1 /*
2  * Copyright (C) 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package com.android.tools.layoutlib.java;
18 
19 /**
20  * Defines the same class as the java.lang.IntegralToString which was added in
21  * Dalvik VM. This hack, provides a replacement for that class which can't be
22  * loaded in the standard JVM since it's in the java package and standard JVM
23  * doesn't have it. Since it's no longer in java.lang, access to package
24  * private methods and classes has been replaced by the closes matching public
25  * implementation.
26  * <p/>
27  * Extracted from API level 18, file:
28  * platform/libcore/luni/src/main/java/java/lang/IntegralToString.java
29  */
30 public final class IntegralToString {
31     /**
32      * When appending to an AbstractStringBuilder, this thread-local char[] lets us avoid
33      * allocation of a temporary array. (We can't write straight into the AbstractStringBuilder
34      * because it's almost as expensive to work out the exact length of the result as it is to
35      * do the formatting. We could try being conservative and "delete"-ing the unused space
36      * afterwards, but then we'd need to duplicate convertInt and convertLong rather than share
37      * the code.)
38      */
39     private static final ThreadLocal<char[]> BUFFER = new ThreadLocal<char[]>() {
40         @Override protected char[] initialValue() {
41             return new char[20]; // Maximum length of a base-10 long.
42         }
43     };
44 
45     /**
46      * These tables are used to special-case toString computation for
47      * small values.  This serves three purposes: it reduces memory usage;
48      * it increases performance for small values; and it decreases the
49      * number of comparisons required to do the length computation.
50      * Elements of this table are lazily initialized on first use.
51      * No locking is necessary, i.e., we use the non-volatile, racy
52      * single-check idiom.
53      */
54     private static final String[] SMALL_NONNEGATIVE_VALUES = new String[100];
55     private static final String[] SMALL_NEGATIVE_VALUES = new String[100];
56 
57     /** TENS[i] contains the tens digit of the number i, 0 <= i <= 99. */
58     private static final char[] TENS = {
59         '0', '0', '0', '0', '0', '0', '0', '0', '0', '0',
60         '1', '1', '1', '1', '1', '1', '1', '1', '1', '1',
61         '2', '2', '2', '2', '2', '2', '2', '2', '2', '2',
62         '3', '3', '3', '3', '3', '3', '3', '3', '3', '3',
63         '4', '4', '4', '4', '4', '4', '4', '4', '4', '4',
64         '5', '5', '5', '5', '5', '5', '5', '5', '5', '5',
65         '6', '6', '6', '6', '6', '6', '6', '6', '6', '6',
66         '7', '7', '7', '7', '7', '7', '7', '7', '7', '7',
67         '8', '8', '8', '8', '8', '8', '8', '8', '8', '8',
68         '9', '9', '9', '9', '9', '9', '9', '9', '9', '9'
69     };
70 
71     /** Ones [i] contains the tens digit of the number i, 0 <= i <= 99. */
72     private static final char[] ONES = {
73         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
74         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
75         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
76         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
77         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
78         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
79         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
80         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
81         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
82         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
83     };
84 
85     /**
86      * Table for MOD / DIV 10 computation described in Section 10-21
87      * of Hank Warren's "Hacker's Delight" online addendum.
88      * http://www.hackersdelight.org/divcMore.pdf
89      */
90     private static final char[] MOD_10_TABLE = {
91         0, 1, 2, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 8, 9, 0
92     };
93 
94     /**
95      * The digits for every supported radix.
96      */
97     private static final char[] DIGITS = {
98         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
99         'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
100         'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't',
101         'u', 'v', 'w', 'x', 'y', 'z'
102     };
103 
104     private static final char[] UPPER_CASE_DIGITS = {
105         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
106         'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J',
107         'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T',
108         'U', 'V', 'W', 'X', 'Y', 'Z'
109     };
110 
IntegralToString()111     private IntegralToString() {
112     }
113 
114     /**
115      * Equivalent to Integer.toString(i, radix).
116      */
intToString(int i, int radix)117     public static String intToString(int i, int radix) {
118         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) {
119             radix = 10;
120         }
121         if (radix == 10) {
122             return intToString(i);
123         }
124 
125         /*
126          * If i is positive, negate it. This is the opposite of what one might
127          * expect. It is necessary because the range of the negative values is
128          * strictly larger than that of the positive values: there is no
129          * positive value corresponding to Integer.MIN_VALUE.
