1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr constant evaluator.
11 //
12 // Constant expression evaluation produces four main results:
13 //
14 // * A success/failure flag indicating whether constant folding was successful.
15 // This is the 'bool' return value used by most of the code in this file. A
16 // 'false' return value indicates that constant folding has failed, and any
17 // appropriate diagnostic has already been produced.
18 //
19 // * An evaluated result, valid only if constant folding has not failed.
20 //
21 // * A flag indicating if evaluation encountered (unevaluated) side-effects.
22 // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
23 // where it is possible to determine the evaluated result regardless.
24 //
25 // * A set of notes indicating why the evaluation was not a constant expression
26 // (under the C++11 / C++1y rules only, at the moment), or, if folding failed
27 // too, why the expression could not be folded.
28 //
29 // If we are checking for a potential constant expression, failure to constant
30 // fold a potential constant sub-expression will be indicated by a 'false'
31 // return value (the expression could not be folded) and no diagnostic (the
32 // expression is not necessarily non-constant).
33 //
34 //===----------------------------------------------------------------------===//
35
36 #include "clang/AST/APValue.h"
37 #include "clang/AST/ASTContext.h"
38 #include "clang/AST/ASTDiagnostic.h"
39 #include "clang/AST/ASTLambda.h"
40 #include "clang/AST/CharUnits.h"
41 #include "clang/AST/Expr.h"
42 #include "clang/AST/RecordLayout.h"
43 #include "clang/AST/StmtVisitor.h"
44 #include "clang/AST/TypeLoc.h"
45 #include "clang/Basic/Builtins.h"
46 #include "clang/Basic/TargetInfo.h"
47 #include "llvm/ADT/SmallString.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <cstring>
50 #include <functional>
51
52 using namespace clang;
53 using llvm::APSInt;
54 using llvm::APFloat;
55
56 static bool IsGlobalLValue(APValue::LValueBase B);
57
58 namespace {
59 struct LValue;
60 struct CallStackFrame;
61 struct EvalInfo;
62
getType(APValue::LValueBase B)63 static QualType getType(APValue::LValueBase B) {
64 if (!B) return QualType();
65 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
66 return D->getType();
67
68 const Expr *Base = B.get<const Expr*>();
69
70 // For a materialized temporary, the type of the temporary we materialized
71 // may not be the type of the expression.
72 if (const MaterializeTemporaryExpr *MTE =
73 dyn_cast<MaterializeTemporaryExpr>(Base)) {
74 SmallVector<const Expr *, 2> CommaLHSs;
75 SmallVector<SubobjectAdjustment, 2> Adjustments;
76 const Expr *Temp = MTE->GetTemporaryExpr();
77 const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
78 Adjustments);
79 // Keep any cv-qualifiers from the reference if we generated a temporary
80 // for it.
81 if (Inner != Temp)
82 return Inner->getType();
83 }
84
85 return Base->getType();
86 }
87
88 /// Get an LValue path entry, which is known to not be an array index, as a
89 /// field or base class.
90 static
getAsBaseOrMember(APValue::LValuePathEntry E)91 APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
92 APValue::BaseOrMemberType Value;
93 Value.setFromOpaqueValue(E.BaseOrMember);
94 return Value;
95 }
96
97 /// Get an LValue path entry, which is known to not be an array index, as a
98 /// field declaration.
getAsField(APValue::LValuePathEntry E)99 static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
100 return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
101 }
102 /// Get an LValue path entry, which is known to not be an array index, as a
103 /// base class declaration.
getAsBaseClass(APValue::LValuePathEntry E)104 static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
105 return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
106 }
107 /// Determine whether this LValue path entry for a base class names a virtual
108 /// base class.
isVirtualBaseClass(APValue::LValuePathEntry E)109 static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
110 return getAsBaseOrMember(E).getInt();
111 }
112
113 /// Find the path length and type of the most-derived subobject in the given
114 /// path, and find the size of the containing array, if any.
115 static
findMostDerivedSubobject(ASTContext & Ctx,QualType Base,ArrayRef<APValue::LValuePathEntry> Path,uint64_t & ArraySize,QualType & Type,bool & IsArray)116 unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
117 ArrayRef<APValue::LValuePathEntry> Path,
118 uint64_t &ArraySize, QualType &Type,
119 bool &IsArray) {
120 unsigned MostDerivedLength = 0;
121 Type = Base;
122 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
123 if (Type->isArrayType()) {
124 const ConstantArrayType *CAT =
125 cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
126 Type = CAT->getElementType();
127 ArraySize = CAT->getSize().getZExtValue();
128 MostDerivedLength = I + 1;
129 IsArray = true;
130 } else if (Type->isAnyComplexType()) {
131 const ComplexType *CT = Type->castAs<ComplexType>();
132 Type = CT->getElementType();
133 ArraySize = 2;
134 MostDerivedLength = I + 1;
135 IsArray = true;
136 } else if (const FieldDecl *FD = getAsField(Path[I])) {
137 Type = FD->getType();
138 ArraySize = 0;
139 MostDerivedLength = I + 1;
140 IsArray = false;
141 } else {
142 // Path[I] describes a base class.
143 ArraySize = 0;
144 IsArray = false;
145 }
146 }
147 return MostDerivedLength;
148 }
149
150 // The order of this enum is important for diagnostics.
151 enum CheckSubobjectKind {
152 CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
153 CSK_This, CSK_Real, CSK_Imag
154 };
155
156 /// A path from a glvalue to a subobject of that glvalue.
157 struct SubobjectDesignator {
158 /// True if the subobject was named in a manner not supported by C++11. Such
159 /// lvalues can still be folded, but they are not core constant expressions
160 /// and we cannot perform lvalue-to-rvalue conversions on them.
161 unsigned Invalid : 1;
162
163 /// Is this a pointer one past the end of an object?
164 unsigned IsOnePastTheEnd : 1;
165
166 /// Indicator of whether the most-derived object is an array element.
167 unsigned MostDerivedIsArrayElement : 1;
168
169 /// The length of the path to the most-derived object of which this is a
170 /// subobject.
171 unsigned MostDerivedPathLength : 29;
172
173 /// The size of the array of which the most-derived object is an element.
174 /// This will always be 0 if the most-derived object is not an array
175 /// element. 0 is not an indicator of whether or not the most-derived object
176 /// is an array, however, because 0-length arrays are allowed.
177 uint64_t MostDerivedArraySize;
178
179 /// The type of the most derived object referred to by this address.
180 QualType MostDerivedType;
181
182 typedef APValue::LValuePathEntry PathEntry;
183
184 /// The entries on the path from the glvalue to the designated subobject.
185 SmallVector<PathEntry, 8> Entries;
186
SubobjectDesignator__anon7264eadc0111::SubobjectDesignator187 SubobjectDesignator() : Invalid(true) {}
188
SubobjectDesignator__anon7264eadc0111::SubobjectDesignator189 explicit SubobjectDesignator(QualType T)
190 : Invalid(false), IsOnePastTheEnd(false),
191 MostDerivedIsArrayElement(false), MostDerivedPathLength(0),
192 MostDerivedArraySize(0), MostDerivedType(T) {}
193
SubobjectDesignator__anon7264eadc0111::SubobjectDesignator194 SubobjectDesignator(ASTContext &Ctx, const APValue &V)
195 : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
196 MostDerivedIsArrayElement(false), MostDerivedPathLength(0),
197 MostDerivedArraySize(0) {
198 if (!Invalid) {
199 IsOnePastTheEnd = V.isLValueOnePastTheEnd();
200 ArrayRef<PathEntry> VEntries = V.getLValuePath();
201 Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
202 if (V.getLValueBase()) {
203 bool IsArray = false;
204 MostDerivedPathLength =
205 findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
206 V.getLValuePath(), MostDerivedArraySize,
207 MostDerivedType, IsArray);
208 MostDerivedIsArrayElement = IsArray;
209 }
210 }
211 }
212
setInvalid__anon7264eadc0111::SubobjectDesignator213 void setInvalid() {
214 Invalid = true;
215 Entries.clear();
216 }
217
218 /// Determine whether this is a one-past-the-end pointer.
isOnePastTheEnd__anon7264eadc0111::SubobjectDesignator219 bool isOnePastTheEnd() const {
220 assert(!Invalid);
221 if (IsOnePastTheEnd)
222 return true;
223 if (MostDerivedIsArrayElement &&
224 Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
225 return true;
226 return false;
227 }
228
229 /// Check that this refers to a valid subobject.
isValidSubobject__anon7264eadc0111::SubobjectDesignator230 bool isValidSubobject() const {
231 if (Invalid)
232 return false;
233 return !isOnePastTheEnd();
234 }
235 /// Check that this refers to a valid subobject, and if not, produce a
236 /// relevant diagnostic and set the designator as invalid.
237 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
238
239 /// Update this designator to refer to the first element within this array.
addArrayUnchecked__anon7264eadc0111::SubobjectDesignator240 void addArrayUnchecked(const ConstantArrayType *CAT) {
241 PathEntry Entry;
242 Entry.ArrayIndex = 0;
243 Entries.push_back(Entry);
244
245 // This is a most-derived object.
246 MostDerivedType = CAT->getElementType();
247 MostDerivedIsArrayElement = true;
248 MostDerivedArraySize = CAT->getSize().getZExtValue();
249 MostDerivedPathLength = Entries.size();
250 }
251 /// Update this designator to refer to the given base or member of this
252 /// object.
addDeclUnchecked__anon7264eadc0111::SubobjectDesignator253 void addDeclUnchecked(const Decl *D, bool Virtual = false) {
254 PathEntry Entry;
255 APValue::BaseOrMemberType Value(D, Virtual);
256 Entry.BaseOrMember = Value.getOpaqueValue();
257 Entries.push_back(Entry);
258
259 // If this isn't a base class, it's a new most-derived object.
260 if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
261 MostDerivedType = FD->getType();
262 MostDerivedIsArrayElement = false;
263 MostDerivedArraySize = 0;
264 MostDerivedPathLength = Entries.size();
265 }
266 }
267 /// Update this designator to refer to the given complex component.
addComplexUnchecked__anon7264eadc0111::SubobjectDesignator268 void addComplexUnchecked(QualType EltTy, bool Imag) {
269 PathEntry Entry;
270 Entry.ArrayIndex = Imag;
271 Entries.push_back(Entry);
272
273 // This is technically a most-derived object, though in practice this
274 // is unlikely to matter.
275 MostDerivedType = EltTy;
276 MostDerivedIsArrayElement = true;
277 MostDerivedArraySize = 2;
278 MostDerivedPathLength = Entries.size();
279 }
280 void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
281 /// Add N to the address of this subobject.
adjustIndex__anon7264eadc0111::SubobjectDesignator282 void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
283 if (Invalid) return;
284 if (MostDerivedPathLength == Entries.size() &&
285 MostDerivedIsArrayElement) {
286 Entries.back().ArrayIndex += N;
287 if (Entries.back().ArrayIndex > MostDerivedArraySize) {
288 diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
289 setInvalid();
290 }
291 return;
292 }
293 // [expr.add]p4: For the purposes of these operators, a pointer to a
294 // nonarray object behaves the same as a pointer to the first element of
295 // an array of length one with the type of the object as its element type.
296 if (IsOnePastTheEnd && N == (uint64_t)-1)
297 IsOnePastTheEnd = false;
298 else if (!IsOnePastTheEnd && N == 1)
299 IsOnePastTheEnd = true;
300 else if (N != 0) {
301 diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
302 setInvalid();
303 }
304 }
305 };
306
307 /// A stack frame in the constexpr call stack.
308 struct CallStackFrame {
309 EvalInfo &Info;
310
311 /// Parent - The caller of this stack frame.
312 CallStackFrame *Caller;
313
314 /// CallLoc - The location of the call expression for this call.
315 SourceLocation CallLoc;
316
317 /// Callee - The function which was called.
318 const FunctionDecl *Callee;
319
320 /// Index - The call index of this call.
321 unsigned Index;
322
323 /// This - The binding for the this pointer in this call, if any.
324 const LValue *This;
325
326 /// Arguments - Parameter bindings for this function call, indexed by
327 /// parameters' function scope indices.
328 APValue *Arguments;
329
330 // Note that we intentionally use std::map here so that references to
331 // values are stable.
332 typedef std::map<const void*, APValue> MapTy;
333 typedef MapTy::const_iterator temp_iterator;
334 /// Temporaries - Temporary lvalues materialized within this stack frame.
335 MapTy Temporaries;
336
337 CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
338 const FunctionDecl *Callee, const LValue *This,
339 APValue *Arguments);
340 ~CallStackFrame();
341
getTemporary__anon7264eadc0111::CallStackFrame342 APValue *getTemporary(const void *Key) {
343 MapTy::iterator I = Temporaries.find(Key);
344 return I == Temporaries.end() ? nullptr : &I->second;
345 }
346 APValue &createTemporary(const void *Key, bool IsLifetimeExtended);
347 };
348
349 /// Temporarily override 'this'.
350 class ThisOverrideRAII {
351 public:
ThisOverrideRAII(CallStackFrame & Frame,const LValue * NewThis,bool Enable)352 ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
353 : Frame(Frame), OldThis(Frame.This) {
354 if (Enable)
355 Frame.This = NewThis;
356 }
~ThisOverrideRAII()357 ~ThisOverrideRAII() {
358 Frame.This = OldThis;
359 }
360 private:
361 CallStackFrame &Frame;
362 const LValue *OldThis;
363 };
364
365 /// A partial diagnostic which we might know in advance that we are not going
366 /// to emit.
367 class OptionalDiagnostic {
368 PartialDiagnostic *Diag;
369
370 public:
OptionalDiagnostic(PartialDiagnostic * Diag=nullptr)371 explicit OptionalDiagnostic(PartialDiagnostic *Diag = nullptr)
372 : Diag(Diag) {}
373
374 template<typename T>
operator <<(const T & v)375 OptionalDiagnostic &operator<<(const T &v) {
376 if (Diag)
377 *Diag << v;
378 return *this;
379 }
380
operator <<(const APSInt & I)381 OptionalDiagnostic &operator<<(const APSInt &I) {
382 if (Diag) {
383 SmallVector<char, 32> Buffer;
384 I.toString(Buffer);
385 *Diag << StringRef(Buffer.data(), Buffer.size());
386 }
387 return *this;
388 }
389
operator <<(const APFloat & F)390 OptionalDiagnostic &operator<<(const APFloat &F) {
391 if (Diag) {
392 // FIXME: Force the precision of the source value down so we don't
393 // print digits which are usually useless (we don't really care here if
394 // we truncate a digit by accident in edge cases). Ideally,
395 // APFloat::toString would automatically print the shortest
396 // representation which rounds to the correct value, but it's a bit
397 // tricky to implement.
398 unsigned precision =
399 llvm::APFloat::semanticsPrecision(F.getSemantics());
400 precision = (precision * 59 + 195) / 196;
401 SmallVector<char, 32> Buffer;
402 F.toString(Buffer, precision);
403 *Diag << StringRef(Buffer.data(), Buffer.size());
404 }
405 return *this;
406 }
407 };
408
409 /// A cleanup, and a flag indicating whether it is lifetime-extended.
410 class Cleanup {
411 llvm::PointerIntPair<APValue*, 1, bool> Value;
412
413 public:
Cleanup(APValue * Val,bool IsLifetimeExtended)414 Cleanup(APValue *Val, bool IsLifetimeExtended)
415 : Value(Val, IsLifetimeExtended) {}
416
isLifetimeExtended() const417 bool isLifetimeExtended() const { return Value.getInt(); }
endLifetime()418 void endLifetime() {
419 *Value.getPointer() = APValue();
420 }
421 };
422
423 /// EvalInfo - This is a private struct used by the evaluator to capture
424 /// information about a subexpression as it is folded. It retains information
425 /// about the AST context, but also maintains information about the folded
426 /// expression.
427 ///
428 /// If an expression could be evaluated, it is still possible it is not a C
429 /// "integer constant expression" or constant expression. If not, this struct
430 /// captures information about how and why not.
431 ///
432 /// One bit of information passed *into* the request for constant folding
433 /// indicates whether the subexpression is "evaluated" or not according to C
434 /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
435 /// evaluate the expression regardless of what the RHS is, but C only allows
436 /// certain things in certain situations.
437 struct EvalInfo {
438 ASTContext &Ctx;
439
440 /// EvalStatus - Contains information about the evaluation.
441 Expr::EvalStatus &EvalStatus;
442
443 /// CurrentCall - The top of the constexpr call stack.
444 CallStackFrame *CurrentCall;
445
446 /// CallStackDepth - The number of calls in the call stack right now.
447 unsigned CallStackDepth;
448
449 /// NextCallIndex - The next call index to assign.
450 unsigned NextCallIndex;
451
452 /// StepsLeft - The remaining number of evaluation steps we're permitted
453 /// to perform. This is essentially a limit for the number of statements
454 /// we will evaluate.
455 unsigned StepsLeft;
456
457 /// BottomFrame - The frame in which evaluation started. This must be
458 /// initialized after CurrentCall and CallStackDepth.
459 CallStackFrame BottomFrame;
460
461 /// A stack of values whose lifetimes end at the end of some surrounding
462 /// evaluation frame.
463 llvm::SmallVector<Cleanup, 16> CleanupStack;
464
465 /// EvaluatingDecl - This is the declaration whose initializer is being
466 /// evaluated, if any.
467 APValue::LValueBase EvaluatingDecl;
468
469 /// EvaluatingDeclValue - This is the value being constructed for the
470 /// declaration whose initializer is being evaluated, if any.
471 APValue *EvaluatingDeclValue;
472
473 /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
474 /// notes attached to it will also be stored, otherwise they will not be.
475 bool HasActiveDiagnostic;
476
477 /// \brief Have we emitted a diagnostic explaining why we couldn't constant
478 /// fold (not just why it's not strictly a constant expression)?
479 bool HasFoldFailureDiagnostic;
480
481 /// \brief Whether or not we're currently speculatively evaluating.
482 bool IsSpeculativelyEvaluating;
483
484 enum EvaluationMode {
485 /// Evaluate as a constant expression. Stop if we find that the expression
486 /// is not a constant expression.
487 EM_ConstantExpression,
488
489 /// Evaluate as a potential constant expression. Keep going if we hit a
490 /// construct that we can't evaluate yet (because we don't yet know the
491 /// value of something) but stop if we hit something that could never be
492 /// a constant expression.
493 EM_PotentialConstantExpression,
494
495 /// Fold the expression to a constant. Stop if we hit a side-effect that
496 /// we can't model.
497 EM_ConstantFold,
498
499 /// Evaluate the expression looking for integer overflow and similar
500 /// issues. Don't worry about side-effects, and try to visit all
501 /// subexpressions.
502 EM_EvaluateForOverflow,
503
504 /// Evaluate in any way we know how. Don't worry about side-effects that
505 /// can't be modeled.
506 EM_IgnoreSideEffects,
507
508 /// Evaluate as a constant expression. Stop if we find that the expression
509 /// is not a constant expression. Some expressions can be retried in the
510 /// optimizer if we don't constant fold them here, but in an unevaluated
511 /// context we try to fold them immediately since the optimizer never
512 /// gets a chance to look at it.
513 EM_ConstantExpressionUnevaluated,
514
515 /// Evaluate as a potential constant expression. Keep going if we hit a
516 /// construct that we can't evaluate yet (because we don't yet know the
517 /// value of something) but stop if we hit something that could never be
518 /// a constant expression. Some expressions can be retried in the
519 /// optimizer if we don't constant fold them here, but in an unevaluated
520 /// context we try to fold them immediately since the optimizer never
521 /// gets a chance to look at it.
522 EM_PotentialConstantExpressionUnevaluated,
523
524 /// Evaluate as a constant expression. Continue evaluating if we find a
525 /// MemberExpr with a base that can't be evaluated.
526 EM_DesignatorFold,
527 } EvalMode;
528
529 /// Are we checking whether the expression is a potential constant
530 /// expression?
checkingPotentialConstantExpression__anon7264eadc0111::EvalInfo531 bool checkingPotentialConstantExpression() const {
532 return EvalMode == EM_PotentialConstantExpression ||
533 EvalMode == EM_PotentialConstantExpressionUnevaluated;
534 }
535
536 /// Are we checking an expression for overflow?
537 // FIXME: We should check for any kind of undefined or suspicious behavior
538 // in such constructs, not just overflow.
checkingForOverflow__anon7264eadc0111::EvalInfo539 bool checkingForOverflow() { return EvalMode == EM_EvaluateForOverflow; }
540
EvalInfo__anon7264eadc0111::EvalInfo541 EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
542 : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
543 CallStackDepth(0), NextCallIndex(1),
544 StepsLeft(getLangOpts().ConstexprStepLimit),
545 BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr),
546 EvaluatingDecl((const ValueDecl *)nullptr),
547 EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
548 HasFoldFailureDiagnostic(false), IsSpeculativelyEvaluating(false),
549 EvalMode(Mode) {}
550
setEvaluatingDecl__anon7264eadc0111::EvalInfo551 void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) {
552 EvaluatingDecl = Base;
553 EvaluatingDeclValue = &Value;
554 }
555
getLangOpts__anon7264eadc0111::EvalInfo556 const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
557
CheckCallLimit__anon7264eadc0111::EvalInfo558 bool CheckCallLimit(SourceLocation Loc) {
559 // Don't perform any constexpr calls (other than the call we're checking)
560 // when checking a potential constant expression.
561 if (checkingPotentialConstantExpression() && CallStackDepth > 1)
562 return false;
563 if (NextCallIndex == 0) {
564 // NextCallIndex has wrapped around.
565 FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
566 return false;
567 }
568 if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
569 return true;
570 FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
571 << getLangOpts().ConstexprCallDepth;
572 return false;
573 }
574
getCallFrame__anon7264eadc0111::EvalInfo575 CallStackFrame *getCallFrame(unsigned CallIndex) {
576 assert(CallIndex && "no call index in getCallFrame");
577 // We will eventually hit BottomFrame, which has Index 1, so Frame can't
578 // be null in this loop.
579 CallStackFrame *Frame = CurrentCall;
580 while (Frame->Index > CallIndex)
581 Frame = Frame->Caller;
582 return (Frame->Index == CallIndex) ? Frame : nullptr;
583 }
584
nextStep__anon7264eadc0111::EvalInfo585 bool nextStep(const Stmt *S) {
586 if (!StepsLeft) {
587 FFDiag(S->getLocStart(), diag::note_constexpr_step_limit_exceeded);
588 return false;
589 }
590 --StepsLeft;
591 return true;
592 }
593
594 private:
595 /// Add a diagnostic to the diagnostics list.
addDiag__anon7264eadc0111::EvalInfo596 PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
597 PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
598 EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
599 return EvalStatus.Diag->back().second;
600 }
601
602 /// Add notes containing a call stack to the current point of evaluation.
603 void addCallStack(unsigned Limit);
604
605 private:
Diag__anon7264eadc0111::EvalInfo606 OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId,
607 unsigned ExtraNotes, bool IsCCEDiag) {
608
609 if (EvalStatus.Diag) {
610 // If we have a prior diagnostic, it will be noting that the expression
611 // isn't a constant expression. This diagnostic is more important,
612 // unless we require this evaluation to produce a constant expression.
613 //
614 // FIXME: We might want to show both diagnostics to the user in
615 // EM_ConstantFold mode.
616 if (!EvalStatus.Diag->empty()) {
617 switch (EvalMode) {
618 case EM_ConstantFold:
619 case EM_IgnoreSideEffects:
620 case EM_EvaluateForOverflow:
621 if (!HasFoldFailureDiagnostic)
622 break;
623 // We've already failed to fold something. Keep that diagnostic.
624 case EM_ConstantExpression:
625 case EM_PotentialConstantExpression:
626 case EM_ConstantExpressionUnevaluated:
627 case EM_PotentialConstantExpressionUnevaluated:
628 case EM_DesignatorFold:
629 HasActiveDiagnostic = false;
630 return OptionalDiagnostic();
631 }
632 }
633
634 unsigned CallStackNotes = CallStackDepth - 1;
635 unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
636 if (Limit)
637 CallStackNotes = std::min(CallStackNotes, Limit + 1);
638 if (checkingPotentialConstantExpression())
639 CallStackNotes = 0;
640
641 HasActiveDiagnostic = true;
642 HasFoldFailureDiagnostic = !IsCCEDiag;
643 EvalStatus.Diag->clear();
644 EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
645 addDiag(Loc, DiagId);
646 if (!checkingPotentialConstantExpression())
647 addCallStack(Limit);
648 return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
649 }
650 HasActiveDiagnostic = false;
651 return OptionalDiagnostic();
652 }
653 public:
654 // Diagnose that the evaluation could not be folded (FF => FoldFailure)
655 OptionalDiagnostic
FFDiag__anon7264eadc0111::EvalInfo656 FFDiag(SourceLocation Loc,
657 diag::kind DiagId = diag::note_invalid_subexpr_in_const_expr,
658 unsigned ExtraNotes = 0) {
659 return Diag(Loc, DiagId, ExtraNotes, false);
660 }
661
FFDiag__anon7264eadc0111::EvalInfo662 OptionalDiagnostic FFDiag(const Expr *E, diag::kind DiagId
663 = diag::note_invalid_subexpr_in_const_expr,
664 unsigned ExtraNotes = 0) {
665 if (EvalStatus.Diag)
666 return Diag(E->getExprLoc(), DiagId, ExtraNotes, /*IsCCEDiag*/false);
667 HasActiveDiagnostic = false;
668 return OptionalDiagnostic();
669 }
670
671 /// Diagnose that the evaluation does not produce a C++11 core constant
672 /// expression.
673 ///
674 /// FIXME: Stop evaluating if we're in EM_ConstantExpression or
675 /// EM_PotentialConstantExpression mode and we produce one of these.
CCEDiag__anon7264eadc0111::EvalInfo676 OptionalDiagnostic CCEDiag(SourceLocation Loc, diag::kind DiagId
677 = diag::note_invalid_subexpr_in_const_expr,
678 unsigned ExtraNotes = 0) {
679 // Don't override a previous diagnostic. Don't bother collecting
680 // diagnostics if we're evaluating for overflow.
681 if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
682 HasActiveDiagnostic = false;
683 return OptionalDiagnostic();
684 }
685 return Diag(Loc, DiagId, ExtraNotes, true);
686 }
CCEDiag__anon7264eadc0111::EvalInfo687 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind DiagId
688 = diag::note_invalid_subexpr_in_const_expr,
689 unsigned ExtraNotes = 0) {
690 return CCEDiag(E->getExprLoc(), DiagId, ExtraNotes);
691 }
692 /// Add a note to a prior diagnostic.
Note__anon7264eadc0111::EvalInfo693 OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
694 if (!HasActiveDiagnostic)
695 return OptionalDiagnostic();
696 return OptionalDiagnostic(&addDiag(Loc, DiagId));
697 }
698
699 /// Add a stack of notes to a prior diagnostic.
addNotes__anon7264eadc0111::EvalInfo700 void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
701 if (HasActiveDiagnostic) {
702 EvalStatus.Diag->insert(EvalStatus.Diag->end(),
703 Diags.begin(), Diags.end());
704 }
705 }
706
707 /// Should we continue evaluation after encountering a side-effect that we
708 /// couldn't model?
keepEvaluatingAfterSideEffect__anon7264eadc0111::EvalInfo709 bool keepEvaluatingAfterSideEffect() {
710 switch (EvalMode) {
711 case EM_PotentialConstantExpression:
712 case EM_PotentialConstantExpressionUnevaluated:
713 case EM_EvaluateForOverflow:
714 case EM_IgnoreSideEffects:
715 return true;
716
717 case EM_ConstantExpression:
718 case EM_ConstantExpressionUnevaluated:
719 case EM_ConstantFold:
720 case EM_DesignatorFold:
721 return false;
722 }
723 llvm_unreachable("Missed EvalMode case");
724 }
725
726 /// Note that we have had a side-effect, and determine whether we should
727 /// keep evaluating.
noteSideEffect__anon7264eadc0111::EvalInfo728 bool noteSideEffect() {
729 EvalStatus.HasSideEffects = true;
730 return keepEvaluatingAfterSideEffect();
731 }
732
733 /// Should we continue evaluation after encountering undefined behavior?
keepEvaluatingAfterUndefinedBehavior__anon7264eadc0111::EvalInfo734 bool keepEvaluatingAfterUndefinedBehavior() {
735 switch (EvalMode) {
736 case EM_EvaluateForOverflow:
737 case EM_IgnoreSideEffects:
738 case EM_ConstantFold:
739 case EM_DesignatorFold:
740 return true;
741
742 case EM_PotentialConstantExpression:
743 case EM_PotentialConstantExpressionUnevaluated:
744 case EM_ConstantExpression:
745 case EM_ConstantExpressionUnevaluated:
746 return false;
747 }
748 llvm_unreachable("Missed EvalMode case");
749 }
750
751 /// Note that we hit something that was technically undefined behavior, but
752 /// that we can evaluate past it (such as signed overflow or floating-point
753 /// division by zero.)
noteUndefinedBehavior__anon7264eadc0111::EvalInfo754 bool noteUndefinedBehavior() {
755 EvalStatus.HasUndefinedBehavior = true;
756 return keepEvaluatingAfterUndefinedBehavior();
757 }
758
759 /// Should we continue evaluation as much as possible after encountering a
760 /// construct which can't be reduced to a value?
keepEvaluatingAfterFailure__anon7264eadc0111::EvalInfo761 bool keepEvaluatingAfterFailure() {
762 if (!StepsLeft)
763 return false;
764
765 switch (EvalMode) {
766 case EM_PotentialConstantExpression:
767 case EM_PotentialConstantExpressionUnevaluated:
768 case EM_EvaluateForOverflow:
769 return true;
770
771 case EM_ConstantExpression:
772 case EM_ConstantExpressionUnevaluated:
773 case EM_ConstantFold:
774 case EM_IgnoreSideEffects:
775 case EM_DesignatorFold:
776 return false;
777 }
778 llvm_unreachable("Missed EvalMode case");
779 }
780
781 /// Notes that we failed to evaluate an expression that other expressions
782 /// directly depend on, and determine if we should keep evaluating. This
783 /// should only be called if we actually intend to keep evaluating.
784 ///
785 /// Call noteSideEffect() instead if we may be able to ignore the value that
786 /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
787 ///
788 /// (Foo(), 1) // use noteSideEffect
789 /// (Foo() || true) // use noteSideEffect
790 /// Foo() + 1 // use noteFailure
noteFailure__anon7264eadc0111::EvalInfo791 LLVM_ATTRIBUTE_UNUSED_RESULT bool noteFailure() {
792 // Failure when evaluating some expression often means there is some
793 // subexpression whose evaluation was skipped. Therefore, (because we
794 // don't track whether we skipped an expression when unwinding after an
795 // evaluation failure) every evaluation failure that bubbles up from a
796 // subexpression implies that a side-effect has potentially happened. We
797 // skip setting the HasSideEffects flag to true until we decide to
798 // continue evaluating after that point, which happens here.
799 bool KeepGoing = keepEvaluatingAfterFailure();
800 EvalStatus.HasSideEffects |= KeepGoing;
801 return KeepGoing;
802 }
803
allowInvalidBaseExpr__anon7264eadc0111::EvalInfo804 bool allowInvalidBaseExpr() const {
805 return EvalMode == EM_DesignatorFold;
806 }
807 };
808
809 /// Object used to treat all foldable expressions as constant expressions.
810 struct FoldConstant {
811 EvalInfo &Info;
812 bool Enabled;
813 bool HadNoPriorDiags;
814 EvalInfo::EvaluationMode OldMode;
815
FoldConstant__anon7264eadc0111::FoldConstant816 explicit FoldConstant(EvalInfo &Info, bool Enabled)
817 : Info(Info),
818 Enabled(Enabled),
819 HadNoPriorDiags(Info.EvalStatus.Diag &&
820 Info.EvalStatus.Diag->empty() &&
821 !Info.EvalStatus.HasSideEffects),
822 OldMode(Info.EvalMode) {
823 if (Enabled &&
824 (Info.EvalMode == EvalInfo::EM_ConstantExpression ||
825 Info.EvalMode == EvalInfo::EM_ConstantExpressionUnevaluated))
826 Info.EvalMode = EvalInfo::EM_ConstantFold;
827 }
keepDiagnostics__anon7264eadc0111::FoldConstant828 void keepDiagnostics() { Enabled = false; }
~FoldConstant__anon7264eadc0111::FoldConstant829 ~FoldConstant() {
830 if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
831 !Info.EvalStatus.HasSideEffects)
832 Info.EvalStatus.Diag->clear();
833 Info.EvalMode = OldMode;
834 }
835 };
836
837 /// RAII object used to treat the current evaluation as the correct pointer
838 /// offset fold for the current EvalMode
839 struct FoldOffsetRAII {
840 EvalInfo &Info;
841 EvalInfo::EvaluationMode OldMode;
FoldOffsetRAII__anon7264eadc0111::FoldOffsetRAII842 explicit FoldOffsetRAII(EvalInfo &Info, bool Subobject)
843 : Info(Info), OldMode(Info.EvalMode) {
844 if (!Info.checkingPotentialConstantExpression())
845 Info.EvalMode = Subobject ? EvalInfo::EM_DesignatorFold
846 : EvalInfo::EM_ConstantFold;
847 }
848
~FoldOffsetRAII__anon7264eadc0111::FoldOffsetRAII849 ~FoldOffsetRAII() { Info.EvalMode = OldMode; }
850 };
851
852 /// RAII object used to optionally suppress diagnostics and side-effects from
853 /// a speculative evaluation.
854 class SpeculativeEvaluationRAII {
855 /// Pair of EvalInfo, and a bit that stores whether or not we were
856 /// speculatively evaluating when we created this RAII.
857 llvm::PointerIntPair<EvalInfo *, 1, bool> InfoAndOldSpecEval;
858 Expr::EvalStatus Old;
859
moveFromAndCancel(SpeculativeEvaluationRAII && Other)860 void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
861 InfoAndOldSpecEval = Other.InfoAndOldSpecEval;
862 Old = Other.Old;
863 Other.InfoAndOldSpecEval.setPointer(nullptr);
864 }
865
maybeRestoreState()866 void maybeRestoreState() {
867 EvalInfo *Info = InfoAndOldSpecEval.getPointer();
868 if (!Info)
869 return;
870
871 Info->EvalStatus = Old;
872 Info->IsSpeculativelyEvaluating = InfoAndOldSpecEval.getInt();
873 }
874
875 public:
876 SpeculativeEvaluationRAII() = default;
877
SpeculativeEvaluationRAII(EvalInfo & Info,SmallVectorImpl<PartialDiagnosticAt> * NewDiag=nullptr)878 SpeculativeEvaluationRAII(
879 EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
880 : InfoAndOldSpecEval(&Info, Info.IsSpeculativelyEvaluating),
881 Old(Info.EvalStatus) {
882 Info.EvalStatus.Diag = NewDiag;
883 Info.IsSpeculativelyEvaluating = true;
884 }
885
886 SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
SpeculativeEvaluationRAII(SpeculativeEvaluationRAII && Other)887 SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
888 moveFromAndCancel(std::move(Other));
889 }
890
operator =(SpeculativeEvaluationRAII && Other)891 SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
892 maybeRestoreState();
893 moveFromAndCancel(std::move(Other));
894 return *this;
895 }
896
~SpeculativeEvaluationRAII()897 ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
898 };
899
900 /// RAII object wrapping a full-expression or block scope, and handling
901 /// the ending of the lifetime of temporaries created within it.
902 template<bool IsFullExpression>
903 class ScopeRAII {
904 EvalInfo &Info;
905 unsigned OldStackSize;
906 public:
ScopeRAII(EvalInfo & Info)907 ScopeRAII(EvalInfo &Info)
908 : Info(Info), OldStackSize(Info.CleanupStack.size()) {}
~ScopeRAII()909 ~ScopeRAII() {
910 // Body moved to a static method to encourage the compiler to inline away
911 // instances of this class.
