConstant(
831       new_space
832           ? ExternalReference::new_space_allocation_limit_address(isolate())
833           : ExternalReference::old_space_allocation_limit_address(isolate()));
834 
835 #ifdef V8_HOST_ARCH_32_BIT
836   if (flags & kDoubleAlignment) {
837     return AllocateRawAligned(size_in_bytes, flags, top_address, limit_address);
838   }
839 #endif
840 
841   return AllocateRawUnaligned(size_in_bytes, flags, top_address, limit_address);
842 }
843 
Allocate(int size_in_bytes,AllocationFlags flags)844 Node* CodeStubAssembler::Allocate(int size_in_bytes, AllocationFlags flags) {
845   return CodeStubAssembler::Allocate(IntPtrConstant(size_in_bytes), flags);
846 }
847 
InnerAllocate(Node * previous,Node * offset)848 Node* CodeStubAssembler::InnerAllocate(Node* previous, Node* offset) {
849   return BitcastWordToTagged(IntPtrAdd(previous, offset));
850 }
851 
InnerAllocate(Node * previous,int offset)852 Node* CodeStubAssembler::InnerAllocate(Node* previous, int offset) {
853   return InnerAllocate(previous, IntPtrConstant(offset));
854 }
855 
IsRegularHeapObjectSize(Node * size)856 Node* CodeStubAssembler::IsRegularHeapObjectSize(Node* size) {
857   return UintPtrLessThanOrEqual(size,
858                                 IntPtrConstant(kMaxRegularHeapObjectSize));
859 }
860 
BranchIfToBooleanIsTrue(Node * value,Label * if_true,Label * if_false)861 void CodeStubAssembler::BranchIfToBooleanIsTrue(Node* value, Label* if_true,
862                                                 Label* if_false) {
863   Label if_valueissmi(this), if_valueisnotsmi(this), if_valueisstring(this),
864       if_valueisheapnumber(this), if_valueisother(this);
865 
866   // Fast check for Boolean {value}s (common case).
867   GotoIf(WordEqual(value, BooleanConstant(true)), if_true);
868   GotoIf(WordEqual(value, BooleanConstant(false)), if_false);
869 
870   // Check if {value} is a Smi or a HeapObject.
871   Branch(TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi);
872 
873   Bind(&if_valueissmi);
874   {
875     // The {value} is a Smi, only need to check against zero.
876     BranchIfSmiEqual(value, SmiConstant(0), if_false, if_true);
877   }
878 
879   Bind(&if_valueisnotsmi);
880   {
881     // The {value} is a HeapObject, load its map.
882     Node* value_map = LoadMap(value);
883 
884     // Load the {value}s instance type.
885     Node* value_instance_type = LoadMapInstanceType(value_map);
886 
887     // Dispatch based on the instance type; we distinguish all String instance
888     // types, the HeapNumber type and everything else.
889     GotoIf(Word32Equal(value_instance_type, Int32Constant(HEAP_NUMBER_TYPE)),
890            &if_valueisheapnumber);
891     Branch(IsStringInstanceType(value_instance_type), &if_valueisstring,
892            &if_valueisother);
893 
894     Bind(&if_valueisstring);
895     {
896       // Load the string length field of the {value}.
897       Node* value_length = LoadObjectField(value, String::kLengthOffset);
898 
899       // Check if the {value} is the empty string.
900       BranchIfSmiEqual(value_length, SmiConstant(0), if_false, if_true);
901     }
902 
903     Bind(&if_valueisheapnumber);
904     {
905       // Load the floating point value of {value}.
906       Node* value_value = LoadObjectField(value, HeapNumber::kValueOffset,
907                                           MachineType::Float64());
908 
909       // Check if the floating point {value} is neither 0.0, -0.0 nor NaN.
910       Branch(Float64LessThan(Float64Constant(0.0), Float64Abs(value_value)),
911              if_true, if_false);
912     }
913 
914     Bind(&if_valueisother);
915     {
916       // Load the bit field from the {value}s map. The {value} is now either
917       // Null or Undefined, which have the undetectable bit set (so we always
918       // return false for those), or a Symbol or Simd128Value, whose maps never
919       // have the undetectable bit set (so we always return true for those), or
920       // a JSReceiver, which may or may not have the undetectable bit set.
921       Node* value_map_bitfield = LoadMapBitField(value_map);
922       Node* value_map_undetectable = Word32And(
923           value_map_bitfield, Int32Constant(1 << Map::kIsUndetectable));
924 
925       // Check if the {value} is undetectable.
926       Branch(Word32Equal(value_map_undetectable, Int32Constant(0)), if_true,
927              if_false);
928     }
929   }
930 }
931 
LoadFromFrame(int offset,MachineType rep)932 compiler::Node* CodeStubAssembler::LoadFromFrame(int offset, MachineType rep) {
933   Node* frame_pointer = LoadFramePointer();
934   return Load(rep, frame_pointer, IntPtrConstant(offset));
935 }
936 
LoadFromParentFrame(int offset,MachineType rep)937 compiler::Node* CodeStubAssembler::LoadFromParentFrame(int offset,
938                                                        MachineType rep) {
939   Node* frame_pointer = LoadParentFramePointer();
940   return Load(rep, frame_pointer, IntPtrConstant(offset));
941 }
942 
LoadBufferObject(Node * buffer,int offset,MachineType rep)943 Node* CodeStubAssembler::LoadBufferObject(Node* buffer, int offset,
944                                           MachineType rep) {
945   return Load(rep, buffer, IntPtrConstant(offset));
946 }
947 
LoadObjectField(Node * object,int offset,MachineType rep)948 Node* CodeStubAssembler::LoadObjectField(Node* object, int offset,
949                                          MachineType rep) {
950   return Load(rep, object, IntPtrConstant(offset - kHeapObjectTag));
951 }
952 
LoadObjectField(Node * object,Node * offset,MachineType rep)953 Node* CodeStubAssembler::LoadObjectField(Node* object, Node* offset,
954                                          MachineType rep) {
955   return Load(rep, object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)));
956 }
957 
LoadAndUntagObjectField(Node * object,int offset)958 Node* CodeStubAssembler::LoadAndUntagObjectField(Node* object, int offset) {
959   if (Is64()) {
960 #if V8_TARGET_LITTLE_ENDIAN
961     offset += kPointerSize / 2;
962 #endif
963     return ChangeInt32ToInt64(
964         LoadObjectField(object, offset, MachineType::Int32()));
965   } else {
966     return SmiToWord(LoadObjectField(object, offset, MachineType::AnyTagged()));
967   }
968 }
969 
LoadAndUntagToWord32ObjectField(Node * object,int offset)970 Node* CodeStubAssembler::LoadAndUntagToWord32ObjectField(Node* object,
971                                                          int offset) {
972   if (Is64()) {
973 #if V8_TARGET_LITTLE_ENDIAN
974     offset += kPointerSize / 2;
975 #endif
976     return LoadObjectField(object, offset, MachineType::Int32());
977   } else {
978     return SmiToWord32(
979         LoadObjectField(object, offset, MachineType::AnyTagged()));
980   }
981 }
982 
LoadAndUntagSmi(Node * base,int index)983 Node* CodeStubAssembler::LoadAndUntagSmi(Node* base, int index) {
984   if (Is64()) {
985 #if V8_TARGET_LITTLE_ENDIAN
986     index += kPointerSize / 2;
987 #endif
988     return ChangeInt32ToInt64(
989         Load(MachineType::Int32(), base, IntPtrConstant(index)));
990   } else {
991     return SmiToWord(
992         Load(MachineType::AnyTagged(), base, IntPtrConstant(index)));
993   }
994 }
995 
LoadAndUntagToWord32Root(Heap::RootListIndex root_index)996 Node* CodeStubAssembler::LoadAndUntagToWord32Root(
997     Heap::RootListIndex root_index) {
998   Node* roots_array_start =
999       ExternalConstant(ExternalReference::roots_array_start(isolate()));
1000   int index = root_index * kPointerSize;
1001   if (Is64()) {
1002 #if V8_TARGET_LITTLE_ENDIAN
1003     index += kPointerSize / 2;
1004 #endif
1005     return Load(MachineType::Int32(), roots_array_start, IntPtrConstant(index));
1006   } else {
1007     return SmiToWord32(Load(MachineType::AnyTagged(), roots_array_start,
1008                             IntPtrConstant(index)));
1009   }
1010 }
1011 
LoadHeapNumberValue(Node * object)1012 Node* CodeStubAssembler::LoadHeapNumberValue(Node* object) {
1013   return LoadObjectField(object, HeapNumber::kValueOffset,
1014                          MachineType::Float64());
1015 }
1016 
LoadMap(Node * object)1017 Node* CodeStubAssembler::LoadMap(Node* object) {
1018   return LoadObjectField(object, HeapObject::kMapOffset);
1019 }
1020 
LoadInstanceType(Node * object)1021 Node* CodeStubAssembler::LoadInstanceType(Node* object) {
1022   return LoadMapInstanceType(LoadMap(object));
1023 }
1024 
HasInstanceType(Node * object,InstanceType instance_type)1025 Node* CodeStubAssembler::HasInstanceType(Node* object,
1026                                          InstanceType instance_type) {
1027   return Word32Equal(LoadInstanceType(object), Int32Constant(instance_type));
1028 }
1029 
LoadProperties(Node * object)1030 Node* CodeStubAssembler::LoadProperties(Node* object) {
1031   return LoadObjectField(object, JSObject::kPropertiesOffset);
1032 }
1033 
LoadElements(Node * object)1034 Node* CodeStubAssembler::LoadElements(Node* object) {
1035   return LoadObjectField(object, JSObject::kElementsOffset);
1036 }
1037 
LoadJSArrayLength(Node * array)1038 Node* CodeStubAssembler::LoadJSArrayLength(Node* array) {
1039   CSA_ASSERT(this, IsJSArray(array));
1040   return LoadObjectField(array, JSArray::kLengthOffset);
1041 }
1042 
LoadFixedArrayBaseLength(Node * array)1043 Node* CodeStubAssembler::LoadFixedArrayBaseLength(Node* array) {
1044   return LoadObjectField(array, FixedArrayBase::kLengthOffset);
1045 }
1046 
LoadAndUntagFixedArrayBaseLength(Node * array)1047 Node* CodeStubAssembler::LoadAndUntagFixedArrayBaseLength(Node* array) {
1048   return LoadAndUntagObjectField(array, FixedArrayBase::kLengthOffset);
1049 }
1050 
LoadMapBitField(Node * map)1051 Node* CodeStubAssembler::LoadMapBitField(Node* map) {
1052   CSA_SLOW_ASSERT(this, IsMap(map));
1053   return LoadObjectField(map, Map::kBitFieldOffset, MachineType::Uint8());
1054 }
1055 
LoadMapBitField2(Node * map)1056 Node* CodeStubAssembler::LoadMapBitField2(Node* map) {
1057   CSA_SLOW_ASSERT(this, IsMap(map));
1058   return LoadObjectField(map, Map::kBitField2Offset, MachineType::Uint8());
1059 }
1060 
LoadMapBitField3(Node * map)1061 Node* CodeStubAssembler::LoadMapBitField3(Node* map) {
1062   CSA_SLOW_ASSERT(this, IsMap(map));
1063   return LoadObjectField(map, Map::kBitField3Offset, MachineType::Uint32());
1064 }
1065 
LoadMapInstanceType(Node * map)1066 Node* CodeStubAssembler::LoadMapInstanceType(Node* map) {
1067   return LoadObjectField(map, Map::kInstanceTypeOffset, MachineType::Uint8());
1068 }
1069 
LoadMapElementsKind(Node * map)1070 Node* CodeStubAssembler::LoadMapElementsKind(Node* map) {
1071   CSA_SLOW_ASSERT(this, IsMap(map));
1072   Node* bit_field2 = LoadMapBitField2(map);
1073   return DecodeWord32<Map::ElementsKindBits>(bit_field2);
1074 }
1075 
LoadMapDescriptors(Node * map)1076 Node* CodeStubAssembler::LoadMapDescriptors(Node* map) {
1077   CSA_SLOW_ASSERT(this, IsMap(map));
1078   return LoadObjectField(map, Map::kDescriptorsOffset);
1079 }
1080 
LoadMapPrototype(Node * map)1081 Node* CodeStubAssembler::LoadMapPrototype(Node* map) {
1082   CSA_SLOW_ASSERT(this, IsMap(map));
1083   return LoadObjectField(map, Map::kPrototypeOffset);
1084 }
1085 
LoadMapPrototypeInfo(Node * map,Label * if_no_proto_info)1086 Node* CodeStubAssembler::LoadMapPrototypeInfo(Node* map,
1087                                               Label* if_no_proto_info) {
1088   CSA_ASSERT(this, IsMap(map));
1089   Node* prototype_info =
1090       LoadObjectField(map, Map::kTransitionsOrPrototypeInfoOffset);
1091   GotoIf(TaggedIsSmi(prototype_info), if_no_proto_info);
1092   GotoUnless(WordEqual(LoadMap(prototype_info),
1093                        LoadRoot(Heap::kPrototypeInfoMapRootIndex)),
1094              if_no_proto_info);
1095   return prototype_info;
1096 }
1097 
LoadMapInstanceSize(Node * map)1098 Node* CodeStubAssembler::LoadMapInstanceSize(Node* map) {
1099   CSA_SLOW_ASSERT(this, IsMap(map));
1100   return ChangeUint32ToWord(
1101       LoadObjectField(map, Map::kInstanceSizeOffset, MachineType::Uint8()));
1102 }
1103 
LoadMapInobjectProperties(Node * map)1104 Node* CodeStubAssembler::LoadMapInobjectProperties(Node* map) {
1105   CSA_SLOW_ASSERT(this, IsMap(map));
1106   // See Map::GetInObjectProperties() for details.
1107   STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE);
1108   CSA_ASSERT(this,
1109              Int32GreaterThanOrEqual(LoadMapInstanceType(map),
1110                                      Int32Constant(FIRST_JS_OBJECT_TYPE)));
1111   return ChangeUint32ToWord(LoadObjectField(
1112       map, Map::kInObjectPropertiesOrConstructorFunctionIndexOffset,
1113       MachineType::Uint8()));
1114 }
1115 
LoadMapConstructorFunctionIndex(Node * map)1116 Node* CodeStubAssembler::LoadMapConstructorFunctionIndex(Node* map) {
1117   CSA_SLOW_ASSERT(this, IsMap(map));
1118   // See Map::GetConstructorFunctionIndex() for details.
1119   STATIC_ASSERT(FIRST_PRIMITIVE_TYPE == FIRST_TYPE);
1120   CSA_ASSERT(this, Int32LessThanOrEqual(LoadMapInstanceType(map),
1121                                         Int32Constant(LAST_PRIMITIVE_TYPE)));
1122   return ChangeUint32ToWord(LoadObjectField(
1123       map, Map::kInObjectPropertiesOrConstructorFunctionIndexOffset,
1124       MachineType::Uint8()));
1125 }
1126 
LoadMapConstructor(Node * map)1127 Node* CodeStubAssembler::LoadMapConstructor(Node* map) {
1128   CSA_SLOW_ASSERT(this, IsMap(map));
1129   Variable result(this, MachineRepresentation::kTagged);
1130   result.Bind(LoadObjectField(map, Map::kConstructorOrBackPointerOffset));
1131 
1132   Label done(this), loop(this, &result);
1133   Goto(&loop);
1134   Bind(&loop);
1135   {
1136     GotoIf(TaggedIsSmi(result.value()), &done);
1137     Node* is_map_type =
1138         Word32Equal(LoadInstanceType(result.value()), Int32Constant(MAP_TYPE));
1139     GotoUnless(is_map_type, &done);
1140     result.Bind(
1141         LoadObjectField(result.value(), Map::kConstructorOrBackPointerOffset));
1142     Goto(&loop);
1143   }
1144   Bind(&done);
1145   return result.value();
1146 }
1147 
LoadNameHashField(Node * name)1148 Node* CodeStubAssembler::LoadNameHashField(Node* name) {
1149   CSA_ASSERT(this, IsName(name));
1150   return LoadObjectField(name, Name::kHashFieldOffset, MachineType::Uint32());
1151 }
1152 
LoadNameHash(Node * name,Label * if_hash_not_computed)1153 Node* CodeStubAssembler::LoadNameHash(Node* name, Label* if_hash_not_computed) {
1154   Node* hash_field = LoadNameHashField(name);
1155   if (if_hash_not_computed != nullptr) {
1156     GotoIf(Word32Equal(
1157                Word32And(hash_field, Int32Constant(Name::kHashNotComputedMask)),
1158                Int32Constant(0)),
1159            if_hash_not_computed);
1160   }
1161   return Word32Shr(hash_field, Int32Constant(Name::kHashShift));
1162 }
1163 
LoadStringLength(Node * object)1164 Node* CodeStubAssembler::LoadStringLength(Node* object) {
1165   CSA_ASSERT(this, IsString(object));
1166   return LoadObjectField(object, String::kLengthOffset);
1167 }
1168 
LoadJSValueValue(Node * object)1169 Node* CodeStubAssembler::LoadJSValueValue(Node* object) {
1170   CSA_ASSERT(this, IsJSValue(object));
1171   return LoadObjectField(object, JSValue::kValueOffset);
1172 }
1173 
LoadWeakCellValueUnchecked(Node * weak_cell)1174 Node* CodeStubAssembler::LoadWeakCellValueUnchecked(Node* weak_cell) {
1175   // TODO(ishell): fix callers.
1176   return LoadObjectField(weak_cell, WeakCell::kValueOffset);
1177 }
1178 
LoadWeakCellValue(Node * weak_cell,Label * if_cleared)1179 Node* CodeStubAssembler::LoadWeakCellValue(Node* weak_cell, Label* if_cleared) {
1180   CSA_ASSERT(this, IsWeakCell(weak_cell));
1181   Node* value = LoadWeakCellValueUnchecked(weak_cell);
1182   if (if_cleared != nullptr) {
1183     GotoIf(WordEqual(value, IntPtrConstant(0)), if_cleared);
1184   }
1185   return value;
1186 }
1187 
LoadFixedArrayElement(Node * object,Node * index_node,int additional_offset,ParameterMode parameter_mode)1188 Node* CodeStubAssembler::LoadFixedArrayElement(Node* object, Node* index_node,
1189                                                int additional_offset,
1190                                                ParameterMode parameter_mode) {
1191   int32_t header_size =
1192       FixedArray::kHeaderSize + additional_offset - kHeapObjectTag;
1193   Node* offset = ElementOffsetFromIndex(index_node, FAST_HOLEY_ELEMENTS,
1194                                         parameter_mode, header_size);
1195   return Load(MachineType::AnyTagged(), object, offset);
1196 }
1197 
LoadFixedTypedArrayElement(Node * data_pointer,Node * index_node,ElementsKind elements_kind,ParameterMode parameter_mode)1198 Node* CodeStubAssembler::LoadFixedTypedArrayElement(
1199     Node* data_pointer, Node* index_node, ElementsKind elements_kind,
1200     ParameterMode parameter_mode) {
1201   Node* offset =
1202       ElementOffsetFromIndex(index_node, elements_kind, parameter_mode, 0);
1203   MachineType type;
1204   switch (elements_kind) {
1205     case UINT8_ELEMENTS: /* fall through */
1206     case UINT8_CLAMPED_ELEMENTS:
1207       type = MachineType::Uint8();
1208       break;
1209     case INT8_ELEMENTS:
1210       type = MachineType::Int8();
1211       break;
1212     case UINT16_ELEMENTS:
1213       type = MachineType::Uint16();
1214       break;
1215     case INT16_ELEMENTS:
1216       type = MachineType::Int16();
1217       break;
1218     case UINT32_ELEMENTS:
1219       type = MachineType::Uint32();
1220       break;
1221     case INT32_ELEMENTS:
1222       type = MachineType::Int32();
1223       break;
1224     case FLOAT32_ELEMENTS:
1225       type = MachineType::Float32();
1226       break;
1227     case FLOAT64_ELEMENTS:
1228       type = MachineType::Float64();
1229       break;
1230     default:
1231       UNREACHABLE();
1232   }
1233   return Load(type, data_pointer, offset);
1234 }
1235 
LoadAndUntagToWord32FixedArrayElement(Node * object,Node * index_node,int additional_offset,ParameterMode parameter_mode)1236 Node* CodeStubAssembler::LoadAndUntagToWord32FixedArrayElement(
1237     Node* object, Node* index_node, int additional_offset,
1238     ParameterMode parameter_mode) {
1239   int32_t header_size =
1240       FixedArray::kHeaderSize + additional_offset - kHeapObjectTag;
1241 #if V8_TARGET_LITTLE_ENDIAN
1242   if (Is64()) {
1243     header_size += kPointerSize / 2;
1244   }
1245 #endif
1246   Node* offset = ElementOffsetFromIndex(index_node, FAST_HOLEY_ELEMENTS,
1247                                         parameter_mode, header_size);
1248   if (Is64()) {
1249     return Load(MachineType::Int32(), object, offset);
1250   } else {
1251     return SmiToWord32(Load(MachineType::AnyTagged(), object, offset));
1252   }
1253 }
1254 
LoadFixedDoubleArrayElement(Node * object,Node * index_node,MachineType machine_type,int additional_offset,ParameterMode parameter_mode,Label * if_hole)1255 Node* CodeStubAssembler::LoadFixedDoubleArrayElement(
1256     Node* object, Node* index_node, MachineType machine_type,
1257     int additional_offset, ParameterMode parameter_mode, Label* if_hole) {
1258   CSA_ASSERT(this, IsFixedDoubleArray(object));
1259   int32_t header_size =
1260       FixedDoubleArray::kHeaderSize + additional_offset - kHeapObjectTag;
1261   Node* offset = ElementOffsetFromIndex(index_node, FAST_HOLEY_DOUBLE_ELEMENTS,
1262                                         parameter_mode, header_size);
1263   return LoadDoubleWithHoleCheck(object, offset, if_hole, machine_type);
1264 }
1265 
LoadDoubleWithHoleCheck(Node * base,Node * offset,Label * if_hole,MachineType machine_type)1266 Node* CodeStubAssembler::LoadDoubleWithHoleCheck(Node* base, Node* offset,
1267                                                  Label* if_hole,
1268                                                  MachineType machine_type) {
1269   if (if_hole) {
1270     // TODO(ishell): Compare only the upper part for the hole once the
1271     // compiler is able to fold addition of already complex |offset| with
1272     // |kIeeeDoubleExponentWordOffset| into one addressing mode.
1273     if (Is64()) {
1274       Node* element = Load(MachineType::Uint64(), base, offset);
1275       GotoIf(Word64Equal(element, Int64Constant(kHoleNanInt64)), if_hole);
1276     } else {
1277       Node* element_upper = Load(
1278           MachineType::Uint32(), base,
1279           IntPtrAdd(offset, IntPtrConstant(kIeeeDoubleExponentWordOffset)));
1280       GotoIf(Word32Equal(element_upper, Int32Constant(kHoleNanUpper32)),
1281              if_hole);
1282     }
1283   }
1284   if (machine_type.IsNone()) {
1285     // This means the actual value is not needed.
1286     return nullptr;
1287   }
1288   return Load(machine_type, base, offset);
1289 }
1290 
LoadContextElement(Node * context,int slot_index)1291 Node* CodeStubAssembler::LoadContextElement(Node* context, int slot_index) {
1292   int offset = Context::SlotOffset(slot_index);
1293   return Load(MachineType::AnyTagged(), context, IntPtrConstant(offset));
1294 }
1295 
LoadContextElement(Node * context,Node * slot_index)1296 Node* CodeStubAssembler::LoadContextElement(Node* context, Node* slot_index) {
1297   Node* offset =
1298       IntPtrAdd(WordShl(slot_index, kPointerSizeLog2),
1299                 IntPtrConstant(Context::kHeaderSize - kHeapObjectTag));
1300   return Load(MachineType::AnyTagged(), context, offset);
1301 }
1302 
StoreContextElement(Node * context,int slot_index,Node * value)1303 Node* CodeStubAssembler::StoreContextElement(Node* context, int slot_index,
1304                                              Node* value) {
1305   int offset = Context::SlotOffset(slot_index);
1306   return Store(MachineRepresentation::kTagged, context, IntPtrConstant(offset),
1307                value);
1308 }
1309 
StoreContextElement(Node * context,Node * slot_index,Node * value)1310 Node* CodeStubAssembler::StoreContextElement(Node* context, Node* slot_index,
1311                                              Node* value) {
1312   Node* offset =
1313       IntPtrAdd(WordShl(slot_index, kPointerSizeLog2),
1314                 IntPtrConstant(Context::kHeaderSize - kHeapObjectTag));
1315   return Store(MachineRepresentation::kTagged, context, offset, value);
1316 }
1317 
LoadNativeContext(Node * context)1318 Node* CodeStubAssembler::LoadNativeContext(Node* context) {
1319   return LoadContextElement(context, Context::NATIVE_CONTEXT_INDEX);
1320 }
1321 
LoadJSArrayElementsMap(ElementsKind kind,Node * native_context)1322 Node* CodeStubAssembler::LoadJSArrayElementsMap(ElementsKind kind,
1323                                                 Node* native_context) {
1324   CSA_ASSERT(this, IsNativeContext(native_context));
1325   return LoadFixedArrayElement(native_context,
1326                                IntPtrConstant(Context::ArrayMapIndex(kind)));
1327 }
1328 
StoreHeapNumberValue(Node * object,Node * value)1329 Node* CodeStubAssembler::StoreHeapNumberValue(Node* object, Node* value) {
1330   return StoreObjectFieldNoWriteBarrier(object, HeapNumber::kValueOffset, value,
1331                                         MachineRepresentation::kFloat64);
1332 }
1333 
StoreObjectField(Node * object,int offset,Node * value)1334 Node* CodeStubAssembler::StoreObjectField(
1335     Node* object, int offset, Node* value) {
1336   return Store(MachineRepresentation::kTagged, object,
1337                IntPtrConstant(offset - kHeapObjectTag), value);
1338 }
1339 
StoreObjectField(Node * object,Node * offset,Node * value)1340 Node* CodeStubAssembler::StoreObjectField(Node* object, Node* offset,
1341                                           Node* value) {
1342   int const_offset;
1343   if (ToInt32Constant(offset, const_offset)) {
1344     return StoreObjectField(object, const_offset, value);
1345   }
1346   return Store(MachineRepresentation::kTagged, object,
1347                IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)), value);
1348 }
1349 
StoreObjectFieldNoWriteBarrier(Node * object,int offset,Node * value,MachineRepresentation rep)1350 Node* CodeStubAssembler::StoreObjectFieldNoWriteBarrier(
1351     Node* object, int offset, Node* value, MachineRepresentation rep) {
1352   return StoreNoWriteBarrier(rep, object,
1353                              IntPtrConstant(offset - kHeapObjectTag), value);
1354 }
1355 
StoreObjectFieldNoWriteBarrier(Node * object,Node * offset,Node * value,MachineRepresentation rep)1356 Node* CodeStubAssembler::StoreObjectFieldNoWriteBarrier(
1357     Node* object, Node* offset, Node* value, MachineRepresentation rep) {
1358   int const_offset;
1359   if (ToInt32Constant(offset, const_offset)) {
1360     return StoreObjectFieldNoWriteBarrier(object, const_offset, value, rep);
1361   }
1362   return StoreNoWriteBarrier(
1363       rep, object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)), value);
1364 }
1365 
StoreMapNoWriteBarrier(Node * object,Node * map)1366 Node* CodeStubAssembler::StoreMapNoWriteBarrier(Node* object, Node* map) {
1367   return StoreNoWriteBarrier(
1368       MachineRepresentation::kTagged, object,
1369       IntPtrConstant(HeapNumber::kMapOffset - kHeapObjectTag), map);
1370 }
1371 
StoreObjectFieldRoot(Node * object,int offset,Heap::RootListIndex root_index)1372 Node* CodeStubAssembler::StoreObjectFieldRoot(Node* object, int offset,
1373                                               Heap::RootListIndex root_index) {
1374   if (Heap::RootIsImmortalImmovable(root_index)) {
1375     return StoreObjectFieldNoWriteBarrier(object, offset, LoadRoot(root_index));
1376   } else {
1377     return StoreObjectField(object, offset, LoadRoot(root_index));
1378   }
1379 }
1380 
StoreFixedArrayElement(Node * object,Node * index_node,Node * value,WriteBarrierMode barrier_mode,ParameterMode parameter_mode)1381 Node* CodeStubAssembler::StoreFixedArrayElement(Node* object, Node* index_node,
1382                                                 Node* value,
1383                                                 WriteBarrierMode barrier_mode,
1384                                                 ParameterMode parameter_mode) {
1385   DCHECK(barrier_mode == SKIP_WRITE_BARRIER ||
1386          barrier_mode == UPDATE_WRITE_BARRIER);
1387   Node* offset =
1388       ElementOffsetFromIndex(index_node, FAST_HOLEY_ELEMENTS, parameter_mode,
1389                              FixedArray::kHeaderSize - kHeapObjectTag);
1390   MachineRepresentation rep = MachineRepresentation::kTagged;
1391   if (barrier_mode == SKIP_WRITE_BARRIER) {
1392     return StoreNoWriteBarrier(rep, object, offset, value);
1393   } else {
1394     return Store(rep, object, offset, value);
1395   }
1396 }
1397 
StoreFixedDoubleArrayElement(Node * object,Node * index_node,Node * value,ParameterMode parameter_mode)1398 Node* CodeStubAssembler::StoreFixedDoubleArrayElement(
1399     Node* object, Node* index_node, Node* value, ParameterMode parameter_mode) {
1400   CSA_ASSERT(this, IsFixedDoubleArray(object));
1401   Node* offset =
1402       ElementOffsetFromIndex(index_node, FAST_DOUBLE_ELEMENTS, parameter_mode,
1403                              FixedArray::kHeaderSize - kHeapObjectTag);
1404   MachineRepresentation rep = MachineRepresentation::kFloat64;
1405   return StoreNoWriteBarrier(rep, object, offset, value);
1406 }
1407 
AllocateHeapNumber(MutableMode mode)1408 Node* CodeStubAssembler::AllocateHeapNumber(MutableMode mode) {
1409   Node* result = Allocate(HeapNumber::kSize, kNone);
1410   Heap::RootListIndex heap_map_index =
1411       mode == IMMUTABLE ? Heap::kHeapNumberMapRootIndex
1412                         : Heap::kMutableHeapNumberMapRootIndex;
1413   Node* map = LoadRoot(heap_map_index);
1414   StoreMapNoWriteBarrier(result, map);
1415   return result;
1416 }
1417 
AllocateHeapNumberWithValue(Node * value,MutableMode mode)1418 Node* CodeStubAssembler::AllocateHeapNumberWithValue(Node* value,
1419                                                      MutableMode mode) {
1420   Node* result = AllocateHeapNumber(mode);
1421   StoreHeapNumberValue(result, value);
1422   return result;
1423 }
1424 
AllocateSeqOneByteString(int length,AllocationFlags flags)1425 Node* CodeStubAssembler::AllocateSeqOneByteString(int length,
1426                                                   AllocationFlags flags) {
1427   Comment("AllocateSeqOneByteString");
1428   Node* result = Allocate(SeqOneByteString::SizeFor(length), flags);
1429   DCHECK(Heap::RootIsImmortalImmovable(Heap::kOneByteStringMapRootIndex));
1430   StoreMapNoWriteBarrier(result, LoadRoot(Heap::kOneByteStringMapRootIndex));
1431   StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kLengthOffset,
1432                                  SmiConstant(Smi::FromInt(length)));
1433   StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kHashFieldOffset,
1434                                  IntPtrConstant(String::kEmptyHashField),
1435                                  MachineRepresentation::kWord32);
1436   return result;
1437 }
1438 
AllocateSeqOneByteString(Node * context,Node * length,ParameterMode mode,AllocationFlags flags)1439 Node* CodeStubAssembler::AllocateSeqOneByteString(Node* context, Node* length,
1440                                                   ParameterMode mode,
1441                                                   AllocationFlags flags) {
1442   Comment("AllocateSeqOneByteString");
1443   Variable var_result(this, MachineRepresentation::kTagged);
1444 
1445   // Compute the SeqOneByteString size and check if it fits into new space.
1446   Label if_sizeissmall(this), if_notsizeissmall(this, Label::kDeferred),
1447       if_join(this);
1448   Node* raw_size = GetArrayAllocationSize(
1449       length, UINT8_ELEMENTS, mode,
1450       SeqOneByteString::kHeaderSize + kObjectAlignmentMask);
1451   Node* size = WordAnd(raw_size, IntPtrConstant(~kObjectAlignmentMask));
1452   Branch(IntPtrLessThanOrEqual(size, IntPtrConstant(kMaxRegularHeapObjectSize)),
1453          &if_sizeissmall, &if_notsizeissmall);
1454 
1455   Bind(&if_sizeissmall);
1456   {
1457     // Just allocate the SeqOneByteString in new space.
1458     Node* result = Allocate(size, flags);
1459     DCHECK(Heap::RootIsImmortalImmovable(Heap::kOneByteStringMapRootIndex));
1460     StoreMapNoWriteBarrier(result, LoadRoot(Heap::kOneByteStringMapRootIndex));
1461     StoreObjectFieldNoWriteBarrier(
1462         result, SeqOneByteString::kLengthOffset,
1463         mode == SMI_PARAMETERS ? length : SmiFromWord(length));
1464     StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kHashFieldOffset,
1465                                    IntPtrConstant(String::kEmptyHashField),
1466                                    MachineRepresentation::kWord32);
1467     var_result.Bind(result);
1468     Goto(&if_join);
1469   }
1470 
1471   Bind(&if_notsizeissmall);
1472   {
1473     // We might need to allocate in large object space, go to the runtime.
1474     Node* result =
1475         CallRuntime(Runtime::kAllocateSeqOneByteString, context,
1476                     mode == SMI_PARAMETERS ? length : SmiFromWord(length));
1477     var_result.Bind(result);
1478     Goto(&if_join);
1479   }
1480 
1481   Bind(&if_join);
1482   return var_result.value();
1483 }
1484 
AllocateSeqTwoByteString(int length,AllocationFlags flags)1485 Node* CodeStubAssembler::AllocateSeqTwoByteString(int length,
1486                                                   AllocationFlags flags) {
1487   Comment("AllocateSeqTwoByteString");
1488   Node* result = Allocate(SeqTwoByteString::SizeFor(length), flags);
1489   DCHECK(Heap::RootIsImmortalImmovable(Heap::kStringMapRootIndex));
1490   StoreMapNoWriteBarrier(result, LoadRoot(Heap::kStringMapRootIndex));
1491   StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kLengthOffset,
1492                                  SmiConstant(Smi::FromInt(length)));
1493   StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kHashFieldOffset,
1494                                  IntPtrConstant(String::kEmptyHashField),
1495                                  MachineRepresentation::kWord32);
1496   return result;
1497 }
1498 
AllocateSeqTwoByteString(Node * context,Node * length,ParameterMode mode,AllocationFlags flags)1499 Node* CodeStubAssembler::AllocateSeqTwoByteString(Node* context, Node* length,
1500                                                   ParameterMode mode,
1501                                                   AllocationFlags flags) {
1502   Comment("AllocateSeqTwoByteString");
1503   Variable var_result(this, MachineRepresentation::kTagged);
1504 
1505   // Compute the SeqTwoByteString size and check if it fits into new space.
1506   Label if_sizeissmall(this), if_notsizeissmall(this, Label::kDeferred),
1507       if_join(this);
1508   Node* raw_size = GetArrayAllocationSize(
1509       length, UINT16_ELEMENTS, mode,
1510       SeqOneByteString::kHeaderSize + kObjectAlignmentMask);
1511   Node* size = WordAnd(raw_size, IntPtrConstant(~kObjectAlignmentMask));
1512   Branch(IntPtrLessThanOrEqual(size, IntPtrConstant(kMaxRegularHeapObjectSize)),
1513          &if_sizeissmall, &if_notsizeissmall);
1514 
1515   Bind(&if_sizeissmall);
1516   {
1517     // Just allocate the SeqTwoByteString in new space.
1518     Node* result = Allocate(size, flags);
1519     DCHECK(Heap::RootIsImmortalImmovable(Heap::kStringMapRootIndex));
1520     StoreMapNoWriteBarrier(result, LoadRoot(Heap::kStringMapRootIndex));
1521     StoreObjectFieldNoWriteBarrier(
1522         result, SeqTwoByteString::kLengthOffset,
1523         mode == SMI_PARAMETERS ? length : SmiFromWord(length));
1524     StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kHashFieldOffset,
1525                                    IntPtrConstant(String::kEmptyHashField),
1526                                    MachineRepresentation::kWord32);
1527     var_result.Bind(result);
1528     Goto(&if_join);
1529   }
1530 
1531   Bind(&if_notsizeissmall);
1532   {
1533     // We might need to allocate in large object space, go to the runtime.
1534     Node* result =
1535         CallRuntime(Runtime::kAllocateSeqTwoByteString, context,
1536                     mode == SMI_PARAMETERS ? length : SmiFromWord(length));
1537     var_result.Bind(result);
1538     Goto(&if_join);
1539   }
1540 
1541   Bind(&if_join);
1542   return var_result.value();
1543 }
1544 
AllocateSlicedString(Heap::RootListIndex map_root_index,Node * length,Node * parent,Node * offset)1545 Node* CodeStubAssembler::AllocateSlicedString(
1546     Heap::RootListIndex map_root_index, Node* length, Node* parent,
1547     Node* offset) {
1548   CSA_ASSERT(this, TaggedIsSmi(length));
1549   Node* result = Allocate(SlicedString::kSize);
1550   Node* map = LoadRoot(map_root_index);
1551   DCHECK(Heap::RootIsImmortalImmovable(map_root_index));
1552   StoreMapNoWriteBarrier(result, map);
1553   StoreObjectFieldNoWriteBarrier(result, SlicedString::kLengthOffset, length,
1554                                  MachineRepresentation::kTagged);
1555   StoreObjectFieldNoWriteBarrier(result, SlicedString::kHashFieldOffset,
1556                                  Int32Constant(String::kEmptyHashField),
1557                                  MachineRepresentation::kWord32);
1558   StoreObjectFieldNoWriteBarrier(result, SlicedString::kParentOffset, parent,
1559                                  MachineRepresentation::kTagged);
1560   StoreObjectFieldNoWriteBarrier(result, SlicedString::kOffsetOffset, offset,
1561                                  MachineRepresentation::kTagged);
1562   return result;
1563 }
1564 
AllocateSlicedOneByteString(Node * length,Node * parent,Node * offset)1565 Node* CodeStubAssembler::AllocateSlicedOneByteString(Node* length, Node* parent,
1566                                                      Node* offset) {
1567   return AllocateSlicedString(Heap::kSlicedOneByteStringMapRootIndex, length,
1568                               parent, offset);
1569 }
1570 
AllocateSlicedTwoByteString(Node * length,Node * parent,Node * offset)1571 Node* CodeStubAssembler::AllocateSlicedTwoByteString(Node* length, Node* parent,
1572                                                      Node* offset) {
1573   return AllocateSlicedString(Heap::kSlicedStringMapRootIndex, length, parent,
1574                               offset);
1575 }
1576 
AllocateConsString(Heap::RootListIndex map_root_index,Node * length,Node * first,Node * second,AllocationFlags flags)1577 Node* CodeStubAssembler::AllocateConsString(Heap::RootListIndex map_root_index,
1578                                             Node* length, Node* first,
1579                                             Node* second,
1580                                             AllocationFlags flags) {
1581   CSA_ASSERT(this, TaggedIsSmi(length));
1582   Node* result = Allocate(ConsString::kSize, flags);
1583   Node* map = LoadRoot(map_root_index);
1584   DCHECK(Heap::RootIsImmortalImmovable(map_root_index));
1585   StoreMapNoWriteBarrier(result, map);
1586   StoreObjectFieldNoWriteBarrier(result, ConsString::kLengthOffset, length,
1587                                  MachineRepresentation::kTagged);
1588   StoreObjectFieldNoWriteBarrier(result, ConsString::kHashFieldOffset,
1589                                  Int32Constant(String::kEmptyHashField),
1590                                  MachineRepresentation::kWord32);
1591   bool const new_space = !(flags & kPretenured);
1592   if (new_space) {
1593     StoreObjectFieldNoWriteBarrier(result, ConsString::kFirstOffset, first,
1594                                    MachineRepresentation::kTagged);
1595     StoreObjectFieldNoWriteBarrier(result, ConsString::kSecondOffset, second,
1596                                    MachineRepresentation::kTagged);
1597   } else {
1598     StoreObjectField(result, ConsString::kFirstOffset, first);
1599     StoreObjectField(result, ConsString::kSecondOffset, second);
1600   }
1601   return result;
1602 }
1603 
AllocateOneByteConsString(Node * length,Node * first,Node * second,AllocationFlags flags)1604 Node* CodeStubAssembler::AllocateOneByteConsString(Node* length, Node* first,
1605                                                    Node* second,
1606                                                    AllocationFlags flags) {
1607   return AllocateConsString(Heap::kConsOneByteStringMapRootIndex, length, first,
1608                             second, flags);
1609 }
1610 
AllocateTwoByteConsString(Node * length,Node * first,Node * second,AllocationFlags flags)1611 Node* CodeStubAssembler::AllocateTwoByteConsString(Node* length, Node* first,
1612                                                    Node* second,
1613                                                    AllocationFlags flags) {
1614   return AllocateConsString(Heap::kConsStringMapRootIndex, length, first,
1615                             second, flags);
1616 }
1617 
NewConsString(Node * context,Node * length,Node * left,Node * right,AllocationFlags flags)1618 Node* CodeStubAssembler::NewConsString(Node* context, Node* length, Node* left,
1619                                        Node* right, AllocationFlags flags) {
1620   CSA_ASSERT(this, TaggedIsSmi(length));
1621   // Added string can be a cons string.
1622   Comment("Allocating ConsString");
1623   Node* left_instance_type = LoadInstanceType(left);
1624   Node* right_instance_type = LoadInstanceType(right);
1625 
1626   // Compute intersection and difference of instance types.
1627   Node* anded_instance_types = WordAnd(left_instance_type, right_instance_type);
1628   Node* xored_instance_types = WordXor(left_instance_type, right_instance_type);
1629 
1630   // We create a one-byte cons string if
1631   // 1. both strings are one-byte, or
1632   // 2. at least one of the strings is two-byte, but happens to contain only
1633   //    one-byte characters.
1634   // To do this, we check
1635   // 1. if both strings are one-byte, or if the one-byte data hint is set in
1636   //    both strings, or
1637   // 2. if one of the strings has the one-byte data hint set and the other
1638   //    string is one-byte.
1639   STATIC_ASSERT(kOneByteStringTag != 0);
1640   STATIC_ASSERT(kOneByteDataHintTag != 0);
1641   Label one_byte_map(this);
1642   Label two_byte_map(this);
1643   Variable result(this, MachineRepresentation::kTagged);
1644   Label done(this, &result);
1645   GotoIf(WordNotEqual(
1646              WordAnd(anded_instance_types,
1647                      IntPtrConstant(kStringEncodingMask | kOneByteDataHintTag)),
1648              IntPtrConstant(0)),
1649          &one_byte_map);
1650   Branch(WordNotEqual(WordAnd(xored_instance_types,
1651                               IntPtrConstant(kStringEncodingMask |
1652                                              kOneByteDataHintMask)),
1653                       IntPtrConstant(kOneByteStringTag | kOneByteDataHintTag)),
1654          &two_byte_map, &one_byte_map);
1655 
1656   Bind(&one_byte_map);
1657   Comment("One-byte ConsString");
1658   result.Bind(AllocateOneByteConsString(length, left, right, flags));
1659   Goto(&done);
1660 
1661   Bind(&two_byte_map);
1662   Comment("Two-byte ConsString");
1663   result.Bind(AllocateTwoByteConsString(length, left, right, flags));
1664   Goto(&done);
1665 
1666   Bind(&done);
1667 
1668   return result.value();
1669 }
1670 
AllocateRegExpResult(Node * context,Node * length,Node * index,Node * input)1671 Node* CodeStubAssembler::AllocateRegExpResult(Node* context, Node* length,
1672                                               Node* index, Node* input) {
1673   Node* const max_length =
1674       SmiConstant(Smi::FromInt(JSArray::kInitialMaxFastElementArray));
1675   CSA_ASSERT(this, SmiLessThanOrEqual(length, max_length));
1676   USE(max_length);
1677 
1678   // Allocate the JSRegExpResult.
1679   // TODO(jgruber): Fold JSArray and FixedArray allocations, then remove
1680   // unneeded store of elements.
1681   Node* const result = Allocate(JSRegExpResult::kSize);
1682 
1683   // TODO(jgruber): Store map as Heap constant?
1684   Node* const native_context = LoadNativeContext(context);
1685   Node* const map =
1686       LoadContextElement(native_context, Context::REGEXP_RESULT_MAP_INDEX);
1687   StoreMapNoWriteBarrier(result, map);
1688 
1689   // Initialize the header before allocating the elements.
1690   Node* const empty_array = EmptyFixedArrayConstant();
1691   DCHECK(Heap::RootIsImmortalImmovable(Heap::kEmptyFixedArrayRootIndex));
1692   StoreObjectFieldNoWriteBarrier(result, JSArray::kPropertiesOffset,
1693                                  empty_array);
1694   StoreObjectFieldNoWriteBarrier(result, JSArray::kElementsOffset, empty_array);
1695   StoreObjectFieldNoWriteBarrier(result, JSArray::kLengthOffset, length);
1696 
1697   StoreObjectFieldNoWriteBarrier(result, JSRegExpResult::kIndexOffset, index);
1698   StoreObjectField(result, JSRegExpResult::kInputOffset, input);
1699 
1700   Node* const zero = IntPtrConstant(0);
1701   Node* const length_intptr = SmiUntag(length);
1702   const ElementsKind elements_kind = FAST_ELEMENTS;
1703   const ParameterMode parameter_mode = INTPTR_PARAMETERS;
1704 
1705   Node* const elements =
1706       AllocateFixedArray(elements_kind, length_intptr, parameter_mode);
1707   StoreObjectField(result, JSArray::kElementsOffset, elements);
1708 
1709   // Fill in the elements with undefined.
1710   FillFixedArrayWithValue(elements_kind, elements, zero, length_intptr,
1711                           Heap::kUndefinedValueRootIndex, parameter_mode);
1712 
1713   return result;
1714 }
1715 
AllocateNameDictionary(int at_least_space_for)1716 Node* CodeStubAssembler::AllocateNameDictionary(int at_least_space_for) {
1717   return AllocateNameDictionary(IntPtrConstant(at_least_space_for));
1718 }
1719 
AllocateNameDictionary(Node * at_least_space_for)1720 Node* CodeStubAssembler::AllocateNameDictionary(Node* at_least_space_for) {
1721   CSA_ASSERT(this, UintPtrLessThanOrEqual(
1722                        at_least_space_for,
1723                        IntPtrConstant(NameDictionary::kMaxCapacity)));
1724 
1725   Node* capacity = HashTableComputeCapacity(at_least_space_for);
1726   CSA_ASSERT(this, WordIsPowerOfTwo(capacity));
1727 
1728   Node* length = EntryToIndex<NameDictionary>(capacity);
1729   Node* store_size =
1730       IntPtrAddFoldConstants(WordShl(length, IntPtrConstant(kPointerSizeLog2)),
1731                              IntPtrConstant(NameDictionary::kHeaderSize));
1732 
1733   Node* result = Allocate(store_size);
1734   Comment("Initialize NameDictionary");
1735   // Initialize FixedArray fields.
1736   StoreObjectFieldRoot(result, FixedArray::kMapOffset,
1737                        Heap::kHashTableMapRootIndex);
1738   StoreObjectFieldNoWriteBarrier(result, FixedArray::kLengthOffset,
1739                                  SmiFromWord(length));
1740   // Initialized HashTable fields.
1741   Node* zero = SmiConstant(0);
1742   StoreFixedArrayElement(result, NameDictionary::kNumberOfElementsIndex, zero,
1743                          SKIP_WRITE_BARRIER);
1744   StoreFixedArrayElement(result, NameDictionary::kNumberOfDeletedElementsIndex,
1745                          zero, SKIP_WRITE_BARRIER);
1746   StoreFixedArrayElement(result, NameDictionary::kCapacityIndex,
1747                          SmiTag(capacity), SKIP_WRITE_BARRIER);
1748   // Initialize Dictionary fields.
1749   Node* filler = LoadRoot(Heap::kUndefinedValueRootIndex);
1750   StoreFixedArrayElement(result, NameDictionary::kMaxNumberKeyIndex, filler,
1751                          SKIP_WRITE_BARRIER);
1752   StoreFixedArrayElement(result, NameDictionary::kNextEnumerationIndexIndex,
1753                          SmiConstant(PropertyDetails::kInitialIndex),
1754                          SKIP_WRITE_BARRIER);
1755 
1756   // Initialize NameDictionary elements.
1757   result = BitcastTaggedToWord(result);
1758   Node* start_address = IntPtrAdd(
1759       result, IntPtrConstant(NameDictionary::OffsetOfElementAt(
1760                                  NameDictionary::kElementsStartIndex) -
1761                              kHeapObjectTag));
1762   Node* end_address = IntPtrAdd(
1763       result,
1764       IntPtrSubFoldConstants(store_size, IntPtrConstant(kHeapObjectTag)));
1765   StoreFieldsNoWriteBarrier(start_address, end_address, filler);
1766   return result;
1767 }
1768 
AllocateJSObjectFromMap(Node * map,Node * properties,Node * elements)1769 Node* CodeStubAssembler::AllocateJSObjectFromMap(Node* map, Node* properties,
1770                                                  Node* elements) {
1771   CSA_ASSERT(this, IsMap(map));
1772   Node* size =
1773       IntPtrMul(LoadMapInstanceSize(map), IntPtrConstant(kPointerSize));
1774   CSA_ASSERT(this, IsRegularHeapObjectSize(size));
1775   Node* object = Allocate(size);
1776   StoreMapNoWriteBarrier(object, map);
1777   InitializeJSObjectFromMap(object, map, size, properties, elements);
1778   return object;
1779 }
1780 
InitializeJSObjectFromMap(Node * object,Node * map,Node * size,Node * properties,Node * elements)1781 void CodeStubAssembler::InitializeJSObjectFromMap(Node* object, Node* map,
1782                                                   Node* size, Node* properties,
1783                                                   Node* elements) {
1784   // This helper assumes that the object is in new-space, as guarded by the
1785   // check in AllocatedJSObjectFromMap.