130          */
131         boolean negative = false;
132         if (i < 0) {
133             negative = true;
134         } else {
135             i = -i;
136         }
137 
138         int bufLen = radix < 8 ? 33 : 12;  // Max chars in result (conservative)
139         char[] buf = new char[bufLen];
140         int cursor = bufLen;
141 
142         do {
143             int q = i / radix;
144             buf[--cursor] = DIGITS[radix * q - i];
145             i = q;
146         } while (i != 0);
147 
148         if (negative) {
149             buf[--cursor] = '-';
150         }
151 
152         return new String(buf, cursor, bufLen - cursor);
153     }
154 
155     /**
156      * Equivalent to Integer.toString(i).
157      */
158     public static String intToString(int i) {
159         return convertInt(null, i);
160     }
161 
162     /**
163      * Equivalent to sb.append(Integer.toString(i)).
164      */
165     public static void appendInt(StringBuilder sb, int i) {
166         convertInt(sb, i);
167     }
168 
169     /**
170      * Returns the string representation of i and leaves sb alone if sb is null.
171      * Returns null and appends the string representation of i to sb if sb is non-null.
172      */
173     private static String convertInt(StringBuilder sb, int i) {
174         boolean negative = false;
175         String quickResult = null;
176         if (i < 0) {
177             negative = true;
178             i = -i;
179             if (i < 100) {
180                 if (i < 0) {
181                     // If -n is still negative, n is Integer.MIN_VALUE
182                     quickResult = "-2147483648";
183                 } else {
184                     quickResult = SMALL_NEGATIVE_VALUES[i];
185                     if (quickResult == null) {
186                         SMALL_NEGATIVE_VALUES[i] = quickResult =
187                                 i < 10 ? stringOf('-', ONES[i]) : stringOf('-', TENS[i], ONES[i]);
188                     }
189                 }
190             }
191         } else {
192             if (i < 100) {
193                 quickResult = SMALL_NONNEGATIVE_VALUES[i];
194                 if (quickResult == null) {
195                     SMALL_NONNEGATIVE_VALUES[i] = quickResult =
196                             i < 10 ? stringOf(ONES[i]) : stringOf(TENS[i], ONES[i]);
197                 }
198             }
199         }
200         if (quickResult != null) {
201             if (sb != null) {
202                 sb.append(quickResult);
203                 return null;
204             }
205             return quickResult;
206         }
207 
208         int bufLen = 11; // Max number of chars in result
209         char[] buf = (sb != null) ? BUFFER.get() : new char[bufLen];
210         int cursor = bufLen;
211 
212         // Calculate digits two-at-a-time till remaining digits fit in 16 bits
213         while (i >= (1 << 16)) {
214             // Compute q = n/100 and r = n % 100 as per "Hacker's Delight" 10-8
215             int q = (int) ((0x51EB851FL * i) >>> 37);
216             int r = i - 100*q;
217             buf[--cursor] = ONES[r];
218             buf[--cursor] = TENS[r];
219             i = q;
220         }
221 
222         // Calculate remaining digits one-at-a-time for performance
223         while (i != 0) {
224             // Compute q = n/10 and r = n % 10 as per "Hacker's Delight" 10-8
225             int q = (0xCCCD * i) >>> 19;
226             int r = i - 10*q;
227             buf[--cursor] = DIGITS[r];
228             i = q;
229         }
230 
231         if (negative) {
232             buf[--cursor] = '-';
233         }
234 
235         if (sb != null) {
236             sb.append(buf, cursor, bufLen - cursor);
237             return null;
238         } else {
239             return new String(buf, cursor, bufLen - cursor);
240         }
241     }
242 
243     /**
244      * Equivalent to Long.toString(v, radix).
245      */
246     public static String longToString(long v, int radix) {
247         int i = (int) v;
248         if (i == v) {
249             return intToString(i, radix);
250         }
251 
252         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) {
253             radix = 10;
254         }
255         if (radix == 10) {
256             return longToString(v);
257         }
258 
259         /*
260          * If v is positive, negate it. This is the opposite of what one might
261          * expect. It is necessary because the range of the negative values is
262          * strictly larger than that of the positive values: there is no
263          * positive value corresponding to Integer.MIN_VALUE.
264          */
265         boolean negative = false;
266         if (v < 0) {
267             negative = true;
268         } else {
269             v = -v;
270         }
271 
272         int bufLen = radix < 8 ? 65 : 23;  // Max chars in result (conservative)
273         char[] buf = new char[bufLen];
274         int cursor = bufLen;
275 
276         do {
277             long q = v / radix;
278             buf[--cursor] = DIGITS[(int) (radix * q - v)];
279             v = q;
280         } while (v != 0);
281 
282         if (negative) {
283             buf[--cursor] = '-';
284         }
285 
286         return new String(buf, cursor, bufLen - cursor);
287     }
288 
289     /**
290      * Equivalent to Long.toString(l).
291      */
292     public static String longToString(long l) {
293         return convertLong(null, l);
294     }
295 
296     /**
297      * Equivalent to sb.append(Long.toString(l)).