912 cleanup(Info, OldStackSize);
913 }
914 private:
cleanup(EvalInfo & Info,unsigned OldStackSize)915 static void cleanup(EvalInfo &Info, unsigned OldStackSize) {
916 unsigned NewEnd = OldStackSize;
917 for (unsigned I = OldStackSize, N = Info.CleanupStack.size();
918 I != N; ++I) {
919 if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) {
920 // Full-expression cleanup of a lifetime-extended temporary: nothing
921 // to do, just move this cleanup to the right place in the stack.
922 std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]);
923 ++NewEnd;
924 } else {
925 // End the lifetime of the object.
926 Info.CleanupStack[I].endLifetime();
927 }
928 }
929 Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd,
930 Info.CleanupStack.end());
931 }
932 };
933 typedef ScopeRAII<false> BlockScopeRAII;
934 typedef ScopeRAII<true> FullExpressionRAII;
935 }
936
checkSubobject(EvalInfo & Info,const Expr * E,CheckSubobjectKind CSK)937 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
938 CheckSubobjectKind CSK) {
939 if (Invalid)
940 return false;
941 if (isOnePastTheEnd()) {
942 Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
943 << CSK;
944 setInvalid();
945 return false;
946 }
947 return true;
948 }
949
diagnosePointerArithmetic(EvalInfo & Info,const Expr * E,uint64_t N)950 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
951 const Expr *E, uint64_t N) {
952 if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
953 Info.CCEDiag(E, diag::note_constexpr_array_index)
954 << static_cast<int>(N) << /*array*/ 0
955 << static_cast<unsigned>(MostDerivedArraySize);
956 else
957 Info.CCEDiag(E, diag::note_constexpr_array_index)
958 << static_cast<int>(N) << /*non-array*/ 1;
959 setInvalid();
960 }
961
CallStackFrame(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,APValue * Arguments)962 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
963 const FunctionDecl *Callee, const LValue *This,
964 APValue *Arguments)
965 : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
966 Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
967 Info.CurrentCall = this;
968 ++Info.CallStackDepth;
969 }
970
~CallStackFrame()971 CallStackFrame::~CallStackFrame() {
972 assert(Info.CurrentCall == this && "calls retired out of order");
973 --Info.CallStackDepth;
974 Info.CurrentCall = Caller;
975 }
976
createTemporary(const void * Key,bool IsLifetimeExtended)977 APValue &CallStackFrame::createTemporary(const void *Key,
978 bool IsLifetimeExtended) {
979 APValue &Result = Temporaries[Key];
980 assert(Result.isUninit() && "temporary created multiple times");
981 Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended));
982 return Result;
983 }
984
985 static void describeCall(CallStackFrame *Frame, raw_ostream &Out);
986
addCallStack(unsigned Limit)987 void EvalInfo::addCallStack(unsigned Limit) {
988 // Determine which calls to skip, if any.
989 unsigned ActiveCalls = CallStackDepth - 1;
990 unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
991 if (Limit && Limit < ActiveCalls) {
992 SkipStart = Limit / 2 + Limit % 2;
993 SkipEnd = ActiveCalls - Limit / 2;
994 }
995
996 // Walk the call stack and add the diagnostics.
997 unsigned CallIdx = 0;
998 for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
999 Frame = Frame->Caller, ++CallIdx) {
1000 // Skip this call?
1001 if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
1002 if (CallIdx == SkipStart) {
1003 // Note that we're skipping calls.
1004 addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
1005 << unsigned(ActiveCalls - Limit);
1006 }
1007 continue;
1008 }
1009
1010 // Use a different note for an inheriting constructor, because from the
1011 // user's perspective it's not really a function at all.
1012 if (auto *CD = dyn_cast_or_null<CXXConstructorDecl>(Frame->Callee)) {
1013 if (CD->isInheritingConstructor()) {
1014 addDiag(Frame->CallLoc, diag::note_constexpr_inherited_ctor_call_here)
1015 << CD->getParent();
1016 continue;
1017 }
1018 }
1019
1020 SmallVector<char, 128> Buffer;
1021 llvm::raw_svector_ostream Out(Buffer);
1022 describeCall(Frame, Out);
1023 addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
1024 }
1025 }
1026
1027 namespace {
1028 struct ComplexValue {
1029 private:
1030 bool IsInt;
1031
1032 public:
1033 APSInt IntReal, IntImag;
1034 APFloat FloatReal, FloatImag;
1035
ComplexValue__anon7264eadc0211::ComplexValue1036 ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
1037
makeComplexFloat__anon7264eadc0211::ComplexValue1038 void makeComplexFloat() { IsInt = false; }
isComplexFloat__anon7264eadc0211::ComplexValue1039 bool isComplexFloat() const { return !IsInt; }
getComplexFloatReal__anon7264eadc0211::ComplexValue1040 APFloat &getComplexFloatReal() { return FloatReal; }
getComplexFloatImag__anon7264eadc0211::ComplexValue1041 APFloat &getComplexFloatImag() { return FloatImag; }
1042
makeComplexInt__anon7264eadc0211::ComplexValue1043 void makeComplexInt() { IsInt = true; }
isComplexInt__anon7264eadc0211::ComplexValue1044 bool isComplexInt() const { return IsInt; }
getComplexIntReal__anon7264eadc0211::ComplexValue1045 APSInt &getComplexIntReal() { return IntReal; }
getComplexIntImag__anon7264eadc0211::ComplexValue1046 APSInt &getComplexIntImag() { return IntImag; }
1047
moveInto__anon7264eadc0211::ComplexValue1048 void moveInto(APValue &v) const {
1049 if (isComplexFloat())
1050 v = APValue(FloatReal, FloatImag);
1051 else
1052 v = APValue(IntReal, IntImag);
1053 }
setFrom__anon7264eadc0211::ComplexValue1054 void setFrom(const APValue &v) {
1055 assert(v.isComplexFloat() || v.isComplexInt());
1056 if (v.isComplexFloat()) {
1057 makeComplexFloat();
1058 FloatReal = v.getComplexFloatReal();
1059 FloatImag = v.getComplexFloatImag();
1060 } else {
1061 makeComplexInt();
1062 IntReal = v.getComplexIntReal();
1063 IntImag = v.getComplexIntImag();
1064 }
1065 }
1066 };
1067
1068 struct LValue {
1069 APValue::LValueBase Base;
1070 CharUnits Offset;
1071 unsigned InvalidBase : 1;
1072 unsigned CallIndex : 31;
1073 SubobjectDesignator Designator;
1074
getLValueBase__anon7264eadc0211::LValue1075 const APValue::LValueBase getLValueBase() const { return Base; }
getLValueOffset__anon7264eadc0211::LValue1076 CharUnits &getLValueOffset() { return Offset; }
getLValueOffset__anon7264eadc0211::LValue1077 const CharUnits &getLValueOffset() const { return Offset; }
getLValueCallIndex__anon7264eadc0211::LValue1078 unsigned getLValueCallIndex() const { return CallIndex; }
getLValueDesignator__anon7264eadc0211::LValue1079 SubobjectDesignator &getLValueDesignator() { return Designator; }
getLValueDesignator__anon7264eadc0211::LValue1080 const SubobjectDesignator &getLValueDesignator() const { return Designator;}
1081
moveInto__anon7264eadc0211::LValue1082 void moveInto(APValue &V) const {
1083 if (Designator.Invalid)
1084 V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
1085 else
1086 V = APValue(Base, Offset, Designator.Entries,
1087 Designator.IsOnePastTheEnd, CallIndex);
1088 }
setFrom__anon7264eadc0211::LValue1089 void setFrom(ASTContext &Ctx, const APValue &V) {
1090 assert(V.isLValue());
1091 Base = V.getLValueBase();
1092 Offset = V.getLValueOffset();
1093 InvalidBase = false;
1094 CallIndex = V.getLValueCallIndex();
1095 Designator = SubobjectDesignator(Ctx, V);
1096 }
1097
set__anon7264eadc0211::LValue1098 void set(APValue::LValueBase B, unsigned I = 0, bool BInvalid = false) {
1099 Base = B;
1100 Offset = CharUnits::Zero();
1101 InvalidBase = BInvalid;
1102 CallIndex = I;
1103 Designator = SubobjectDesignator(getType(B));
1104 }
1105
setInvalid__anon7264eadc0211::LValue1106 void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1107 set(B, I, true);
1108 }
1109
1110 // Check that this LValue is not based on a null pointer. If it is, produce
1111 // a diagnostic and mark the designator as invalid.
checkNullPointer__anon7264eadc0211::LValue1112 bool checkNullPointer(EvalInfo &Info, const Expr *E,
1113 CheckSubobjectKind CSK) {
1114 if (Designator.Invalid)
1115 return false;
1116 if (!Base) {
1117 Info.CCEDiag(E, diag::note_constexpr_null_subobject)
1118 << CSK;
1119 Designator.setInvalid();
1120 return false;
1121 }
1122 return true;
1123 }
1124
1125 // Check this LValue refers to an object. If not, set the designator to be
1126 // invalid and emit a diagnostic.
checkSubobject__anon7264eadc0211::LValue1127 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1128 return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1129 Designator.checkSubobject(Info, E, CSK);
1130 }
1131
addDecl__anon7264eadc0211::LValue1132 void addDecl(EvalInfo &Info, const Expr *E,
1133 const Decl *D, bool Virtual = false) {
1134 if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1135 Designator.addDeclUnchecked(D, Virtual);
1136 }
addArray__anon7264eadc0211::LValue1137 void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1138 if (checkSubobject(Info, E, CSK_ArrayToPointer))
1139 Designator.addArrayUnchecked(CAT);
1140 }
addComplex__anon7264eadc0211::LValue1141 void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1142 if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1143 Designator.addComplexUnchecked(EltTy, Imag);
1144 }
adjustIndex__anon7264eadc0211::LValue1145 void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
1146 if (N && checkNullPointer(Info, E, CSK_ArrayIndex))
1147 Designator.adjustIndex(Info, E, N);
1148 }
1149 };
1150
1151 struct MemberPtr {
MemberPtr__anon7264eadc0211::MemberPtr1152 MemberPtr() {}
MemberPtr__anon7264eadc0211::MemberPtr1153 explicit MemberPtr(const ValueDecl *Decl) :
1154 DeclAndIsDerivedMember(Decl, false), Path() {}
1155
1156 /// The member or (direct or indirect) field referred to by this member
1157 /// pointer, or 0 if this is a null member pointer.
getDecl__anon7264eadc0211::MemberPtr1158 const ValueDecl *getDecl() const {
1159 return DeclAndIsDerivedMember.getPointer();
1160 }
1161 /// Is this actually a member of some type derived from the relevant class?
isDerivedMember__anon7264eadc0211::MemberPtr1162 bool isDerivedMember() const {
1163 return DeclAndIsDerivedMember.getInt();
1164 }
1165 /// Get the class which the declaration actually lives in.
getContainingRecord__anon7264eadc0211::MemberPtr1166 const CXXRecordDecl *getContainingRecord() const {
1167 return cast<CXXRecordDecl>(
1168 DeclAndIsDerivedMember.getPointer()->getDeclContext());
1169 }
1170
moveInto__anon7264eadc0211::MemberPtr1171 void moveInto(APValue &V) const {
1172 V = APValue(getDecl(), isDerivedMember(), Path);
1173 }
setFrom__anon7264eadc0211::MemberPtr1174 void setFrom(const APValue &V) {
1175 assert(V.isMemberPointer());
1176 DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1177 DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1178 Path.clear();
1179 ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1180 Path.insert(Path.end(), P.begin(), P.end());
1181 }
1182
1183 /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1184 /// whether the member is a member of some class derived from the class type
1185 /// of the member pointer.
1186 llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1187 /// Path - The path of base/derived classes from the member declaration's
1188 /// class (exclusive) to the class type of the member pointer (inclusive).
1189 SmallVector<const CXXRecordDecl*, 4> Path;
1190
1191 /// Perform a cast towards the class of the Decl (either up or down the
1192 /// hierarchy).
castBack__anon7264eadc0211::MemberPtr1193 bool castBack(const CXXRecordDecl *Class) {
1194 assert(!Path.empty());
1195 const CXXRecordDecl *Expected;
1196 if (Path.size() >= 2)
1197 Expected = Path[Path.size() - 2];
1198 else
1199 Expected = getContainingRecord();
1200 if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1201 // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1202 // if B does not contain the original member and is not a base or
1203 // derived class of the class containing the original member, the result
1204 // of the cast is undefined.
1205 // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1206 // (D::*). We consider that to be a language defect.
1207 return false;
1208 }
1209 Path.pop_back();
1210 return true;
1211 }
1212 /// Perform a base-to-derived member pointer cast.
castToDerived__anon7264eadc0211::MemberPtr1213 bool castToDerived(const CXXRecordDecl *Derived) {
1214 if (!getDecl())
1215 return true;
1216 if (!isDerivedMember()) {
1217 Path.push_back(Derived);
1218 return true;
1219 }
1220 if (!castBack(Derived))
1221 return false;
1222 if (Path.empty())
1223 DeclAndIsDerivedMember.setInt(false);
1224 return true;
1225 }
1226 /// Perform a derived-to-base member pointer cast.
castToBase__anon7264eadc0211::MemberPtr1227 bool castToBase(const CXXRecordDecl *Base) {
1228 if (!getDecl())
1229 return true;
1230 if (Path.empty())
1231 DeclAndIsDerivedMember.setInt(true);
1232 if (isDerivedMember()) {
1233 Path.push_back(Base);
1234 return true;
1235 }
1236 return castBack(Base);
1237 }
1238 };
1239
1240 /// Compare two member pointers, which are assumed to be of the same type.
operator ==(const MemberPtr & LHS,const MemberPtr & RHS)1241 static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1242 if (!LHS.getDecl() || !RHS.getDecl())
1243 return !LHS.getDecl() && !RHS.getDecl();
1244 if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1245 return false;
1246 return LHS.Path == RHS.Path;
1247 }
1248 }
1249
1250 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1251 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1252 const LValue &This, const Expr *E,
1253 bool AllowNonLiteralTypes = false);
1254 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
1255 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
1256 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1257 EvalInfo &Info);
1258 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1259 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1260 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1261 EvalInfo &Info);
1262 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1263 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1264 static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info);
1265 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1266
1267 //===----------------------------------------------------------------------===//
1268 // Misc utilities
1269 //===----------------------------------------------------------------------===//
1270
1271 /// Produce a string describing the given constexpr call.
describeCall(CallStackFrame * Frame,raw_ostream & Out)1272 static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
1273 unsigned ArgIndex = 0;
1274 bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
1275 !isa<CXXConstructorDecl>(Frame->Callee) &&
1276 cast<CXXMethodDecl>(Frame->Callee)->isInstance();
1277
1278 if (!IsMemberCall)
1279 Out << *Frame->Callee << '(';
1280
1281 if (Frame->This && IsMemberCall) {
1282 APValue Val;
1283 Frame->This->moveInto(Val);
1284 Val.printPretty(Out, Frame->Info.Ctx,
1285 Frame->This->Designator.MostDerivedType);
1286 // FIXME: Add parens around Val if needed.
1287 Out << "->" << *Frame->Callee << '(';
1288 IsMemberCall = false;
1289 }
1290
1291 for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
1292 E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
1293 if (ArgIndex > (unsigned)IsMemberCall)
1294 Out << ", ";
1295
1296 const ParmVarDecl *Param = *I;
1297 const APValue &Arg = Frame->Arguments[ArgIndex];
1298 Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
1299
1300 if (ArgIndex == 0 && IsMemberCall)
1301 Out << "->" << *Frame->Callee << '(';
1302 }
1303
1304 Out << ')';
1305 }
1306
1307 /// Evaluate an expression to see if it had side-effects, and discard its
1308 /// result.
1309 /// \return \c true if the caller should keep evaluating.
EvaluateIgnoredValue(EvalInfo & Info,const Expr * E)1310 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1311 APValue Scratch;
1312 if (!Evaluate(Scratch, Info, E))
1313 // We don't need the value, but we might have skipped a side effect here.
1314 return Info.noteSideEffect();
1315 return true;
1316 }
1317
1318 /// Sign- or zero-extend a value to 64 bits. If it's already 64 bits, just
1319 /// return its existing value.
getExtValue(const APSInt & Value)1320 static int64_t getExtValue(const APSInt &Value) {
1321 return Value.isSigned() ? Value.getSExtValue()
1322 : static_cast<int64_t>(Value.getZExtValue());
1323 }
1324
1325 /// Should this call expression be treated as a string literal?
IsStringLiteralCall(const CallExpr * E)1326 static bool IsStringLiteralCall(const CallExpr *E) {
1327 unsigned Builtin = E->getBuiltinCallee();
1328 return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1329 Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
1330 }
1331
IsGlobalLValue(APValue::LValueBase B)1332 static bool IsGlobalLValue(APValue::LValueBase B) {
1333 // C++11 [expr.const]p3 An address constant expression is a prvalue core
1334 // constant expression of pointer type that evaluates to...
1335
1336 // ... a null pointer value, or a prvalue core constant expression of type
1337 // std::nullptr_t.
1338 if (!B) return true;
1339
1340 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1341 // ... the address of an object with static storage duration,
1342 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1343 return VD->hasGlobalStorage();
1344 // ... the address of a function,
1345 return isa<FunctionDecl>(D);
1346 }
1347
1348 const Expr *E = B.get<const Expr*>();
1349 switch (E->getStmtClass()) {
1350 default:
1351 return false;
1352 case Expr::CompoundLiteralExprClass: {
1353 const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1354 return CLE->isFileScope() && CLE->isLValue();
1355 }
1356 case Expr::MaterializeTemporaryExprClass:
1357 // A materialized temporary might have been lifetime-extended to static
1358 // storage duration.
1359 return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1360 // A string literal has static storage duration.
1361 case Expr::StringLiteralClass:
1362 case Expr::PredefinedExprClass:
1363 case Expr::ObjCStringLiteralClass:
1364 case Expr::ObjCEncodeExprClass:
1365 case Expr::CXXTypeidExprClass:
1366 case Expr::CXXUuidofExprClass:
1367 return true;
1368 case Expr::CallExprClass:
1369 return IsStringLiteralCall(cast<CallExpr>(E));
1370 // For GCC compatibility, &&label has static storage duration.
1371 case Expr::AddrLabelExprClass:
1372 return true;
1373 // A Block literal expression may be used as the initialization value for
1374 // Block variables at global or local static scope.
1375 case Expr::BlockExprClass:
1376 return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
1377 case Expr::ImplicitValueInitExprClass:
1378 // FIXME:
1379 // We can never form an lvalue with an implicit value initialization as its
1380 // base through expression evaluation, so these only appear in one case: the
1381 // implicit variable declaration we invent when checking whether a constexpr
1382 // constructor can produce a constant expression. We must assume that such
1383 // an expression might be a global lvalue.
1384 return true;
1385 }
1386 }
1387
NoteLValueLocation(EvalInfo & Info,APValue::LValueBase Base)1388 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
1389 assert(Base && "no location for a null lvalue");
1390 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1391 if (VD)
1392 Info.Note(VD->getLocation(), diag::note_declared_at);
1393 else
1394 Info.Note(Base.get<const Expr*>()->getExprLoc(),
1395 diag::note_constexpr_temporary_here);
1396 }
1397
1398 /// Check that this reference or pointer core constant expression is a valid
1399 /// value for an address or reference constant expression. Return true if we
1400 /// can fold this expression, whether or not it's a constant expression.
CheckLValueConstantExpression(EvalInfo & Info,SourceLocation Loc,QualType Type,const LValue & LVal)1401 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
1402 QualType Type, const LValue &LVal) {
1403 bool IsReferenceType = Type->isReferenceType();
1404
1405 APValue::LValueBase Base = LVal.getLValueBase();
1406 const SubobjectDesignator &Designator = LVal.getLValueDesignator();
1407
1408 // Check that the object is a global. Note that the fake 'this' object we
1409 // manufacture when checking potential constant expressions is conservatively
1410 // assumed to be global here.
1411 if (!IsGlobalLValue(Base)) {
1412 if (Info.getLangOpts().CPlusPlus11) {
1413 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1414 Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
1415 << IsReferenceType << !Designator.Entries.empty()
1416 << !!VD << VD;
1417 NoteLValueLocation(Info, Base);
1418 } else {
1419 Info.FFDiag(Loc);
1420 }
1421 // Don't allow references to temporaries to escape.
1422 return false;
1423 }
1424 assert((Info.checkingPotentialConstantExpression() ||
1425 LVal.getLValueCallIndex() == 0) &&
1426 "have call index for global lvalue");
1427
1428 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
1429 if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
1430 // Check if this is a thread-local variable.
1431 if (Var->getTLSKind())
1432 return false;
1433
1434 // A dllimport variable never acts like a constant.
1435 if (Var->hasAttr<DLLImportAttr>())
1436 return false;
1437 }
1438 if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) {
1439 // __declspec(dllimport) must be handled very carefully:
1440 // We must never initialize an expression with the thunk in C++.
1441 // Doing otherwise would allow the same id-expression to yield
1442 // different addresses for the same function in different translation
1443 // units. However, this means that we must dynamically initialize the
1444 // expression with the contents of the import address table at runtime.
1445 //
1446 // The C language has no notion of ODR; furthermore, it has no notion of
1447 // dynamic initialization. This means that we are permitted to
1448 // perform initialization with the address of the thunk.
1449 if (Info.getLangOpts().CPlusPlus && FD->hasAttr<DLLImportAttr>())
1450 return false;
1451 }
1452 }
1453
1454 // Allow address constant expressions to be past-the-end pointers. This is
1455 // an extension: the standard requires them to point to an object.
1456 if (!IsReferenceType)
1457 return true;
1458
1459 // A reference constant expression must refer to an object.
1460 if (!Base) {
1461 // FIXME: diagnostic
1462 Info.CCEDiag(Loc);
1463 return true;
1464 }
1465
1466 // Does this refer one past the end of some object?
1467 if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
1468 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1469 Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
1470 << !Designator.Entries.empty() << !!VD << VD;
1471 NoteLValueLocation(Info, Base);
1472 }
1473
1474 return true;
1475 }
1476
1477 /// Check that this core constant expression is of literal type, and if not,
1478 /// produce an appropriate diagnostic.
CheckLiteralType(EvalInfo & Info,const Expr * E,const LValue * This=nullptr)1479 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
1480 const LValue *This = nullptr) {
1481 if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
1482 return true;
1483
1484 // C++1y: A constant initializer for an object o [...] may also invoke
1485 // constexpr constructors for o and its subobjects even if those objects
1486 // are of non-literal class types.
1487 if (Info.getLangOpts().CPlusPlus14 && This &&
1488 Info.EvaluatingDecl == This->getLValueBase())
1489 return true;
1490
1491 // Prvalue constant expressions must be of literal types.
1492 if (Info.getLangOpts().CPlusPlus11)
1493 Info.FFDiag(E, diag::note_constexpr_nonliteral)
1494 << E->getType();
1495 else
1496 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
1497 return false;
1498 }
1499
1500 /// Check that this core constant expression value is a valid value for a
1501 /// constant expression. If not, report an appropriate diagnostic. Does not
1502 /// check that the expression is of literal type.
CheckConstantExpression(EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value)1503 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
1504 QualType Type, const APValue &Value) {
1505 if (Value.isUninit()) {
1506 Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
1507 << true << Type;
1508 return false;
1509 }
1510
1511 // We allow _Atomic(T) to be initialized from anything that T can be
1512 // initialized from.
1513 if (const AtomicType *AT = Type->getAs<AtomicType>())
1514 Type = AT->getValueType();
1515
1516 // Core issue 1454: For a literal constant expression of array or class type,
1517 // each subobject of its value shall have been initialized by a constant
1518 // expression.
1519 if (Value.isArray()) {
1520 QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
1521 for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
1522 if (!CheckConstantExpression(Info, DiagLoc, EltTy,
1523 Value.getArrayInitializedElt(I)))
1524 return false;
1525 }
1526 if (!Value.hasArrayFiller())
1527 return true;
1528 return CheckConstantExpression(Info, DiagLoc, EltTy,
1529 Value.getArrayFiller());
1530 }
1531 if (Value.isUnion() && Value.getUnionField()) {
1532 return CheckConstantExpression(Info, DiagLoc,
1533 Value.getUnionField()->getType(),
1534 Value.getUnionValue());
1535 }
1536 if (Value.isStruct()) {
1537 RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
1538 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
1539 unsigned BaseIndex = 0;
1540 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
1541 End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
1542 if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1543 Value.getStructBase(BaseIndex)))
1544 return false;
1545 }
1546 }
1547 for (const auto *I : RD->fields()) {
1548 if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1549 Value.getStructField(I->getFieldIndex())))
1550 return false;
1551 }
1552 }
1553
1554 if (Value.isLValue()) {
1555 LValue LVal;
1556 LVal.setFrom(Info.Ctx, Value);
1557 return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
1558 }
1559
1560 // Everything else is fine.
1561 return true;
1562 }
1563
GetLValueBaseDecl(const LValue & LVal)1564 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1565 return LVal.Base.dyn_cast<const ValueDecl*>();
1566 }
1567
IsLiteralLValue(const LValue & Value)1568 static bool IsLiteralLValue(const LValue &Value) {
1569 if (Value.CallIndex)
1570 return false;
1571 const Expr *E = Value.Base.dyn_cast<const Expr*>();
1572 return E && !isa<MaterializeTemporaryExpr>(E);
1573 }
1574
IsWeakLValue(const LValue & Value)1575 static bool IsWeakLValue(const LValue &Value) {
1576 const ValueDecl *Decl = GetLValueBaseDecl(Value);
1577 return Decl && Decl->isWeak();
1578 }
1579
isZeroSized(const LValue & Value)1580 static bool isZeroSized(const LValue &Value) {
1581 const ValueDecl *Decl = GetLValueBaseDecl(Value);
1582 if (Decl && isa<VarDecl>(Decl)) {
1583 QualType Ty = Decl->getType();
1584 if (Ty->isArrayType())
1585 return Ty->isIncompleteType() ||
1586 Decl->getASTContext().getTypeSize(Ty) == 0;
1587 }
1588 return false;
1589 }
1590
EvalPointerValueAsBool(const APValue & Value,bool & Result)1591 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
1592 // A null base expression indicates a null pointer. These are always
1593 // evaluatable, and they are false unless the offset is zero.
1594 if (!Value.getLValueBase()) {
1595 Result = !Value.getLValueOffset().isZero();
1596 return true;
1597 }
1598
1599 // We have a non-null base. These are generally known to be true, but if it's
1600 // a weak declaration it can be null at runtime.
1601 Result = true;
1602 const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
1603 return !Decl || !Decl->isWeak();
1604 }
1605
HandleConversionToBool(const APValue & Val,bool & Result)1606 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
1607 switch (Val.getKind()) {
1608 case APValue::Uninitialized:
1609 return false;
1610 case APValue::Int:
1611 Result = Val.getInt().getBoolValue();
1612 return true;
1613 case APValue::Float:
1614 Result = !Val.getFloat().isZero();
1615 return true;
1616 case APValue::ComplexInt:
1617 Result = Val.getComplexIntReal().getBoolValue() ||
1618 Val.getComplexIntImag().getBoolValue();
1619 return true;
1620 case APValue::ComplexFloat:
1621 Result = !Val.getComplexFloatReal().isZero() ||
1622 !Val.getComplexFloatImag().isZero();
1623 return true;
1624 case APValue::LValue:
1625 return EvalPointerValueAsBool(Val, Result);
1626 case APValue::MemberPointer:
1627 Result = Val.getMemberPointerDecl();
1628 return true;
1629 case APValue::Vector:
1630 case APValue::Array:
1631 case APValue::Struct:
1632 case APValue::Union:
1633 case APValue::AddrLabelDiff:
1634 return false;
1635 }
1636
1637 llvm_unreachable("unknown APValue kind");
1638 }
1639
EvaluateAsBooleanCondition(const Expr * E,bool & Result,EvalInfo & Info)1640 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
1641 EvalInfo &Info) {
1642 assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
1643 APValue Val;
1644 if (!Evaluate(Val, Info, E))
1645 return false;
1646 return HandleConversionToBool(Val, Result);
1647 }
1648
1649 template<typename T>
HandleOverflow(EvalInfo & Info,const Expr * E,const T & SrcValue,QualType DestType)1650 static bool HandleOverflow(EvalInfo &Info, const Expr *E,
1651 const T &SrcValue, QualType DestType) {
1652 Info.CCEDiag(E, diag::note_constexpr_overflow)
1653 << SrcValue << DestType;
1654 return Info.noteUndefinedBehavior();
1655 }
1656
HandleFloatToIntCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APFloat & Value,QualType DestType,APSInt & Result)1657 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
1658 QualType SrcType, const APFloat &Value,
1659 QualType DestType, APSInt &Result) {
1660 unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1661 // Determine whether we are converting to unsigned or signed.
1662 bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
1663
1664 Result = APSInt(DestWidth, !DestSigned);
1665 bool ignored;
1666 if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
1667 & APFloat::opInvalidOp)
1668 return HandleOverflow(Info, E, Value, DestType);
1669 return true;
1670 }
1671
HandleFloatToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,QualType DestType,APFloat & Result)1672 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
1673 QualType SrcType, QualType DestType,
1674 APFloat &Result) {
1675 APFloat Value = Result;
1676 bool ignored;
1677 if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
1678 APFloat::rmNearestTiesToEven, &ignored)
1679 & APFloat::opOverflow)
1680 return HandleOverflow(Info, E, Value, DestType);
1681 return true;
1682 }
1683
HandleIntToIntCast(EvalInfo & Info,const Expr * E,QualType DestType,QualType SrcType,const APSInt & Value)1684 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
1685 QualType DestType, QualType SrcType,
1686 const APSInt &Value) {
1687 unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1688 APSInt Result = Value;
1689 // Figure out if this is a truncate, extend or noop cast.
1690 // If the input is signed, do a sign extend, noop, or truncate.
1691 Result = Result.extOrTrunc(DestWidth);
1692 Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
1693 return Result;
1694 }
1695
HandleIntToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APSInt & Value,QualType DestType,APFloat & Result)1696 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
1697 QualType SrcType, const APSInt &Value,
1698 QualType DestType, APFloat &Result) {
1699 Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
1700 if (Result.convertFromAPInt(Value, Value.isSigned(),
1701 APFloat::rmNearestTiesToEven)
1702 & APFloat::opOverflow)
1703 return HandleOverflow(Info, E, Value, DestType);
1704 return true;
1705 }
1706
truncateBitfieldValue(EvalInfo & Info,const Expr * E,APValue & Value,const FieldDecl * FD)1707 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
1708 APValue &Value, const FieldDecl *FD) {
1709 assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
1710
1711 if (!Value.isInt()) {
1712 // Trying to store a pointer-cast-to-integer into a bitfield.
1713 // FIXME: In this case, we should provide the diagnostic for casting
1714 // a pointer to an integer.
1715 assert(Value.isLValue() && "integral value neither int nor lvalue?");
1716 Info.FFDiag(E);
1717 return false;
1718 }
1719
1720 APSInt &Int = Value.getInt();
1721 unsigned OldBitWidth = Int.getBitWidth();
1722 unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
1723 if (NewBitWidth < OldBitWidth)
1724 Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
1725 return true;
1726 }
1727
EvalAndBitcastToAPInt(EvalInfo & Info,const Expr * E,llvm::APInt & Res)1728 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
1729 llvm::APInt &Res) {
1730 APValue SVal;
1731 if (!Evaluate(SVal, Info, E))
1732 return false;
1733 if (SVal.isInt()) {
1734 Res = SVal.getInt();
1735 return true;
1736 }
1737 if (SVal.isFloat()) {
1738 Res = SVal.getFloat().bitcastToAPInt();
1739 return true;
1740 }
1741 if (SVal.isVector()) {
1742 QualType VecTy = E->getType();
1743 unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
1744 QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
1745 unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
1746 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
1747 Res = llvm::APInt::getNullValue(VecSize);
1748 for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
1749 APValue &Elt = SVal.getVectorElt(i);
1750 llvm::APInt EltAsInt;
1751 if (Elt.isInt()) {
1752 EltAsInt = Elt.getInt();
1753 } else if (Elt.isFloat()) {
1754 EltAsInt = Elt.getFloat().bitcastToAPInt();
1755 } else {
1756 // Don't try to handle vectors of anything other than int or float
1757 // (not sure if it's possible to hit this case).
1758 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
1759 return false;
1760 }
1761 unsigned BaseEltSize = EltAsInt.getBitWidth();
1762 if (BigEndian)
1763 Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
1764 else
1765 Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
1766 }
1767 return true;
1768 }
1769 // Give up if the input isn't an int, float, or vector. For example, we
1770 // reject "(v4i16)(intptr_t)&a".
1771 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
1772 return false;
1773 }
1774
1775 /// Perform the given integer operation, which is known to need at most BitWidth
1776 /// bits, and check for overflow in the original type (if that type was not an
1777 /// unsigned type).
1778 template<typename Operation>
CheckedIntArithmetic(EvalInfo & Info,const Expr * E,const APSInt & LHS,const APSInt & RHS,unsigned BitWidth,Operation Op,APSInt & Result)1779 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
1780 const APSInt &LHS, const APSInt &RHS,
1781 unsigned BitWidth, Operation Op,
1782 APSInt &Result) {
1783 if (LHS.isUnsigned()) {
1784 Result = Op(LHS, RHS);
1785 return true;
1786 }
1787
1788 APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
1789 Result = Value.trunc(LHS.getBitWidth());
1790 if (Result.extend(BitWidth) != Value) {
1791 if (Info.checkingForOverflow())
1792 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
1793 diag::warn_integer_constant_overflow)
1794 << Result.toString(10) << E->getType();
1795 else
1796 return HandleOverflow(Info, E, Value, E->getType());
1797 }
1798 return true;
1799 }
1800
1801 /// Perform the given binary integer operation.
handleIntIntBinOp(EvalInfo & Info,const Expr * E,const APSInt & LHS,BinaryOperatorKind Opcode,APSInt RHS,APSInt & Result)1802 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
1803 BinaryOperatorKind Opcode, APSInt RHS,
1804 APSInt &Result) {
1805 switch (Opcode) {
1806 default:
1807 Info.FFDiag(E);
1808 return false;
1809 case BO_Mul:
1810 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
1811 std::multiplies<APSInt>(), Result);
1812 case BO_Add:
1813 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1814 std::plus<APSInt>(), Result);
1815 case BO_Sub:
1816 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1817 std::minus<APSInt>(), Result);
1818 case BO_And: Result = LHS & RHS; return true;
1819 case BO_Xor: Result = LHS ^ RHS; return true;
1820 case BO_Or: Result = LHS | RHS; return true;
1821 case BO_Div:
1822 case BO_Rem:
1823 if (RHS == 0) {
1824 Info.FFDiag(E, diag::note_expr_divide_by_zero);
1825 return false;
1826 }
1827 Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
1828 // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
1829 // this operation and gives the two's complement result.
1830 if (RHS.isNegative() && RHS.isAllOnesValue() &&
1831 LHS.isSigned() && LHS.isMinSignedValue())
1832 return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
1833 E->getType());
1834 return true;
1835 case BO_Shl: {
1836 if (Info.getLangOpts().OpenCL)
1837 // OpenCL 6.3j: shift values are effectively % word size of LHS.
1838 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1839 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1840 RHS.isUnsigned());
1841 else if (RHS.isSigned() && RHS.isNegative()) {
1842 // During constant-folding, a negative shift is an opposite shift. Such
1843 // a shift is not a constant expression.
1844 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1845 RHS = -RHS;
1846 goto shift_right;
1847 }
1848 shift_left:
1849 // C++11 [expr.shift]p1: Shift width must be less than the bit width of
1850 // the shifted type.