1786   if (properties == nullptr) {
1787     CSA_ASSERT(this, Word32BinaryNot(IsDictionaryMap((map))));
1788     StoreObjectFieldRoot(object, JSObject::kPropertiesOffset,
1789                          Heap::kEmptyFixedArrayRootIndex);
1790   } else {
1791     StoreObjectFieldNoWriteBarrier(object, JSObject::kPropertiesOffset,
1792                                    properties);
1793   }
1794   if (elements == nullptr) {
1795     StoreObjectFieldRoot(object, JSObject::kElementsOffset,
1796                          Heap::kEmptyFixedArrayRootIndex);
1797   } else {
1798     StoreObjectFieldNoWriteBarrier(object, JSObject::kElementsOffset, elements);
1799   }
1800   InitializeJSObjectBody(object, map, size, JSObject::kHeaderSize);
1801 }
1802 
InitializeJSObjectBody(Node * object,Node * map,Node * size,int start_offset)1803 void CodeStubAssembler::InitializeJSObjectBody(Node* object, Node* map,
1804                                                Node* size, int start_offset) {
1805   // TODO(cbruni): activate in-object slack tracking machinery.
1806   Comment("InitializeJSObjectBody");
1807   Node* filler = LoadRoot(Heap::kUndefinedValueRootIndex);
1808   // Calculate the untagged field addresses.
1809   Node* start_address =
1810       IntPtrAdd(object, IntPtrConstant(start_offset - kHeapObjectTag));
1811   Node* end_address =
1812       IntPtrSub(IntPtrAdd(object, size), IntPtrConstant(kHeapObjectTag));
1813   StoreFieldsNoWriteBarrier(start_address, end_address, filler);
1814 }
1815 
StoreFieldsNoWriteBarrier(Node * start_address,Node * end_address,Node * value)1816 void CodeStubAssembler::StoreFieldsNoWriteBarrier(Node* start_address,
1817                                                   Node* end_address,
1818                                                   Node* value) {
1819   Comment("StoreFieldsNoWriteBarrier");
1820   CSA_ASSERT(this, WordIsWordAligned(start_address));
1821   CSA_ASSERT(this, WordIsWordAligned(end_address));
1822   BuildFastLoop(
1823       MachineType::PointerRepresentation(), start_address, end_address,
1824       [value](CodeStubAssembler* a, Node* current) {
1825         a->StoreNoWriteBarrier(MachineRepresentation::kTagged, current, value);
1826       },
1827       kPointerSize, IndexAdvanceMode::kPost);
1828 }
1829 
AllocateUninitializedJSArrayWithoutElements(ElementsKind kind,Node * array_map,Node * length,Node * allocation_site)1830 Node* CodeStubAssembler::AllocateUninitializedJSArrayWithoutElements(
1831     ElementsKind kind, Node* array_map, Node* length, Node* allocation_site) {
1832   Comment("begin allocation of JSArray without elements");
1833   int base_size = JSArray::kSize;
1834   if (allocation_site != nullptr) {
1835     base_size += AllocationMemento::kSize;
1836   }
1837 
1838   Node* size = IntPtrConstant(base_size);
1839   Node* array = AllocateUninitializedJSArray(kind, array_map, length,
1840                                              allocation_site, size);
1841   return array;
1842 }
1843 
1844 std::pair<Node*, Node*>
AllocateUninitializedJSArrayWithElements(ElementsKind kind,Node * array_map,Node * length,Node * allocation_site,Node * capacity,ParameterMode capacity_mode)1845 CodeStubAssembler::AllocateUninitializedJSArrayWithElements(
1846     ElementsKind kind, Node* array_map, Node* length, Node* allocation_site,
1847     Node* capacity, ParameterMode capacity_mode) {
1848   Comment("begin allocation of JSArray with elements");
1849   int base_size = JSArray::kSize;
1850 
1851   if (allocation_site != nullptr) {
1852     base_size += AllocationMemento::kSize;
1853   }
1854 
1855   int elements_offset = base_size;
1856 
1857   // Compute space for elements
1858   base_size += FixedArray::kHeaderSize;
1859   Node* size = ElementOffsetFromIndex(capacity, kind, capacity_mode, base_size);
1860 
1861   Node* array = AllocateUninitializedJSArray(kind, array_map, length,
1862                                              allocation_site, size);
1863 
1864   // The bitcast here is safe because InnerAllocate doesn't actually allocate.
1865   Node* elements = InnerAllocate(BitcastTaggedToWord(array), elements_offset);
1866   StoreObjectField(array, JSObject::kElementsOffset, elements);
1867 
1868   return {array, elements};
1869 }
1870 
AllocateUninitializedJSArray(ElementsKind kind,Node * array_map,Node * length,Node * allocation_site,Node * size_in_bytes)1871 Node* CodeStubAssembler::AllocateUninitializedJSArray(ElementsKind kind,
1872                                                       Node* array_map,
1873                                                       Node* length,
1874                                                       Node* allocation_site,
1875                                                       Node* size_in_bytes) {
1876   Node* array = Allocate(size_in_bytes);
1877 
1878   Comment("write JSArray headers");
1879   StoreMapNoWriteBarrier(array, array_map);
1880 
1881   StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length);
1882 
1883   StoreObjectFieldRoot(array, JSArray::kPropertiesOffset,
1884                        Heap::kEmptyFixedArrayRootIndex);
1885 
1886   if (allocation_site != nullptr) {
1887     InitializeAllocationMemento(array, JSArray::kSize, allocation_site);
1888   }
1889   return array;
1890 }
1891 
AllocateJSArray(ElementsKind kind,Node * array_map,Node * capacity,Node * length,Node * allocation_site,ParameterMode capacity_mode)1892 Node* CodeStubAssembler::AllocateJSArray(ElementsKind kind, Node* array_map,
1893                                          Node* capacity, Node* length,
1894                                          Node* allocation_site,
1895                                          ParameterMode capacity_mode) {
1896   bool is_double = IsFastDoubleElementsKind(kind);
1897 
1898   // Allocate both array and elements object, and initialize the JSArray.
1899   Node *array, *elements;
1900   std::tie(array, elements) = AllocateUninitializedJSArrayWithElements(
1901       kind, array_map, length, allocation_site, capacity, capacity_mode);
1902   // Setup elements object.
1903   Heap* heap = isolate()->heap();
1904   Handle<Map> elements_map(is_double ? heap->fixed_double_array_map()
1905                                      : heap->fixed_array_map());
1906   StoreMapNoWriteBarrier(elements, HeapConstant(elements_map));
1907   StoreObjectFieldNoWriteBarrier(elements, FixedArray::kLengthOffset,
1908                                  TagParameter(capacity, capacity_mode));
1909 
1910   // Fill in the elements with holes.
1911   FillFixedArrayWithValue(
1912       kind, elements, capacity_mode == SMI_PARAMETERS ? SmiConstant(Smi::kZero)
1913                                                       : IntPtrConstant(0),
1914       capacity, Heap::kTheHoleValueRootIndex, capacity_mode);
1915 
1916   return array;
1917 }
1918 
AllocateFixedArray(ElementsKind kind,Node * capacity_node,ParameterMode mode,AllocationFlags flags)1919 Node* CodeStubAssembler::AllocateFixedArray(ElementsKind kind,
1920                                             Node* capacity_node,
1921                                             ParameterMode mode,
1922                                             AllocationFlags flags) {
1923   CSA_ASSERT(this,
1924              IntPtrGreaterThan(capacity_node, IntPtrOrSmiConstant(0, mode)));
1925   Node* total_size = GetFixedArrayAllocationSize(capacity_node, kind, mode);
1926 
1927   // Allocate both array and elements object, and initialize the JSArray.
1928   Node* array = Allocate(total_size, flags);
1929   Heap* heap = isolate()->heap();
1930   Handle<Map> map(IsFastDoubleElementsKind(kind)
1931                       ? heap->fixed_double_array_map()
1932                       : heap->fixed_array_map());
1933   if (flags & kPretenured) {
1934     StoreObjectField(array, JSObject::kMapOffset, HeapConstant(map));
1935   } else {
1936     StoreMapNoWriteBarrier(array, HeapConstant(map));
1937   }
1938   StoreObjectFieldNoWriteBarrier(array, FixedArray::kLengthOffset,
1939                                  TagParameter(capacity_node, mode));
1940   return array;
1941 }
1942 
FillFixedArrayWithValue(ElementsKind kind,Node * array,Node * from_node,Node * to_node,Heap::RootListIndex value_root_index,ParameterMode mode)1943 void CodeStubAssembler::FillFixedArrayWithValue(
1944     ElementsKind kind, Node* array, Node* from_node, Node* to_node,
1945     Heap::RootListIndex value_root_index, ParameterMode mode) {
1946   bool is_double = IsFastDoubleElementsKind(kind);
1947   DCHECK(value_root_index == Heap::kTheHoleValueRootIndex ||
1948          value_root_index == Heap::kUndefinedValueRootIndex);
1949   DCHECK_IMPLIES(is_double, value_root_index == Heap::kTheHoleValueRootIndex);
1950   STATIC_ASSERT(kHoleNanLower32 == kHoleNanUpper32);
1951   Node* double_hole =
1952       Is64() ? Int64Constant(kHoleNanInt64) : Int32Constant(kHoleNanLower32);
1953   Node* value = LoadRoot(value_root_index);
1954 
1955   BuildFastFixedArrayForEach(
1956       array, kind, from_node, to_node,
1957       [value, is_double, double_hole](CodeStubAssembler* assembler, Node* array,
1958                                       Node* offset) {
1959         if (is_double) {
1960           // Don't use doubles to store the hole double, since manipulating the
1961           // signaling NaN used for the hole in C++, e.g. with bit_cast, will
1962           // change its value on ia32 (the x87 stack is used to return values
1963           // and stores to the stack silently clear the signalling bit).
1964           //
1965           // TODO(danno): When we have a Float32/Float64 wrapper class that
1966           // preserves double bits during manipulation, remove this code/change
1967           // this to an indexed Float64 store.
1968           if (assembler->Is64()) {
1969             assembler->StoreNoWriteBarrier(MachineRepresentation::kWord64,
1970                                            array, offset, double_hole);
1971           } else {
1972             assembler->StoreNoWriteBarrier(MachineRepresentation::kWord32,
1973                                            array, offset, double_hole);
1974             assembler->StoreNoWriteBarrier(
1975                 MachineRepresentation::kWord32, array,
1976                 assembler->IntPtrAdd(offset,
1977                                      assembler->IntPtrConstant(kPointerSize)),
1978                 double_hole);
1979           }
1980         } else {
1981           assembler->StoreNoWriteBarrier(MachineRepresentation::kTagged, array,
1982                                          offset, value);
1983         }
1984       },
1985       mode);
1986 }
1987 
CopyFixedArrayElements(ElementsKind from_kind,Node * from_array,ElementsKind to_kind,Node * to_array,Node * element_count,Node * capacity,WriteBarrierMode barrier_mode,ParameterMode mode)1988 void CodeStubAssembler::CopyFixedArrayElements(
1989     ElementsKind from_kind, Node* from_array, ElementsKind to_kind,
1990     Node* to_array, Node* element_count, Node* capacity,
1991     WriteBarrierMode barrier_mode, ParameterMode mode) {
1992   STATIC_ASSERT(FixedArray::kHeaderSize == FixedDoubleArray::kHeaderSize);
1993   const int first_element_offset = FixedArray::kHeaderSize - kHeapObjectTag;
1994   Comment("[ CopyFixedArrayElements");
1995 
1996   // Typed array elements are not supported.
1997   DCHECK(!IsFixedTypedArrayElementsKind(from_kind));
1998   DCHECK(!IsFixedTypedArrayElementsKind(to_kind));
1999 
2000   Label done(this);
2001   bool from_double_elements = IsFastDoubleElementsKind(from_kind);
2002   bool to_double_elements = IsFastDoubleElementsKind(to_kind);
2003   bool element_size_matches =
2004       Is64() ||
2005       IsFastDoubleElementsKind(from_kind) == IsFastDoubleElementsKind(to_kind);
2006   bool doubles_to_objects_conversion =
2007       IsFastDoubleElementsKind(from_kind) && IsFastObjectElementsKind(to_kind);
2008   bool needs_write_barrier =
2009       doubles_to_objects_conversion || (barrier_mode == UPDATE_WRITE_BARRIER &&
2010                                         IsFastObjectElementsKind(to_kind));
2011   Node* double_hole =
2012       Is64() ? Int64Constant(kHoleNanInt64) : Int32Constant(kHoleNanLower32);
2013 
2014   if (doubles_to_objects_conversion) {
2015     // If the copy might trigger a GC, make sure that the FixedArray is
2016     // pre-initialized with holes to make sure that it's always in a
2017     // consistent state.
2018     FillFixedArrayWithValue(to_kind, to_array, IntPtrOrSmiConstant(0, mode),
2019                             capacity, Heap::kTheHoleValueRootIndex, mode);
2020   } else if (element_count != capacity) {
2021     FillFixedArrayWithValue(to_kind, to_array, element_count, capacity,
2022                             Heap::kTheHoleValueRootIndex, mode);
2023   }
2024 
2025   Node* limit_offset = ElementOffsetFromIndex(
2026       IntPtrOrSmiConstant(0, mode), from_kind, mode, first_element_offset);
2027   Variable var_from_offset(this, MachineType::PointerRepresentation());
2028   var_from_offset.Bind(ElementOffsetFromIndex(element_count, from_kind, mode,
2029                                               first_element_offset));
2030   // This second variable is used only when the element sizes of source and
2031   // destination arrays do not match.
2032   Variable var_to_offset(this, MachineType::PointerRepresentation());
2033   if (element_size_matches) {
2034     var_to_offset.Bind(var_from_offset.value());
2035   } else {
2036     var_to_offset.Bind(ElementOffsetFromIndex(element_count, to_kind, mode,
2037                                               first_element_offset));
2038   }
2039 
2040   Variable* vars[] = {&var_from_offset, &var_to_offset};
2041   Label decrement(this, 2, vars);
2042 
2043   Branch(WordEqual(var_from_offset.value(), limit_offset), &done, &decrement);
2044 
2045   Bind(&decrement);
2046   {
2047     Node* from_offset = IntPtrSub(
2048         var_from_offset.value(),
2049         IntPtrConstant(from_double_elements ? kDoubleSize : kPointerSize));
2050     var_from_offset.Bind(from_offset);
2051 
2052     Node* to_offset;
2053     if (element_size_matches) {
2054       to_offset = from_offset;
2055     } else {
2056       to_offset = IntPtrSub(
2057           var_to_offset.value(),
2058           IntPtrConstant(to_double_elements ? kDoubleSize : kPointerSize));
2059       var_to_offset.Bind(to_offset);
2060     }
2061 
2062     Label next_iter(this), store_double_hole(this);
2063     Label* if_hole;
2064     if (doubles_to_objects_conversion) {
2065       // The target elements array is already preinitialized with holes, so we
2066       // can just proceed with the next iteration.
2067       if_hole = &next_iter;
2068     } else if (IsFastDoubleElementsKind(to_kind)) {
2069       if_hole = &store_double_hole;
2070     } else {
2071       // In all the other cases don't check for holes and copy the data as is.
2072       if_hole = nullptr;
2073     }
2074 
2075     Node* value = LoadElementAndPrepareForStore(
2076         from_array, var_from_offset.value(), from_kind, to_kind, if_hole);
2077 
2078     if (needs_write_barrier) {
2079       Store(MachineRepresentation::kTagged, to_array, to_offset, value);
2080     } else if (to_double_elements) {
2081       StoreNoWriteBarrier(MachineRepresentation::kFloat64, to_array, to_offset,
2082                           value);
2083     } else {
2084       StoreNoWriteBarrier(MachineRepresentation::kTagged, to_array, to_offset,
2085                           value);
2086     }
2087     Goto(&next_iter);
2088 
2089     if (if_hole == &store_double_hole) {
2090       Bind(&store_double_hole);
2091       // Don't use doubles to store the hole double, since manipulating the
2092       // signaling NaN used for the hole in C++, e.g. with bit_cast, will
2093       // change its value on ia32 (the x87 stack is used to return values
2094       // and stores to the stack silently clear the signalling bit).
2095       //
2096       // TODO(danno): When we have a Float32/Float64 wrapper class that
2097       // preserves double bits during manipulation, remove this code/change
2098       // this to an indexed Float64 store.
2099       if (Is64()) {
2100         StoreNoWriteBarrier(MachineRepresentation::kWord64, to_array, to_offset,
2101                             double_hole);
2102       } else {
2103         StoreNoWriteBarrier(MachineRepresentation::kWord32, to_array, to_offset,
2104                             double_hole);
2105         StoreNoWriteBarrier(MachineRepresentation::kWord32, to_array,
2106                             IntPtrAdd(to_offset, IntPtrConstant(kPointerSize)),
2107                             double_hole);
2108       }
2109       Goto(&next_iter);
2110     }
2111 
2112     Bind(&next_iter);
2113     Node* compare = WordNotEqual(from_offset, limit_offset);
2114     Branch(compare, &decrement, &done);
2115   }
2116 
2117   Bind(&done);
2118   IncrementCounter(isolate()->counters()->inlined_copied_elements(), 1);
2119   Comment("] CopyFixedArrayElements");
2120 }
2121 
CopyStringCharacters(compiler::Node * from_string,compiler::Node * to_string,compiler::Node * from_index,compiler::Node * to_index,compiler::Node * character_count,String::Encoding from_encoding,String::Encoding to_encoding,ParameterMode mode)2122 void CodeStubAssembler::CopyStringCharacters(
2123     compiler::Node* from_string, compiler::Node* to_string,
2124     compiler::Node* from_index, compiler::Node* to_index,
2125     compiler::Node* character_count, String::Encoding from_encoding,
2126     String::Encoding to_encoding, ParameterMode mode) {
2127   bool from_one_byte = from_encoding == String::ONE_BYTE_ENCODING;
2128   bool to_one_byte = to_encoding == String::ONE_BYTE_ENCODING;
2129   DCHECK_IMPLIES(to_one_byte, from_one_byte);
2130   Comment("CopyStringCharacters %s -> %s",
2131           from_one_byte ? "ONE_BYTE_ENCODING" : "TWO_BYTE_ENCODING",
2132           to_one_byte ? "ONE_BYTE_ENCODING" : "TWO_BYTE_ENCODING");
2133 
2134   ElementsKind from_kind = from_one_byte ? UINT8_ELEMENTS : UINT16_ELEMENTS;
2135   ElementsKind to_kind = to_one_byte ? UINT8_ELEMENTS : UINT16_ELEMENTS;
2136   STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize);
2137   int header_size = SeqOneByteString::kHeaderSize - kHeapObjectTag;
2138   Node* from_offset =
2139       ElementOffsetFromIndex(from_index, from_kind, mode, header_size);
2140   Node* to_offset =
2141       ElementOffsetFromIndex(to_index, to_kind, mode, header_size);
2142   Node* byte_count = ElementOffsetFromIndex(character_count, from_kind, mode);
2143   Node* limit_offset = IntPtrAddFoldConstants(from_offset, byte_count);
2144 
2145   // Prepare the fast loop
2146   MachineType type =
2147       from_one_byte ? MachineType::Uint8() : MachineType::Uint16();
2148   MachineRepresentation rep = to_one_byte ? MachineRepresentation::kWord8
2149                                           : MachineRepresentation::kWord16;
2150   int from_increment = 1 << ElementsKindToShiftSize(from_kind);
2151   int to_increment = 1 << ElementsKindToShiftSize(to_kind);
2152 
2153   Variable current_to_offset(this, MachineType::PointerRepresentation());
2154   VariableList vars({&current_to_offset}, zone());
2155   current_to_offset.Bind(to_offset);
2156   int to_index_constant = 0, from_index_constant = 0;
2157   Smi* to_index_smi = nullptr;
2158   Smi* from_index_smi = nullptr;
2159   bool index_same = (from_encoding == to_encoding) &&
2160                     (from_index == to_index ||
2161                      (ToInt32Constant(from_index, from_index_constant) &&
2162                       ToInt32Constant(to_index, to_index_constant) &&
2163                       from_index_constant == to_index_constant) ||
2164                      (ToSmiConstant(from_index, from_index_smi) &&
2165                       ToSmiConstant(to_index, to_index_smi) &&
2166                       to_index_smi == from_index_smi));
2167   BuildFastLoop(vars, MachineType::PointerRepresentation(), from_offset,
2168                 limit_offset,
2169                 [from_string, to_string, &current_to_offset, to_increment, type,
2170                  rep, index_same](CodeStubAssembler* assembler, Node* offset) {
2171                   Node* value = assembler->Load(type, from_string, offset);
2172                   assembler->StoreNoWriteBarrier(
2173                       rep, to_string,
2174                       index_same ? offset : current_to_offset.value(), value);
2175                   if (!index_same) {
2176                     current_to_offset.Bind(assembler->IntPtrAdd(
2177                         current_to_offset.value(),
2178                         assembler->IntPtrConstant(to_increment)));
2179                   }
2180                 },
2181                 from_increment, IndexAdvanceMode::kPost);
2182 }
2183 
LoadElementAndPrepareForStore(Node * array,Node * offset,ElementsKind from_kind,ElementsKind to_kind,Label * if_hole)2184 Node* CodeStubAssembler::LoadElementAndPrepareForStore(Node* array,
2185                                                        Node* offset,
2186                                                        ElementsKind from_kind,
2187                                                        ElementsKind to_kind,
2188                                                        Label* if_hole) {
2189   if (IsFastDoubleElementsKind(from_kind)) {
2190     Node* value =
2191         LoadDoubleWithHoleCheck(array, offset, if_hole, MachineType::Float64());
2192     if (!IsFastDoubleElementsKind(to_kind)) {
2193       value = AllocateHeapNumberWithValue(value);
2194     }
2195     return value;
2196 
2197   } else {
2198     Node* value = Load(MachineType::AnyTagged(), array, offset);
2199     if (if_hole) {
2200       GotoIf(WordEqual(value, TheHoleConstant()), if_hole);
2201     }
2202     if (IsFastDoubleElementsKind(to_kind)) {
2203       if (IsFastSmiElementsKind(from_kind)) {
2204         value = SmiToFloat64(value);
2205       } else {
2206         value = LoadHeapNumberValue(value);
2207       }
2208     }
2209     return value;
2210   }
2211 }
2212 
CalculateNewElementsCapacity(Node * old_capacity,ParameterMode mode)2213 Node* CodeStubAssembler::CalculateNewElementsCapacity(Node* old_capacity,
2214                                                       ParameterMode mode) {
2215   Node* half_old_capacity = WordShr(old_capacity, IntPtrConstant(1));
2216   Node* new_capacity = IntPtrAdd(half_old_capacity, old_capacity);
2217   Node* unconditioned_result =
2218       IntPtrAdd(new_capacity, IntPtrOrSmiConstant(16, mode));
2219   if (mode == INTEGER_PARAMETERS || mode == INTPTR_PARAMETERS) {
2220     return unconditioned_result;
2221   } else {
2222     int const kSmiShiftBits = kSmiShiftSize + kSmiTagSize;
2223     return WordAnd(unconditioned_result,
2224                    IntPtrConstant(static_cast<size_t>(-1) << kSmiShiftBits));
2225   }
2226 }
2227 
TryGrowElementsCapacity(Node * object,Node * elements,ElementsKind kind,Node * key,Label * bailout)2228 Node* CodeStubAssembler::TryGrowElementsCapacity(Node* object, Node* elements,
2229                                                  ElementsKind kind, Node* key,
2230                                                  Label* bailout) {
2231   Node* capacity = LoadFixedArrayBaseLength(elements);
2232 
2233   ParameterMode mode = OptimalParameterMode();
2234   capacity = UntagParameter(capacity, mode);
2235   key = UntagParameter(key, mode);
2236 
2237   return TryGrowElementsCapacity(object, elements, kind, key, capacity, mode,
2238                                  bailout);
2239 }
2240 
TryGrowElementsCapacity(Node * object,Node * elements,ElementsKind kind,Node * key,Node * capacity,ParameterMode mode,Label * bailout)2241 Node* CodeStubAssembler::TryGrowElementsCapacity(Node* object, Node* elements,
2242                                                  ElementsKind kind, Node* key,
2243                                                  Node* capacity,
2244                                                  ParameterMode mode,
2245                                                  Label* bailout) {
2246   Comment("TryGrowElementsCapacity");
2247 
2248   // If the gap growth is too big, fall back to the runtime.
2249   Node* max_gap = IntPtrOrSmiConstant(JSObject::kMaxGap, mode);
2250   Node* max_capacity = IntPtrAdd(capacity, max_gap);
2251   GotoIf(UintPtrGreaterThanOrEqual(key, max_capacity), bailout);
2252 
2253   // Calculate the capacity of the new backing store.
2254   Node* new_capacity = CalculateNewElementsCapacity(
2255       IntPtrAdd(key, IntPtrOrSmiConstant(1, mode)), mode);
2256   return GrowElementsCapacity(object, elements, kind, kind, capacity,
2257                               new_capacity, mode, bailout);
2258 }
2259 
GrowElementsCapacity(Node * object,Node * elements,ElementsKind from_kind,ElementsKind to_kind,Node * capacity,Node * new_capacity,ParameterMode mode,Label * bailout)2260 Node* CodeStubAssembler::GrowElementsCapacity(
2261     Node* object, Node* elements, ElementsKind from_kind, ElementsKind to_kind,
2262     Node* capacity, Node* new_capacity, ParameterMode mode, Label* bailout) {
2263   Comment("[ GrowElementsCapacity");
2264   // If size of the allocation for the new capacity doesn't fit in a page
2265   // that we can bump-pointer allocate from, fall back to the runtime.
2266   int max_size = FixedArrayBase::GetMaxLengthForNewSpaceAllocation(to_kind);
2267   GotoIf(UintPtrGreaterThanOrEqual(new_capacity,
2268                                    IntPtrOrSmiConstant(max_size, mode)),
2269          bailout);
2270 
2271   // Allocate the new backing store.
2272   Node* new_elements = AllocateFixedArray(to_kind, new_capacity, mode);
2273 
2274   // Copy the elements from the old elements store to the new.
2275   // The size-check above guarantees that the |new_elements| is allocated
2276   // in new space so we can skip the write barrier.
2277   CopyFixedArrayElements(from_kind, elements, to_kind, new_elements, capacity,
2278                          new_capacity, SKIP_WRITE_BARRIER, mode);
2279 
2280   StoreObjectField(object, JSObject::kElementsOffset, new_elements);
2281   Comment("] GrowElementsCapacity");
2282   return new_elements;
2283 }
2284 
InitializeAllocationMemento(compiler::Node * base_allocation,int base_allocation_size,compiler::Node * allocation_site)2285 void CodeStubAssembler::InitializeAllocationMemento(
2286     compiler::Node* base_allocation, int base_allocation_size,
2287     compiler::Node* allocation_site) {
2288   StoreObjectFieldNoWriteBarrier(
2289       base_allocation, AllocationMemento::kMapOffset + base_allocation_size,
2290       HeapConstant(Handle<Map>(isolate()->heap()->allocation_memento_map())));
2291   StoreObjectFieldNoWriteBarrier(
2292       base_allocation,
2293       AllocationMemento::kAllocationSiteOffset + base_allocation_size,
2294       allocation_site);
2295   if (FLAG_allocation_site_pretenuring) {
2296     Node* count = LoadObjectField(allocation_site,
2297                                   AllocationSite::kPretenureCreateCountOffset);
2298     Node* incremented_count = SmiAdd(count, SmiConstant(Smi::FromInt(1)));
2299     StoreObjectFieldNoWriteBarrier(allocation_site,
2300                                    AllocationSite::kPretenureCreateCountOffset,
2301                                    incremented_count);
2302   }
2303 }
2304 
TryTaggedToFloat64(Node * value,Label * if_valueisnotnumber)2305 Node* CodeStubAssembler::TryTaggedToFloat64(Node* value,
2306                                             Label* if_valueisnotnumber) {
2307   Label out(this);
2308   Variable var_result(this, MachineRepresentation::kFloat64);
2309 
2310   // Check if the {value} is a Smi or a HeapObject.
2311   Label if_valueissmi(this), if_valueisnotsmi(this);
2312   Branch(TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi);
2313 
2314   Bind(&if_valueissmi);
2315   {
2316     // Convert the Smi {value}.
2317     var_result.Bind(SmiToFloat64(value));
2318     Goto(&out);
2319   }
2320 
2321   Bind(&if_valueisnotsmi);
2322   {
2323     // Check if {value} is a HeapNumber.
2324     Label if_valueisheapnumber(this);
2325     Branch(IsHeapNumberMap(LoadMap(value)), &if_valueisheapnumber,
2326            if_valueisnotnumber);
2327 
2328     Bind(&if_valueisheapnumber);
2329     {
2330       // Load the floating point value.
2331       var_result.Bind(LoadHeapNumberValue(value));
2332       Goto(&out);
2333     }
2334   }
2335   Bind(&out);
2336   return var_result.value();
2337 }
2338 
TruncateTaggedToFloat64(Node * context,Node * value)2339 Node* CodeStubAssembler::TruncateTaggedToFloat64(Node* context, Node* value) {
2340   // We might need to loop once due to ToNumber conversion.
2341   Variable var_value(this, MachineRepresentation::kTagged),
2342       var_result(this, MachineRepresentation::kFloat64);
2343   Label loop(this, &var_value), done_loop(this, &var_result);
2344   var_value.Bind(value);
2345   Goto(&loop);
2346   Bind(&loop);
2347   {
2348     Label if_valueisnotnumber(this, Label::kDeferred);
2349 
2350     // Load the current {value}.
2351     value = var_value.value();
2352 
2353     // Convert {value} to Float64 if it is a number and convert it to a number
2354     // otherwise.
2355     Node* const result = TryTaggedToFloat64(value, &if_valueisnotnumber);
2356     var_result.Bind(result);
2357     Goto(&done_loop);
2358 
2359     Bind(&if_valueisnotnumber);
2360     {
2361       // Convert the {value} to a Number first.
2362       Callable callable = CodeFactory::NonNumberToNumber(isolate());
2363       var_value.Bind(CallStub(callable, context, value));
2364       Goto(&loop);
2365     }
2366   }
2367   Bind(&done_loop);
2368   return var_result.value();
2369 }
2370 
TruncateTaggedToWord32(Node * context,Node * value)2371 Node* CodeStubAssembler::TruncateTaggedToWord32(Node* context, Node* value) {
2372   // We might need to loop once due to ToNumber conversion.
2373   Variable var_value(this, MachineRepresentation::kTagged),
2374       var_result(this, MachineRepresentation::kWord32);
2375   Label loop(this, &var_value), done_loop(this, &var_result);
2376   var_value.Bind(value);
2377   Goto(&loop);
2378   Bind(&loop);
2379   {
2380     // Load the current {value}.
2381     value = var_value.value();
2382 
2383     // Check if the {value} is a Smi or a HeapObject.
2384     Label if_valueissmi(this), if_valueisnotsmi(this);
2385     Branch(TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi);
2386 
2387     Bind(&if_valueissmi);
2388     {
2389       // Convert the Smi {value}.
2390       var_result.Bind(SmiToWord32(value));
2391       Goto(&done_loop);
2392     }
2393 
2394     Bind(&if_valueisnotsmi);
2395     {
2396       // Check if {value} is a HeapNumber.
2397       Label if_valueisheapnumber(this),
2398           if_valueisnotheapnumber(this, Label::kDeferred);
2399       Branch(WordEqual(LoadMap(value), HeapNumberMapConstant()),
2400              &if_valueisheapnumber, &if_valueisnotheapnumber);
2401 
2402       Bind(&if_valueisheapnumber);
2403       {
2404         // Truncate the floating point value.
2405         var_result.Bind(TruncateHeapNumberValueToWord32(value));
2406         Goto(&done_loop);
2407       }
2408 
2409       Bind(&if_valueisnotheapnumber);
2410       {
2411         // Convert the {value} to a Number first.
2412         Callable callable = CodeFactory::NonNumberToNumber(isolate());
2413         var_value.Bind(CallStub(callable, context, value));
2414         Goto(&loop);
2415       }
2416     }
2417   }
2418   Bind(&done_loop);
2419   return var_result.value();
2420 }
2421 
TruncateHeapNumberValueToWord32(Node * object)2422 Node* CodeStubAssembler::TruncateHeapNumberValueToWord32(Node* object) {
2423   Node* value = LoadHeapNumberValue(object);
2424   return TruncateFloat64ToWord32(value);
2425 }
2426 
ChangeFloat64ToTagged(Node * value)2427 Node* CodeStubAssembler::ChangeFloat64ToTagged(Node* value) {
2428   Node* value32 = RoundFloat64ToInt32(value);
2429   Node* value64 = ChangeInt32ToFloat64(value32);
2430 
2431   Label if_valueisint32(this), if_valueisheapnumber(this), if_join(this);
2432 
2433   Label if_valueisequal(this), if_valueisnotequal(this);
2434   Branch(Float64Equal(value, value64), &if_valueisequal, &if_valueisnotequal);
2435   Bind(&if_valueisequal);
2436   {
2437     GotoUnless(Word32Equal(value32, Int32Constant(0)), &if_valueisint32);
2438     Branch(Int32LessThan(Float64ExtractHighWord32(value), Int32Constant(0)),
2439            &if_valueisheapnumber, &if_valueisint32);
2440   }
2441   Bind(&if_valueisnotequal);
2442   Goto(&if_valueisheapnumber);
2443 
2444   Variable var_result(this, MachineRepresentation::kTagged);
2445   Bind(&if_valueisint32);
2446   {
2447     if (Is64()) {
2448       Node* result = SmiTag(ChangeInt32ToInt64(value32));
2449       var_result.Bind(result);
2450       Goto(&if_join);
2451     } else {
2452       Node* pair = Int32AddWithOverflow(value32, value32);
2453       Node* overflow = Projection(1, pair);
2454       Label if_overflow(this, Label::kDeferred), if_notoverflow(this);
2455       Branch(overflow, &if_overflow, &if_notoverflow);
2456       Bind(&if_overflow);
2457       Goto(&if_valueisheapnumber);
2458       Bind(&if_notoverflow);
2459       {
2460         Node* result = Projection(0, pair);
2461         var_result.Bind(result);
2462         Goto(&if_join);
2463       }
2464     }
2465   }
2466   Bind(&if_valueisheapnumber);
2467   {
2468     Node* result = AllocateHeapNumberWithValue(value);
2469     var_result.Bind(result);
2470     Goto(&if_join);
2471   }
2472   Bind(&if_join);
2473   return var_result.value();
2474 }
2475 
ChangeInt32ToTagged(Node * value)2476 Node* CodeStubAssembler::ChangeInt32ToTagged(Node* value) {
2477   if (Is64()) {
2478     return SmiTag(ChangeInt32ToInt64(value));
2479   }
2480   Variable var_result(this, MachineRepresentation::kTagged);
2481   Node* pair = Int32AddWithOverflow(value, value);
2482   Node* overflow = Projection(1, pair);
2483   Label if_overflow(this, Label::kDeferred), if_notoverflow(this),
2484       if_join(this);
2485   Branch(overflow, &if_overflow, &if_notoverflow);
2486   Bind(&if_overflow);
2487   {
2488     Node* value64 = ChangeInt32ToFloat64(value);
2489     Node* result = AllocateHeapNumberWithValue(value64);
2490     var_result.Bind(result);
2491   }
2492   Goto(&if_join);
2493   Bind(&if_notoverflow);
2494   {
2495     Node* result = Projection(0, pair);
2496     var_result.Bind(result);
2497   }
2498   Goto(&if_join);
2499   Bind(&if_join);
2500   return var_result.value();
2501 }
2502 
ChangeUint32ToTagged(Node * value)2503 Node* CodeStubAssembler::ChangeUint32ToTagged(Node* value) {
2504   Label if_overflow(this, Label::kDeferred), if_not_overflow(this),
2505       if_join(this);
2506   Variable var_result(this, MachineRepresentation::kTagged);
2507   // If {value} > 2^31 - 1, we need to store it in a HeapNumber.
2508   Branch(Uint32LessThan(Int32Constant(Smi::kMaxValue), value), &if_overflow,
2509          &if_not_overflow);
2510 
2511   Bind(&if_not_overflow);
2512   {
2513     if (Is64()) {
2514       var_result.Bind(SmiTag(ChangeUint32ToUint64(value)));
2515     } else {
2516       // If tagging {value} results in an overflow, we need to use a HeapNumber
2517       // to represent it.
2518       Node* pair = Int32AddWithOverflow(value, value);
2519       Node* overflow = Projection(1, pair);
2520       GotoIf(overflow, &if_overflow);
2521 
2522       Node* result = Projection(0, pair);
2523       var_result.Bind(result);
2524     }
2525   }
2526   Goto(&if_join);
2527 
2528   Bind(&if_overflow);
2529   {
2530     Node* float64_value = ChangeUint32ToFloat64(value);
2531     var_result.Bind(AllocateHeapNumberWithValue(float64_value));
2532   }
2533   Goto(&if_join);
2534 
2535   Bind(&if_join);
2536   return var_result.value();
2537 }
2538 
ToThisString(Node * context,Node * value,char const * method_name)2539 Node* CodeStubAssembler::ToThisString(Node* context, Node* value,
2540                                       char const* method_name) {
2541   Variable var_value(this, MachineRepresentation::kTagged);
2542   var_value.Bind(value);
2543 
2544   // Check if the {value} is a Smi or a HeapObject.
2545   Label if_valueissmi(this, Label::kDeferred), if_valueisnotsmi(this),
2546       if_valueisstring(this);
2547   Branch(TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi);
2548   Bind(&if_valueisnotsmi);
2549   {
2550     // Load the instance type of the {value}.
2551     Node* value_instance_type = LoadInstanceType(value);
2552 
2553     // Check if the {value} is already String.
2554     Label if_valueisnotstring(this, Label::kDeferred);
2555     Branch(IsStringInstanceType(value_instance_type), &if_valueisstring,
2556            &if_valueisnotstring);
2557     Bind(&if_valueisnotstring);
2558     {
2559       // Check if the {value} is null.
2560       Label if_valueisnullorundefined(this, Label::kDeferred),
2561           if_valueisnotnullorundefined(this, Label::kDeferred),
2562           if_valueisnotnull(this, Label::kDeferred);
2563       Branch(WordEqual(value, NullConstant()), &if_valueisnullorundefined,
2564              &if_valueisnotnull);
2565       Bind(&if_valueisnotnull);
2566       {
2567         // Check if the {value} is undefined.
2568         Branch(WordEqual(value, UndefinedConstant()),
2569                &if_valueisnullorundefined, &if_valueisnotnullorundefined);
2570         Bind(&if_valueisnotnullorundefined);
2571         {
2572           // Convert the {value} to a String.
2573           Callable callable = CodeFactory::ToString(isolate());
2574           var_value.Bind(CallStub(callable, context, value));
2575           Goto(&if_valueisstring);
2576         }
2577       }
2578 
2579       Bind(&if_valueisnullorundefined);
2580       {
2581         // The {value} is either null or undefined.
2582         CallRuntime(Runtime::kThrowCalledOnNullOrUndefined, context,
2583                     HeapConstant(factory()->NewStringFromAsciiChecked(
2584                         method_name, TENURED)));
2585         Goto(&if_valueisstring);  // Never reached.
2586       }
2587     }
2588   }
2589   Bind(&if_valueissmi);
2590   {
2591     // The {value} is a Smi, convert it to a String.
2592     Callable callable = CodeFactory::NumberToString(isolate());
2593     var_value.Bind(CallStub(callable, context, value));
2594     Goto(&if_valueisstring);
2595   }
2596   Bind(&if_valueisstring);
2597   return var_value.value();
2598 }
2599 
ToThisValue(Node * context,Node * value,PrimitiveType primitive_type,char const * method_name)2600 Node* CodeStubAssembler::ToThisValue(Node* context, Node* value,
2601                                      PrimitiveType primitive_type,
2602                                      char const* method_name) {
2603   // We might need to loop once due to JSValue unboxing.
2604   Variable var_value(this, MachineRepresentation::kTagged);
2605   Label loop(this, &var_value), done_loop(this),
2606       done_throw(this, Label::kDeferred);
2607   var_value.Bind(value);
2608   Goto(&loop);
2609   Bind(&loop);
2610   {
2611     // Load the current {value}.
2612     value = var_value.value();
2613 
2614     // Check if the {value} is a Smi or a HeapObject.
2615     GotoIf(TaggedIsSmi(value), (primitive_type == PrimitiveType::kNumber)
2616                                    ? &done_loop
2617                                    : &done_throw);
2618 
2619     // Load the mape of the {value}.
2620     Node* value_map = LoadMap(value);
2621 
2622     // Load the instance type of the {value}.
2623     Node* value_instance_type = LoadMapInstanceType(value_map);
2624 
2625     // Check if {value} is a JSValue.
2626     Label if_valueisvalue(this, Label::kDeferred), if_valueisnotvalue(this);
2627     Branch(Word32Equal(value_instance_type, Int32Constant(JS_VALUE_TYPE)),
2628            &if_valueisvalue, &if_valueisnotvalue);
2629 
2630     Bind(&if_valueisvalue);
2631     {
2632       // Load the actual value from the {value}.
2633       var_value.Bind(LoadObjectField(value, JSValue::kValueOffset));
2634       Goto(&loop);
2635     }
2636 
2637     Bind(&if_valueisnotvalue);
2638     {
2639       switch (primitive_type) {
2640         case PrimitiveType::kBoolean:
2641           GotoIf(WordEqual(value_map, BooleanMapConstant()), &done_loop);
2642           break;
2643         case PrimitiveType::kNumber:
2644           GotoIf(
2645               Word32Equal(value_instance_type, Int32Constant(HEAP_NUMBER_TYPE)),
2646               &done_loop);
2647           break;
2648         case PrimitiveType::kString:
2649           GotoIf(IsStringInstanceType(value_instance_type), &done_loop);
2650           break;
2651         case PrimitiveType::kSymbol:
2652           GotoIf(Word32Equal(value_instance_type, Int32Constant(SYMBOL_TYPE)),
2653                  &done_loop);
2654           break;
2655       }
2656       Goto(&done_throw);
2657     }
2658   }
2659 
2660   Bind(&done_throw);
2661   {
2662     // The {value} is not a compatible receiver for this method.
2663     CallRuntime(Runtime::kThrowNotGeneric, context,
2664                 HeapConstant(factory()->NewStringFromAsciiChecked(method_name,
2665                                                                   TENURED)));
2666     Goto(&done_loop);  // Never reached.
2667   }
2668 
2669   Bind(&done_loop);
2670   return var_value.value();
2671 }
2672 
ThrowIfNotInstanceType(Node * context,Node * value,InstanceType instance_type,char const * method_name)2673 Node* CodeStubAssembler::ThrowIfNotInstanceType(Node* context, Node* value,
2674                                                 InstanceType instance_type,
2675                                                 char const* method_name) {
2676   Label out(this), throw_exception(this, Label::kDeferred);
2677   Variable var_value_map(this, MachineRepresentation::kTagged);
2678 
2679   GotoIf(TaggedIsSmi(value), &throw_exception);
2680 
2681   // Load the instance type of the {value}.
2682   var_value_map.Bind(LoadMap(value));
2683   Node* const value_instance_type = LoadMapInstanceType(var_value_map.value());
2684 
2685   Branch(Word32Equal(value_instance_type, Int32Constant(instance_type)), &out,
2686          &throw_exception);
2687 
2688   // The {value} is not a compatible receiver for this method.
2689   Bind(&throw_exception);
2690   CallRuntime(
2691       Runtime::kThrowIncompatibleMethodReceiver, context,
2692       HeapConstant(factory()->NewStringFromAsciiChecked(method_name, TENURED)),
2693       value);
2694   var_value_map.Bind(UndefinedConstant());
2695   Goto(&out);  // Never reached.
2696 
2697   Bind(&out);
2698   return var_value_map.value();
2699 }
2700 
IsSpecialReceiverMap(Node * map)2701 Node* CodeStubAssembler::IsSpecialReceiverMap(Node* map) {
2702   Node* is_special = IsSpecialReceiverInstanceType(LoadMapInstanceType(map));
2703   uint32_t mask =
2704       1 << Map::kHasNamedInterceptor | 1 << Map::kIsAccessCheckNeeded;
2705   USE(mask);
2706   // Interceptors or access checks imply special receiver.
2707   CSA_ASSERT(this, Select(IsSetWord32(LoadMapBitField(map), mask), is_special,
2708                           Int32Constant(1), MachineRepresentation::kWord32));
2709   return is_special;
2710 }
2711 
IsDictionaryMap(Node * map)2712 Node* CodeStubAssembler::IsDictionaryMap(Node* map) {
2713   CSA_SLOW_ASSERT(this, IsMap(map));
2714   Node* bit_field3 = LoadMapBitField3(map);
2715   return Word32NotEqual(IsSetWord32<Map::DictionaryMap>(bit_field3),
2716                         Int32Constant(0));
2717 }
2718 
IsCallableMap(Node * map)2719 Node* CodeStubAssembler::IsCallableMap(Node* map) {
2720   CSA_ASSERT(this, IsMap(map));
2721   return Word32NotEqual(
2722       Word32And(LoadMapBitField(map), Int32Constant(1 << Map::kIsCallable)),
2723       Int32Constant(0));
2724 }
2725 
IsSpecialReceiverInstanceType(Node * instance_type)2726 Node* CodeStubAssembler::IsSpecialReceiverInstanceType(Node* instance_type) {
2727   STATIC_ASSERT(JS_GLOBAL_OBJECT_TYPE <= LAST_SPECIAL_RECEIVER_TYPE);
2728   return Int32LessThanOrEqual(instance_type,
2729                               Int32Constant(LAST_SPECIAL_RECEIVER_TYPE));
2730 }
2731 
IsStringInstanceType(Node * instance_type)2732 Node* CodeStubAssembler::IsStringInstanceType(Node* instance_type) {
2733   STATIC_ASSERT(INTERNALIZED_STRING_TYPE == FIRST_TYPE);
2734   return Int32LessThan(instance_type, Int32Constant(FIRST_NONSTRING_TYPE));
2735 }
2736 
IsJSReceiverInstanceType(Node * instance_type)2737 Node* CodeStubAssembler::IsJSReceiverInstanceType(Node* instance_type) {
2738   STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
2739   return Int32GreaterThanOrEqual(instance_type,
2740                                  Int32Constant(FIRST_JS_RECEIVER_TYPE));
2741 }
2742 
IsJSReceiver(Node * object)2743 Node* CodeStubAssembler::IsJSReceiver(Node* object) {
2744   STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE);
2745   return IsJSReceiverInstanceType(LoadInstanceType(object));
2746 }
2747 
IsJSObject(Node * object)2748 Node* CodeStubAssembler::IsJSObject(Node* object) {
2749   STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE);
2750   return Int32GreaterThanOrEqual(LoadInstanceType(object),
2751                                  Int32Constant(FIRST_JS_RECEIVER_TYPE));
2752 }
2753 
IsJSGlobalProxy(Node * object)2754 Node* CodeStubAssembler::IsJSGlobalProxy(Node* object) {
2755   return Word32Equal(LoadInstanceType(object),
2756                      Int32Constant(JS_GLOBAL_PROXY_TYPE));
2757 }
2758 
IsMap(Node * map)2759 Node* CodeStubAssembler::IsMap(Node* map) {
2760   return HasInstanceType(map, MAP_TYPE);
2761 }
2762 
IsJSValue(Node * map)2763 Node* CodeStubAssembler::IsJSValue(Node* map) {
2764   return HasInstanceType(map, JS_VALUE_TYPE);
2765 }
2766 
IsJSArray(Node * object)2767 Node* CodeStubAssembler::IsJSArray(Node* object) {
2768   return HasInstanceType(object, JS_ARRAY_TYPE);
2769 }
2770 
IsWeakCell(Node * object)2771 Node* CodeStubAssembler::IsWeakCell(Node* object) {
2772   return HasInstanceType(object, WEAK_CELL_TYPE);
2773 }
2774 
IsName(Node * object)2775 Node* CodeStubAssembler::IsName(Node* object) {
2776   return Int32LessThanOrEqual(LoadInstanceType(object),
2777                               Int32Constant(LAST_NAME_TYPE));
2778 }
2779 
IsString(Node * object)2780 Node* CodeStubAssembler::IsString(Node* object) {
2781   return Int32LessThanOrEqual(LoadInstanceType(object),
2782                               Int32Constant(FIRST_NONSTRING_TYPE));
2783 }
2784 
IsNativeContext(Node * object)2785 Node* CodeStubAssembler::IsNativeContext(Node* object) {
2786   return WordEqual(LoadMap(object), LoadRoot(Heap::kNativeContextMapRootIndex));
2787 }
2788 
IsFixedDoubleArray(Node * object)2789 Node* CodeStubAssembler::IsFixedDoubleArray(Node* object) {
2790   return WordEqual(LoadMap(object), FixedDoubleArrayMapConstant());
2791 }
2792 
IsHashTable(Node * object)2793 Node* CodeStubAssembler::IsHashTable(Node* object) {
2794   return WordEqual(LoadMap(object), LoadRoot(Heap::kHashTableMapRootIndex));
2795 }
2796 
IsDictionary(Node * object)2797 Node* CodeStubAssembler::IsDictionary(Node* object) {
2798   return WordOr(IsHashTable(object), IsUnseededNumberDictionary(object));
2799 }
2800 
IsUnseededNumberDictionary(Node * object)2801 Node* CodeStubAssembler::IsUnseededNumberDictionary(Node* object) {
2802   return WordEqual(LoadMap(object),
2803                    LoadRoot(Heap::kUnseededNumberDictionaryMapRootIndex));
2804 }
2805 
StringCharCodeAt(Node * string,Node * index)2806 Node* CodeStubAssembler::StringCharCodeAt(Node* string, Node* index) {
2807   CSA_ASSERT(this, IsString(string));
2808   // Translate the {index} into a Word.