298      */
299     public static void appendLong(StringBuilder sb, long l) {
300         convertLong(sb, l);
301     }
302 
303     /**
304      * Returns the string representation of n and leaves sb alone if sb is null.
305      * Returns null and appends the string representation of n to sb if sb is non-null.
306      */
307     private static String convertLong(StringBuilder sb, long n) {
308         int i = (int) n;
309         if (i == n) {
310             return convertInt(sb, i);
311         }
312 
313         boolean negative = (n < 0);
314         if (negative) {
315             n = -n;
316             if (n < 0) {
317                 // If -n is still negative, n is Long.MIN_VALUE
318                 String quickResult = "-9223372036854775808";
319                 if (sb != null) {
320                     sb.append(quickResult);
321                     return null;
322                 }
323                 return quickResult;
324             }
325         }
326 
327         int bufLen = 20; // Maximum number of chars in result
328         char[] buf = (sb != null) ? BUFFER.get() : new char[bufLen];
329 
330         int low = (int) (n % 1000000000); // Extract low-order 9 digits
331         int cursor = intIntoCharArray(buf, bufLen, low);
332 
333         // Zero-pad Low order part to 9 digits
334         while (cursor != (bufLen - 9)) {
335             buf[--cursor] = '0';
336         }
337 
338         /*
339          * The remaining digits are (n - low) / 1,000,000,000.  This
340          * "exact division" is done as per the online addendum to Hank Warren's
341          * "Hacker's Delight" 10-20, http://www.hackersdelight.org/divcMore.pdf
342          */
343         n = ((n - low) >>> 9) * 0x8E47CE423A2E9C6DL;
344 
345         /*
346          * If the remaining digits fit in an int, emit them using a
347          * single call to intIntoCharArray. Otherwise, strip off the
348          * low-order digit, put it in buf, and then call intIntoCharArray
349          * on the remaining digits (which now fit in an int).
350          */
351         if ((n & (-1L << 32)) == 0) {
352             cursor = intIntoCharArray(buf, cursor, (int) n);
353         } else {
354             /*
355              * Set midDigit to n % 10
356              */
357             int lo32 = (int) n;
358             int hi32 = (int) (n >>> 32);
359 
360             // midDigit = ((unsigned) low32) % 10, per "Hacker's Delight" 10-21
361             int midDigit = MOD_10_TABLE[(0x19999999 * lo32 + (lo32 >>> 1) + (lo32 >>> 3)) >>> 28];
362 
363             // Adjust midDigit for hi32. (assert hi32 == 1 || hi32 == 2)
364             midDigit -= hi32 << 2;  // 1L << 32 == -4 MOD 10
365             if (midDigit < 0) {
366                 midDigit += 10;
367             }
368             buf[--cursor] = DIGITS[midDigit];
369 
370             // Exact division as per Warren 10-20
371             int rest = ((int) ((n - midDigit) >>> 1)) * 0xCCCCCCCD;
372             cursor = intIntoCharArray(buf, cursor, rest);
373         }
374 
375         if (negative) {
376             buf[--cursor] = '-';
377         }
378         if (sb != null) {
sb.append(buf, cursor, bufLen - cursor)379             sb.append(buf, cursor, bufLen - cursor);
380             return null;
381         } else {
382             return new String(buf, cursor, bufLen - cursor);
383         }
384     }
385 
386     /**
387      * Inserts the unsigned decimal integer represented by n into the specified
388      * character array starting at position cursor.  Returns the index after
389      * the last character inserted (i.e., the value to pass in as cursor the
390      * next time this method is called). Note that n is interpreted as a large
391      * positive integer (not a negative integer) if its sign bit is set.
392      */
intIntoCharArray(char[] buf, int cursor, int n)393     private static int intIntoCharArray(char[] buf, int cursor, int n) {
394         // Calculate digits two-at-a-time till remaining digits fit in 16 bits
395         while ((n & 0xffff0000) != 0) {
396             /*
397              * Compute q = n/100 and r = n % 100 as per "Hacker's Delight" 10-8.
398              * This computation is slightly different from the corresponding
399              * computation in intToString: the shifts before and after
400              * multiply can't be combined, as that would yield the wrong result
401              * if n's sign bit were set.