1851 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1852 if (SA != RHS) {
1853 Info.CCEDiag(E, diag::note_constexpr_large_shift)
1854 << RHS << E->getType() << LHS.getBitWidth();
1855 } else if (LHS.isSigned()) {
1856 // C++11 [expr.shift]p2: A signed left shift must have a non-negative
1857 // operand, and must not overflow the corresponding unsigned type.
1858 if (LHS.isNegative())
1859 Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
1860 else if (LHS.countLeadingZeros() < SA)
1861 Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
1862 }
1863 Result = LHS << SA;
1864 return true;
1865 }
1866 case BO_Shr: {
1867 if (Info.getLangOpts().OpenCL)
1868 // OpenCL 6.3j: shift values are effectively % word size of LHS.
1869 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1870 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1871 RHS.isUnsigned());
1872 else if (RHS.isSigned() && RHS.isNegative()) {
1873 // During constant-folding, a negative shift is an opposite shift. Such a
1874 // shift is not a constant expression.
1875 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1876 RHS = -RHS;
1877 goto shift_left;
1878 }
1879 shift_right:
1880 // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
1881 // shifted type.
1882 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1883 if (SA != RHS)
1884 Info.CCEDiag(E, diag::note_constexpr_large_shift)
1885 << RHS << E->getType() << LHS.getBitWidth();
1886 Result = LHS >> SA;
1887 return true;
1888 }
1889
1890 case BO_LT: Result = LHS < RHS; return true;
1891 case BO_GT: Result = LHS > RHS; return true;
1892 case BO_LE: Result = LHS <= RHS; return true;
1893 case BO_GE: Result = LHS >= RHS; return true;
1894 case BO_EQ: Result = LHS == RHS; return true;
1895 case BO_NE: Result = LHS != RHS; return true;
1896 }
1897 }
1898
1899 /// Perform the given binary floating-point operation, in-place, on LHS.
handleFloatFloatBinOp(EvalInfo & Info,const Expr * E,APFloat & LHS,BinaryOperatorKind Opcode,const APFloat & RHS)1900 static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
1901 APFloat &LHS, BinaryOperatorKind Opcode,
1902 const APFloat &RHS) {
1903 switch (Opcode) {
1904 default:
1905 Info.FFDiag(E);
1906 return false;
1907 case BO_Mul:
1908 LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
1909 break;
1910 case BO_Add:
1911 LHS.add(RHS, APFloat::rmNearestTiesToEven);
1912 break;
1913 case BO_Sub:
1914 LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
1915 break;
1916 case BO_Div:
1917 LHS.divide(RHS, APFloat::rmNearestTiesToEven);
1918 break;
1919 }
1920
1921 if (LHS.isInfinity() || LHS.isNaN()) {
1922 Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
1923 return Info.noteUndefinedBehavior();
1924 }
1925 return true;
1926 }
1927
1928 /// Cast an lvalue referring to a base subobject to a derived class, by
1929 /// truncating the lvalue's path to the given length.
CastToDerivedClass(EvalInfo & Info,const Expr * E,LValue & Result,const RecordDecl * TruncatedType,unsigned TruncatedElements)1930 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
1931 const RecordDecl *TruncatedType,
1932 unsigned TruncatedElements) {
1933 SubobjectDesignator &D = Result.Designator;
1934
1935 // Check we actually point to a derived class object.
1936 if (TruncatedElements == D.Entries.size())
1937 return true;
1938 assert(TruncatedElements >= D.MostDerivedPathLength &&
1939 "not casting to a derived class");
1940 if (!Result.checkSubobject(Info, E, CSK_Derived))
1941 return false;
1942
1943 // Truncate the path to the subobject, and remove any derived-to-base offsets.
1944 const RecordDecl *RD = TruncatedType;
1945 for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
1946 if (RD->isInvalidDecl()) return false;
1947 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
1948 const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
1949 if (isVirtualBaseClass(D.Entries[I]))
1950 Result.Offset -= Layout.getVBaseClassOffset(Base);
1951 else
1952 Result.Offset -= Layout.getBaseClassOffset(Base);
1953 RD = Base;
1954 }
1955 D.Entries.resize(TruncatedElements);
1956 return true;
1957 }
1958
HandleLValueDirectBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,const ASTRecordLayout * RL=nullptr)1959 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1960 const CXXRecordDecl *Derived,
1961 const CXXRecordDecl *Base,
1962 const ASTRecordLayout *RL = nullptr) {
1963 if (!RL) {
1964 if (Derived->isInvalidDecl()) return false;
1965 RL = &Info.Ctx.getASTRecordLayout(Derived);
1966 }
1967
1968 Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
1969 Obj.addDecl(Info, E, Base, /*Virtual*/ false);
1970 return true;
1971 }
1972
HandleLValueBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * DerivedDecl,const CXXBaseSpecifier * Base)1973 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1974 const CXXRecordDecl *DerivedDecl,
1975 const CXXBaseSpecifier *Base) {
1976 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
1977
1978 if (!Base->isVirtual())
1979 return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
1980
1981 SubobjectDesignator &D = Obj.Designator;
1982 if (D.Invalid)
1983 return false;
1984
1985 // Extract most-derived object and corresponding type.
1986 DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
1987 if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
1988 return false;
1989
1990 // Find the virtual base class.
1991 if (DerivedDecl->isInvalidDecl()) return false;
1992 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
1993 Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
1994 Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
1995 return true;
1996 }
1997
HandleLValueBasePath(EvalInfo & Info,const CastExpr * E,QualType Type,LValue & Result)1998 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
1999 QualType Type, LValue &Result) {
2000 for (CastExpr::path_const_iterator PathI = E->path_begin(),
2001 PathE = E->path_end();
2002 PathI != PathE; ++PathI) {
2003 if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
2004 *PathI))
2005 return false;
2006 Type = (*PathI)->getType();
2007 }
2008 return true;
2009 }
2010
2011 /// Update LVal to refer to the given field, which must be a member of the type
2012 /// currently described by LVal.
HandleLValueMember(EvalInfo & Info,const Expr * E,LValue & LVal,const FieldDecl * FD,const ASTRecordLayout * RL=nullptr)2013 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
2014 const FieldDecl *FD,
2015 const ASTRecordLayout *RL = nullptr) {
2016 if (!RL) {
2017 if (FD->getParent()->isInvalidDecl()) return false;
2018 RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
2019 }
2020
2021 unsigned I = FD->getFieldIndex();
2022 LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
2023 LVal.addDecl(Info, E, FD);
2024 return true;
2025 }
2026
2027 /// Update LVal to refer to the given indirect field.
HandleLValueIndirectMember(EvalInfo & Info,const Expr * E,LValue & LVal,const IndirectFieldDecl * IFD)2028 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
2029 LValue &LVal,
2030 const IndirectFieldDecl *IFD) {
2031 for (const auto *C : IFD->chain())
2032 if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
2033 return false;
2034 return true;
2035 }
2036
2037 /// Get the size of the given type in char units.
HandleSizeof(EvalInfo & Info,SourceLocation Loc,QualType Type,CharUnits & Size)2038 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
2039 QualType Type, CharUnits &Size) {
2040 // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
2041 // extension.
2042 if (Type->isVoidType() || Type->isFunctionType()) {
2043 Size = CharUnits::One();
2044 return true;
2045 }
2046
2047 if (Type->isDependentType()) {
2048 Info.FFDiag(Loc);
2049 return false;
2050 }
2051
2052 if (!Type->isConstantSizeType()) {
2053 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
2054 // FIXME: Better diagnostic.
2055 Info.FFDiag(Loc);
2056 return false;
2057 }
2058
2059 Size = Info.Ctx.getTypeSizeInChars(Type);
2060 return true;
2061 }
2062
2063 /// Update a pointer value to model pointer arithmetic.
2064 /// \param Info - Information about the ongoing evaluation.
2065 /// \param E - The expression being evaluated, for diagnostic purposes.
2066 /// \param LVal - The pointer value to be updated.
2067 /// \param EltTy - The pointee type represented by LVal.
2068 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
HandleLValueArrayAdjustment(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,int64_t Adjustment)2069 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
2070 LValue &LVal, QualType EltTy,
2071 int64_t Adjustment) {
2072 CharUnits SizeOfPointee;
2073 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
2074 return false;
2075
2076 // Compute the new offset in the appropriate width.
2077 LVal.Offset += Adjustment * SizeOfPointee;
2078 LVal.adjustIndex(Info, E, Adjustment);
2079 return true;
2080 }
2081
2082 /// Update an lvalue to refer to a component of a complex number.
2083 /// \param Info - Information about the ongoing evaluation.
2084 /// \param LVal - The lvalue to be updated.
2085 /// \param EltTy - The complex number's component type.
2086 /// \param Imag - False for the real component, true for the imaginary.
HandleLValueComplexElement(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,bool Imag)2087 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
2088 LValue &LVal, QualType EltTy,
2089 bool Imag) {
2090 if (Imag) {
2091 CharUnits SizeOfComponent;
2092 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
2093 return false;
2094 LVal.Offset += SizeOfComponent;
2095 }
2096 LVal.addComplex(Info, E, EltTy, Imag);
2097 return true;
2098 }
2099
2100 /// Try to evaluate the initializer for a variable declaration.
2101 ///
2102 /// \param Info Information about the ongoing evaluation.
2103 /// \param E An expression to be used when printing diagnostics.
2104 /// \param VD The variable whose initializer should be obtained.
2105 /// \param Frame The frame in which the variable was created. Must be null
2106 /// if this variable is not local to the evaluation.
2107 /// \param Result Filled in with a pointer to the value of the variable.
evaluateVarDeclInit(EvalInfo & Info,const Expr * E,const VarDecl * VD,CallStackFrame * Frame,APValue * & Result)2108 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
2109 const VarDecl *VD, CallStackFrame *Frame,
2110 APValue *&Result) {
2111 // If this is a parameter to an active constexpr function call, perform
2112 // argument substitution.
2113 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
2114 // Assume arguments of a potential constant expression are unknown
2115 // constant expressions.
2116 if (Info.checkingPotentialConstantExpression())
2117 return false;
2118 if (!Frame || !Frame->Arguments) {
2119 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2120 return false;
2121 }
2122 Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
2123 return true;
2124 }
2125
2126 // If this is a local variable, dig out its value.
2127 if (Frame) {
2128 Result = Frame->getTemporary(VD);
2129 if (!Result) {
2130 // Assume variables referenced within a lambda's call operator that were
2131 // not declared within the call operator are captures and during checking
2132 // of a potential constant expression, assume they are unknown constant
2133 // expressions.
2134 assert(isLambdaCallOperator(Frame->Callee) &&
2135 (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
2136 "missing value for local variable");
2137 if (Info.checkingPotentialConstantExpression())
2138 return false;
2139 // FIXME: implement capture evaluation during constant expr evaluation.
2140 Info.FFDiag(E->getLocStart(),
2141 diag::note_unimplemented_constexpr_lambda_feature_ast)
2142 << "captures not currently allowed";
2143 return false;
2144 }
2145 return true;
2146 }
2147
2148 // Dig out the initializer, and use the declaration which it's attached to.
2149 const Expr *Init = VD->getAnyInitializer(VD);
2150 if (!Init || Init->isValueDependent()) {
2151 // If we're checking a potential constant expression, the variable could be
2152 // initialized later.
2153 if (!Info.checkingPotentialConstantExpression())
2154 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2155 return false;
2156 }
2157
2158 // If we're currently evaluating the initializer of this declaration, use that
2159 // in-flight value.
2160 if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
2161 Result = Info.EvaluatingDeclValue;
2162 return true;
2163 }
2164
2165 // Never evaluate the initializer of a weak variable. We can't be sure that
2166 // this is the definition which will be used.
2167 if (VD->isWeak()) {
2168 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2169 return false;
2170 }
2171
2172 // Check that we can fold the initializer. In C++, we will have already done
2173 // this in the cases where it matters for conformance.
2174 SmallVector<PartialDiagnosticAt, 8> Notes;
2175 if (!VD->evaluateValue(Notes)) {
2176 Info.FFDiag(E, diag::note_constexpr_var_init_non_constant,
2177 Notes.size() + 1) << VD;
2178 Info.Note(VD->getLocation(), diag::note_declared_at);
2179 Info.addNotes(Notes);
2180 return false;
2181 } else if (!VD->checkInitIsICE()) {
2182 Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
2183 Notes.size() + 1) << VD;
2184 Info.Note(VD->getLocation(), diag::note_declared_at);
2185 Info.addNotes(Notes);
2186 }
2187
2188 Result = VD->getEvaluatedValue();
2189 return true;
2190 }
2191
IsConstNonVolatile(QualType T)2192 static bool IsConstNonVolatile(QualType T) {
2193 Qualifiers Quals = T.getQualifiers();
2194 return Quals.hasConst() && !Quals.hasVolatile();
2195 }
2196
2197 /// Get the base index of the given base class within an APValue representing
2198 /// the given derived class.
getBaseIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * Base)2199 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
2200 const CXXRecordDecl *Base) {
2201 Base = Base->getCanonicalDecl();
2202 unsigned Index = 0;
2203 for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
2204 E = Derived->bases_end(); I != E; ++I, ++Index) {
2205 if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
2206 return Index;
2207 }
2208
2209 llvm_unreachable("base class missing from derived class's bases list");
2210 }
2211
2212 /// Extract the value of a character from a string literal.
extractStringLiteralCharacter(EvalInfo & Info,const Expr * Lit,uint64_t Index)2213 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
2214 uint64_t Index) {
2215 // FIXME: Support ObjCEncodeExpr, MakeStringConstant
2216 if (auto PE = dyn_cast<PredefinedExpr>(Lit))
2217 Lit = PE->getFunctionName();
2218 const StringLiteral *S = cast<StringLiteral>(Lit);
2219 const ConstantArrayType *CAT =
2220 Info.Ctx.getAsConstantArrayType(S->getType());
2221 assert(CAT && "string literal isn't an array");
2222 QualType CharType = CAT->getElementType();
2223 assert(CharType->isIntegerType() && "unexpected character type");
2224
2225 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2226 CharType->isUnsignedIntegerType());
2227 if (Index < S->getLength())
2228 Value = S->getCodeUnit(Index);
2229 return Value;
2230 }
2231
2232 // Expand a string literal into an array of characters.
expandStringLiteral(EvalInfo & Info,const Expr * Lit,APValue & Result)2233 static void expandStringLiteral(EvalInfo &Info, const Expr *Lit,
2234 APValue &Result) {
2235 const StringLiteral *S = cast<StringLiteral>(Lit);
2236 const ConstantArrayType *CAT =
2237 Info.Ctx.getAsConstantArrayType(S->getType());
2238 assert(CAT && "string literal isn't an array");
2239 QualType CharType = CAT->getElementType();
2240 assert(CharType->isIntegerType() && "unexpected character type");
2241
2242 unsigned Elts = CAT->getSize().getZExtValue();
2243 Result = APValue(APValue::UninitArray(),
2244 std::min(S->getLength(), Elts), Elts);
2245 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2246 CharType->isUnsignedIntegerType());
2247 if (Result.hasArrayFiller())
2248 Result.getArrayFiller() = APValue(Value);
2249 for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
2250 Value = S->getCodeUnit(I);
2251 Result.getArrayInitializedElt(I) = APValue(Value);
2252 }
2253 }
2254
2255 // Expand an array so that it has more than Index filled elements.
expandArray(APValue & Array,unsigned Index)2256 static void expandArray(APValue &Array, unsigned Index) {
2257 unsigned Size = Array.getArraySize();
2258 assert(Index < Size);
2259
2260 // Always at least double the number of elements for which we store a value.
2261 unsigned OldElts = Array.getArrayInitializedElts();
2262 unsigned NewElts = std::max(Index+1, OldElts * 2);
2263 NewElts = std::min(Size, std::max(NewElts, 8u));
2264
2265 // Copy the data across.
2266 APValue NewValue(APValue::UninitArray(), NewElts, Size);
2267 for (unsigned I = 0; I != OldElts; ++I)
2268 NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
2269 for (unsigned I = OldElts; I != NewElts; ++I)
2270 NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
2271 if (NewValue.hasArrayFiller())
2272 NewValue.getArrayFiller() = Array.getArrayFiller();
2273 Array.swap(NewValue);
2274 }
2275
2276 /// Determine whether a type would actually be read by an lvalue-to-rvalue
2277 /// conversion. If it's of class type, we may assume that the copy operation
2278 /// is trivial. Note that this is never true for a union type with fields
2279 /// (because the copy always "reads" the active member) and always true for
2280 /// a non-class type.
isReadByLvalueToRvalueConversion(QualType T)2281 static bool isReadByLvalueToRvalueConversion(QualType T) {
2282 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2283 if (!RD || (RD->isUnion() && !RD->field_empty()))
2284 return true;
2285 if (RD->isEmpty())
2286 return false;
2287
2288 for (auto *Field : RD->fields())
2289 if (isReadByLvalueToRvalueConversion(Field->getType()))
2290 return true;
2291
2292 for (auto &BaseSpec : RD->bases())
2293 if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
2294 return true;
2295
2296 return false;
2297 }
2298
2299 /// Diagnose an attempt to read from any unreadable field within the specified
2300 /// type, which might be a class type.
diagnoseUnreadableFields(EvalInfo & Info,const Expr * E,QualType T)2301 static bool diagnoseUnreadableFields(EvalInfo &Info, const Expr *E,
2302 QualType T) {
2303 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2304 if (!RD)
2305 return false;
2306
2307 if (!RD->hasMutableFields())
2308 return false;
2309
2310 for (auto *Field : RD->fields()) {
2311 // If we're actually going to read this field in some way, then it can't
2312 // be mutable. If we're in a union, then assigning to a mutable field
2313 // (even an empty one) can change the active member, so that's not OK.
2314 // FIXME: Add core issue number for the union case.
2315 if (Field->isMutable() &&
2316 (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
2317 Info.FFDiag(E, diag::note_constexpr_ltor_mutable, 1) << Field;
2318 Info.Note(Field->getLocation(), diag::note_declared_at);
2319 return true;
2320 }
2321
2322 if (diagnoseUnreadableFields(Info, E, Field->getType()))
2323 return true;
2324 }
2325
2326 for (auto &BaseSpec : RD->bases())
2327 if (diagnoseUnreadableFields(Info, E, BaseSpec.getType()))
2328 return true;
2329
2330 // All mutable fields were empty, and thus not actually read.
2331 return false;
2332 }
2333
2334 /// Kinds of access we can perform on an object, for diagnostics.
2335 enum AccessKinds {
2336 AK_Read,
2337 AK_Assign,
2338 AK_Increment,
2339 AK_Decrement
2340 };
2341
2342 namespace {
2343 /// A handle to a complete object (an object that is not a subobject of
2344 /// another object).
2345 struct CompleteObject {
2346 /// The value of the complete object.
2347 APValue *Value;
2348 /// The type of the complete object.
2349 QualType Type;
2350
CompleteObject__anon7264eadc0311::CompleteObject2351 CompleteObject() : Value(nullptr) {}
CompleteObject__anon7264eadc0311::CompleteObject2352 CompleteObject(APValue *Value, QualType Type)
2353 : Value(Value), Type(Type) {
2354 assert(Value && "missing value for complete object");
2355 }
2356
operator bool__anon7264eadc0311::CompleteObject2357 explicit operator bool() const { return Value; }
2358 };
2359 } // end anonymous namespace
2360
2361 /// Find the designated sub-object of an rvalue.
2362 template<typename SubobjectHandler>
2363 typename SubobjectHandler::result_type
findSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,SubobjectHandler & handler)2364 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
2365 const SubobjectDesignator &Sub, SubobjectHandler &handler) {
2366 if (Sub.Invalid)
2367 // A diagnostic will have already been produced.
2368 return handler.failed();
2369 if (Sub.isOnePastTheEnd()) {
2370 if (Info.getLangOpts().CPlusPlus11)
2371 Info.FFDiag(E, diag::note_constexpr_access_past_end)
2372 << handler.AccessKind;
2373 else
2374 Info.FFDiag(E);
2375 return handler.failed();
2376 }
2377
2378 APValue *O = Obj.Value;
2379 QualType ObjType = Obj.Type;
2380 const FieldDecl *LastField = nullptr;
2381
2382 // Walk the designator's path to find the subobject.
2383 for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
2384 if (O->isUninit()) {
2385 if (!Info.checkingPotentialConstantExpression())
2386 Info.FFDiag(E, diag::note_constexpr_access_uninit) << handler.AccessKind;
2387 return handler.failed();
2388 }
2389
2390 if (I == N) {
2391 // If we are reading an object of class type, there may still be more
2392 // things we need to check: if there are any mutable subobjects, we
2393 // cannot perform this read. (This only happens when performing a trivial
2394 // copy or assignment.)
2395 if (ObjType->isRecordType() && handler.AccessKind == AK_Read &&
2396 diagnoseUnreadableFields(Info, E, ObjType))
2397 return handler.failed();
2398
2399 if (!handler.found(*O, ObjType))
2400 return false;
2401
2402 // If we modified a bit-field, truncate it to the right width.
2403 if (handler.AccessKind != AK_Read &&
2404 LastField && LastField->isBitField() &&
2405 !truncateBitfieldValue(Info, E, *O, LastField))
2406 return false;
2407
2408 return true;
2409 }
2410
2411 LastField = nullptr;
2412 if (ObjType->isArrayType()) {
2413 // Next subobject is an array element.
2414 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
2415 assert(CAT && "vla in literal type?");
2416 uint64_t Index = Sub.Entries[I].ArrayIndex;
2417 if (CAT->getSize().ule(Index)) {
2418 // Note, it should not be possible to form a pointer with a valid
2419 // designator which points more than one past the end of the array.
2420 if (Info.getLangOpts().CPlusPlus11)
2421 Info.FFDiag(E, diag::note_constexpr_access_past_end)
2422 << handler.AccessKind;
2423 else
2424 Info.FFDiag(E);
2425 return handler.failed();
2426 }
2427
2428 ObjType = CAT->getElementType();
2429
2430 // An array object is represented as either an Array APValue or as an
2431 // LValue which refers to a string literal.
2432 if (O->isLValue()) {
2433 assert(I == N - 1 && "extracting subobject of character?");
2434 assert(!O->hasLValuePath() || O->getLValuePath().empty());
2435 if (handler.AccessKind != AK_Read)
2436 expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(),
2437 *O);
2438 else
2439 return handler.foundString(*O, ObjType, Index);
2440 }
2441
2442 if (O->getArrayInitializedElts() > Index)
2443 O = &O->getArrayInitializedElt(Index);
2444 else if (handler.AccessKind != AK_Read) {
2445 expandArray(*O, Index);
2446 O = &O->getArrayInitializedElt(Index);
2447 } else
2448 O = &O->getArrayFiller();
2449 } else if (ObjType->isAnyComplexType()) {
2450 // Next subobject is a complex number.
2451 uint64_t Index = Sub.Entries[I].ArrayIndex;
2452 if (Index > 1) {
2453 if (Info.getLangOpts().CPlusPlus11)
2454 Info.FFDiag(E, diag::note_constexpr_access_past_end)
2455 << handler.AccessKind;
2456 else
2457 Info.FFDiag(E);
2458 return handler.failed();
2459 }
2460
2461 bool WasConstQualified = ObjType.isConstQualified();
2462 ObjType = ObjType->castAs<ComplexType>()->getElementType();
2463 if (WasConstQualified)
2464 ObjType.addConst();
2465
2466 assert(I == N - 1 && "extracting subobject of scalar?");
2467 if (O->isComplexInt()) {
2468 return handler.found(Index ? O->getComplexIntImag()
2469 : O->getComplexIntReal(), ObjType);
2470 } else {
2471 assert(O->isComplexFloat());
2472 return handler.found(Index ? O->getComplexFloatImag()
2473 : O->getComplexFloatReal(), ObjType);
2474 }
2475 } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
2476 if (Field->isMutable() && handler.AccessKind == AK_Read) {
2477 Info.FFDiag(E, diag::note_constexpr_ltor_mutable, 1)
2478 << Field;
2479 Info.Note(Field->getLocation(), diag::note_declared_at);
2480 return handler.failed();
2481 }
2482
2483 // Next subobject is a class, struct or union field.
2484 RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
2485 if (RD->isUnion()) {
2486 const FieldDecl *UnionField = O->getUnionField();
2487 if (!UnionField ||
2488 UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
2489 Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
2490 << handler.AccessKind << Field << !UnionField << UnionField;
2491 return handler.failed();
2492 }
2493 O = &O->getUnionValue();
2494 } else
2495 O = &O->getStructField(Field->getFieldIndex());
2496
2497 bool WasConstQualified = ObjType.isConstQualified();
2498 ObjType = Field->getType();
2499 if (WasConstQualified && !Field->isMutable())
2500 ObjType.addConst();
2501
2502 if (ObjType.isVolatileQualified()) {
2503 if (Info.getLangOpts().CPlusPlus) {
2504 // FIXME: Include a description of the path to the volatile subobject.
2505 Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
2506 << handler.AccessKind << 2 << Field;
2507 Info.Note(Field->getLocation(), diag::note_declared_at);
2508 } else {
2509 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2510 }
2511 return handler.failed();
2512 }
2513
2514 LastField = Field;
2515 } else {
2516 // Next subobject is a base class.
2517 const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
2518 const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
2519 O = &O->getStructBase(getBaseIndex(Derived, Base));
2520
2521 bool WasConstQualified = ObjType.isConstQualified();
2522 ObjType = Info.Ctx.getRecordType(Base);
2523 if (WasConstQualified)
2524 ObjType.addConst();
2525 }
2526 }
2527 }
2528
2529 namespace {
2530 struct ExtractSubobjectHandler {
2531 EvalInfo &Info;
2532 APValue &Result;
2533
2534 static const AccessKinds AccessKind = AK_Read;
2535
2536 typedef bool result_type;
failed__anon7264eadc0411::ExtractSubobjectHandler2537 bool failed() { return false; }
found__anon7264eadc0411::ExtractSubobjectHandler2538 bool found(APValue &Subobj, QualType SubobjType) {
2539 Result = Subobj;
2540 return true;
2541 }
found__anon7264eadc0411::ExtractSubobjectHandler2542 bool found(APSInt &Value, QualType SubobjType) {
2543 Result = APValue(Value);
2544 return true;
2545 }
found__anon7264eadc0411::ExtractSubobjectHandler2546 bool found(APFloat &Value, QualType SubobjType) {
2547 Result = APValue(Value);
2548 return true;
2549 }
foundString__anon7264eadc0411::ExtractSubobjectHandler2550 bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2551 Result = APValue(extractStringLiteralCharacter(
2552 Info, Subobj.getLValueBase().get<const Expr *>(), Character));
2553 return true;
2554 }
2555 };
2556 } // end anonymous namespace
2557
2558 const AccessKinds ExtractSubobjectHandler::AccessKind;
2559
2560 /// Extract the designated sub-object of an rvalue.
extractSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & Result)2561 static bool extractSubobject(EvalInfo &Info, const Expr *E,
2562 const CompleteObject &Obj,
2563 const SubobjectDesignator &Sub,
2564 APValue &Result) {
2565 ExtractSubobjectHandler Handler = { Info, Result };
2566 return findSubobject(Info, E, Obj, Sub, Handler);
2567 }
2568
2569 namespace {
2570 struct ModifySubobjectHandler {
2571 EvalInfo &Info;
2572 APValue &NewVal;
2573 const Expr *E;
2574
2575 typedef bool result_type;
2576 static const AccessKinds AccessKind = AK_Assign;
2577
checkConst__anon7264eadc0511::ModifySubobjectHandler2578 bool checkConst(QualType QT) {
2579 // Assigning to a const object has undefined behavior.
2580 if (QT.isConstQualified()) {
2581 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
2582 return false;
2583 }
2584 return true;
2585 }
2586
failed__anon7264eadc0511::ModifySubobjectHandler2587 bool failed() { return false; }
found__anon7264eadc0511::ModifySubobjectHandler2588 bool found(APValue &Subobj, QualType SubobjType) {
2589 if (!checkConst(SubobjType))
2590 return false;
2591 // We've been given ownership of NewVal, so just swap it in.
2592 Subobj.swap(NewVal);
2593 return true;
2594 }
found__anon7264eadc0511::ModifySubobjectHandler2595 bool found(APSInt &Value, QualType SubobjType) {
2596 if (!checkConst(SubobjType))
2597 return false;
2598 if (!NewVal.isInt()) {
2599 // Maybe trying to write a cast pointer value into a complex?
2600 Info.FFDiag(E);
2601 return false;
2602 }
2603 Value = NewVal.getInt();
2604 return true;
2605 }
found__anon7264eadc0511::ModifySubobjectHandler2606 bool found(APFloat &Value, QualType SubobjType) {
2607 if (!checkConst(SubobjType))
2608 return false;
2609 Value = NewVal.getFloat();
2610 return true;
2611 }
foundString__anon7264eadc0511::ModifySubobjectHandler2612 bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2613 llvm_unreachable("shouldn't encounter string elements with ExpandArrays");
2614 }
2615 };
2616 } // end anonymous namespace
2617
2618 const AccessKinds ModifySubobjectHandler::AccessKind;
2619
2620 /// Update the designated sub-object of an rvalue to the given value.
modifySubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & NewVal)2621 static bool modifySubobject(EvalInfo &Info, const Expr *E,
2622 const CompleteObject &Obj,
2623 const SubobjectDesignator &Sub,
2624 APValue &NewVal) {
2625 ModifySubobjectHandler Handler = { Info, NewVal, E };
2626 return findSubobject(Info, E, Obj, Sub, Handler);
2627 }
2628
2629 /// Find the position where two subobject designators diverge, or equivalently
2630 /// the length of the common initial subsequence.
FindDesignatorMismatch(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B,bool & WasArrayIndex)2631 static unsigned FindDesignatorMismatch(QualType ObjType,
2632 const SubobjectDesignator &A,
2633 const SubobjectDesignator &B,
2634 bool &WasArrayIndex) {
2635 unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
2636 for (/**/; I != N; ++I) {
2637 if (!ObjType.isNull() &&
2638 (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
2639 // Next subobject is an array element.
2640 if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
2641 WasArrayIndex = true;
2642 return I;
2643 }
2644 if (ObjType->isAnyComplexType())
2645 ObjType = ObjType->castAs<ComplexType>()->getElementType();
2646 else
2647 ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
2648 } else {
2649 if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
2650 WasArrayIndex = false;
2651 return I;
2652 }
2653 if (const FieldDecl *FD = getAsField(A.Entries[I]))
2654 // Next subobject is a field.
2655 ObjType = FD->getType();
2656 else
2657 // Next subobject is a base class.
2658 ObjType = QualType();
2659 }
2660 }
2661 WasArrayIndex = false;
2662 return I;
2663 }
2664
2665 /// Determine whether the given subobject designators refer to elements of the
2666 /// same array object.
AreElementsOfSameArray(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B)2667 static bool AreElementsOfSameArray(QualType ObjType,
2668 const SubobjectDesignator &A,
2669 const SubobjectDesignator &B) {
2670 if (A.Entries.size() != B.Entries.size())
2671 return false;
2672
2673 bool IsArray = A.MostDerivedIsArrayElement;
2674 if (IsArray && A.MostDerivedPathLength != A.Entries.size())
2675 // A is a subobject of the array element.
2676 return false;
2677
2678 // If A (and B) designates an array element, the last entry will be the array
2679 // index. That doesn't have to match. Otherwise, we're in the 'implicit array
2680 // of length 1' case, and the entire path must match.
2681 bool WasArrayIndex;
2682 unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
2683 return CommonLength >= A.Entries.size() - IsArray;
2684 }
2685
2686 /// Find the complete object to which an LValue refers.
findCompleteObject(EvalInfo & Info,const Expr * E,AccessKinds AK,const LValue & LVal,QualType LValType)2687 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
2688 AccessKinds AK, const LValue &LVal,
2689 QualType LValType) {
2690 if (!LVal.Base) {
2691 Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
2692 return CompleteObject();
2693 }
2694
2695 CallStackFrame *Frame = nullptr;
2696 if (LVal.CallIndex) {
2697 Frame = Info.getCallFrame(LVal.CallIndex);
2698 if (!Frame) {
2699 Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
2700 << AK << LVal.Base.is<const ValueDecl*>();
2701 NoteLValueLocation(Info, LVal.Base);
2702 return CompleteObject();
2703 }
2704 }
2705
2706 // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
2707 // is not a constant expression (even if the object is non-volatile). We also
2708 // apply this rule to C++98, in order to conform to the expected 'volatile'
2709 // semantics.
2710 if (LValType.isVolatileQualified()) {
2711 if (Info.getLangOpts().CPlusPlus)
2712 Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
2713 << AK << LValType;
2714 else
2715 Info.FFDiag(E);
2716 return CompleteObject();
2717 }
2718
2719 // Compute value storage location and type of base object.
2720 APValue *BaseVal = nullptr;
2721 QualType BaseType = getType(LVal.Base);
2722
2723 if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
2724 // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
2725 // In C++11, constexpr, non-volatile variables initialized with constant
2726 // expressions are constant expressions too. Inside constexpr functions,
2727 // parameters are constant expressions even if they're non-const.
2728 // In C++1y, objects local to a constant expression (those with a Frame) are
2729 // both readable and writable inside constant expressions.
2730 // In C, such things can also be folded, although they are not ICEs.
2731 const VarDecl *VD = dyn_cast<VarDecl>(D);
2732 if (VD) {
2733 if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
2734 VD = VDef;
2735 }
2736 if (!VD || VD->isInvalidDecl()) {
2737 Info.FFDiag(E);
2738 return CompleteObject();
2739 }
2740
2741 // Accesses of volatile-qualified objects are not allowed.
2742 if (BaseType.isVolatileQualified()) {
2743 if (Info.getLangOpts().CPlusPlus) {
2744 Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
2745 << AK << 1 << VD;
2746 Info.Note(VD->getLocation(), diag::note_declared_at);
2747 } else {
2748 Info.FFDiag(E);
2749 }
2750 return CompleteObject();
2751 }
2752
2753 // Unless we're looking at a local variable or argument in a constexpr call,
2754 // the variable we're reading must be const.
2755 if (!Frame) {
2756 if (Info.getLangOpts().CPlusPlus14 &&
2757 VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) {
2758 // OK, we can read and modify an object if we're in the process of
2759 // evaluating its initializer, because its lifetime began in this
2760 // evaluation.
2761 } else if (AK != AK_Read) {
2762 // All the remaining cases only permit reading.
2763 Info.FFDiag(E, diag::note_constexpr_modify_global);
2764 return CompleteObject();
2765 } else if (VD->isConstexpr()) {
2766 // OK, we can read this variable.
2767 } else if (BaseType->isIntegralOrEnumerationType()) {
2768 // In OpenCL if a variable is in constant address space it is a const value.
2769 if (!(BaseType.isConstQualified() ||
2770 (Info.getLangOpts().OpenCL &&
2771 BaseType.getAddressSpace() == LangAS::opencl_constant))) {
2772 if (Info.getLangOpts().CPlusPlus) {
2773 Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
2774 Info.Note(VD->getLocation(), diag::note_declared_at);
2775 } else {
2776 Info.FFDiag(E);
2777 }
2778 return CompleteObject();
2779 }
2780 } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
2781 // We support folding of const floating-point types, in order to make
2782 // static const data members of such types (supported as an extension)
2783 // more useful.
2784 if (Info.getLangOpts().CPlusPlus11) {
2785 Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2786 Info.Note(VD->getLocation(), diag::note_declared_at);
2787 } else {
2788 Info.CCEDiag(E);
2789 }
2790 } else {
2791 // FIXME: Allow folding of values of any literal type in all languages.
2792 if (Info.checkingPotentialConstantExpression() &&
2793 VD->getType().isConstQualified() && !VD->hasDefinition(Info.Ctx)) {
2794 // The definition of this variable could be constexpr. We can't
2795 // access it right now, but may be able to in future.