2809   index = SmiToWord(index);
2810 
2811   // We may need to loop in case of cons or sliced strings.
2812   Variable var_index(this, MachineType::PointerRepresentation());
2813   Variable var_result(this, MachineRepresentation::kWord32);
2814   Variable var_string(this, MachineRepresentation::kTagged);
2815   Variable* loop_vars[] = {&var_index, &var_string};
2816   Label done_loop(this, &var_result), loop(this, 2, loop_vars);
2817   var_string.Bind(string);
2818   var_index.Bind(index);
2819   Goto(&loop);
2820   Bind(&loop);
2821   {
2822     // Load the current {index}.
2823     index = var_index.value();
2824 
2825     // Load the current {string}.
2826     string = var_string.value();
2827 
2828     // Load the instance type of the {string}.
2829     Node* string_instance_type = LoadInstanceType(string);
2830 
2831     // Check if the {string} is a SeqString.
2832     Label if_stringissequential(this), if_stringisnotsequential(this);
2833     Branch(Word32Equal(Word32And(string_instance_type,
2834                                  Int32Constant(kStringRepresentationMask)),
2835                        Int32Constant(kSeqStringTag)),
2836            &if_stringissequential, &if_stringisnotsequential);
2837 
2838     Bind(&if_stringissequential);
2839     {
2840       // Check if the {string} is a TwoByteSeqString or a OneByteSeqString.
2841       Label if_stringistwobyte(this), if_stringisonebyte(this);
2842       Branch(Word32Equal(Word32And(string_instance_type,
2843                                    Int32Constant(kStringEncodingMask)),
2844                          Int32Constant(kTwoByteStringTag)),
2845              &if_stringistwobyte, &if_stringisonebyte);
2846 
2847       Bind(&if_stringisonebyte);
2848       {
2849         var_result.Bind(
2850             Load(MachineType::Uint8(), string,
2851                  IntPtrAdd(index, IntPtrConstant(SeqOneByteString::kHeaderSize -
2852                                                  kHeapObjectTag))));
2853         Goto(&done_loop);
2854       }
2855 
2856       Bind(&if_stringistwobyte);
2857       {
2858         var_result.Bind(
2859             Load(MachineType::Uint16(), string,
2860                  IntPtrAdd(WordShl(index, IntPtrConstant(1)),
2861                            IntPtrConstant(SeqTwoByteString::kHeaderSize -
2862                                           kHeapObjectTag))));
2863         Goto(&done_loop);
2864       }
2865     }
2866 
2867     Bind(&if_stringisnotsequential);
2868     {
2869       // Check if the {string} is a ConsString.
2870       Label if_stringiscons(this), if_stringisnotcons(this);
2871       Branch(Word32Equal(Word32And(string_instance_type,
2872                                    Int32Constant(kStringRepresentationMask)),
2873                          Int32Constant(kConsStringTag)),
2874              &if_stringiscons, &if_stringisnotcons);
2875 
2876       Bind(&if_stringiscons);
2877       {
2878         // Check whether the right hand side is the empty string (i.e. if
2879         // this is really a flat string in a cons string). If that is not
2880         // the case we flatten the string first.
2881         Label if_rhsisempty(this), if_rhsisnotempty(this, Label::kDeferred);
2882         Node* rhs = LoadObjectField(string, ConsString::kSecondOffset);
2883         Branch(WordEqual(rhs, EmptyStringConstant()), &if_rhsisempty,
2884                &if_rhsisnotempty);
2885 
2886         Bind(&if_rhsisempty);
2887         {
2888           // Just operate on the left hand side of the {string}.
2889           var_string.Bind(LoadObjectField(string, ConsString::kFirstOffset));
2890           Goto(&loop);
2891         }
2892 
2893         Bind(&if_rhsisnotempty);
2894         {
2895           // Flatten the {string} and lookup in the resulting string.
2896           var_string.Bind(CallRuntime(Runtime::kFlattenString,
2897                                       NoContextConstant(), string));
2898           Goto(&loop);
2899         }
2900       }
2901 
2902       Bind(&if_stringisnotcons);
2903       {
2904         // Check if the {string} is an ExternalString.
2905         Label if_stringisexternal(this), if_stringisnotexternal(this);
2906         Branch(Word32Equal(Word32And(string_instance_type,
2907                                      Int32Constant(kStringRepresentationMask)),
2908                            Int32Constant(kExternalStringTag)),
2909                &if_stringisexternal, &if_stringisnotexternal);
2910 
2911         Bind(&if_stringisexternal);
2912         {
2913           // Check if the {string} is a short external string.
2914           Label if_stringisnotshort(this),
2915               if_stringisshort(this, Label::kDeferred);
2916           Branch(Word32Equal(Word32And(string_instance_type,
2917                                        Int32Constant(kShortExternalStringMask)),
2918                              Int32Constant(0)),
2919                  &if_stringisnotshort, &if_stringisshort);
2920 
2921           Bind(&if_stringisnotshort);
2922           {
2923             // Load the actual resource data from the {string}.
2924             Node* string_resource_data =
2925                 LoadObjectField(string, ExternalString::kResourceDataOffset,
2926                                 MachineType::Pointer());
2927 
2928             // Check if the {string} is a TwoByteExternalString or a
2929             // OneByteExternalString.
2930             Label if_stringistwobyte(this), if_stringisonebyte(this);
2931             Branch(Word32Equal(Word32And(string_instance_type,
2932                                          Int32Constant(kStringEncodingMask)),
2933                                Int32Constant(kTwoByteStringTag)),
2934                    &if_stringistwobyte, &if_stringisonebyte);
2935 
2936             Bind(&if_stringisonebyte);
2937             {
2938               var_result.Bind(
2939                   Load(MachineType::Uint8(), string_resource_data, index));
2940               Goto(&done_loop);
2941             }
2942 
2943             Bind(&if_stringistwobyte);
2944             {
2945               var_result.Bind(Load(MachineType::Uint16(), string_resource_data,
2946                                    WordShl(index, IntPtrConstant(1))));
2947               Goto(&done_loop);
2948             }
2949           }
2950 
2951           Bind(&if_stringisshort);
2952           {
2953             // The {string} might be compressed, call the runtime.
2954             var_result.Bind(SmiToWord32(
2955                 CallRuntime(Runtime::kExternalStringGetChar,
2956                             NoContextConstant(), string, SmiTag(index))));
2957             Goto(&done_loop);
2958           }
2959         }
2960 
2961         Bind(&if_stringisnotexternal);
2962         {
2963           // The {string} is a SlicedString, continue with its parent.
2964           Node* string_offset =
2965               LoadAndUntagObjectField(string, SlicedString::kOffsetOffset);
2966           Node* string_parent =
2967               LoadObjectField(string, SlicedString::kParentOffset);
2968           var_index.Bind(IntPtrAdd(index, string_offset));
2969           var_string.Bind(string_parent);
2970           Goto(&loop);
2971         }
2972       }
2973     }
2974   }
2975 
2976   Bind(&done_loop);
2977   return var_result.value();
2978 }
2979 
StringFromCharCode(Node * code)2980 Node* CodeStubAssembler::StringFromCharCode(Node* code) {
2981   Variable var_result(this, MachineRepresentation::kTagged);
2982 
2983   // Check if the {code} is a one-byte char code.
2984   Label if_codeisonebyte(this), if_codeistwobyte(this, Label::kDeferred),
2985       if_done(this);
2986   Branch(Int32LessThanOrEqual(code, Int32Constant(String::kMaxOneByteCharCode)),
2987          &if_codeisonebyte, &if_codeistwobyte);
2988   Bind(&if_codeisonebyte);
2989   {
2990     // Load the isolate wide single character string cache.
2991     Node* cache = LoadRoot(Heap::kSingleCharacterStringCacheRootIndex);
2992 
2993     // Check if we have an entry for the {code} in the single character string
2994     // cache already.
2995     Label if_entryisundefined(this, Label::kDeferred),
2996         if_entryisnotundefined(this);
2997     Node* entry = LoadFixedArrayElement(cache, code);
2998     Branch(WordEqual(entry, UndefinedConstant()), &if_entryisundefined,
2999            &if_entryisnotundefined);
3000 
3001     Bind(&if_entryisundefined);
3002     {
3003       // Allocate a new SeqOneByteString for {code} and store it in the {cache}.
3004       Node* result = AllocateSeqOneByteString(1);
3005       StoreNoWriteBarrier(
3006           MachineRepresentation::kWord8, result,
3007           IntPtrConstant(SeqOneByteString::kHeaderSize - kHeapObjectTag), code);
3008       StoreFixedArrayElement(cache, code, result);
3009       var_result.Bind(result);
3010       Goto(&if_done);
3011     }
3012 
3013     Bind(&if_entryisnotundefined);
3014     {
3015       // Return the entry from the {cache}.
3016       var_result.Bind(entry);
3017       Goto(&if_done);
3018     }
3019   }
3020 
3021   Bind(&if_codeistwobyte);
3022   {
3023     // Allocate a new SeqTwoByteString for {code}.
3024     Node* result = AllocateSeqTwoByteString(1);
3025     StoreNoWriteBarrier(
3026         MachineRepresentation::kWord16, result,
3027         IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag), code);
3028     var_result.Bind(result);
3029     Goto(&if_done);
3030   }
3031 
3032   Bind(&if_done);
3033   return var_result.value();
3034 }
3035 
3036 namespace {
3037 
3038 // A wrapper around CopyStringCharacters which determines the correct string
3039 // encoding, allocates a corresponding sequential string, and then copies the
3040 // given character range using CopyStringCharacters.
3041 // |from_string| must be a sequential string. |from_index| and
3042 // |character_count| must be Smis s.t.
3043 // 0 <= |from_index| <= |from_index| + |character_count| < from_string.length.
AllocAndCopyStringCharacters(CodeStubAssembler * a,Node * context,Node * from,Node * from_instance_type,Node * from_index,Node * character_count)3044 Node* AllocAndCopyStringCharacters(CodeStubAssembler* a, Node* context,
3045                                    Node* from, Node* from_instance_type,
3046                                    Node* from_index, Node* character_count) {
3047   typedef CodeStubAssembler::Label Label;
3048   typedef CodeStubAssembler::Variable Variable;
3049 
3050   Label end(a), two_byte_sequential(a);
3051   Variable var_result(a, MachineRepresentation::kTagged);
3052 
3053   Node* const smi_zero = a->SmiConstant(Smi::kZero);
3054 
3055   STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
3056   a->GotoIf(a->Word32Equal(a->Word32And(from_instance_type,
3057                                         a->Int32Constant(kStringEncodingMask)),
3058                            a->Int32Constant(0)),
3059             &two_byte_sequential);
3060 
3061   // The subject string is a sequential one-byte string.
3062   {
3063     Node* result =
3064         a->AllocateSeqOneByteString(context, a->SmiToWord(character_count));
3065     a->CopyStringCharacters(from, result, from_index, smi_zero, character_count,
3066                             String::ONE_BYTE_ENCODING,
3067                             String::ONE_BYTE_ENCODING,
3068                             CodeStubAssembler::SMI_PARAMETERS);
3069     var_result.Bind(result);
3070 
3071     a->Goto(&end);
3072   }
3073 
3074   // The subject string is a sequential two-byte string.
3075   a->Bind(&two_byte_sequential);
3076   {
3077     Node* result =
3078         a->AllocateSeqTwoByteString(context, a->SmiToWord(character_count));
3079     a->CopyStringCharacters(from, result, from_index, smi_zero, character_count,
3080                             String::TWO_BYTE_ENCODING,
3081                             String::TWO_BYTE_ENCODING,
3082                             CodeStubAssembler::SMI_PARAMETERS);
3083     var_result.Bind(result);
3084 
3085     a->Goto(&end);
3086   }
3087 
3088   a->Bind(&end);
3089   return var_result.value();
3090 }
3091 
3092 }  // namespace
3093 
SubString(Node * context,Node * string,Node * from,Node * to)3094 Node* CodeStubAssembler::SubString(Node* context, Node* string, Node* from,
3095                                    Node* to) {
3096   Label end(this);
3097   Label runtime(this);
3098 
3099   Variable var_instance_type(this, MachineRepresentation::kWord8);  // Int32.
3100   Variable var_result(this, MachineRepresentation::kTagged);        // String.
3101   Variable var_from(this, MachineRepresentation::kTagged);          // Smi.
3102   Variable var_string(this, MachineRepresentation::kTagged);        // String.
3103 
3104   var_instance_type.Bind(Int32Constant(0));
3105   var_string.Bind(string);
3106   var_from.Bind(from);
3107 
3108   // Make sure first argument is a string.
3109 
3110   // Bailout if receiver is a Smi.
3111   GotoIf(TaggedIsSmi(string), &runtime);
3112 
3113   // Load the instance type of the {string}.
3114   Node* const instance_type = LoadInstanceType(string);
3115   var_instance_type.Bind(instance_type);
3116 
3117   // Check if {string} is a String.
3118   GotoUnless(IsStringInstanceType(instance_type), &runtime);
3119 
3120   // Make sure that both from and to are non-negative smis.
3121 
3122   GotoUnless(WordIsPositiveSmi(from), &runtime);
3123   GotoUnless(WordIsPositiveSmi(to), &runtime);
3124 
3125   Node* const substr_length = SmiSub(to, from);
3126   Node* const string_length = LoadStringLength(string);
3127 
3128   // Begin dispatching based on substring length.
3129 
3130   Label original_string_or_invalid_length(this);
3131   GotoIf(SmiAboveOrEqual(substr_length, string_length),
3132          &original_string_or_invalid_length);
3133 
3134   // A real substring (substr_length < string_length).
3135 
3136   Label single_char(this);
3137   GotoIf(SmiEqual(substr_length, SmiConstant(Smi::FromInt(1))), &single_char);
3138 
3139   // TODO(jgruber): Add an additional case for substring of length == 0?
3140 
3141   // Deal with different string types: update the index if necessary
3142   // and put the underlying string into var_string.
3143 
3144   // If the string is not indirect, it can only be sequential or external.
3145   STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
3146   STATIC_ASSERT(kIsIndirectStringMask != 0);
3147   Label underlying_unpacked(this);
3148   GotoIf(Word32Equal(
3149              Word32And(instance_type, Int32Constant(kIsIndirectStringMask)),
3150              Int32Constant(0)),
3151          &underlying_unpacked);
3152 
3153   // The subject string is either a sliced or cons string.
3154 
3155   Label sliced_string(this);
3156   GotoIf(Word32NotEqual(
3157              Word32And(instance_type, Int32Constant(kSlicedNotConsMask)),
3158              Int32Constant(0)),
3159          &sliced_string);
3160 
3161   // Cons string.  Check whether it is flat, then fetch first part.
3162   // Flat cons strings have an empty second part.
3163   {
3164     GotoIf(WordNotEqual(LoadObjectField(string, ConsString::kSecondOffset),
3165                         EmptyStringConstant()),
3166            &runtime);
3167 
3168     Node* first_string_part = LoadObjectField(string, ConsString::kFirstOffset);
3169     var_string.Bind(first_string_part);
3170     var_instance_type.Bind(LoadInstanceType(first_string_part));
3171 
3172     Goto(&underlying_unpacked);
3173   }
3174 
3175   Bind(&sliced_string);
3176   {
3177     // Fetch parent and correct start index by offset.
3178     Node* sliced_offset = LoadObjectField(string, SlicedString::kOffsetOffset);
3179     var_from.Bind(SmiAdd(from, sliced_offset));
3180 
3181     Node* slice_parent = LoadObjectField(string, SlicedString::kParentOffset);
3182     var_string.Bind(slice_parent);
3183 
3184     Node* slice_parent_instance_type = LoadInstanceType(slice_parent);
3185     var_instance_type.Bind(slice_parent_instance_type);
3186 
3187     Goto(&underlying_unpacked);
3188   }
3189 
3190   // The subject string can only be external or sequential string of either
3191   // encoding at this point.
3192   Label external_string(this);
3193   Bind(&underlying_unpacked);
3194   {
3195     if (FLAG_string_slices) {
3196       Label copy_routine(this);
3197 
3198       // Short slice.  Copy instead of slicing.
3199       GotoIf(SmiLessThan(substr_length,
3200                          SmiConstant(Smi::FromInt(SlicedString::kMinLength))),
3201              &copy_routine);
3202 
3203       // Allocate new sliced string.
3204 
3205       Label two_byte_slice(this);
3206       STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
3207       STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
3208 
3209       Counters* counters = isolate()->counters();
3210       IncrementCounter(counters->sub_string_native(), 1);
3211 
3212       GotoIf(Word32Equal(Word32And(var_instance_type.value(),
3213                                    Int32Constant(kStringEncodingMask)),
3214                          Int32Constant(0)),
3215              &two_byte_slice);
3216 
3217       var_result.Bind(AllocateSlicedOneByteString(
3218           substr_length, var_string.value(), var_from.value()));
3219       Goto(&end);
3220 
3221       Bind(&two_byte_slice);
3222 
3223       var_result.Bind(AllocateSlicedTwoByteString(
3224           substr_length, var_string.value(), var_from.value()));
3225       Goto(&end);
3226 
3227       Bind(&copy_routine);
3228     }
3229 
3230     // The subject string can only be external or sequential string of either
3231     // encoding at this point.
3232     STATIC_ASSERT(kExternalStringTag != 0);
3233     STATIC_ASSERT(kSeqStringTag == 0);
3234     GotoUnless(Word32Equal(Word32And(var_instance_type.value(),
3235                                      Int32Constant(kExternalStringTag)),
3236                            Int32Constant(0)),
3237                &external_string);
3238 
3239     var_result.Bind(AllocAndCopyStringCharacters(
3240         this, context, var_string.value(), var_instance_type.value(),
3241         var_from.value(), substr_length));
3242 
3243     Counters* counters = isolate()->counters();
3244     IncrementCounter(counters->sub_string_native(), 1);
3245 
3246     Goto(&end);
3247   }
3248 
3249   // Handle external string.
3250   Bind(&external_string);
3251   {
3252     // Rule out short external strings.
3253     STATIC_ASSERT(kShortExternalStringTag != 0);
3254     GotoIf(Word32NotEqual(Word32And(var_instance_type.value(),
3255                                     Int32Constant(kShortExternalStringMask)),
3256                           Int32Constant(0)),
3257            &runtime);
3258 
3259     // Move the pointer so that offset-wise, it looks like a sequential string.
3260     STATIC_ASSERT(SeqTwoByteString::kHeaderSize ==
3261                   SeqOneByteString::kHeaderSize);
3262 
3263     Node* resource_data = LoadObjectField(var_string.value(),
3264                                           ExternalString::kResourceDataOffset);
3265     Node* const fake_sequential_string = IntPtrSub(
3266         resource_data,
3267         IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3268 
3269     var_result.Bind(AllocAndCopyStringCharacters(
3270         this, context, fake_sequential_string, var_instance_type.value(),
3271         var_from.value(), substr_length));
3272 
3273     Counters* counters = isolate()->counters();
3274     IncrementCounter(counters->sub_string_native(), 1);
3275 
3276     Goto(&end);
3277   }
3278 
3279   // Substrings of length 1 are generated through CharCodeAt and FromCharCode.
3280   Bind(&single_char);
3281   {
3282     Node* char_code = StringCharCodeAt(var_string.value(), var_from.value());
3283     var_result.Bind(StringFromCharCode(char_code));
3284     Goto(&end);
3285   }
3286 
3287   Bind(&original_string_or_invalid_length);
3288   {
3289     // Longer than original string's length or negative: unsafe arguments.
3290     GotoIf(SmiAbove(substr_length, string_length), &runtime);
3291 
3292     // Equal length - check if {from, to} == {0, str.length}.
3293     GotoIf(SmiAbove(from, SmiConstant(Smi::kZero)), &runtime);
3294 
3295     // Return the original string (substr_length == string_length).
3296 
3297     Counters* counters = isolate()->counters();
3298     IncrementCounter(counters->sub_string_native(), 1);
3299 
3300     var_result.Bind(string);
3301     Goto(&end);
3302   }
3303 
3304   // Fall back to a runtime call.
3305   Bind(&runtime);
3306   {
3307     var_result.Bind(
3308         CallRuntime(Runtime::kSubString, context, string, from, to));
3309     Goto(&end);
3310   }
3311 
3312   Bind(&end);
3313   return var_result.value();
3314 }
3315 
StringAdd(Node * context,Node * left,Node * right,AllocationFlags flags)3316 Node* CodeStubAssembler::StringAdd(Node* context, Node* left, Node* right,
3317                                    AllocationFlags flags) {
3318   Label check_right(this);
3319   Label runtime(this, Label::kDeferred);
3320   Label cons(this);
3321   Label non_cons(this);
3322   Variable result(this, MachineRepresentation::kTagged);
3323   Label done(this, &result);
3324   Label done_native(this, &result);
3325   Counters* counters = isolate()->counters();
3326 
3327   Node* left_length = LoadStringLength(left);
3328   GotoIf(WordNotEqual(IntPtrConstant(0), left_length), &check_right);
3329   result.Bind(right);
3330   Goto(&done_native);
3331 
3332   Bind(&check_right);
3333   Node* right_length = LoadStringLength(right);
3334   GotoIf(WordNotEqual(IntPtrConstant(0), right_length), &cons);
3335   result.Bind(left);
3336   Goto(&done_native);
3337 
3338   Bind(&cons);
3339   CSA_ASSERT(this, TaggedIsSmi(left_length));
3340   CSA_ASSERT(this, TaggedIsSmi(right_length));
3341   Node* new_length = SmiAdd(left_length, right_length);
3342   GotoIf(UintPtrGreaterThanOrEqual(
3343              new_length, SmiConstant(Smi::FromInt(String::kMaxLength))),
3344          &runtime);
3345 
3346   GotoIf(IntPtrLessThan(new_length,
3347                         SmiConstant(Smi::FromInt(ConsString::kMinLength))),
3348          &non_cons);
3349 
3350   result.Bind(NewConsString(context, new_length, left, right, flags));
3351   Goto(&done_native);
3352 
3353   Bind(&non_cons);
3354 
3355   Comment("Full string concatenate");
3356   Node* left_instance_type = LoadInstanceType(left);
3357   Node* right_instance_type = LoadInstanceType(right);
3358   // Compute intersection and difference of instance types.
3359 
3360   Node* ored_instance_types = WordOr(left_instance_type, right_instance_type);
3361   Node* xored_instance_types = WordXor(left_instance_type, right_instance_type);
3362 
3363   // Check if both strings have the same encoding and both are sequential.
3364   GotoIf(WordNotEqual(
3365              WordAnd(xored_instance_types, IntPtrConstant(kStringEncodingMask)),
3366              IntPtrConstant(0)),
3367          &runtime);
3368   GotoIf(WordNotEqual(WordAnd(ored_instance_types,
3369                               IntPtrConstant(kStringRepresentationMask)),
3370                       IntPtrConstant(0)),
3371          &runtime);
3372 
3373   Label two_byte(this);
3374   GotoIf(WordEqual(
3375              WordAnd(ored_instance_types, IntPtrConstant(kStringEncodingMask)),
3376              IntPtrConstant(kTwoByteStringTag)),
3377          &two_byte);
3378   // One-byte sequential string case
3379   Node* new_string =
3380       AllocateSeqOneByteString(context, new_length, SMI_PARAMETERS);
3381   CopyStringCharacters(left, new_string, SmiConstant(Smi::kZero),
3382                        SmiConstant(Smi::kZero), left_length,
3383                        String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING,
3384                        SMI_PARAMETERS);
3385   CopyStringCharacters(right, new_string, SmiConstant(Smi::kZero), left_length,
3386                        right_length, String::ONE_BYTE_ENCODING,
3387                        String::ONE_BYTE_ENCODING, SMI_PARAMETERS);
3388   result.Bind(new_string);
3389   Goto(&done_native);
3390 
3391   Bind(&two_byte);
3392   {
3393     // Two-byte sequential string case
3394     new_string = AllocateSeqTwoByteString(context, new_length, SMI_PARAMETERS);
3395     CopyStringCharacters(left, new_string, SmiConstant(Smi::kZero),
3396                          SmiConstant(Smi::kZero), left_length,
3397                          String::TWO_BYTE_ENCODING, String::TWO_BYTE_ENCODING,
3398                          SMI_PARAMETERS);
3399     CopyStringCharacters(right, new_string, SmiConstant(Smi::kZero),
3400                          left_length, right_length, String::TWO_BYTE_ENCODING,
3401                          String::TWO_BYTE_ENCODING, SMI_PARAMETERS);
3402     result.Bind(new_string);
3403     Goto(&done_native);
3404   }
3405 
3406   Bind(&runtime);
3407   {
3408     result.Bind(CallRuntime(Runtime::kStringAdd, context, left, right));
3409     Goto(&done);
3410   }
3411 
3412   Bind(&done_native);
3413   {
3414     IncrementCounter(counters->string_add_native(), 1);
3415     Goto(&done);
3416   }
3417 
3418   Bind(&done);
3419   return result.value();
3420 }
3421 
StringIndexOfChar(Node * context,Node * string,Node * needle_char,Node * from)3422 Node* CodeStubAssembler::StringIndexOfChar(Node* context, Node* string,
3423                                            Node* needle_char, Node* from) {
3424   CSA_ASSERT(this, IsString(string));
3425   Variable var_result(this, MachineRepresentation::kTagged);
3426 
3427   Label out(this), runtime(this, Label::kDeferred);
3428 
3429   // Let runtime handle non-one-byte {needle_char}.
3430 
3431   Node* const one_byte_char_mask = IntPtrConstant(0xFF);
3432   GotoUnless(WordEqual(WordAnd(needle_char, one_byte_char_mask), needle_char),
3433              &runtime);
3434 
3435   // TODO(jgruber): Handle external and two-byte strings.
3436 
3437   Node* const one_byte_seq_mask = Int32Constant(
3438       kIsIndirectStringMask | kExternalStringTag | kStringEncodingMask);
3439   Node* const expected_masked = Int32Constant(kOneByteStringTag);
3440 
3441   Node* const string_instance_type = LoadInstanceType(string);
3442   GotoUnless(Word32Equal(Word32And(string_instance_type, one_byte_seq_mask),
3443                          expected_masked),
3444              &runtime);
3445 
3446   // If we reach this, {string} is a non-indirect, non-external one-byte string.
3447 
3448   Node* const length = LoadStringLength(string);
3449   Node* const search_range_length = SmiUntag(SmiSub(length, from));
3450 
3451   const int offset = SeqOneByteString::kHeaderSize - kHeapObjectTag;
3452   Node* const begin = IntPtrConstant(offset);
3453   Node* const cursor = IntPtrAdd(begin, SmiUntag(from));
3454   Node* const end = IntPtrAdd(cursor, search_range_length);
3455 
3456   var_result.Bind(SmiConstant(Smi::FromInt(-1)));
3457 
3458   BuildFastLoop(MachineType::PointerRepresentation(), cursor, end,
3459                 [string, needle_char, begin, &var_result, &out](
3460                     CodeStubAssembler* csa, Node* cursor) {
3461                   Label next(csa);
3462                   Node* value = csa->Load(MachineType::Uint8(), string, cursor);
3463                   csa->GotoUnless(csa->WordEqual(value, needle_char), &next);
3464 
3465                   // Found a match.
3466                   Node* index = csa->SmiTag(csa->IntPtrSub(cursor, begin));
3467                   var_result.Bind(index);
3468                   csa->Goto(&out);
3469 
3470                   csa->Bind(&next);
3471                 },
3472                 1, IndexAdvanceMode::kPost);
3473   Goto(&out);
3474 
3475   Bind(&runtime);
3476   {
3477     Node* const pattern = StringFromCharCode(needle_char);
3478     Node* const result =
3479         CallRuntime(Runtime::kStringIndexOf, context, string, pattern, from);
3480     var_result.Bind(result);
3481     Goto(&out);
3482   }
3483 
3484   Bind(&out);
3485   return var_result.value();
3486 }
3487 
StringFromCodePoint(compiler::Node * codepoint,UnicodeEncoding encoding)3488 Node* CodeStubAssembler::StringFromCodePoint(compiler::Node* codepoint,
3489                                              UnicodeEncoding encoding) {
3490   Variable var_result(this, MachineRepresentation::kTagged);
3491   var_result.Bind(EmptyStringConstant());
3492 
3493   Label if_isword16(this), if_isword32(this), return_result(this);
3494 
3495   Branch(Uint32LessThan(codepoint, Int32Constant(0x10000)), &if_isword16,
3496          &if_isword32);
3497 
3498   Bind(&if_isword16);
3499   {
3500     var_result.Bind(StringFromCharCode(codepoint));
3501     Goto(&return_result);
3502   }
3503 
3504   Bind(&if_isword32);
3505   {
3506     switch (encoding) {
3507       case UnicodeEncoding::UTF16:
3508         break;
3509       case UnicodeEncoding::UTF32: {
3510         // Convert UTF32 to UTF16 code units, and store as a 32 bit word.
3511         Node* lead_offset = Int32Constant(0xD800 - (0x10000 >> 10));
3512 
3513         // lead = (codepoint >> 10) + LEAD_OFFSET
3514         Node* lead =
3515             Int32Add(WordShr(codepoint, Int32Constant(10)), lead_offset);
3516 
3517         // trail = (codepoint & 0x3FF) + 0xDC00;
3518         Node* trail = Int32Add(Word32And(codepoint, Int32Constant(0x3FF)),
3519                                Int32Constant(0xDC00));
3520 
3521         // codpoint = (trail << 16) | lead;
3522         codepoint = Word32Or(WordShl(trail, Int32Constant(16)), lead);
3523         break;
3524       }
3525     }
3526 
3527     Node* value = AllocateSeqTwoByteString(2);
3528     StoreNoWriteBarrier(
3529         MachineRepresentation::kWord32, value,
3530         IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag),
3531         codepoint);
3532     var_result.Bind(value);
3533     Goto(&return_result);
3534   }
3535 
3536   Bind(&return_result);
3537   return var_result.value();
3538 }
3539 
StringToNumber(Node * context,Node * input)3540 Node* CodeStubAssembler::StringToNumber(Node* context, Node* input) {
3541   Label runtime(this, Label::kDeferred);
3542   Label end(this);
3543 
3544   Variable var_result(this, MachineRepresentation::kTagged);
3545 
3546   // Check if string has a cached array index.
3547   Node* hash = LoadNameHashField(input);
3548   Node* bit =
3549       Word32And(hash, Int32Constant(String::kContainsCachedArrayIndexMask));
3550   GotoIf(Word32NotEqual(bit, Int32Constant(0)), &runtime);
3551 
3552   var_result.Bind(
3553       SmiTag(DecodeWordFromWord32<String::ArrayIndexValueBits>(hash)));
3554   Goto(&end);
3555 
3556   Bind(&runtime);
3557   {
3558     var_result.Bind(CallRuntime(Runtime::kStringToNumber, context, input));
3559     Goto(&end);
3560   }
3561 
3562   Bind(&end);
3563   return var_result.value();
3564 }
3565 
NumberToString(compiler::Node * context,compiler::Node * argument)3566 Node* CodeStubAssembler::NumberToString(compiler::Node* context,
3567                                         compiler::Node* argument) {
3568   Variable result(this, MachineRepresentation::kTagged);
3569   Label runtime(this, Label::kDeferred);
3570   Label smi(this);
3571   Label done(this, &result);
3572 
3573   // Load the number string cache.
3574   Node* number_string_cache = LoadRoot(Heap::kNumberStringCacheRootIndex);
3575 
3576   // Make the hash mask from the length of the number string cache. It
3577   // contains two elements (number and string) for each cache entry.
3578   Node* mask = LoadFixedArrayBaseLength(number_string_cache);
3579   Node* one = IntPtrConstant(1);
3580   mask = IntPtrSub(mask, one);
3581 
3582   GotoIf(TaggedIsSmi(argument), &smi);
3583 
3584   // Argument isn't smi, check to see if it's a heap-number.
3585   Node* map = LoadMap(argument);
3586   GotoUnless(WordEqual(map, HeapNumberMapConstant()), &runtime);
3587 
3588   // Make a hash from the two 32-bit values of the double.
3589   Node* low =
3590       LoadObjectField(argument, HeapNumber::kValueOffset, MachineType::Int32());
3591   Node* high = LoadObjectField(argument, HeapNumber::kValueOffset + kIntSize,
3592                                MachineType::Int32());
3593   Node* hash = Word32Xor(low, high);
3594   if (Is64()) hash = ChangeInt32ToInt64(hash);
3595   hash = WordShl(hash, one);
3596   Node* index = WordAnd(hash, SmiToWord(mask));
3597 
3598   // Cache entry's key must be a heap number
3599   Node* number_key =
3600       LoadFixedArrayElement(number_string_cache, index, 0, INTPTR_PARAMETERS);
3601   GotoIf(TaggedIsSmi(number_key), &runtime);
3602   map = LoadMap(number_key);
3603   GotoUnless(WordEqual(map, HeapNumberMapConstant()), &runtime);
3604 
3605   // Cache entry's key must match the heap number value we're looking for.
3606   Node* low_compare = LoadObjectField(number_key, HeapNumber::kValueOffset,
3607                                       MachineType::Int32());
3608   Node* high_compare = LoadObjectField(
3609       number_key, HeapNumber::kValueOffset + kIntSize, MachineType::Int32());
3610   GotoUnless(WordEqual(low, low_compare), &runtime);
3611   GotoUnless(WordEqual(high, high_compare), &runtime);
3612 
3613   // Heap number match, return value fro cache entry.
3614   IncrementCounter(isolate()->counters()->number_to_string_native(), 1);
3615   result.Bind(LoadFixedArrayElement(number_string_cache, index, kPointerSize,
3616                                     INTPTR_PARAMETERS));
3617   Goto(&done);
3618 
3619   Bind(&runtime);
3620   {
3621     // No cache entry, go to the runtime.
3622     result.Bind(CallRuntime(Runtime::kNumberToString, context, argument));
3623   }
3624   Goto(&done);
3625 
3626   Bind(&smi);
3627   {
3628     // Load the smi key, make sure it matches the smi we're looking for.
3629     Node* smi_index = WordAnd(WordShl(argument, one), mask);
3630     Node* smi_key = LoadFixedArrayElement(number_string_cache, smi_index, 0,
3631                                           SMI_PARAMETERS);
3632     GotoIf(WordNotEqual(smi_key, argument), &runtime);
3633 
3634     // Smi match, return value from cache entry.
3635     IncrementCounter(isolate()->counters()->number_to_string_native(), 1);
3636     result.Bind(LoadFixedArrayElement(number_string_cache, smi_index,
3637                                       kPointerSize, SMI_PARAMETERS));
3638     Goto(&done);
3639   }
3640 
3641   Bind(&done);
3642   return result.value();
3643 }
3644 
ToName(Node * context,Node * value)3645 Node* CodeStubAssembler::ToName(Node* context, Node* value) {
3646   typedef CodeStubAssembler::Label Label;
3647   typedef CodeStubAssembler::Variable Variable;
3648 
3649   Label end(this);
3650   Variable var_result(this, MachineRepresentation::kTagged);
3651 
3652   Label is_number(this);
3653   GotoIf(TaggedIsSmi(value), &is_number);
3654 
3655   Label not_name(this);
3656   Node* value_instance_type = LoadInstanceType(value);
3657   STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE);
3658   GotoIf(Int32GreaterThan(value_instance_type, Int32Constant(LAST_NAME_TYPE)),
3659          &not_name);
3660 
3661   var_result.Bind(value);
3662   Goto(&end);
3663 
3664   Bind(&is_number);
3665   {
3666     Callable callable = CodeFactory::NumberToString(isolate());
3667     var_result.Bind(CallStub(callable, context, value));
3668     Goto(&end);
3669   }
3670 
3671   Bind(&not_name);
3672   {
3673     GotoIf(Word32Equal(value_instance_type, Int32Constant(HEAP_NUMBER_TYPE)),
3674            &is_number);
3675 
3676     Label not_oddball(this);
3677     GotoIf(Word32NotEqual(value_instance_type, Int32Constant(ODDBALL_TYPE)),
3678            &not_oddball);
3679 
3680     var_result.Bind(LoadObjectField(value, Oddball::kToStringOffset));
3681     Goto(&end);
3682 
3683     Bind(&not_oddball);
3684     {
3685       var_result.Bind(CallRuntime(Runtime::kToName, context, value));
3686       Goto(&end);
3687     }
3688   }
3689 
3690   Bind(&end);
3691   return var_result.value();
3692 }
3693 
NonNumberToNumber(Node * context,Node * input)3694 Node* CodeStubAssembler::NonNumberToNumber(Node* context, Node* input) {
3695   // Assert input is a HeapObject (not smi or heap number)
3696   CSA_ASSERT(this, Word32BinaryNot(TaggedIsSmi(input)));
3697   CSA_ASSERT(this, Word32NotEqual(LoadMap(input), HeapNumberMapConstant()));
3698 
3699   // We might need to loop once here due to ToPrimitive conversions.
3700   Variable var_input(this, MachineRepresentation::kTagged);
3701   Variable var_result(this, MachineRepresentation::kTagged);
3702   Label loop(this, &var_input);
3703   Label end(this);
3704   var_input.Bind(input);
3705   Goto(&loop);
3706   Bind(&loop);
3707   {
3708     // Load the current {input} value (known to be a HeapObject).
3709     Node* input = var_input.value();
3710 
3711     // Dispatch on the {input} instance type.
3712     Node* input_instance_type = LoadInstanceType(input);
3713     Label if_inputisstring(this), if_inputisoddball(this),
3714         if_inputisreceiver(this, Label::kDeferred),
3715         if_inputisother(this, Label::kDeferred);
3716     GotoIf(IsStringInstanceType(input_instance_type), &if_inputisstring);
3717     GotoIf(Word32Equal(input_instance_type, Int32Constant(ODDBALL_TYPE)),
3718            &if_inputisoddball);
3719     Branch(IsJSReceiverInstanceType(input_instance_type), &if_inputisreceiver,
3720            &if_inputisother);
3721 
3722     Bind(&if_inputisstring);
3723     {
3724       // The {input} is a String, use the fast stub to convert it to a Number.
3725       var_result.Bind(StringToNumber(context, input));
3726       Goto(&end);
3727     }
3728 
3729     Bind(&if_inputisoddball);
3730     {
3731       // The {input} is an Oddball, we just need to load the Number value of it.
3732       var_result.Bind(LoadObjectField(input, Oddball::kToNumberOffset));
3733       Goto(&end);
3734     }
3735 
3736     Bind(&if_inputisreceiver);
3737     {
3738       // The {input} is a JSReceiver, we need to convert it to a Primitive first
3739       // using the ToPrimitive type conversion, preferably yielding a Number.
3740       Callable callable = CodeFactory::NonPrimitiveToPrimitive(
3741           isolate(), ToPrimitiveHint::kNumber);
3742       Node* result = CallStub(callable, context, input);
3743 
3744       // Check if the {result} is already a Number.
3745       Label if_resultisnumber(this), if_resultisnotnumber(this);
3746       GotoIf(TaggedIsSmi(result), &if_resultisnumber);
3747       Node* result_map = LoadMap(result);
3748       Branch(WordEqual(result_map, HeapNumberMapConstant()), &if_resultisnumber,
3749              &if_resultisnotnumber);
3750 
3751       Bind(&if_resultisnumber);
3752       {
3753         // The ToPrimitive conversion already gave us a Number, so we're done.
3754         var_result.Bind(result);
3755         Goto(&end);
3756       }
3757 
3758       Bind(&if_resultisnotnumber);
3759       {
3760         // We now have a Primitive {result}, but it's not yet a Number.
3761         var_input.Bind(result);
3762         Goto(&loop);
3763       }
3764     }
3765 
3766     Bind(&if_inputisother);
3767     {
3768       // The {input} is something else (i.e. Symbol or Simd128Value), let the
3769       // runtime figure out the correct exception.
3770       // Note: We cannot tail call to the runtime here, as js-to-wasm
3771       // trampolines also use this code currently, and they declare all
3772       // outgoing parameters as untagged, while we would push a tagged
3773       // object here.
3774       var_result.Bind(CallRuntime(Runtime::kToNumber, context, input));
3775       Goto(&end);
3776     }
3777   }
3778 
3779   Bind(&end);
3780   return var_result.value();
3781 }
3782 
ToNumber(Node * context,Node * input)3783 Node* CodeStubAssembler::ToNumber(Node* context, Node* input) {
3784   Variable var_result(this, MachineRepresentation::kTagged);
3785   Label end(this);
3786 
3787   Label not_smi(this, Label::kDeferred);
3788   GotoUnless(TaggedIsSmi(input), &not_smi);
3789   var_result.Bind(input);
3790   Goto(&end);
3791 
3792   Bind(&not_smi);
3793   {
3794     Label not_heap_number(this, Label::kDeferred);
3795     Node* input_map = LoadMap(input);
3796     GotoIf(Word32NotEqual(input_map, HeapNumberMapConstant()),
3797            &not_heap_number);
3798 
3799     var_result.Bind(input);
3800     Goto(&end);
3801 
3802     Bind(&not_heap_number);
3803     {
3804       var_result.Bind(NonNumberToNumber(context, input));
3805       Goto(&end);
3806     }
3807   }
3808 
3809   Bind(&end);
3810   return var_result.value();
3811 }
3812 
ToString(Node * context,Node * input)3813 Node* CodeStubAssembler::ToString(Node* context, Node* input) {
3814   Label is_number(this);
3815   Label runtime(this, Label::kDeferred);
3816   Variable result(this, MachineRepresentation::kTagged);
3817   Label done(this, &result);
3818 
3819   GotoIf(TaggedIsSmi(input), &is_number);
3820 
3821   Node* input_map = LoadMap(input);
3822   Node* input_instance_type = LoadMapInstanceType(input_map);
3823 
3824   result.Bind(input);
3825   GotoIf(IsStringInstanceType(input_instance_type), &done);
3826 
3827   Label not_heap_number(this);
3828   Branch(WordNotEqual(input_map, HeapNumberMapConstant()), &not_heap_number,
3829          &is_number);
3830 
3831   Bind(&is_number);
3832   result.Bind(NumberToString(context, input));
3833   Goto(&done);
3834 
3835   Bind(&not_heap_number);
3836   {
3837     GotoIf(Word32NotEqual(input_instance_type, Int32Constant(ODDBALL_TYPE)),
3838            &runtime);
3839     result.Bind(LoadObjectField(input, Oddball::kToStringOffset));
3840     Goto(&done);
3841   }
3842 
3843   Bind(&runtime);
3844   {
3845     result.Bind(CallRuntime(Runtime::kToString, context, input));
3846     Goto(&done);
3847   }
3848 
3849   Bind(&done);
3850   return result.value();
3851 }
3852 
FlattenString(Node * string)3853 Node* CodeStubAssembler::FlattenString(Node* string) {
3854   CSA_ASSERT(this, IsString(string));
3855   Variable var_result(this, MachineRepresentation::kTagged);
3856   var_result.Bind(string);
3857 
3858   Node* instance_type = LoadInstanceType(string);
3859 
3860   // Check if the {string} is not a ConsString (i.e. already flat).
3861   Label is_cons(this, Label::kDeferred), is_flat_in_cons(this), end(this);
3862   {
3863     GotoUnless(Word32Equal(Word32And(instance_type,
3864                                      Int32Constant(kStringRepresentationMask)),
3865                            Int32Constant(kConsStringTag)),
3866                &end);
3867 
3868     // Check whether the right hand side is the empty string (i.e. if
3869     // this is really a flat string in a cons string).
3870     Node* rhs = LoadObjectField(string, ConsString::kSecondOffset);
3871     Branch(WordEqual(rhs, EmptyStringConstant()), &is_flat_in_cons, &is_cons);
3872   }
3873 
3874   // Bail out to the runtime.
3875   Bind(&is_cons);
3876   {
3877     var_result.Bind(
3878         CallRuntime(Runtime::kFlattenString, NoContextConstant(), string));
3879     Goto(&end);
3880   }
3881 
3882   Bind(&is_flat_in_cons);
3883   {
3884     var_result.Bind(LoadObjectField(string, ConsString::kFirstOffset));
3885     Goto(&end);
3886   }
3887 
3888   Bind(&end);
3889   return var_result.value();
3890 }
3891 
JSReceiverToPrimitive(Node * context,Node * input)3892 Node* CodeStubAssembler::JSReceiverToPrimitive(Node* context, Node* input) {
3893   Label if_isreceiver(this, Label::kDeferred), if_isnotreceiver(this);
3894   Variable result(this, MachineRepresentation::kTagged);
3895   Label done(this, &result);
3896 
3897   BranchIfJSReceiver(input, &if_isreceiver, &if_isnotreceiver);
3898 
3899   Bind(&if_isreceiver);
3900   {
3901     // Convert {input} to a primitive first passing Number hint.
3902     Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate());
3903     result.Bind(CallStub(callable, context, input));
3904     Goto(&done);
3905   }
3906 
3907   Bind(&if_isnotreceiver);
3908   {
3909     result.Bind(input);
3910     Goto(&done);
3911   }
3912 
3913   Bind(&done);
3914   return result.value();
3915 }
3916 
ToInteger(Node * context,Node * input,ToIntegerTruncationMode mode)3917 Node* CodeStubAssembler::ToInteger(Node* context, Node* input,
3918                                    ToIntegerTruncationMode mode) {
3919   // We might need to loop once for ToNumber conversion.
3920   Variable var_arg(this, MachineRepresentation::kTagged);
3921   Label loop(this, &var_arg), out(this);
3922   var_arg.Bind(input);
3923   Goto(&loop);
3924   Bind(&loop);
3925   {
3926     // Shared entry points.
3927     Label return_zero(this, Label::kDeferred);
3928 
3929     // Load the current {arg} value.
3930     Node* arg = var_arg.value();
3931 
3932     // Check if {arg} is a Smi.
3933     GotoIf(TaggedIsSmi(arg), &out);
3934 
3935     // Check if {arg} is a HeapNumber.
3936     Label if_argisheapnumber(this),
3937         if_argisnotheapnumber(this, Label::kDeferred);
3938     Branch(WordEqual(LoadMap(arg), HeapNumberMapConstant()),
3939            &if_argisheapnumber, &if_argisnotheapnumber);
3940 
3941     Bind(&if_argisheapnumber);
3942     {
3943       // Load the floating-point value of {arg}.
3944       Node* arg_value = LoadHeapNumberValue(arg);
3945 
3946       // Check if {arg} is NaN.
3947       GotoUnless(Float64Equal(arg_value, arg_value), &return_zero);
3948 
3949       // Truncate {arg} towards zero.
3950       Node* value = Float64Trunc(arg_value);
3951 
3952       if (mode == kTruncateMinusZero) {
3953         // Truncate -0.0 to 0.
3954         GotoIf(Float64Equal(value, Float64Constant(0.0)), &return_zero);
3955       }
3956 
3957       var_arg.Bind(ChangeFloat64ToTagged(value));
3958       Goto(&out);
3959     }
3960 
3961     Bind(&if_argisnotheapnumber);
3962     {
3963       // Need to convert {arg} to a Number first.
3964       Callable callable = CodeFactory::NonNumberToNumber(isolate());
3965       var_arg.Bind(CallStub(callable, context, arg));
3966       Goto(&loop);
3967     }
3968 
3969     Bind(&return_zero);
3970     var_arg.Bind(SmiConstant(Smi::kZero));
3971     Goto(&out);
3972   }
3973 
3974   Bind(&out);
3975   return var_arg.value();
3976 }
3977 
DecodeWord32(Node * word32,uint32_t shift,uint32_t mask)3978 Node* CodeStubAssembler::DecodeWord32(Node* word32, uint32_t shift,
3979                                       uint32_t mask) {
3980   return Word32Shr(Word32And(word32, Int32Constant(mask)),
3981                    static_cast<int>(shift));
3982 }
3983 
DecodeWord(Node * word,uint32_t shift,uint32_t mask)3984 Node* CodeStubAssembler::DecodeWord(Node* word, uint32_t shift, uint32_t mask) {
3985   return WordShr(WordAnd(word, IntPtrConstant(mask)), static_cast<int>(shift));
3986 }
3987 
SetCounter(StatsCounter * counter,int value)3988 void CodeStubAssembler::SetCounter(StatsCounter* counter, int value) {
3989   if (FLAG_native_code_counters && counter->Enabled()) {
3990     Node* counter_address = ExternalConstant(ExternalReference(counter));
3991     StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address,
3992                         Int32Constant(value));
3993   }
3994 }
3995 
IncrementCounter(StatsCounter * counter,int delta)3996 void CodeStubAssembler::IncrementCounter(StatsCounter* counter, int delta) {
3997   DCHECK(delta > 0);
3998   if (FLAG_native_code_counters && counter->Enabled()) {
3999     Node* counter_address = ExternalConstant(ExternalReference(counter));
4000     Node* value = Load(MachineType::Int32(), counter_address);
4001     value = Int32Add(value, Int32Constant(delta));
4002     StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, value);
4003   }
4004 }
4005 
DecrementCounter(StatsCounter * counter,int delta)4006 void CodeStubAssembler::DecrementCounter(StatsCounter* counter, int delta) {
4007   DCHECK(delta > 0);
4008   if (FLAG_native_code_counters && counter->Enabled()) {
4009     Node* counter_address = ExternalConstant(ExternalReference(counter));
4010     Node* value = Load(MachineType::Int32(), counter_address);
4011     value = Int32Sub(value, Int32Constant(delta));
4012     StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, value);
4013   }
4014 }
4015 
Use(Label * label)4016 void CodeStubAssembler::Use(Label* label) {
4017   GotoIf(Word32Equal(Int32Constant(0), Int32Constant(1)), label);
4018 }
4019 
TryToName(Node * key,Label * if_keyisindex,Variable * var_index,Label * if_keyisunique,Label * if_bailout)4020 void CodeStubAssembler::TryToName(Node* key, Label* if_keyisindex,
4021                                   Variable* var_index, Label* if_keyisunique,
4022                                   Label* if_bailout) {
4023   DCHECK_EQ(MachineType::PointerRepresentation(), var_index->rep());
4024   Comment("TryToName");
4025 
4026   Label if_hascachedindex(this), if_keyisnotindex(this);
4027   // Handle Smi and HeapNumber keys.