402              */
403             int q = (int) ((0x51EB851FL * (n >>> 2)) >>> 35);
404             int r = n - 100*q;
405             buf[--cursor] = ONES[r];
406             buf[--cursor] = TENS[r];
407             n = q;
408         }
409 
410         // Calculate remaining digits one-at-a-time for performance
411         while (n != 0) {
412             // Compute q = n / 10 and r = n % 10 as per "Hacker's Delight" 10-8
413             int q = (0xCCCD * n) >>> 19;
414             int r = n - 10*q;
415             buf[--cursor] = DIGITS[r];
416             n = q;
417         }
418         return cursor;
419     }
420 
intToBinaryString(int i)421     public static String intToBinaryString(int i) {
422         int bufLen = 32;  // Max number of binary digits in an int
423         char[] buf = new char[bufLen];
424         int cursor = bufLen;
425 
426         do {
427             buf[--cursor] = DIGITS[i & 1];
428         }  while ((i >>>= 1) != 0);
429 
430         return new String(buf, cursor, bufLen - cursor);
431     }
432 
longToBinaryString(long v)433     public static String longToBinaryString(long v) {
434         int i = (int) v;
435         if (v >= 0 && i == v) {
436             return intToBinaryString(i);
437         }
438 
439         int bufLen = 64;  // Max number of binary digits in a long
440         char[] buf = new char[bufLen];
441         int cursor = bufLen;
442 
443         do {
444             buf[--cursor] = DIGITS[((int) v) & 1];
445         }  while ((v >>>= 1) != 0);
446 
447         return new String(buf, cursor, bufLen - cursor);
448     }
449 
appendByteAsHex(StringBuilder sb, byte b, boolean upperCase)450     public static StringBuilder appendByteAsHex(StringBuilder sb, byte b, boolean upperCase) {
451         char[] digits = upperCase ? UPPER_CASE_DIGITS : DIGITS;
452         sb.append(digits[(b >> 4) & 0xf]);
453         sb.append(digits[b & 0xf]);
454         return sb;
455     }
456 
byteToHexString(byte b, boolean upperCase)457     public static String byteToHexString(byte b, boolean upperCase) {
458         char[] digits = upperCase ? UPPER_CASE_DIGITS : DIGITS;
459         char[] buf = new char[2]; // We always want two digits.
460         buf[0] = digits[(b >> 4) & 0xf];
461         buf[1] = digits[b & 0xf];
462         return new String(buf, 0, 2);
463     }
464 
bytesToHexString(byte[] bytes, boolean upperCase)465     public static String bytesToHexString(byte[] bytes, boolean upperCase) {
466         char[] digits = upperCase ? UPPER_CASE_DIGITS : DIGITS;
467         char[] buf = new char[bytes.length * 2];
468         int c = 0;
469         for (byte b : bytes) {
470             buf[c++] = digits[(b >> 4) & 0xf];
471             buf[c++] = digits[b & 0xf];
472         }
473         return new String(buf);
474     }
475 
intToHexString(int i, boolean upperCase, int minWidth)476     public static String intToHexString(int i, boolean upperCase, int minWidth) {
477         int bufLen = 8;  // Max number of hex digits in an int
478         char[] buf = new char[bufLen];
479         int cursor = bufLen;
480 
481         char[] digits = upperCase ? UPPER_CASE_DIGITS : DIGITS;
482         do {
483             buf[--cursor] = digits[i & 0xf];
484         } while ((i >>>= 4) != 0 || (bufLen - cursor < minWidth));
485 
486         return new String(buf, cursor, bufLen - cursor);
487     }
488 
longToHexString(long v)489     public static String longToHexString(long v) {
490         int i = (int) v;
491         if (v >= 0 && i == v) {
492             return intToHexString(i, false, 0);
493         }
494 
495         int bufLen = 16;  // Max number of hex digits in a long
496         char[] buf = new char[bufLen];
497         int cursor = bufLen;
498 
499         do {
500             buf[--cursor] = DIGITS[((int) v) & 0xF];
501         } while ((v >>>= 4) != 0);
502 
503         return new String(buf, cursor, bufLen - cursor);
504     }
505 
intToOctalString(int i)506     public static String intToOctalString(int i) {
507         int bufLen = 11;  // Max number of octal digits in an int
508         char[] buf = new char[bufLen];
509         int cursor = bufLen;
510 
511         do {
512             buf[--cursor] = DIGITS[i & 7];
513         } while ((i >>>= 3) != 0);
514 
515         return new String(buf, cursor, bufLen - cursor);
516     }
517 
longToOctalString(long v)518     public static String longToOctalString(long v) {
519         int i = (int) v;
520         if (v >= 0 && i == v) {
521             return intToOctalString(i);
522         }
523         int bufLen = 22;  // Max number of octal digits in a long
524         char[] buf = new char[bufLen];
525         int cursor = bufLen;
526 
527         do {
528             buf[--cursor] = DIGITS[((int) v) & 7];
529         } while ((v >>>= 3) != 0);
530 
531         return new String(buf, cursor, bufLen - cursor);
532     }
533 
stringOf(char... args)534     private static String stringOf(char... args) {
535         return new String(args, 0, args.length);
536     }
537 }
538