2796 } else if (Info.getLangOpts().CPlusPlus11) {
2797 Info.FFDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2798 Info.Note(VD->getLocation(), diag::note_declared_at);
2799 } else {
2800 Info.FFDiag(E);
2801 }
2802 return CompleteObject();
2803 }
2804 }
2805
2806 if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal))
2807 return CompleteObject();
2808 } else {
2809 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2810
2811 if (!Frame) {
2812 if (const MaterializeTemporaryExpr *MTE =
2813 dyn_cast<MaterializeTemporaryExpr>(Base)) {
2814 assert(MTE->getStorageDuration() == SD_Static &&
2815 "should have a frame for a non-global materialized temporary");
2816
2817 // Per C++1y [expr.const]p2:
2818 // an lvalue-to-rvalue conversion [is not allowed unless it applies to]
2819 // - a [...] glvalue of integral or enumeration type that refers to
2820 // a non-volatile const object [...]
2821 // [...]
2822 // - a [...] glvalue of literal type that refers to a non-volatile
2823 // object whose lifetime began within the evaluation of e.
2824 //
2825 // C++11 misses the 'began within the evaluation of e' check and
2826 // instead allows all temporaries, including things like:
2827 // int &&r = 1;
2828 // int x = ++r;
2829 // constexpr int k = r;
2830 // Therefore we use the C++1y rules in C++11 too.
2831 const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
2832 const ValueDecl *ED = MTE->getExtendingDecl();
2833 if (!(BaseType.isConstQualified() &&
2834 BaseType->isIntegralOrEnumerationType()) &&
2835 !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) {
2836 Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
2837 Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
2838 return CompleteObject();
2839 }
2840
2841 BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
2842 assert(BaseVal && "got reference to unevaluated temporary");
2843 } else {
2844 Info.FFDiag(E);
2845 return CompleteObject();
2846 }
2847 } else {
2848 BaseVal = Frame->getTemporary(Base);
2849 assert(BaseVal && "missing value for temporary");
2850 }
2851
2852 // Volatile temporary objects cannot be accessed in constant expressions.
2853 if (BaseType.isVolatileQualified()) {
2854 if (Info.getLangOpts().CPlusPlus) {
2855 Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
2856 << AK << 0;
2857 Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
2858 } else {
2859 Info.FFDiag(E);
2860 }
2861 return CompleteObject();
2862 }
2863 }
2864
2865 // During the construction of an object, it is not yet 'const'.
2866 // FIXME: We don't set up EvaluatingDecl for local variables or temporaries,
2867 // and this doesn't do quite the right thing for const subobjects of the
2868 // object under construction.
2869 if (LVal.getLValueBase() == Info.EvaluatingDecl) {
2870 BaseType = Info.Ctx.getCanonicalType(BaseType);
2871 BaseType.removeLocalConst();
2872 }
2873
2874 // In C++1y, we can't safely access any mutable state when we might be
2875 // evaluating after an unmodeled side effect.
2876 //
2877 // FIXME: Not all local state is mutable. Allow local constant subobjects
2878 // to be read here (but take care with 'mutable' fields).
2879 if ((Frame && Info.getLangOpts().CPlusPlus14 &&
2880 Info.EvalStatus.HasSideEffects) ||
2881 (AK != AK_Read && Info.IsSpeculativelyEvaluating))
2882 return CompleteObject();
2883
2884 return CompleteObject(BaseVal, BaseType);
2885 }
2886
2887 /// \brief Perform an lvalue-to-rvalue conversion on the given glvalue. This
2888 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
2889 /// glvalue referred to by an entity of reference type.
2890 ///
2891 /// \param Info - Information about the ongoing evaluation.
2892 /// \param Conv - The expression for which we are performing the conversion.
2893 /// Used for diagnostics.
2894 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
2895 /// case of a non-class type).
2896 /// \param LVal - The glvalue on which we are attempting to perform this action.
2897 /// \param RVal - The produced value will be placed here.
handleLValueToRValueConversion(EvalInfo & Info,const Expr * Conv,QualType Type,const LValue & LVal,APValue & RVal)2898 static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
2899 QualType Type,
2900 const LValue &LVal, APValue &RVal) {
2901 if (LVal.Designator.Invalid)
2902 return false;
2903
2904 // Check for special cases where there is no existing APValue to look at.
2905 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2906 if (Base && !LVal.CallIndex && !Type.isVolatileQualified()) {
2907 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
2908 // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
2909 // initializer until now for such expressions. Such an expression can't be
2910 // an ICE in C, so this only matters for fold.
2911 assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
2912 if (Type.isVolatileQualified()) {
2913 Info.FFDiag(Conv);
2914 return false;
2915 }
2916 APValue Lit;
2917 if (!Evaluate(Lit, Info, CLE->getInitializer()))
2918 return false;
2919 CompleteObject LitObj(&Lit, Base->getType());
2920 return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal);
2921 } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
2922 // We represent a string literal array as an lvalue pointing at the
2923 // corresponding expression, rather than building an array of chars.
2924 // FIXME: Support ObjCEncodeExpr, MakeStringConstant
2925 APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
2926 CompleteObject StrObj(&Str, Base->getType());
2927 return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal);
2928 }
2929 }
2930
2931 CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type);
2932 return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal);
2933 }
2934
2935 /// Perform an assignment of Val to LVal. Takes ownership of Val.
handleAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,APValue & Val)2936 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
2937 QualType LValType, APValue &Val) {
2938 if (LVal.Designator.Invalid)
2939 return false;
2940
2941 if (!Info.getLangOpts().CPlusPlus14) {
2942 Info.FFDiag(E);
2943 return false;
2944 }
2945
2946 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2947 return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
2948 }
2949
isOverflowingIntegerType(ASTContext & Ctx,QualType T)2950 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
2951 return T->isSignedIntegerType() &&
2952 Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
2953 }
2954
2955 namespace {
2956 struct CompoundAssignSubobjectHandler {
2957 EvalInfo &Info;
2958 const Expr *E;
2959 QualType PromotedLHSType;
2960 BinaryOperatorKind Opcode;
2961 const APValue &RHS;
2962
2963 static const AccessKinds AccessKind = AK_Assign;
2964
2965 typedef bool result_type;
2966
checkConst__anon7264eadc0611::CompoundAssignSubobjectHandler2967 bool checkConst(QualType QT) {
2968 // Assigning to a const object has undefined behavior.
2969 if (QT.isConstQualified()) {
2970 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
2971 return false;
2972 }
2973 return true;
2974 }
2975
failed__anon7264eadc0611::CompoundAssignSubobjectHandler2976 bool failed() { return false; }
found__anon7264eadc0611::CompoundAssignSubobjectHandler2977 bool found(APValue &Subobj, QualType SubobjType) {
2978 switch (Subobj.getKind()) {
2979 case APValue::Int:
2980 return found(Subobj.getInt(), SubobjType);
2981 case APValue::Float:
2982 return found(Subobj.getFloat(), SubobjType);
2983 case APValue::ComplexInt:
2984 case APValue::ComplexFloat:
2985 // FIXME: Implement complex compound assignment.
2986 Info.FFDiag(E);
2987 return false;
2988 case APValue::LValue:
2989 return foundPointer(Subobj, SubobjType);
2990 default:
2991 // FIXME: can this happen?
2992 Info.FFDiag(E);
2993 return false;
2994 }
2995 }
found__anon7264eadc0611::CompoundAssignSubobjectHandler2996 bool found(APSInt &Value, QualType SubobjType) {
2997 if (!checkConst(SubobjType))
2998 return false;
2999
3000 if (!SubobjType->isIntegerType() || !RHS.isInt()) {
3001 // We don't support compound assignment on integer-cast-to-pointer
3002 // values.
3003 Info.FFDiag(E);
3004 return false;
3005 }
3006
3007 APSInt LHS = HandleIntToIntCast(Info, E, PromotedLHSType,
3008 SubobjType, Value);
3009 if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
3010 return false;
3011 Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
3012 return true;
3013 }
found__anon7264eadc0611::CompoundAssignSubobjectHandler3014 bool found(APFloat &Value, QualType SubobjType) {
3015 return checkConst(SubobjType) &&
3016 HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
3017 Value) &&
3018 handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
3019 HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
3020 }
foundPointer__anon7264eadc0611::CompoundAssignSubobjectHandler3021 bool foundPointer(APValue &Subobj, QualType SubobjType) {
3022 if (!checkConst(SubobjType))
3023 return false;
3024
3025 QualType PointeeType;
3026 if (const PointerType *PT = SubobjType->getAs<PointerType>())
3027 PointeeType = PT->getPointeeType();
3028
3029 if (PointeeType.isNull() || !RHS.isInt() ||
3030 (Opcode != BO_Add && Opcode != BO_Sub)) {
3031 Info.FFDiag(E);
3032 return false;
3033 }
3034
3035 int64_t Offset = getExtValue(RHS.getInt());
3036 if (Opcode == BO_Sub)
3037 Offset = -Offset;
3038
3039 LValue LVal;
3040 LVal.setFrom(Info.Ctx, Subobj);
3041 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
3042 return false;
3043 LVal.moveInto(Subobj);
3044 return true;
3045 }
foundString__anon7264eadc0611::CompoundAssignSubobjectHandler3046 bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
3047 llvm_unreachable("shouldn't encounter string elements here");
3048 }
3049 };
3050 } // end anonymous namespace
3051
3052 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
3053
3054 /// Perform a compound assignment of LVal <op>= RVal.
handleCompoundAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,QualType PromotedLValType,BinaryOperatorKind Opcode,const APValue & RVal)3055 static bool handleCompoundAssignment(
3056 EvalInfo &Info, const Expr *E,
3057 const LValue &LVal, QualType LValType, QualType PromotedLValType,
3058 BinaryOperatorKind Opcode, const APValue &RVal) {
3059 if (LVal.Designator.Invalid)
3060 return false;
3061
3062 if (!Info.getLangOpts().CPlusPlus14) {
3063 Info.FFDiag(E);
3064 return false;
3065 }
3066
3067 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
3068 CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
3069 RVal };
3070 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
3071 }
3072
3073 namespace {
3074 struct IncDecSubobjectHandler {
3075 EvalInfo &Info;
3076 const Expr *E;
3077 AccessKinds AccessKind;
3078 APValue *Old;
3079
3080 typedef bool result_type;
3081
checkConst__anon7264eadc0711::IncDecSubobjectHandler3082 bool checkConst(QualType QT) {
3083 // Assigning to a const object has undefined behavior.
3084 if (QT.isConstQualified()) {
3085 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3086 return false;
3087 }
3088 return true;
3089 }
3090
failed__anon7264eadc0711::IncDecSubobjectHandler3091 bool failed() { return false; }
found__anon7264eadc0711::IncDecSubobjectHandler3092 bool found(APValue &Subobj, QualType SubobjType) {
3093 // Stash the old value. Also clear Old, so we don't clobber it later
3094 // if we're post-incrementing a complex.
3095 if (Old) {
3096 *Old = Subobj;
3097 Old = nullptr;
3098 }
3099
3100 switch (Subobj.getKind()) {
3101 case APValue::Int:
3102 return found(Subobj.getInt(), SubobjType);
3103 case APValue::Float:
3104 return found(Subobj.getFloat(), SubobjType);
3105 case APValue::ComplexInt:
3106 return found(Subobj.getComplexIntReal(),
3107 SubobjType->castAs<ComplexType>()->getElementType()
3108 .withCVRQualifiers(SubobjType.getCVRQualifiers()));
3109 case APValue::ComplexFloat:
3110 return found(Subobj.getComplexFloatReal(),
3111 SubobjType->castAs<ComplexType>()->getElementType()
3112 .withCVRQualifiers(SubobjType.getCVRQualifiers()));
3113 case APValue::LValue:
3114 return foundPointer(Subobj, SubobjType);
3115 default:
3116 // FIXME: can this happen?
3117 Info.FFDiag(E);
3118 return false;
3119 }
3120 }
found__anon7264eadc0711::IncDecSubobjectHandler3121 bool found(APSInt &Value, QualType SubobjType) {
3122 if (!checkConst(SubobjType))
3123 return false;
3124
3125 if (!SubobjType->isIntegerType()) {
3126 // We don't support increment / decrement on integer-cast-to-pointer
3127 // values.
3128 Info.FFDiag(E);
3129 return false;
3130 }
3131
3132 if (Old) *Old = APValue(Value);
3133
3134 // bool arithmetic promotes to int, and the conversion back to bool
3135 // doesn't reduce mod 2^n, so special-case it.
3136 if (SubobjType->isBooleanType()) {
3137 if (AccessKind == AK_Increment)
3138 Value = 1;
3139 else
3140 Value = !Value;
3141 return true;
3142 }
3143
3144 bool WasNegative = Value.isNegative();
3145 if (AccessKind == AK_Increment) {
3146 ++Value;
3147
3148 if (!WasNegative && Value.isNegative() &&
3149 isOverflowingIntegerType(Info.Ctx, SubobjType)) {
3150 APSInt ActualValue(Value, /*IsUnsigned*/true);
3151 return HandleOverflow(Info, E, ActualValue, SubobjType);
3152 }
3153 } else {
3154 --Value;
3155
3156 if (WasNegative && !Value.isNegative() &&
3157 isOverflowingIntegerType(Info.Ctx, SubobjType)) {
3158 unsigned BitWidth = Value.getBitWidth();
3159 APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
3160 ActualValue.setBit(BitWidth);
3161 return HandleOverflow(Info, E, ActualValue, SubobjType);
3162 }
3163 }
3164 return true;
3165 }
found__anon7264eadc0711::IncDecSubobjectHandler3166 bool found(APFloat &Value, QualType SubobjType) {
3167 if (!checkConst(SubobjType))
3168 return false;
3169
3170 if (Old) *Old = APValue(Value);
3171
3172 APFloat One(Value.getSemantics(), 1);
3173 if (AccessKind == AK_Increment)
3174 Value.add(One, APFloat::rmNearestTiesToEven);
3175 else
3176 Value.subtract(One, APFloat::rmNearestTiesToEven);
3177 return true;
3178 }
foundPointer__anon7264eadc0711::IncDecSubobjectHandler3179 bool foundPointer(APValue &Subobj, QualType SubobjType) {
3180 if (!checkConst(SubobjType))
3181 return false;
3182
3183 QualType PointeeType;
3184 if (const PointerType *PT = SubobjType->getAs<PointerType>())
3185 PointeeType = PT->getPointeeType();
3186 else {
3187 Info.FFDiag(E);
3188 return false;
3189 }
3190
3191 LValue LVal;
3192 LVal.setFrom(Info.Ctx, Subobj);
3193 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
3194 AccessKind == AK_Increment ? 1 : -1))
3195 return false;
3196 LVal.moveInto(Subobj);
3197 return true;
3198 }
foundString__anon7264eadc0711::IncDecSubobjectHandler3199 bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
3200 llvm_unreachable("shouldn't encounter string elements here");
3201 }
3202 };
3203 } // end anonymous namespace
3204
3205 /// Perform an increment or decrement on LVal.
handleIncDec(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,bool IsIncrement,APValue * Old)3206 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
3207 QualType LValType, bool IsIncrement, APValue *Old) {
3208 if (LVal.Designator.Invalid)
3209 return false;
3210
3211 if (!Info.getLangOpts().CPlusPlus14) {
3212 Info.FFDiag(E);
3213 return false;
3214 }
3215
3216 AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
3217 CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
3218 IncDecSubobjectHandler Handler = { Info, E, AK, Old };
3219 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
3220 }
3221
3222 /// Build an lvalue for the object argument of a member function call.
EvaluateObjectArgument(EvalInfo & Info,const Expr * Object,LValue & This)3223 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
3224 LValue &This) {
3225 if (Object->getType()->isPointerType())
3226 return EvaluatePointer(Object, This, Info);
3227
3228 if (Object->isGLValue())
3229 return EvaluateLValue(Object, This, Info);
3230
3231 if (Object->getType()->isLiteralType(Info.Ctx))
3232 return EvaluateTemporary(Object, This, Info);
3233
3234 Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
3235 return false;
3236 }
3237
3238 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
3239 /// lvalue referring to the result.
3240 ///
3241 /// \param Info - Information about the ongoing evaluation.
3242 /// \param LV - An lvalue referring to the base of the member pointer.
3243 /// \param RHS - The member pointer expression.
3244 /// \param IncludeMember - Specifies whether the member itself is included in
3245 /// the resulting LValue subobject designator. This is not possible when
3246 /// creating a bound member function.
3247 /// \return The field or method declaration to which the member pointer refers,
3248 /// or 0 if evaluation fails.
HandleMemberPointerAccess(EvalInfo & Info,QualType LVType,LValue & LV,const Expr * RHS,bool IncludeMember=true)3249 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
3250 QualType LVType,
3251 LValue &LV,
3252 const Expr *RHS,
3253 bool IncludeMember = true) {
3254 MemberPtr MemPtr;
3255 if (!EvaluateMemberPointer(RHS, MemPtr, Info))
3256 return nullptr;
3257
3258 // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
3259 // member value, the behavior is undefined.
3260 if (!MemPtr.getDecl()) {
3261 // FIXME: Specific diagnostic.
3262 Info.FFDiag(RHS);
3263 return nullptr;
3264 }
3265
3266 if (MemPtr.isDerivedMember()) {
3267 // This is a member of some derived class. Truncate LV appropriately.
3268 // The end of the derived-to-base path for the base object must match the
3269 // derived-to-base path for the member pointer.
3270 if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
3271 LV.Designator.Entries.size()) {
3272 Info.FFDiag(RHS);
3273 return nullptr;
3274 }
3275 unsigned PathLengthToMember =
3276 LV.Designator.Entries.size() - MemPtr.Path.size();
3277 for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
3278 const CXXRecordDecl *LVDecl = getAsBaseClass(
3279 LV.Designator.Entries[PathLengthToMember + I]);
3280 const CXXRecordDecl *MPDecl = MemPtr.Path[I];
3281 if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
3282 Info.FFDiag(RHS);
3283 return nullptr;
3284 }
3285 }
3286
3287 // Truncate the lvalue to the appropriate derived class.
3288 if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
3289 PathLengthToMember))
3290 return nullptr;
3291 } else if (!MemPtr.Path.empty()) {
3292 // Extend the LValue path with the member pointer's path.
3293 LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
3294 MemPtr.Path.size() + IncludeMember);
3295
3296 // Walk down to the appropriate base class.
3297 if (const PointerType *PT = LVType->getAs<PointerType>())
3298 LVType = PT->getPointeeType();
3299 const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
3300 assert(RD && "member pointer access on non-class-type expression");
3301 // The first class in the path is that of the lvalue.
3302 for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
3303 const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
3304 if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
3305 return nullptr;
3306 RD = Base;
3307 }
3308 // Finally cast to the class containing the member.
3309 if (!HandleLValueDirectBase(Info, RHS, LV, RD,
3310 MemPtr.getContainingRecord()))
3311 return nullptr;
3312 }
3313
3314 // Add the member. Note that we cannot build bound member functions here.
3315 if (IncludeMember) {
3316 if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
3317 if (!HandleLValueMember(Info, RHS, LV, FD))
3318 return nullptr;
3319 } else if (const IndirectFieldDecl *IFD =
3320 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
3321 if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
3322 return nullptr;
3323 } else {
3324 llvm_unreachable("can't construct reference to bound member function");
3325 }
3326 }
3327
3328 return MemPtr.getDecl();
3329 }
3330
HandleMemberPointerAccess(EvalInfo & Info,const BinaryOperator * BO,LValue & LV,bool IncludeMember=true)3331 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
3332 const BinaryOperator *BO,
3333 LValue &LV,
3334 bool IncludeMember = true) {
3335 assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
3336
3337 if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
3338 if (Info.noteFailure()) {
3339 MemberPtr MemPtr;
3340 EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
3341 }
3342 return nullptr;
3343 }
3344
3345 return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
3346 BO->getRHS(), IncludeMember);
3347 }
3348
3349 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
3350 /// the provided lvalue, which currently refers to the base object.
HandleBaseToDerivedCast(EvalInfo & Info,const CastExpr * E,LValue & Result)3351 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
3352 LValue &Result) {
3353 SubobjectDesignator &D = Result.Designator;
3354 if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
3355 return false;
3356
3357 QualType TargetQT = E->getType();
3358 if (const PointerType *PT = TargetQT->getAs<PointerType>())
3359 TargetQT = PT->getPointeeType();
3360
3361 // Check this cast lands within the final derived-to-base subobject path.
3362 if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
3363 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
3364 << D.MostDerivedType << TargetQT;
3365 return false;
3366 }
3367
3368 // Check the type of the final cast. We don't need to check the path,
3369 // since a cast can only be formed if the path is unique.
3370 unsigned NewEntriesSize = D.Entries.size() - E->path_size();
3371 const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
3372 const CXXRecordDecl *FinalType;
3373 if (NewEntriesSize == D.MostDerivedPathLength)
3374 FinalType = D.MostDerivedType->getAsCXXRecordDecl();
3375 else
3376 FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
3377 if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
3378 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
3379 << D.MostDerivedType << TargetQT;
3380 return false;
3381 }
3382
3383 // Truncate the lvalue to the appropriate derived class.
3384 return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
3385 }
3386
3387 namespace {
3388 enum EvalStmtResult {
3389 /// Evaluation failed.
3390 ESR_Failed,
3391 /// Hit a 'return' statement.
3392 ESR_Returned,
3393 /// Evaluation succeeded.
3394 ESR_Succeeded,
3395 /// Hit a 'continue' statement.
3396 ESR_Continue,
3397 /// Hit a 'break' statement.
3398 ESR_Break,
3399 /// Still scanning for 'case' or 'default' statement.
3400 ESR_CaseNotFound
3401 };
3402 }
3403
EvaluateDecl(EvalInfo & Info,const Decl * D)3404 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
3405 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
3406 // We don't need to evaluate the initializer for a static local.
3407 if (!VD->hasLocalStorage())
3408 return true;
3409
3410 LValue Result;
3411 Result.set(VD, Info.CurrentCall->Index);
3412 APValue &Val = Info.CurrentCall->createTemporary(VD, true);
3413
3414 const Expr *InitE = VD->getInit();
3415 if (!InitE) {
3416 Info.FFDiag(D->getLocStart(), diag::note_constexpr_uninitialized)
3417 << false << VD->getType();
3418 Val = APValue();
3419 return false;
3420 }
3421
3422 if (InitE->isValueDependent())
3423 return false;
3424
3425 if (!EvaluateInPlace(Val, Info, Result, InitE)) {
3426 // Wipe out any partially-computed value, to allow tracking that this
3427 // evaluation failed.
3428 Val = APValue();
3429 return false;
3430 }
3431 }
3432
3433 return true;
3434 }
3435
3436 /// Evaluate a condition (either a variable declaration or an expression).
EvaluateCond(EvalInfo & Info,const VarDecl * CondDecl,const Expr * Cond,bool & Result)3437 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
3438 const Expr *Cond, bool &Result) {
3439 FullExpressionRAII Scope(Info);
3440 if (CondDecl && !EvaluateDecl(Info, CondDecl))
3441 return false;
3442 return EvaluateAsBooleanCondition(Cond, Result, Info);
3443 }
3444
3445 namespace {
3446 /// \brief A location where the result (returned value) of evaluating a
3447 /// statement should be stored.
3448 struct StmtResult {
3449 /// The APValue that should be filled in with the returned value.
3450 APValue &Value;
3451 /// The location containing the result, if any (used to support RVO).
3452 const LValue *Slot;
3453 };
3454 }
3455
3456 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
3457 const Stmt *S,
3458 const SwitchCase *SC = nullptr);
3459
3460 /// Evaluate the body of a loop, and translate the result as appropriate.
EvaluateLoopBody(StmtResult & Result,EvalInfo & Info,const Stmt * Body,const SwitchCase * Case=nullptr)3461 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
3462 const Stmt *Body,
3463 const SwitchCase *Case = nullptr) {
3464 BlockScopeRAII Scope(Info);
3465 switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) {
3466 case ESR_Break:
3467 return ESR_Succeeded;
3468 case ESR_Succeeded:
3469 case ESR_Continue:
3470 return ESR_Continue;
3471 case ESR_Failed:
3472 case ESR_Returned:
3473 case ESR_CaseNotFound:
3474 return ESR;
3475 }
3476 llvm_unreachable("Invalid EvalStmtResult!");
3477 }
3478
3479 /// Evaluate a switch statement.
EvaluateSwitch(StmtResult & Result,EvalInfo & Info,const SwitchStmt * SS)3480 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
3481 const SwitchStmt *SS) {
3482 BlockScopeRAII Scope(Info);
3483
3484 // Evaluate the switch condition.
3485 APSInt Value;
3486 {
3487 FullExpressionRAII Scope(Info);
3488 if (const Stmt *Init = SS->getInit()) {
3489 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
3490 if (ESR != ESR_Succeeded)
3491 return ESR;
3492 }
3493 if (SS->getConditionVariable() &&
3494 !EvaluateDecl(Info, SS->getConditionVariable()))
3495 return ESR_Failed;
3496 if (!EvaluateInteger(SS->getCond(), Value, Info))
3497 return ESR_Failed;
3498 }
3499
3500 // Find the switch case corresponding to the value of the condition.
3501 // FIXME: Cache this lookup.
3502 const SwitchCase *Found = nullptr;
3503 for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
3504 SC = SC->getNextSwitchCase()) {
3505 if (isa<DefaultStmt>(SC)) {
3506 Found = SC;
3507 continue;
3508 }
3509
3510 const CaseStmt *CS = cast<CaseStmt>(SC);
3511 APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
3512 APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
3513 : LHS;
3514 if (LHS <= Value && Value <= RHS) {
3515 Found = SC;
3516 break;
3517 }
3518 }
3519
3520 if (!Found)
3521 return ESR_Succeeded;
3522
3523 // Search the switch body for the switch case and evaluate it from there.
3524 switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) {
3525 case ESR_Break:
3526 return ESR_Succeeded;
3527 case ESR_Succeeded:
3528 case ESR_Continue:
3529 case ESR_Failed:
3530 case ESR_Returned:
3531 return ESR;
3532 case ESR_CaseNotFound:
3533 // This can only happen if the switch case is nested within a statement
3534 // expression. We have no intention of supporting that.
3535 Info.FFDiag(Found->getLocStart(), diag::note_constexpr_stmt_expr_unsupported);
3536 return ESR_Failed;
3537 }
3538 llvm_unreachable("Invalid EvalStmtResult!");
3539 }
3540
3541 // Evaluate a statement.
EvaluateStmt(StmtResult & Result,EvalInfo & Info,const Stmt * S,const SwitchCase * Case)3542 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
3543 const Stmt *S, const SwitchCase *Case) {
3544 if (!Info.nextStep(S))
3545 return ESR_Failed;
3546
3547 // If we're hunting down a 'case' or 'default' label, recurse through
3548 // substatements until we hit the label.
3549 if (Case) {
3550 // FIXME: We don't start the lifetime of objects whose initialization we
3551 // jump over. However, such objects must be of class type with a trivial
3552 // default constructor that initialize all subobjects, so must be empty,
3553 // so this almost never matters.
3554 switch (S->getStmtClass()) {
3555 case Stmt::CompoundStmtClass:
3556 // FIXME: Precompute which substatement of a compound statement we
3557 // would jump to, and go straight there rather than performing a
3558 // linear scan each time.
3559 case Stmt::LabelStmtClass:
3560 case Stmt::AttributedStmtClass:
3561 case Stmt::DoStmtClass:
3562 break;
3563
3564 case Stmt::CaseStmtClass:
3565 case Stmt::DefaultStmtClass:
3566 if (Case == S)
3567 Case = nullptr;
3568 break;
3569
3570 case Stmt::IfStmtClass: {
3571 // FIXME: Precompute which side of an 'if' we would jump to, and go
3572 // straight there rather than scanning both sides.
3573 const IfStmt *IS = cast<IfStmt>(S);
3574
3575 // Wrap the evaluation in a block scope, in case it's a DeclStmt
3576 // preceded by our switch label.
3577 BlockScopeRAII Scope(Info);
3578
3579 EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
3580 if (ESR != ESR_CaseNotFound || !IS->getElse())
3581 return ESR;
3582 return EvaluateStmt(Result, Info, IS->getElse(), Case);
3583 }
3584
3585 case Stmt::WhileStmtClass: {
3586 EvalStmtResult ESR =
3587 EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
3588 if (ESR != ESR_Continue)
3589 return ESR;
3590 break;
3591 }
3592
3593 case Stmt::ForStmtClass: {
3594 const ForStmt *FS = cast<ForStmt>(S);
3595 EvalStmtResult ESR =
3596 EvaluateLoopBody(Result, Info, FS->getBody(), Case);
3597 if (ESR != ESR_Continue)
3598 return ESR;
3599 if (FS->getInc()) {
3600 FullExpressionRAII IncScope(Info);
3601 if (!EvaluateIgnoredValue(Info, FS->getInc()))
3602 return ESR_Failed;
3603 }
3604 break;
3605 }
3606
3607 case Stmt::DeclStmtClass:
3608 // FIXME: If the variable has initialization that can't be jumped over,
3609 // bail out of any immediately-surrounding compound-statement too.
3610 default:
3611 return ESR_CaseNotFound;
3612 }
3613 }
3614
3615 switch (S->getStmtClass()) {
3616 default:
3617 if (const Expr *E = dyn_cast<Expr>(S)) {
3618 // Don't bother evaluating beyond an expression-statement which couldn't
3619 // be evaluated.
3620 FullExpressionRAII Scope(Info);
3621 if (!EvaluateIgnoredValue(Info, E))
3622 return ESR_Failed;
3623 return ESR_Succeeded;
3624 }
3625
3626 Info.FFDiag(S->getLocStart());
3627 return ESR_Failed;
3628
3629 case Stmt::NullStmtClass:
3630 return ESR_Succeeded;
3631
3632 case Stmt::DeclStmtClass: {
3633 const DeclStmt *DS = cast<DeclStmt>(S);
3634 for (const auto *DclIt : DS->decls()) {
3635 // Each declaration initialization is its own full-expression.
3636 // FIXME: This isn't quite right; if we're performing aggregate
3637 // initialization, each braced subexpression is its own full-expression.
3638 FullExpressionRAII Scope(Info);
3639 if (!EvaluateDecl(Info, DclIt) && !Info.noteFailure())
3640 return ESR_Failed;
3641 }
3642 return ESR_Succeeded;
3643 }
3644
3645 case Stmt::ReturnStmtClass: {
3646 const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
3647 FullExpressionRAII Scope(Info);
3648 if (RetExpr &&
3649 !(Result.Slot
3650 ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
3651 : Evaluate(Result.Value, Info, RetExpr)))
3652 return ESR_Failed;
3653 return ESR_Returned;
3654 }
3655
3656 case Stmt::CompoundStmtClass: {
3657 BlockScopeRAII Scope(Info);
3658
3659 const CompoundStmt *CS = cast<CompoundStmt>(S);
3660 for (const auto *BI : CS->body()) {
3661 EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
3662 if (ESR == ESR_Succeeded)
3663 Case = nullptr;
3664 else if (ESR != ESR_CaseNotFound)
3665 return ESR;
3666 }
3667 return Case ? ESR_CaseNotFound : ESR_Succeeded;
3668 }
3669
3670 case Stmt::IfStmtClass: {
3671 const IfStmt *IS = cast<IfStmt>(S);
3672
3673 // Evaluate the condition, as either a var decl or as an expression.
3674 BlockScopeRAII Scope(Info);
3675 if (const Stmt *Init = IS->getInit()) {
3676 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
3677 if (ESR != ESR_Succeeded)
3678 return ESR;
3679 }
3680 bool Cond;
3681 if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
3682 return ESR_Failed;
3683
3684 if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
3685 EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
3686 if (ESR != ESR_Succeeded)
3687 return ESR;
3688 }
3689 return ESR_Succeeded;
3690 }
3691
3692 case Stmt::WhileStmtClass: {
3693 const WhileStmt *WS = cast<WhileStmt>(S);
3694 while (true) {
3695 BlockScopeRAII Scope(Info);
3696 bool Continue;
3697 if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
3698 Continue))
3699 return ESR_Failed;
3700 if (!Continue)
3701 break;
3702
3703 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
3704 if (ESR != ESR_Continue)
3705 return ESR;
3706 }
3707 return ESR_Succeeded;
3708 }
3709
3710 case Stmt::DoStmtClass: {
3711 const DoStmt *DS = cast<DoStmt>(S);
3712 bool Continue;
3713 do {
3714 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
3715 if (ESR != ESR_Continue)
3716 return ESR;
3717 Case = nullptr;
3718
3719 FullExpressionRAII CondScope(Info);
3720 if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info))
3721 return ESR_Failed;
3722 } while (Continue);
3723 return ESR_Succeeded;
3724 }
3725
3726 case Stmt::ForStmtClass: {
3727 const ForStmt *FS = cast<ForStmt>(S);
3728 BlockScopeRAII Scope(Info);
3729 if (FS->getInit()) {
3730 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
3731 if (ESR != ESR_Succeeded)
3732 return ESR;
3733 }
3734 while (true) {
3735 BlockScopeRAII Scope(Info);
3736 bool Continue = true;
3737 if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
3738 FS->getCond(), Continue))
3739 return ESR_Failed;
3740 if (!Continue)
3741 break;
3742
3743 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3744 if (ESR != ESR_Continue)
3745 return ESR;
3746
3747 if (FS->getInc()) {
3748 FullExpressionRAII IncScope(Info);
3749 if (!EvaluateIgnoredValue(Info, FS->getInc()))
3750 return ESR_Failed;
3751 }
3752 }
3753 return ESR_Succeeded;
3754 }
3755
3756 case Stmt::CXXForRangeStmtClass: {
3757 const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
3758 BlockScopeRAII Scope(Info);
3759
3760 // Initialize the __range variable.
3761 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
3762 if (ESR != ESR_Succeeded)
3763 return ESR;
3764
3765 // Create the __begin and __end iterators.
3766 ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
3767 if (ESR != ESR_Succeeded)
3768 return ESR;
3769 ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
3770 if (ESR != ESR_Succeeded)
3771 return ESR;
3772
3773 while (true) {
3774 // Condition: __begin != __end.
3775 {
3776 bool Continue = true;
3777 FullExpressionRAII CondExpr(Info);
3778 if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
3779 return ESR_Failed;
3780 if (!Continue)
3781 break;
3782 }
3783
3784 // User's variable declaration, initialized by *__begin.
3785 BlockScopeRAII InnerScope(Info);
3786 ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
3787 if (ESR != ESR_Succeeded)
3788 return ESR;
3789
3790 // Loop body.
3791 ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3792 if (ESR != ESR_Continue)
3793 return ESR;
3794
3795 // Increment: ++__begin
3796 if (!EvaluateIgnoredValue(Info, FS->getInc()))
3797 return ESR_Failed;
3798 }
3799
3800 return ESR_Succeeded;
3801 }
3802
3803 case Stmt::SwitchStmtClass:
3804 return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
3805
3806 case Stmt::ContinueStmtClass:
3807 return ESR_Continue;
3808
3809 case Stmt::BreakStmtClass:
3810 return ESR_Break;
3811
3812 case Stmt::LabelStmtClass:
3813 return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
3814
3815 case Stmt::AttributedStmtClass:
3816 // As a general principle, C++11 attributes can be ignored without
3817 // any semantic impact.
3818 return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
3819 Case);
3820
3821 case Stmt::CaseStmtClass:
3822 case Stmt::DefaultStmtClass:
3823 return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
3824 }
3825 }
3826
3827 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
3828 /// default constructor. If so, we'll fold it whether or not it's marked as
3829 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
3830 /// so we need special handling.
CheckTrivialDefaultConstructor(EvalInfo & Info,SourceLocation Loc,const CXXConstructorDecl * CD,bool IsValueInitialization)3831 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
3832 const CXXConstructorDecl *CD,
3833 bool IsValueInitialization) {
3834 if (!CD->isTrivial() || !CD->isDefaultConstructor())
3835 return false;
3836
3837 // Value-initialization does not call a trivial default constructor, so such a
3838 // call is a core constant expression whether or not the constructor is
3839 // constexpr.