4028   var_index->Bind(TryToIntptr(key, &if_keyisnotindex));
4029   Goto(if_keyisindex);
4030 
4031   Bind(&if_keyisnotindex);
4032   Node* key_instance_type = LoadInstanceType(key);
4033   // Symbols are unique.
4034   GotoIf(Word32Equal(key_instance_type, Int32Constant(SYMBOL_TYPE)),
4035          if_keyisunique);
4036   // Miss if |key| is not a String.
4037   STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE);
4038   GotoUnless(IsStringInstanceType(key_instance_type), if_bailout);
4039   // |key| is a String. Check if it has a cached array index.
4040   Node* hash = LoadNameHashField(key);
4041   Node* contains_index =
4042       Word32And(hash, Int32Constant(Name::kContainsCachedArrayIndexMask));
4043   GotoIf(Word32Equal(contains_index, Int32Constant(0)), &if_hascachedindex);
4044   // No cached array index. If the string knows that it contains an index,
4045   // then it must be an uncacheable index. Handle this case in the runtime.
4046   Node* not_an_index =
4047       Word32And(hash, Int32Constant(Name::kIsNotArrayIndexMask));
4048   GotoIf(Word32Equal(not_an_index, Int32Constant(0)), if_bailout);
4049   // Finally, check if |key| is internalized.
4050   STATIC_ASSERT(kNotInternalizedTag != 0);
4051   Node* not_internalized =
4052       Word32And(key_instance_type, Int32Constant(kIsNotInternalizedMask));
4053   GotoIf(Word32NotEqual(not_internalized, Int32Constant(0)), if_bailout);
4054   Goto(if_keyisunique);
4055 
4056   Bind(&if_hascachedindex);
4057   var_index->Bind(DecodeWordFromWord32<Name::ArrayIndexValueBits>(hash));
4058   Goto(if_keyisindex);
4059 }
4060 
4061 template <typename Dictionary>
EntryToIndex(Node * entry,int field_index)4062 Node* CodeStubAssembler::EntryToIndex(Node* entry, int field_index) {
4063   Node* entry_index = IntPtrMul(entry, IntPtrConstant(Dictionary::kEntrySize));
4064   return IntPtrAdd(entry_index, IntPtrConstant(Dictionary::kElementsStartIndex +
4065                                                field_index));
4066 }
4067 
4068 template Node* CodeStubAssembler::EntryToIndex<NameDictionary>(Node*, int);
4069 template Node* CodeStubAssembler::EntryToIndex<GlobalDictionary>(Node*, int);
4070 
HashTableComputeCapacity(Node * at_least_space_for)4071 Node* CodeStubAssembler::HashTableComputeCapacity(Node* at_least_space_for) {
4072   Node* capacity = IntPtrRoundUpToPowerOfTwo32(
4073       WordShl(at_least_space_for, IntPtrConstant(1)));
4074   return IntPtrMax(capacity, IntPtrConstant(HashTableBase::kMinCapacity));
4075 }
4076 
IntPtrMax(Node * left,Node * right)4077 Node* CodeStubAssembler::IntPtrMax(Node* left, Node* right) {
4078   return Select(IntPtrGreaterThanOrEqual(left, right), left, right,
4079                 MachineType::PointerRepresentation());
4080 }
4081 
4082 template <typename Dictionary>
NameDictionaryLookup(Node * dictionary,Node * unique_name,Label * if_found,Variable * var_name_index,Label * if_not_found,int inlined_probes)4083 void CodeStubAssembler::NameDictionaryLookup(Node* dictionary,
4084                                              Node* unique_name, Label* if_found,
4085                                              Variable* var_name_index,
4086                                              Label* if_not_found,
4087                                              int inlined_probes) {
4088   CSA_ASSERT(this, IsDictionary(dictionary));
4089   DCHECK_EQ(MachineType::PointerRepresentation(), var_name_index->rep());
4090   Comment("NameDictionaryLookup");
4091 
4092   Node* capacity = SmiUntag(LoadFixedArrayElement(
4093       dictionary, IntPtrConstant(Dictionary::kCapacityIndex), 0,
4094       INTPTR_PARAMETERS));
4095   Node* mask = IntPtrSub(capacity, IntPtrConstant(1));
4096   Node* hash = ChangeUint32ToWord(LoadNameHash(unique_name));
4097 
4098   // See Dictionary::FirstProbe().
4099   Node* count = IntPtrConstant(0);
4100   Node* entry = WordAnd(hash, mask);
4101 
4102   for (int i = 0; i < inlined_probes; i++) {
4103     Node* index = EntryToIndex<Dictionary>(entry);
4104     var_name_index->Bind(index);
4105 
4106     Node* current =
4107         LoadFixedArrayElement(dictionary, index, 0, INTPTR_PARAMETERS);
4108     GotoIf(WordEqual(current, unique_name), if_found);
4109 
4110     // See Dictionary::NextProbe().
4111     count = IntPtrConstant(i + 1);
4112     entry = WordAnd(IntPtrAdd(entry, count), mask);
4113   }
4114 
4115   Node* undefined = UndefinedConstant();
4116 
4117   Variable var_count(this, MachineType::PointerRepresentation());
4118   Variable var_entry(this, MachineType::PointerRepresentation());
4119   Variable* loop_vars[] = {&var_count, &var_entry, var_name_index};
4120   Label loop(this, 3, loop_vars);
4121   var_count.Bind(count);
4122   var_entry.Bind(entry);
4123   Goto(&loop);
4124   Bind(&loop);
4125   {
4126     Node* count = var_count.value();
4127     Node* entry = var_entry.value();
4128 
4129     Node* index = EntryToIndex<Dictionary>(entry);
4130     var_name_index->Bind(index);
4131 
4132     Node* current =
4133         LoadFixedArrayElement(dictionary, index, 0, INTPTR_PARAMETERS);
4134     GotoIf(WordEqual(current, undefined), if_not_found);
4135     GotoIf(WordEqual(current, unique_name), if_found);
4136 
4137     // See Dictionary::NextProbe().
4138     count = IntPtrAdd(count, IntPtrConstant(1));
4139     entry = WordAnd(IntPtrAdd(entry, count), mask);
4140 
4141     var_count.Bind(count);
4142     var_entry.Bind(entry);
4143     Goto(&loop);
4144   }
4145 }
4146 
4147 // Instantiate template methods to workaround GCC compilation issue.
4148 template void CodeStubAssembler::NameDictionaryLookup<NameDictionary>(
4149     Node*, Node*, Label*, Variable*, Label*, int);
4150 template void CodeStubAssembler::NameDictionaryLookup<GlobalDictionary>(
4151     Node*, Node*, Label*, Variable*, Label*, int);
4152 
ComputeIntegerHash(Node * key,Node * seed)4153 Node* CodeStubAssembler::ComputeIntegerHash(Node* key, Node* seed) {
4154   // See v8::internal::ComputeIntegerHash()
4155   Node* hash = key;
4156   hash = Word32Xor(hash, seed);
4157   hash = Int32Add(Word32Xor(hash, Int32Constant(0xffffffff)),
4158                   Word32Shl(hash, Int32Constant(15)));
4159   hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(12)));
4160   hash = Int32Add(hash, Word32Shl(hash, Int32Constant(2)));
4161   hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(4)));
4162   hash = Int32Mul(hash, Int32Constant(2057));
4163   hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(16)));
4164   return Word32And(hash, Int32Constant(0x3fffffff));
4165 }
4166 
4167 template <typename Dictionary>
NumberDictionaryLookup(Node * dictionary,Node * intptr_index,Label * if_found,Variable * var_entry,Label * if_not_found)4168 void CodeStubAssembler::NumberDictionaryLookup(Node* dictionary,
4169                                                Node* intptr_index,
4170                                                Label* if_found,
4171                                                Variable* var_entry,
4172                                                Label* if_not_found) {
4173   CSA_ASSERT(this, IsDictionary(dictionary));
4174   DCHECK_EQ(MachineType::PointerRepresentation(), var_entry->rep());
4175   Comment("NumberDictionaryLookup");
4176 
4177   Node* capacity = SmiUntag(LoadFixedArrayElement(
4178       dictionary, IntPtrConstant(Dictionary::kCapacityIndex), 0,
4179       INTPTR_PARAMETERS));
4180   Node* mask = IntPtrSub(capacity, IntPtrConstant(1));
4181 
4182   Node* int32_seed;
4183   if (Dictionary::ShapeT::UsesSeed) {
4184     int32_seed = HashSeed();
4185   } else {
4186     int32_seed = Int32Constant(kZeroHashSeed);
4187   }
4188   Node* hash = ChangeUint32ToWord(ComputeIntegerHash(intptr_index, int32_seed));
4189   Node* key_as_float64 = RoundIntPtrToFloat64(intptr_index);
4190 
4191   // See Dictionary::FirstProbe().
4192   Node* count = IntPtrConstant(0);
4193   Node* entry = WordAnd(hash, mask);
4194 
4195   Node* undefined = UndefinedConstant();
4196   Node* the_hole = TheHoleConstant();
4197 
4198   Variable var_count(this, MachineType::PointerRepresentation());
4199   Variable* loop_vars[] = {&var_count, var_entry};
4200   Label loop(this, 2, loop_vars);
4201   var_count.Bind(count);
4202   var_entry->Bind(entry);
4203   Goto(&loop);
4204   Bind(&loop);
4205   {
4206     Node* count = var_count.value();
4207     Node* entry = var_entry->value();
4208 
4209     Node* index = EntryToIndex<Dictionary>(entry);
4210     Node* current =
4211         LoadFixedArrayElement(dictionary, index, 0, INTPTR_PARAMETERS);
4212     GotoIf(WordEqual(current, undefined), if_not_found);
4213     Label next_probe(this);
4214     {
4215       Label if_currentissmi(this), if_currentisnotsmi(this);
4216       Branch(TaggedIsSmi(current), &if_currentissmi, &if_currentisnotsmi);
4217       Bind(&if_currentissmi);
4218       {
4219         Node* current_value = SmiUntag(current);
4220         Branch(WordEqual(current_value, intptr_index), if_found, &next_probe);
4221       }
4222       Bind(&if_currentisnotsmi);
4223       {
4224         GotoIf(WordEqual(current, the_hole), &next_probe);
4225         // Current must be the Number.
4226         Node* current_value = LoadHeapNumberValue(current);
4227         Branch(Float64Equal(current_value, key_as_float64), if_found,
4228                &next_probe);
4229       }
4230     }
4231 
4232     Bind(&next_probe);
4233     // See Dictionary::NextProbe().
4234     count = IntPtrAdd(count, IntPtrConstant(1));
4235     entry = WordAnd(IntPtrAdd(entry, count), mask);
4236 
4237     var_count.Bind(count);
4238     var_entry->Bind(entry);
4239     Goto(&loop);
4240   }
4241 }
4242 
DescriptorLookupLinear(Node * unique_name,Node * descriptors,Node * nof,Label * if_found,Variable * var_name_index,Label * if_not_found)4243 void CodeStubAssembler::DescriptorLookupLinear(Node* unique_name,
4244                                                Node* descriptors, Node* nof,
4245                                                Label* if_found,
4246                                                Variable* var_name_index,
4247                                                Label* if_not_found) {
4248   Node* first_inclusive = IntPtrConstant(DescriptorArray::ToKeyIndex(0));
4249   Node* factor = IntPtrConstant(DescriptorArray::kDescriptorSize);
4250   Node* last_exclusive = IntPtrAdd(first_inclusive, IntPtrMul(nof, factor));
4251 
4252   BuildFastLoop(
4253       MachineType::PointerRepresentation(), last_exclusive, first_inclusive,
4254       [descriptors, unique_name, if_found, var_name_index](
4255           CodeStubAssembler* assembler, Node* name_index) {
4256         Node* candidate_name = assembler->LoadFixedArrayElement(
4257             descriptors, name_index, 0, INTPTR_PARAMETERS);
4258         var_name_index->Bind(name_index);
4259         assembler->GotoIf(assembler->WordEqual(candidate_name, unique_name),
4260                           if_found);
4261       },
4262       -DescriptorArray::kDescriptorSize, IndexAdvanceMode::kPre);
4263   Goto(if_not_found);
4264 }
4265 
TryLookupProperty(Node * object,Node * map,Node * instance_type,Node * unique_name,Label * if_found_fast,Label * if_found_dict,Label * if_found_global,Variable * var_meta_storage,Variable * var_name_index,Label * if_not_found,Label * if_bailout)4266 void CodeStubAssembler::TryLookupProperty(
4267     Node* object, Node* map, Node* instance_type, Node* unique_name,
4268     Label* if_found_fast, Label* if_found_dict, Label* if_found_global,
4269     Variable* var_meta_storage, Variable* var_name_index, Label* if_not_found,
4270     Label* if_bailout) {
4271   DCHECK_EQ(MachineRepresentation::kTagged, var_meta_storage->rep());
4272   DCHECK_EQ(MachineType::PointerRepresentation(), var_name_index->rep());
4273 
4274   Label if_objectisspecial(this);
4275   STATIC_ASSERT(JS_GLOBAL_OBJECT_TYPE <= LAST_SPECIAL_RECEIVER_TYPE);
4276   GotoIf(Int32LessThanOrEqual(instance_type,
4277                               Int32Constant(LAST_SPECIAL_RECEIVER_TYPE)),
4278          &if_objectisspecial);
4279 
4280   uint32_t mask =
4281       1 << Map::kHasNamedInterceptor | 1 << Map::kIsAccessCheckNeeded;
4282   CSA_ASSERT(this, Word32BinaryNot(IsSetWord32(LoadMapBitField(map), mask)));
4283   USE(mask);
4284 
4285   Node* bit_field3 = LoadMapBitField3(map);
4286   Label if_isfastmap(this), if_isslowmap(this);
4287   Branch(IsSetWord32<Map::DictionaryMap>(bit_field3), &if_isslowmap,
4288          &if_isfastmap);
4289   Bind(&if_isfastmap);
4290   {
4291     Comment("DescriptorArrayLookup");
4292     Node* nof =
4293         DecodeWordFromWord32<Map::NumberOfOwnDescriptorsBits>(bit_field3);
4294     // Bail out to the runtime for large numbers of own descriptors. The stub
4295     // only does linear search, which becomes too expensive in that case.
4296     {
4297       static const int32_t kMaxLinear = 210;
4298       GotoIf(UintPtrGreaterThan(nof, IntPtrConstant(kMaxLinear)), if_bailout);
4299     }
4300     Node* descriptors = LoadMapDescriptors(map);
4301     var_meta_storage->Bind(descriptors);
4302 
4303     DescriptorLookupLinear(unique_name, descriptors, nof, if_found_fast,
4304                            var_name_index, if_not_found);
4305   }
4306   Bind(&if_isslowmap);
4307   {
4308     Node* dictionary = LoadProperties(object);
4309     var_meta_storage->Bind(dictionary);
4310 
4311     NameDictionaryLookup<NameDictionary>(dictionary, unique_name, if_found_dict,
4312                                          var_name_index, if_not_found);
4313   }
4314   Bind(&if_objectisspecial);
4315   {
4316     // Handle global object here and other special objects in runtime.
4317     GotoUnless(Word32Equal(instance_type, Int32Constant(JS_GLOBAL_OBJECT_TYPE)),
4318                if_bailout);
4319 
4320     // Handle interceptors and access checks in runtime.
4321     Node* bit_field = LoadMapBitField(map);
4322     Node* mask = Int32Constant(1 << Map::kHasNamedInterceptor |
4323                                1 << Map::kIsAccessCheckNeeded);
4324     GotoIf(Word32NotEqual(Word32And(bit_field, mask), Int32Constant(0)),
4325            if_bailout);
4326 
4327     Node* dictionary = LoadProperties(object);
4328     var_meta_storage->Bind(dictionary);
4329 
4330     NameDictionaryLookup<GlobalDictionary>(
4331         dictionary, unique_name, if_found_global, var_name_index, if_not_found);
4332   }
4333 }
4334 
TryHasOwnProperty(compiler::Node * object,compiler::Node * map,compiler::Node * instance_type,compiler::Node * unique_name,Label * if_found,Label * if_not_found,Label * if_bailout)4335 void CodeStubAssembler::TryHasOwnProperty(compiler::Node* object,
4336                                           compiler::Node* map,
4337                                           compiler::Node* instance_type,
4338                                           compiler::Node* unique_name,
4339                                           Label* if_found, Label* if_not_found,
4340                                           Label* if_bailout) {
4341   Comment("TryHasOwnProperty");
4342   Variable var_meta_storage(this, MachineRepresentation::kTagged);
4343   Variable var_name_index(this, MachineType::PointerRepresentation());
4344 
4345   Label if_found_global(this);
4346   TryLookupProperty(object, map, instance_type, unique_name, if_found, if_found,
4347                     &if_found_global, &var_meta_storage, &var_name_index,
4348                     if_not_found, if_bailout);
4349   Bind(&if_found_global);
4350   {
4351     Variable var_value(this, MachineRepresentation::kTagged);
4352     Variable var_details(this, MachineRepresentation::kWord32);
4353     // Check if the property cell is not deleted.
4354     LoadPropertyFromGlobalDictionary(var_meta_storage.value(),
4355                                      var_name_index.value(), &var_value,
4356                                      &var_details, if_not_found);
4357     Goto(if_found);
4358   }
4359 }
4360 
LoadPropertyFromFastObject(Node * object,Node * map,Node * descriptors,Node * name_index,Variable * var_details,Variable * var_value)4361 void CodeStubAssembler::LoadPropertyFromFastObject(Node* object, Node* map,
4362                                                    Node* descriptors,
4363                                                    Node* name_index,
4364                                                    Variable* var_details,
4365                                                    Variable* var_value) {
4366   DCHECK_EQ(MachineRepresentation::kWord32, var_details->rep());
4367   DCHECK_EQ(MachineRepresentation::kTagged, var_value->rep());
4368   Comment("[ LoadPropertyFromFastObject");
4369 
4370   const int name_to_details_offset =
4371       (DescriptorArray::kDescriptorDetails - DescriptorArray::kDescriptorKey) *
4372       kPointerSize;
4373   const int name_to_value_offset =
4374       (DescriptorArray::kDescriptorValue - DescriptorArray::kDescriptorKey) *
4375       kPointerSize;
4376 
4377   Node* details = LoadAndUntagToWord32FixedArrayElement(descriptors, name_index,
4378                                                         name_to_details_offset);
4379   var_details->Bind(details);
4380 
4381   Node* location = DecodeWord32<PropertyDetails::LocationField>(details);
4382 
4383   Label if_in_field(this), if_in_descriptor(this), done(this);
4384   Branch(Word32Equal(location, Int32Constant(kField)), &if_in_field,
4385          &if_in_descriptor);
4386   Bind(&if_in_field);
4387   {
4388     Node* field_index =
4389         DecodeWordFromWord32<PropertyDetails::FieldIndexField>(details);
4390     Node* representation =
4391         DecodeWord32<PropertyDetails::RepresentationField>(details);
4392 
4393     Node* inobject_properties = LoadMapInobjectProperties(map);
4394 
4395     Label if_inobject(this), if_backing_store(this);
4396     Variable var_double_value(this, MachineRepresentation::kFloat64);
4397     Label rebox_double(this, &var_double_value);
4398     Branch(UintPtrLessThan(field_index, inobject_properties), &if_inobject,
4399            &if_backing_store);
4400     Bind(&if_inobject);
4401     {
4402       Comment("if_inobject");
4403       Node* field_offset =
4404           IntPtrMul(IntPtrSub(LoadMapInstanceSize(map),
4405                               IntPtrSub(inobject_properties, field_index)),
4406                     IntPtrConstant(kPointerSize));
4407 
4408       Label if_double(this), if_tagged(this);
4409       Branch(Word32NotEqual(representation,
4410                             Int32Constant(Representation::kDouble)),
4411              &if_tagged, &if_double);
4412       Bind(&if_tagged);
4413       {
4414         var_value->Bind(LoadObjectField(object, field_offset));
4415         Goto(&done);
4416       }
4417       Bind(&if_double);
4418       {
4419         if (FLAG_unbox_double_fields) {
4420           var_double_value.Bind(
4421               LoadObjectField(object, field_offset, MachineType::Float64()));
4422         } else {
4423           Node* mutable_heap_number = LoadObjectField(object, field_offset);
4424           var_double_value.Bind(LoadHeapNumberValue(mutable_heap_number));
4425         }
4426         Goto(&rebox_double);
4427       }
4428     }
4429     Bind(&if_backing_store);
4430     {
4431       Comment("if_backing_store");
4432       Node* properties = LoadProperties(object);
4433       field_index = IntPtrSub(field_index, inobject_properties);
4434       Node* value = LoadFixedArrayElement(properties, field_index);
4435 
4436       Label if_double(this), if_tagged(this);
4437       Branch(Word32NotEqual(representation,
4438                             Int32Constant(Representation::kDouble)),
4439              &if_tagged, &if_double);
4440       Bind(&if_tagged);
4441       {
4442         var_value->Bind(value);
4443         Goto(&done);
4444       }
4445       Bind(&if_double);
4446       {
4447         var_double_value.Bind(LoadHeapNumberValue(value));
4448         Goto(&rebox_double);
4449       }
4450     }
4451     Bind(&rebox_double);
4452     {
4453       Comment("rebox_double");
4454       Node* heap_number = AllocateHeapNumberWithValue(var_double_value.value());
4455       var_value->Bind(heap_number);
4456       Goto(&done);
4457     }
4458   }
4459   Bind(&if_in_descriptor);
4460   {
4461     Node* value =
4462         LoadFixedArrayElement(descriptors, name_index, name_to_value_offset);
4463     var_value->Bind(value);
4464     Goto(&done);
4465   }
4466   Bind(&done);
4467 
4468   Comment("] LoadPropertyFromFastObject");
4469 }
4470 
LoadPropertyFromNameDictionary(Node * dictionary,Node * name_index,Variable * var_details,Variable * var_value)4471 void CodeStubAssembler::LoadPropertyFromNameDictionary(Node* dictionary,
4472                                                        Node* name_index,
4473                                                        Variable* var_details,
4474                                                        Variable* var_value) {
4475   Comment("LoadPropertyFromNameDictionary");
4476   CSA_ASSERT(this, IsDictionary(dictionary));
4477   const int name_to_details_offset =
4478       (NameDictionary::kEntryDetailsIndex - NameDictionary::kEntryKeyIndex) *
4479       kPointerSize;
4480   const int name_to_value_offset =
4481       (NameDictionary::kEntryValueIndex - NameDictionary::kEntryKeyIndex) *
4482       kPointerSize;
4483 
4484   Node* details = LoadAndUntagToWord32FixedArrayElement(dictionary, name_index,
4485                                                         name_to_details_offset);
4486 
4487   var_details->Bind(details);
4488   var_value->Bind(
4489       LoadFixedArrayElement(dictionary, name_index, name_to_value_offset));
4490 
4491   Comment("] LoadPropertyFromNameDictionary");
4492 }
4493 
LoadPropertyFromGlobalDictionary(Node * dictionary,Node * name_index,Variable * var_details,Variable * var_value,Label * if_deleted)4494 void CodeStubAssembler::LoadPropertyFromGlobalDictionary(Node* dictionary,
4495                                                          Node* name_index,
4496                                                          Variable* var_details,
4497                                                          Variable* var_value,
4498                                                          Label* if_deleted) {
4499   Comment("[ LoadPropertyFromGlobalDictionary");
4500   CSA_ASSERT(this, IsDictionary(dictionary));
4501 
4502   const int name_to_value_offset =
4503       (GlobalDictionary::kEntryValueIndex - GlobalDictionary::kEntryKeyIndex) *
4504       kPointerSize;
4505 
4506   Node* property_cell =
4507       LoadFixedArrayElement(dictionary, name_index, name_to_value_offset);
4508 
4509   Node* value = LoadObjectField(property_cell, PropertyCell::kValueOffset);
4510   GotoIf(WordEqual(value, TheHoleConstant()), if_deleted);
4511 
4512   var_value->Bind(value);
4513 
4514   Node* details = LoadAndUntagToWord32ObjectField(property_cell,
4515                                                   PropertyCell::kDetailsOffset);
4516   var_details->Bind(details);
4517 
4518   Comment("] LoadPropertyFromGlobalDictionary");
4519 }
4520 
4521 // |value| is the property backing store's contents, which is either a value
4522 // or an accessor pair, as specified by |details|.
4523 // Returns either the original value, or the result of the getter call.
CallGetterIfAccessor(Node * value,Node * details,Node * context,Node * receiver,Label * if_bailout)4524 Node* CodeStubAssembler::CallGetterIfAccessor(Node* value, Node* details,
4525                                               Node* context, Node* receiver,
4526                                               Label* if_bailout) {
4527   Variable var_value(this, MachineRepresentation::kTagged);
4528   var_value.Bind(value);
4529   Label done(this);
4530 
4531   Node* kind = DecodeWord32<PropertyDetails::KindField>(details);
4532   GotoIf(Word32Equal(kind, Int32Constant(kData)), &done);
4533 
4534   // Accessor case.
4535   {
4536     Node* accessor_pair = value;
4537     GotoIf(Word32Equal(LoadInstanceType(accessor_pair),
4538                        Int32Constant(ACCESSOR_INFO_TYPE)),
4539            if_bailout);
4540     CSA_ASSERT(this, HasInstanceType(accessor_pair, ACCESSOR_PAIR_TYPE));
4541     Node* getter = LoadObjectField(accessor_pair, AccessorPair::kGetterOffset);
4542     Node* getter_map = LoadMap(getter);
4543     Node* instance_type = LoadMapInstanceType(getter_map);
4544     // FunctionTemplateInfo getters are not supported yet.
4545     GotoIf(
4546         Word32Equal(instance_type, Int32Constant(FUNCTION_TEMPLATE_INFO_TYPE)),
4547         if_bailout);
4548 
4549     // Return undefined if the {getter} is not callable.
4550     var_value.Bind(UndefinedConstant());
4551     GotoUnless(IsCallableMap(getter_map), &done);
4552 
4553     // Call the accessor.
4554     Callable callable = CodeFactory::Call(isolate());
4555     Node* result = CallJS(callable, context, getter, receiver);
4556     var_value.Bind(result);
4557     Goto(&done);
4558   }
4559 
4560   Bind(&done);
4561   return var_value.value();
4562 }
4563 
TryGetOwnProperty(Node * context,Node * receiver,Node * object,Node * map,Node * instance_type,Node * unique_name,Label * if_found_value,Variable * var_value,Label * if_not_found,Label * if_bailout)4564 void CodeStubAssembler::TryGetOwnProperty(
4565     Node* context, Node* receiver, Node* object, Node* map, Node* instance_type,
4566     Node* unique_name, Label* if_found_value, Variable* var_value,
4567     Label* if_not_found, Label* if_bailout) {
4568   DCHECK_EQ(MachineRepresentation::kTagged, var_value->rep());
4569   Comment("TryGetOwnProperty");
4570 
4571   Variable var_meta_storage(this, MachineRepresentation::kTagged);
4572   Variable var_entry(this, MachineType::PointerRepresentation());
4573 
4574   Label if_found_fast(this), if_found_dict(this), if_found_global(this);
4575 
4576   Variable var_details(this, MachineRepresentation::kWord32);
4577   Variable* vars[] = {var_value, &var_details};
4578   Label if_found(this, 2, vars);
4579 
4580   TryLookupProperty(object, map, instance_type, unique_name, &if_found_fast,
4581                     &if_found_dict, &if_found_global, &var_meta_storage,
4582                     &var_entry, if_not_found, if_bailout);
4583   Bind(&if_found_fast);
4584   {
4585     Node* descriptors = var_meta_storage.value();
4586     Node* name_index = var_entry.value();
4587 
4588     LoadPropertyFromFastObject(object, map, descriptors, name_index,
4589                                &var_details, var_value);
4590     Goto(&if_found);
4591   }
4592   Bind(&if_found_dict);
4593   {
4594     Node* dictionary = var_meta_storage.value();
4595     Node* entry = var_entry.value();
4596     LoadPropertyFromNameDictionary(dictionary, entry, &var_details, var_value);
4597     Goto(&if_found);
4598   }
4599   Bind(&if_found_global);
4600   {
4601     Node* dictionary = var_meta_storage.value();
4602     Node* entry = var_entry.value();
4603 
4604     LoadPropertyFromGlobalDictionary(dictionary, entry, &var_details, var_value,
4605                                      if_not_found);
4606     Goto(&if_found);
4607   }
4608   // Here we have details and value which could be an accessor.
4609   Bind(&if_found);
4610   {
4611     Node* value = CallGetterIfAccessor(var_value->value(), var_details.value(),
4612                                        context, receiver, if_bailout);
4613     var_value->Bind(value);
4614     Goto(if_found_value);
4615   }
4616 }
4617 
TryLookupElement(Node * object,Node * map,Node * instance_type,Node * intptr_index,Label * if_found,Label * if_not_found,Label * if_bailout)4618 void CodeStubAssembler::TryLookupElement(Node* object, Node* map,
4619                                          Node* instance_type,
4620                                          Node* intptr_index, Label* if_found,
4621                                          Label* if_not_found,
4622                                          Label* if_bailout) {
4623   // Handle special objects in runtime.
4624   GotoIf(Int32LessThanOrEqual(instance_type,
4625                               Int32Constant(LAST_SPECIAL_RECEIVER_TYPE)),
4626          if_bailout);
4627 
4628   Node* elements_kind = LoadMapElementsKind(map);
4629 
4630   // TODO(verwaest): Support other elements kinds as well.
4631   Label if_isobjectorsmi(this), if_isdouble(this), if_isdictionary(this),
4632       if_isfaststringwrapper(this), if_isslowstringwrapper(this), if_oob(this);
4633   // clang-format off
4634   int32_t values[] = {
4635       // Handled by {if_isobjectorsmi}.
4636       FAST_SMI_ELEMENTS, FAST_HOLEY_SMI_ELEMENTS, FAST_ELEMENTS,
4637           FAST_HOLEY_ELEMENTS,
4638       // Handled by {if_isdouble}.
4639       FAST_DOUBLE_ELEMENTS, FAST_HOLEY_DOUBLE_ELEMENTS,
4640       // Handled by {if_isdictionary}.
4641       DICTIONARY_ELEMENTS,
4642       // Handled by {if_isfaststringwrapper}.
4643       FAST_STRING_WRAPPER_ELEMENTS,
4644       // Handled by {if_isslowstringwrapper}.
4645       SLOW_STRING_WRAPPER_ELEMENTS,
4646       // Handled by {if_not_found}.
4647       NO_ELEMENTS,
4648   };
4649   Label* labels[] = {
4650       &if_isobjectorsmi, &if_isobjectorsmi, &if_isobjectorsmi,
4651           &if_isobjectorsmi,
4652       &if_isdouble, &if_isdouble,
4653       &if_isdictionary,
4654       &if_isfaststringwrapper,
4655       &if_isslowstringwrapper,
4656       if_not_found,
4657   };
4658   // clang-format on
4659   STATIC_ASSERT(arraysize(values) == arraysize(labels));
4660   Switch(elements_kind, if_bailout, values, labels, arraysize(values));
4661 
4662   Bind(&if_isobjectorsmi);
4663   {
4664     Node* elements = LoadElements(object);
4665     Node* length = LoadAndUntagFixedArrayBaseLength(elements);
4666 
4667     GotoUnless(UintPtrLessThan(intptr_index, length), &if_oob);
4668 
4669     Node* element =
4670         LoadFixedArrayElement(elements, intptr_index, 0, INTPTR_PARAMETERS);
4671     Node* the_hole = TheHoleConstant();
4672     Branch(WordEqual(element, the_hole), if_not_found, if_found);
4673   }
4674   Bind(&if_isdouble);
4675   {
4676     Node* elements = LoadElements(object);
4677     Node* length = LoadAndUntagFixedArrayBaseLength(elements);
4678 
4679     GotoUnless(UintPtrLessThan(intptr_index, length), &if_oob);
4680 
4681     // Check if the element is a double hole, but don't load it.
4682     LoadFixedDoubleArrayElement(elements, intptr_index, MachineType::None(), 0,
4683                                 INTPTR_PARAMETERS, if_not_found);
4684     Goto(if_found);
4685   }
4686   Bind(&if_isdictionary);
4687   {
4688     // Negative keys must be converted to property names.
4689     GotoIf(IntPtrLessThan(intptr_index, IntPtrConstant(0)), if_bailout);
4690 
4691     Variable var_entry(this, MachineType::PointerRepresentation());
4692     Node* elements = LoadElements(object);
4693     NumberDictionaryLookup<SeededNumberDictionary>(
4694         elements, intptr_index, if_found, &var_entry, if_not_found);
4695   }
4696   Bind(&if_isfaststringwrapper);
4697   {
4698     CSA_ASSERT(this, HasInstanceType(object, JS_VALUE_TYPE));
4699     Node* string = LoadJSValueValue(object);
4700     CSA_ASSERT(this, IsStringInstanceType(LoadInstanceType(string)));
4701     Node* length = LoadStringLength(string);
4702     GotoIf(UintPtrLessThan(intptr_index, SmiUntag(length)), if_found);
4703     Goto(&if_isobjectorsmi);
4704   }
4705   Bind(&if_isslowstringwrapper);
4706   {
4707     CSA_ASSERT(this, HasInstanceType(object, JS_VALUE_TYPE));
4708     Node* string = LoadJSValueValue(object);
4709     CSA_ASSERT(this, IsStringInstanceType(LoadInstanceType(string)));
4710     Node* length = LoadStringLength(string);
4711     GotoIf(UintPtrLessThan(intptr_index, SmiUntag(length)), if_found);
4712     Goto(&if_isdictionary);
4713   }
4714   Bind(&if_oob);
4715   {
4716     // Positive OOB indices mean "not found", negative indices must be
4717     // converted to property names.
4718     GotoIf(IntPtrLessThan(intptr_index, IntPtrConstant(0)), if_bailout);
4719     Goto(if_not_found);
4720   }
4721 }
4722 
4723 // Instantiate template methods to workaround GCC compilation issue.
4724 template void CodeStubAssembler::NumberDictionaryLookup<SeededNumberDictionary>(
4725     Node*, Node*, Label*, Variable*, Label*);
4726 template void CodeStubAssembler::NumberDictionaryLookup<
4727     UnseededNumberDictionary>(Node*, Node*, Label*, Variable*, Label*);
4728 
TryPrototypeChainLookup(Node * receiver,Node * key,LookupInHolder & lookup_property_in_holder,LookupInHolder & lookup_element_in_holder,Label * if_end,Label * if_bailout)4729 void CodeStubAssembler::TryPrototypeChainLookup(
4730     Node* receiver, Node* key, LookupInHolder& lookup_property_in_holder,
4731     LookupInHolder& lookup_element_in_holder, Label* if_end,
4732     Label* if_bailout) {
4733   // Ensure receiver is JSReceiver, otherwise bailout.
4734   Label if_objectisnotsmi(this);
4735   Branch(TaggedIsSmi(receiver), if_bailout, &if_objectisnotsmi);
4736   Bind(&if_objectisnotsmi);
4737 
4738   Node* map = LoadMap(receiver);
4739   Node* instance_type = LoadMapInstanceType(map);
4740   {
4741     Label if_objectisreceiver(this);
4742     STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
4743     STATIC_ASSERT(FIRST_JS_RECEIVER_TYPE == JS_PROXY_TYPE);
4744     Branch(
4745         Int32GreaterThan(instance_type, Int32Constant(FIRST_JS_RECEIVER_TYPE)),
4746         &if_objectisreceiver, if_bailout);
4747     Bind(&if_objectisreceiver);
4748   }
4749 
4750   Variable var_index(this, MachineType::PointerRepresentation());
4751 
4752   Label if_keyisindex(this), if_iskeyunique(this);
4753   TryToName(key, &if_keyisindex, &var_index, &if_iskeyunique, if_bailout);
4754 
4755   Bind(&if_iskeyunique);
4756   {
4757     Variable var_holder(this, MachineRepresentation::kTagged);
4758     Variable var_holder_map(this, MachineRepresentation::kTagged);
4759     Variable var_holder_instance_type(this, MachineRepresentation::kWord8);
4760 
4761     Variable* merged_variables[] = {&var_holder, &var_holder_map,
4762                                     &var_holder_instance_type};
4763     Label loop(this, arraysize(merged_variables), merged_variables);
4764     var_holder.Bind(receiver);
4765     var_holder_map.Bind(map);
4766     var_holder_instance_type.Bind(instance_type);
4767     Goto(&loop);
4768     Bind(&loop);
4769     {
4770       Node* holder_map = var_holder_map.value();
4771       Node* holder_instance_type = var_holder_instance_type.value();
4772 
4773       Label next_proto(this);
4774       lookup_property_in_holder(receiver, var_holder.value(), holder_map,
4775                                 holder_instance_type, key, &next_proto,
4776                                 if_bailout);
4777       Bind(&next_proto);
4778 
4779       // Bailout if it can be an integer indexed exotic case.
4780       GotoIf(
4781           Word32Equal(holder_instance_type, Int32Constant(JS_TYPED_ARRAY_TYPE)),
4782           if_bailout);
4783 
4784       Node* proto = LoadMapPrototype(holder_map);
4785 
4786       Label if_not_null(this);
4787       Branch(WordEqual(proto, NullConstant()), if_end, &if_not_null);
4788       Bind(&if_not_null);
4789 
4790       Node* map = LoadMap(proto);
4791       Node* instance_type = LoadMapInstanceType(map);
4792 
4793       var_holder.Bind(proto);
4794       var_holder_map.Bind(map);
4795       var_holder_instance_type.Bind(instance_type);
4796       Goto(&loop);
4797     }
4798   }
4799   Bind(&if_keyisindex);
4800   {
4801     Variable var_holder(this, MachineRepresentation::kTagged);
4802     Variable var_holder_map(this, MachineRepresentation::kTagged);
4803     Variable var_holder_instance_type(this, MachineRepresentation::kWord8);
4804 
4805     Variable* merged_variables[] = {&var_holder, &var_holder_map,
4806                                     &var_holder_instance_type};
4807     Label loop(this, arraysize(merged_variables), merged_variables);
4808     var_holder.Bind(receiver);
4809     var_holder_map.Bind(map);
4810     var_holder_instance_type.Bind(instance_type);
4811     Goto(&loop);
4812     Bind(&loop);
4813     {
4814       Label next_proto(this);
4815       lookup_element_in_holder(receiver, var_holder.value(),
4816                                var_holder_map.value(),
4817                                var_holder_instance_type.value(),
4818                                var_index.value(), &next_proto, if_bailout);
4819       Bind(&next_proto);
4820 
4821       Node* proto = LoadMapPrototype(var_holder_map.value());
4822 
4823       Label if_not_null(this);
4824       Branch(WordEqual(proto, NullConstant()), if_end, &if_not_null);
4825       Bind(&if_not_null);
4826 
4827       Node* map = LoadMap(proto);
4828       Node* instance_type = LoadMapInstanceType(map);
4829 
4830       var_holder.Bind(proto);
4831       var_holder_map.Bind(map);
4832       var_holder_instance_type.Bind(instance_type);
4833       Goto(&loop);
4834     }
4835   }
4836 }
4837 
OrdinaryHasInstance(Node * context,Node * callable,Node * object)4838 Node* CodeStubAssembler::OrdinaryHasInstance(Node* context, Node* callable,
4839                                              Node* object) {
4840   Variable var_result(this, MachineRepresentation::kTagged);
4841   Label return_false(this), return_true(this),
4842       return_runtime(this, Label::kDeferred), return_result(this);
4843 
4844   // Goto runtime if {object} is a Smi.
4845   GotoIf(TaggedIsSmi(object), &return_runtime);
4846 
4847   // Load map of {object}.
4848   Node* object_map = LoadMap(object);
4849 
4850   // Lookup the {callable} and {object} map in the global instanceof cache.
4851   // Note: This is safe because we clear the global instanceof cache whenever
4852   // we change the prototype of any object.
4853   Node* instanceof_cache_function =
4854       LoadRoot(Heap::kInstanceofCacheFunctionRootIndex);
4855   Node* instanceof_cache_map = LoadRoot(Heap::kInstanceofCacheMapRootIndex);
4856   {
4857     Label instanceof_cache_miss(this);
4858     GotoUnless(WordEqual(instanceof_cache_function, callable),
4859                &instanceof_cache_miss);
4860     GotoUnless(WordEqual(instanceof_cache_map, object_map),
4861                &instanceof_cache_miss);
4862     var_result.Bind(LoadRoot(Heap::kInstanceofCacheAnswerRootIndex));
4863     Goto(&return_result);
4864     Bind(&instanceof_cache_miss);
4865   }
4866 
4867   // Goto runtime if {callable} is a Smi.
4868   GotoIf(TaggedIsSmi(callable), &return_runtime);
4869 
4870   // Load map of {callable}.
4871   Node* callable_map = LoadMap(callable);
4872 
4873   // Goto runtime if {callable} is not a JSFunction.
4874   Node* callable_instance_type = LoadMapInstanceType(callable_map);
4875   GotoUnless(
4876       Word32Equal(callable_instance_type, Int32Constant(JS_FUNCTION_TYPE)),
4877       &return_runtime);
4878 
4879   // Goto runtime if {callable} is not a constructor or has
4880   // a non-instance "prototype".
4881   Node* callable_bitfield = LoadMapBitField(callable_map);
4882   GotoUnless(
4883       Word32Equal(Word32And(callable_bitfield,
4884                             Int32Constant((1 << Map::kHasNonInstancePrototype) |
4885                                           (1 << Map::kIsConstructor))),
4886                   Int32Constant(1 << Map::kIsConstructor)),
4887       &return_runtime);
4888 
4889   // Get the "prototype" (or initial map) of the {callable}.
4890   Node* callable_prototype =
4891       LoadObjectField(callable, JSFunction::kPrototypeOrInitialMapOffset);
4892   {
4893     Variable var_callable_prototype(this, MachineRepresentation::kTagged);
4894     Label callable_prototype_valid(this);
4895     var_callable_prototype.Bind(callable_prototype);
4896 
4897     // Resolve the "prototype" if the {callable} has an initial map.  Afterwards
4898     // the {callable_prototype} will be either the JSReceiver prototype object
4899     // or the hole value, which means that no instances of the {callable} were
4900     // created so far and hence we should return false.
4901     Node* callable_prototype_instance_type =
4902         LoadInstanceType(callable_prototype);
4903     GotoUnless(
4904         Word32Equal(callable_prototype_instance_type, Int32Constant(MAP_TYPE)),
4905         &callable_prototype_valid);
4906     var_callable_prototype.Bind(
4907         LoadObjectField(callable_prototype, Map::kPrototypeOffset));
4908     Goto(&callable_prototype_valid);
4909     Bind(&callable_prototype_valid);
4910     callable_prototype = var_callable_prototype.value();
4911   }
4912 
4913   // Update the global instanceof cache with the current {object} map and
4914   // {callable}.  The cached answer will be set when it is known below.
4915   StoreRoot(Heap::kInstanceofCacheFunctionRootIndex, callable);
4916   StoreRoot(Heap::kInstanceofCacheMapRootIndex, object_map);
4917 
4918   // Loop through the prototype chain looking for the {callable} prototype.
4919   Variable var_object_map(this, MachineRepresentation::kTagged);
4920   var_object_map.Bind(object_map);
4921   Label loop(this, &var_object_map);
4922   Goto(&loop);
4923   Bind(&loop);
4924   {
4925     Node* object_map = var_object_map.value();
4926 
4927     // Check if the current {object} needs to be access checked.
4928     Node* object_bitfield = LoadMapBitField(object_map);
4929     GotoUnless(
4930         Word32Equal(Word32And(object_bitfield,
4931                               Int32Constant(1 << Map::kIsAccessCheckNeeded)),
4932                     Int32Constant(0)),
4933         &return_runtime);
4934 
4935     // Check if the current {object} is a proxy.
4936     Node* object_instance_type = LoadMapInstanceType(object_map);
4937     GotoIf(Word32Equal(object_instance_type, Int32Constant(JS_PROXY_TYPE)),
4938            &return_runtime);
4939 
4940     // Check the current {object} prototype.
4941     Node* object_prototype = LoadMapPrototype(object_map);
4942     GotoIf(WordEqual(object_prototype, NullConstant()), &return_false);
4943     GotoIf(WordEqual(object_prototype, callable_prototype), &return_true);
4944 
4945     // Continue with the prototype.
4946     var_object_map.Bind(LoadMap(object_prototype));
4947     Goto(&loop);
4948   }
4949 
4950   Bind(&return_true);
4951   StoreRoot(Heap::kInstanceofCacheAnswerRootIndex, BooleanConstant(true));
4952   var_result.Bind(BooleanConstant(true));
4953   Goto(&return_result);
4954 
4955   Bind(&return_false);
4956   StoreRoot(Heap::kInstanceofCacheAnswerRootIndex, BooleanConstant(false));
4957   var_result.Bind(BooleanConstant(false));
4958   Goto(&return_result);
4959 
4960   Bind(&return_runtime);
4961   {
4962     // Invalidate the global instanceof cache.
4963     StoreRoot(Heap::kInstanceofCacheFunctionRootIndex, SmiConstant(0));
4964     // Fallback to the runtime implementation.
4965     var_result.Bind(
4966         CallRuntime(Runtime::kOrdinaryHasInstance, context, callable, object));
4967   }
4968   Goto(&return_result);
4969 
4970   Bind(&return_result);
4971   return var_result.value();
4972 }
4973 
ElementOffsetFromIndex(Node * index_node,ElementsKind kind,ParameterMode mode,int base_size)4974 compiler::Node* CodeStubAssembler::ElementOffsetFromIndex(Node* index_node,
4975                                                           ElementsKind kind,
4976                                                           ParameterMode mode,
4977                                                           int base_size) {
4978   int element_size_shift = ElementsKindToShiftSize(kind);
4979   int element_size = 1 << element_size_shift;
4980   int const kSmiShiftBits = kSmiShiftSize + kSmiTagSize;
4981   intptr_t index = 0;
4982   bool constant_index = false;
4983   if (mode == SMI_PARAMETERS) {
4984     element_size_shift -= kSmiShiftBits;
4985     Smi* smi_index;
4986     constant_index = ToSmiConstant(index_node, smi_index);
4987     if (constant_index) index = smi_index->value();
4988     index_node = BitcastTaggedToWord(index_node);
4989   } else if (mode == INTEGER_PARAMETERS) {
4990     int32_t temp = 0;
4991     constant_index = ToInt32Constant(index_node, temp);
4992     index = static_cast<intptr_t>(temp);
4993   } else {
4994     DCHECK(mode == INTPTR_PARAMETERS);
4995     constant_index = ToIntPtrConstant(index_node, index);
4996   }
4997   if (constant_index) {
4998     return IntPtrConstant(base_size + element_size * index);
4999   }
5000   if (Is64() && mode == INTEGER_PARAMETERS) {
5001     index_node = ChangeInt32ToInt64(index_node);
5002   }
5003 
5004   Node* shifted_index =
5005       (element_size_shift == 0)
5006           ? index_node
5007           : ((element_size_shift > 0)
5008                  ? WordShl(index_node, IntPtrConstant(element_size_shift))
5009                  : WordShr(index_node, IntPtrConstant(-element_size_shift)));
5010   return IntPtrAddFoldConstants(IntPtrConstant(base_size), shifted_index);
5011 }
5012 
LoadTypeFeedbackVectorForStub()5013 compiler::Node* CodeStubAssembler::LoadTypeFeedbackVectorForStub() {
5014   Node* function =
5015       LoadFromParentFrame(JavaScriptFrameConstants::kFunctionOffset);
5016   Node* literals = LoadObjectField(function, JSFunction::kLiteralsOffset);
5017   return LoadObjectField(literals, LiteralsArray::kFeedbackVectorOffset);
5018 }
5019 
UpdateFeedback(compiler::Node * feedback,compiler::Node * type_feedback_vector,compiler::Node * slot_id)5020 void CodeStubAssembler::UpdateFeedback(compiler::Node* feedback,
5021                                        compiler::Node* type_feedback_vector,
5022                                        compiler::Node* slot_id) {
5023   // This method is used for binary op and compare feedback. These
5024   // vector nodes are initialized with a smi 0, so we can simply OR
5025   // our new feedback in place.
5026   // TODO(interpreter): Consider passing the feedback as Smi already to avoid
5027   // the tagging completely.