3840 if (!CD->isConstexpr() && !IsValueInitialization) {
3841 if (Info.getLangOpts().CPlusPlus11) {
3842 // FIXME: If DiagDecl is an implicitly-declared special member function,
3843 // we should be much more explicit about why it's not constexpr.
3844 Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
3845 << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
3846 Info.Note(CD->getLocation(), diag::note_declared_at);
3847 } else {
3848 Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
3849 }
3850 }
3851 return true;
3852 }
3853
3854 /// CheckConstexprFunction - Check that a function can be called in a constant
3855 /// expression.
CheckConstexprFunction(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Declaration,const FunctionDecl * Definition,const Stmt * Body)3856 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
3857 const FunctionDecl *Declaration,
3858 const FunctionDecl *Definition,
3859 const Stmt *Body) {
3860 // Potential constant expressions can contain calls to declared, but not yet
3861 // defined, constexpr functions.
3862 if (Info.checkingPotentialConstantExpression() && !Definition &&
3863 Declaration->isConstexpr())
3864 return false;
3865
3866 // Bail out with no diagnostic if the function declaration itself is invalid.
3867 // We will have produced a relevant diagnostic while parsing it.
3868 if (Declaration->isInvalidDecl())
3869 return false;
3870
3871 // Can we evaluate this function call?
3872 if (Definition && Definition->isConstexpr() &&
3873 !Definition->isInvalidDecl() && Body)
3874 return true;
3875
3876 if (Info.getLangOpts().CPlusPlus11) {
3877 const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
3878
3879 // If this function is not constexpr because it is an inherited
3880 // non-constexpr constructor, diagnose that directly.
3881 auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
3882 if (CD && CD->isInheritingConstructor()) {
3883 auto *Inherited = CD->getInheritedConstructor().getConstructor();
3884 if (!Inherited->isConstexpr())
3885 DiagDecl = CD = Inherited;
3886 }
3887
3888 // FIXME: If DiagDecl is an implicitly-declared special member function
3889 // or an inheriting constructor, we should be much more explicit about why
3890 // it's not constexpr.
3891 if (CD && CD->isInheritingConstructor())
3892 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
3893 << CD->getInheritedConstructor().getConstructor()->getParent();
3894 else
3895 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
3896 << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
3897 Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
3898 } else {
3899 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
3900 }
3901 return false;
3902 }
3903
3904 /// Determine if a class has any fields that might need to be copied by a
3905 /// trivial copy or move operation.
hasFields(const CXXRecordDecl * RD)3906 static bool hasFields(const CXXRecordDecl *RD) {
3907 if (!RD || RD->isEmpty())
3908 return false;
3909 for (auto *FD : RD->fields()) {
3910 if (FD->isUnnamedBitfield())
3911 continue;
3912 return true;
3913 }
3914 for (auto &Base : RD->bases())
3915 if (hasFields(Base.getType()->getAsCXXRecordDecl()))
3916 return true;
3917 return false;
3918 }
3919
3920 namespace {
3921 typedef SmallVector<APValue, 8> ArgVector;
3922 }
3923
3924 /// EvaluateArgs - Evaluate the arguments to a function call.
EvaluateArgs(ArrayRef<const Expr * > Args,ArgVector & ArgValues,EvalInfo & Info)3925 static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
3926 EvalInfo &Info) {
3927 bool Success = true;
3928 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
3929 I != E; ++I) {
3930 if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
3931 // If we're checking for a potential constant expression, evaluate all
3932 // initializers even if some of them fail.
3933 if (!Info.noteFailure())
3934 return false;
3935 Success = false;
3936 }
3937 }
3938 return Success;
3939 }
3940
3941 /// Evaluate a function call.
HandleFunctionCall(SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,ArrayRef<const Expr * > Args,const Stmt * Body,EvalInfo & Info,APValue & Result,const LValue * ResultSlot)3942 static bool HandleFunctionCall(SourceLocation CallLoc,
3943 const FunctionDecl *Callee, const LValue *This,
3944 ArrayRef<const Expr*> Args, const Stmt *Body,
3945 EvalInfo &Info, APValue &Result,
3946 const LValue *ResultSlot) {
3947 ArgVector ArgValues(Args.size());
3948 if (!EvaluateArgs(Args, ArgValues, Info))
3949 return false;
3950
3951 if (!Info.CheckCallLimit(CallLoc))
3952 return false;
3953
3954 CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
3955
3956 // For a trivial copy or move assignment, perform an APValue copy. This is
3957 // essential for unions, where the operations performed by the assignment
3958 // operator cannot be represented as statements.
3959 //
3960 // Skip this for non-union classes with no fields; in that case, the defaulted
3961 // copy/move does not actually read the object.
3962 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
3963 if (MD && MD->isDefaulted() &&
3964 (MD->getParent()->isUnion() ||
3965 (MD->isTrivial() && hasFields(MD->getParent())))) {
3966 assert(This &&
3967 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
3968 LValue RHS;
3969 RHS.setFrom(Info.Ctx, ArgValues[0]);
3970 APValue RHSValue;
3971 if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3972 RHS, RHSValue))
3973 return false;
3974 if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx),
3975 RHSValue))
3976 return false;
3977 This->moveInto(Result);
3978 return true;
3979 }
3980
3981 StmtResult Ret = {Result, ResultSlot};
3982 EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
3983 if (ESR == ESR_Succeeded) {
3984 if (Callee->getReturnType()->isVoidType())
3985 return true;
3986 Info.FFDiag(Callee->getLocEnd(), diag::note_constexpr_no_return);
3987 }
3988 return ESR == ESR_Returned;
3989 }
3990
3991 /// Evaluate a constructor call.
HandleConstructorCall(const Expr * E,const LValue & This,APValue * ArgValues,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)3992 static bool HandleConstructorCall(const Expr *E, const LValue &This,
3993 APValue *ArgValues,
3994 const CXXConstructorDecl *Definition,
3995 EvalInfo &Info, APValue &Result) {
3996 SourceLocation CallLoc = E->getExprLoc();
3997 if (!Info.CheckCallLimit(CallLoc))
3998 return false;
3999
4000 const CXXRecordDecl *RD = Definition->getParent();
4001 if (RD->getNumVBases()) {
4002 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
4003 return false;
4004 }
4005
4006 CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues);
4007
4008 // FIXME: Creating an APValue just to hold a nonexistent return value is
4009 // wasteful.
4010 APValue RetVal;
4011 StmtResult Ret = {RetVal, nullptr};
4012
4013 // If it's a delegating constructor, delegate.
4014 if (Definition->isDelegatingConstructor()) {
4015 CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
4016 {
4017 FullExpressionRAII InitScope(Info);
4018 if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()))
4019 return false;
4020 }
4021 return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
4022 }
4023
4024 // For a trivial copy or move constructor, perform an APValue copy. This is
4025 // essential for unions (or classes with anonymous union members), where the
4026 // operations performed by the constructor cannot be represented by
4027 // ctor-initializers.
4028 //
4029 // Skip this for empty non-union classes; we should not perform an
4030 // lvalue-to-rvalue conversion on them because their copy constructor does not
4031 // actually read them.
4032 if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
4033 (Definition->getParent()->isUnion() ||
4034 (Definition->isTrivial() && hasFields(Definition->getParent())))) {
4035 LValue RHS;
4036 RHS.setFrom(Info.Ctx, ArgValues[0]);
4037 return handleLValueToRValueConversion(
4038 Info, E, Definition->getParamDecl(0)->getType().getNonReferenceType(),
4039 RHS, Result);
4040 }
4041
4042 // Reserve space for the struct members.
4043 if (!RD->isUnion() && Result.isUninit())
4044 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4045 std::distance(RD->field_begin(), RD->field_end()));
4046
4047 if (RD->isInvalidDecl()) return false;
4048 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
4049
4050 // A scope for temporaries lifetime-extended by reference members.
4051 BlockScopeRAII LifetimeExtendedScope(Info);
4052
4053 bool Success = true;
4054 unsigned BasesSeen = 0;
4055 #ifndef NDEBUG
4056 CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
4057 #endif
4058 for (const auto *I : Definition->inits()) {
4059 LValue Subobject = This;
4060 APValue *Value = &Result;
4061
4062 // Determine the subobject to initialize.
4063 FieldDecl *FD = nullptr;
4064 if (I->isBaseInitializer()) {
4065 QualType BaseType(I->getBaseClass(), 0);
4066 #ifndef NDEBUG
4067 // Non-virtual base classes are initialized in the order in the class
4068 // definition. We have already checked for virtual base classes.
4069 assert(!BaseIt->isVirtual() && "virtual base for literal type");
4070 assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
4071 "base class initializers not in expected order");
4072 ++BaseIt;
4073 #endif
4074 if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
4075 BaseType->getAsCXXRecordDecl(), &Layout))
4076 return false;
4077 Value = &Result.getStructBase(BasesSeen++);
4078 } else if ((FD = I->getMember())) {
4079 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
4080 return false;
4081 if (RD->isUnion()) {
4082 Result = APValue(FD);
4083 Value = &Result.getUnionValue();
4084 } else {
4085 Value = &Result.getStructField(FD->getFieldIndex());
4086 }
4087 } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
4088 // Walk the indirect field decl's chain to find the object to initialize,
4089 // and make sure we've initialized every step along it.
4090 for (auto *C : IFD->chain()) {
4091 FD = cast<FieldDecl>(C);
4092 CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
4093 // Switch the union field if it differs. This happens if we had
4094 // preceding zero-initialization, and we're now initializing a union
4095 // subobject other than the first.
4096 // FIXME: In this case, the values of the other subobjects are
4097 // specified, since zero-initialization sets all padding bits to zero.
4098 if (Value->isUninit() ||
4099 (Value->isUnion() && Value->getUnionField() != FD)) {
4100 if (CD->isUnion())
4101 *Value = APValue(FD);
4102 else
4103 *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
4104 std::distance(CD->field_begin(), CD->field_end()));
4105 }
4106 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
4107 return false;
4108 if (CD->isUnion())
4109 Value = &Value->getUnionValue();
4110 else
4111 Value = &Value->getStructField(FD->getFieldIndex());
4112 }
4113 } else {
4114 llvm_unreachable("unknown base initializer kind");
4115 }
4116
4117 FullExpressionRAII InitScope(Info);
4118 if (!EvaluateInPlace(*Value, Info, Subobject, I->getInit()) ||
4119 (FD && FD->isBitField() && !truncateBitfieldValue(Info, I->getInit(),
4120 *Value, FD))) {
4121 // If we're checking for a potential constant expression, evaluate all
4122 // initializers even if some of them fail.
4123 if (!Info.noteFailure())
4124 return false;
4125 Success = false;
4126 }
4127 }
4128
4129 return Success &&
4130 EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
4131 }
4132
HandleConstructorCall(const Expr * E,const LValue & This,ArrayRef<const Expr * > Args,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)4133 static bool HandleConstructorCall(const Expr *E, const LValue &This,
4134 ArrayRef<const Expr*> Args,
4135 const CXXConstructorDecl *Definition,
4136 EvalInfo &Info, APValue &Result) {
4137 ArgVector ArgValues(Args.size());
4138 if (!EvaluateArgs(Args, ArgValues, Info))
4139 return false;
4140
4141 return HandleConstructorCall(E, This, ArgValues.data(), Definition,
4142 Info, Result);
4143 }
4144
4145 //===----------------------------------------------------------------------===//
4146 // Generic Evaluation
4147 //===----------------------------------------------------------------------===//
4148 namespace {
4149
4150 template <class Derived>
4151 class ExprEvaluatorBase
4152 : public ConstStmtVisitor<Derived, bool> {
4153 private:
getDerived()4154 Derived &getDerived() { return static_cast<Derived&>(*this); }
DerivedSuccess(const APValue & V,const Expr * E)4155 bool DerivedSuccess(const APValue &V, const Expr *E) {
4156 return getDerived().Success(V, E);
4157 }
DerivedZeroInitialization(const Expr * E)4158 bool DerivedZeroInitialization(const Expr *E) {
4159 return getDerived().ZeroInitialization(E);
4160 }
4161
4162 // Check whether a conditional operator with a non-constant condition is a
4163 // potential constant expression. If neither arm is a potential constant
4164 // expression, then the conditional operator is not either.
4165 template<typename ConditionalOperator>
CheckPotentialConstantConditional(const ConditionalOperator * E)4166 void CheckPotentialConstantConditional(const ConditionalOperator *E) {
4167 assert(Info.checkingPotentialConstantExpression());
4168
4169 // Speculatively evaluate both arms.
4170 SmallVector<PartialDiagnosticAt, 8> Diag;
4171 {
4172 SpeculativeEvaluationRAII Speculate(Info, &Diag);
4173 StmtVisitorTy::Visit(E->getFalseExpr());
4174 if (Diag.empty())
4175 return;
4176 }
4177
4178 {
4179 SpeculativeEvaluationRAII Speculate(Info, &Diag);
4180 Diag.clear();
4181 StmtVisitorTy::Visit(E->getTrueExpr());
4182 if (Diag.empty())
4183 return;
4184 }
4185
4186 Error(E, diag::note_constexpr_conditional_never_const);
4187 }
4188
4189
4190 template<typename ConditionalOperator>
HandleConditionalOperator(const ConditionalOperator * E)4191 bool HandleConditionalOperator(const ConditionalOperator *E) {
4192 bool BoolResult;
4193 if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
4194 if (Info.checkingPotentialConstantExpression() && Info.noteFailure())
4195 CheckPotentialConstantConditional(E);
4196 return false;
4197 }
4198
4199 Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
4200 return StmtVisitorTy::Visit(EvalExpr);
4201 }
4202
4203 protected:
4204 EvalInfo &Info;
4205 typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
4206 typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
4207
CCEDiag(const Expr * E,diag::kind D)4208 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
4209 return Info.CCEDiag(E, D);
4210 }
4211
ZeroInitialization(const Expr * E)4212 bool ZeroInitialization(const Expr *E) { return Error(E); }
4213
4214 public:
ExprEvaluatorBase(EvalInfo & Info)4215 ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
4216
getEvalInfo()4217 EvalInfo &getEvalInfo() { return Info; }
4218
4219 /// Report an evaluation error. This should only be called when an error is
4220 /// first discovered. When propagating an error, just return false.
Error(const Expr * E,diag::kind D)4221 bool Error(const Expr *E, diag::kind D) {
4222 Info.FFDiag(E, D);
4223 return false;
4224 }
Error(const Expr * E)4225 bool Error(const Expr *E) {
4226 return Error(E, diag::note_invalid_subexpr_in_const_expr);
4227 }
4228
VisitStmt(const Stmt *)4229 bool VisitStmt(const Stmt *) {
4230 llvm_unreachable("Expression evaluator should not be called on stmts");
4231 }
VisitExpr(const Expr * E)4232 bool VisitExpr(const Expr *E) {
4233 return Error(E);
4234 }
4235
VisitParenExpr(const ParenExpr * E)4236 bool VisitParenExpr(const ParenExpr *E)
4237 { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryExtension(const UnaryOperator * E)4238 bool VisitUnaryExtension(const UnaryOperator *E)
4239 { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryPlus(const UnaryOperator * E)4240 bool VisitUnaryPlus(const UnaryOperator *E)
4241 { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitChooseExpr(const ChooseExpr * E)4242 bool VisitChooseExpr(const ChooseExpr *E)
4243 { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
VisitGenericSelectionExpr(const GenericSelectionExpr * E)4244 bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
4245 { return StmtVisitorTy::Visit(E->getResultExpr()); }
VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr * E)4246 bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
4247 { return StmtVisitorTy::Visit(E->getReplacement()); }
VisitCXXDefaultArgExpr(const CXXDefaultArgExpr * E)4248 bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
4249 { return StmtVisitorTy::Visit(E->getExpr()); }
VisitCXXDefaultInitExpr(const CXXDefaultInitExpr * E)4250 bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
4251 // The initializer may not have been parsed yet, or might be erroneous.
4252 if (!E->getExpr())
4253 return Error(E);
4254 return StmtVisitorTy::Visit(E->getExpr());
4255 }
4256 // We cannot create any objects for which cleanups are required, so there is
4257 // nothing to do here; all cleanups must come from unevaluated subexpressions.
VisitExprWithCleanups(const ExprWithCleanups * E)4258 bool VisitExprWithCleanups(const ExprWithCleanups *E)
4259 { return StmtVisitorTy::Visit(E->getSubExpr()); }
4260
VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr * E)4261 bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
4262 CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
4263 return static_cast<Derived*>(this)->VisitCastExpr(E);
4264 }
VisitCXXDynamicCastExpr(const CXXDynamicCastExpr * E)4265 bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
4266 CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
4267 return static_cast<Derived*>(this)->VisitCastExpr(E);
4268 }
4269
VisitBinaryOperator(const BinaryOperator * E)4270 bool VisitBinaryOperator(const BinaryOperator *E) {
4271 switch (E->getOpcode()) {
4272 default:
4273 return Error(E);
4274
4275 case BO_Comma:
4276 VisitIgnoredValue(E->getLHS());
4277 return StmtVisitorTy::Visit(E->getRHS());
4278
4279 case BO_PtrMemD:
4280 case BO_PtrMemI: {
4281 LValue Obj;
4282 if (!HandleMemberPointerAccess(Info, E, Obj))
4283 return false;
4284 APValue Result;
4285 if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
4286 return false;
4287 return DerivedSuccess(Result, E);
4288 }
4289 }
4290 }
4291
VisitBinaryConditionalOperator(const BinaryConditionalOperator * E)4292 bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
4293 // Evaluate and cache the common expression. We treat it as a temporary,
4294 // even though it's not quite the same thing.
4295 if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false),
4296 Info, E->getCommon()))
4297 return false;
4298
4299 return HandleConditionalOperator(E);
4300 }
4301
VisitConditionalOperator(const ConditionalOperator * E)4302 bool VisitConditionalOperator(const ConditionalOperator *E) {
4303 bool IsBcpCall = false;
4304 // If the condition (ignoring parens) is a __builtin_constant_p call,
4305 // the result is a constant expression if it can be folded without
4306 // side-effects. This is an important GNU extension. See GCC PR38377
4307 // for discussion.
4308 if (const CallExpr *CallCE =
4309 dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
4310 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
4311 IsBcpCall = true;
4312
4313 // Always assume __builtin_constant_p(...) ? ... : ... is a potential
4314 // constant expression; we can't check whether it's potentially foldable.
4315 if (Info.checkingPotentialConstantExpression() && IsBcpCall)
4316 return false;
4317
4318 FoldConstant Fold(Info, IsBcpCall);
4319 if (!HandleConditionalOperator(E)) {
4320 Fold.keepDiagnostics();
4321 return false;
4322 }
4323
4324 return true;
4325 }
4326
VisitOpaqueValueExpr(const OpaqueValueExpr * E)4327 bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
4328 if (APValue *Value = Info.CurrentCall->getTemporary(E))
4329 return DerivedSuccess(*Value, E);
4330
4331 const Expr *Source = E->getSourceExpr();
4332 if (!Source)
4333 return Error(E);
4334 if (Source == E) { // sanity checking.
4335 assert(0 && "OpaqueValueExpr recursively refers to itself");
4336 return Error(E);
4337 }
4338 return StmtVisitorTy::Visit(Source);
4339 }
4340
VisitCallExpr(const CallExpr * E)4341 bool VisitCallExpr(const CallExpr *E) {
4342 APValue Result;
4343 if (!handleCallExpr(E, Result, nullptr))
4344 return false;
4345 return DerivedSuccess(Result, E);
4346 }
4347
handleCallExpr(const CallExpr * E,APValue & Result,const LValue * ResultSlot)4348 bool handleCallExpr(const CallExpr *E, APValue &Result,
4349 const LValue *ResultSlot) {
4350 const Expr *Callee = E->getCallee()->IgnoreParens();
4351 QualType CalleeType = Callee->getType();
4352
4353 const FunctionDecl *FD = nullptr;
4354 LValue *This = nullptr, ThisVal;
4355 auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
4356 bool HasQualifier = false;
4357
4358 // Extract function decl and 'this' pointer from the callee.
4359 if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
4360 const ValueDecl *Member = nullptr;
4361 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
4362 // Explicit bound member calls, such as x.f() or p->g();
4363 if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
4364 return false;
4365 Member = ME->getMemberDecl();
4366 This = &ThisVal;
4367 HasQualifier = ME->hasQualifier();
4368 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
4369 // Indirect bound member calls ('.*' or '->*').
4370 Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
4371 if (!Member) return false;
4372 This = &ThisVal;
4373 } else
4374 return Error(Callee);
4375
4376 FD = dyn_cast<FunctionDecl>(Member);
4377 if (!FD)
4378 return Error(Callee);
4379 } else if (CalleeType->isFunctionPointerType()) {
4380 LValue Call;
4381 if (!EvaluatePointer(Callee, Call, Info))
4382 return false;
4383
4384 if (!Call.getLValueOffset().isZero())
4385 return Error(Callee);
4386 FD = dyn_cast_or_null<FunctionDecl>(
4387 Call.getLValueBase().dyn_cast<const ValueDecl*>());
4388 if (!FD)
4389 return Error(Callee);
4390
4391 // Overloaded operator calls to member functions are represented as normal
4392 // calls with '*this' as the first argument.
4393 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
4394 if (MD && !MD->isStatic()) {
4395 // FIXME: When selecting an implicit conversion for an overloaded
4396 // operator delete, we sometimes try to evaluate calls to conversion
4397 // operators without a 'this' parameter!
4398 if (Args.empty())
4399 return Error(E);
4400
4401 if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
4402 return false;
4403 This = &ThisVal;
4404 Args = Args.slice(1);
4405 }
4406
4407 // Don't call function pointers which have been cast to some other type.
4408 if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
4409 return Error(E);
4410 } else
4411 return Error(E);
4412
4413 if (This && !This->checkSubobject(Info, E, CSK_This))
4414 return false;
4415
4416 // DR1358 allows virtual constexpr functions in some cases. Don't allow
4417 // calls to such functions in constant expressions.
4418 if (This && !HasQualifier &&
4419 isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
4420 return Error(E, diag::note_constexpr_virtual_call);
4421
4422 const FunctionDecl *Definition = nullptr;
4423 Stmt *Body = FD->getBody(Definition);
4424
4425 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
4426 !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body, Info,
4427 Result, ResultSlot))
4428 return false;
4429
4430 return true;
4431 }
4432
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)4433 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4434 return StmtVisitorTy::Visit(E->getInitializer());
4435 }
VisitInitListExpr(const InitListExpr * E)4436 bool VisitInitListExpr(const InitListExpr *E) {
4437 if (E->getNumInits() == 0)
4438 return DerivedZeroInitialization(E);
4439 if (E->getNumInits() == 1)
4440 return StmtVisitorTy::Visit(E->getInit(0));
4441 return Error(E);
4442 }
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)4443 bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
4444 return DerivedZeroInitialization(E);
4445 }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)4446 bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
4447 return DerivedZeroInitialization(E);
4448 }
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)4449 bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
4450 return DerivedZeroInitialization(E);
4451 }
4452
4453 /// A member expression where the object is a prvalue is itself a prvalue.
VisitMemberExpr(const MemberExpr * E)4454 bool VisitMemberExpr(const MemberExpr *E) {
4455 assert(!E->isArrow() && "missing call to bound member function?");
4456
4457 APValue Val;
4458 if (!Evaluate(Val, Info, E->getBase()))
4459 return false;
4460
4461 QualType BaseTy = E->getBase()->getType();
4462
4463 const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
4464 if (!FD) return Error(E);
4465 assert(!FD->getType()->isReferenceType() && "prvalue reference?");
4466 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
4467 FD->getParent()->getCanonicalDecl() && "record / field mismatch");
4468
4469 CompleteObject Obj(&Val, BaseTy);
4470 SubobjectDesignator Designator(BaseTy);
4471 Designator.addDeclUnchecked(FD);
4472
4473 APValue Result;
4474 return extractSubobject(Info, E, Obj, Designator, Result) &&
4475 DerivedSuccess(Result, E);
4476 }
4477
VisitCastExpr(const CastExpr * E)4478 bool VisitCastExpr(const CastExpr *E) {
4479 switch (E->getCastKind()) {
4480 default:
4481 break;
4482
4483 case CK_AtomicToNonAtomic: {
4484 APValue AtomicVal;
4485 if (!EvaluateAtomic(E->getSubExpr(), AtomicVal, Info))
4486 return false;
4487 return DerivedSuccess(AtomicVal, E);
4488 }
4489
4490 case CK_NoOp:
4491 case CK_UserDefinedConversion:
4492 return StmtVisitorTy::Visit(E->getSubExpr());
4493
4494 case CK_LValueToRValue: {
4495 LValue LVal;
4496 if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
4497 return false;
4498 APValue RVal;
4499 // Note, we use the subexpression's type in order to retain cv-qualifiers.
4500 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
4501 LVal, RVal))
4502 return false;
4503 return DerivedSuccess(RVal, E);
4504 }
4505 }
4506
4507 return Error(E);
4508 }
4509
VisitUnaryPostInc(const UnaryOperator * UO)4510 bool VisitUnaryPostInc(const UnaryOperator *UO) {
4511 return VisitUnaryPostIncDec(UO);
4512 }
VisitUnaryPostDec(const UnaryOperator * UO)4513 bool VisitUnaryPostDec(const UnaryOperator *UO) {
4514 return VisitUnaryPostIncDec(UO);
4515 }
VisitUnaryPostIncDec(const UnaryOperator * UO)4516 bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
4517 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4518 return Error(UO);
4519
4520 LValue LVal;
4521 if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
4522 return false;
4523 APValue RVal;
4524 if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
4525 UO->isIncrementOp(), &RVal))
4526 return false;
4527 return DerivedSuccess(RVal, UO);
4528 }
4529
VisitStmtExpr(const StmtExpr * E)4530 bool VisitStmtExpr(const StmtExpr *E) {
4531 // We will have checked the full-expressions inside the statement expression
4532 // when they were completed, and don't need to check them again now.
4533 if (Info.checkingForOverflow())
4534 return Error(E);
4535
4536 BlockScopeRAII Scope(Info);
4537 const CompoundStmt *CS = E->getSubStmt();
4538 if (CS->body_empty())
4539 return true;
4540
4541 for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
4542 BE = CS->body_end();
4543 /**/; ++BI) {
4544 if (BI + 1 == BE) {
4545 const Expr *FinalExpr = dyn_cast<Expr>(*BI);
4546 if (!FinalExpr) {
4547 Info.FFDiag((*BI)->getLocStart(),
4548 diag::note_constexpr_stmt_expr_unsupported);
4549 return false;
4550 }
4551 return this->Visit(FinalExpr);
4552 }
4553
4554 APValue ReturnValue;
4555 StmtResult Result = { ReturnValue, nullptr };
4556 EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
4557 if (ESR != ESR_Succeeded) {
4558 // FIXME: If the statement-expression terminated due to 'return',
4559 // 'break', or 'continue', it would be nice to propagate that to
4560 // the outer statement evaluation rather than bailing out.
4561 if (ESR != ESR_Failed)
4562 Info.FFDiag((*BI)->getLocStart(),
4563 diag::note_constexpr_stmt_expr_unsupported);
4564 return false;
4565 }
4566 }
4567
4568 llvm_unreachable("Return from function from the loop above.");
4569 }
4570
4571 /// Visit a value which is evaluated, but whose value is ignored.
VisitIgnoredValue(const Expr * E)4572 void VisitIgnoredValue(const Expr *E) {
4573 EvaluateIgnoredValue(Info, E);
4574 }
4575
4576 /// Potentially visit a MemberExpr's base expression.
VisitIgnoredBaseExpression(const Expr * E)4577 void VisitIgnoredBaseExpression(const Expr *E) {
4578 // While MSVC doesn't evaluate the base expression, it does diagnose the
4579 // presence of side-effecting behavior.
4580 if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
4581 return;
4582 VisitIgnoredValue(E);
4583 }
4584 };
4585
4586 }
4587
4588 //===----------------------------------------------------------------------===//
4589 // Common base class for lvalue and temporary evaluation.
4590 //===----------------------------------------------------------------------===//
4591 namespace {
4592 template<class Derived>
4593 class LValueExprEvaluatorBase
4594 : public ExprEvaluatorBase<Derived> {
4595 protected:
4596 LValue &Result;
4597 typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
4598 typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
4599
Success(APValue::LValueBase B)4600 bool Success(APValue::LValueBase B) {
4601 Result.set(B);
4602 return true;
4603 }
4604
4605 public:
LValueExprEvaluatorBase(EvalInfo & Info,LValue & Result)4606 LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
4607 ExprEvaluatorBaseTy(Info), Result(Result) {}
4608
Success(const APValue & V,const Expr * E)4609 bool Success(const APValue &V, const Expr *E) {
4610 Result.setFrom(this->Info.Ctx, V);
4611 return true;
4612 }
4613
VisitMemberExpr(const MemberExpr * E)4614 bool VisitMemberExpr(const MemberExpr *E) {
4615 // Handle non-static data members.
4616 QualType BaseTy;
4617 bool EvalOK;
4618 if (E->isArrow()) {
4619 EvalOK = EvaluatePointer(E->getBase(), Result, this->Info);
4620 BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
4621 } else if (E->getBase()->isRValue()) {
4622 assert(E->getBase()->getType()->isRecordType());
4623 EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
4624 BaseTy = E->getBase()->getType();
4625 } else {
4626 EvalOK = this->Visit(E->getBase());
4627 BaseTy = E->getBase()->getType();
4628 }
4629 if (!EvalOK) {
4630 if (!this->Info.allowInvalidBaseExpr())
4631 return false;
4632 Result.setInvalid(E);
4633 return true;
4634 }
4635
4636 const ValueDecl *MD = E->getMemberDecl();
4637 if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
4638 assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
4639 FD->getParent()->getCanonicalDecl() && "record / field mismatch");
4640 (void)BaseTy;
4641 if (!HandleLValueMember(this->Info, E, Result, FD))
4642 return false;
4643 } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
4644 if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
4645 return false;
4646 } else
4647 return this->Error(E);
4648
4649 if (MD->getType()->isReferenceType()) {
4650 APValue RefValue;
4651 if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
4652 RefValue))
4653 return false;
4654 return Success(RefValue, E);
4655 }
4656 return true;
4657 }
4658
VisitBinaryOperator(const BinaryOperator * E)4659 bool VisitBinaryOperator(const BinaryOperator *E) {
4660 switch (E->getOpcode()) {
4661 default:
4662 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
4663
4664 case BO_PtrMemD:
4665 case BO_PtrMemI:
4666 return HandleMemberPointerAccess(this->Info, E, Result);
4667 }
4668 }
4669
VisitCastExpr(const CastExpr * E)4670 bool VisitCastExpr(const CastExpr *E) {
4671 switch (E->getCastKind()) {
4672 default:
4673 return ExprEvaluatorBaseTy::VisitCastExpr(E);
4674
4675 case CK_DerivedToBase:
4676 case CK_UncheckedDerivedToBase:
4677 if (!this->Visit(E->getSubExpr()))
4678 return false;
4679
4680 // Now figure out the necessary offset to add to the base LV to get from
4681 // the derived class to the base class.
4682 return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
4683 Result);
4684 }
4685 }
4686 };
4687 }
4688
4689 //===----------------------------------------------------------------------===//
4690 // LValue Evaluation
4691 //
4692 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
4693 // function designators (in C), decl references to void objects (in C), and
4694 // temporaries (if building with -Wno-address-of-temporary).
4695 //
4696 // LValue evaluation produces values comprising a base expression of one of the
4697 // following types:
4698 // - Declarations
4699 // * VarDecl
4700 // * FunctionDecl
4701 // - Literals
4702 // * CompoundLiteralExpr in C
4703 // * StringLiteral
4704 // * CXXTypeidExpr
4705 // * PredefinedExpr
4706 // * ObjCStringLiteralExpr
4707 // * ObjCEncodeExpr
4708 // * AddrLabelExpr
4709 // * BlockExpr
4710 // * CallExpr for a MakeStringConstant builtin
4711 // - Locals and temporaries
4712 // * MaterializeTemporaryExpr
4713 // * Any Expr, with a CallIndex indicating the function in which the temporary
4714 // was evaluated, for cases where the MaterializeTemporaryExpr is missing
4715 // from the AST (FIXME).
4716 // * A MaterializeTemporaryExpr that has static storage duration, with no
4717 // CallIndex, for a lifetime-extended temporary.
4718 // plus an offset in bytes.
4719 //===----------------------------------------------------------------------===//
4720 namespace {
4721 class LValueExprEvaluator
4722 : public LValueExprEvaluatorBase<LValueExprEvaluator> {
4723 public:
LValueExprEvaluator(EvalInfo & Info,LValue & Result)4724 LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
4725 LValueExprEvaluatorBaseTy(Info, Result) {}
4726
4727 bool VisitVarDecl(const Expr *E, const VarDecl *VD);
4728 bool VisitUnaryPreIncDec(const UnaryOperator *UO);
4729
4730 bool VisitDeclRefExpr(const DeclRefExpr *E);
VisitPredefinedExpr(const PredefinedExpr * E)4731 bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
4732 bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
4733 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
4734 bool VisitMemberExpr(const MemberExpr *E);
VisitStringLiteral(const StringLiteral * E)4735 bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
VisitObjCEncodeExpr(const ObjCEncodeExpr * E)4736 bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
4737 bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
4738 bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
4739 bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
4740 bool VisitUnaryDeref(const UnaryOperator *E);
4741 bool VisitUnaryReal(const UnaryOperator *E);
4742 bool VisitUnaryImag(const UnaryOperator *E);
VisitUnaryPreInc(const UnaryOperator * UO)4743 bool VisitUnaryPreInc(const UnaryOperator *UO) {
4744 return VisitUnaryPreIncDec(UO);
4745 }
VisitUnaryPreDec(const UnaryOperator * UO)4746 bool VisitUnaryPreDec(const UnaryOperator *UO) {
4747 return VisitUnaryPreIncDec(UO);
4748 }
4749 bool VisitBinAssign(const BinaryOperator *BO);
4750 bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
4751
VisitCastExpr(const CastExpr * E)4752 bool VisitCastExpr(const CastExpr *E) {
4753 switch (E->getCastKind()) {
4754 default:
4755 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
4756
4757 case CK_LValueBitCast:
4758 this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4759 if (!Visit(E->getSubExpr()))
4760 return false;
4761 Result.Designator.setInvalid();
4762 return true;
4763
4764 case CK_BaseToDerived:
4765 if (!Visit(E->getSubExpr()))
4766 return false;
4767 return HandleBaseToDerivedCast(Info, E, Result);
4768 }
4769 }
4770 };
4771 } // end anonymous namespace
4772
4773 /// Evaluate an expression as an lvalue. This can be legitimately called on
4774 /// expressions which are not glvalues, in three cases:
4775 /// * function designators in C, and
4776 /// * "extern void" objects
4777 /// * @selector() expressions in Objective-C
EvaluateLValue(const Expr * E,LValue & Result,EvalInfo & Info)4778 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info) {
4779 assert(E->isGLValue() || E->getType()->isFunctionType() ||
4780 E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E));
4781 return LValueExprEvaluator(Info, Result).Visit(E);
4782 }
4783
VisitDeclRefExpr(const DeclRefExpr * E)4784 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
4785 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
4786 return Success(FD);
4787 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
4788 return VisitVarDecl(E, VD);
4789 return Error(E);
4790 }
4791
VisitVarDecl(const Expr * E,const VarDecl * VD)4792 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
4793 CallStackFrame *Frame = nullptr;
4794 if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1)
4795 Frame = Info.CurrentCall;
4796
4797 if (!VD->getType()->isReferenceType()) {
4798 if (Frame) {
4799 Result.set(VD, Frame->Index);
4800 return true;
4801 }
4802 return Success(VD);
4803 }
4804
4805 APValue *V;
4806 if (!evaluateVarDeclInit(Info, E, VD, Frame, V))
4807 return false;
4808 if (V->isUninit()) {
4809 if (!Info.checkingPotentialConstantExpression())
4810 Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
4811 return false;
4812 }
4813 return Success(*V, E);
4814 }
4815
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)4816 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
4817 const MaterializeTemporaryExpr *E) {
4818 // Walk through the expression to find the materialized temporary itself.
4819 SmallVector<const Expr *, 2> CommaLHSs;
4820 SmallVector<SubobjectAdjustment, 2> Adjustments;
4821 const Expr *Inner = E->GetTemporaryExpr()->
4822 skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
4823
4824 // If we passed any comma operators, evaluate their LHSs.
4825 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
4826 if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
4827 return false;
4828
4829 // A materialized temporary with static storage duration can appear within the
4830 // result of a constant expression evaluation, so we need to preserve its
4831 // value for use outside this evaluation.
4832 APValue *Value;
4833 if (E->getStorageDuration() == SD_Static) {
4834 Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
4835 *Value = APValue();
4836 Result.set(E);
4837 } else {
4838 Value = &Info.CurrentCall->
4839 createTemporary(E, E->getStorageDuration() == SD_Automatic);
4840 Result.set(E, Info.CurrentCall->Index);
4841 }
4842
4843 QualType Type = Inner->getType();
4844
4845 // Materialize the temporary itself.
4846 if (!EvaluateInPlace(*Value, Info, Result, Inner) ||
4847 (E->getStorageDuration() == SD_Static &&
4848 !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) {
4849 *Value = APValue();
4850 return false;
4851 }
4852
4853 // Adjust our lvalue to refer to the desired subobject.
4854 for (unsigned I = Adjustments.size(); I != 0; /**/) {
4855 --I;
4856 switch (Adjustments[I].Kind) {
4857 case SubobjectAdjustment::DerivedToBaseAdjustment:
4858 if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
4859 Type, Result))
4860 return false;
4861 Type = Adjustments[I].DerivedToBase.BasePath->getType();
4862 break;
4863
4864 case SubobjectAdjustment::FieldAdjustment:
4865 if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
4866 return false;
4867 Type = Adjustments[I].Field->getType();
4868 break;
4869
4870 case SubobjectAdjustment::MemberPointerAdjustment:
4871 if (!HandleMemberPointerAccess(this->Info, Type, Result,
4872 Adjustments[I].Ptr.RHS))
4873 return false;
4874 Type = Adjustments[I].Ptr.MPT->getPointeeType();
4875 break;
4876 }
4877 }
4878
4879 return true;
4880 }
4881
4882 bool
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)4883 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4884 assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
4885 // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
4886 // only see this when folding in C, so there's no standard to follow here.
4887 return Success(E);
4888 }
4889
VisitCXXTypeidExpr(const CXXTypeidExpr * E)4890 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
4891 if (!E->isPotentiallyEvaluated())
4892 return Success(E);
4893
4894 Info.FFDiag(E, diag::note_constexpr_typeid_polymorphic)
4895 << E->getExprOperand()->getType()
4896 << E->getExprOperand()->getSourceRange();
4897 return false;
4898 }
4899
VisitCXXUuidofExpr(const CXXUuidofExpr * E)4900 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
4901 return Success(E);
4902 }
4903
VisitMemberExpr(const MemberExpr * E)4904 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
4905 // Handle static data members.
4906 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
4907 VisitIgnoredBaseExpression(E->getBase());
4908 return VisitVarDecl(E, VD);
4909 }
4910
4911 // Handle static member functions.
4912 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
4913 if (MD->isStatic()) {
4914 VisitIgnoredBaseExpression(E->getBase());
4915 return Success(MD);
4916 }
4917 }
4918
4919 // Handle non-static data members.
4920 return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
4921 }
4922
VisitArraySubscriptExpr(const ArraySubscriptExpr * E)4923 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
4924 // FIXME: Deal with vectors as array subscript bases.
4925 if (E->getBase()->getType()->isVectorType())
4926 return Error(E);
4927
4928 if (!EvaluatePointer(E->getBase(), Result, Info))
4929 return false;
4930
4931 APSInt Index;
4932 if (!EvaluateInteger(E->getIdx(), Index, Info))
4933 return false;
4934
4935 return HandleLValueArrayAdjustment(Info, E, Result, E->getType(),
4936 getExtValue(Index));
4937 }
4938
VisitUnaryDeref(const UnaryOperator * E)4939 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
4940 return EvaluatePointer(E->getSubExpr(), Result, Info);
4941 }
4942
VisitUnaryReal(const UnaryOperator * E)4943 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
4944 if (!Visit(E->getSubExpr()))
4945 return false;
4946 // __real is a no-op on scalar lvalues.
4947 if (E->getSubExpr()->getType()->isAnyComplexType())
4948 HandleLValueComplexElement(Info, E, Result, E->getType(), false);
4949 return true;
4950 }
4951
VisitUnaryImag(const UnaryOperator * E)4952 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
4953 assert(E->getSubExpr()->getType()->isAnyComplexType() &&
4954 "lvalue __imag__ on scalar?");
4955 if (!Visit(E->getSubExpr()))
4956 return false;
4957 HandleLValueComplexElement(Info, E, Result, E->getType(), true);
4958 return true;
4959 }
4960
VisitUnaryPreIncDec(const UnaryOperator * UO)4961 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
4962 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4963 return Error(UO);
4964
4965 if (!this->Visit(UO->getSubExpr()))
4966 return false;
4967
4968 return handleIncDec(
4969 this->Info, UO, Result, UO->getSubExpr()->getType(),
4970 UO->isIncrementOp(), nullptr);
4971 }
4972
VisitCompoundAssignOperator(const CompoundAssignOperator * CAO)4973 bool LValueExprEvaluator::VisitCompoundAssignOperator(
4974 const CompoundAssignOperator *CAO) {
4975 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4976 return Error(CAO);
4977
4978 APValue RHS;
4979
4980 // The overall lvalue result is the result of evaluating the LHS.
4981 if (!this->Visit(CAO->getLHS())) {
4982 if (Info.noteFailure())
4983 Evaluate(RHS, this->Info, CAO->getRHS());
4984 return false;
4985 }
4986
4987 if (!Evaluate(RHS, this->Info, CAO->getRHS()))
4988 return false;
4989
4990 return handleCompoundAssignment(
4991 this->Info, CAO,
4992 Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
4993 CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
4994 }
4995
VisitBinAssign(const BinaryOperator * E)4996 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
4997 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4998 return Error(E);
4999
5000 APValue NewVal;
5001
5002 if (!this->Visit(E->getLHS())) {
5003 if (Info.noteFailure())
5004 Evaluate(NewVal, this->Info, E->getRHS());
5005 return false;
5006 }
5007
5008 if (!Evaluate(NewVal, this->Info, E->getRHS()))
5009 return false;
5010
5011 return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
5012 NewVal);
5013 }
5014
5015 //===----------------------------------------------------------------------===//
5016 // Pointer Evaluation
5017 //===----------------------------------------------------------------------===//
5018
5019 namespace {
5020 class PointerExprEvaluator
5021 : public ExprEvaluatorBase<PointerExprEvaluator> {
5022 LValue &Result;
5023
Success(const Expr * E)5024 bool Success(const Expr *E) {
5025 Result.set(E);
5026 return true;
5027 }
5028 public:
5029
PointerExprEvaluator(EvalInfo & info,LValue & Result)5030 PointerExprEvaluator(EvalInfo &info, LValue &Result)
5031 : ExprEvaluatorBaseTy(info), Result(Result) {}
5032
Success(const APValue & V,const Expr * E)5033 bool Success(const APValue &V, const Expr *E) {
5034 Result.setFrom(Info.Ctx, V);
5035 return true;
5036 }
ZeroInitialization(const Expr * E)5037 bool ZeroInitialization(const Expr *E) {
5038 return Success((Expr*)nullptr);
5039 }
5040
5041 bool VisitBinaryOperator(const BinaryOperator *E);
5042 bool VisitCastExpr(const CastExpr* E);
5043 bool VisitUnaryAddrOf(const UnaryOperator *E);
VisitObjCStringLiteral(const ObjCStringLiteral * E)5044 bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
5045 { return Success(E); }
VisitObjCBoxedExpr(const ObjCBoxedExpr * E)5046 bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
5047 { return Success(E); }
VisitAddrLabelExpr(const AddrLabelExpr * E)5048 bool VisitAddrLabelExpr(const AddrLabelExpr *E)
5049 { return Success(E); }
5050 bool VisitCallExpr(const CallExpr *E);
VisitBlockExpr(const BlockExpr * E)5051 bool VisitBlockExpr(const BlockExpr *E) {
5052 if (!E->getBlockDecl()->hasCaptures())
5053 return Success(E);
5054 return Error(E);
5055 }
VisitCXXThisExpr(const CXXThisExpr * E)5056 bool VisitCXXThisExpr(const CXXThisExpr *E) {
5057 // Can't look at 'this' when checking a potential constant expression.
5058 if (Info.checkingPotentialConstantExpression())
5059 return false;
5060 if (!Info.CurrentCall->This) {
5061 if (Info.getLangOpts().CPlusPlus11)
5062 Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
5063 else
5064 Info.FFDiag(E);
5065 return false;
5066 }
5067 Result = *Info.CurrentCall->This;
5068 return true;
5069 }
5070
5071 // FIXME: Missing: @protocol, @selector
5072 };
5073 } // end anonymous namespace
5074
EvaluatePointer(const Expr * E,LValue & Result,EvalInfo & Info)5075 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
5076 assert(E->isRValue() && E->getType()->hasPointerRepresentation());
5077 return PointerExprEvaluator(Info, Result).Visit(E);
5078 }
5079
VisitBinaryOperator(const BinaryOperator * E)5080 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
5081 if (E->getOpcode() != BO_Add &&
5082 E->getOpcode() != BO_Sub)
5083 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5084
5085 const Expr *PExp = E->getLHS();
5086 const Expr *IExp = E->getRHS();
5087 if (IExp->getType()->isPointerType())
5088 std::swap(PExp, IExp);
5089
5090 bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
5091 if (!EvalPtrOK && !Info.noteFailure())
5092 return false;
5093
5094 llvm::APSInt Offset;
5095 if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
5096 return false;
5097
5098 int64_t AdditionalOffset = getExtValue(Offset);
5099 if (E->getOpcode() == BO_Sub)
5100 AdditionalOffset = -AdditionalOffset;
5101
5102 QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
5103 return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
5104 AdditionalOffset);
5105 }
5106
VisitUnaryAddrOf(const UnaryOperator * E)5107 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
5108 return EvaluateLValue(E->getSubExpr(), Result, Info);
5109 }
5110
VisitCastExpr(const CastExpr * E)5111 bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
5112 const Expr* SubExpr = E->getSubExpr();
5113
5114 switch (E->getCastKind()) {
5115 default:
5116 break;
5117
5118 case CK_BitCast:
5119 case CK_CPointerToObjCPointerCast:
5120 case CK_BlockPointerToObjCPointerCast:
5121 case CK_AnyPointerToBlockPointerCast:
5122 case CK_AddressSpaceConversion:
5123 if (!Visit(SubExpr))
5124 return false;
5125 // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
5126 // permitted in constant expressions in C++11. Bitcasts from cv void* are
5127 // also static_casts, but we disallow them as a resolution to DR1312.
5128 if (!E->getType()->isVoidPointerType()) {
5129 Result.Designator.setInvalid();
5130 if (SubExpr->getType()->isVoidPointerType())
5131 CCEDiag(E, diag::note_constexpr_invalid_cast)
5132 << 3 << SubExpr->getType();
5133 else
5134 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
5135 }
5136 return true;
5137
5138 case CK_DerivedToBase:
5139 case CK_UncheckedDerivedToBase:
5140 if (!EvaluatePointer(E->getSubExpr(), Result, Info))
5141 return false;
5142 if (!Result.Base && Result.Offset.isZero())
5143 return true;
5144
5145 // Now figure out the necessary offset to add to the base LV to get from
5146 // the derived class to the base class.
5147 return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
5148 castAs<PointerType>()->getPointeeType(),
5149 Result);
5150
5151 case CK_BaseToDerived:
5152 if (!Visit(E->getSubExpr()))
5153 return false;
5154 if (!Result.Base && Result.Offset.isZero())
5155 return true;
5156 return HandleBaseToDerivedCast(Info, E, Result);
5157
5158 case CK_NullToPointer:
5159 VisitIgnoredValue(E->getSubExpr());
5160 return ZeroInitialization(E);
5161
5162 case CK_IntegralToPointer: {
5163 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
5164
5165 APValue Value;
5166 if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
5167 break;
5168
5169 if (Value.isInt()) {
5170 unsigned Size = Info.Ctx.getTypeSize(E->getType());
5171 uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
5172 Result.Base = (Expr*)nullptr;
5173 Result.InvalidBase = false;
5174 Result.Offset = CharUnits::fromQuantity(N);
5175 Result.CallIndex = 0;
5176 Result.Designator.setInvalid();
5177 return true;
5178 } else {
5179 // Cast is of an lvalue, no need to change value.
5180 Result.setFrom(Info.Ctx, Value);
5181 return true;
5182 }
5183 }
5184 case CK_ArrayToPointerDecay:
5185 if (SubExpr->isGLValue()) {
5186 if (!EvaluateLValue(SubExpr, Result, Info))
5187 return false;
5188 } else {
5189 Result.set(SubExpr, Info.CurrentCall->Index);
5190 if (!EvaluateInPlace(Info.CurrentCall->createTemporary(SubExpr, false),
5191 Info, Result, SubExpr))
5192 return false;
5193 }
5194 // The result is a pointer to the first element of the array.
5195 if (const ConstantArrayType *CAT
5196 = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
5197 Result.addArray(Info, E, CAT);
5198 else
5199 Result.Designator.setInvalid();
5200 return true;
5201
5202 case CK_FunctionToPointerDecay:
5203 return EvaluateLValue(SubExpr, Result, Info);
5204 }
5205
5206 return ExprEvaluatorBaseTy::VisitCastExpr(E);
5207 }
5208
GetAlignOfType(EvalInfo & Info,QualType T)5209 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T) {
5210 // C++ [expr.alignof]p3:
5211 // When alignof is applied to a reference type, the result is the
5212 // alignment of the referenced type.
5213 if (const ReferenceType *Ref = T->getAs<ReferenceType>())
5214 T = Ref->getPointeeType();
5215
5216 // __alignof is defined to return the preferred alignment.
5217 return Info.Ctx.toCharUnitsFromBits(
5218 Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
5219 }
5220
GetAlignOfExpr(EvalInfo & Info,const Expr * E)5221 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E) {
5222 E = E->IgnoreParens();
5223
5224 // The kinds of expressions that we have special-case logic here for
5225 // should be kept up to date with the special checks for those
5226 // expressions in Sema.
5227
5228 // alignof decl is always accepted, even if it doesn't make sense: we default
5229 // to 1 in those cases.
5230 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5231 return Info.Ctx.getDeclAlign(DRE->getDecl(),
5232 /*RefAsPointee*/true);
5233
5234 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
5235 return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
5236 /*RefAsPointee*/true);
5237
5238 return GetAlignOfType(Info, E->getType());
5239 }
5240
VisitCallExpr(const CallExpr * E)5241 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
5242 if (IsStringLiteralCall(E))
5243 return Success(E);
5244
5245 switch (E->getBuiltinCallee()) {
5246 case Builtin::BI__builtin_addressof:
5247 return EvaluateLValue(E->getArg(0), Result, Info);
5248 case Builtin::BI__builtin_assume_aligned: {
5249 // We need to be very careful here because: if the pointer does not have the
5250 // asserted alignment, then the behavior is undefined, and undefined
5251 // behavior is non-constant.
5252 if (!EvaluatePointer(E->getArg(0), Result, Info))
5253 return false;
5254
5255 LValue OffsetResult(Result);
5256 APSInt Alignment;
5257 if (!EvaluateInteger(E->getArg(1), Alignment, Info))
5258 return false;
5259 CharUnits Align = CharUnits::fromQuantity(getExtValue(Alignment));
5260
5261 if (E->getNumArgs() > 2) {
5262 APSInt Offset;
5263 if (!EvaluateInteger(E->getArg(2), Offset, Info))
5264 return false;
5265
5266 int64_t AdditionalOffset = -getExtValue(Offset);
5267 OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
5268 }
5269
5270 // If there is a base object, then it must have the correct alignment.
5271 if (OffsetResult.Base) {
5272 CharUnits BaseAlignment;
5273 if (const ValueDecl *VD =
5274 OffsetResult.Base.dyn_cast<const ValueDecl*>()) {
5275 BaseAlignment = Info.Ctx.getDeclAlign(VD);
5276 } else {
5277 BaseAlignment =
5278 GetAlignOfExpr(Info, OffsetResult.Base.get<const Expr*>());
5279 }
5280
5281 if (BaseAlignment < Align) {
5282 Result.Designator.setInvalid();
5283 // FIXME: Quantities here cast to integers because the plural modifier
5284 // does not work on APSInts yet.
5285 CCEDiag(E->getArg(0),
5286 diag::note_constexpr_baa_insufficient_alignment) << 0
5287 << (int) BaseAlignment.getQuantity()
5288 << (unsigned) getExtValue(Alignment);
5289 return false;
5290 }
5291 }
5292
5293 // The offset must also have the correct alignment.
5294 if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
5295 Result.Designator.setInvalid();
5296 APSInt Offset(64, false);
5297 Offset = OffsetResult.Offset.getQuantity();
5298
5299 if (OffsetResult.Base)
5300 CCEDiag(E->getArg(0),
5301 diag::note_constexpr_baa_insufficient_alignment) << 1
5302 << (int) getExtValue(Offset) << (unsigned) getExtValue(Alignment);
5303 else
5304 CCEDiag(E->getArg(0),
5305 diag::note_constexpr_baa_value_insufficient_alignment)
5306 << Offset << (unsigned) getExtValue(Alignment);
5307
5308 return false;
5309 }
5310
5311 return true;
5312 }
5313 default:
5314 return ExprEvaluatorBaseTy::VisitCallExpr(E);
5315 }
5316 }
5317
5318 //===----------------------------------------------------------------------===//
5319 // Member Pointer Evaluation
5320 //===----------------------------------------------------------------------===//
5321
5322 namespace {
5323 class MemberPointerExprEvaluator
5324 : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
5325 MemberPtr &Result;
5326
Success(const ValueDecl * D)5327 bool Success(const ValueDecl *D) {
5328 Result = MemberPtr(D);
5329 return true;
5330 }
5331 public:
5332
MemberPointerExprEvaluator(EvalInfo & Info,MemberPtr & Result)5333 MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
5334 : ExprEvaluatorBaseTy(Info), Result(Result) {}
5335
Success(const APValue & V,const Expr * E)5336 bool Success(const APValue &V, const Expr *E) {
5337 Result.setFrom(V);
5338 return true;
5339 }
ZeroInitialization(const Expr * E)5340 bool ZeroInitialization(const Expr *E) {
5341 return Success((const ValueDecl*)nullptr);
5342 }
5343
5344 bool VisitCastExpr(const CastExpr *E);
5345 bool VisitUnaryAddrOf(const UnaryOperator *E);
5346 };
5347 } // end anonymous namespace
5348
EvaluateMemberPointer(const Expr * E,MemberPtr & Result,EvalInfo & Info)5349 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
5350 EvalInfo &Info) {
5351 assert(E->isRValue() && E->getType()->isMemberPointerType());
5352 return MemberPointerExprEvaluator(Info, Result).Visit(E);
5353 }
5354
VisitCastExpr(const CastExpr * E)5355 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
5356 switch (E->getCastKind()) {
5357 default:
5358 return ExprEvaluatorBaseTy::VisitCastExpr(E);
5359
5360 case CK_NullToMemberPointer:
5361 VisitIgnoredValue(E->getSubExpr());
5362 return ZeroInitialization(E);
5363
5364 case CK_BaseToDerivedMemberPointer: {
5365 if (!Visit(E->getSubExpr()))
5366 return false;
5367 if (E->path_empty())
5368 return true;
5369 // Base-to-derived member pointer casts store the path in derived-to-base
5370 // order, so iterate backwards. The CXXBaseSpecifier also provides us with
5371 // the wrong end of the derived->base arc, so stagger the path by one class.
5372 typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
5373 for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
5374 PathI != PathE; ++PathI) {
5375 assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
5376 const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
5377 if (!Result.castToDerived(Derived))
5378 return Error(E);
5379 }
5380 const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
5381 if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
5382 return Error(E);
5383 return true;
5384 }
5385
5386 case CK_DerivedToBaseMemberPointer:
5387 if (!Visit(E->getSubExpr()))
5388 return false;
5389 for (CastExpr::path_const_iterator PathI = E->path_begin(),
5390 PathE = E->path_end(); PathI != PathE; ++PathI) {
5391 assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
5392 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
5393 if (!Result.castToBase(Base))
5394 return Error(E);
5395 }
5396 return true;
5397 }
5398 }
5399
VisitUnaryAddrOf(const UnaryOperator * E)5400 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
5401 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
5402 // member can be formed.
5403 return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
5404 }
5405
5406 //===----------------------------------------------------------------------===//
5407 // Record Evaluation
5408 //===----------------------------------------------------------------------===//
5409
5410 namespace {
5411 class RecordExprEvaluator
5412 : public ExprEvaluatorBase<RecordExprEvaluator> {
5413 const LValue &This;
5414 APValue &Result;
5415 public:
5416
RecordExprEvaluator(EvalInfo & info,const LValue & This,APValue & Result)5417 RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
5418 : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
5419
Success(const APValue & V,const Expr * E)5420 bool Success(const APValue &V, const Expr *E) {
5421 Result = V;
5422 return true;
5423 }
ZeroInitialization(const Expr * E)5424 bool ZeroInitialization(const Expr *E) {
5425 return ZeroInitialization(E, E->getType());
5426 }
5427 bool ZeroInitialization(const Expr *E, QualType T);
5428
VisitCallExpr(const CallExpr * E)5429 bool VisitCallExpr(const CallExpr *E) {
5430 return handleCallExpr(E, Result, &This);
5431 }
5432 bool VisitCastExpr(const CastExpr *E);
5433 bool VisitInitListExpr(const InitListExpr *E);
VisitCXXConstructExpr(const CXXConstructExpr * E)5434 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
5435 return VisitCXXConstructExpr(E, E->getType());
5436 }
5437 bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
5438 bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
5439 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
5440 };
5441 }
5442
5443 /// Perform zero-initialization on an object of non-union class type.
5444 /// C++11 [dcl.init]p5:
5445 /// To zero-initialize an object or reference of type T means:
5446 /// [...]
5447 /// -- if T is a (possibly cv-qualified) non-union class type,
5448 /// each non-static data member and each base-class subobject is
5449 /// zero-initialized
HandleClassZeroInitialization(EvalInfo & Info,const Expr * E,const RecordDecl * RD,const LValue & This,APValue & Result)5450 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
5451 const RecordDecl *RD,
5452 const LValue &This, APValue &Result) {
5453 assert(!RD->isUnion() && "Expected non-union class type");
5454 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
5455 Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
5456 std::distance(RD->field_begin(), RD->field_end()));
5457
5458 if (RD->isInvalidDecl()) return false;
5459 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
5460
5461 if (CD) {
5462 unsigned Index = 0;
5463 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
5464 End = CD->bases_end(); I != End; ++I, ++Index) {
5465 const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
5466 LValue Subobject = This;
5467 if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
5468 return false;
5469 if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
5470 Result.getStructBase(Index)))
5471 return false;
5472 }
5473 }
5474
5475 for (const auto *I : RD->fields()) {
5476 // -- if T is a reference type, no initialization is performed.
5477 if (I->getType()->isReferenceType())
5478 continue;
5479
5480 LValue Subobject = This;
5481 if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
5482 return false;
5483
5484 ImplicitValueInitExpr VIE(I->getType());
5485 if (!EvaluateInPlace(
5486 Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
5487 return false;
5488 }
5489
5490 return true;
5491 }
5492
ZeroInitialization(const Expr * E,QualType T)5493 bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
5494 const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
5495 if (RD->isInvalidDecl()) return false;
5496 if (RD->isUnion()) {
5497 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
5498 // object's first non-static named data member is zero-initialized
5499 RecordDecl::field_iterator I = RD->field_begin();
5500 if (I == RD->field_end()) {
5501 Result = APValue((const FieldDecl*)nullptr);
5502 return true;
5503 }
5504
5505 LValue Subobject = This;
5506 if (!HandleLValueMember(Info, E, Subobject, *I))
5507 return false;
5508 Result = APValue(*I);
5509 ImplicitValueInitExpr VIE(I->getType());
5510 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
5511 }
5512
5513 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
5514 Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
5515 return false;
5516 }
5517
5518 return HandleClassZeroInitialization(Info, E, RD, This, Result);
5519 }
5520
VisitCastExpr(const CastExpr * E)5521 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
5522 switch (E->getCastKind()) {
5523 default:
5524 return ExprEvaluatorBaseTy::VisitCastExpr(E);
5525
5526 case CK_ConstructorConversion:
5527 return Visit(E->getSubExpr());
5528
5529 case CK_DerivedToBase:
5530 case CK_UncheckedDerivedToBase: {
5531 APValue DerivedObject;
5532 if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
5533 return false;
5534 if (!DerivedObject.isStruct())
5535 return Error(E->getSubExpr());
5536
5537 // Derived-to-base rvalue conversion: just slice off the derived part.
5538 APValue *Value = &DerivedObject;
5539 const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
5540 for (CastExpr::path_const_iterator PathI = E->path_begin(),
5541 PathE = E->path_end(); PathI != PathE; ++PathI) {
5542 assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
5543 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
5544 Value = &Value->getStructBase(getBaseIndex(RD, Base));
5545 RD = Base;
5546 }
5547 Result = *Value;
5548 return true;
5549 }
5550 }
5551 }
5552
VisitInitListExpr(const InitListExpr * E)5553 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5554 const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
5555 if (RD->isInvalidDecl()) return false;
5556 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
5557
5558 if (RD->isUnion()) {
5559 const FieldDecl *Field = E->getInitializedFieldInUnion();
5560 Result = APValue(Field);
5561 if (!Field)
5562 return true;
5563
5564 // If the initializer list for a union does not contain any elements, the
5565 // first element of the union is value-initialized.
5566 // FIXME: The element should be initialized from an initializer list.
5567 // Is this difference ever observable for initializer lists which
5568 // we don't build?
5569 ImplicitValueInitExpr VIE(Field->getType());
5570 const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
5571
5572 LValue Subobject = This;
5573 if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
5574 return false;
5575
5576 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
5577 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
5578 isa<CXXDefaultInitExpr>(InitExpr));
5579
5580 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
5581 }
5582
5583 auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
5584 if (Result.isUninit())
5585 Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
5586 std::distance(RD->field_begin(), RD->field_end()));
5587 unsigned ElementNo = 0;
5588 bool Success = true;
5589
5590 // Initialize base classes.
5591 if (CXXRD) {
5592 for (const auto &Base : CXXRD->bases()) {
5593 assert(ElementNo < E->getNumInits() && "missing init for base class");
5594 const Expr *Init = E->getInit(ElementNo);
5595
5596 LValue Subobject = This;
5597 if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
5598 return false;
5599
5600 APValue &FieldVal = Result.getStructBase(ElementNo);
5601 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
5602 if (!Info.noteFailure())
5603 return false;
5604 Success = false;
5605 }
5606 ++ElementNo;
5607 }
5608 }
5609
5610 // Initialize members.
5611 for (const auto *Field : RD->fields()) {
5612 // Anonymous bit-fields are not considered members of the class for
5613 // purposes of aggregate initialization.
5614 if (Field->isUnnamedBitfield())
5615 continue;
5616
5617 LValue Subobject = This;
5618
5619 bool HaveInit = ElementNo < E->getNumInits();
5620
5621 // FIXME: Diagnostics here should point to the end of the initializer
5622 // list, not the start.
5623 if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
5624 Subobject, Field, &Layout))
5625 return false;
5626
5627 // Perform an implicit value-initialization for members beyond the end of
5628 // the initializer list.
5629 ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
5630 const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
5631
5632 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
5633 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
5634 isa<CXXDefaultInitExpr>(Init));
5635
5636 APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
5637 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
5638 (Field->isBitField() && !truncateBitfieldValue(Info, Init,
5639 FieldVal, Field))) {
5640 if (!Info.noteFailure())
5641 return false;
5642 Success = false;
5643 }
5644 }
5645
5646 return Success;
5647 }
5648
VisitCXXConstructExpr(const CXXConstructExpr * E,QualType T)5649 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
5650 QualType T) {
5651 // Note that E's type is not necessarily the type of our class here; we might
5652 // be initializing an array element instead.
5653 const CXXConstructorDecl *FD = E->getConstructor();
5654 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
5655
5656 bool ZeroInit = E->requiresZeroInitialization();
5657 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
5658 // If we've already performed zero-initialization, we're already done.
5659 if (!Result.isUninit())
5660 return true;
5661
5662 // We can get here in two different ways:
5663 // 1) We're performing value-initialization, and should zero-initialize
5664 // the object, or
5665 // 2) We're performing default-initialization of an object with a trivial
5666 // constexpr default constructor, in which case we should start the
5667 // lifetimes of all the base subobjects (there can be no data member
5668 // subobjects in this case) per [basic.life]p1.
5669 // Either way, ZeroInitialization is appropriate.
5670 return ZeroInitialization(E, T);
5671 }
5672
5673 const FunctionDecl *Definition = nullptr;
5674 auto Body = FD->getBody(Definition);
5675
5676 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
5677 return false;
5678
5679 // Avoid materializing a temporary for an elidable copy/move constructor.
5680 if (E->isElidable() && !ZeroInit)
5681 if (const MaterializeTemporaryExpr *ME
5682 = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
5683 return Visit(ME->GetTemporaryExpr());
5684
5685 if (ZeroInit && !ZeroInitialization(E, T))
5686 return false;
5687
5688 auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
5689 return HandleConstructorCall(E, This, Args,
5690 cast<CXXConstructorDecl>(Definition), Info,
5691 Result);
5692 }
5693
VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr * E)5694 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
5695 const CXXInheritedCtorInitExpr *E) {
5696 if (!Info.CurrentCall) {
5697 assert(Info.checkingPotentialConstantExpression());
5698 return false;
5699 }
5700
5701 const CXXConstructorDecl *FD = E->getConstructor();
5702 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
5703 return false;
5704
5705 const FunctionDecl *Definition = nullptr;
5706 auto Body = FD->getBody(Definition);
5707
5708 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
5709 return false;
5710
5711 return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
5712 cast<CXXConstructorDecl>(Definition), Info,
5713 Result);
5714 }
5715
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)5716 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
5717 const CXXStdInitializerListExpr *E) {
5718 const ConstantArrayType *ArrayType =
5719 Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
5720
5721 LValue Array;
5722 if (!EvaluateLValue(E->getSubExpr(), Array, Info))
5723 return false;
5724
5725 // Get a pointer to the first element of the array.
5726 Array.addArray(Info, E, ArrayType);
5727
5728 // FIXME: Perform the checks on the field types in SemaInit.
5729 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
5730 RecordDecl::field_iterator Field = Record->field_begin();
5731 if (Field == Record->field_end())
5732 return Error(E);
5733
5734 // Start pointer.
5735 if (!Field->getType()->isPointerType() ||
5736 !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5737 ArrayType->getElementType()))
5738 return Error(E);
5739
5740 // FIXME: What if the initializer_list type has base classes, etc?
5741 Result = APValue(APValue::UninitStruct(), 0, 2);
5742 Array.moveInto(Result.getStructField(0));
5743
5744 if (++Field == Record->field_end())
5745 return Error(E);
5746
5747 if (Field->getType()->isPointerType() &&
5748 Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5749 ArrayType->getElementType())) {
5750 // End pointer.
5751 if (!HandleLValueArrayAdjustment(Info, E, Array,
5752 ArrayType->getElementType(),
5753 ArrayType->getSize().getZExtValue()))
5754 return false;
5755 Array.moveInto(Result.getStructField(1));
5756 } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
5757 // Length.
5758 Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
5759 else
5760 return Error(E);
5761
5762 if (++Field != Record->field_end())
5763 return Error(E);
5764
5765 return true;
5766 }
5767
EvaluateRecord(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)5768 static bool EvaluateRecord(const Expr *E, const LValue &This,
5769 APValue &Result, EvalInfo &Info) {
5770 assert(E->isRValue() && E->getType()->isRecordType() &&
5771 "can't evaluate expression as a record rvalue");
5772 return RecordExprEvaluator(Info, This, Result).Visit(E);
5773 }
5774
5775 //===----------------------------------------------------------------------===//
5776 // Temporary Evaluation
5777 //
5778 // Temporaries are represented in the AST as rvalues, but generally behave like
5779 // lvalues. The full-object of which the temporary is a subobject is implicitly
5780 // materialized so that a reference can bind to it.
5781 //===----------------------------------------------------------------------===//
5782 namespace {
5783 class TemporaryExprEvaluator
5784 : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
5785 public:
TemporaryExprEvaluator(EvalInfo & Info,LValue & Result)5786 TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
5787 LValueExprEvaluatorBaseTy(Info, Result) {}
5788
5789 /// Visit an expression which constructs the value of this temporary.
VisitConstructExpr(const Expr * E)5790 bool VisitConstructExpr(const Expr *E) {
5791 Result.set(E, Info.CurrentCall->Index);
5792 return EvaluateInPlace(Info.CurrentCall->createTemporary(E, false),
5793 Info, Result, E);
5794 }
5795
VisitCastExpr(const CastExpr * E)5796 bool VisitCastExpr(const CastExpr *E) {
5797 switch (E->getCastKind()) {
5798 default:
5799 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
5800
5801 case CK_ConstructorConversion:
5802 return VisitConstructExpr(E->getSubExpr());
5803 }
5804 }
VisitInitListExpr(const InitListExpr * E)5805 bool VisitInitListExpr(const InitListExpr *E) {
5806 return VisitConstructExpr(E);
5807 }
VisitCXXConstructExpr(const CXXConstructExpr * E)5808 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
5809 return VisitConstructExpr(E);
5810 }
VisitCallExpr(const CallExpr * E)5811 bool VisitCallExpr(const CallExpr *E) {
5812 return VisitConstructExpr(E);
5813 }
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)5814 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
5815 return VisitConstructExpr(E);
5816 }
5817 };
5818 } // end anonymous namespace
5819
5820 /// Evaluate an expression of record type as a temporary.
EvaluateTemporary(const Expr * E,LValue & Result,EvalInfo & Info)5821 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
5822 assert(E->isRValue() && E->getType()->isRecordType());
5823 return TemporaryExprEvaluator(Info, Result).Visit(E);
5824 }
5825
5826 //===----------------------------------------------------------------------===//
5827 // Vector Evaluation
5828 //===----------------------------------------------------------------------===//
5829
5830 namespace {
5831 class VectorExprEvaluator
5832 : public ExprEvaluatorBase<VectorExprEvaluator> {
5833 APValue &Result;
5834 public:
5835
VectorExprEvaluator(EvalInfo & info,APValue & Result)5836 VectorExprEvaluator(EvalInfo &info, APValue &Result)
5837 : ExprEvaluatorBaseTy(info), Result(Result) {}
5838
Success(ArrayRef<APValue> V,const Expr * E)5839 bool Success(ArrayRef<APValue> V, const Expr *E) {
5840 assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
5841 // FIXME: remove this APValue copy.