5028   Node* previous_feedback =
5029       LoadFixedArrayElement(type_feedback_vector, slot_id);
5030   Node* combined_feedback = SmiOr(previous_feedback, SmiFromWord32(feedback));
5031   StoreFixedArrayElement(type_feedback_vector, slot_id, combined_feedback,
5032                          SKIP_WRITE_BARRIER);
5033 }
5034 
LoadReceiverMap(compiler::Node * receiver)5035 compiler::Node* CodeStubAssembler::LoadReceiverMap(compiler::Node* receiver) {
5036   Variable var_receiver_map(this, MachineRepresentation::kTagged);
5037   Label load_smi_map(this, Label::kDeferred), load_receiver_map(this),
5038       if_result(this);
5039 
5040   Branch(TaggedIsSmi(receiver), &load_smi_map, &load_receiver_map);
5041   Bind(&load_smi_map);
5042   {
5043     var_receiver_map.Bind(LoadRoot(Heap::kHeapNumberMapRootIndex));
5044     Goto(&if_result);
5045   }
5046   Bind(&load_receiver_map);
5047   {
5048     var_receiver_map.Bind(LoadMap(receiver));
5049     Goto(&if_result);
5050   }
5051   Bind(&if_result);
5052   return var_receiver_map.value();
5053 }
5054 
TryMonomorphicCase(compiler::Node * slot,compiler::Node * vector,compiler::Node * receiver_map,Label * if_handler,Variable * var_handler,Label * if_miss)5055 compiler::Node* CodeStubAssembler::TryMonomorphicCase(
5056     compiler::Node* slot, compiler::Node* vector, compiler::Node* receiver_map,
5057     Label* if_handler, Variable* var_handler, Label* if_miss) {
5058   Comment("TryMonomorphicCase");
5059   DCHECK_EQ(MachineRepresentation::kTagged, var_handler->rep());
5060 
5061   // TODO(ishell): add helper class that hides offset computations for a series
5062   // of loads.
5063   int32_t header_size = FixedArray::kHeaderSize - kHeapObjectTag;
5064   // Adding |header_size| with a separate IntPtrAdd rather than passing it
5065   // into ElementOffsetFromIndex() allows it to be folded into a single
5066   // [base, index, offset] indirect memory access on x64.
5067   Node* offset =
5068       ElementOffsetFromIndex(slot, FAST_HOLEY_ELEMENTS, SMI_PARAMETERS);
5069   Node* feedback = Load(MachineType::AnyTagged(), vector,
5070                         IntPtrAdd(offset, IntPtrConstant(header_size)));
5071 
5072   // Try to quickly handle the monomorphic case without knowing for sure
5073   // if we have a weak cell in feedback. We do know it's safe to look
5074   // at WeakCell::kValueOffset.
5075   GotoIf(WordNotEqual(receiver_map, LoadWeakCellValueUnchecked(feedback)),
5076          if_miss);
5077 
5078   Node* handler =
5079       Load(MachineType::AnyTagged(), vector,
5080            IntPtrAdd(offset, IntPtrConstant(header_size + kPointerSize)));
5081 
5082   var_handler->Bind(handler);
5083   Goto(if_handler);
5084   return feedback;
5085 }
5086 
HandlePolymorphicCase(compiler::Node * receiver_map,compiler::Node * feedback,Label * if_handler,Variable * var_handler,Label * if_miss,int unroll_count)5087 void CodeStubAssembler::HandlePolymorphicCase(
5088     compiler::Node* receiver_map, compiler::Node* feedback, Label* if_handler,
5089     Variable* var_handler, Label* if_miss, int unroll_count) {
5090   Comment("HandlePolymorphicCase");
5091   DCHECK_EQ(MachineRepresentation::kTagged, var_handler->rep());
5092 
5093   // Iterate {feedback} array.
5094   const int kEntrySize = 2;
5095 
5096   for (int i = 0; i < unroll_count; i++) {
5097     Label next_entry(this);
5098     Node* cached_map = LoadWeakCellValue(LoadFixedArrayElement(
5099         feedback, IntPtrConstant(i * kEntrySize), 0, INTPTR_PARAMETERS));
5100     GotoIf(WordNotEqual(receiver_map, cached_map), &next_entry);
5101 
5102     // Found, now call handler.
5103     Node* handler = LoadFixedArrayElement(
5104         feedback, IntPtrConstant(i * kEntrySize + 1), 0, INTPTR_PARAMETERS);
5105     var_handler->Bind(handler);
5106     Goto(if_handler);
5107 
5108     Bind(&next_entry);
5109   }
5110 
5111   // Loop from {unroll_count}*kEntrySize to {length}.
5112   Node* init = IntPtrConstant(unroll_count * kEntrySize);
5113   Node* length = LoadAndUntagFixedArrayBaseLength(feedback);
5114   BuildFastLoop(
5115       MachineType::PointerRepresentation(), init, length,
5116       [receiver_map, feedback, if_handler, var_handler](CodeStubAssembler* csa,
5117                                                         Node* index) {
5118         Node* cached_map = csa->LoadWeakCellValue(
5119             csa->LoadFixedArrayElement(feedback, index, 0, INTPTR_PARAMETERS));
5120 
5121         Label next_entry(csa);
5122         csa->GotoIf(csa->WordNotEqual(receiver_map, cached_map), &next_entry);
5123 
5124         // Found, now call handler.
5125         Node* handler = csa->LoadFixedArrayElement(
5126             feedback, index, kPointerSize, INTPTR_PARAMETERS);
5127         var_handler->Bind(handler);
5128         csa->Goto(if_handler);
5129 
5130         csa->Bind(&next_entry);
5131       },
5132       kEntrySize, IndexAdvanceMode::kPost);
5133   // The loop falls through if no handler was found.
5134   Goto(if_miss);
5135 }
5136 
HandleKeyedStorePolymorphicCase(compiler::Node * receiver_map,compiler::Node * feedback,Label * if_handler,Variable * var_handler,Label * if_transition_handler,Variable * var_transition_map_cell,Label * if_miss)5137 void CodeStubAssembler::HandleKeyedStorePolymorphicCase(
5138     compiler::Node* receiver_map, compiler::Node* feedback, Label* if_handler,
5139     Variable* var_handler, Label* if_transition_handler,
5140     Variable* var_transition_map_cell, Label* if_miss) {
5141   DCHECK_EQ(MachineRepresentation::kTagged, var_handler->rep());
5142   DCHECK_EQ(MachineRepresentation::kTagged, var_transition_map_cell->rep());
5143 
5144   const int kEntrySize = 3;
5145 
5146   Node* init = IntPtrConstant(0);
5147   Node* length = LoadAndUntagFixedArrayBaseLength(feedback);
5148   BuildFastLoop(
5149       MachineType::PointerRepresentation(), init, length,
5150       [receiver_map, feedback, if_handler, var_handler, if_transition_handler,
5151        var_transition_map_cell](CodeStubAssembler* csa, Node* index) {
5152         Node* cached_map = csa->LoadWeakCellValue(
5153             csa->LoadFixedArrayElement(feedback, index, 0, INTPTR_PARAMETERS));
5154         Label next_entry(csa);
5155         csa->GotoIf(csa->WordNotEqual(receiver_map, cached_map), &next_entry);
5156 
5157         Node* maybe_transition_map_cell = csa->LoadFixedArrayElement(
5158             feedback, index, kPointerSize, INTPTR_PARAMETERS);
5159 
5160         var_handler->Bind(csa->LoadFixedArrayElement(
5161             feedback, index, 2 * kPointerSize, INTPTR_PARAMETERS));
5162         csa->GotoIf(
5163             csa->WordEqual(maybe_transition_map_cell,
5164                            csa->LoadRoot(Heap::kUndefinedValueRootIndex)),
5165             if_handler);
5166         var_transition_map_cell->Bind(maybe_transition_map_cell);
5167         csa->Goto(if_transition_handler);
5168 
5169         csa->Bind(&next_entry);
5170       },
5171       kEntrySize, IndexAdvanceMode::kPost);
5172   // The loop falls through if no handler was found.
5173   Goto(if_miss);
5174 }
5175 
StubCachePrimaryOffset(compiler::Node * name,compiler::Node * map)5176 compiler::Node* CodeStubAssembler::StubCachePrimaryOffset(compiler::Node* name,
5177                                                           compiler::Node* map) {
5178   // See v8::internal::StubCache::PrimaryOffset().
5179   STATIC_ASSERT(StubCache::kCacheIndexShift == Name::kHashShift);
5180   // Compute the hash of the name (use entire hash field).
5181   Node* hash_field = LoadNameHashField(name);
5182   CSA_ASSERT(this,
5183              Word32Equal(Word32And(hash_field,
5184                                    Int32Constant(Name::kHashNotComputedMask)),
5185                          Int32Constant(0)));
5186 
5187   // Using only the low bits in 64-bit mode is unlikely to increase the
5188   // risk of collision even if the heap is spread over an area larger than
5189   // 4Gb (and not at all if it isn't).
5190   Node* hash = Int32Add(hash_field, map);
5191   // Base the offset on a simple combination of name and map.
5192   hash = Word32Xor(hash, Int32Constant(StubCache::kPrimaryMagic));
5193   uint32_t mask = (StubCache::kPrimaryTableSize - 1)
5194                   << StubCache::kCacheIndexShift;
5195   return ChangeUint32ToWord(Word32And(hash, Int32Constant(mask)));
5196 }
5197 
StubCacheSecondaryOffset(compiler::Node * name,compiler::Node * seed)5198 compiler::Node* CodeStubAssembler::StubCacheSecondaryOffset(
5199     compiler::Node* name, compiler::Node* seed) {
5200   // See v8::internal::StubCache::SecondaryOffset().
5201 
5202   // Use the seed from the primary cache in the secondary cache.
5203   Node* hash = Int32Sub(seed, name);
5204   hash = Int32Add(hash, Int32Constant(StubCache::kSecondaryMagic));
5205   int32_t mask = (StubCache::kSecondaryTableSize - 1)
5206                  << StubCache::kCacheIndexShift;
5207   return ChangeUint32ToWord(Word32And(hash, Int32Constant(mask)));
5208 }
5209 
5210 enum CodeStubAssembler::StubCacheTable : int {
5211   kPrimary = static_cast<int>(StubCache::kPrimary),
5212   kSecondary = static_cast<int>(StubCache::kSecondary)
5213 };
5214 
TryProbeStubCacheTable(StubCache * stub_cache,StubCacheTable table_id,compiler::Node * entry_offset,compiler::Node * name,compiler::Node * map,Label * if_handler,Variable * var_handler,Label * if_miss)5215 void CodeStubAssembler::TryProbeStubCacheTable(
5216     StubCache* stub_cache, StubCacheTable table_id,
5217     compiler::Node* entry_offset, compiler::Node* name, compiler::Node* map,
5218     Label* if_handler, Variable* var_handler, Label* if_miss) {
5219   StubCache::Table table = static_cast<StubCache::Table>(table_id);
5220 #ifdef DEBUG
5221   if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) {
5222     Goto(if_miss);
5223     return;
5224   } else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) {
5225     Goto(if_miss);
5226     return;
5227   }
5228 #endif
5229   // The {table_offset} holds the entry offset times four (due to masking
5230   // and shifting optimizations).
5231   const int kMultiplier = sizeof(StubCache::Entry) >> Name::kHashShift;
5232   entry_offset = IntPtrMul(entry_offset, IntPtrConstant(kMultiplier));
5233 
5234   // Check that the key in the entry matches the name.
5235   Node* key_base =
5236       ExternalConstant(ExternalReference(stub_cache->key_reference(table)));
5237   Node* entry_key = Load(MachineType::Pointer(), key_base, entry_offset);
5238   GotoIf(WordNotEqual(name, entry_key), if_miss);
5239 
5240   // Get the map entry from the cache.
5241   DCHECK_EQ(kPointerSize * 2, stub_cache->map_reference(table).address() -
5242                                   stub_cache->key_reference(table).address());
5243   Node* entry_map =
5244       Load(MachineType::Pointer(), key_base,
5245            IntPtrAdd(entry_offset, IntPtrConstant(kPointerSize * 2)));
5246   GotoIf(WordNotEqual(map, entry_map), if_miss);
5247 
5248   DCHECK_EQ(kPointerSize, stub_cache->value_reference(table).address() -
5249                               stub_cache->key_reference(table).address());
5250   Node* handler = Load(MachineType::TaggedPointer(), key_base,
5251                        IntPtrAdd(entry_offset, IntPtrConstant(kPointerSize)));
5252 
5253   // We found the handler.
5254   var_handler->Bind(handler);
5255   Goto(if_handler);
5256 }
5257 
TryProbeStubCache(StubCache * stub_cache,compiler::Node * receiver,compiler::Node * name,Label * if_handler,Variable * var_handler,Label * if_miss)5258 void CodeStubAssembler::TryProbeStubCache(
5259     StubCache* stub_cache, compiler::Node* receiver, compiler::Node* name,
5260     Label* if_handler, Variable* var_handler, Label* if_miss) {
5261   Label try_secondary(this), miss(this);
5262 
5263   Counters* counters = isolate()->counters();
5264   IncrementCounter(counters->megamorphic_stub_cache_probes(), 1);
5265 
5266   // Check that the {receiver} isn't a smi.
5267   GotoIf(TaggedIsSmi(receiver), &miss);
5268 
5269   Node* receiver_map = LoadMap(receiver);
5270 
5271   // Probe the primary table.
5272   Node* primary_offset = StubCachePrimaryOffset(name, receiver_map);
5273   TryProbeStubCacheTable(stub_cache, kPrimary, primary_offset, name,
5274                          receiver_map, if_handler, var_handler, &try_secondary);
5275 
5276   Bind(&try_secondary);
5277   {
5278     // Probe the secondary table.
5279     Node* secondary_offset = StubCacheSecondaryOffset(name, primary_offset);
5280     TryProbeStubCacheTable(stub_cache, kSecondary, secondary_offset, name,
5281                            receiver_map, if_handler, var_handler, &miss);
5282   }
5283 
5284   Bind(&miss);
5285   {
5286     IncrementCounter(counters->megamorphic_stub_cache_misses(), 1);
5287     Goto(if_miss);
5288   }
5289 }
5290 
TryToIntptr(Node * key,Label * miss)5291 Node* CodeStubAssembler::TryToIntptr(Node* key, Label* miss) {
5292   Variable var_intptr_key(this, MachineType::PointerRepresentation());
5293   Label done(this, &var_intptr_key), key_is_smi(this);
5294   GotoIf(TaggedIsSmi(key), &key_is_smi);
5295   // Try to convert a heap number to a Smi.
5296   GotoUnless(WordEqual(LoadMap(key), HeapNumberMapConstant()), miss);
5297   {
5298     Node* value = LoadHeapNumberValue(key);
5299     Node* int_value = RoundFloat64ToInt32(value);
5300     GotoUnless(Float64Equal(value, ChangeInt32ToFloat64(int_value)), miss);
5301     var_intptr_key.Bind(ChangeInt32ToIntPtr(int_value));
5302     Goto(&done);
5303   }
5304 
5305   Bind(&key_is_smi);
5306   {
5307     var_intptr_key.Bind(SmiUntag(key));
5308     Goto(&done);
5309   }
5310 
5311   Bind(&done);
5312   return var_intptr_key.value();
5313 }
5314 
EmitFastElementsBoundsCheck(Node * object,Node * elements,Node * intptr_index,Node * is_jsarray_condition,Label * miss)5315 void CodeStubAssembler::EmitFastElementsBoundsCheck(Node* object,
5316                                                     Node* elements,
5317                                                     Node* intptr_index,
5318                                                     Node* is_jsarray_condition,
5319                                                     Label* miss) {
5320   Variable var_length(this, MachineType::PointerRepresentation());
5321   Comment("Fast elements bounds check");
5322   Label if_array(this), length_loaded(this, &var_length);
5323   GotoIf(is_jsarray_condition, &if_array);
5324   {
5325     var_length.Bind(SmiUntag(LoadFixedArrayBaseLength(elements)));
5326     Goto(&length_loaded);
5327   }
5328   Bind(&if_array);
5329   {
5330     var_length.Bind(SmiUntag(LoadJSArrayLength(object)));
5331     Goto(&length_loaded);
5332   }
5333   Bind(&length_loaded);
5334   GotoUnless(UintPtrLessThan(intptr_index, var_length.value()), miss);
5335 }
5336 
EmitElementLoad(Node * object,Node * elements,Node * elements_kind,Node * intptr_index,Node * is_jsarray_condition,Label * if_hole,Label * rebox_double,Variable * var_double_value,Label * unimplemented_elements_kind,Label * out_of_bounds,Label * miss)5337 void CodeStubAssembler::EmitElementLoad(Node* object, Node* elements,
5338                                         Node* elements_kind, Node* intptr_index,
5339                                         Node* is_jsarray_condition,
5340                                         Label* if_hole, Label* rebox_double,
5341                                         Variable* var_double_value,
5342                                         Label* unimplemented_elements_kind,
5343                                         Label* out_of_bounds, Label* miss) {
5344   Label if_typed_array(this), if_fast_packed(this), if_fast_holey(this),
5345       if_fast_double(this), if_fast_holey_double(this), if_nonfast(this),
5346       if_dictionary(this);
5347   GotoIf(
5348       IntPtrGreaterThan(elements_kind, IntPtrConstant(LAST_FAST_ELEMENTS_KIND)),
5349       &if_nonfast);
5350 
5351   EmitFastElementsBoundsCheck(object, elements, intptr_index,
5352                               is_jsarray_condition, out_of_bounds);
5353   int32_t kinds[] = {// Handled by if_fast_packed.
5354                      FAST_SMI_ELEMENTS, FAST_ELEMENTS,
5355                      // Handled by if_fast_holey.
5356                      FAST_HOLEY_SMI_ELEMENTS, FAST_HOLEY_ELEMENTS,
5357                      // Handled by if_fast_double.
5358                      FAST_DOUBLE_ELEMENTS,
5359                      // Handled by if_fast_holey_double.
5360                      FAST_HOLEY_DOUBLE_ELEMENTS};
5361   Label* labels[] = {// FAST_{SMI,}_ELEMENTS
5362                      &if_fast_packed, &if_fast_packed,
5363                      // FAST_HOLEY_{SMI,}_ELEMENTS
5364                      &if_fast_holey, &if_fast_holey,
5365                      // FAST_DOUBLE_ELEMENTS
5366                      &if_fast_double,
5367                      // FAST_HOLEY_DOUBLE_ELEMENTS
5368                      &if_fast_holey_double};
5369   Switch(elements_kind, unimplemented_elements_kind, kinds, labels,
5370          arraysize(kinds));
5371 
5372   Bind(&if_fast_packed);
5373   {
5374     Comment("fast packed elements");
5375     Return(LoadFixedArrayElement(elements, intptr_index, 0, INTPTR_PARAMETERS));
5376   }
5377 
5378   Bind(&if_fast_holey);
5379   {
5380     Comment("fast holey elements");
5381     Node* element =
5382         LoadFixedArrayElement(elements, intptr_index, 0, INTPTR_PARAMETERS);
5383     GotoIf(WordEqual(element, TheHoleConstant()), if_hole);
5384     Return(element);
5385   }
5386 
5387   Bind(&if_fast_double);
5388   {
5389     Comment("packed double elements");
5390     var_double_value->Bind(LoadFixedDoubleArrayElement(
5391         elements, intptr_index, MachineType::Float64(), 0, INTPTR_PARAMETERS));
5392     Goto(rebox_double);
5393   }
5394 
5395   Bind(&if_fast_holey_double);
5396   {
5397     Comment("holey double elements");
5398     Node* value = LoadFixedDoubleArrayElement(elements, intptr_index,
5399                                               MachineType::Float64(), 0,
5400                                               INTPTR_PARAMETERS, if_hole);
5401     var_double_value->Bind(value);
5402     Goto(rebox_double);
5403   }
5404 
5405   Bind(&if_nonfast);
5406   {
5407     STATIC_ASSERT(LAST_ELEMENTS_KIND == LAST_FIXED_TYPED_ARRAY_ELEMENTS_KIND);
5408     GotoIf(IntPtrGreaterThanOrEqual(
5409                elements_kind,
5410                IntPtrConstant(FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND)),
5411            &if_typed_array);
5412     GotoIf(IntPtrEqual(elements_kind, IntPtrConstant(DICTIONARY_ELEMENTS)),
5413            &if_dictionary);
5414     Goto(unimplemented_elements_kind);
5415   }
5416 
5417   Bind(&if_dictionary);
5418   {
5419     Comment("dictionary elements");
5420     GotoIf(IntPtrLessThan(intptr_index, IntPtrConstant(0)), out_of_bounds);
5421     Variable var_entry(this, MachineType::PointerRepresentation());
5422     Label if_found(this);
5423     NumberDictionaryLookup<SeededNumberDictionary>(
5424         elements, intptr_index, &if_found, &var_entry, if_hole);
5425     Bind(&if_found);
5426     // Check that the value is a data property.
5427     Node* details_index = EntryToIndex<SeededNumberDictionary>(
5428         var_entry.value(), SeededNumberDictionary::kEntryDetailsIndex);
5429     Node* details = SmiToWord32(
5430         LoadFixedArrayElement(elements, details_index, 0, INTPTR_PARAMETERS));
5431     Node* kind = DecodeWord32<PropertyDetails::KindField>(details);
5432     // TODO(jkummerow): Support accessors without missing?
5433     GotoUnless(Word32Equal(kind, Int32Constant(kData)), miss);
5434     // Finally, load the value.
5435     Node* value_index = EntryToIndex<SeededNumberDictionary>(
5436         var_entry.value(), SeededNumberDictionary::kEntryValueIndex);
5437     Return(LoadFixedArrayElement(elements, value_index, 0, INTPTR_PARAMETERS));
5438   }
5439 
5440   Bind(&if_typed_array);
5441   {
5442     Comment("typed elements");
5443     // Check if buffer has been neutered.
5444     Node* buffer = LoadObjectField(object, JSArrayBufferView::kBufferOffset);
5445     Node* bitfield = LoadObjectField(buffer, JSArrayBuffer::kBitFieldOffset,
5446                                      MachineType::Uint32());
5447     Node* neutered_bit =
5448         Word32And(bitfield, Int32Constant(JSArrayBuffer::WasNeutered::kMask));
5449     GotoUnless(Word32Equal(neutered_bit, Int32Constant(0)), miss);
5450 
5451     // Bounds check.
5452     Node* length =
5453         SmiUntag(LoadObjectField(object, JSTypedArray::kLengthOffset));
5454     GotoUnless(UintPtrLessThan(intptr_index, length), out_of_bounds);
5455 
5456     // Backing store = external_pointer + base_pointer.
5457     Node* external_pointer =
5458         LoadObjectField(elements, FixedTypedArrayBase::kExternalPointerOffset,
5459                         MachineType::Pointer());
5460     Node* base_pointer =
5461         LoadObjectField(elements, FixedTypedArrayBase::kBasePointerOffset);
5462     Node* backing_store = IntPtrAdd(external_pointer, base_pointer);
5463 
5464     Label uint8_elements(this), int8_elements(this), uint16_elements(this),
5465         int16_elements(this), uint32_elements(this), int32_elements(this),
5466         float32_elements(this), float64_elements(this);
5467     Label* elements_kind_labels[] = {
5468         &uint8_elements,  &uint8_elements,   &int8_elements,
5469         &uint16_elements, &int16_elements,   &uint32_elements,
5470         &int32_elements,  &float32_elements, &float64_elements};
5471     int32_t elements_kinds[] = {
5472         UINT8_ELEMENTS,  UINT8_CLAMPED_ELEMENTS, INT8_ELEMENTS,
5473         UINT16_ELEMENTS, INT16_ELEMENTS,         UINT32_ELEMENTS,
5474         INT32_ELEMENTS,  FLOAT32_ELEMENTS,       FLOAT64_ELEMENTS};
5475     const size_t kTypedElementsKindCount =
5476         LAST_FIXED_TYPED_ARRAY_ELEMENTS_KIND -
5477         FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND + 1;
5478     DCHECK_EQ(kTypedElementsKindCount, arraysize(elements_kinds));
5479     DCHECK_EQ(kTypedElementsKindCount, arraysize(elements_kind_labels));
5480     Switch(elements_kind, miss, elements_kinds, elements_kind_labels,
5481            kTypedElementsKindCount);
5482     Bind(&uint8_elements);
5483     {
5484       Comment("UINT8_ELEMENTS");  // Handles UINT8_CLAMPED_ELEMENTS too.
5485       Return(SmiTag(Load(MachineType::Uint8(), backing_store, intptr_index)));
5486     }
5487     Bind(&int8_elements);
5488     {
5489       Comment("INT8_ELEMENTS");
5490       Return(SmiTag(Load(MachineType::Int8(), backing_store, intptr_index)));
5491     }
5492     Bind(&uint16_elements);
5493     {
5494       Comment("UINT16_ELEMENTS");
5495       Node* index = WordShl(intptr_index, IntPtrConstant(1));
5496       Return(SmiTag(Load(MachineType::Uint16(), backing_store, index)));
5497     }
5498     Bind(&int16_elements);
5499     {
5500       Comment("INT16_ELEMENTS");
5501       Node* index = WordShl(intptr_index, IntPtrConstant(1));
5502       Return(SmiTag(Load(MachineType::Int16(), backing_store, index)));
5503     }
5504     Bind(&uint32_elements);
5505     {
5506       Comment("UINT32_ELEMENTS");
5507       Node* index = WordShl(intptr_index, IntPtrConstant(2));
5508       Node* element = Load(MachineType::Uint32(), backing_store, index);
5509       Return(ChangeUint32ToTagged(element));
5510     }
5511     Bind(&int32_elements);
5512     {
5513       Comment("INT32_ELEMENTS");
5514       Node* index = WordShl(intptr_index, IntPtrConstant(2));
5515       Node* element = Load(MachineType::Int32(), backing_store, index);
5516       Return(ChangeInt32ToTagged(element));
5517     }
5518     Bind(&float32_elements);
5519     {
5520       Comment("FLOAT32_ELEMENTS");
5521       Node* index = WordShl(intptr_index, IntPtrConstant(2));
5522       Node* element = Load(MachineType::Float32(), backing_store, index);
5523       var_double_value->Bind(ChangeFloat32ToFloat64(element));
5524       Goto(rebox_double);
5525     }
5526     Bind(&float64_elements);
5527     {
5528       Comment("FLOAT64_ELEMENTS");
5529       Node* index = WordShl(intptr_index, IntPtrConstant(3));
5530       Node* element = Load(MachineType::Float64(), backing_store, index);
5531       var_double_value->Bind(element);
5532       Goto(rebox_double);
5533     }
5534   }
5535 }
5536 
HandleLoadICHandlerCase(const LoadICParameters * p,Node * handler,Label * miss,ElementSupport support_elements)5537 void CodeStubAssembler::HandleLoadICHandlerCase(
5538     const LoadICParameters* p, Node* handler, Label* miss,
5539     ElementSupport support_elements) {
5540   Comment("have_handler");
5541   Variable var_holder(this, MachineRepresentation::kTagged);
5542   var_holder.Bind(p->receiver);
5543   Variable var_smi_handler(this, MachineRepresentation::kTagged);
5544   var_smi_handler.Bind(handler);
5545 
5546   Variable* vars[] = {&var_holder, &var_smi_handler};
5547   Label if_smi_handler(this, 2, vars);
5548   Label try_proto_handler(this), call_handler(this);
5549 
5550   Branch(TaggedIsSmi(handler), &if_smi_handler, &try_proto_handler);
5551 
5552   // |handler| is a Smi, encoding what to do. See SmiHandler methods
5553   // for the encoding format.
5554   Bind(&if_smi_handler);
5555   {
5556     HandleLoadICSmiHandlerCase(p, var_holder.value(), var_smi_handler.value(),
5557                                miss, support_elements);
5558   }
5559 
5560   Bind(&try_proto_handler);
5561   {
5562     GotoIf(IsCodeMap(LoadMap(handler)), &call_handler);
5563     HandleLoadICProtoHandler(p, handler, &var_holder, &var_smi_handler,
5564                              &if_smi_handler, miss);
5565   }
5566 
5567   Bind(&call_handler);
5568   {
5569     typedef LoadWithVectorDescriptor Descriptor;
5570     TailCallStub(Descriptor(isolate()), handler, p->context,
5571                  Arg(Descriptor::kReceiver, p->receiver),
5572                  Arg(Descriptor::kName, p->name),
5573                  Arg(Descriptor::kSlot, p->slot),
5574                  Arg(Descriptor::kVector, p->vector));
5575   }
5576 }
5577 
HandleLoadICSmiHandlerCase(const LoadICParameters * p,Node * holder,Node * smi_handler,Label * miss,ElementSupport support_elements)5578 void CodeStubAssembler::HandleLoadICSmiHandlerCase(
5579     const LoadICParameters* p, Node* holder, Node* smi_handler, Label* miss,
5580     ElementSupport support_elements) {
5581   Variable var_double_value(this, MachineRepresentation::kFloat64);
5582   Label rebox_double(this, &var_double_value);
5583 
5584   Node* handler_word = SmiUntag(smi_handler);
5585   Node* handler_kind = DecodeWord<LoadHandler::KindBits>(handler_word);
5586   if (support_elements == kSupportElements) {
5587     Label property(this);
5588     GotoUnless(
5589         WordEqual(handler_kind, IntPtrConstant(LoadHandler::kForElements)),
5590         &property);
5591 
5592     Comment("element_load");
5593     Node* intptr_index = TryToIntptr(p->name, miss);
5594     Node* elements = LoadElements(holder);
5595     Node* is_jsarray_condition =
5596         IsSetWord<LoadHandler::IsJsArrayBits>(handler_word);
5597     Node* elements_kind =
5598         DecodeWord<LoadHandler::ElementsKindBits>(handler_word);
5599     Label if_hole(this), unimplemented_elements_kind(this);
5600     Label* out_of_bounds = miss;
5601     EmitElementLoad(holder, elements, elements_kind, intptr_index,
5602                     is_jsarray_condition, &if_hole, &rebox_double,
5603                     &var_double_value, &unimplemented_elements_kind,
5604                     out_of_bounds, miss);
5605 
5606     Bind(&unimplemented_elements_kind);
5607     {
5608       // Smi handlers should only be installed for supported elements kinds.
5609       // Crash if we get here.
5610       DebugBreak();
5611       Goto(miss);
5612     }
5613 
5614     Bind(&if_hole);
5615     {
5616       Comment("convert hole");
5617       GotoUnless(IsSetWord<LoadHandler::ConvertHoleBits>(handler_word), miss);
5618       Node* protector_cell = LoadRoot(Heap::kArrayProtectorRootIndex);
5619       DCHECK(isolate()->heap()->array_protector()->IsPropertyCell());
5620       GotoUnless(
5621           WordEqual(LoadObjectField(protector_cell, PropertyCell::kValueOffset),
5622                     SmiConstant(Smi::FromInt(Isolate::kProtectorValid))),
5623           miss);
5624       Return(UndefinedConstant());
5625     }
5626 
5627     Bind(&property);
5628     Comment("property_load");
5629   }
5630 
5631   Label constant(this), field(this);
5632   Branch(WordEqual(handler_kind, IntPtrConstant(LoadHandler::kForFields)),
5633          &field, &constant);
5634 
5635   Bind(&field);
5636   {
5637     Comment("field_load");
5638     Node* offset = DecodeWord<LoadHandler::FieldOffsetBits>(handler_word);
5639 
5640     Label inobject(this), out_of_object(this);
5641     Branch(IsSetWord<LoadHandler::IsInobjectBits>(handler_word), &inobject,
5642            &out_of_object);
5643 
5644     Bind(&inobject);
5645     {
5646       Label is_double(this);
5647       GotoIf(IsSetWord<LoadHandler::IsDoubleBits>(handler_word), &is_double);
5648       Return(LoadObjectField(holder, offset));
5649 
5650       Bind(&is_double);
5651       if (FLAG_unbox_double_fields) {
5652         var_double_value.Bind(
5653             LoadObjectField(holder, offset, MachineType::Float64()));
5654       } else {
5655         Node* mutable_heap_number = LoadObjectField(holder, offset);
5656         var_double_value.Bind(LoadHeapNumberValue(mutable_heap_number));
5657       }
5658       Goto(&rebox_double);
5659     }
5660 
5661     Bind(&out_of_object);
5662     {
5663       Label is_double(this);
5664       Node* properties = LoadProperties(holder);
5665       Node* value = LoadObjectField(properties, offset);
5666       GotoIf(IsSetWord<LoadHandler::IsDoubleBits>(handler_word), &is_double);
5667       Return(value);
5668 
5669       Bind(&is_double);
5670       var_double_value.Bind(LoadHeapNumberValue(value));
5671       Goto(&rebox_double);
5672     }
5673 
5674     Bind(&rebox_double);
5675     Return(AllocateHeapNumberWithValue(var_double_value.value()));
5676   }
5677 
5678   Bind(&constant);
5679   {
5680     Comment("constant_load");
5681     Node* descriptors = LoadMapDescriptors(LoadMap(holder));
5682     Node* descriptor =
5683         DecodeWord<LoadHandler::DescriptorValueIndexBits>(handler_word);
5684     CSA_ASSERT(this,
5685                UintPtrLessThan(descriptor,
5686                                LoadAndUntagFixedArrayBaseLength(descriptors)));
5687     Node* value =
5688         LoadFixedArrayElement(descriptors, descriptor, 0, INTPTR_PARAMETERS);
5689 
5690     Label if_accessor_info(this);
5691     GotoIf(IsSetWord<LoadHandler::IsAccessorInfoBits>(handler_word),
5692            &if_accessor_info);
5693     Return(value);
5694 
5695     Bind(&if_accessor_info);
5696     Callable callable = CodeFactory::ApiGetter(isolate());
5697     TailCallStub(callable, p->context, p->receiver, holder, value);
5698   }
5699 }
5700 
HandleLoadICProtoHandler(const LoadICParameters * p,Node * handler,Variable * var_holder,Variable * var_smi_handler,Label * if_smi_handler,Label * miss)5701 void CodeStubAssembler::HandleLoadICProtoHandler(
5702     const LoadICParameters* p, Node* handler, Variable* var_holder,
5703     Variable* var_smi_handler, Label* if_smi_handler, Label* miss) {
5704   DCHECK_EQ(MachineRepresentation::kTagged, var_holder->rep());
5705   DCHECK_EQ(MachineRepresentation::kTagged, var_smi_handler->rep());
5706 
5707   // IC dispatchers rely on these assumptions to be held.
5708   STATIC_ASSERT(FixedArray::kLengthOffset == LoadHandler::kHolderCellOffset);
5709   DCHECK_EQ(FixedArray::OffsetOfElementAt(LoadHandler::kSmiHandlerIndex),
5710             LoadHandler::kSmiHandlerOffset);
5711   DCHECK_EQ(FixedArray::OffsetOfElementAt(LoadHandler::kValidityCellIndex),
5712             LoadHandler::kValidityCellOffset);
5713 
5714   // Both FixedArray and Tuple3 handlers have validity cell at the same offset.
5715   Label validity_cell_check_done(this);
5716   Node* validity_cell =
5717       LoadObjectField(handler, LoadHandler::kValidityCellOffset);
5718   GotoIf(WordEqual(validity_cell, IntPtrConstant(0)),
5719          &validity_cell_check_done);
5720   Node* cell_value = LoadObjectField(validity_cell, Cell::kValueOffset);
5721   GotoIf(WordNotEqual(cell_value,
5722                       SmiConstant(Smi::FromInt(Map::kPrototypeChainValid))),
5723          miss);
5724   Goto(&validity_cell_check_done);
5725 
5726   Bind(&validity_cell_check_done);
5727   Node* smi_handler = LoadObjectField(handler, LoadHandler::kSmiHandlerOffset);
5728   CSA_ASSERT(this, TaggedIsSmi(smi_handler));
5729   Node* handler_flags = SmiUntag(smi_handler);
5730 
5731   Label check_prototypes(this);
5732   GotoUnless(
5733       IsSetWord<LoadHandler::DoNegativeLookupOnReceiverBits>(handler_flags),
5734       &check_prototypes);
5735   {
5736     CSA_ASSERT(this, Word32BinaryNot(
5737                          HasInstanceType(p->receiver, JS_GLOBAL_OBJECT_TYPE)));
5738     // We have a dictionary receiver, do a negative lookup check.
5739     NameDictionaryNegativeLookup(p->receiver, p->name, miss);
5740     Goto(&check_prototypes);
5741   }
5742 
5743   Bind(&check_prototypes);
5744   Node* maybe_holder_cell =
5745       LoadObjectField(handler, LoadHandler::kHolderCellOffset);
5746   Label array_handler(this), tuple_handler(this);
5747   Branch(TaggedIsSmi(maybe_holder_cell), &array_handler, &tuple_handler);
5748 
5749   Bind(&tuple_handler);
5750   {
5751     Label load_existent(this);
5752     GotoIf(WordNotEqual(maybe_holder_cell, NullConstant()), &load_existent);
5753     // This is a handler for a load of a non-existent value.
5754     Return(UndefinedConstant());
5755 
5756     Bind(&load_existent);
5757     Node* holder = LoadWeakCellValue(maybe_holder_cell);
5758     // The |holder| is guaranteed to be alive at this point since we passed
5759     // both the receiver map check and the validity cell check.
5760     CSA_ASSERT(this, WordNotEqual(holder, IntPtrConstant(0)));
5761 
5762     var_holder->Bind(holder);
5763     var_smi_handler->Bind(smi_handler);
5764     Goto(if_smi_handler);
5765   }
5766 
5767   Bind(&array_handler);
5768   {
5769     typedef LoadICProtoArrayDescriptor Descriptor;
5770     LoadICProtoArrayStub stub(isolate());
5771     Node* target = HeapConstant(stub.GetCode());
5772     TailCallStub(Descriptor(isolate()), target, p->context,
5773                  Arg(Descriptor::kReceiver, p->receiver),
5774                  Arg(Descriptor::kName, p->name),
5775                  Arg(Descriptor::kSlot, p->slot),
5776                  Arg(Descriptor::kVector, p->vector),
5777                  Arg(Descriptor::kHandler, handler));
5778   }
5779 }
5780 
LoadICProtoArray(const LoadICParameters * p,Node * handler)5781 void CodeStubAssembler::LoadICProtoArray(const LoadICParameters* p,
5782                                          Node* handler) {
5783   Label miss(this);
5784   CSA_ASSERT(this, Word32BinaryNot(TaggedIsSmi(handler)));
5785   CSA_ASSERT(this, IsFixedArrayMap(LoadMap(handler)));
5786 
5787   Node* smi_handler = LoadObjectField(handler, LoadHandler::kSmiHandlerOffset);
5788   Node* handler_flags = SmiUntag(smi_handler);
5789 
5790   Node* handler_length = LoadAndUntagFixedArrayBaseLength(handler);
5791 
5792   Node* holder = EmitLoadICProtoArrayCheck(p, handler, handler_length,
5793                                            handler_flags, &miss);
5794 
5795   HandleLoadICSmiHandlerCase(p, holder, smi_handler, &miss, kOnlyProperties);
5796 
5797   Bind(&miss);
5798   {
5799     TailCallRuntime(Runtime::kLoadIC_Miss, p->context, p->receiver, p->name,
5800                     p->slot, p->vector);
5801   }
5802 }
5803 
EmitLoadICProtoArrayCheck(const LoadICParameters * p,Node * handler,Node * handler_length,Node * handler_flags,Label * miss)5804 Node* CodeStubAssembler::EmitLoadICProtoArrayCheck(const LoadICParameters* p,
5805                                                    Node* handler,
5806                                                    Node* handler_length,
5807                                                    Node* handler_flags,
5808                                                    Label* miss) {
5809   Variable start_index(this, MachineType::PointerRepresentation());
5810   start_index.Bind(IntPtrConstant(LoadHandler::kFirstPrototypeIndex));
5811 
5812   Label can_access(this);
5813   GotoUnless(IsSetWord<LoadHandler::DoAccessCheckOnReceiverBits>(handler_flags),
5814              &can_access);
5815   {
5816     // Skip this entry of a handler.
5817     start_index.Bind(IntPtrConstant(LoadHandler::kFirstPrototypeIndex + 1));
5818 
5819     int offset =
5820         FixedArray::OffsetOfElementAt(LoadHandler::kFirstPrototypeIndex);
5821     Node* expected_native_context =
5822         LoadWeakCellValue(LoadObjectField(handler, offset), miss);
5823     CSA_ASSERT(this, IsNativeContext(expected_native_context));
5824 
5825     Node* native_context = LoadNativeContext(p->context);
5826     GotoIf(WordEqual(expected_native_context, native_context), &can_access);
5827     // If the receiver is not a JSGlobalProxy then we miss.
5828     GotoUnless(IsJSGlobalProxy(p->receiver), miss);
5829     // For JSGlobalProxy receiver try to compare security tokens of current
5830     // and expected native contexts.
5831     Node* expected_token = LoadContextElement(expected_native_context,
5832                                               Context::SECURITY_TOKEN_INDEX);
5833     Node* current_token =
5834         LoadContextElement(native_context, Context::SECURITY_TOKEN_INDEX);
5835     Branch(WordEqual(expected_token, current_token), &can_access, miss);
5836   }
5837   Bind(&can_access);
5838 
5839   BuildFastLoop(
5840       MachineType::PointerRepresentation(), start_index.value(), handler_length,
5841       [this, p, handler, miss](CodeStubAssembler*, Node* current) {
5842         Node* prototype_cell =
5843             LoadFixedArrayElement(handler, current, 0, INTPTR_PARAMETERS);
5844         CheckPrototype(prototype_cell, p->name, miss);
5845       },
5846       1, IndexAdvanceMode::kPost);
5847 
5848   Node* maybe_holder_cell = LoadFixedArrayElement(
5849       handler, IntPtrConstant(LoadHandler::kHolderCellIndex), 0,
5850       INTPTR_PARAMETERS);
5851   Label load_existent(this);
5852   GotoIf(WordNotEqual(maybe_holder_cell, NullConstant()), &load_existent);
5853   // This is a handler for a load of a non-existent value.
5854   Return(UndefinedConstant());
5855 
5856   Bind(&load_existent);
5857   Node* holder = LoadWeakCellValue(maybe_holder_cell);
5858   // The |holder| is guaranteed to be alive at this point since we passed
5859   // the receiver map check, the validity cell check and the prototype chain
5860   // check.
5861   CSA_ASSERT(this, WordNotEqual(holder, IntPtrConstant(0)));
5862   return holder;
5863 }
5864 
CheckPrototype(Node * prototype_cell,Node * name,Label * miss)5865 void CodeStubAssembler::CheckPrototype(Node* prototype_cell, Node* name,
5866                                        Label* miss) {
5867   Node* maybe_prototype = LoadWeakCellValue(prototype_cell, miss);
5868 
5869   Label done(this);
5870   Label if_property_cell(this), if_dictionary_object(this);
5871 
5872   // |maybe_prototype| is either a PropertyCell or a slow-mode prototype.
5873   Branch(WordEqual(LoadMap(maybe_prototype),
5874                    LoadRoot(Heap::kGlobalPropertyCellMapRootIndex)),
5875          &if_property_cell, &if_dictionary_object);
5876 
5877   Bind(&if_dictionary_object);
5878   {
5879     CSA_ASSERT(this, IsDictionaryMap(LoadMap(maybe_prototype)));
5880     NameDictionaryNegativeLookup(maybe_prototype, name, miss);
5881     Goto(&done);
5882   }
5883 
5884   Bind(&if_property_cell);
5885   {
5886     // Ensure the property cell still contains the hole.
5887     Node* value = LoadObjectField(maybe_prototype, PropertyCell::kValueOffset);
5888     GotoIf(WordNotEqual(value, LoadRoot(Heap::kTheHoleValueRootIndex)), miss);
5889     Goto(&done);
5890   }
5891 
5892   Bind(&done);
5893 }
5894 
NameDictionaryNegativeLookup(Node * object,Node * name,Label * miss)5895 void CodeStubAssembler::NameDictionaryNegativeLookup(Node* object, Node* name,
5896                                                      Label* miss) {
5897   CSA_ASSERT(this, IsDictionaryMap(LoadMap(object)));
5898   Node* properties = LoadProperties(object);
5899   // Ensure the property does not exist in a dictionary-mode object.
5900   Variable var_name_index(this, MachineType::PointerRepresentation());
5901   Label done(this);
5902   NameDictionaryLookup<NameDictionary>(properties, name, miss, &var_name_index,
5903                                        &done);
5904   Bind(&done);
5905 }
5906 
LoadIC(const LoadICParameters * p)5907 void CodeStubAssembler::LoadIC(const LoadICParameters* p) {
5908   Variable var_handler(this, MachineRepresentation::kTagged);
5909   // TODO(ishell): defer blocks when it works.
5910   Label if_handler(this, &var_handler), try_polymorphic(this),
5911       try_megamorphic(this /*, Label::kDeferred*/),
5912       miss(this /*, Label::kDeferred*/);
5913 
5914   Node* receiver_map = LoadReceiverMap(p->receiver);
5915 
5916   // Check monomorphic case.
5917   Node* feedback =
5918       TryMonomorphicCase(p->slot, p->vector, receiver_map, &if_handler,
5919                          &var_handler, &try_polymorphic);
5920   Bind(&if_handler);
5921   {
5922     HandleLoadICHandlerCase(p, var_handler.value(), &miss);
5923   }
5924 
5925   Bind(&try_polymorphic);
5926   {
5927     // Check polymorphic case.
5928     Comment("LoadIC_try_polymorphic");
5929     GotoUnless(WordEqual(LoadMap(feedback), FixedArrayMapConstant()),
5930                &try_megamorphic);
5931     HandlePolymorphicCase(receiver_map, feedback, &if_handler, &var_handler,
5932                           &miss, 2);
5933   }
5934 
5935   Bind(&try_megamorphic);
5936   {
5937     // Check megamorphic case.
5938     GotoUnless(
5939         WordEqual(feedback, LoadRoot(Heap::kmegamorphic_symbolRootIndex)),
5940         &miss);
5941 
5942     TryProbeStubCache(isolate()->load_stub_cache(), p->receiver, p->name,
5943                       &if_handler, &var_handler, &miss);
5944   }
5945   Bind(&miss);
5946   {
5947     TailCallRuntime(Runtime::kLoadIC_Miss, p->context, p->receiver, p->name,
5948                     p->slot, p->vector);
5949   }
5950 }
5951 
KeyedLoadIC(const LoadICParameters * p)5952 void CodeStubAssembler::KeyedLoadIC(const LoadICParameters* p) {
5953   Variable var_handler(this, MachineRepresentation::kTagged);
5954   // TODO(ishell): defer blocks when it works.
5955   Label if_handler(this, &var_handler), try_polymorphic(this),
5956       try_megamorphic(this /*, Label::kDeferred*/),
5957       try_polymorphic_name(this /*, Label::kDeferred*/),
5958       miss(this /*, Label::kDeferred*/);
5959 
5960   Node* receiver_map = LoadReceiverMap(p->receiver);
5961 
5962   // Check monomorphic case.
5963   Node* feedback =
5964       TryMonomorphicCase(p->slot, p->vector, receiver_map, &if_handler,
5965                          &var_handler, &try_polymorphic);
5966   Bind(&if_handler);
5967   {
5968     HandleLoadICHandlerCase(p, var_handler.value(), &miss, kSupportElements);
5969   }
5970 
5971   Bind(&try_polymorphic);
5972   {
5973     // Check polymorphic case.
5974     Comment("KeyedLoadIC_try_polymorphic");
5975     GotoUnless(WordEqual(LoadMap(feedback), FixedArrayMapConstant()),
5976                &try_megamorphic);
5977     HandlePolymorphicCase(receiver_map, feedback, &if_handler, &var_handler,
5978                           &miss, 2);
5979   }
5980 
5981   Bind(&try_megamorphic);
5982   {
5983     // Check megamorphic case.
5984     Comment("KeyedLoadIC_try_megamorphic");
5985     GotoUnless(
5986         WordEqual(feedback, LoadRoot(Heap::kmegamorphic_symbolRootIndex)),
5987         &try_polymorphic_name);
5988     // TODO(jkummerow): Inline this? Or some of it?
5989     TailCallStub(CodeFactory::KeyedLoadIC_Megamorphic(isolate()), p->context,
5990                  p->receiver, p->name, p->slot, p->vector);
5991   }
5992   Bind(&try_polymorphic_name);
5993   {
5994     // We might have a name in feedback, and a fixed array in the next slot.
5995     Comment("KeyedLoadIC_try_polymorphic_name");
5996     GotoUnless(WordEqual(feedback, p->name), &miss);
5997     // If the name comparison succeeded, we know we have a fixed array with
5998     // at least one map/handler pair.
5999     Node* offset = ElementOffsetFromIndex(
6000         p->slot, FAST_HOLEY_ELEMENTS, SMI_PARAMETERS,
6001         FixedArray::kHeaderSize + kPointerSize - kHeapObjectTag);
6002     Node* array = Load(MachineType::AnyTagged(), p->vector, offset);
6003     HandlePolymorphicCase(receiver_map, array, &if_handler, &var_handler, &miss,
6004                           1);
6005   }
6006   Bind(&miss);
6007   {
6008     Comment("KeyedLoadIC_miss");
6009     TailCallRuntime(Runtime::kKeyedLoadIC_Miss, p->context, p->receiver,
6010                     p->name, p->slot, p->vector);
6011   }
6012 }
6013 
KeyedLoadICGeneric(const LoadICParameters * p)6014 void CodeStubAssembler::KeyedLoadICGeneric(const LoadICParameters* p) {
6015   Variable var_index(this, MachineType::PointerRepresentation());
6016   Variable var_details(this, MachineRepresentation::kWord32);
6017   Variable var_value(this, MachineRepresentation::kTagged);
6018   Label if_index(this), if_unique_name(this), if_element_hole(this),
6019       if_oob(this), slow(this), stub_cache_miss(this),
6020       if_property_dictionary(this), if_found_on_receiver(this);
6021 
6022   Node* receiver = p->receiver;
6023   GotoIf(TaggedIsSmi(receiver), &slow);
6024   Node* receiver_map = LoadMap(receiver);
6025   Node* instance_type = LoadMapInstanceType(receiver_map);
6026   // Receivers requiring non-standard element accesses (interceptors, access
6027   // checks, strings and string wrappers, proxies) are handled in the runtime.