5842 Result = APValue(V.data(), V.size());
5843 return true;
5844 }
Success(const APValue & V,const Expr * E)5845 bool Success(const APValue &V, const Expr *E) {
5846 assert(V.isVector());
5847 Result = V;
5848 return true;
5849 }
5850 bool ZeroInitialization(const Expr *E);
5851
VisitUnaryReal(const UnaryOperator * E)5852 bool VisitUnaryReal(const UnaryOperator *E)
5853 { return Visit(E->getSubExpr()); }
5854 bool VisitCastExpr(const CastExpr* E);
5855 bool VisitInitListExpr(const InitListExpr *E);
5856 bool VisitUnaryImag(const UnaryOperator *E);
5857 // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
5858 // binary comparisons, binary and/or/xor,
5859 // shufflevector, ExtVectorElementExpr
5860 };
5861 } // end anonymous namespace
5862
EvaluateVector(const Expr * E,APValue & Result,EvalInfo & Info)5863 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
5864 assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
5865 return VectorExprEvaluator(Info, Result).Visit(E);
5866 }
5867
VisitCastExpr(const CastExpr * E)5868 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
5869 const VectorType *VTy = E->getType()->castAs<VectorType>();
5870 unsigned NElts = VTy->getNumElements();
5871
5872 const Expr *SE = E->getSubExpr();
5873 QualType SETy = SE->getType();
5874
5875 switch (E->getCastKind()) {
5876 case CK_VectorSplat: {
5877 APValue Val = APValue();
5878 if (SETy->isIntegerType()) {
5879 APSInt IntResult;
5880 if (!EvaluateInteger(SE, IntResult, Info))
5881 return false;
5882 Val = APValue(std::move(IntResult));
5883 } else if (SETy->isRealFloatingType()) {
5884 APFloat FloatResult(0.0);
5885 if (!EvaluateFloat(SE, FloatResult, Info))
5886 return false;
5887 Val = APValue(std::move(FloatResult));
5888 } else {
5889 return Error(E);
5890 }
5891
5892 // Splat and create vector APValue.
5893 SmallVector<APValue, 4> Elts(NElts, Val);
5894 return Success(Elts, E);
5895 }
5896 case CK_BitCast: {
5897 // Evaluate the operand into an APInt we can extract from.
5898 llvm::APInt SValInt;
5899 if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
5900 return false;
5901 // Extract the elements
5902 QualType EltTy = VTy->getElementType();
5903 unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
5904 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
5905 SmallVector<APValue, 4> Elts;
5906 if (EltTy->isRealFloatingType()) {
5907 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
5908 unsigned FloatEltSize = EltSize;
5909 if (&Sem == &APFloat::x87DoubleExtended)
5910 FloatEltSize = 80;
5911 for (unsigned i = 0; i < NElts; i++) {
5912 llvm::APInt Elt;
5913 if (BigEndian)
5914 Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
5915 else
5916 Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
5917 Elts.push_back(APValue(APFloat(Sem, Elt)));
5918 }
5919 } else if (EltTy->isIntegerType()) {
5920 for (unsigned i = 0; i < NElts; i++) {
5921 llvm::APInt Elt;
5922 if (BigEndian)
5923 Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
5924 else
5925 Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
5926 Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
5927 }
5928 } else {
5929 return Error(E);
5930 }
5931 return Success(Elts, E);
5932 }
5933 default:
5934 return ExprEvaluatorBaseTy::VisitCastExpr(E);
5935 }
5936 }
5937
5938 bool
VisitInitListExpr(const InitListExpr * E)5939 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5940 const VectorType *VT = E->getType()->castAs<VectorType>();
5941 unsigned NumInits = E->getNumInits();
5942 unsigned NumElements = VT->getNumElements();
5943
5944 QualType EltTy = VT->getElementType();
5945 SmallVector<APValue, 4> Elements;
5946
5947 // The number of initializers can be less than the number of
5948 // vector elements. For OpenCL, this can be due to nested vector
5949 // initialization. For GCC compatibility, missing trailing elements
5950 // should be initialized with zeroes.
5951 unsigned CountInits = 0, CountElts = 0;
5952 while (CountElts < NumElements) {
5953 // Handle nested vector initialization.
5954 if (CountInits < NumInits
5955 && E->getInit(CountInits)->getType()->isVectorType()) {
5956 APValue v;
5957 if (!EvaluateVector(E->getInit(CountInits), v, Info))
5958 return Error(E);
5959 unsigned vlen = v.getVectorLength();
5960 for (unsigned j = 0; j < vlen; j++)
5961 Elements.push_back(v.getVectorElt(j));
5962 CountElts += vlen;
5963 } else if (EltTy->isIntegerType()) {
5964 llvm::APSInt sInt(32);
5965 if (CountInits < NumInits) {
5966 if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
5967 return false;
5968 } else // trailing integer zero.
5969 sInt = Info.Ctx.MakeIntValue(0, EltTy);
5970 Elements.push_back(APValue(sInt));
5971 CountElts++;
5972 } else {
5973 llvm::APFloat f(0.0);
5974 if (CountInits < NumInits) {
5975 if (!EvaluateFloat(E->getInit(CountInits), f, Info))
5976 return false;
5977 } else // trailing float zero.
5978 f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
5979 Elements.push_back(APValue(f));
5980 CountElts++;
5981 }
5982 CountInits++;
5983 }
5984 return Success(Elements, E);
5985 }
5986
5987 bool
ZeroInitialization(const Expr * E)5988 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
5989 const VectorType *VT = E->getType()->getAs<VectorType>();
5990 QualType EltTy = VT->getElementType();
5991 APValue ZeroElement;
5992 if (EltTy->isIntegerType())
5993 ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
5994 else
5995 ZeroElement =
5996 APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
5997
5998 SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
5999 return Success(Elements, E);
6000 }
6001
VisitUnaryImag(const UnaryOperator * E)6002 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
6003 VisitIgnoredValue(E->getSubExpr());
6004 return ZeroInitialization(E);
6005 }
6006
6007 //===----------------------------------------------------------------------===//
6008 // Array Evaluation
6009 //===----------------------------------------------------------------------===//
6010
6011 namespace {
6012 class ArrayExprEvaluator
6013 : public ExprEvaluatorBase<ArrayExprEvaluator> {
6014 const LValue &This;
6015 APValue &Result;
6016 public:
6017
ArrayExprEvaluator(EvalInfo & Info,const LValue & This,APValue & Result)6018 ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
6019 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
6020
Success(const APValue & V,const Expr * E)6021 bool Success(const APValue &V, const Expr *E) {
6022 assert((V.isArray() || V.isLValue()) &&
6023 "expected array or string literal");
6024 Result = V;
6025 return true;
6026 }
6027
ZeroInitialization(const Expr * E)6028 bool ZeroInitialization(const Expr *E) {
6029 const ConstantArrayType *CAT =
6030 Info.Ctx.getAsConstantArrayType(E->getType());
6031 if (!CAT)
6032 return Error(E);
6033
6034 Result = APValue(APValue::UninitArray(), 0,
6035 CAT->getSize().getZExtValue());
6036 if (!Result.hasArrayFiller()) return true;
6037
6038 // Zero-initialize all elements.
6039 LValue Subobject = This;
6040 Subobject.addArray(Info, E, CAT);
6041 ImplicitValueInitExpr VIE(CAT->getElementType());
6042 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
6043 }
6044
VisitCallExpr(const CallExpr * E)6045 bool VisitCallExpr(const CallExpr *E) {
6046 return handleCallExpr(E, Result, &This);
6047 }
6048 bool VisitInitListExpr(const InitListExpr *E);
6049 bool VisitCXXConstructExpr(const CXXConstructExpr *E);
6050 bool VisitCXXConstructExpr(const CXXConstructExpr *E,
6051 const LValue &Subobject,
6052 APValue *Value, QualType Type);
6053 };
6054 } // end anonymous namespace
6055
EvaluateArray(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)6056 static bool EvaluateArray(const Expr *E, const LValue &This,
6057 APValue &Result, EvalInfo &Info) {
6058 assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
6059 return ArrayExprEvaluator(Info, This, Result).Visit(E);
6060 }
6061
VisitInitListExpr(const InitListExpr * E)6062 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
6063 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
6064 if (!CAT)
6065 return Error(E);
6066
6067 // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
6068 // an appropriately-typed string literal enclosed in braces.
6069 if (E->isStringLiteralInit()) {
6070 LValue LV;
6071 if (!EvaluateLValue(E->getInit(0), LV, Info))
6072 return false;
6073 APValue Val;
6074 LV.moveInto(Val);
6075 return Success(Val, E);
6076 }
6077
6078 bool Success = true;
6079
6080 assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
6081 "zero-initialized array shouldn't have any initialized elts");
6082 APValue Filler;
6083 if (Result.isArray() && Result.hasArrayFiller())
6084 Filler = Result.getArrayFiller();
6085
6086 unsigned NumEltsToInit = E->getNumInits();
6087 unsigned NumElts = CAT->getSize().getZExtValue();
6088 const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
6089
6090 // If the initializer might depend on the array index, run it for each
6091 // array element. For now, just whitelist non-class value-initialization.
6092 if (NumEltsToInit != NumElts && !isa<ImplicitValueInitExpr>(FillerExpr))
6093 NumEltsToInit = NumElts;
6094
6095 Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
6096
6097 // If the array was previously zero-initialized, preserve the
6098 // zero-initialized values.
6099 if (!Filler.isUninit()) {
6100 for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
6101 Result.getArrayInitializedElt(I) = Filler;
6102 if (Result.hasArrayFiller())
6103 Result.getArrayFiller() = Filler;
6104 }
6105
6106 LValue Subobject = This;
6107 Subobject.addArray(Info, E, CAT);
6108 for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
6109 const Expr *Init =
6110 Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
6111 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
6112 Info, Subobject, Init) ||
6113 !HandleLValueArrayAdjustment(Info, Init, Subobject,
6114 CAT->getElementType(), 1)) {
6115 if (!Info.noteFailure())
6116 return false;
6117 Success = false;
6118 }
6119 }
6120
6121 if (!Result.hasArrayFiller())
6122 return Success;
6123
6124 // If we get here, we have a trivial filler, which we can just evaluate
6125 // once and splat over the rest of the array elements.
6126 assert(FillerExpr && "no array filler for incomplete init list");
6127 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
6128 FillerExpr) && Success;
6129 }
6130
VisitCXXConstructExpr(const CXXConstructExpr * E)6131 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
6132 return VisitCXXConstructExpr(E, This, &Result, E->getType());
6133 }
6134
VisitCXXConstructExpr(const CXXConstructExpr * E,const LValue & Subobject,APValue * Value,QualType Type)6135 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
6136 const LValue &Subobject,
6137 APValue *Value,
6138 QualType Type) {
6139 bool HadZeroInit = !Value->isUninit();
6140
6141 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
6142 unsigned N = CAT->getSize().getZExtValue();
6143
6144 // Preserve the array filler if we had prior zero-initialization.
6145 APValue Filler =
6146 HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
6147 : APValue();
6148
6149 *Value = APValue(APValue::UninitArray(), N, N);
6150
6151 if (HadZeroInit)
6152 for (unsigned I = 0; I != N; ++I)
6153 Value->getArrayInitializedElt(I) = Filler;
6154
6155 // Initialize the elements.
6156 LValue ArrayElt = Subobject;
6157 ArrayElt.addArray(Info, E, CAT);
6158 for (unsigned I = 0; I != N; ++I)
6159 if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
6160 CAT->getElementType()) ||
6161 !HandleLValueArrayAdjustment(Info, E, ArrayElt,
6162 CAT->getElementType(), 1))
6163 return false;
6164
6165 return true;
6166 }
6167
6168 if (!Type->isRecordType())
6169 return Error(E);
6170
6171 return RecordExprEvaluator(Info, Subobject, *Value)
6172 .VisitCXXConstructExpr(E, Type);
6173 }
6174
6175 //===----------------------------------------------------------------------===//
6176 // Integer Evaluation
6177 //
6178 // As a GNU extension, we support casting pointers to sufficiently-wide integer
6179 // types and back in constant folding. Integer values are thus represented
6180 // either as an integer-valued APValue, or as an lvalue-valued APValue.
6181 //===----------------------------------------------------------------------===//
6182
6183 namespace {
6184 class IntExprEvaluator
6185 : public ExprEvaluatorBase<IntExprEvaluator> {
6186 APValue &Result;
6187 public:
IntExprEvaluator(EvalInfo & info,APValue & result)6188 IntExprEvaluator(EvalInfo &info, APValue &result)
6189 : ExprEvaluatorBaseTy(info), Result(result) {}
6190
Success(const llvm::APSInt & SI,const Expr * E,APValue & Result)6191 bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
6192 assert(E->getType()->isIntegralOrEnumerationType() &&
6193 "Invalid evaluation result.");
6194 assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
6195 "Invalid evaluation result.");
6196 assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
6197 "Invalid evaluation result.");
6198 Result = APValue(SI);
6199 return true;
6200 }
Success(const llvm::APSInt & SI,const Expr * E)6201 bool Success(const llvm::APSInt &SI, const Expr *E) {
6202 return Success(SI, E, Result);
6203 }
6204
Success(const llvm::APInt & I,const Expr * E,APValue & Result)6205 bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
6206 assert(E->getType()->isIntegralOrEnumerationType() &&
6207 "Invalid evaluation result.");
6208 assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
6209 "Invalid evaluation result.");
6210 Result = APValue(APSInt(I));
6211 Result.getInt().setIsUnsigned(
6212 E->getType()->isUnsignedIntegerOrEnumerationType());
6213 return true;
6214 }
Success(const llvm::APInt & I,const Expr * E)6215 bool Success(const llvm::APInt &I, const Expr *E) {
6216 return Success(I, E, Result);
6217 }
6218
Success(uint64_t Value,const Expr * E,APValue & Result)6219 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
6220 assert(E->getType()->isIntegralOrEnumerationType() &&
6221 "Invalid evaluation result.");
6222 Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
6223 return true;
6224 }
Success(uint64_t Value,const Expr * E)6225 bool Success(uint64_t Value, const Expr *E) {
6226 return Success(Value, E, Result);
6227 }
6228
Success(CharUnits Size,const Expr * E)6229 bool Success(CharUnits Size, const Expr *E) {
6230 return Success(Size.getQuantity(), E);
6231 }
6232
Success(const APValue & V,const Expr * E)6233 bool Success(const APValue &V, const Expr *E) {
6234 if (V.isLValue() || V.isAddrLabelDiff()) {
6235 Result = V;
6236 return true;
6237 }
6238 return Success(V.getInt(), E);
6239 }
6240
ZeroInitialization(const Expr * E)6241 bool ZeroInitialization(const Expr *E) { return Success(0, E); }
6242
6243 //===--------------------------------------------------------------------===//
6244 // Visitor Methods
6245 //===--------------------------------------------------------------------===//
6246
VisitIntegerLiteral(const IntegerLiteral * E)6247 bool VisitIntegerLiteral(const IntegerLiteral *E) {
6248 return Success(E->getValue(), E);
6249 }
VisitCharacterLiteral(const CharacterLiteral * E)6250 bool VisitCharacterLiteral(const CharacterLiteral *E) {
6251 return Success(E->getValue(), E);
6252 }
6253
6254 bool CheckReferencedDecl(const Expr *E, const Decl *D);
VisitDeclRefExpr(const DeclRefExpr * E)6255 bool VisitDeclRefExpr(const DeclRefExpr *E) {
6256 if (CheckReferencedDecl(E, E->getDecl()))
6257 return true;
6258
6259 return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
6260 }
VisitMemberExpr(const MemberExpr * E)6261 bool VisitMemberExpr(const MemberExpr *E) {
6262 if (CheckReferencedDecl(E, E->getMemberDecl())) {
6263 VisitIgnoredBaseExpression(E->getBase());
6264 return true;
6265 }
6266
6267 return ExprEvaluatorBaseTy::VisitMemberExpr(E);
6268 }
6269
6270 bool VisitCallExpr(const CallExpr *E);
6271 bool VisitBinaryOperator(const BinaryOperator *E);
6272 bool VisitOffsetOfExpr(const OffsetOfExpr *E);
6273 bool VisitUnaryOperator(const UnaryOperator *E);
6274
6275 bool VisitCastExpr(const CastExpr* E);
6276 bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
6277
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)6278 bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
6279 return Success(E->getValue(), E);
6280 }
6281
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)6282 bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
6283 return Success(E->getValue(), E);
6284 }
6285
6286 // Note, GNU defines __null as an integer, not a pointer.
VisitGNUNullExpr(const GNUNullExpr * E)6287 bool VisitGNUNullExpr(const GNUNullExpr *E) {
6288 return ZeroInitialization(E);
6289 }
6290
VisitTypeTraitExpr(const TypeTraitExpr * E)6291 bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
6292 return Success(E->getValue(), E);
6293 }
6294
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)6295 bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
6296 return Success(E->getValue(), E);
6297 }
6298
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)6299 bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
6300 return Success(E->getValue(), E);
6301 }
6302
6303 bool VisitUnaryReal(const UnaryOperator *E);
6304 bool VisitUnaryImag(const UnaryOperator *E);
6305
6306 bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
6307 bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
6308
6309 private:
6310 bool TryEvaluateBuiltinObjectSize(const CallExpr *E, unsigned Type);
6311 // FIXME: Missing: array subscript of vector, member of vector
6312 };
6313 } // end anonymous namespace
6314
6315 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
6316 /// produce either the integer value or a pointer.
6317 ///
6318 /// GCC has a heinous extension which folds casts between pointer types and
6319 /// pointer-sized integral types. We support this by allowing the evaluation of
6320 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
6321 /// Some simple arithmetic on such values is supported (they are treated much
6322 /// like char*).
EvaluateIntegerOrLValue(const Expr * E,APValue & Result,EvalInfo & Info)6323 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
6324 EvalInfo &Info) {
6325 assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
6326 return IntExprEvaluator(Info, Result).Visit(E);
6327 }
6328
EvaluateInteger(const Expr * E,APSInt & Result,EvalInfo & Info)6329 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
6330 APValue Val;
6331 if (!EvaluateIntegerOrLValue(E, Val, Info))
6332 return false;
6333 if (!Val.isInt()) {
6334 // FIXME: It would be better to produce the diagnostic for casting
6335 // a pointer to an integer.
6336 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
6337 return false;
6338 }
6339 Result = Val.getInt();
6340 return true;
6341 }
6342
6343 /// Check whether the given declaration can be directly converted to an integral
6344 /// rvalue. If not, no diagnostic is produced; there are other things we can
6345 /// try.
CheckReferencedDecl(const Expr * E,const Decl * D)6346 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
6347 // Enums are integer constant exprs.
6348 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
6349 // Check for signedness/width mismatches between E type and ECD value.
6350 bool SameSign = (ECD->getInitVal().isSigned()
6351 == E->getType()->isSignedIntegerOrEnumerationType());
6352 bool SameWidth = (ECD->getInitVal().getBitWidth()
6353 == Info.Ctx.getIntWidth(E->getType()));
6354 if (SameSign && SameWidth)
6355 return Success(ECD->getInitVal(), E);
6356 else {
6357 // Get rid of mismatch (otherwise Success assertions will fail)
6358 // by computing a new value matching the type of E.
6359 llvm::APSInt Val = ECD->getInitVal();
6360 if (!SameSign)
6361 Val.setIsSigned(!ECD->getInitVal().isSigned());
6362 if (!SameWidth)
6363 Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
6364 return Success(Val, E);
6365 }
6366 }
6367 return false;
6368 }
6369
6370 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
6371 /// as GCC.
EvaluateBuiltinClassifyType(const CallExpr * E,const LangOptions & LangOpts)6372 static int EvaluateBuiltinClassifyType(const CallExpr *E,
6373 const LangOptions &LangOpts) {
6374 // The following enum mimics the values returned by GCC.
6375 // FIXME: Does GCC differ between lvalue and rvalue references here?
6376 enum gcc_type_class {
6377 no_type_class = -1,
6378 void_type_class, integer_type_class, char_type_class,
6379 enumeral_type_class, boolean_type_class,
6380 pointer_type_class, reference_type_class, offset_type_class,
6381 real_type_class, complex_type_class,
6382 function_type_class, method_type_class,
6383 record_type_class, union_type_class,
6384 array_type_class, string_type_class,
6385 lang_type_class
6386 };
6387
6388 // If no argument was supplied, default to "no_type_class". This isn't
6389 // ideal, however it is what gcc does.
6390 if (E->getNumArgs() == 0)
6391 return no_type_class;
6392
6393 QualType CanTy = E->getArg(0)->getType().getCanonicalType();
6394 const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy);
6395
6396 switch (CanTy->getTypeClass()) {
6397 #define TYPE(ID, BASE)
6398 #define DEPENDENT_TYPE(ID, BASE) case Type::ID:
6399 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
6400 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
6401 #include "clang/AST/TypeNodes.def"
6402 llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
6403
6404 case Type::Builtin:
6405 switch (BT->getKind()) {
6406 #define BUILTIN_TYPE(ID, SINGLETON_ID)
6407 #define SIGNED_TYPE(ID, SINGLETON_ID) case BuiltinType::ID: return integer_type_class;
6408 #define FLOATING_TYPE(ID, SINGLETON_ID) case BuiltinType::ID: return real_type_class;
6409 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) case BuiltinType::ID: break;
6410 #include "clang/AST/BuiltinTypes.def"
6411 case BuiltinType::Void:
6412 return void_type_class;
6413
6414 case BuiltinType::Bool:
6415 return boolean_type_class;
6416
6417 case BuiltinType::Char_U: // gcc doesn't appear to use char_type_class
6418 case BuiltinType::UChar:
6419 case BuiltinType::UShort:
6420 case BuiltinType::UInt:
6421 case BuiltinType::ULong:
6422 case BuiltinType::ULongLong:
6423 case BuiltinType::UInt128:
6424 return integer_type_class;
6425
6426 case BuiltinType::NullPtr:
6427 return pointer_type_class;
6428
6429 case BuiltinType::WChar_U:
6430 case BuiltinType::Char16:
6431 case BuiltinType::Char32:
6432 case BuiltinType::ObjCId:
6433 case BuiltinType::ObjCClass:
6434 case BuiltinType::ObjCSel:
6435 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6436 case BuiltinType::Id:
6437 #include "clang/Basic/OpenCLImageTypes.def"
6438 case BuiltinType::OCLSampler:
6439 case BuiltinType::OCLEvent:
6440 case BuiltinType::OCLClkEvent:
6441 case BuiltinType::OCLQueue:
6442 case BuiltinType::OCLNDRange:
6443 case BuiltinType::OCLReserveID:
6444 case BuiltinType::Dependent:
6445 llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
6446 };
6447
6448 case Type::Enum:
6449 return LangOpts.CPlusPlus ? enumeral_type_class : integer_type_class;
6450 break;
6451
6452 case Type::Pointer:
6453 return pointer_type_class;
6454 break;
6455
6456 case Type::MemberPointer:
6457 if (CanTy->isMemberDataPointerType())
6458 return offset_type_class;
6459 else {
6460 // We expect member pointers to be either data or function pointers,
6461 // nothing else.
6462 assert(CanTy->isMemberFunctionPointerType());
6463 return method_type_class;
6464 }
6465
6466 case Type::Complex:
6467 return complex_type_class;
6468
6469 case Type::FunctionNoProto:
6470 case Type::FunctionProto:
6471 return LangOpts.CPlusPlus ? function_type_class : pointer_type_class;
6472
6473 case Type::Record:
6474 if (const RecordType *RT = CanTy->getAs<RecordType>()) {
6475 switch (RT->getDecl()->getTagKind()) {
6476 case TagTypeKind::TTK_Struct:
6477 case TagTypeKind::TTK_Class:
6478 case TagTypeKind::TTK_Interface:
6479 return record_type_class;
6480
6481 case TagTypeKind::TTK_Enum:
6482 return LangOpts.CPlusPlus ? enumeral_type_class : integer_type_class;
6483
6484 case TagTypeKind::TTK_Union:
6485 return union_type_class;
6486 }
6487 }
6488 llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
6489
6490 case Type::ConstantArray:
6491 case Type::VariableArray:
6492 case Type::IncompleteArray:
6493 return LangOpts.CPlusPlus ? array_type_class : pointer_type_class;
6494
6495 case Type::BlockPointer:
6496 case Type::LValueReference:
6497 case Type::RValueReference:
6498 case Type::Vector:
6499 case Type::ExtVector:
6500 case Type::Auto:
6501 case Type::ObjCObject:
6502 case Type::ObjCInterface:
6503 case Type::ObjCObjectPointer:
6504 case Type::Pipe:
6505 case Type::Atomic:
6506 llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
6507 }
6508
6509 llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
6510 }
6511
6512 /// EvaluateBuiltinConstantPForLValue - Determine the result of
6513 /// __builtin_constant_p when applied to the given lvalue.
6514 ///
6515 /// An lvalue is only "constant" if it is a pointer or reference to the first
6516 /// character of a string literal.
6517 template<typename LValue>
EvaluateBuiltinConstantPForLValue(const LValue & LV)6518 static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
6519 const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
6520 return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
6521 }
6522
6523 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
6524 /// GCC as we can manage.
EvaluateBuiltinConstantP(ASTContext & Ctx,const Expr * Arg)6525 static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
6526 QualType ArgType = Arg->getType();
6527
6528 // __builtin_constant_p always has one operand. The rules which gcc follows
6529 // are not precisely documented, but are as follows:
6530 //
6531 // - If the operand is of integral, floating, complex or enumeration type,
6532 // and can be folded to a known value of that type, it returns 1.
6533 // - If the operand and can be folded to a pointer to the first character
6534 // of a string literal (or such a pointer cast to an integral type), it
6535 // returns 1.
6536 //
6537 // Otherwise, it returns 0.
6538 //
6539 // FIXME: GCC also intends to return 1 for literals of aggregate types, but
6540 // its support for this does not currently work.
6541 if (ArgType->isIntegralOrEnumerationType()) {
6542 Expr::EvalResult Result;
6543 if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
6544 return false;
6545
6546 APValue &V = Result.Val;
6547 if (V.getKind() == APValue::Int)
6548 return true;
6549 if (V.getKind() == APValue::LValue)
6550 return EvaluateBuiltinConstantPForLValue(V);
6551 } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
6552 return Arg->isEvaluatable(Ctx);
6553 } else if (ArgType->isPointerType() || Arg->isGLValue()) {
6554 LValue LV;
6555 Expr::EvalStatus Status;
6556 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
6557 if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
6558 : EvaluatePointer(Arg, LV, Info)) &&
6559 !Status.HasSideEffects)
6560 return EvaluateBuiltinConstantPForLValue(LV);
6561 }
6562
6563 // Anything else isn't considered to be sufficiently constant.
6564 return false;
6565 }
6566
6567 /// Retrieves the "underlying object type" of the given expression,
6568 /// as used by __builtin_object_size.
getObjectType(APValue::LValueBase B)6569 static QualType getObjectType(APValue::LValueBase B) {
6570 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
6571 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
6572 return VD->getType();
6573 } else if (const Expr *E = B.get<const Expr*>()) {
6574 if (isa<CompoundLiteralExpr>(E))
6575 return E->getType();
6576 }
6577
6578 return QualType();
6579 }
6580
6581 /// A more selective version of E->IgnoreParenCasts for
6582 /// TryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
6583 /// to change the type of E.
6584 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
6585 ///
6586 /// Always returns an RValue with a pointer representation.
ignorePointerCastsAndParens(const Expr * E)6587 static const Expr *ignorePointerCastsAndParens(const Expr *E) {
6588 assert(E->isRValue() && E->getType()->hasPointerRepresentation());
6589
6590 auto *NoParens = E->IgnoreParens();
6591 auto *Cast = dyn_cast<CastExpr>(NoParens);
6592 if (Cast == nullptr)
6593 return NoParens;
6594
6595 // We only conservatively allow a few kinds of casts, because this code is
6596 // inherently a simple solution that seeks to support the common case.
6597 auto CastKind = Cast->getCastKind();
6598 if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
6599 CastKind != CK_AddressSpaceConversion)
6600 return NoParens;
6601
6602 auto *SubExpr = Cast->getSubExpr();
6603 if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue())
6604 return NoParens;
6605 return ignorePointerCastsAndParens(SubExpr);
6606 }
6607
6608 /// Checks to see if the given LValue's Designator is at the end of the LValue's
6609 /// record layout. e.g.
6610 /// struct { struct { int a, b; } fst, snd; } obj;
6611 /// obj.fst // no
6612 /// obj.snd // yes
6613 /// obj.fst.a // no
6614 /// obj.fst.b // no
6615 /// obj.snd.a // no
6616 /// obj.snd.b // yes
6617 ///
6618 /// Please note: this function is specialized for how __builtin_object_size
6619 /// views "objects".
6620 ///
6621 /// If this encounters an invalid RecordDecl, it will always return true.
isDesignatorAtObjectEnd(const ASTContext & Ctx,const LValue & LVal)6622 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
6623 assert(!LVal.Designator.Invalid);
6624
6625 auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
6626 const RecordDecl *Parent = FD->getParent();
6627 Invalid = Parent->isInvalidDecl();
6628 if (Invalid || Parent->isUnion())
6629 return true;
6630 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
6631 return FD->getFieldIndex() + 1 == Layout.getFieldCount();
6632 };
6633
6634 auto &Base = LVal.getLValueBase();
6635 if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
6636 if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
6637 bool Invalid;
6638 if (!IsLastOrInvalidFieldDecl(FD, Invalid))
6639 return Invalid;
6640 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
6641 for (auto *FD : IFD->chain()) {
6642 bool Invalid;
6643 if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
6644 return Invalid;
6645 }
6646 }
6647 }
6648
6649 QualType BaseType = getType(Base);
6650 for (int I = 0, E = LVal.Designator.Entries.size(); I != E; ++I) {
6651 if (BaseType->isArrayType()) {
6652 // Because __builtin_object_size treats arrays as objects, we can ignore
6653 // the index iff this is the last array in the Designator.
6654 if (I + 1 == E)
6655 return true;
6656 auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
6657 uint64_t Index = LVal.Designator.Entries[I].ArrayIndex;
6658 if (Index + 1 != CAT->getSize())
6659 return false;
6660 BaseType = CAT->getElementType();
6661 } else if (BaseType->isAnyComplexType()) {
6662 auto *CT = BaseType->castAs<ComplexType>();
6663 uint64_t Index = LVal.Designator.Entries[I].ArrayIndex;
6664 if (Index != 1)
6665 return false;
6666 BaseType = CT->getElementType();
6667 } else if (auto *FD = getAsField(LVal.Designator.Entries[I])) {
6668 bool Invalid;
6669 if (!IsLastOrInvalidFieldDecl(FD, Invalid))
6670 return Invalid;
6671 BaseType = FD->getType();
6672 } else {
6673 assert(getAsBaseClass(LVal.Designator.Entries[I]) != nullptr &&
6674 "Expecting cast to a base class");
6675 return false;
6676 }
6677 }
6678 return true;
6679 }
6680
6681 /// Tests to see if the LValue has a designator (that isn't necessarily valid).
refersToCompleteObject(const LValue & LVal)6682 static bool refersToCompleteObject(const LValue &LVal) {
6683 if (LVal.Designator.Invalid || !LVal.Designator.Entries.empty())
6684 return false;
6685
6686 if (!LVal.InvalidBase)
6687 return true;
6688
6689 auto *E = LVal.Base.dyn_cast<const Expr *>();
6690 (void)E;
6691 assert(E != nullptr && isa<MemberExpr>(E));
6692 return false;
6693 }
6694
6695 /// Tries to evaluate the __builtin_object_size for @p E. If successful, returns
6696 /// true and stores the result in @p Size.
6697 ///
6698 /// If @p WasError is non-null, this will report whether the failure to evaluate
6699 /// is to be treated as an Error in IntExprEvaluator.
tryEvaluateBuiltinObjectSize(const Expr * E,unsigned Type,EvalInfo & Info,uint64_t & Size,bool * WasError=nullptr)6700 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
6701 EvalInfo &Info, uint64_t &Size,
6702 bool *WasError = nullptr) {
6703 if (WasError != nullptr)
6704 *WasError = false;
6705
6706 auto Error = [&](const Expr *E) {
6707 if (WasError != nullptr)
6708 *WasError = true;
6709 return false;
6710 };
6711
6712 auto Success = [&](uint64_t S, const Expr *E) {
6713 Size = S;
6714 return true;
6715 };
6716
6717 // Determine the denoted object.
6718 LValue Base;
6719 {
6720 // The operand of __builtin_object_size is never evaluated for side-effects.
6721 // If there are any, but we can determine the pointed-to object anyway, then
6722 // ignore the side-effects.
6723 SpeculativeEvaluationRAII SpeculativeEval(Info);
6724 FoldOffsetRAII Fold(Info, Type & 1);
6725
6726 if (E->isGLValue()) {
6727 // It's possible for us to be given GLValues if we're called via
6728 // Expr::tryEvaluateObjectSize.
6729 APValue RVal;
6730 if (!EvaluateAsRValue(Info, E, RVal))
6731 return false;
6732 Base.setFrom(Info.Ctx, RVal);
6733 } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), Base, Info))
6734 return false;
6735 }
6736
6737 CharUnits BaseOffset = Base.getLValueOffset();
6738 // If we point to before the start of the object, there are no accessible
6739 // bytes.
6740 if (BaseOffset.isNegative())
6741 return Success(0, E);
6742
6743 // In the case where we're not dealing with a subobject, we discard the
6744 // subobject bit.
6745 bool SubobjectOnly = (Type & 1) != 0 && !refersToCompleteObject(Base);
6746
6747 // If Type & 1 is 0, we need to be able to statically guarantee that the bytes
6748 // exist. If we can't verify the base, then we can't do that.
6749 //
6750 // As a special case, we produce a valid object size for an unknown object
6751 // with a known designator if Type & 1 is 1. For instance:
6752 //
6753 // extern struct X { char buff[32]; int a, b, c; } *p;
6754 // int a = __builtin_object_size(p->buff + 4, 3); // returns 28
6755 // int b = __builtin_object_size(p->buff + 4, 2); // returns 0, not 40
6756 //
6757 // This matches GCC's behavior.
6758 if (Base.InvalidBase && !SubobjectOnly)
6759 return Error(E);
6760
6761 // If we're not examining only the subobject, then we reset to a complete
6762 // object designator
6763 //
6764 // If Type is 1 and we've lost track of the subobject, just find the complete
6765 // object instead. (If Type is 3, that's not correct behavior and we should
6766 // return 0 instead.)
6767 LValue End = Base;
6768 if (!SubobjectOnly || (End.Designator.Invalid && Type == 1)) {
6769 QualType T = getObjectType(End.getLValueBase());
6770 if (T.isNull())
6771 End.Designator.setInvalid();
6772 else {
6773 End.Designator = SubobjectDesignator(T);
6774 End.Offset = CharUnits::Zero();
6775 }
6776 }
6777
6778 // If it is not possible to determine which objects ptr points to at compile
6779 // time, __builtin_object_size should return (size_t) -1 for type 0 or 1
6780 // and (size_t) 0 for type 2 or 3.
6781 if (End.Designator.Invalid)
6782 return false;
6783
6784 // According to the GCC documentation, we want the size of the subobject
6785 // denoted by the pointer. But that's not quite right -- what we actually
6786 // want is the size of the immediately-enclosing array, if there is one.
6787 int64_t AmountToAdd = 1;
6788 if (End.Designator.MostDerivedIsArrayElement &&
6789 End.Designator.Entries.size() == End.Designator.MostDerivedPathLength) {
6790 // We got a pointer to an array. Step to its end.
6791 AmountToAdd = End.Designator.MostDerivedArraySize -
6792 End.Designator.Entries.back().ArrayIndex;
6793 } else if (End.Designator.isOnePastTheEnd()) {
6794 // We're already pointing at the end of the object.