6028   GotoIf(Int32LessThanOrEqual(instance_type,
6029                               Int32Constant(LAST_CUSTOM_ELEMENTS_RECEIVER)),
6030          &slow);
6031 
6032   Node* key = p->name;
6033   TryToName(key, &if_index, &var_index, &if_unique_name, &slow);
6034 
6035   Bind(&if_index);
6036   {
6037     Comment("integer index");
6038     Node* index = var_index.value();
6039     Node* elements = LoadElements(receiver);
6040     Node* elements_kind = LoadMapElementsKind(receiver_map);
6041     Node* is_jsarray_condition =
6042         Word32Equal(instance_type, Int32Constant(JS_ARRAY_TYPE));
6043     Variable var_double_value(this, MachineRepresentation::kFloat64);
6044     Label rebox_double(this, &var_double_value);
6045 
6046     // Unimplemented elements kinds fall back to a runtime call.
6047     Label* unimplemented_elements_kind = &slow;
6048     IncrementCounter(isolate()->counters()->ic_keyed_load_generic_smi(), 1);
6049     EmitElementLoad(receiver, elements, elements_kind, index,
6050                     is_jsarray_condition, &if_element_hole, &rebox_double,
6051                     &var_double_value, unimplemented_elements_kind, &if_oob,
6052                     &slow);
6053 
6054     Bind(&rebox_double);
6055     Return(AllocateHeapNumberWithValue(var_double_value.value()));
6056   }
6057 
6058   Bind(&if_oob);
6059   {
6060     Comment("out of bounds");
6061     Node* index = var_index.value();
6062     // Negative keys can't take the fast OOB path.
6063     GotoIf(IntPtrLessThan(index, IntPtrConstant(0)), &slow);
6064     // Positive OOB indices are effectively the same as hole loads.
6065     Goto(&if_element_hole);
6066   }
6067 
6068   Bind(&if_element_hole);
6069   {
6070     Comment("found the hole");
6071     Label return_undefined(this);
6072     BranchIfPrototypesHaveNoElements(receiver_map, &return_undefined, &slow);
6073 
6074     Bind(&return_undefined);
6075     Return(UndefinedConstant());
6076   }
6077 
6078   Node* properties = nullptr;
6079   Bind(&if_unique_name);
6080   {
6081     Comment("key is unique name");
6082     // Check if the receiver has fast or slow properties.
6083     properties = LoadProperties(receiver);
6084     Node* properties_map = LoadMap(properties);
6085     GotoIf(WordEqual(properties_map, LoadRoot(Heap::kHashTableMapRootIndex)),
6086            &if_property_dictionary);
6087 
6088     // Try looking up the property on the receiver; if unsuccessful, look
6089     // for a handler in the stub cache.
6090     Comment("DescriptorArray lookup");
6091 
6092     // Skip linear search if there are too many descriptors.
6093     // TODO(jkummerow): Consider implementing binary search.
6094     // See also TryLookupProperty() which has the same limitation.
6095     const int32_t kMaxLinear = 210;
6096     Label stub_cache(this);
6097     Node* bitfield3 = LoadMapBitField3(receiver_map);
6098     Node* nof =
6099         DecodeWordFromWord32<Map::NumberOfOwnDescriptorsBits>(bitfield3);
6100     GotoIf(UintPtrGreaterThan(nof, IntPtrConstant(kMaxLinear)), &stub_cache);
6101     Node* descriptors = LoadMapDescriptors(receiver_map);
6102     Variable var_name_index(this, MachineType::PointerRepresentation());
6103     Label if_descriptor_found(this);
6104     DescriptorLookupLinear(key, descriptors, nof, &if_descriptor_found,
6105                            &var_name_index, &stub_cache);
6106 
6107     Bind(&if_descriptor_found);
6108     {
6109       LoadPropertyFromFastObject(receiver, receiver_map, descriptors,
6110                                  var_name_index.value(), &var_details,
6111                                  &var_value);
6112       Goto(&if_found_on_receiver);
6113     }
6114 
6115     Bind(&stub_cache);
6116     {
6117       Comment("stub cache probe for fast property load");
6118       Variable var_handler(this, MachineRepresentation::kTagged);
6119       Label found_handler(this, &var_handler), stub_cache_miss(this);
6120       TryProbeStubCache(isolate()->load_stub_cache(), receiver, key,
6121                         &found_handler, &var_handler, &stub_cache_miss);
6122       Bind(&found_handler);
6123       { HandleLoadICHandlerCase(p, var_handler.value(), &slow); }
6124 
6125       Bind(&stub_cache_miss);
6126       {
6127         Comment("KeyedLoadGeneric_miss");
6128         TailCallRuntime(Runtime::kKeyedLoadIC_Miss, p->context, p->receiver,
6129                         p->name, p->slot, p->vector);
6130       }
6131     }
6132   }
6133 
6134   Bind(&if_property_dictionary);
6135   {
6136     Comment("dictionary property load");
6137     // We checked for LAST_CUSTOM_ELEMENTS_RECEIVER before, which rules out
6138     // seeing global objects here (which would need special handling).
6139 
6140     Variable var_name_index(this, MachineType::PointerRepresentation());
6141     Label dictionary_found(this, &var_name_index);
6142     NameDictionaryLookup<NameDictionary>(properties, key, &dictionary_found,
6143                                          &var_name_index, &slow);
6144     Bind(&dictionary_found);
6145     {
6146       LoadPropertyFromNameDictionary(properties, var_name_index.value(),
6147                                      &var_details, &var_value);
6148       Goto(&if_found_on_receiver);
6149     }
6150   }
6151 
6152   Bind(&if_found_on_receiver);
6153   {
6154     Node* value = CallGetterIfAccessor(var_value.value(), var_details.value(),
6155                                        p->context, receiver, &slow);
6156     IncrementCounter(isolate()->counters()->ic_keyed_load_generic_symbol(), 1);
6157     Return(value);
6158   }
6159 
6160   Bind(&slow);
6161   {
6162     Comment("KeyedLoadGeneric_slow");
6163     IncrementCounter(isolate()->counters()->ic_keyed_load_generic_slow(), 1);
6164     // TODO(jkummerow): Should we use the GetProperty TF stub instead?
6165     TailCallRuntime(Runtime::kKeyedGetProperty, p->context, p->receiver,
6166                     p->name);
6167   }
6168 }
6169 
HandleStoreFieldAndReturn(Node * handler_word,Node * holder,Representation representation,Node * value,Node * transition,Label * miss)6170 void CodeStubAssembler::HandleStoreFieldAndReturn(Node* handler_word,
6171                                                   Node* holder,
6172                                                   Representation representation,
6173                                                   Node* value, Node* transition,
6174                                                   Label* miss) {
6175   bool transition_to_field = transition != nullptr;
6176   Node* prepared_value = PrepareValueForWrite(value, representation, miss);
6177 
6178   if (transition_to_field) {
6179     Label storage_extended(this);
6180     GotoUnless(IsSetWord<StoreHandler::ExtendStorageBits>(handler_word),
6181                &storage_extended);
6182     Comment("[ Extend storage");
6183     ExtendPropertiesBackingStore(holder);
6184     Comment("] Extend storage");
6185     Goto(&storage_extended);
6186 
6187     Bind(&storage_extended);
6188   }
6189 
6190   Node* offset = DecodeWord<StoreHandler::FieldOffsetBits>(handler_word);
6191   Label if_inobject(this), if_out_of_object(this);
6192   Branch(IsSetWord<StoreHandler::IsInobjectBits>(handler_word), &if_inobject,
6193          &if_out_of_object);
6194 
6195   Bind(&if_inobject);
6196   {
6197     StoreNamedField(holder, offset, true, representation, prepared_value,
6198                     transition_to_field);
6199     if (transition_to_field) {
6200       StoreObjectField(holder, JSObject::kMapOffset, transition);
6201     }
6202     Return(value);
6203   }
6204 
6205   Bind(&if_out_of_object);
6206   {
6207     StoreNamedField(holder, offset, false, representation, prepared_value,
6208                     transition_to_field);
6209     if (transition_to_field) {
6210       StoreObjectField(holder, JSObject::kMapOffset, transition);
6211     }
6212     Return(value);
6213   }
6214 }
6215 
HandleStoreICSmiHandlerCase(Node * handler_word,Node * holder,Node * value,Node * transition,Label * miss)6216 void CodeStubAssembler::HandleStoreICSmiHandlerCase(Node* handler_word,
6217                                                     Node* holder, Node* value,
6218                                                     Node* transition,
6219                                                     Label* miss) {
6220   Comment(transition ? "transitioning field store" : "field store");
6221 
6222 #ifdef DEBUG
6223   Node* handler_kind = DecodeWord<StoreHandler::KindBits>(handler_word);
6224   if (transition) {
6225     CSA_ASSERT(
6226         this,
6227         WordOr(WordEqual(handler_kind,
6228                          IntPtrConstant(StoreHandler::kTransitionToField)),
6229                WordEqual(handler_kind,
6230                          IntPtrConstant(StoreHandler::kTransitionToConstant))));
6231   } else {
6232     CSA_ASSERT(this, WordEqual(handler_kind,
6233                                IntPtrConstant(StoreHandler::kStoreField)));
6234   }
6235 #endif
6236 
6237   Node* field_representation =
6238       DecodeWord<StoreHandler::FieldRepresentationBits>(handler_word);
6239 
6240   Label if_smi_field(this), if_double_field(this), if_heap_object_field(this),
6241       if_tagged_field(this);
6242 
6243   GotoIf(WordEqual(field_representation, IntPtrConstant(StoreHandler::kTagged)),
6244          &if_tagged_field);
6245   GotoIf(WordEqual(field_representation,
6246                    IntPtrConstant(StoreHandler::kHeapObject)),
6247          &if_heap_object_field);
6248   GotoIf(WordEqual(field_representation, IntPtrConstant(StoreHandler::kDouble)),
6249          &if_double_field);
6250   CSA_ASSERT(this, WordEqual(field_representation,
6251                              IntPtrConstant(StoreHandler::kSmi)));
6252   Goto(&if_smi_field);
6253 
6254   Bind(&if_tagged_field);
6255   {
6256     Comment("store tagged field");
6257     HandleStoreFieldAndReturn(handler_word, holder, Representation::Tagged(),
6258                               value, transition, miss);
6259   }
6260 
6261   Bind(&if_double_field);
6262   {
6263     Comment("store double field");
6264     HandleStoreFieldAndReturn(handler_word, holder, Representation::Double(),
6265                               value, transition, miss);
6266   }
6267 
6268   Bind(&if_heap_object_field);
6269   {
6270     Comment("store heap object field");
6271     // Generate full field type check here and then store value as Tagged.
6272     Node* prepared_value =
6273         PrepareValueForWrite(value, Representation::HeapObject(), miss);
6274     Node* value_index_in_descriptor =
6275         DecodeWord<StoreHandler::DescriptorValueIndexBits>(handler_word);
6276     Node* descriptors =
6277         LoadMapDescriptors(transition ? transition : LoadMap(holder));
6278     Node* maybe_field_type = LoadFixedArrayElement(
6279         descriptors, value_index_in_descriptor, 0, INTPTR_PARAMETERS);
6280     Label do_store(this);
6281     GotoIf(TaggedIsSmi(maybe_field_type), &do_store);
6282     // Check that value type matches the field type.
6283     {
6284       Node* field_type = LoadWeakCellValue(maybe_field_type, miss);
6285       Branch(WordEqual(LoadMap(prepared_value), field_type), &do_store, miss);
6286     }
6287     Bind(&do_store);
6288     HandleStoreFieldAndReturn(handler_word, holder, Representation::Tagged(),
6289                               prepared_value, transition, miss);
6290   }
6291 
6292   Bind(&if_smi_field);
6293   {
6294     Comment("store smi field");
6295     HandleStoreFieldAndReturn(handler_word, holder, Representation::Smi(),
6296                               value, transition, miss);
6297   }
6298 }
6299 
HandleStoreICHandlerCase(const StoreICParameters * p,Node * handler,Label * miss)6300 void CodeStubAssembler::HandleStoreICHandlerCase(const StoreICParameters* p,
6301                                                  Node* handler, Label* miss) {
6302   Label if_smi_handler(this);
6303   Label try_proto_handler(this), call_handler(this);
6304 
6305   Branch(TaggedIsSmi(handler), &if_smi_handler, &try_proto_handler);
6306 
6307   // |handler| is a Smi, encoding what to do. See SmiHandler methods
6308   // for the encoding format.
6309   Bind(&if_smi_handler);
6310   {
6311     Node* holder = p->receiver;
6312     Node* handler_word = SmiUntag(handler);
6313 
6314     // Handle non-transitioning field stores.
6315     HandleStoreICSmiHandlerCase(handler_word, holder, p->value, nullptr, miss);
6316   }
6317 
6318   Bind(&try_proto_handler);
6319   {
6320     GotoIf(IsCodeMap(LoadMap(handler)), &call_handler);
6321     HandleStoreICProtoHandler(p, handler, miss);
6322   }
6323 
6324   // |handler| is a heap object. Must be code, call it.
6325   Bind(&call_handler);
6326   {
6327     StoreWithVectorDescriptor descriptor(isolate());
6328     TailCallStub(descriptor, handler, p->context, p->receiver, p->name,
6329                  p->value, p->slot, p->vector);
6330   }
6331 }
6332 
HandleStoreICProtoHandler(const StoreICParameters * p,Node * handler,Label * miss)6333 void CodeStubAssembler::HandleStoreICProtoHandler(const StoreICParameters* p,
6334                                                   Node* handler, Label* miss) {
6335   // IC dispatchers rely on these assumptions to be held.
6336   STATIC_ASSERT(FixedArray::kLengthOffset ==
6337                 StoreHandler::kTransitionCellOffset);
6338   DCHECK_EQ(FixedArray::OffsetOfElementAt(StoreHandler::kSmiHandlerIndex),
6339             StoreHandler::kSmiHandlerOffset);
6340   DCHECK_EQ(FixedArray::OffsetOfElementAt(StoreHandler::kValidityCellIndex),
6341             StoreHandler::kValidityCellOffset);
6342 
6343   // Both FixedArray and Tuple3 handlers have validity cell at the same offset.
6344   Label validity_cell_check_done(this);
6345   Node* validity_cell =
6346       LoadObjectField(handler, StoreHandler::kValidityCellOffset);
6347   GotoIf(WordEqual(validity_cell, IntPtrConstant(0)),
6348          &validity_cell_check_done);
6349   Node* cell_value = LoadObjectField(validity_cell, Cell::kValueOffset);
6350   GotoIf(WordNotEqual(cell_value,
6351                       SmiConstant(Smi::FromInt(Map::kPrototypeChainValid))),
6352          miss);
6353   Goto(&validity_cell_check_done);
6354 
6355   Bind(&validity_cell_check_done);
6356   Node* smi_handler = LoadObjectField(handler, StoreHandler::kSmiHandlerOffset);
6357   CSA_ASSERT(this, TaggedIsSmi(smi_handler));
6358 
6359   Node* maybe_transition_cell =
6360       LoadObjectField(handler, StoreHandler::kTransitionCellOffset);
6361   Label array_handler(this), tuple_handler(this);
6362   Branch(TaggedIsSmi(maybe_transition_cell), &array_handler, &tuple_handler);
6363 
6364   Variable var_transition(this, MachineRepresentation::kTagged);
6365   Label if_transition(this), if_transition_to_constant(this);
6366   Bind(&tuple_handler);
6367   {
6368     Node* transition = LoadWeakCellValue(maybe_transition_cell, miss);
6369     var_transition.Bind(transition);
6370     Goto(&if_transition);
6371   }
6372 
6373   Bind(&array_handler);
6374   {
6375     Node* length = SmiUntag(maybe_transition_cell);
6376     BuildFastLoop(MachineType::PointerRepresentation(),
6377                   IntPtrConstant(StoreHandler::kFirstPrototypeIndex), length,
6378                   [this, p, handler, miss](CodeStubAssembler*, Node* current) {
6379                     Node* prototype_cell = LoadFixedArrayElement(
6380                         handler, current, 0, INTPTR_PARAMETERS);
6381                     CheckPrototype(prototype_cell, p->name, miss);
6382                   },
6383                   1, IndexAdvanceMode::kPost);
6384 
6385     Node* maybe_transition_cell = LoadFixedArrayElement(
6386         handler, IntPtrConstant(StoreHandler::kTransitionCellIndex), 0,
6387         INTPTR_PARAMETERS);
6388     Node* transition = LoadWeakCellValue(maybe_transition_cell, miss);
6389     var_transition.Bind(transition);
6390     Goto(&if_transition);
6391   }
6392 
6393   Bind(&if_transition);
6394   {
6395     Node* holder = p->receiver;
6396     Node* transition = var_transition.value();
6397     Node* handler_word = SmiUntag(smi_handler);
6398 
6399     GotoIf(IsSetWord32<Map::Deprecated>(LoadMapBitField3(transition)), miss);
6400 
6401     Node* handler_kind = DecodeWord<StoreHandler::KindBits>(handler_word);
6402     GotoIf(WordEqual(handler_kind,
6403                      IntPtrConstant(StoreHandler::kTransitionToConstant)),
6404            &if_transition_to_constant);
6405 
6406     // Handle transitioning field stores.
6407     HandleStoreICSmiHandlerCase(handler_word, holder, p->value, transition,
6408                                 miss);
6409 
6410     Bind(&if_transition_to_constant);
6411     {
6412       // Check that constant matches value.
6413       Node* value_index_in_descriptor =
6414           DecodeWord<StoreHandler::DescriptorValueIndexBits>(handler_word);
6415       Node* descriptors = LoadMapDescriptors(transition);
6416       Node* constant = LoadFixedArrayElement(
6417           descriptors, value_index_in_descriptor, 0, INTPTR_PARAMETERS);
6418       GotoIf(WordNotEqual(p->value, constant), miss);
6419 
6420       StoreObjectField(p->receiver, JSObject::kMapOffset, transition);
6421       Return(p->value);
6422     }
6423   }
6424 }
6425 
StoreIC(const StoreICParameters * p)6426 void CodeStubAssembler::StoreIC(const StoreICParameters* p) {
6427   Variable var_handler(this, MachineRepresentation::kTagged);
6428   // TODO(ishell): defer blocks when it works.
6429   Label if_handler(this, &var_handler), try_polymorphic(this),
6430       try_megamorphic(this /*, Label::kDeferred*/),
6431       miss(this /*, Label::kDeferred*/);
6432 
6433   Node* receiver_map = LoadReceiverMap(p->receiver);
6434 
6435   // Check monomorphic case.
6436   Node* feedback =
6437       TryMonomorphicCase(p->slot, p->vector, receiver_map, &if_handler,
6438                          &var_handler, &try_polymorphic);
6439   Bind(&if_handler);
6440   {
6441     Comment("StoreIC_if_handler");
6442     HandleStoreICHandlerCase(p, var_handler.value(), &miss);
6443   }
6444 
6445   Bind(&try_polymorphic);
6446   {
6447     // Check polymorphic case.
6448     Comment("StoreIC_try_polymorphic");
6449     GotoUnless(
6450         WordEqual(LoadMap(feedback), LoadRoot(Heap::kFixedArrayMapRootIndex)),
6451         &try_megamorphic);
6452     HandlePolymorphicCase(receiver_map, feedback, &if_handler, &var_handler,
6453                           &miss, 2);
6454   }
6455 
6456   Bind(&try_megamorphic);
6457   {
6458     // Check megamorphic case.
6459     GotoUnless(
6460         WordEqual(feedback, LoadRoot(Heap::kmegamorphic_symbolRootIndex)),
6461         &miss);
6462 
6463     TryProbeStubCache(isolate()->store_stub_cache(), p->receiver, p->name,
6464                       &if_handler, &var_handler, &miss);
6465   }
6466   Bind(&miss);
6467   {
6468     TailCallRuntime(Runtime::kStoreIC_Miss, p->context, p->value, p->slot,
6469                     p->vector, p->receiver, p->name);
6470   }
6471 }
6472 
KeyedStoreIC(const StoreICParameters * p,LanguageMode language_mode)6473 void CodeStubAssembler::KeyedStoreIC(const StoreICParameters* p,
6474                                      LanguageMode language_mode) {
6475   Variable var_handler(this, MachineRepresentation::kTagged);
6476   // This is to make |miss| label see the var_handler bound on all paths.
6477   var_handler.Bind(IntPtrConstant(0));
6478 
6479   // TODO(ishell): defer blocks when it works.
6480   Label if_handler(this, &var_handler), try_polymorphic(this),
6481       try_megamorphic(this /*, Label::kDeferred*/),
6482       try_polymorphic_name(this /*, Label::kDeferred*/),
6483       miss(this /*, Label::kDeferred*/);
6484 
6485   Node* receiver_map = LoadReceiverMap(p->receiver);
6486 
6487   // Check monomorphic case.
6488   Node* feedback =
6489       TryMonomorphicCase(p->slot, p->vector, receiver_map, &if_handler,
6490                          &var_handler, &try_polymorphic);
6491   Bind(&if_handler);
6492   {
6493     Comment("KeyedStoreIC_if_handler");
6494     HandleStoreICHandlerCase(p, var_handler.value(), &miss);
6495   }
6496 
6497   Bind(&try_polymorphic);
6498   {
6499     // CheckPolymorphic case.
6500     Comment("KeyedStoreIC_try_polymorphic");
6501     GotoUnless(
6502         WordEqual(LoadMap(feedback), LoadRoot(Heap::kFixedArrayMapRootIndex)),
6503         &try_megamorphic);
6504     Label if_transition_handler(this);
6505     Variable var_transition_map_cell(this, MachineRepresentation::kTagged);
6506     HandleKeyedStorePolymorphicCase(receiver_map, feedback, &if_handler,
6507                                     &var_handler, &if_transition_handler,
6508                                     &var_transition_map_cell, &miss);
6509     Bind(&if_transition_handler);
6510     Comment("KeyedStoreIC_polymorphic_transition");
6511     Node* transition_map =
6512         LoadWeakCellValue(var_transition_map_cell.value(), &miss);
6513     StoreTransitionDescriptor descriptor(isolate());
6514     TailCallStub(descriptor, var_handler.value(), p->context, p->receiver,
6515                  p->name, transition_map, p->value, p->slot, p->vector);
6516   }
6517 
6518   Bind(&try_megamorphic);
6519   {
6520     // Check megamorphic case.
6521     Comment("KeyedStoreIC_try_megamorphic");
6522     GotoUnless(
6523         WordEqual(feedback, LoadRoot(Heap::kmegamorphic_symbolRootIndex)),
6524         &try_polymorphic_name);
6525     TailCallStub(
6526         CodeFactory::KeyedStoreIC_Megamorphic(isolate(), language_mode),
6527         p->context, p->receiver, p->name, p->value, p->slot, p->vector);
6528   }
6529 
6530   Bind(&try_polymorphic_name);
6531   {
6532     // We might have a name in feedback, and a fixed array in the next slot.
6533     Comment("KeyedStoreIC_try_polymorphic_name");
6534     GotoUnless(WordEqual(feedback, p->name), &miss);
6535     // If the name comparison succeeded, we know we have a FixedArray with
6536     // at least one map/handler pair.
6537     Node* offset = ElementOffsetFromIndex(
6538         p->slot, FAST_HOLEY_ELEMENTS, SMI_PARAMETERS,
6539         FixedArray::kHeaderSize + kPointerSize - kHeapObjectTag);
6540     Node* array = Load(MachineType::AnyTagged(), p->vector, offset);
6541     HandlePolymorphicCase(receiver_map, array, &if_handler, &var_handler, &miss,
6542                           1);
6543   }
6544 
6545   Bind(&miss);
6546   {
6547     Comment("KeyedStoreIC_miss");
6548     TailCallRuntime(Runtime::kKeyedStoreIC_Miss, p->context, p->value, p->slot,
6549                     p->vector, p->receiver, p->name);
6550   }
6551 }
6552 
LoadGlobalIC(const LoadICParameters * p)6553 void CodeStubAssembler::LoadGlobalIC(const LoadICParameters* p) {
6554   Label try_handler(this), miss(this);
6555   Node* weak_cell =
6556       LoadFixedArrayElement(p->vector, p->slot, 0, SMI_PARAMETERS);
6557   CSA_ASSERT(this, HasInstanceType(weak_cell, WEAK_CELL_TYPE));
6558 
6559   // Load value or try handler case if the {weak_cell} is cleared.
6560   Node* property_cell = LoadWeakCellValue(weak_cell, &try_handler);
6561   CSA_ASSERT(this, HasInstanceType(property_cell, PROPERTY_CELL_TYPE));
6562 
6563   Node* value = LoadObjectField(property_cell, PropertyCell::kValueOffset);
6564   GotoIf(WordEqual(value, TheHoleConstant()), &miss);
6565   Return(value);
6566 
6567   Bind(&try_handler);
6568   {
6569     Node* handler =
6570         LoadFixedArrayElement(p->vector, p->slot, kPointerSize, SMI_PARAMETERS);
6571     GotoIf(WordEqual(handler, LoadRoot(Heap::kuninitialized_symbolRootIndex)),
6572            &miss);
6573 
6574     // In this case {handler} must be a Code object.
6575     CSA_ASSERT(this, HasInstanceType(handler, CODE_TYPE));
6576     LoadWithVectorDescriptor descriptor(isolate());
6577     Node* native_context = LoadNativeContext(p->context);
6578     Node* receiver =
6579         LoadContextElement(native_context, Context::EXTENSION_INDEX);
6580     Node* fake_name = IntPtrConstant(0);
6581     TailCallStub(descriptor, handler, p->context, receiver, fake_name, p->slot,
6582                  p->vector);
6583   }
6584   Bind(&miss);
6585   {
6586     TailCallRuntime(Runtime::kLoadGlobalIC_Miss, p->context, p->slot,
6587                     p->vector);
6588   }
6589 }
6590 
ExtendPropertiesBackingStore(compiler::Node * object)6591 void CodeStubAssembler::ExtendPropertiesBackingStore(compiler::Node* object) {
6592   Node* properties = LoadProperties(object);
6593   Node* length = LoadFixedArrayBaseLength(properties);
6594 
6595   ParameterMode mode = OptimalParameterMode();
6596   length = UntagParameter(length, mode);
6597 
6598   Node* delta = IntPtrOrSmiConstant(JSObject::kFieldsAdded, mode);
6599   Node* new_capacity = IntPtrAdd(length, delta);
6600 
6601   // Grow properties array.
6602   ElementsKind kind = FAST_ELEMENTS;
6603   DCHECK(kMaxNumberOfDescriptors + JSObject::kFieldsAdded <
6604          FixedArrayBase::GetMaxLengthForNewSpaceAllocation(kind));
6605   // The size of a new properties backing store is guaranteed to be small
6606   // enough that the new backing store will be allocated in new space.
6607   CSA_ASSERT(this, UintPtrLessThan(new_capacity,
6608                                    IntPtrConstant(kMaxNumberOfDescriptors +
6609                                                   JSObject::kFieldsAdded)));
6610 
6611   Node* new_properties = AllocateFixedArray(kind, new_capacity, mode);
6612 
6613   FillFixedArrayWithValue(kind, new_properties, length, new_capacity,
6614                           Heap::kUndefinedValueRootIndex, mode);
6615 
6616   // |new_properties| is guaranteed to be in new space, so we can skip
6617   // the write barrier.
6618   CopyFixedArrayElements(kind, properties, new_properties, length,
6619                          SKIP_WRITE_BARRIER, mode);
6620 
6621   StoreObjectField(object, JSObject::kPropertiesOffset, new_properties);
6622 }
6623 
PrepareValueForWrite(Node * value,Representation representation,Label * bailout)6624 Node* CodeStubAssembler::PrepareValueForWrite(Node* value,
6625                                               Representation representation,
6626                                               Label* bailout) {
6627   if (representation.IsDouble()) {
6628     value = TryTaggedToFloat64(value, bailout);
6629   } else if (representation.IsHeapObject()) {
6630     // Field type is checked by the handler, here we only check if the value
6631     // is a heap object.
6632     GotoIf(TaggedIsSmi(value), bailout);
6633   } else if (representation.IsSmi()) {
6634     GotoUnless(TaggedIsSmi(value), bailout);
6635   } else {
6636     DCHECK(representation.IsTagged());
6637   }
6638   return value;
6639 }
6640 
StoreNamedField(Node * object,FieldIndex index,Representation representation,Node * value,bool transition_to_field)6641 void CodeStubAssembler::StoreNamedField(Node* object, FieldIndex index,
6642                                         Representation representation,
6643                                         Node* value, bool transition_to_field) {
6644   DCHECK_EQ(index.is_double(), representation.IsDouble());
6645 
6646   StoreNamedField(object, IntPtrConstant(index.offset()), index.is_inobject(),
6647                   representation, value, transition_to_field);
6648 }
6649 
StoreNamedField(Node * object,Node * offset,bool is_inobject,Representation representation,Node * value,bool transition_to_field)6650 void CodeStubAssembler::StoreNamedField(Node* object, Node* offset,
6651                                         bool is_inobject,
6652                                         Representation representation,
6653                                         Node* value, bool transition_to_field) {
6654   bool store_value_as_double = representation.IsDouble();
6655   Node* property_storage = object;
6656   if (!is_inobject) {
6657     property_storage = LoadProperties(object);
6658   }
6659 
6660   if (representation.IsDouble()) {
6661     if (!FLAG_unbox_double_fields || !is_inobject) {
6662       if (transition_to_field) {
6663         Node* heap_number = AllocateHeapNumberWithValue(value, MUTABLE);
6664         // Store the new mutable heap number into the object.
6665         value = heap_number;
6666         store_value_as_double = false;
6667       } else {
6668         // Load the heap number.
6669         property_storage = LoadObjectField(property_storage, offset);
6670         // Store the double value into it.
6671         offset = IntPtrConstant(HeapNumber::kValueOffset);
6672       }
6673     }
6674   }
6675 
6676   if (store_value_as_double) {
6677     StoreObjectFieldNoWriteBarrier(property_storage, offset, value,
6678                                    MachineRepresentation::kFloat64);
6679   } else if (representation.IsSmi()) {
6680     StoreObjectFieldNoWriteBarrier(property_storage, offset, value);
6681   } else {
6682     StoreObjectField(property_storage, offset, value);
6683   }
6684 }
6685 
EmitKeyedSloppyArguments(Node * receiver,Node * key,Node * value,Label * bailout)6686 Node* CodeStubAssembler::EmitKeyedSloppyArguments(Node* receiver, Node* key,
6687                                                   Node* value, Label* bailout) {
6688   // Mapped arguments are actual arguments. Unmapped arguments are values added
6689   // to the arguments object after it was created for the call. Mapped arguments
6690   // are stored in the context at indexes given by elements[key + 2]. Unmapped
6691   // arguments are stored as regular indexed properties in the arguments array,
6692   // held at elements[1]. See NewSloppyArguments() in runtime.cc for a detailed
6693   // look at argument object construction.
6694   //
6695   // The sloppy arguments elements array has a special format:
6696   //
6697   // 0: context
6698   // 1: unmapped arguments array
6699   // 2: mapped_index0,
6700   // 3: mapped_index1,
6701   // ...
6702   //
6703   // length is 2 + min(number_of_actual_arguments, number_of_formal_arguments).
6704   // If key + 2 >= elements.length then attempt to look in the unmapped
6705   // arguments array (given by elements[1]) and return the value at key, missing
6706   // to the runtime if the unmapped arguments array is not a fixed array or if
6707   // key >= unmapped_arguments_array.length.
6708   //
6709   // Otherwise, t = elements[key + 2]. If t is the hole, then look up the value
6710   // in the unmapped arguments array, as described above. Otherwise, t is a Smi
6711   // index into the context array given at elements[0]. Return the value at
6712   // context[t].
6713 
6714   bool is_load = value == nullptr;
6715 
6716   GotoUnless(TaggedIsSmi(key), bailout);
6717   key = SmiUntag(key);
6718   GotoIf(IntPtrLessThan(key, IntPtrConstant(0)), bailout);
6719 
6720   Node* elements = LoadElements(receiver);
6721   Node* elements_length = LoadAndUntagFixedArrayBaseLength(elements);
6722 
6723   Variable var_result(this, MachineRepresentation::kTagged);
6724   if (!is_load) {
6725     var_result.Bind(value);
6726   }
6727   Label if_mapped(this), if_unmapped(this), end(this, &var_result);
6728   Node* intptr_two = IntPtrConstant(2);
6729   Node* adjusted_length = IntPtrSub(elements_length, intptr_two);
6730 
6731   GotoIf(UintPtrGreaterThanOrEqual(key, adjusted_length), &if_unmapped);
6732 
6733   Node* mapped_index = LoadFixedArrayElement(
6734       elements, IntPtrAdd(key, intptr_two), 0, INTPTR_PARAMETERS);
6735   Branch(WordEqual(mapped_index, TheHoleConstant()), &if_unmapped, &if_mapped);
6736 
6737   Bind(&if_mapped);
6738   {
6739     CSA_ASSERT(this, TaggedIsSmi(mapped_index));
6740     mapped_index = SmiUntag(mapped_index);
6741     Node* the_context = LoadFixedArrayElement(elements, IntPtrConstant(0), 0,
6742                                               INTPTR_PARAMETERS);
6743     // Assert that we can use LoadFixedArrayElement/StoreFixedArrayElement
6744     // methods for accessing Context.
6745     STATIC_ASSERT(Context::kHeaderSize == FixedArray::kHeaderSize);
6746     DCHECK_EQ(Context::SlotOffset(0) + kHeapObjectTag,
6747               FixedArray::OffsetOfElementAt(0));
6748     if (is_load) {
6749       Node* result = LoadFixedArrayElement(the_context, mapped_index, 0,
6750                                            INTPTR_PARAMETERS);
6751       CSA_ASSERT(this, WordNotEqual(result, TheHoleConstant()));
6752       var_result.Bind(result);
6753     } else {
6754       StoreFixedArrayElement(the_context, mapped_index, value,
6755                              UPDATE_WRITE_BARRIER, INTPTR_PARAMETERS);
6756     }
6757     Goto(&end);
6758   }
6759 
6760   Bind(&if_unmapped);
6761   {
6762     Node* backing_store = LoadFixedArrayElement(elements, IntPtrConstant(1), 0,
6763                                                 INTPTR_PARAMETERS);
6764     GotoIf(WordNotEqual(LoadMap(backing_store), FixedArrayMapConstant()),
6765            bailout);
6766 
6767     Node* backing_store_length =
6768         LoadAndUntagFixedArrayBaseLength(backing_store);
6769     GotoIf(UintPtrGreaterThanOrEqual(key, backing_store_length), bailout);
6770 
6771     // The key falls into unmapped range.
6772     if (is_load) {
6773       Node* result =
6774           LoadFixedArrayElement(backing_store, key, 0, INTPTR_PARAMETERS);
6775       GotoIf(WordEqual(result, TheHoleConstant()), bailout);
6776       var_result.Bind(result);
6777     } else {
6778       StoreFixedArrayElement(backing_store, key, value, UPDATE_WRITE_BARRIER,
6779                              INTPTR_PARAMETERS);
6780     }
6781     Goto(&end);
6782   }
6783 
6784   Bind(&end);
6785   return var_result.value();
6786 }
6787 
LoadScriptContext(Node * context,int context_index)6788 Node* CodeStubAssembler::LoadScriptContext(Node* context, int context_index) {
6789   Node* native_context = LoadNativeContext(context);
6790   Node* script_context_table =
6791       LoadContextElement(native_context, Context::SCRIPT_CONTEXT_TABLE_INDEX);
6792 
6793   int offset =
6794       ScriptContextTable::GetContextOffset(context_index) - kHeapObjectTag;
6795   return Load(MachineType::AnyTagged(), script_context_table,
6796               IntPtrConstant(offset));
6797 }
6798 
6799 namespace {
6800 
6801 // Converts typed array elements kind to a machine representations.
ElementsKindToMachineRepresentation(ElementsKind kind)6802 MachineRepresentation ElementsKindToMachineRepresentation(ElementsKind kind) {
6803   switch (kind) {
6804     case UINT8_CLAMPED_ELEMENTS:
6805     case UINT8_ELEMENTS:
6806     case INT8_ELEMENTS:
6807       return MachineRepresentation::kWord8;
6808     case UINT16_ELEMENTS:
6809     case INT16_ELEMENTS:
6810       return MachineRepresentation::kWord16;
6811     case UINT32_ELEMENTS:
6812     case INT32_ELEMENTS:
6813       return MachineRepresentation::kWord32;
6814     case FLOAT32_ELEMENTS:
6815       return MachineRepresentation::kFloat32;
6816     case FLOAT64_ELEMENTS:
6817       return MachineRepresentation::kFloat64;
6818     default:
6819       UNREACHABLE();
6820       return MachineRepresentation::kNone;
6821   }
6822 }
6823 
6824 }  // namespace
6825 
StoreElement(Node * elements,ElementsKind kind,Node * index,Node * value,ParameterMode mode)6826 void CodeStubAssembler::StoreElement(Node* elements, ElementsKind kind,
6827                                      Node* index, Node* value,
6828                                      ParameterMode mode) {
6829   if (IsFixedTypedArrayElementsKind(kind)) {
6830     if (kind == UINT8_CLAMPED_ELEMENTS) {
6831       CSA_ASSERT(this,
6832                  Word32Equal(value, Word32And(Int32Constant(0xff), value)));
6833     }
6834     Node* offset = ElementOffsetFromIndex(index, kind, mode, 0);
6835     MachineRepresentation rep = ElementsKindToMachineRepresentation(kind);
6836     StoreNoWriteBarrier(rep, elements, offset, value);
6837     return;
6838   }
6839 
6840   WriteBarrierMode barrier_mode =
6841       IsFastSmiElementsKind(kind) ? SKIP_WRITE_BARRIER : UPDATE_WRITE_BARRIER;
6842   if (IsFastDoubleElementsKind(kind)) {
6843     // Make sure we do not store signalling NaNs into double arrays.
6844     value = Float64SilenceNaN(value);
6845     StoreFixedDoubleArrayElement(elements, index, value, mode);
6846   } else {
6847     StoreFixedArrayElement(elements, index, value, barrier_mode, mode);
6848   }
6849 }
6850 
Int32ToUint8Clamped(Node * int32_value)6851 Node* CodeStubAssembler::Int32ToUint8Clamped(Node* int32_value) {
6852   Label done(this);
6853   Node* int32_zero = Int32Constant(0);
6854   Node* int32_255 = Int32Constant(255);
6855   Variable var_value(this, MachineRepresentation::kWord32);
6856   var_value.Bind(int32_value);
6857   GotoIf(Uint32LessThanOrEqual(int32_value, int32_255), &done);
6858   var_value.Bind(int32_zero);
6859   GotoIf(Int32LessThan(int32_value, int32_zero), &done);
6860   var_value.Bind(int32_255);
6861   Goto(&done);
6862   Bind(&done);
6863   return var_value.value();
6864 }
6865 
Float64ToUint8Clamped(Node * float64_value)6866 Node* CodeStubAssembler::Float64ToUint8Clamped(Node* float64_value) {
6867   Label done(this);
6868   Variable var_value(this, MachineRepresentation::kWord32);
6869   var_value.Bind(Int32Constant(0));
6870   GotoIf(Float64LessThanOrEqual(float64_value, Float64Constant(0.0)), &done);
6871   var_value.Bind(Int32Constant(255));
6872   GotoIf(Float64LessThanOrEqual(Float64Constant(255.0), float64_value), &done);
6873   {
6874     Node* rounded_value = Float64RoundToEven(float64_value);
6875     var_value.Bind(TruncateFloat64ToWord32(rounded_value));
6876     Goto(&done);
6877   }
6878   Bind(&done);
6879   return var_value.value();
6880 }
6881 
PrepareValueForWriteToTypedArray(Node * input,ElementsKind elements_kind,Label * bailout)6882 Node* CodeStubAssembler::PrepareValueForWriteToTypedArray(
6883     Node* input, ElementsKind elements_kind, Label* bailout) {
6884   DCHECK(IsFixedTypedArrayElementsKind(elements_kind));
6885 
6886   MachineRepresentation rep;
6887   switch (elements_kind) {
6888     case UINT8_ELEMENTS:
6889     case INT8_ELEMENTS:
6890     case UINT16_ELEMENTS:
6891     case INT16_ELEMENTS:
6892     case UINT32_ELEMENTS:
6893     case INT32_ELEMENTS:
6894     case UINT8_CLAMPED_ELEMENTS:
6895       rep = MachineRepresentation::kWord32;
6896       break;
6897     case FLOAT32_ELEMENTS:
6898       rep = MachineRepresentation::kFloat32;
6899       break;
6900     case FLOAT64_ELEMENTS:
6901       rep = MachineRepresentation::kFloat64;
6902       break;
6903     default:
6904       UNREACHABLE();
6905       return nullptr;
6906   }
6907 
6908   Variable var_result(this, rep);
6909   Label done(this, &var_result), if_smi(this);
6910   GotoIf(TaggedIsSmi(input), &if_smi);
6911   // Try to convert a heap number to a Smi.
6912   GotoUnless(IsHeapNumberMap(LoadMap(input)), bailout);
6913   {
6914     Node* value = LoadHeapNumberValue(input);
6915     if (rep == MachineRepresentation::kWord32) {
6916       if (elements_kind == UINT8_CLAMPED_ELEMENTS) {
6917         value = Float64ToUint8Clamped(value);
6918       } else {
6919         value = TruncateFloat64ToWord32(value);
6920       }
6921     } else if (rep == MachineRepresentation::kFloat32) {
6922       value = TruncateFloat64ToFloat32(value);
6923     } else {
6924       DCHECK_EQ(MachineRepresentation::kFloat64, rep);
6925     }
6926     var_result.Bind(value);
6927     Goto(&done);
6928   }
6929 
6930   Bind(&if_smi);
6931   {
6932     Node* value = SmiToWord32(input);
6933     if (rep == MachineRepresentation::kFloat32) {
6934       value = RoundInt32ToFloat32(value);
6935     } else if (rep == MachineRepresentation::kFloat64) {
6936       value = ChangeInt32ToFloat64(value);
6937     } else {
6938       DCHECK_EQ(MachineRepresentation::kWord32, rep);
6939       if (elements_kind == UINT8_CLAMPED_ELEMENTS) {
6940         value = Int32ToUint8Clamped(value);
6941       }
6942     }
6943     var_result.Bind(value);
6944     Goto(&done);
6945   }
6946 
6947   Bind(&done);
6948   return var_result.value();
6949 }
6950 
EmitElementStore(Node * object,Node * key,Node * value,bool is_jsarray,ElementsKind elements_kind,KeyedAccessStoreMode store_mode,Label * bailout)6951 void CodeStubAssembler::EmitElementStore(Node* object, Node* key, Node* value,
6952                                          bool is_jsarray,
6953                                          ElementsKind elements_kind,
6954                                          KeyedAccessStoreMode store_mode,
6955                                          Label* bailout) {
6956   Node* elements = LoadElements(object);
6957   if (IsFastSmiOrObjectElementsKind(elements_kind) &&
6958       store_mode != STORE_NO_TRANSITION_HANDLE_COW) {
6959     // Bailout in case of COW elements.
6960     GotoIf(WordNotEqual(LoadMap(elements),
6961                         LoadRoot(Heap::kFixedArrayMapRootIndex)),
6962            bailout);
6963   }
6964   // TODO(ishell): introduce TryToIntPtrOrSmi() and use OptimalParameterMode().
6965   ParameterMode parameter_mode = INTPTR_PARAMETERS;
6966   key = TryToIntptr(key, bailout);
6967 
6968   if (IsFixedTypedArrayElementsKind(elements_kind)) {
6969     Label done(this);
6970     // TODO(ishell): call ToNumber() on value and don't bailout but be careful
6971     // to call it only once if we decide to bailout because of bounds checks.
6972 
6973     value = PrepareValueForWriteToTypedArray(value, elements_kind, bailout);
6974 
6975     // There must be no allocations between the buffer load and
6976     // and the actual store to backing store, because GC may decide that
6977     // the buffer is not alive or move the elements.
6978     // TODO(ishell): introduce DisallowHeapAllocationCode scope here.
6979 
6980     // Check if buffer has been neutered.
6981     Node* buffer = LoadObjectField(object, JSArrayBufferView::kBufferOffset);
6982     Node* bitfield = LoadObjectField(buffer, JSArrayBuffer::kBitFieldOffset,
6983                                      MachineType::Uint32());
6984     Node* neutered_bit =
6985         Word32And(bitfield, Int32Constant(JSArrayBuffer::WasNeutered::kMask));
6986     GotoUnless(Word32Equal(neutered_bit, Int32Constant(0)), bailout);
6987 
6988     // Bounds check.
6989     Node* length = UntagParameter(
6990         LoadObjectField(object, JSTypedArray::kLengthOffset), parameter_mode);
6991 
6992     if (store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
6993       // Skip the store if we write beyond the length.
6994       GotoUnless(IntPtrLessThan(key, length), &done);
6995       // ... but bailout if the key is negative.
6996     } else {
6997       DCHECK_EQ(STANDARD_STORE, store_mode);
6998     }
6999     GotoUnless(UintPtrLessThan(key, length), bailout);
7000 
7001     // Backing store = external_pointer + base_pointer.
7002     Node* external_pointer =
7003         LoadObjectField(elements, FixedTypedArrayBase::kExternalPointerOffset,
7004                         MachineType::Pointer());
7005     Node* base_pointer =
7006         LoadObjectField(elements, FixedTypedArrayBase::kBasePointerOffset);
7007     Node* backing_store = IntPtrAdd(external_pointer, base_pointer);
7008     StoreElement(backing_store, elements_kind, key, value, parameter_mode);
7009     Goto(&done);
7010 
7011     Bind(&done);
7012     return;
7013   }
7014   DCHECK(IsFastSmiOrObjectElementsKind(elements_kind) ||
7015          IsFastDoubleElementsKind(elements_kind));
7016 
7017   Node* length = is_jsarray ? LoadObjectField(object, JSArray::kLengthOffset)
7018                             : LoadFixedArrayBaseLength(elements);
7019   length = UntagParameter(length, parameter_mode);
7020 
7021   // In case value is stored into a fast smi array, assure that the value is
7022   // a smi before manipulating the backing store. Otherwise the backing store
7023   // may be left in an invalid state.
7024   if (IsFastSmiElementsKind(elements_kind)) {
7025     GotoUnless(TaggedIsSmi(value), bailout);
7026   } else if (IsFastDoubleElementsKind(elements_kind)) {
7027     value = TryTaggedToFloat64(value, bailout);
7028   }
7029 
7030   if (IsGrowStoreMode(store_mode)) {
7031     elements = CheckForCapacityGrow(object, elements, elements_kind, length,
7032                                     key, parameter_mode, is_jsarray, bailout);
7033   } else {
7034     GotoUnless(UintPtrLessThan(key, length), bailout);
7035 
7036     if ((store_mode == STORE_NO_TRANSITION_HANDLE_COW) &&
7037         IsFastSmiOrObjectElementsKind(elements_kind)) {
7038       elements = CopyElementsOnWrite(object, elements, elements_kind, length,
7039                                      parameter_mode, bailout);
7040     }
7041   }
7042   StoreElement(elements, elements_kind, key, value, parameter_mode);
7043 }
7044 
CheckForCapacityGrow(Node * object,Node * elements,ElementsKind kind,Node * length,Node * key,ParameterMode mode,bool is_js_array,Label * bailout)7045 Node* CodeStubAssembler::CheckForCapacityGrow(Node* object, Node* elements,
7046                                               ElementsKind kind, Node* length,
7047                                               Node* key, ParameterMode mode,
7048                                               bool is_js_array,
7049                                               Label* bailout) {
7050   Variable checked_elements(this, MachineRepresentation::kTagged);
7051   Label grow_case(this), no_grow_case(this), done(this);
7052 
7053   Node* condition;
7054   if (IsHoleyElementsKind(kind)) {
7055     condition = UintPtrGreaterThanOrEqual(key, length);
7056   } else {
7057     condition = WordEqual(key, length);
7058   }
7059   Branch(condition, &grow_case, &no_grow_case);
7060 
7061   Bind(&grow_case);
7062   {
7063     Node* current_capacity =
7064         UntagParameter(LoadFixedArrayBaseLength(elements), mode);
7065 
7066     checked_elements.Bind(elements);
7067 
7068     Label fits_capacity(this);
7069     GotoIf(UintPtrLessThan(key, current_capacity), &fits_capacity);
7070     {
7071       Node* new_elements = TryGrowElementsCapacity(
7072           object, elements, kind, key, current_capacity, mode, bailout);
7073 
7074       checked_elements.Bind(new_elements);
7075       Goto(&fits_capacity);
7076     }
7077     Bind(&fits_capacity);
7078 
7079     if (is_js_array) {
7080       Node* new_length = IntPtrAdd(key, IntPtrOrSmiConstant(1, mode));
7081       StoreObjectFieldNoWriteBarrier(object, JSArray::kLengthOffset,
7082                                      TagParameter(new_length, mode));
7083     }
7084     Goto(&done);
7085   }
7086 
7087   Bind(&no_grow_case);
7088   {
7089     GotoUnless(UintPtrLessThan(key, length), bailout);
7090     checked_elements.Bind(elements);
7091     Goto(&done);
7092   }
7093 
7094   Bind(&done);
7095   return checked_elements.value();
7096 }
7097 
CopyElementsOnWrite(Node * object,Node * elements,ElementsKind kind,Node * length,ParameterMode mode,Label * bailout)7098 Node* CodeStubAssembler::CopyElementsOnWrite(Node* object, Node* elements,
7099                                              ElementsKind kind, Node* length,
7100                                              ParameterMode mode,
7101                                              Label* bailout) {
7102   Variable new_elements_var(this, MachineRepresentation::kTagged);
7103   Label done(this);
7104 
7105   new_elements_var.Bind(elements);
7106   GotoUnless(
7107       WordEqual(LoadMap(elements), LoadRoot(Heap::kFixedCOWArrayMapRootIndex)),
7108       &done);
7109   {
7110     Node* capacity = UntagParameter(LoadFixedArrayBaseLength(elements), mode);
7111     Node* new_elements = GrowElementsCapacity(object, elements, kind, kind,
7112                                               length, capacity, mode, bailout);
7113 
7114     new_elements_var.Bind(new_elements);
7115     Goto(&done);
7116   }
7117 
7118   Bind(&done);
7119   return new_elements_var.value();
7120 }
7121 
TransitionElementsKind(compiler::Node * object,compiler::Node * map,ElementsKind from_kind,ElementsKind to_kind,bool is_jsarray,Label * bailout)7122 void CodeStubAssembler::TransitionElementsKind(
7123     compiler::Node* object, compiler::Node* map, ElementsKind from_kind,
7124     ElementsKind to_kind, bool is_jsarray, Label* bailout) {
7125   DCHECK(!IsFastHoleyElementsKind(from_kind) ||
7126          IsFastHoleyElementsKind(to_kind));
7127   if (AllocationSite::GetMode(from_kind, to_kind) == TRACK_ALLOCATION_SITE) {
7128     TrapAllocationMemento(object, bailout);
7129   }
7130 
7131   if (!IsSimpleMapChangeTransition(from_kind, to_kind)) {
7132     Comment("Non-simple map transition");
7133     Node* elements = LoadElements(object);
7134 
7135     Node* empty_fixed_array =
7136         HeapConstant(isolate()->factory()->empty_fixed_array());
7137 
7138     Label done(this);
7139     GotoIf(WordEqual(elements, empty_fixed_array), &done);
7140 
7141     // TODO(ishell): Use OptimalParameterMode().
7142     ParameterMode mode = INTPTR_PARAMETERS;
7143     Node* elements_length = SmiUntag(LoadFixedArrayBaseLength(elements));
7144     Node* array_length =
7145         is_jsarray ? SmiUntag(LoadObjectField(object, JSArray::kLengthOffset))
7146                    : elements_length;
7147 
7148     GrowElementsCapacity(object, elements, from_kind, to_kind, array_length,
7149                          elements_length, mode, bailout);
7150     Goto(&done);
7151     Bind(&done);
7152   }
7153 
7154   StoreObjectField(object, JSObject::kMapOffset, map);
7155 }
7156 
TrapAllocationMemento(Node * object,Label * memento_found)7157 void CodeStubAssembler::TrapAllocationMemento(Node* object,
7158                                               Label* memento_found) {
7159   Comment("[ TrapAllocationMemento");
7160   Label no_memento_found(this);
7161   Label top_check(this), map_check(this);
7162 
7163   Node* new_space_top_address = ExternalConstant(
7164       ExternalReference::new_space_allocation_top_address(isolate()));
7165   const int kMementoMapOffset = JSArray::kSize;
7166   const int kMementoLastWordOffset =
7167       kMementoMapOffset + AllocationMemento::kSize - kPointerSize;
7168 
7169   // Bail out if the object is not in new space.
7170   Node* object_page = PageFromAddress(object);
7171   {
7172     Node* page_flags = Load(MachineType::IntPtr(), object_page,
7173                             IntPtrConstant(Page::kFlagsOffset));
7174     GotoIf(WordEqual(WordAnd(page_flags,
7175                              IntPtrConstant(MemoryChunk::kIsInNewSpaceMask)),
7176                      IntPtrConstant(0)),
7177            &no_memento_found);
7178   }
7179 
7180   Node* memento_last_word = IntPtrAdd(
7181       object, IntPtrConstant(kMementoLastWordOffset - kHeapObjectTag));
7182   Node* memento_last_word_page = PageFromAddress(memento_last_word);
7183 
7184   Node* new_space_top = Load(MachineType::Pointer(), new_space_top_address);
7185   Node* new_space_top_page = PageFromAddress(new_space_top);
7186 
7187   // If the object is in new space, we need to check whether respective
7188   // potential memento object is on the same page as the current top.
7189   GotoIf(WordEqual(memento_last_word_page, new_space_top_page), &top_check);
7190 
7191   // The object is on a different page than allocation top. Bail out if the
7192   // object sits on the page boundary as no memento can follow and we cannot
7193   // touch the memory following it.
7194   Branch(WordEqual(object_page, memento_last_word_page), &map_check,
7195          &no_memento_found);
7196 
7197   // If top is on the same page as the current object, we need to check whether
7198   // we are below top.
7199   Bind(&top_check);
7200   {
7201     Branch(UintPtrGreaterThanOrEqual(memento_last_word, new_space_top),
7202            &no_memento_found, &map_check);
7203   }
7204 
7205   // Memento map check.
7206   Bind(&map_check);
7207   {
7208     Node* memento_map = LoadObjectField(object, kMementoMapOffset);
7209     Branch(
7210         WordEqual(memento_map, LoadRoot(Heap::kAllocationMementoMapRootIndex)),
7211         memento_found, &no_memento_found);
7212   }
7213   Bind(&no_memento_found);
7214   Comment("] TrapAllocationMemento");
7215 }
7216 
PageFromAddress(Node * address)7217 Node* CodeStubAssembler::PageFromAddress(Node* address) {
7218   return WordAnd(address, IntPtrConstant(~Page::kPageAlignmentMask));
7219 }
7220 
EnumLength(Node * map)7221 Node* CodeStubAssembler::EnumLength(Node* map) {
7222   CSA_ASSERT(this, IsMap(map));
7223   Node* bitfield_3 = LoadMapBitField3(map);
7224   Node* enum_length = DecodeWordFromWord32<Map::EnumLengthBits>(bitfield_3);
7225   return SmiTag(enum_length);
7226 }
7227 
CheckEnumCache(Node * receiver,Label * use_cache,Label * use_runtime)7228 void CodeStubAssembler::CheckEnumCache(Node* receiver, Label* use_cache,
7229                                        Label* use_runtime) {
7230   Variable current_js_object(this, MachineRepresentation::kTagged);
7231   current_js_object.Bind(receiver);
7232 
7233   Variable current_map(this, MachineRepresentation::kTagged);
7234   current_map.Bind(LoadMap(current_js_object.value()));
7235 
7236   // These variables are updated in the loop below.
7237   Variable* loop_vars[2] = {&current_js_object, &current_map};
7238   Label loop(this, 2, loop_vars), next(this);
7239 
7240   // Check if the enum length field is properly initialized, indicating that
7241   // there is an enum cache.
7242   {
7243     Node* invalid_enum_cache_sentinel =
7244         SmiConstant(Smi::FromInt(kInvalidEnumCacheSentinel));
7245     Node* enum_length = EnumLength(current_map.value());
7246     Branch(WordEqual(enum_length, invalid_enum_cache_sentinel), use_runtime,
7247            &loop);
7248   }
7249 
7250   // Check that there are no elements. |current_js_object| contains
7251   // the current JS object we've reached through the prototype chain.
7252   Bind(&loop);
7253   {
7254     Label if_elements(this), if_no_elements(this);
7255     Node* elements = LoadElements(current_js_object.value());
7256     Node* empty_fixed_array = LoadRoot(Heap::kEmptyFixedArrayRootIndex);
7257     // Check that there are no elements.
7258     Branch(WordEqual(elements, empty_fixed_array), &if_no_elements,
7259            &if_elements);
7260     Bind(&if_elements);
7261     {
7262       // Second chance, the object may be using the empty slow element
7263       // dictionary.
7264       Node* slow_empty_dictionary =
7265           LoadRoot(Heap::kEmptySlowElementDictionaryRootIndex);
7266       Branch(WordNotEqual(elements, slow_empty_dictionary), use_runtime,
7267              &if_no_elements);
7268     }
7269 
7270     Bind(&if_no_elements);
7271     {
7272       // Update map prototype.
7273       current_js_object.Bind(LoadMapPrototype(current_map.value()));
7274       Branch(WordEqual(current_js_object.value(), NullConstant()), use_cache,
7275              &next);
7276     }
7277   }
7278 
7279   Bind(&next);
7280   {
7281     // For all objects but the receiver, check that the cache is empty.
7282     current_map.Bind(LoadMap(current_js_object.value()));
7283     Node* enum_length = EnumLength(current_map.value());
7284     Node* zero_constant = SmiConstant(Smi::kZero);
7285     Branch(WordEqual(enum_length, zero_constant), &loop, use_runtime);
7286   }
7287 }
7288 
CreateAllocationSiteInFeedbackVector(Node * feedback_vector,Node * slot)7289 Node* CodeStubAssembler::CreateAllocationSiteInFeedbackVector(
7290     Node* feedback_vector, Node* slot) {
7291   Node* size = IntPtrConstant(AllocationSite::kSize);
7292   Node* site = Allocate(size, CodeStubAssembler::kPretenured);
7293 
7294   // Store the map
7295   StoreObjectFieldRoot(site, AllocationSite::kMapOffset,
7296                        Heap::kAllocationSiteMapRootIndex);
7297   Node* kind = SmiConstant(Smi::FromInt(GetInitialFastElementsKind()));
7298   StoreObjectFieldNoWriteBarrier(site, AllocationSite::kTransitionInfoOffset,
7299                                  kind);
7300 
7301   // Unlike literals, constructed arrays don't have nested sites
7302   Node* zero = IntPtrConstant(0);
7303   StoreObjectFieldNoWriteBarrier(site, AllocationSite::kNestedSiteOffset, zero);
7304 
7305   // Pretenuring calculation field.
7306   StoreObjectFieldNoWriteBarrier(site, AllocationSite::kPretenureDataOffset,
7307                                  zero);
7308 
7309   // Pretenuring memento creation count field.
7310   StoreObjectFieldNoWriteBarrier(
7311       site, AllocationSite::kPretenureCreateCountOffset, zero);
7312 
7313   // Store an empty fixed array for the code dependency.
7314   StoreObjectFieldRoot(site, AllocationSite::kDependentCodeOffset,
7315                        Heap::kEmptyFixedArrayRootIndex);
7316 
7317   // Link the object to the allocation site list
7318   Node* site_list = ExternalConstant(
7319       ExternalReference::allocation_sites_list_address(isolate()));
7320   Node* next_site = LoadBufferObject(site_list, 0);
7321 
7322   // TODO(mvstanton): This is a store to a weak pointer, which we may want to
7323   // mark as such in order to skip the write barrier, once we have a unified
7324   // system for weakness. For now we decided to keep it like this because having
7325   // an initial write barrier backed store makes this pointer strong until the
7326   // next GC, and allocation sites are designed to survive several GCs anyway.
7327   StoreObjectField(site, AllocationSite::kWeakNextOffset, next_site);
7328   StoreNoWriteBarrier(MachineRepresentation::kTagged, site_list, site);
7329 
7330   StoreFixedArrayElement(feedback_vector, slot, site, UPDATE_WRITE_BARRIER,
7331                          CodeStubAssembler::SMI_PARAMETERS);
7332   return site;
7333 }
7334 
CreateWeakCellInFeedbackVector(Node * feedback_vector,Node * slot,Node * value)7335 Node* CodeStubAssembler::CreateWeakCellInFeedbackVector(Node* feedback_vector,
7336                                                         Node* slot,
7337                                                         Node* value) {
7338   Node* size = IntPtrConstant(WeakCell::kSize);
7339   Node* cell = Allocate(size, CodeStubAssembler::kPretenured);
7340 
7341   // Initialize the WeakCell.
7342   StoreObjectFieldRoot(cell, WeakCell::kMapOffset, Heap::kWeakCellMapRootIndex);
7343   StoreObjectField(cell, WeakCell::kValueOffset, value);
7344   StoreObjectFieldRoot(cell, WeakCell::kNextOffset,
7345                        Heap::kTheHoleValueRootIndex);
7346 
7347   // Store the WeakCell in the feedback vector.
7348   StoreFixedArrayElement(feedback_vector, slot, cell, UPDATE_WRITE_BARRIER,
7349                          CodeStubAssembler::SMI_PARAMETERS);
7350   return cell;
7351 }
7352 
BuildFastLoop(const CodeStubAssembler::VariableList & vars,MachineRepresentation index_rep,Node * start_index,Node * end_index,std::function<void (CodeStubAssembler * assembler,Node * index)> body,int increment,IndexAdvanceMode mode)7353 void CodeStubAssembler::BuildFastLoop(
7354     const CodeStubAssembler::VariableList& vars,
7355     MachineRepresentation index_rep, Node* start_index, Node* end_index,
7356     std::function<void(CodeStubAssembler* assembler, Node* index)> body,
7357     int increment, IndexAdvanceMode mode) {
7358   Variable var(this, index_rep);
7359   VariableList vars_copy(vars, zone());
7360   vars_copy.Add(&var, zone());
7361   var.Bind(start_index);
7362   Label loop(this, vars_copy);
7363   Label after_loop(this);
7364   // Introduce an explicit second check of the termination condition before the
7365   // loop that helps turbofan generate better code. If there's only a single
7366   // check, then the CodeStubAssembler forces it to be at the beginning of the
7367   // loop requiring a backwards branch at the end of the loop (it's not possible
7368   // to force the loop header check at the end of the loop and branch forward to
7369   // it from the pre-header). The extra branch is slower in the case that the
7370   // loop actually iterates.
7371   Branch(WordEqual(var.value(), end_index), &after_loop, &loop);
7372   Bind(&loop);
7373   {
7374     if (mode == IndexAdvanceMode::kPre) {
7375       var.Bind(IntPtrAdd(var.value(), IntPtrConstant(increment)));
7376     }
7377     body(this, var.value());
7378     if (mode == IndexAdvanceMode::kPost) {
7379       var.Bind(IntPtrAdd(var.value(), IntPtrConstant(increment)));
7380     }
7381     Branch(WordNotEqual(var.value(), end_index), &loop, &after_loop);
7382   }
7383   Bind(&after_loop);
7384 }
7385 
BuildFastFixedArrayForEach(compiler::Node * fixed_array,ElementsKind kind,compiler::Node * first_element_inclusive,compiler::Node * last_element_exclusive,std::function<void (CodeStubAssembler * assembler,compiler::Node * fixed_array,compiler::Node * offset)> body,ParameterMode mode,ForEachDirection direction)7386 void CodeStubAssembler::BuildFastFixedArrayForEach(
7387     compiler::Node* fixed_array, ElementsKind kind,
7388     compiler::Node* first_element_inclusive,
7389     compiler::Node* last_element_exclusive,
7390     std::function<void(CodeStubAssembler* assembler,
7391                        compiler::Node* fixed_array, compiler::Node* offset)>
7392         body,
7393     ParameterMode mode, ForEachDirection direction) {
7394   STATIC_ASSERT(FixedArray::kHeaderSize == FixedDoubleArray::kHeaderSize);
7395   int32_t first_val;
7396   bool constant_first = ToInt32Constant(first_element_inclusive, first_val);
7397   int32_t last_val;
7398   bool constent_last = ToInt32Constant(last_element_exclusive, last_val);
7399   if (constant_first && constent_last) {
7400     int delta = last_val - first_val;
7401     DCHECK(delta >= 0);
7402     if (delta <= kElementLoopUnrollThreshold) {
7403       if (direction == ForEachDirection::kForward) {
7404         for (int i = first_val; i < last_val; ++i) {
7405           Node* index = IntPtrConstant(i);
7406           Node* offset =
7407               ElementOffsetFromIndex(index, kind, INTPTR_PARAMETERS,
7408                                      FixedArray::kHeaderSize - kHeapObjectTag);
7409           body(this, fixed_array, offset);
7410         }
7411       } else {
7412         for (int i = last_val - 1; i >= first_val; --i) {
7413           Node* index = IntPtrConstant(i);
7414           Node* offset =
7415               ElementOffsetFromIndex(index, kind, INTPTR_PARAMETERS,
7416                                      FixedArray::kHeaderSize - kHeapObjectTag);
7417           body(this, fixed_array, offset);
7418         }
7419       }
7420       return;
7421     }
7422   }
7423 
7424   Node* start =
7425       ElementOffsetFromIndex(first_element_inclusive, kind, mode,
7426                              FixedArray::kHeaderSize - kHeapObjectTag);
7427   Node* limit =
7428       ElementOffsetFromIndex(last_element_exclusive, kind, mode,
7429                              FixedArray::kHeaderSize - kHeapObjectTag);
7430   if (direction == ForEachDirection::kReverse) std::swap(start, limit);
7431 
7432   int increment = IsFastDoubleElementsKind(kind) ? kDoubleSize : kPointerSize;
7433   BuildFastLoop(
7434       MachineType::PointerRepresentation(), start, limit,
7435       [fixed_array, body](CodeStubAssembler* assembler, Node* offset) {
7436         body(assembler, fixed_array, offset);
7437       },
7438       direction == ForEachDirection::kReverse ? -increment : increment,
7439       direction == ForEachDirection::kReverse ? IndexAdvanceMode::kPre
7440                                               : IndexAdvanceMode::kPost);
7441 }
7442 
BranchIfNumericRelationalComparison(RelationalComparisonMode mode,compiler::Node * lhs,compiler::Node * rhs,Label * if_true,Label * if_false)7443 void CodeStubAssembler::BranchIfNumericRelationalComparison(
7444     RelationalComparisonMode mode, compiler::Node* lhs, compiler::Node* rhs,
7445     Label* if_true, Label* if_false) {
7446   typedef compiler::Node Node;
7447 
7448   Label end(this);
7449   Variable result(this, MachineRepresentation::kTagged);
7450 
7451   // Shared entry for floating point comparison.
7452   Label do_fcmp(this);
7453   Variable var_fcmp_lhs(this, MachineRepresentation::kFloat64),
7454       var_fcmp_rhs(this, MachineRepresentation::kFloat64);
7455 
7456   // Check if the {lhs} is a Smi or a HeapObject.
7457   Label if_lhsissmi(this), if_lhsisnotsmi(this);
7458   Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi);
7459 
7460   Bind(&if_lhsissmi);
7461   {
7462     // Check if {rhs} is a Smi or a HeapObject.
7463     Label if_rhsissmi(this), if_rhsisnotsmi(this);
7464     Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
7465 
7466     Bind(&if_rhsissmi);
7467     {
7468       // Both {lhs} and {rhs} are Smi, so just perform a fast Smi comparison.
7469       switch (mode) {
7470         case kLessThan:
7471           BranchIfSmiLessThan(lhs, rhs, if_true, if_false);
7472           break;
7473         case kLessThanOrEqual:
7474           BranchIfSmiLessThanOrEqual(lhs, rhs, if_true, if_false);
7475           break;
7476         case kGreaterThan:
7477           BranchIfSmiLessThan(rhs, lhs, if_true, if_false);
7478           break;
7479         case kGreaterThanOrEqual:
7480           BranchIfSmiLessThanOrEqual(rhs, lhs, if_true, if_false);
7481           break;
7482       }
7483     }
7484 
7485     Bind(&if_rhsisnotsmi);
7486     {
7487       CSA_ASSERT(this, WordEqual(LoadMap(rhs), HeapNumberMapConstant()));
7488       // Convert the {lhs} and {rhs} to floating point values, and
7489       // perform a floating point comparison.
7490       var_fcmp_lhs.Bind(SmiToFloat64(lhs));
7491       var_fcmp_rhs.Bind(LoadHeapNumberValue(rhs));
7492       Goto(&do_fcmp);
7493     }
7494   }
7495 
7496   Bind(&if_lhsisnotsmi);
7497   {
7498     CSA_ASSERT(this, WordEqual(LoadMap(lhs), HeapNumberMapConstant()));
7499 
7500     // Check if {rhs} is a Smi or a HeapObject.
7501     Label if_rhsissmi(this), if_rhsisnotsmi(this);
7502     Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
7503 
7504     Bind(&if_rhsissmi);
7505     {
7506       // Convert the {lhs} and {rhs} to floating point values, and
7507       // perform a floating point comparison.
7508       var_fcmp_lhs.Bind(LoadHeapNumberValue(lhs));
7509       var_fcmp_rhs.Bind(SmiToFloat64(rhs));
7510       Goto(&do_fcmp);
7511     }
7512 
7513     Bind(&if_rhsisnotsmi);
7514     {
7515       CSA_ASSERT(this, WordEqual(LoadMap(rhs), HeapNumberMapConstant()));
7516 
7517       // Convert the {lhs} and {rhs} to floating point values, and
7518       // perform a floating point comparison.
7519       var_fcmp_lhs.Bind(LoadHeapNumberValue(lhs));
7520       var_fcmp_rhs.Bind(LoadHeapNumberValue(rhs));
7521       Goto(&do_fcmp);
7522     }
7523   }
7524 
7525   Bind(&do_fcmp);
7526   {
7527     // Load the {lhs} and {rhs} floating point values.
7528     Node* lhs = var_fcmp_lhs.value();
7529     Node* rhs = var_fcmp_rhs.value();
7530 
7531     // Perform a fast floating point comparison.
7532     switch (mode) {
7533       case kLessThan:
7534         Branch(Float64LessThan(lhs, rhs), if_true, if_false);
7535         break;
7536       case kLessThanOrEqual:
7537         Branch(Float64LessThanOrEqual(lhs, rhs), if_true, if_false);
7538         break;
7539       case kGreaterThan:
7540         Branch(Float64GreaterThan(lhs, rhs), if_true, if_false);
7541         break;
7542       case kGreaterThanOrEqual:
7543         Branch(Float64GreaterThanOrEqual(lhs, rhs), if_true, if_false);
7544         break;
7545     }
7546   }
7547 }
7548 
GotoUnlessNumberLessThan(compiler::Node * lhs,compiler::Node * rhs,Label * if_false)7549 void CodeStubAssembler::GotoUnlessNumberLessThan(compiler::Node* lhs,
7550                                                  compiler::Node* rhs,
7551                                                  Label* if_false) {
7552   Label if_true(this);
7553   BranchIfNumericRelationalComparison(kLessThan, lhs, rhs, &if_true, if_false);
7554   Bind(&if_true);
7555 }
7556 
RelationalComparison(RelationalComparisonMode mode,compiler::Node * lhs,compiler::Node * rhs,compiler::Node * context)7557 compiler::Node* CodeStubAssembler::RelationalComparison(
7558     RelationalComparisonMode mode, compiler::Node* lhs, compiler::Node* rhs,
7559     compiler::Node* context) {
7560   typedef compiler::Node Node;
7561 
7562   Label return_true(this), return_false(this), end(this);
7563   Variable result(this, MachineRepresentation::kTagged);
7564 
7565   // Shared entry for floating point comparison.
7566   Label do_fcmp(this);
7567   Variable var_fcmp_lhs(this, MachineRepresentation::kFloat64),
7568       var_fcmp_rhs(this, MachineRepresentation::kFloat64);
7569 
7570   // We might need to loop several times due to ToPrimitive and/or ToNumber
7571   // conversions.
7572   Variable var_lhs(this, MachineRepresentation::kTagged),
7573       var_rhs(this, MachineRepresentation::kTagged);
7574   Variable* loop_vars[2] = {&var_lhs, &var_rhs};
7575   Label loop(this, 2, loop_vars);
7576   var_lhs.Bind(lhs);
7577   var_rhs.Bind(rhs);
7578   Goto(&loop);
7579   Bind(&loop);
7580   {
7581     // Load the current {lhs} and {rhs} values.
7582     lhs = var_lhs.value();
7583     rhs = var_rhs.value();
7584 
7585     // Check if the {lhs} is a Smi or a HeapObject.
7586     Label if_lhsissmi(this), if_lhsisnotsmi(this);
7587     Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi);
7588 
7589     Bind(&if_lhsissmi);
7590     {
7591       // Check if {rhs} is a Smi or a HeapObject.
7592       Label if_rhsissmi(this), if_rhsisnotsmi(this);
7593       Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
7594 
7595       Bind(&if_rhsissmi);
7596       {
7597         // Both {lhs} and {rhs} are Smi, so just perform a fast Smi comparison.
7598         switch (mode) {
7599           case kLessThan:
7600             BranchIfSmiLessThan(lhs, rhs, &return_true, &return_false);
7601             break;
7602           case kLessThanOrEqual:
7603             BranchIfSmiLessThanOrEqual(lhs, rhs, &return_true, &return_false);
7604             break;
7605           case kGreaterThan:
7606             BranchIfSmiLessThan(rhs, lhs, &return_true, &return_false);
7607             break;
7608           case kGreaterThanOrEqual:
7609             BranchIfSmiLessThanOrEqual(rhs, lhs, &return_true, &return_false);
7610             break;
7611         }
7612       }
7613 
7614       Bind(&if_rhsisnotsmi);
7615       {
7616         // Load the map of {rhs}.
7617         Node* rhs_map = LoadMap(rhs);
7618 
7619         // Check if the {rhs} is a HeapNumber.
7620         Label if_rhsisnumber(this), if_rhsisnotnumber(this, Label::kDeferred);
7621         Branch(IsHeapNumberMap(rhs_map), &if_rhsisnumber, &if_rhsisnotnumber);
7622 
7623         Bind(&if_rhsisnumber);
7624         {
7625           // Convert the {lhs} and {rhs} to floating point values, and
7626           // perform a floating point comparison.
7627           var_fcmp_lhs.Bind(SmiToFloat64(lhs));
7628           var_fcmp_rhs.Bind(LoadHeapNumberValue(rhs));
7629           Goto(&do_fcmp);
7630         }
7631 
7632         Bind(&if_rhsisnotnumber);
7633         {
7634           // Convert the {rhs} to a Number; we don't need to perform the
7635           // dedicated ToPrimitive(rhs, hint Number) operation, as the
7636           // ToNumber(rhs) will by itself already invoke ToPrimitive with
7637           // a Number hint.
7638           Callable callable = CodeFactory::NonNumberToNumber(isolate());
7639           var_rhs.Bind(CallStub(callable, context, rhs));
7640           Goto(&loop);
7641         }
7642       }
7643     }
7644 
7645     Bind(&if_lhsisnotsmi);
7646     {
7647       // Load the HeapNumber map for later comparisons.
7648       Node* number_map = HeapNumberMapConstant();
7649 
7650       // Load the map of {lhs}.
7651       Node* lhs_map = LoadMap(lhs);
7652 
7653       // Check if {rhs} is a Smi or a HeapObject.
7654       Label if_rhsissmi(this), if_rhsisnotsmi(this);
7655       Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
7656 
7657       Bind(&if_rhsissmi);
7658       {
7659         // Check if the {lhs} is a HeapNumber.
7660         Label if_lhsisnumber(this), if_lhsisnotnumber(this, Label::kDeferred);
7661         Branch(WordEqual(lhs_map, number_map), &if_lhsisnumber,
7662                &if_lhsisnotnumber);
7663 
7664         Bind(&if_lhsisnumber);
7665         {
7666           // Convert the {lhs} and {rhs} to floating point values, and
7667           // perform a floating point comparison.
7668           var_fcmp_lhs.Bind(LoadHeapNumberValue(lhs));
7669           var_fcmp_rhs.Bind(SmiToFloat64(rhs));
7670           Goto(&do_fcmp);
7671         }
7672 
7673         Bind(&if_lhsisnotnumber);
7674         {
7675           // Convert the {lhs} to a Number; we don't need to perform the
7676           // dedicated ToPrimitive(lhs, hint Number) operation, as the
7677           // ToNumber(lhs) will by itself already invoke ToPrimitive with
7678           // a Number hint.
7679           Callable callable = CodeFactory::NonNumberToNumber(isolate());
7680           var_lhs.Bind(CallStub(callable, context, lhs));
7681           Goto(&loop);
7682         }
7683       }
7684 
7685       Bind(&if_rhsisnotsmi);
7686       {
7687         // Load the map of {rhs}.
7688         Node* rhs_map = LoadMap(rhs);
7689 
7690         // Check if {lhs} is a HeapNumber.
7691         Label if_lhsisnumber(this), if_lhsisnotnumber(this);
7692         Branch(WordEqual(lhs_map, number_map), &if_lhsisnumber,
7693                &if_lhsisnotnumber);
7694 
7695         Bind(&if_lhsisnumber);
7696         {
7697           // Check if {rhs} is also a HeapNumber.
7698           Label if_rhsisnumber(this), if_rhsisnotnumber(this, Label::kDeferred);
7699           Branch(WordEqual(lhs_map, rhs_map), &if_rhsisnumber,
7700                  &if_rhsisnotnumber);
7701 
7702           Bind(&if_rhsisnumber);
7703           {
7704             // Convert the {lhs} and {rhs} to floating point values, and
7705             // perform a floating point comparison.
7706             var_fcmp_lhs.Bind(LoadHeapNumberValue(lhs));
7707             var_fcmp_rhs.Bind(LoadHeapNumberValue(rhs));
7708             Goto(&do_fcmp);
7709           }
7710 
7711           Bind(&if_rhsisnotnumber);
7712           {
7713             // Convert the {rhs} to a Number; we don't need to perform
7714             // dedicated ToPrimitive(rhs, hint Number) operation, as the
7715             // ToNumber(rhs) will by itself already invoke ToPrimitive with
7716             // a Number hint.
7717             Callable callable = CodeFactory::NonNumberToNumber(isolate());
7718             var_rhs.Bind(CallStub(callable, context, rhs));
7719             Goto(&loop);
7720           }
7721         }
7722 
7723         Bind(&if_lhsisnotnumber);
7724         {
7725           // Load the instance type of {lhs}.
7726           Node* lhs_instance_type = LoadMapInstanceType(lhs_map);
7727 
7728           // Check if {lhs} is a String.
7729           Label if_lhsisstring(this), if_lhsisnotstring(this, Label::kDeferred);
7730           Branch(IsStringInstanceType(lhs_instance_type), &if_lhsisstring,
7731                  &if_lhsisnotstring);
7732 
7733           Bind(&if_lhsisstring);
7734           {
7735             // Load the instance type of {rhs}.
7736             Node* rhs_instance_type = LoadMapInstanceType(rhs_map);
7737 
7738             // Check if {rhs} is also a String.
7739             Label if_rhsisstring(this, Label::kDeferred),
7740                 if_rhsisnotstring(this, Label::kDeferred);
7741             Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring,
7742                    &if_rhsisnotstring);
7743 
7744             Bind(&if_rhsisstring);
7745             {
7746               // Both {lhs} and {rhs} are strings.
7747               switch (mode) {
7748                 case kLessThan:
7749                   result.Bind(CallStub(CodeFactory::StringLessThan(isolate()),
7750                                        context, lhs, rhs));
7751                   Goto(&end);
7752                   break;
7753                 case kLessThanOrEqual:
7754                   result.Bind(
7755                       CallStub(CodeFactory::StringLessThanOrEqual(isolate()),
7756                                context, lhs, rhs));
7757                   Goto(&end);
7758                   break;
7759                 case kGreaterThan:
7760                   result.Bind(
7761                       CallStub(CodeFactory::StringGreaterThan(isolate()),
7762                                context, lhs, rhs));
7763                   Goto(&end);
7764                   break;
7765                 case kGreaterThanOrEqual:
7766                   result.Bind(
7767                       CallStub(CodeFactory::StringGreaterThanOrEqual(isolate()),
7768                                context, lhs, rhs));
7769                   Goto(&end);
7770                   break;
7771               }
7772             }
7773 
7774             Bind(&if_rhsisnotstring);
7775             {
7776               // The {lhs} is a String, while {rhs} is neither a Number nor a
7777               // String, so we need to call ToPrimitive(rhs, hint Number) if
7778               // {rhs} is a receiver or ToNumber(lhs) and ToNumber(rhs) in the
7779               // other cases.
7780               STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
7781               Label if_rhsisreceiver(this, Label::kDeferred),
7782                   if_rhsisnotreceiver(this, Label::kDeferred);
7783               Branch(IsJSReceiverInstanceType(rhs_instance_type),
7784                      &if_rhsisreceiver, &if_rhsisnotreceiver);
7785 
7786               Bind(&if_rhsisreceiver);
7787               {
7788                 // Convert {rhs} to a primitive first passing Number hint.
7789                 Callable callable = CodeFactory::NonPrimitiveToPrimitive(
7790                     isolate(), ToPrimitiveHint::kNumber);
7791                 var_rhs.Bind(CallStub(callable, context, rhs));
7792                 Goto(&loop);
7793               }
7794 
7795               Bind(&if_rhsisnotreceiver);
7796               {
7797                 // Convert both {lhs} and {rhs} to Number.
7798                 Callable callable = CodeFactory::ToNumber(isolate());
7799                 var_lhs.Bind(CallStub(callable, context, lhs));
7800                 var_rhs.Bind(CallStub(callable, context, rhs));
7801                 Goto(&loop);
7802               }
7803             }
7804           }
7805 
7806           Bind(&if_lhsisnotstring);
7807           {
7808             // The {lhs} is neither a Number nor a String, so we need to call
7809             // ToPrimitive(lhs, hint Number) if {lhs} is a receiver or
7810             // ToNumber(lhs) and ToNumber(rhs) in the other cases.
7811             STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
7812             Label if_lhsisreceiver(this, Label::kDeferred),
7813                 if_lhsisnotreceiver(this, Label::kDeferred);
7814             Branch(IsJSReceiverInstanceType(lhs_instance_type),
7815                    &if_lhsisreceiver, &if_lhsisnotreceiver);
7816 
7817             Bind(&if_lhsisreceiver);
7818             {
7819               // Convert {lhs} to a primitive first passing Number hint.
7820               Callable callable = CodeFactory::NonPrimitiveToPrimitive(
7821                   isolate(), ToPrimitiveHint::kNumber);
7822               var_lhs.Bind(CallStub(callable, context, lhs));
7823               Goto(&loop);
7824             }
7825 
7826             Bind(&if_lhsisnotreceiver);
7827             {
7828               // Convert both {lhs} and {rhs} to Number.
7829               Callable callable = CodeFactory::ToNumber(isolate());
7830               var_lhs.Bind(CallStub(callable, context, lhs));
7831               var_rhs.Bind(CallStub(callable, context, rhs));
7832               Goto(&loop);
7833             }
7834           }
7835         }
7836       }
7837     }
7838   }
7839 
7840   Bind(&do_fcmp);
7841   {
7842     // Load the {lhs} and {rhs} floating point values.
7843     Node* lhs = var_fcmp_lhs.value();
7844     Node* rhs = var_fcmp_rhs.value();
7845 
7846     // Perform a fast floating point comparison.
7847     switch (mode) {
7848       case kLessThan:
7849         Branch(Float64LessThan(lhs, rhs), &return_true, &return_false);
7850         break;
7851       case kLessThanOrEqual:
7852         Branch(Float64LessThanOrEqual(lhs, rhs), &return_true, &return_false);
7853         break;
7854       case kGreaterThan:
7855         Branch(Float64GreaterThan(lhs, rhs), &return_true, &return_false);
7856         break;
7857       case kGreaterThanOrEqual:
7858         Branch(Float64GreaterThanOrEqual(lhs, rhs), &return_true,
7859                &return_false);
7860         break;
7861     }
7862   }
7863 
7864   Bind(&return_true);
7865   {
7866     result.Bind(BooleanConstant(true));
7867     Goto(&end);
7868   }
7869 
7870   Bind(&return_false);
7871   {
7872     result.Bind(BooleanConstant(false));
7873     Goto(&end);
7874   }
7875 
7876   Bind(&end);
7877   return result.value();
7878 }
7879 
7880 namespace {
7881 
GenerateEqual_Same(CodeStubAssembler * assembler,compiler::Node * value,CodeStubAssembler::Label * if_equal,CodeStubAssembler::Label * if_notequal)7882 void GenerateEqual_Same(CodeStubAssembler* assembler, compiler::Node* value,
7883                         CodeStubAssembler::Label* if_equal,
7884                         CodeStubAssembler::Label* if_notequal) {
7885   // In case of abstract or strict equality checks, we need additional checks
7886   // for NaN values because they are not considered equal, even if both the
7887   // left and the right hand side reference exactly the same value.
7888   // TODO(bmeurer): This seems to violate the SIMD.js specification, but it
7889   // seems to be what is tested in the current SIMD.js testsuite.
7890 
7891   typedef CodeStubAssembler::Label Label;
7892   typedef compiler::Node Node;
7893 
7894   // Check if {value} is a Smi or a HeapObject.
7895   Label if_valueissmi(assembler), if_valueisnotsmi(assembler);
7896   assembler->Branch(assembler->TaggedIsSmi(value), &if_valueissmi,
7897                     &if_valueisnotsmi);
7898 
7899   assembler->Bind(&if_valueisnotsmi);
7900   {
7901     // Load the map of {value}.
7902     Node* value_map = assembler->LoadMap(value);
7903 
7904     // Check if {value} (and therefore {rhs}) is a HeapNumber.
7905     Label if_valueisnumber(assembler), if_valueisnotnumber(assembler);
7906     assembler->Branch(assembler->IsHeapNumberMap(value_map), &if_valueisnumber,
7907                       &if_valueisnotnumber);
7908 
7909     assembler->Bind(&if_valueisnumber);
7910     {
7911       // Convert {value} (and therefore {rhs}) to floating point value.
7912       Node* value_value = assembler->LoadHeapNumberValue(value);
7913 
7914       // Check if the HeapNumber value is a NaN.
7915       assembler->BranchIfFloat64IsNaN(value_value, if_notequal, if_equal);
7916     }
7917 
7918     assembler->Bind(&if_valueisnotnumber);
7919     assembler->Goto(if_equal);
7920   }
7921 
7922   assembler->Bind(&if_valueissmi);
7923   assembler->Goto(if_equal);
7924 }
7925 
GenerateEqual_Simd128Value_HeapObject(CodeStubAssembler * assembler,compiler::Node * lhs,compiler::Node * lhs_map,compiler::Node * rhs,compiler::Node * rhs_map,CodeStubAssembler::Label * if_equal,CodeStubAssembler::Label * if_notequal)7926 void GenerateEqual_Simd128Value_HeapObject(
7927     CodeStubAssembler* assembler, compiler::Node* lhs, compiler::Node* lhs_map,
7928     compiler::Node* rhs, compiler::Node* rhs_map,
7929     CodeStubAssembler::Label* if_equal, CodeStubAssembler::Label* if_notequal) {
7930   assembler->BranchIfSimd128Equal(lhs, lhs_map, rhs, rhs_map, if_equal,
7931                                   if_notequal);
7932 }
7933 
7934 }  // namespace
7935 
7936 // ES6 section 7.2.12 Abstract Equality Comparison
Equal(ResultMode mode,compiler::Node * lhs,compiler::Node * rhs,compiler::Node * context)7937 compiler::Node* CodeStubAssembler::Equal(ResultMode mode, compiler::Node* lhs,
7938                                          compiler::Node* rhs,
7939                                          compiler::Node* context) {
7940   // This is a slightly optimized version of Object::Equals represented as
7941   // scheduled TurboFan graph utilizing the CodeStubAssembler. Whenever you
7942   // change something functionality wise in here, remember to update the
7943   // Object::Equals method as well.
7944   typedef compiler::Node Node;
7945 
7946   Label if_equal(this), if_notequal(this),
7947       do_rhsstringtonumber(this, Label::kDeferred), end(this);
7948   Variable result(this, MachineRepresentation::kTagged);
7949 
7950   // Shared entry for floating point comparison.
7951   Label do_fcmp(this);
7952   Variable var_fcmp_lhs(this, MachineRepresentation::kFloat64),
7953       var_fcmp_rhs(this, MachineRepresentation::kFloat64);
7954 
7955   // We might need to loop several times due to ToPrimitive and/or ToNumber
7956   // conversions.
7957   Variable var_lhs(this, MachineRepresentation::kTagged),
7958       var_rhs(this, MachineRepresentation::kTagged);
7959   Variable* loop_vars[2] = {&var_lhs, &var_rhs};
7960   Label loop(this, 2, loop_vars);
7961   var_lhs.Bind(lhs);
7962   var_rhs.Bind(rhs);
7963   Goto(&loop);
7964   Bind(&loop);
7965   {
7966     // Load the current {lhs} and {rhs} values.
7967     lhs = var_lhs.value();
7968     rhs = var_rhs.value();
7969 
7970     // Check if {lhs} and {rhs} refer to the same object.
7971     Label if_same(this), if_notsame(this);
7972     Branch(WordEqual(lhs, rhs), &if_same, &if_notsame);
7973 
7974     Bind(&if_same);
7975     {
7976       // The {lhs} and {rhs} reference the exact same value, yet we need special
7977       // treatment for HeapNumber, as NaN is not equal to NaN.
7978       GenerateEqual_Same(this, lhs, &if_equal, &if_notequal);
7979     }
7980 
7981     Bind(&if_notsame);
7982     {
7983       // Check if {lhs} is a Smi or a HeapObject.
7984       Label if_lhsissmi(this), if_lhsisnotsmi(this);
7985       Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi);
7986 
7987       Bind(&if_lhsissmi);
7988       {
7989         // Check if {rhs} is a Smi or a HeapObject.
7990         Label if_rhsissmi(this), if_rhsisnotsmi(this);
7991         Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
7992 
7993         Bind(&if_rhsissmi);
7994         // We have already checked for {lhs} and {rhs} being the same value, so
7995         // if both are Smis when we get here they must not be equal.
7996         Goto(&if_notequal);
7997 
7998         Bind(&if_rhsisnotsmi);
7999         {
8000           // Load the map of {rhs}.
8001           Node* rhs_map = LoadMap(rhs);
8002 
8003           // Check if {rhs} is a HeapNumber.
8004           Node* number_map = HeapNumberMapConstant();
8005           Label if_rhsisnumber(this), if_rhsisnotnumber(this);
8006           Branch(WordEqual(rhs_map, number_map), &if_rhsisnumber,
8007                  &if_rhsisnotnumber);
8008 
8009           Bind(&if_rhsisnumber);
8010           {
8011             // Convert {lhs} and {rhs} to floating point values, and
8012             // perform a floating point comparison.
8013             var_fcmp_lhs.Bind(SmiToFloat64(lhs));
8014             var_fcmp_rhs.Bind(LoadHeapNumberValue(rhs));
8015             Goto(&do_fcmp);
8016           }
8017 
8018           Bind(&if_rhsisnotnumber);
8019           {
8020             // Load the instance type of the {rhs}.
8021             Node* rhs_instance_type = LoadMapInstanceType(rhs_map);
8022 
8023             // Check if the {rhs} is a String.
8024             Label if_rhsisstring(this, Label::kDeferred),
8025                 if_rhsisnotstring(this);
8026             Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring,
8027                    &if_rhsisnotstring);
8028 
8029             Bind(&if_rhsisstring);
8030             {
8031               // The {rhs} is a String and the {lhs} is a Smi; we need
8032               // to convert the {rhs} to a Number and compare the output to
8033               // the Number on the {lhs}.
8034               Goto(&do_rhsstringtonumber);
8035             }
8036 
8037             Bind(&if_rhsisnotstring);
8038             {
8039               // Check if the {rhs} is a Boolean.
8040               Label if_rhsisboolean(this), if_rhsisnotboolean(this);
8041               Branch(IsBooleanMap(rhs_map), &if_rhsisboolean,
8042                      &if_rhsisnotboolean);
8043 
8044               Bind(&if_rhsisboolean);
8045               {
8046                 // The {rhs} is a Boolean, load its number value.
8047                 var_rhs.Bind(LoadObjectField(rhs, Oddball::kToNumberOffset));
8048                 Goto(&loop);
8049               }
8050 
8051               Bind(&if_rhsisnotboolean);
8052               {
8053                 // Check if the {rhs} is a Receiver.
8054                 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
8055                 Label if_rhsisreceiver(this, Label::kDeferred),
8056                     if_rhsisnotreceiver(this);
8057                 Branch(IsJSReceiverInstanceType(rhs_instance_type),
8058                        &if_rhsisreceiver, &if_rhsisnotreceiver);
8059 
8060                 Bind(&if_rhsisreceiver);
8061                 {
8062                   // Convert {rhs} to a primitive first (passing no hint).
8063                   Callable callable =
8064                       CodeFactory::NonPrimitiveToPrimitive(isolate());
8065                   var_rhs.Bind(CallStub(callable, context, rhs));
8066                   Goto(&loop);
8067                 }
8068 
8069                 Bind(&if_rhsisnotreceiver);
8070                 Goto(&if_notequal);
8071               }
8072             }
8073           }
8074         }
8075       }
8076 
8077       Bind(&if_lhsisnotsmi);
8078       {
8079         // Check if {rhs} is a Smi or a HeapObject.
8080         Label if_rhsissmi(this), if_rhsisnotsmi(this);
8081         Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
8082 
8083         Bind(&if_rhsissmi);
8084         {
8085           // The {lhs} is a HeapObject and the {rhs} is a Smi; swapping {lhs}
8086           // and {rhs} is not observable and doesn't matter for the result, so
8087           // we can just swap them and use the Smi handling above (for {lhs}
8088           // being a Smi).
8089           var_lhs.Bind(rhs);
8090           var_rhs.Bind(lhs);
8091           Goto(&loop);
8092         }
8093 
8094         Bind(&if_rhsisnotsmi);
8095         {
8096           Label if_lhsisstring(this), if_lhsisnumber(this),
8097               if_lhsissymbol(this), if_lhsissimd128value(this),
8098               if_lhsisoddball(this), if_lhsisreceiver(this);
8099 
8100           // Both {lhs} and {rhs} are HeapObjects, load their maps
8101           // and their instance types.
8102           Node* lhs_map = LoadMap(lhs);
8103           Node* rhs_map = LoadMap(rhs);
8104 
8105           // Load the instance types of {lhs} and {rhs}.
8106           Node* lhs_instance_type = LoadMapInstanceType(lhs_map);
8107           Node* rhs_instance_type = LoadMapInstanceType(rhs_map);
8108 
8109           // Dispatch based on the instance type of {lhs}.
8110           size_t const kNumCases = FIRST_NONSTRING_TYPE + 4;
8111           Label* case_labels[kNumCases];
8112           int32_t case_values[kNumCases];
8113           for (int32_t i = 0; i < FIRST_NONSTRING_TYPE; ++i) {
8114             case_labels[i] = new Label(this);
8115             case_values[i] = i;
8116           }
8117           case_labels[FIRST_NONSTRING_TYPE + 0] = &if_lhsisnumber;
8118           case_values[FIRST_NONSTRING_TYPE + 0] = HEAP_NUMBER_TYPE;
8119           case_labels[FIRST_NONSTRING_TYPE + 1] = &if_lhsissymbol;
8120           case_values[FIRST_NONSTRING_TYPE + 1] = SYMBOL_TYPE;
8121           case_labels[FIRST_NONSTRING_TYPE + 2] = &if_lhsissimd128value;
8122           case_values[FIRST_NONSTRING_TYPE + 2] = SIMD128_VALUE_TYPE;
8123           case_labels[FIRST_NONSTRING_TYPE + 3] = &if_lhsisoddball;
8124           case_values[FIRST_NONSTRING_TYPE + 3] = ODDBALL_TYPE;
8125           Switch(lhs_instance_type, &if_lhsisreceiver, case_values, case_labels,
8126                  arraysize(case_values));
8127           for (int32_t i = 0; i < FIRST_NONSTRING_TYPE; ++i) {
8128             Bind(case_labels[i]);
8129             Goto(&if_lhsisstring);
8130             delete case_labels[i];
8131           }
8132 
8133           Bind(&if_lhsisstring);
8134           {
8135             // Check if {rhs} is also a String.
8136             Label if_rhsisstring(this, Label::kDeferred),
8137                 if_rhsisnotstring(this);
8138             Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring,
8139                    &if_rhsisnotstring);
8140 
8141             Bind(&if_rhsisstring);
8142             {
8143               // Both {lhs} and {rhs} are of type String, just do the
8144               // string comparison then.
8145               Callable callable = (mode == kDontNegateResult)
8146                                       ? CodeFactory::StringEqual(isolate())
8147                                       : CodeFactory::StringNotEqual(isolate());
8148               result.Bind(CallStub(callable, context, lhs, rhs));
8149               Goto(&end);
8150             }
8151 
8152             Bind(&if_rhsisnotstring);
8153             {
8154               // The {lhs} is a String and the {rhs} is some other HeapObject.
8155               // Swapping {lhs} and {rhs} is not observable and doesn't matter
8156               // for the result, so we can just swap them and use the String
8157               // handling below (for {rhs} being a String).
8158               var_lhs.Bind(rhs);
8159               var_rhs.Bind(lhs);
8160               Goto(&loop);
8161             }
8162           }
8163 
8164           Bind(&if_lhsisnumber);
8165           {
8166             // Check if {rhs} is also a HeapNumber.
8167             Label if_rhsisnumber(this), if_rhsisnotnumber(this);
8168             Branch(Word32Equal(lhs_instance_type, rhs_instance_type),
8169                    &if_rhsisnumber, &if_rhsisnotnumber);
8170 
8171             Bind(&if_rhsisnumber);
8172             {
8173               // Convert {lhs} and {rhs} to floating point values, and
8174               // perform a floating point comparison.
8175               var_fcmp_lhs.Bind(LoadHeapNumberValue(lhs));
8176               var_fcmp_rhs.Bind(LoadHeapNumberValue(rhs));
8177               Goto(&do_fcmp);
8178             }
8179 
8180             Bind(&if_rhsisnotnumber);
8181             {
8182               // The {lhs} is a Number, the {rhs} is some other HeapObject.
8183               Label if_rhsisstring(this, Label::kDeferred),
8184                   if_rhsisnotstring(this);
8185               Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring,
8186                      &if_rhsisnotstring);
8187 
8188               Bind(&if_rhsisstring);
8189               {
8190                 // The {rhs} is a String and the {lhs} is a HeapNumber; we need
8191                 // to convert the {rhs} to a Number and compare the output to
8192                 // the Number on the {lhs}.
8193                 Goto(&do_rhsstringtonumber);
8194               }
8195 
8196               Bind(&if_rhsisnotstring);
8197               {
8198                 // Check if the {rhs} is a JSReceiver.
8199                 Label if_rhsisreceiver(this), if_rhsisnotreceiver(this);
8200                 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
8201                 Branch(IsJSReceiverInstanceType(rhs_instance_type),
8202                        &if_rhsisreceiver, &if_rhsisnotreceiver);
8203 
8204                 Bind(&if_rhsisreceiver);
8205                 {
8206                   // The {lhs} is a Primitive and the {rhs} is a JSReceiver.
8207                   // Swapping {lhs} and {rhs} is not observable and doesn't
8208                   // matter for the result, so we can just swap them and use
8209                   // the JSReceiver handling below (for {lhs} being a
8210                   // JSReceiver).
8211                   var_lhs.Bind(rhs);
8212                   var_rhs.Bind(lhs);
8213                   Goto(&loop);
8214                 }
8215 
8216                 Bind(&if_rhsisnotreceiver);
8217                 {
8218                   // Check if {rhs} is a Boolean.
8219                   Label if_rhsisboolean(this), if_rhsisnotboolean(this);
8220                   Branch(IsBooleanMap(rhs_map), &if_rhsisboolean,
8221                          &if_rhsisnotboolean);
8222 
8223                   Bind(&if_rhsisboolean);
8224                   {
8225                     // The {rhs} is a Boolean, convert it to a Smi first.
8226                     var_rhs.Bind(
8227                         LoadObjectField(rhs, Oddball::kToNumberOffset));
8228                     Goto(&loop);
8229                   }
8230 
8231                   Bind(&if_rhsisnotboolean);
8232                   Goto(&if_notequal);
8233                 }
8234               }
8235             }
8236           }
8237 
8238           Bind(&if_lhsisoddball);
8239           {
8240             // The {lhs} is an Oddball and {rhs} is some other HeapObject.
8241             Label if_lhsisboolean(this), if_lhsisnotboolean(this);
8242             Node* boolean_map = BooleanMapConstant();
8243             Branch(WordEqual(lhs_map, boolean_map), &if_lhsisboolean,
8244                    &if_lhsisnotboolean);
8245 
8246             Bind(&if_lhsisboolean);
8247             {
8248               // The {lhs} is a Boolean, check if {rhs} is also a Boolean.
8249               Label if_rhsisboolean(this), if_rhsisnotboolean(this);
8250               Branch(WordEqual(rhs_map, boolean_map), &if_rhsisboolean,
8251                      &if_rhsisnotboolean);
8252 
8253               Bind(&if_rhsisboolean);
8254               {
8255                 // Both {lhs} and {rhs} are distinct Boolean values.
8256                 Goto(&if_notequal);
8257               }
8258 
8259               Bind(&if_rhsisnotboolean);
8260               {
8261                 // Convert the {lhs} to a Number first.
8262                 var_lhs.Bind(LoadObjectField(lhs, Oddball::kToNumberOffset));
8263                 Goto(&loop);
8264               }
8265             }
8266 
8267             Bind(&if_lhsisnotboolean);
8268             {
8269               // The {lhs} is either Null or Undefined; check if the {rhs} is
8270               // undetectable (i.e. either also Null or Undefined or some
8271               // undetectable JSReceiver).
8272               Node* rhs_bitfield = LoadMapBitField(rhs_map);
8273               Branch(Word32Equal(
8274                          Word32And(rhs_bitfield,
8275                                    Int32Constant(1 << Map::kIsUndetectable)),
8276                          Int32Constant(0)),
8277                      &if_notequal, &if_equal);
8278             }
8279           }
8280 
8281           Bind(&if_lhsissymbol);
8282           {
8283             // Check if the {rhs} is a JSReceiver.
8284             Label if_rhsisreceiver(this), if_rhsisnotreceiver(this);
8285             STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
8286             Branch(IsJSReceiverInstanceType(rhs_instance_type),
8287                    &if_rhsisreceiver, &if_rhsisnotreceiver);
8288 
8289             Bind(&if_rhsisreceiver);
8290             {
8291               // The {lhs} is a Primitive and the {rhs} is a JSReceiver.
8292               // Swapping {lhs} and {rhs} is not observable and doesn't
8293               // matter for the result, so we can just swap them and use
8294               // the JSReceiver handling below (for {lhs} being a JSReceiver).
8295               var_lhs.Bind(rhs);
8296               var_rhs.Bind(lhs);
8297               Goto(&loop);
8298             }
8299 
8300             Bind(&if_rhsisnotreceiver);
8301             {
8302               // The {rhs} is not a JSReceiver and also not the same Symbol
8303               // as the {lhs}, so this is equality check is considered false.
8304               Goto(&if_notequal);
8305             }
8306           }
8307 
8308           Bind(&if_lhsissimd128value);
8309           {
8310             // Check if the {rhs} is also a Simd128Value.
8311             Label if_rhsissimd128value(this), if_rhsisnotsimd128value(this);
8312             Branch(Word32Equal(lhs_instance_type, rhs_instance_type),
8313                    &if_rhsissimd128value, &if_rhsisnotsimd128value);
8314 
8315             Bind(&if_rhsissimd128value);
8316             {
8317               // Both {lhs} and {rhs} is a Simd128Value.
8318               GenerateEqual_Simd128Value_HeapObject(
8319                   this, lhs, lhs_map, rhs, rhs_map, &if_equal, &if_notequal);
8320             }
8321 
8322             Bind(&if_rhsisnotsimd128value);
8323             {
8324               // Check if the {rhs} is a JSReceiver.
8325               Label if_rhsisreceiver(this), if_rhsisnotreceiver(this);
8326               STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
8327               Branch(IsJSReceiverInstanceType(rhs_instance_type),
8328                      &if_rhsisreceiver, &if_rhsisnotreceiver);
8329 
8330               Bind(&if_rhsisreceiver);
8331               {
8332                 // The {lhs} is a Primitive and the {rhs} is a JSReceiver.
8333                 // Swapping {lhs} and {rhs} is not observable and doesn't
8334                 // matter for the result, so we can just swap them and use
8335                 // the JSReceiver handling below (for {lhs} being a JSReceiver).
8336                 var_lhs.Bind(rhs);
8337                 var_rhs.Bind(lhs);
8338                 Goto(&loop);
8339               }
8340 
8341               Bind(&if_rhsisnotreceiver);
8342               {
8343                 // The {rhs} is some other Primitive.
8344                 Goto(&if_notequal);
8345               }
8346             }
8347           }
8348 
8349           Bind(&if_lhsisreceiver);
8350           {
8351             // Check if the {rhs} is also a JSReceiver.
8352             Label if_rhsisreceiver(this), if_rhsisnotreceiver(this);
8353             STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
8354             Branch(IsJSReceiverInstanceType(rhs_instance_type),
8355                    &if_rhsisreceiver, &if_rhsisnotreceiver);
8356 
8357             Bind(&if_rhsisreceiver);
8358             {
8359               // Both {lhs} and {rhs} are different JSReceiver references, so
8360               // this cannot be considered equal.
8361               Goto(&if_notequal);
8362             }
8363 
8364             Bind(&if_rhsisnotreceiver);
8365             {
8366               // Check if {rhs} is Null or Undefined (an undetectable check
8367               // is sufficient here, since we already know that {rhs} is not
8368               // a JSReceiver).
8369               Label if_rhsisundetectable(this),
8370                   if_rhsisnotundetectable(this, Label::kDeferred);
8371               Node* rhs_bitfield = LoadMapBitField(rhs_map);
8372               Branch(Word32Equal(
8373                          Word32And(rhs_bitfield,
8374                                    Int32Constant(1 << Map::kIsUndetectable)),
8375                          Int32Constant(0)),
8376                      &if_rhsisnotundetectable, &if_rhsisundetectable);
8377 
8378               Bind(&if_rhsisundetectable);
8379               {
8380                 // Check if {lhs} is an undetectable JSReceiver.
8381                 Node* lhs_bitfield = LoadMapBitField(lhs_map);
8382                 Branch(Word32Equal(
8383                            Word32And(lhs_bitfield,
8384                                      Int32Constant(1 << Map::kIsUndetectable)),
8385                            Int32Constant(0)),
8386                        &if_notequal, &if_equal);
8387               }
8388 
8389               Bind(&if_rhsisnotundetectable);
8390               {
8391                 // The {rhs} is some Primitive different from Null and
8392                 // Undefined, need to convert {lhs} to Primitive first.
8393                 Callable callable =
8394                     CodeFactory::NonPrimitiveToPrimitive(isolate());
8395                 var_lhs.Bind(CallStub(callable, context, lhs));
8396                 Goto(&loop);
8397               }
8398             }
8399           }
8400         }
8401       }
8402     }
8403 
8404     Bind(&do_rhsstringtonumber);
8405     {
8406       Callable callable = CodeFactory::StringToNumber(isolate());
8407       var_rhs.Bind(CallStub(callable, context, rhs));
8408       Goto(&loop);
8409     }
8410   }
8411 
8412   Bind(&do_fcmp);
8413   {
8414     // Load the {lhs} and {rhs} floating point values.
8415     Node* lhs = var_fcmp_lhs.value();
8416     Node* rhs = var_fcmp_rhs.value();
8417 
8418     // Perform a fast floating point comparison.
8419     Branch(Float64Equal(lhs, rhs), &if_equal, &if_notequal);
8420   }
8421 
8422   Bind(&if_equal);
8423   {
8424     result.Bind(BooleanConstant(mode == kDontNegateResult));
8425     Goto(&end);
8426   }
8427 
8428   Bind(&if_notequal);
8429   {
8430     result.Bind(BooleanConstant(mode == kNegateResult));
8431     Goto(&end);
8432   }
8433 
8434   Bind(&end);
8435   return result.value();
8436 }
8437 
StrictEqual(ResultMode mode,compiler::Node * lhs,compiler::Node * rhs,compiler::Node * context)8438 compiler::Node* CodeStubAssembler::StrictEqual(ResultMode mode,
8439                                                compiler::Node* lhs,
8440                                                compiler::Node* rhs,
8441                                                compiler::Node* context) {
8442   // Here's pseudo-code for the algorithm below in case of kDontNegateResult
8443   // mode; for kNegateResult mode we properly negate the result.
8444   //
8445   // if (lhs == rhs) {
8446   //   if (lhs->IsHeapNumber()) return HeapNumber::cast(lhs)->value() != NaN;
8447   //   return true;
8448   // }
8449   // if (!lhs->IsSmi()) {
8450   //   if (lhs->IsHeapNumber()) {
8451   //     if (rhs->IsSmi()) {
8452   //       return Smi::cast(rhs)->value() == HeapNumber::cast(lhs)->value();
8453   //     } else if (rhs->IsHeapNumber()) {
8454   //       return HeapNumber::cast(rhs)->value() ==
8455   //       HeapNumber::cast(lhs)->value();
8456   //     } else {
8457   //       return false;
8458   //     }
8459   //   } else {
8460   //     if (rhs->IsSmi()) {
8461   //       return false;
8462   //     } else {
8463   //       if (lhs->IsString()) {
8464   //         if (rhs->IsString()) {
8465   //           return %StringEqual(lhs, rhs);
8466   //         } else {
8467   //           return false;
8468   //         }
8469   //       } else if (lhs->IsSimd128()) {
8470   //         if (rhs->IsSimd128()) {
8471   //           return %StrictEqual(lhs, rhs);
8472   //         }
8473   //       } else {
8474   //         return false;
8475   //       }
8476   //     }
8477   //   }
8478   // } else {
8479   //   if (rhs->IsSmi()) {
8480   //     return false;
8481   //   } else {
8482   //     if (rhs->IsHeapNumber()) {
8483   //       return Smi::cast(lhs)->value() == HeapNumber::cast(rhs)->value();
8484   //     } else {
8485   //       return false;
8486   //     }
8487   //   }
8488   // }
8489 
8490   typedef compiler::Node Node;
8491 
8492   Label if_equal(this), if_notequal(this), end(this);
8493   Variable result(this, MachineRepresentation::kTagged);
8494 
8495   // Check if {lhs} and {rhs} refer to the same object.
8496   Label if_same(this), if_notsame(this);
8497   Branch(WordEqual(lhs, rhs), &if_same, &if_notsame);
8498 
8499   Bind(&if_same);
8500   {
8501     // The {lhs} and {rhs} reference the exact same value, yet we need special
8502     // treatment for HeapNumber, as NaN is not equal to NaN.
8503     GenerateEqual_Same(this, lhs, &if_equal, &if_notequal);
8504   }
8505 
8506   Bind(&if_notsame);
8507   {
8508     // The {lhs} and {rhs} reference different objects, yet for Smi, HeapNumber,
8509     // String and Simd128Value they can still be considered equal.
8510     Node* number_map = HeapNumberMapConstant();
8511 
8512     // Check if {lhs} is a Smi or a HeapObject.
8513     Label if_lhsissmi(this), if_lhsisnotsmi(this);
8514     Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi);
8515 
8516     Bind(&if_lhsisnotsmi);
8517     {
8518       // Load the map of {lhs}.
8519       Node* lhs_map = LoadMap(lhs);
8520 
8521       // Check if {lhs} is a HeapNumber.
8522       Label if_lhsisnumber(this), if_lhsisnotnumber(this);
8523       Branch(WordEqual(lhs_map, number_map), &if_lhsisnumber,
8524              &if_lhsisnotnumber);
8525 
8526       Bind(&if_lhsisnumber);
8527       {
8528         // Check if {rhs} is a Smi or a HeapObject.
8529         Label if_rhsissmi(this), if_rhsisnotsmi(this);
8530         Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
8531 
8532         Bind(&if_rhsissmi);
8533         {
8534           // Convert {lhs} and {rhs} to floating point values.
8535           Node* lhs_value = LoadHeapNumberValue(lhs);
8536           Node* rhs_value = SmiToFloat64(rhs);
8537 
8538           // Perform a floating point comparison of {lhs} and {rhs}.
8539           Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal);
8540         }
8541 
8542         Bind(&if_rhsisnotsmi);
8543         {
8544           // Load the map of {rhs}.
8545           Node* rhs_map = LoadMap(rhs);
8546 
8547           // Check if {rhs} is also a HeapNumber.
8548           Label if_rhsisnumber(this), if_rhsisnotnumber(this);
8549           Branch(WordEqual(rhs_map, number_map), &if_rhsisnumber,
8550                  &if_rhsisnotnumber);
8551 
8552           Bind(&if_rhsisnumber);
8553           {
8554             // Convert {lhs} and {rhs} to floating point values.
8555             Node* lhs_value = LoadHeapNumberValue(lhs);
8556             Node* rhs_value = LoadHeapNumberValue(rhs);
8557 
8558             // Perform a floating point comparison of {lhs} and {rhs}.
8559             Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal);
8560           }
8561 
8562           Bind(&if_rhsisnotnumber);
8563           Goto(&if_notequal);
8564         }
8565       }
8566 
8567       Bind(&if_lhsisnotnumber);
8568       {
8569         // Check if {rhs} is a Smi or a HeapObject.
8570         Label if_rhsissmi(this), if_rhsisnotsmi(this);
8571         Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
8572 
8573         Bind(&if_rhsissmi);
8574         Goto(&if_notequal);
8575 
8576         Bind(&if_rhsisnotsmi);
8577         {
8578           // Load the instance type of {lhs}.
8579           Node* lhs_instance_type = LoadMapInstanceType(lhs_map);
8580 
8581           // Check if {lhs} is a String.
8582           Label if_lhsisstring(this), if_lhsisnotstring(this);
8583           Branch(IsStringInstanceType(lhs_instance_type), &if_lhsisstring,
8584                  &if_lhsisnotstring);
8585 
8586           Bind(&if_lhsisstring);
8587           {
8588             // Load the instance type of {rhs}.
8589             Node* rhs_instance_type = LoadInstanceType(rhs);
8590 
8591             // Check if {rhs} is also a String.
8592             Label if_rhsisstring(this, Label::kDeferred),
8593                 if_rhsisnotstring(this);
8594             Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring,
8595                    &if_rhsisnotstring);
8596 
8597             Bind(&if_rhsisstring);
8598             {
8599               Callable callable = (mode == kDontNegateResult)
8600                                       ? CodeFactory::StringEqual(isolate())
8601                                       : CodeFactory::StringNotEqual(isolate());
8602               result.Bind(CallStub(callable, context, lhs, rhs));
8603               Goto(&end);
8604             }
8605 
8606             Bind(&if_rhsisnotstring);
8607             Goto(&if_notequal);
8608           }
8609 
8610           Bind(&if_lhsisnotstring);
8611           {
8612             // Check if {lhs} is a Simd128Value.
8613             Label if_lhsissimd128value(this), if_lhsisnotsimd128value(this);
8614             Branch(Word32Equal(lhs_instance_type,
8615                                Int32Constant(SIMD128_VALUE_TYPE)),
8616                    &if_lhsissimd128value, &if_lhsisnotsimd128value);
8617 
8618             Bind(&if_lhsissimd128value);
8619             {
8620               // Load the map of {rhs}.
8621               Node* rhs_map = LoadMap(rhs);
8622 
8623               // Check if {rhs} is also a Simd128Value that is equal to {lhs}.
8624               GenerateEqual_Simd128Value_HeapObject(
8625                   this, lhs, lhs_map, rhs, rhs_map, &if_equal, &if_notequal);
8626             }
8627 
8628             Bind(&if_lhsisnotsimd128value);
8629             Goto(&if_notequal);
8630           }
8631         }
8632       }
8633     }
8634 
8635     Bind(&if_lhsissmi);
8636     {
8637       // We already know that {lhs} and {rhs} are not reference equal, and {lhs}
8638       // is a Smi; so {lhs} and {rhs} can only be strictly equal if {rhs} is a
8639       // HeapNumber with an equal floating point value.
8640 
8641       // Check if {rhs} is a Smi or a HeapObject.
8642       Label if_rhsissmi(this), if_rhsisnotsmi(this);
8643       Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
8644 
8645       Bind(&if_rhsissmi);
8646       Goto(&if_notequal);
8647 
8648       Bind(&if_rhsisnotsmi);
8649       {
8650         // Load the map of the {rhs}.
8651         Node* rhs_map = LoadMap(rhs);
8652 
8653         // The {rhs} could be a HeapNumber with the same value as {lhs}.
8654         Label if_rhsisnumber(this), if_rhsisnotnumber(this);
8655         Branch(WordEqual(rhs_map, number_map), &if_rhsisnumber,
8656                &if_rhsisnotnumber);
8657 
8658         Bind(&if_rhsisnumber);
8659         {
8660           // Convert {lhs} and {rhs} to floating point values.
8661           Node* lhs_value = SmiToFloat64(lhs);
8662           Node* rhs_value = LoadHeapNumberValue(rhs);
8663 
8664           // Perform a floating point comparison of {lhs} and {rhs}.
8665           Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal);
8666         }
8667 
8668         Bind(&if_rhsisnotnumber);
8669         Goto(&if_notequal);
8670       }
8671     }
8672   }
8673 
8674   Bind(&if_equal);
8675   {
8676     result.Bind(BooleanConstant(mode == kDontNegateResult));
8677     Goto(&end);
8678   }
8679 
8680   Bind(&if_notequal);
8681   {
8682     result.Bind(BooleanConstant(mode == kNegateResult));
8683     Goto(&end);
8684   }
8685 
8686   Bind(&end);
8687   return result.value();
8688 }
8689 
8690 // ECMA#sec-samevalue
8691 // This algorithm differs from the Strict Equality Comparison Algorithm in its
8692 // treatment of signed zeroes and NaNs.
SameValue(compiler::Node * lhs,compiler::Node * rhs,compiler::Node * context)8693 compiler::Node* CodeStubAssembler::SameValue(compiler::Node* lhs,
8694                                              compiler::Node* rhs,
8695                                              compiler::Node* context) {
8696   Variable var_result(this, MachineType::PointerRepresentation());
8697   Label strict_equal(this), out(this);
8698 
8699   Node* const int_false = IntPtrConstant(0);
8700   Node* const int_true = IntPtrConstant(1);
8701 
8702   Label if_equal(this), if_notequal(this);
8703   Branch(WordEqual(lhs, rhs), &if_equal, &if_notequal);
8704 
8705   Bind(&if_equal);
8706   {
8707     // This covers the case when {lhs} == {rhs}. We can simply return true
8708     // because SameValue considers two NaNs to be equal.
8709 
8710     var_result.Bind(int_true);
8711     Goto(&out);
8712   }
8713 
8714   Bind(&if_notequal);
8715   {
8716     // This covers the case when {lhs} != {rhs}. We only handle numbers here
8717     // and defer to StrictEqual for the rest.
8718 
8719     Node* const lhs_float = TryTaggedToFloat64(lhs, &strict_equal);
8720     Node* const rhs_float = TryTaggedToFloat64(rhs, &strict_equal);
8721 
8722     Label if_lhsisnan(this), if_lhsnotnan(this);
8723     BranchIfFloat64IsNaN(lhs_float, &if_lhsisnan, &if_lhsnotnan);
8724 
8725     Bind(&if_lhsisnan);
8726     {
8727       // Return true iff {rhs} is NaN.
8728 
8729       Node* const result =
8730           Select(Float64Equal(rhs_float, rhs_float), int_false, int_true,
8731                  MachineType::PointerRepresentation());
8732       var_result.Bind(result);
8733       Goto(&out);
8734     }
8735 
8736     Bind(&if_lhsnotnan);
8737     {
8738       Label if_floatisequal(this), if_floatnotequal(this);
8739       Branch(Float64Equal(lhs_float, rhs_float), &if_floatisequal,
8740              &if_floatnotequal);
8741 
8742       Bind(&if_floatisequal);
8743       {
8744         // We still need to handle the case when {lhs} and {rhs} are -0.0 and
8745         // 0.0 (or vice versa). Compare the high word to
8746         // distinguish between the two.
8747 
8748         Node* const lhs_hi_word = Float64ExtractHighWord32(lhs_float);
8749         Node* const rhs_hi_word = Float64ExtractHighWord32(rhs_float);
8750 
8751         // If x is +0 and y is -0, return false.
8752         // If x is -0 and y is +0, return false.
8753 
8754         Node* const result = Word32Equal(lhs_hi_word, rhs_hi_word);
8755         var_result.Bind(result);
8756         Goto(&out);
8757       }
8758 
8759       Bind(&if_floatnotequal);
8760       {
8761         var_result.Bind(int_false);
8762         Goto(&out);
8763       }
8764     }
8765   }
8766 
8767   Bind(&strict_equal);
8768   {
8769     Node* const is_equal = StrictEqual(kDontNegateResult, lhs, rhs, context);
8770     Node* const result = WordEqual(is_equal, TrueConstant());
8771     var_result.Bind(result);
8772     Goto(&out);
8773   }
8774 
8775   Bind(&out);
8776   return var_result.value();
8777 }
8778 
ForInFilter(compiler::Node * key,compiler::Node * object,compiler::Node * context)8779 compiler::Node* CodeStubAssembler::ForInFilter(compiler::Node* key,
8780                                                compiler::Node* object,
8781                                                compiler::Node* context) {
8782   Label return_undefined(this, Label::kDeferred), return_to_name(this),
8783       end(this);
8784 
8785   Variable var_result(this, MachineRepresentation::kTagged);
8786 
8787   Node* has_property =
8788       HasProperty(object, key, context, Runtime::kForInHasProperty);
8789 
8790   Branch(WordEqual(has_property, BooleanConstant(true)), &return_to_name,
8791          &return_undefined);
8792 
8793   Bind(&return_to_name);
8794   {
8795     var_result.Bind(ToName(context, key));
8796     Goto(&end);
8797   }
8798 
8799   Bind(&return_undefined);
8800   {
8801     var_result.Bind(UndefinedConstant());
8802     Goto(&end);
8803   }
8804 
8805   Bind(&end);
8806   return var_result.value();
8807 }
8808 
HasProperty(compiler::Node * object,compiler::Node * key,compiler::Node * context,Runtime::FunctionId fallback_runtime_function_id)8809 compiler::Node* CodeStubAssembler::HasProperty(
8810     compiler::Node* object, compiler::Node* key, compiler::Node* context,
8811     Runtime::FunctionId fallback_runtime_function_id) {
8812   typedef compiler::Node Node;
8813   typedef CodeStubAssembler::Label Label;
8814   typedef CodeStubAssembler::Variable Variable;
8815 
8816   Label call_runtime(this, Label::kDeferred), return_true(this),
8817       return_false(this), end(this);
8818 
8819   CodeStubAssembler::LookupInHolder lookup_property_in_holder =
8820       [this, &return_true](Node* receiver, Node* holder, Node* holder_map,
8821                            Node* holder_instance_type, Node* unique_name,
8822                            Label* next_holder, Label* if_bailout) {
8823         TryHasOwnProperty(holder, holder_map, holder_instance_type, unique_name,
8824                           &return_true, next_holder, if_bailout);
8825       };
8826 
8827   CodeStubAssembler::LookupInHolder lookup_element_in_holder =
8828       [this, &return_true](Node* receiver, Node* holder, Node* holder_map,
8829                            Node* holder_instance_type, Node* index,
8830                            Label* next_holder, Label* if_bailout) {
8831         TryLookupElement(holder, holder_map, holder_instance_type, index,
8832                          &return_true, next_holder, if_bailout);
8833       };
8834 
8835   TryPrototypeChainLookup(object, key, lookup_property_in_holder,
8836                           lookup_element_in_holder, &return_false,
8837                           &call_runtime);
8838 
8839   Variable result(this, MachineRepresentation::kTagged);
8840   Bind(&return_true);
8841   {
8842     result.Bind(BooleanConstant(true));
8843     Goto(&end);
8844   }
8845 
8846   Bind(&return_false);
8847   {
8848     result.Bind(BooleanConstant(false));
8849     Goto(&end);
8850   }
8851 
8852   Bind(&call_runtime);
8853   {
8854     result.Bind(
8855         CallRuntime(fallback_runtime_function_id, context, object, key));
8856     Goto(&end);
8857   }
8858 
8859   Bind(&end);
8860   return result.value();
8861 }
8862 
Typeof(compiler::Node * value,compiler::Node * context)8863 compiler::Node* CodeStubAssembler::Typeof(compiler::Node* value,
8864                                           compiler::Node* context) {
8865   Variable result_var(this, MachineRepresentation::kTagged);
8866 
8867   Label return_number(this, Label::kDeferred), if_oddball(this),
8868       return_function(this), return_undefined(this), return_object(this),
8869       return_string(this), return_result(this);
8870 
8871   GotoIf(TaggedIsSmi(value), &return_number);
8872 
8873   Node* map = LoadMap(value);
8874 
8875   GotoIf(IsHeapNumberMap(map), &return_number);
8876 
8877   Node* instance_type = LoadMapInstanceType(map);
8878 
8879   GotoIf(Word32Equal(instance_type, Int32Constant(ODDBALL_TYPE)), &if_oddball);
8880 
8881   Node* callable_or_undetectable_mask = Word32And(
8882       LoadMapBitField(map),
8883       Int32Constant(1 << Map::kIsCallable | 1 << Map::kIsUndetectable));
8884 
8885   GotoIf(Word32Equal(callable_or_undetectable_mask,
8886                      Int32Constant(1 << Map::kIsCallable)),
8887          &return_function);
8888 
8889   GotoUnless(Word32Equal(callable_or_undetectable_mask, Int32Constant(0)),
8890              &return_undefined);
8891 
8892   GotoIf(IsJSReceiverInstanceType(instance_type), &return_object);
8893 
8894   GotoIf(IsStringInstanceType(instance_type), &return_string);
8895 
8896 #define SIMD128_BRANCH(TYPE, Type, type, lane_count, lane_type) \
8897   Label return_##type(this);                                    \
8898   Node* type##_map = HeapConstant(factory()->type##_map());     \
8899   GotoIf(WordEqual(map, type##_map), &return_##type);
8900   SIMD128_TYPES(SIMD128_BRANCH)
8901 #undef SIMD128_BRANCH
8902 
8903   CSA_ASSERT(this, Word32Equal(instance_type, Int32Constant(SYMBOL_TYPE)));
8904   result_var.Bind(HeapConstant(isolate()->factory()->symbol_string()));
8905   Goto(&return_result);
8906 
8907   Bind(&return_number);
8908   {
8909     result_var.Bind(HeapConstant(isolate()->factory()->number_string()));
8910     Goto(&return_result);
8911   }
8912 
8913   Bind(&if_oddball);
8914   {
8915     Node* type = LoadObjectField(value, Oddball::kTypeOfOffset);
8916     result_var.Bind(type);
8917     Goto(&return_result);
8918   }
8919 
8920   Bind(&return_function);
8921   {
8922     result_var.Bind(HeapConstant(isolate()->factory()->function_string()));
8923     Goto(&return_result);
8924   }
8925 
8926   Bind(&return_undefined);
8927   {
8928     result_var.Bind(HeapConstant(isolate()->factory()->undefined_string()));
8929     Goto(&return_result);
8930   }
8931 
8932   Bind(&return_object);
8933   {
8934     result_var.Bind(HeapConstant(isolate()->factory()->object_string()));
8935     Goto(&return_result);
8936   }
8937 
8938   Bind(&return_string);
8939   {
8940     result_var.Bind(HeapConstant(isolate()->factory()->string_string()));
8941     Goto(&return_result);
8942   }
8943 
8944 #define SIMD128_BIND_RETURN(TYPE, Type, type, lane_count, lane_type)      \
8945   Bind(&return_##type);                                                   \
8946   {                                                                       \
8947     result_var.Bind(HeapConstant(isolate()->factory()->type##_string())); \
8948     Goto(&return_result);                                                 \
8949   }
8950   SIMD128_TYPES(SIMD128_BIND_RETURN)
8951 #undef SIMD128_BIND_RETURN
8952 
8953   Bind(&return_result);
8954   return result_var.value();
8955 }
8956 
InstanceOf(compiler::Node * object,compiler::Node * callable,compiler::Node * context)8957 compiler::Node* CodeStubAssembler::InstanceOf(compiler::Node* object,
8958                                               compiler::Node* callable,
8959                                               compiler::Node* context) {
8960   Label return_runtime(this, Label::kDeferred), end(this);
8961   Variable result(this, MachineRepresentation::kTagged);
8962 
8963   // Check if no one installed @@hasInstance somewhere.
8964   GotoUnless(
8965       WordEqual(LoadObjectField(LoadRoot(Heap::kHasInstanceProtectorRootIndex),
8966                                 PropertyCell::kValueOffset),
8967                 SmiConstant(Smi::FromInt(Isolate::kProtectorValid))),
8968       &return_runtime);
8969 
8970   // Check if {callable} is a valid receiver.
8971   GotoIf(TaggedIsSmi(callable), &return_runtime);
8972   GotoUnless(IsCallableMap(LoadMap(callable)), &return_runtime);
8973 
8974   // Use the inline OrdinaryHasInstance directly.
8975   result.Bind(OrdinaryHasInstance(context, callable, object));
8976   Goto(&end);
8977 
8978   // TODO(bmeurer): Use GetPropertyStub here once available.
8979   Bind(&return_runtime);
8980   {
8981     result.Bind(CallRuntime(Runtime::kInstanceOf, context, object, callable));
8982     Goto(&end);
8983   }
8984 
8985   Bind(&end);
8986   return result.value();
8987 }
8988 
NumberInc(compiler::Node * value)8989 compiler::Node* CodeStubAssembler::NumberInc(compiler::Node* value) {
8990   Variable var_result(this, MachineRepresentation::kTagged),
8991       var_finc_value(this, MachineRepresentation::kFloat64);
8992   Label if_issmi(this), if_isnotsmi(this), do_finc(this), end(this);
8993   Branch(TaggedIsSmi(value), &if_issmi, &if_isnotsmi);
8994 
8995   Bind(&if_issmi);
8996   {
8997     // Try fast Smi addition first.
8998     Node* one = SmiConstant(Smi::FromInt(1));
8999     Node* pair = IntPtrAddWithOverflow(BitcastTaggedToWord(value),
9000                                        BitcastTaggedToWord(one));
9001     Node* overflow = Projection(1, pair);
9002 
9003     // Check if the Smi addition overflowed.
9004     Label if_overflow(this), if_notoverflow(this);
9005     Branch(overflow, &if_overflow, &if_notoverflow);
9006 
9007     Bind(&if_notoverflow);
9008     var_result.Bind(Projection(0, pair));
9009     Goto(&end);
9010 
9011     Bind(&if_overflow);
9012     {
9013       var_finc_value.Bind(SmiToFloat64(value));
9014       Goto(&do_finc);
9015     }
9016   }
9017 
9018   Bind(&if_isnotsmi);
9019   {
9020     // Check if the value is a HeapNumber.
9021     CSA_ASSERT(this, IsHeapNumberMap(LoadMap(value)));
9022 
9023     // Load the HeapNumber value.
9024     var_finc_value.Bind(LoadHeapNumberValue(value));
9025     Goto(&do_finc);
9026   }
9027 
9028   Bind(&do_finc);
9029   {
9030     Node* finc_value = var_finc_value.value();
9031     Node* one = Float64Constant(1.0);
9032     Node* finc_result = Float64Add(finc_value, one);
9033     var_result.Bind(AllocateHeapNumberWithValue(finc_result));
9034     Goto(&end);
9035   }
9036 
9037   Bind(&end);
9038   return var_result.value();
9039 }
9040 
CreateArrayIterator(compiler::Node * array,compiler::Node * array_map,compiler::Node * array_type,compiler::Node * context,IterationKind mode)9041 compiler::Node* CodeStubAssembler::CreateArrayIterator(
9042     compiler::Node* array, compiler::Node* array_map,
9043     compiler::Node* array_type, compiler::Node* context, IterationKind mode) {
9044   int kBaseMapIndex = 0;
9045   switch (mode) {
9046     case IterationKind::kKeys:
9047       kBaseMapIndex = Context::TYPED_ARRAY_KEY_ITERATOR_MAP_INDEX;
9048       break;
9049     case IterationKind::kValues:
9050       kBaseMapIndex = Context::UINT8_ARRAY_VALUE_ITERATOR_MAP_INDEX;
9051       break;
9052     case IterationKind::kEntries:
9053       kBaseMapIndex = Context::UINT8_ARRAY_KEY_VALUE_ITERATOR_MAP_INDEX;
9054       break;
9055   }
9056 
9057   // Fast Array iterator map index:
9058   // (kBaseIndex + kFastIteratorOffset) + ElementsKind (for JSArrays)
9059   // kBaseIndex + (ElementsKind - UINT8_ELEMENTS) (for JSTypedArrays)
9060   const int kFastIteratorOffset =
9061       Context::FAST_SMI_ARRAY_VALUE_ITERATOR_MAP_INDEX -
9062       Context::UINT8_ARRAY_VALUE_ITERATOR_MAP_INDEX;
9063   STATIC_ASSERT(kFastIteratorOffset ==
9064                 (Context::FAST_SMI_ARRAY_KEY_VALUE_ITERATOR_MAP_INDEX -
9065                  Context::UINT8_ARRAY_KEY_VALUE_ITERATOR_MAP_INDEX));
9066 
9067   // Slow Array iterator map index: (kBaseIndex + kSlowIteratorOffset)
9068   const int kSlowIteratorOffset =
9069       Context::GENERIC_ARRAY_VALUE_ITERATOR_MAP_INDEX -
9070       Context::UINT8_ARRAY_VALUE_ITERATOR_MAP_INDEX;
9071   STATIC_ASSERT(kSlowIteratorOffset ==
9072                 (Context::GENERIC_ARRAY_KEY_VALUE_ITERATOR_MAP_INDEX -
9073                  Context::UINT8_ARRAY_KEY_VALUE_ITERATOR_MAP_INDEX));
9074 
9075   // Assert: Type(array) is Object
9076   CSA_ASSERT(this, IsJSReceiverInstanceType(array_type));
9077 
9078   Variable var_result(this, MachineRepresentation::kTagged);
9079   Variable var_map_index(this, MachineType::PointerRepresentation());
9080   Variable var_array_map(this, MachineRepresentation::kTagged);
9081 
9082   Label return_result(this);
9083   Label allocate_iterator(this);
9084 
9085   if (mode == IterationKind::kKeys) {
9086     // There are only two key iterator maps, branch depending on whether or not
9087     // the receiver is a TypedArray or not.
9088 
9089     Label if_istypedarray(this), if_isgeneric(this);
9090 
9091     Branch(Word32Equal(array_type, Int32Constant(JS_TYPED_ARRAY_TYPE)),
9092            &if_istypedarray, &if_isgeneric);
9093 
9094     Bind(&if_isgeneric);
9095     {
9096       Label if_isfast(this), if_isslow(this);
9097       BranchIfFastJSArray(array, context, &if_isfast, &if_isslow);
9098 
9099       Bind(&if_isfast);
9100       {
9101         var_map_index.Bind(
9102             IntPtrConstant(Context::FAST_ARRAY_KEY_ITERATOR_MAP_INDEX));
9103         var_array_map.Bind(array_map);
9104         Goto(&allocate_iterator);
9105       }
9106 
9107       Bind(&if_isslow);
9108       {
9109         var_map_index.Bind(
9110             IntPtrConstant(Context::GENERIC_ARRAY_KEY_ITERATOR_MAP_INDEX));
9111         var_array_map.Bind(UndefinedConstant());
9112         Goto(&allocate_iterator);
9113       }
9114     }
9115 
9116     Bind(&if_istypedarray);
9117     {
9118       var_map_index.Bind(
9119           IntPtrConstant(Context::TYPED_ARRAY_KEY_ITERATOR_MAP_INDEX));
9120       var_array_map.Bind(UndefinedConstant());
9121       Goto(&allocate_iterator);
9122     }
9123   } else {
9124     Label if_istypedarray(this), if_isgeneric(this);
9125     Branch(Word32Equal(array_type, Int32Constant(JS_TYPED_ARRAY_TYPE)),
9126            &if_istypedarray, &if_isgeneric);
9127 
9128     Bind(&if_isgeneric);
9129     {
9130       Label if_isfast(this), if_isslow(this);
9131       BranchIfFastJSArray(array, context, &if_isfast, &if_isslow);
9132 
9133       Bind(&if_isfast);
9134       {
9135         Label if_ispacked(this), if_isholey(this);
9136         Node* elements_kind = LoadMapElementsKind(array_map);
9137         Branch(IsHoleyFastElementsKind(elements_kind), &if_isholey,
9138                &if_ispacked);
9139 
9140         Bind(&if_isholey);
9141         {
9142           // Fast holey JSArrays can treat the hole as undefined if the
9143           // protector cell is valid, and the prototype chain is unchanged from
9144           // its initial state (because the protector cell is only tracked for
9145           // initial the Array and Object prototypes). Check these conditions
9146           // here, and take the slow path if any fail.
9147           Node* protector_cell = LoadRoot(Heap::kArrayProtectorRootIndex);
9148           DCHECK(isolate()->heap()->array_protector()->IsPropertyCell());
9149           GotoUnless(
9150               WordEqual(
9151                   LoadObjectField(protector_cell, PropertyCell::kValueOffset),
9152                   SmiConstant(Smi::FromInt(Isolate::kProtectorValid))),
9153               &if_isslow);
9154 
9155           Node* native_context = LoadNativeContext(context);
9156 
9157           Node* prototype = LoadMapPrototype(array_map);
9158           Node* array_prototype = LoadContextElement(
9159               native_context, Context::INITIAL_ARRAY_PROTOTYPE_INDEX);
9160           GotoUnless(WordEqual(prototype, array_prototype), &if_isslow);
9161 
9162           Node* map = LoadMap(prototype);
9163           prototype = LoadMapPrototype(map);
9164           Node* object_prototype = LoadContextElement(
9165               native_context, Context::INITIAL_OBJECT_PROTOTYPE_INDEX);
9166           GotoUnless(WordEqual(prototype, object_prototype), &if_isslow);
9167 
9168           map = LoadMap(prototype);
9169           prototype = LoadMapPrototype(map);
9170           Branch(IsNull(prototype), &if_ispacked, &if_isslow);
9171         }
9172         Bind(&if_ispacked);
9173         {
9174           Node* map_index =
9175               IntPtrAdd(IntPtrConstant(kBaseMapIndex + kFastIteratorOffset),
9176                         LoadMapElementsKind(array_map));
9177           CSA_ASSERT(this, IntPtrGreaterThanOrEqual(
9178                                map_index, IntPtrConstant(kBaseMapIndex +
9179                                                          kFastIteratorOffset)));
9180           CSA_ASSERT(this, IntPtrLessThan(map_index,
9181                                           IntPtrConstant(kBaseMapIndex +
9182                                                          kSlowIteratorOffset)));
9183 
9184           var_map_index.Bind(map_index);
9185           var_array_map.Bind(array_map);
9186           Goto(&allocate_iterator);
9187         }
9188       }
9189 
9190       Bind(&if_isslow);
9191       {
9192         Node* map_index = IntPtrAdd(IntPtrConstant(kBaseMapIndex),
9193                                     IntPtrConstant(kSlowIteratorOffset));
9194         var_map_index.Bind(map_index);
9195         var_array_map.Bind(UndefinedConstant());
9196         Goto(&allocate_iterator);
9197       }
9198     }
9199 
9200     Bind(&if_istypedarray);
9201     {
9202       Node* map_index =
9203           IntPtrAdd(IntPtrConstant(kBaseMapIndex - UINT8_ELEMENTS),
9204                     LoadMapElementsKind(array_map));
9205       CSA_ASSERT(
9206           this, IntPtrLessThan(map_index, IntPtrConstant(kBaseMapIndex +
9207                                                          kFastIteratorOffset)));
9208       CSA_ASSERT(this, IntPtrGreaterThanOrEqual(map_index,
9209                                                 IntPtrConstant(kBaseMapIndex)));
9210       var_map_index.Bind(map_index);
9211       var_array_map.Bind(UndefinedConstant());
9212       Goto(&allocate_iterator);
9213     }
9214   }
9215 
9216   Bind(&allocate_iterator);
9217   {
9218     Node* map =
9219         LoadFixedArrayElement(LoadNativeContext(context), var_map_index.value(),
9220                               0, CodeStubAssembler::INTPTR_PARAMETERS);
9221     var_result.Bind(AllocateJSArrayIterator(array, var_array_map.value(), map));
9222     Goto(&return_result);
9223   }
9224 
9225   Bind(&return_result);
9226   return var_result.value();
9227 }
9228 
AllocateJSArrayIterator(compiler::Node * array,compiler::Node * array_map,compiler::Node * map)9229 compiler::Node* CodeStubAssembler::AllocateJSArrayIterator(
9230     compiler::Node* array, compiler::Node* array_map, compiler::Node* map) {
9231   Node* iterator = Allocate(JSArrayIterator::kSize);
9232   StoreMapNoWriteBarrier(iterator, map);
9233   StoreObjectFieldRoot(iterator, JSArrayIterator::kPropertiesOffset,
9234                        Heap::kEmptyFixedArrayRootIndex);
9235   StoreObjectFieldRoot(iterator, JSArrayIterator::kElementsOffset,
9236                        Heap::kEmptyFixedArrayRootIndex);
9237   StoreObjectFieldNoWriteBarrier(iterator,
9238                                  JSArrayIterator::kIteratedObjectOffset, array);
9239   StoreObjectFieldNoWriteBarrier(iterator, JSArrayIterator::kNextIndexOffset,
9240                                  SmiConstant(Smi::FromInt(0)));
9241   StoreObjectFieldNoWriteBarrier(
9242       iterator, JSArrayIterator::kIteratedObjectMapOffset, array_map);
9243   return iterator;
9244 }
9245 
IsDetachedBuffer(compiler::Node * buffer)9246 compiler::Node* CodeStubAssembler::IsDetachedBuffer(compiler::Node* buffer) {
9247   CSA_ASSERT(this, HasInstanceType(buffer, JS_ARRAY_BUFFER_TYPE));
9248 
9249   Node* buffer_bit_field = LoadObjectField(
9250       buffer, JSArrayBuffer::kBitFieldOffset, MachineType::Uint32());
9251   Node* was_neutered_mask = Int32Constant(JSArrayBuffer::WasNeutered::kMask);
9252 
9253   return Word32NotEqual(Word32And(buffer_bit_field, was_neutered_mask),
9254                         Int32Constant(0));
9255 }
9256 
CodeStubArguments(CodeStubAssembler * assembler,compiler::Node * argc,CodeStubAssembler::ParameterMode mode)9257 CodeStubArguments::CodeStubArguments(CodeStubAssembler* assembler,
9258                                      compiler::Node* argc,
9259                                      CodeStubAssembler::ParameterMode mode)
9260     : assembler_(assembler),
9261       argc_(argc),
9262       arguments_(nullptr),
9263       fp_(assembler->LoadFramePointer()) {
9264   compiler::Node* offset = assembler->ElementOffsetFromIndex(
9265       argc_, FAST_ELEMENTS, mode,
9266       (StandardFrameConstants::kFixedSlotCountAboveFp - 1) * kPointerSize);
9267   arguments_ = assembler_->IntPtrAddFoldConstants(fp_, offset);
9268   if (mode == CodeStubAssembler::INTEGER_PARAMETERS) {
9269     argc_ = assembler->ChangeInt32ToIntPtr(argc_);
9270   } else if (mode == CodeStubAssembler::SMI_PARAMETERS) {
9271     argc_ = assembler->SmiUntag(argc_);
9272   }
9273 }
9274 
GetReceiver()9275 compiler::Node* CodeStubArguments::GetReceiver() {
9276   return assembler_->Load(MachineType::AnyTagged(), arguments_,
9277                           assembler_->IntPtrConstant(kPointerSize));
9278 }
9279 
AtIndex(compiler::Node * index,CodeStubAssembler::ParameterMode mode)9280 compiler::Node* CodeStubArguments::AtIndex(
9281     compiler::Node* index, CodeStubAssembler::ParameterMode mode) {
9282   typedef compiler::Node Node;
9283   Node* negated_index = assembler_->IntPtrSubFoldConstants(
9284       assembler_->IntPtrOrSmiConstant(0, mode), index);
9285   Node* offset =
9286       assembler_->ElementOffsetFromIndex(negated_index, FAST_ELEMENTS, mode, 0);
9287   return assembler_->Load(MachineType::AnyTagged(), arguments_, offset);
9288 }
9289 
AtIndex(int index)9290 compiler::Node* CodeStubArguments::AtIndex(int index) {
9291   return AtIndex(assembler_->IntPtrConstant(index));
9292 }
9293 
ForEach(const CodeStubAssembler::VariableList & vars,CodeStubArguments::ForEachBodyFunction body,compiler::Node * first,compiler::Node * last,CodeStubAssembler::ParameterMode mode)9294 void CodeStubArguments::ForEach(const CodeStubAssembler::VariableList& vars,
9295                                 CodeStubArguments::ForEachBodyFunction body,
9296                                 compiler::Node* first, compiler::Node* last,
9297                                 CodeStubAssembler::ParameterMode mode) {
9298   assembler_->Comment("CodeStubArguments::ForEach");
9299   DCHECK_IMPLIES(first == nullptr || last == nullptr,
9300                  mode == CodeStubAssembler::INTPTR_PARAMETERS);
9301   if (first == nullptr) {
9302     first = assembler_->IntPtrOrSmiConstant(0, mode);
9303   }
9304   if (last == nullptr) {
9305     last = argc_;
9306   }
9307   compiler::Node* start = assembler_->IntPtrSubFoldConstants(
9308       arguments_,
9309       assembler_->ElementOffsetFromIndex(first, FAST_ELEMENTS, mode));
9310   compiler::Node* end = assembler_->IntPtrSubFoldConstants(
9311       arguments_,
9312       assembler_->ElementOffsetFromIndex(last, FAST_ELEMENTS, mode));
9313   assembler_->BuildFastLoop(
9314       vars, MachineType::PointerRepresentation(), start, end,
9315       [body](CodeStubAssembler* assembler, compiler::Node* current) {
9316         Node* arg = assembler->Load(MachineType::AnyTagged(), current);
9317         body(assembler, arg);
9318       },
9319       -kPointerSize, CodeStubAssembler::IndexAdvanceMode::kPost);
9320 }
9321 
PopAndReturn(compiler::Node * value)9322 void CodeStubArguments::PopAndReturn(compiler::Node* value) {
9323   assembler_->PopAndReturn(
9324       assembler_->IntPtrAddFoldConstants(argc_, assembler_->IntPtrConstant(1)),
9325       value);
9326 }
9327 
IsFastElementsKind(compiler::Node * elements_kind)9328 compiler::Node* CodeStubAssembler::IsFastElementsKind(
9329     compiler::Node* elements_kind) {
9330   return Uint32LessThanOrEqual(elements_kind,
9331                                Int32Constant(LAST_FAST_ELEMENTS_KIND));
9332 }
9333 
IsHoleyFastElementsKind(compiler::Node * elements_kind)9334 compiler::Node* CodeStubAssembler::IsHoleyFastElementsKind(
9335     compiler::Node* elements_kind) {
9336   CSA_ASSERT(this, IsFastElementsKind(elements_kind));
9337 
9338   STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == (FAST_SMI_ELEMENTS | 1));
9339   STATIC_ASSERT(FAST_HOLEY_ELEMENTS == (FAST_ELEMENTS | 1));
9340   STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == (FAST_DOUBLE_ELEMENTS | 1));
9341 
9342   // Check prototype chain if receiver does not have packed elements.
9343   Node* holey_elements = Word32And(elements_kind, Int32Constant(1));
9344   return Word32Equal(holey_elements, Int32Constant(1));
9345 }
9346 
9347 }  // namespace internal
9348 }  // namespace v8
9349