6795 AmountToAdd = 0;
6796 }
6797
6798 QualType PointeeType = End.Designator.MostDerivedType;
6799 assert(!PointeeType.isNull());
6800 if (PointeeType->isIncompleteType() || PointeeType->isFunctionType())
6801 return Error(E);
6802
6803 if (!HandleLValueArrayAdjustment(Info, E, End, End.Designator.MostDerivedType,
6804 AmountToAdd))
6805 return false;
6806
6807 auto EndOffset = End.getLValueOffset();
6808
6809 // The following is a moderately common idiom in C:
6810 //
6811 // struct Foo { int a; char c[1]; };
6812 // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
6813 // strcpy(&F->c[0], Bar);
6814 //
6815 // So, if we see that we're examining a 1-length (or 0-length) array at the
6816 // end of a struct with an unknown base, we give up instead of breaking code
6817 // that behaves this way. Note that we only do this when Type=1, because
6818 // Type=3 is a lower bound, so answering conservatively is fine.
6819 if (End.InvalidBase && SubobjectOnly && Type == 1 &&
6820 End.Designator.Entries.size() == End.Designator.MostDerivedPathLength &&
6821 End.Designator.MostDerivedIsArrayElement &&
6822 End.Designator.MostDerivedArraySize < 2 &&
6823 isDesignatorAtObjectEnd(Info.Ctx, End))
6824 return false;
6825
6826 if (BaseOffset > EndOffset)
6827 return Success(0, E);
6828
6829 return Success((EndOffset - BaseOffset).getQuantity(), E);
6830 }
6831
TryEvaluateBuiltinObjectSize(const CallExpr * E,unsigned Type)6832 bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E,
6833 unsigned Type) {
6834 uint64_t Size;
6835 bool WasError;
6836 if (::tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size, &WasError))
6837 return Success(Size, E);
6838 if (WasError)
6839 return Error(E);
6840 return false;
6841 }
6842
VisitCallExpr(const CallExpr * E)6843 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
6844 switch (unsigned BuiltinOp = E->getBuiltinCallee()) {
6845 default:
6846 return ExprEvaluatorBaseTy::VisitCallExpr(E);
6847
6848 case Builtin::BI__builtin_object_size: {
6849 // The type was checked when we built the expression.
6850 unsigned Type =
6851 E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
6852 assert(Type <= 3 && "unexpected type");
6853
6854 if (TryEvaluateBuiltinObjectSize(E, Type))
6855 return true;
6856
6857 if (E->getArg(0)->HasSideEffects(Info.Ctx))
6858 return Success((Type & 2) ? 0 : -1, E);
6859
6860 // Expression had no side effects, but we couldn't statically determine the
6861 // size of the referenced object.
6862 switch (Info.EvalMode) {
6863 case EvalInfo::EM_ConstantExpression:
6864 case EvalInfo::EM_PotentialConstantExpression:
6865 case EvalInfo::EM_ConstantFold:
6866 case EvalInfo::EM_EvaluateForOverflow:
6867 case EvalInfo::EM_IgnoreSideEffects:
6868 case EvalInfo::EM_DesignatorFold:
6869 // Leave it to IR generation.
6870 return Error(E);
6871 case EvalInfo::EM_ConstantExpressionUnevaluated:
6872 case EvalInfo::EM_PotentialConstantExpressionUnevaluated:
6873 // Reduce it to a constant now.
6874 return Success((Type & 2) ? 0 : -1, E);
6875 }
6876 }
6877
6878 case Builtin::BI__builtin_bswap16:
6879 case Builtin::BI__builtin_bswap32:
6880 case Builtin::BI__builtin_bswap64: {
6881 APSInt Val;
6882 if (!EvaluateInteger(E->getArg(0), Val, Info))
6883 return false;
6884
6885 return Success(Val.byteSwap(), E);
6886 }
6887
6888 case Builtin::BI__builtin_classify_type:
6889 return Success(EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
6890
6891 // FIXME: BI__builtin_clrsb
6892 // FIXME: BI__builtin_clrsbl
6893 // FIXME: BI__builtin_clrsbll
6894
6895 case Builtin::BI__builtin_clz:
6896 case Builtin::BI__builtin_clzl:
6897 case Builtin::BI__builtin_clzll:
6898 case Builtin::BI__builtin_clzs: {
6899 APSInt Val;
6900 if (!EvaluateInteger(E->getArg(0), Val, Info))
6901 return false;
6902 if (!Val)
6903 return Error(E);
6904
6905 return Success(Val.countLeadingZeros(), E);
6906 }
6907
6908 case Builtin::BI__builtin_constant_p:
6909 return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
6910
6911 case Builtin::BI__builtin_ctz:
6912 case Builtin::BI__builtin_ctzl:
6913 case Builtin::BI__builtin_ctzll:
6914 case Builtin::BI__builtin_ctzs: {
6915 APSInt Val;
6916 if (!EvaluateInteger(E->getArg(0), Val, Info))
6917 return false;
6918 if (!Val)
6919 return Error(E);
6920
6921 return Success(Val.countTrailingZeros(), E);
6922 }
6923
6924 case Builtin::BI__builtin_eh_return_data_regno: {
6925 int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
6926 Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
6927 return Success(Operand, E);
6928 }
6929
6930 case Builtin::BI__builtin_expect:
6931 return Visit(E->getArg(0));
6932
6933 case Builtin::BI__builtin_ffs:
6934 case Builtin::BI__builtin_ffsl:
6935 case Builtin::BI__builtin_ffsll: {
6936 APSInt Val;
6937 if (!EvaluateInteger(E->getArg(0), Val, Info))
6938 return false;
6939
6940 unsigned N = Val.countTrailingZeros();
6941 return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
6942 }
6943
6944 case Builtin::BI__builtin_fpclassify: {
6945 APFloat Val(0.0);
6946 if (!EvaluateFloat(E->getArg(5), Val, Info))
6947 return false;
6948 unsigned Arg;
6949 switch (Val.getCategory()) {
6950 case APFloat::fcNaN: Arg = 0; break;
6951 case APFloat::fcInfinity: Arg = 1; break;
6952 case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
6953 case APFloat::fcZero: Arg = 4; break;
6954 }
6955 return Visit(E->getArg(Arg));
6956 }
6957
6958 case Builtin::BI__builtin_isinf_sign: {
6959 APFloat Val(0.0);
6960 return EvaluateFloat(E->getArg(0), Val, Info) &&
6961 Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
6962 }
6963
6964 case Builtin::BI__builtin_isinf: {
6965 APFloat Val(0.0);
6966 return EvaluateFloat(E->getArg(0), Val, Info) &&
6967 Success(Val.isInfinity() ? 1 : 0, E);
6968 }
6969
6970 case Builtin::BI__builtin_isfinite: {
6971 APFloat Val(0.0);
6972 return EvaluateFloat(E->getArg(0), Val, Info) &&
6973 Success(Val.isFinite() ? 1 : 0, E);
6974 }
6975
6976 case Builtin::BI__builtin_isnan: {
6977 APFloat Val(0.0);
6978 return EvaluateFloat(E->getArg(0), Val, Info) &&
6979 Success(Val.isNaN() ? 1 : 0, E);
6980 }
6981
6982 case Builtin::BI__builtin_isnormal: {
6983 APFloat Val(0.0);
6984 return EvaluateFloat(E->getArg(0), Val, Info) &&
6985 Success(Val.isNormal() ? 1 : 0, E);
6986 }
6987
6988 case Builtin::BI__builtin_parity:
6989 case Builtin::BI__builtin_parityl:
6990 case Builtin::BI__builtin_parityll: {
6991 APSInt Val;
6992 if (!EvaluateInteger(E->getArg(0), Val, Info))
6993 return false;
6994
6995 return Success(Val.countPopulation() % 2, E);
6996 }
6997
6998 case Builtin::BI__builtin_popcount:
6999 case Builtin::BI__builtin_popcountl:
7000 case Builtin::BI__builtin_popcountll: {
7001 APSInt Val;
7002 if (!EvaluateInteger(E->getArg(0), Val, Info))
7003 return false;
7004
7005 return Success(Val.countPopulation(), E);
7006 }
7007
7008 case Builtin::BIstrlen:
7009 // A call to strlen is not a constant expression.
7010 if (Info.getLangOpts().CPlusPlus11)
7011 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
7012 << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
7013 else
7014 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
7015 // Fall through.
7016 case Builtin::BI__builtin_strlen: {
7017 // As an extension, we support __builtin_strlen() as a constant expression,
7018 // and support folding strlen() to a constant.
7019 LValue String;
7020 if (!EvaluatePointer(E->getArg(0), String, Info))
7021 return false;
7022
7023 // Fast path: if it's a string literal, search the string value.
7024 if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
7025 String.getLValueBase().dyn_cast<const Expr *>())) {
7026 // The string literal may have embedded null characters. Find the first
7027 // one and truncate there.
7028 StringRef Str = S->getBytes();
7029 int64_t Off = String.Offset.getQuantity();
7030 if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
7031 S->getCharByteWidth() == 1) {
7032 Str = Str.substr(Off);
7033
7034 StringRef::size_type Pos = Str.find(0);
7035 if (Pos != StringRef::npos)
7036 Str = Str.substr(0, Pos);
7037
7038 return Success(Str.size(), E);
7039 }
7040
7041 // Fall through to slow path to issue appropriate diagnostic.
7042 }
7043
7044 // Slow path: scan the bytes of the string looking for the terminating 0.
7045 QualType CharTy = E->getArg(0)->getType()->getPointeeType();
7046 for (uint64_t Strlen = 0; /**/; ++Strlen) {
7047 APValue Char;
7048 if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
7049 !Char.isInt())
7050 return false;
7051 if (!Char.getInt())
7052 return Success(Strlen, E);
7053 if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
7054 return false;
7055 }
7056 }
7057
7058 case Builtin::BI__atomic_always_lock_free:
7059 case Builtin::BI__atomic_is_lock_free:
7060 case Builtin::BI__c11_atomic_is_lock_free: {
7061 APSInt SizeVal;
7062 if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
7063 return false;
7064
7065 // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
7066 // of two less than the maximum inline atomic width, we know it is
7067 // lock-free. If the size isn't a power of two, or greater than the
7068 // maximum alignment where we promote atomics, we know it is not lock-free
7069 // (at least not in the sense of atomic_is_lock_free). Otherwise,
7070 // the answer can only be determined at runtime; for example, 16-byte
7071 // atomics have lock-free implementations on some, but not all,
7072 // x86-64 processors.
7073
7074 // Check power-of-two.
7075 CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
7076 if (Size.isPowerOfTwo()) {
7077 // Check against inlining width.
7078 unsigned InlineWidthBits =
7079 Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
7080 if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
7081 if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
7082 Size == CharUnits::One() ||
7083 E->getArg(1)->isNullPointerConstant(Info.Ctx,
7084 Expr::NPC_NeverValueDependent))
7085 // OK, we will inline appropriately-aligned operations of this size,
7086 // and _Atomic(T) is appropriately-aligned.
7087 return Success(1, E);
7088
7089 QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
7090 castAs<PointerType>()->getPointeeType();
7091 if (!PointeeType->isIncompleteType() &&
7092 Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
7093 // OK, we will inline operations on this object.
7094 return Success(1, E);
7095 }
7096 }
7097 }
7098
7099 return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
7100 Success(0, E) : Error(E);
7101 }
7102 }
7103 }
7104
HasSameBase(const LValue & A,const LValue & B)7105 static bool HasSameBase(const LValue &A, const LValue &B) {
7106 if (!A.getLValueBase())
7107 return !B.getLValueBase();
7108 if (!B.getLValueBase())
7109 return false;
7110
7111 if (A.getLValueBase().getOpaqueValue() !=
7112 B.getLValueBase().getOpaqueValue()) {
7113 const Decl *ADecl = GetLValueBaseDecl(A);
7114 if (!ADecl)
7115 return false;
7116 const Decl *BDecl = GetLValueBaseDecl(B);
7117 if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
7118 return false;
7119 }
7120
7121 return IsGlobalLValue(A.getLValueBase()) ||
7122 A.getLValueCallIndex() == B.getLValueCallIndex();
7123 }
7124
7125 /// \brief Determine whether this is a pointer past the end of the complete
7126 /// object referred to by the lvalue.
isOnePastTheEndOfCompleteObject(const ASTContext & Ctx,const LValue & LV)7127 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
7128 const LValue &LV) {
7129 // A null pointer can be viewed as being "past the end" but we don't
7130 // choose to look at it that way here.
7131 if (!LV.getLValueBase())
7132 return false;
7133
7134 // If the designator is valid and refers to a subobject, we're not pointing
7135 // past the end.
7136 if (!LV.getLValueDesignator().Invalid &&
7137 !LV.getLValueDesignator().isOnePastTheEnd())
7138 return false;
7139
7140 // A pointer to an incomplete type might be past-the-end if the type's size is
7141 // zero. We cannot tell because the type is incomplete.
7142 QualType Ty = getType(LV.getLValueBase());
7143 if (Ty->isIncompleteType())
7144 return true;
7145
7146 // We're a past-the-end pointer if we point to the byte after the object,
7147 // no matter what our type or path is.
7148 auto Size = Ctx.getTypeSizeInChars(Ty);
7149 return LV.getLValueOffset() == Size;
7150 }
7151
7152 namespace {
7153
7154 /// \brief Data recursive integer evaluator of certain binary operators.
7155 ///
7156 /// We use a data recursive algorithm for binary operators so that we are able
7157 /// to handle extreme cases of chained binary operators without causing stack
7158 /// overflow.
7159 class DataRecursiveIntBinOpEvaluator {
7160 struct EvalResult {
7161 APValue Val;
7162 bool Failed;
7163
EvalResult__anon7264eadc1811::DataRecursiveIntBinOpEvaluator::EvalResult7164 EvalResult() : Failed(false) { }
7165
swap__anon7264eadc1811::DataRecursiveIntBinOpEvaluator::EvalResult7166 void swap(EvalResult &RHS) {
7167 Val.swap(RHS.Val);
7168 Failed = RHS.Failed;
7169 RHS.Failed = false;
7170 }
7171 };
7172
7173 struct Job {
7174 const Expr *E;
7175 EvalResult LHSResult; // meaningful only for binary operator expression.
7176 enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
7177
7178 Job() = default;
Job__anon7264eadc1811::DataRecursiveIntBinOpEvaluator::Job7179 Job(Job &&J)
7180 : E(J.E), LHSResult(J.LHSResult), Kind(J.Kind),
7181 SpecEvalRAII(std::move(J.SpecEvalRAII)) {}
7182
startSpeculativeEval__anon7264eadc1811::DataRecursiveIntBinOpEvaluator::Job7183 void startSpeculativeEval(EvalInfo &Info) {
7184 SpecEvalRAII = SpeculativeEvaluationRAII(Info);
7185 }
7186
7187 private:
7188 SpeculativeEvaluationRAII SpecEvalRAII;
7189 };
7190
7191 SmallVector<Job, 16> Queue;
7192
7193 IntExprEvaluator &IntEval;
7194 EvalInfo &Info;
7195 APValue &FinalResult;
7196
7197 public:
DataRecursiveIntBinOpEvaluator(IntExprEvaluator & IntEval,APValue & Result)7198 DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
7199 : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
7200
7201 /// \brief True if \param E is a binary operator that we are going to handle
7202 /// data recursively.
7203 /// We handle binary operators that are comma, logical, or that have operands
7204 /// with integral or enumeration type.
shouldEnqueue(const BinaryOperator * E)7205 static bool shouldEnqueue(const BinaryOperator *E) {
7206 return E->getOpcode() == BO_Comma ||
7207 E->isLogicalOp() ||
7208 (E->isRValue() &&
7209 E->getType()->isIntegralOrEnumerationType() &&
7210 E->getLHS()->getType()->isIntegralOrEnumerationType() &&
7211 E->getRHS()->getType()->isIntegralOrEnumerationType());
7212 }
7213
Traverse(const BinaryOperator * E)7214 bool Traverse(const BinaryOperator *E) {
7215 enqueue(E);
7216 EvalResult PrevResult;
7217 while (!Queue.empty())
7218 process(PrevResult);
7219
7220 if (PrevResult.Failed) return false;
7221
7222 FinalResult.swap(PrevResult.Val);
7223 return true;
7224 }
7225
7226 private:
Success(uint64_t Value,const Expr * E,APValue & Result)7227 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
7228 return IntEval.Success(Value, E, Result);
7229 }
Success(const APSInt & Value,const Expr * E,APValue & Result)7230 bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
7231 return IntEval.Success(Value, E, Result);
7232 }
Error(const Expr * E)7233 bool Error(const Expr *E) {
7234 return IntEval.Error(E);
7235 }
Error(const Expr * E,diag::kind D)7236 bool Error(const Expr *E, diag::kind D) {
7237 return IntEval.Error(E, D);
7238 }
7239
CCEDiag(const Expr * E,diag::kind D)7240 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
7241 return Info.CCEDiag(E, D);
7242 }
7243
7244 // \brief Returns true if visiting the RHS is necessary, false otherwise.
7245 bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
7246 bool &SuppressRHSDiags);
7247
7248 bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
7249 const BinaryOperator *E, APValue &Result);
7250
EvaluateExpr(const Expr * E,EvalResult & Result)7251 void EvaluateExpr(const Expr *E, EvalResult &Result) {
7252 Result.Failed = !Evaluate(Result.Val, Info, E);
7253 if (Result.Failed)
7254 Result.Val = APValue();
7255 }
7256
7257 void process(EvalResult &Result);
7258
enqueue(const Expr * E)7259 void enqueue(const Expr *E) {
7260 E = E->IgnoreParens();
7261 Queue.resize(Queue.size()+1);
7262 Queue.back().E = E;
7263 Queue.back().Kind = Job::AnyExprKind;
7264 }
7265 };
7266
7267 }
7268
7269 bool DataRecursiveIntBinOpEvaluator::
VisitBinOpLHSOnly(EvalResult & LHSResult,const BinaryOperator * E,bool & SuppressRHSDiags)7270 VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
7271 bool &SuppressRHSDiags) {
7272 if (E->getOpcode() == BO_Comma) {
7273 // Ignore LHS but note if we could not evaluate it.
7274 if (LHSResult.Failed)
7275 return Info.noteSideEffect();
7276 return true;
7277 }
7278
7279 if (E->isLogicalOp()) {
7280 bool LHSAsBool;
7281 if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
7282 // We were able to evaluate the LHS, see if we can get away with not
7283 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
7284 if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
7285 Success(LHSAsBool, E, LHSResult.Val);
7286 return false; // Ignore RHS
7287 }
7288 } else {
7289 LHSResult.Failed = true;
7290
7291 // Since we weren't able to evaluate the left hand side, it
7292 // might have had side effects.
7293 if (!Info.noteSideEffect())
7294 return false;
7295
7296 // We can't evaluate the LHS; however, sometimes the result
7297 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
7298 // Don't ignore RHS and suppress diagnostics from this arm.
7299 SuppressRHSDiags = true;
7300 }
7301
7302 return true;
7303 }
7304
7305 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
7306 E->getRHS()->getType()->isIntegralOrEnumerationType());
7307
7308 if (LHSResult.Failed && !Info.noteFailure())
7309 return false; // Ignore RHS;
7310
7311 return true;
7312 }
7313
7314 bool DataRecursiveIntBinOpEvaluator::
VisitBinOp(const EvalResult & LHSResult,const EvalResult & RHSResult,const BinaryOperator * E,APValue & Result)7315 VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
7316 const BinaryOperator *E, APValue &Result) {
7317 if (E->getOpcode() == BO_Comma) {
7318 if (RHSResult.Failed)
7319 return false;
7320 Result = RHSResult.Val;
7321 return true;
7322 }
7323
7324 if (E->isLogicalOp()) {
7325 bool lhsResult, rhsResult;
7326 bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
7327 bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
7328
7329 if (LHSIsOK) {
7330 if (RHSIsOK) {
7331 if (E->getOpcode() == BO_LOr)
7332 return Success(lhsResult || rhsResult, E, Result);
7333 else
7334 return Success(lhsResult && rhsResult, E, Result);
7335 }
7336 } else {
7337 if (RHSIsOK) {
7338 // We can't evaluate the LHS; however, sometimes the result
7339 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
7340 if (rhsResult == (E->getOpcode() == BO_LOr))
7341 return Success(rhsResult, E, Result);
7342 }
7343 }
7344
7345 return false;
7346 }
7347
7348 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
7349 E->getRHS()->getType()->isIntegralOrEnumerationType());
7350
7351 if (LHSResult.Failed || RHSResult.Failed)
7352 return false;
7353
7354 const APValue &LHSVal = LHSResult.Val;
7355 const APValue &RHSVal = RHSResult.Val;
7356
7357 // Handle cases like (unsigned long)&a + 4.
7358 if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
7359 Result = LHSVal;
7360 CharUnits AdditionalOffset =
7361 CharUnits::fromQuantity(RHSVal.getInt().getZExtValue());
7362 if (E->getOpcode() == BO_Add)
7363 Result.getLValueOffset() += AdditionalOffset;
7364 else
7365 Result.getLValueOffset() -= AdditionalOffset;
7366 return true;
7367 }
7368
7369 // Handle cases like 4 + (unsigned long)&a
7370 if (E->getOpcode() == BO_Add &&
7371 RHSVal.isLValue() && LHSVal.isInt()) {
7372 Result = RHSVal;
7373 Result.getLValueOffset() +=
7374 CharUnits::fromQuantity(LHSVal.getInt().getZExtValue());
7375 return true;
7376 }
7377
7378 if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
7379 // Handle (intptr_t)&&A - (intptr_t)&&B.
7380 if (!LHSVal.getLValueOffset().isZero() ||
7381 !RHSVal.getLValueOffset().isZero())
7382 return false;
7383 const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
7384 const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
7385 if (!LHSExpr || !RHSExpr)
7386 return false;
7387 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
7388 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
7389 if (!LHSAddrExpr || !RHSAddrExpr)
7390 return false;
7391 // Make sure both labels come from the same function.
7392 if (LHSAddrExpr->getLabel()->getDeclContext() !=
7393 RHSAddrExpr->getLabel()->getDeclContext())
7394 return false;
7395 Result = APValue(LHSAddrExpr, RHSAddrExpr);
7396 return true;
7397 }
7398
7399 // All the remaining cases expect both operands to be an integer
7400 if (!LHSVal.isInt() || !RHSVal.isInt())
7401 return Error(E);
7402
7403 // Set up the width and signedness manually, in case it can't be deduced
7404 // from the operation we're performing.
7405 // FIXME: Don't do this in the cases where we can deduce it.
7406 APSInt Value(Info.Ctx.getIntWidth(E->getType()),
7407 E->getType()->isUnsignedIntegerOrEnumerationType());
7408 if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
7409 RHSVal.getInt(), Value))
7410 return false;
7411 return Success(Value, E, Result);
7412 }
7413
process(EvalResult & Result)7414 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
7415 Job &job = Queue.back();
7416
7417 switch (job.Kind) {
7418 case Job::AnyExprKind: {
7419 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
7420 if (shouldEnqueue(Bop)) {
7421 job.Kind = Job::BinOpKind;
7422 enqueue(Bop->getLHS());
7423 return;
7424 }
7425 }
7426
7427 EvaluateExpr(job.E, Result);
7428 Queue.pop_back();
7429 return;
7430 }
7431
7432 case Job::BinOpKind: {
7433 const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
7434 bool SuppressRHSDiags = false;
7435 if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
7436 Queue.pop_back();
7437 return;
7438 }
7439 if (SuppressRHSDiags)
7440 job.startSpeculativeEval(Info);
7441 job.LHSResult.swap(Result);
7442 job.Kind = Job::BinOpVisitedLHSKind;
7443 enqueue(Bop->getRHS());
7444 return;
7445 }
7446
7447 case Job::BinOpVisitedLHSKind: {
7448 const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
7449 EvalResult RHS;
7450 RHS.swap(Result);
7451 Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
7452 Queue.pop_back();
7453 return;
7454 }
7455 }
7456
7457 llvm_unreachable("Invalid Job::Kind!");
7458 }
7459
7460 namespace {
7461 /// Used when we determine that we should fail, but can keep evaluating prior to
7462 /// noting that we had a failure.
7463 class DelayedNoteFailureRAII {
7464 EvalInfo &Info;
7465 bool NoteFailure;
7466
7467 public:
DelayedNoteFailureRAII(EvalInfo & Info,bool NoteFailure=true)7468 DelayedNoteFailureRAII(EvalInfo &Info, bool NoteFailure = true)
7469 : Info(Info), NoteFailure(NoteFailure) {}
~DelayedNoteFailureRAII()7470 ~DelayedNoteFailureRAII() {
7471 if (NoteFailure) {
7472 bool ContinueAfterFailure = Info.noteFailure();
7473 (void)ContinueAfterFailure;
7474 assert(ContinueAfterFailure &&
7475 "Shouldn't have kept evaluating on failure.");
7476 }
7477 }
7478 };
7479 }
7480
VisitBinaryOperator(const BinaryOperator * E)7481 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7482 // We don't call noteFailure immediately because the assignment happens after
7483 // we evaluate LHS and RHS.
7484 if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp())
7485 return Error(E);
7486
7487 DelayedNoteFailureRAII MaybeNoteFailureLater(Info, E->isAssignmentOp());
7488 if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
7489 return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
7490
7491 QualType LHSTy = E->getLHS()->getType();
7492 QualType RHSTy = E->getRHS()->getType();
7493
7494 if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
7495 ComplexValue LHS, RHS;
7496 bool LHSOK;
7497 if (E->isAssignmentOp()) {
7498 LValue LV;
7499 EvaluateLValue(E->getLHS(), LV, Info);
7500 LHSOK = false;
7501 } else if (LHSTy->isRealFloatingType()) {
7502 LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
7503 if (LHSOK) {
7504 LHS.makeComplexFloat();
7505 LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
7506 }
7507 } else {
7508 LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
7509 }
7510 if (!LHSOK && !Info.noteFailure())
7511 return false;
7512
7513 if (E->getRHS()->getType()->isRealFloatingType()) {
7514 if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
7515 return false;
7516 RHS.makeComplexFloat();
7517 RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
7518 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
7519 return false;
7520
7521 if (LHS.isComplexFloat()) {
7522 APFloat::cmpResult CR_r =
7523 LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
7524 APFloat::cmpResult CR_i =
7525 LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
7526
7527 if (E->getOpcode() == BO_EQ)
7528 return Success((CR_r == APFloat::cmpEqual &&
7529 CR_i == APFloat::cmpEqual), E);
7530 else {
7531 assert(E->getOpcode() == BO_NE &&
7532 "Invalid complex comparison.");
7533 return Success(((CR_r == APFloat::cmpGreaterThan ||
7534 CR_r == APFloat::cmpLessThan ||
7535 CR_r == APFloat::cmpUnordered) ||
7536 (CR_i == APFloat::cmpGreaterThan ||
7537 CR_i == APFloat::cmpLessThan ||
7538 CR_i == APFloat::cmpUnordered)), E);
7539 }
7540 } else {
7541 if (E->getOpcode() == BO_EQ)
7542 return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
7543 LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
7544 else {
7545 assert(E->getOpcode() == BO_NE &&
7546 "Invalid compex comparison.");
7547 return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
7548 LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
7549 }
7550 }
7551 }
7552
7553 if (LHSTy->isRealFloatingType() &&
7554 RHSTy->isRealFloatingType()) {
7555 APFloat RHS(0.0), LHS(0.0);
7556
7557 bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
7558 if (!LHSOK && !Info.noteFailure())
7559 return false;
7560
7561 if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
7562 return false;
7563
7564 APFloat::cmpResult CR = LHS.compare(RHS);
7565
7566 switch (E->getOpcode()) {
7567 default:
7568 llvm_unreachable("Invalid binary operator!");
7569 case BO_LT:
7570 return Success(CR == APFloat::cmpLessThan, E);
7571 case BO_GT:
7572 return Success(CR == APFloat::cmpGreaterThan, E);
7573 case BO_LE:
7574 return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
7575 case BO_GE:
7576 return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
7577 E);
7578 case BO_EQ:
7579 return Success(CR == APFloat::cmpEqual, E);
7580 case BO_NE:
7581 return Success(CR == APFloat::cmpGreaterThan
7582 || CR == APFloat::cmpLessThan
7583 || CR == APFloat::cmpUnordered, E);
7584 }
7585 }
7586
7587 if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
7588 if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
7589 LValue LHSValue, RHSValue;
7590
7591 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
7592 if (!LHSOK && !Info.noteFailure())
7593 return false;
7594
7595 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
7596 return false;
7597
7598 // Reject differing bases from the normal codepath; we special-case
7599 // comparisons to null.
7600 if (!HasSameBase(LHSValue, RHSValue)) {
7601 if (E->getOpcode() == BO_Sub) {
7602 // Handle &&A - &&B.
7603 if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
7604 return Error(E);
7605 const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
7606 const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
7607 if (!LHSExpr || !RHSExpr)
7608 return Error(E);
7609 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
7610 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
7611 if (!LHSAddrExpr || !RHSAddrExpr)
7612 return Error(E);
7613 // Make sure both labels come from the same function.
7614 if (LHSAddrExpr->getLabel()->getDeclContext() !=
7615 RHSAddrExpr->getLabel()->getDeclContext())
7616 return Error(E);
7617 return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
7618 }
7619 // Inequalities and subtractions between unrelated pointers have
7620 // unspecified or undefined behavior.
7621 if (!E->isEqualityOp())
7622 return Error(E);
7623 // A constant address may compare equal to the address of a symbol.
7624 // The one exception is that address of an object cannot compare equal
7625 // to a null pointer constant.
7626 if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
7627 (!RHSValue.Base && !RHSValue.Offset.isZero()))
7628 return Error(E);
7629 // It's implementation-defined whether distinct literals will have
7630 // distinct addresses. In clang, the result of such a comparison is
7631 // unspecified, so it is not a constant expression. However, we do know
7632 // that the address of a literal will be non-null.
7633 if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
7634 LHSValue.Base && RHSValue.Base)
7635 return Error(E);
7636 // We can't tell whether weak symbols will end up pointing to the same
7637 // object.
7638 if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
7639 return Error(E);
7640 // We can't compare the address of the start of one object with the
7641 // past-the-end address of another object, per C++ DR1652.
7642 if ((LHSValue.Base && LHSValue.Offset.isZero() &&
7643 isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
7644 (RHSValue.Base && RHSValue.Offset.isZero() &&
7645 isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
7646 return Error(E);
7647 // We can't tell whether an object is at the same address as another
7648 // zero sized object.
7649 if ((RHSValue.Base && isZeroSized(LHSValue)) ||
7650 (LHSValue.Base && isZeroSized(RHSValue)))
7651 return Error(E);
7652 // Pointers with different bases cannot represent the same object.
7653 // (Note that clang defaults to -fmerge-all-constants, which can
7654 // lead to inconsistent results for comparisons involving the address
7655 // of a constant; this generally doesn't matter in practice.)
7656 return Success(E->getOpcode() == BO_NE, E);
7657 }
7658
7659 const CharUnits &LHSOffset = LHSValue.getLValueOffset();
7660 const CharUnits &RHSOffset = RHSValue.getLValueOffset();
7661
7662 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
7663 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
7664
7665 if (E->getOpcode() == BO_Sub) {
7666 // C++11 [expr.add]p6:
7667 // Unless both pointers point to elements of the same array object, or
7668 // one past the last element of the array object, the behavior is
7669 // undefined.
7670 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
7671 !AreElementsOfSameArray(getType(LHSValue.Base),
7672 LHSDesignator, RHSDesignator))
7673 CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
7674
7675 QualType Type = E->getLHS()->getType();
7676 QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
7677
7678 CharUnits ElementSize;
7679 if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
7680 return false;
7681
7682 // As an extension, a type may have zero size (empty struct or union in
7683 // C, array of zero length). Pointer subtraction in such cases has
7684 // undefined behavior, so is not constant.
7685 if (ElementSize.isZero()) {
7686 Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
7687 << ElementType;
7688 return false;
7689 }
7690
7691 // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
7692 // and produce incorrect results when it overflows. Such behavior
7693 // appears to be non-conforming, but is common, so perhaps we should
7694 // assume the standard intended for such cases to be undefined behavior
7695 // and check for them.
7696
7697 // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
7698 // overflow in the final conversion to ptrdiff_t.
7699 APSInt LHS(
7700 llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
7701 APSInt RHS(
7702 llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
7703 APSInt ElemSize(
7704 llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
7705 APSInt TrueResult = (LHS - RHS) / ElemSize;
7706 APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
7707
7708 if (Result.extend(65) != TrueResult &&
7709 !HandleOverflow(Info, E, TrueResult, E->getType()))
7710 return false;
7711 return Success(Result, E);
7712 }
7713
7714 // C++11 [expr.rel]p3:
7715 // Pointers to void (after pointer conversions) can be compared, with a
7716 // result defined as follows: If both pointers represent the same
7717 // address or are both the null pointer value, the result is true if the
7718 // operator is <= or >= and false otherwise; otherwise the result is
7719 // unspecified.
7720 // We interpret this as applying to pointers to *cv* void.
7721 if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
7722 E->isRelationalOp())
7723 CCEDiag(E, diag::note_constexpr_void_comparison);
7724
7725 // C++11 [expr.rel]p2:
7726 // - If two pointers point to non-static data members of the same object,
7727 // or to subobjects or array elements fo such members, recursively, the
7728 // pointer to the later declared member compares greater provided the
7729 // two members have the same access control and provided their class is
7730 // not a union.
7731 // [...]
7732 // - Otherwise pointer comparisons are unspecified.
7733 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
7734 E->isRelationalOp()) {
7735 bool WasArrayIndex;
7736 unsigned Mismatch =
7737 FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
7738 RHSDesignator, WasArrayIndex);
7739 // At the point where the designators diverge, the comparison has a
7740 // specified value if:
7741 // - we are comparing array indices
7742 // - we are comparing fields of a union, or fields with the same access
7743 // Otherwise, the result is unspecified and thus the comparison is not a
7744 // constant expression.
7745 if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
7746 Mismatch < RHSDesignator.Entries.size()) {
7747 const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
7748 const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
7749 if (!LF && !RF)
7750 CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
7751 else if (!LF)
7752 CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
7753 << getAsBaseClass(LHSDesignator.Entries[Mismatch])
7754 << RF->getParent() << RF;
7755 else if (!RF)
7756 CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
7757 << getAsBaseClass(RHSDesignator.Entries[Mismatch])
7758 << LF->getParent() << LF;
7759 else if (!LF->getParent()->isUnion() &&
7760 LF->getAccess() != RF->getAccess())
7761 CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
7762 << LF << LF->getAccess() << RF << RF->getAccess()
7763 << LF->getParent();
7764 }
7765 }
7766
7767 // The comparison here must be unsigned, and performed with the same
7768 // width as the pointer.
7769 unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
7770 uint64_t CompareLHS = LHSOffset.getQuantity();
7771 uint64_t CompareRHS = RHSOffset.getQuantity();
7772 assert(PtrSize <= 64 && "Unexpected pointer width");
7773 uint64_t Mask = ~0ULL >> (64 - PtrSize);
7774 CompareLHS &= Mask;
7775 CompareRHS &= Mask;
7776
7777 // If there is a base and this is a relational operator, we can only
7778 // compare pointers within the object in question; otherwise, the result
7779 // depends on where the object is located in memory.
7780 if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
7781 QualType BaseTy = getType(LHSValue.Base);
7782 if (BaseTy->isIncompleteType())
7783 return Error(E);
7784 CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
7785 uint64_t OffsetLimit = Size.getQuantity();
7786 if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
7787 return Error(E);
7788 }
7789
7790 switch (E->getOpcode()) {
7791 default: llvm_unreachable("missing comparison operator");
7792 case BO_LT: return Success(CompareLHS < CompareRHS, E);
7793 case BO_GT: return Success(CompareLHS > CompareRHS, E);
7794 case BO_LE: return Success(CompareLHS <= CompareRHS, E);
7795 case BO_GE: return Success(CompareLHS >= CompareRHS, E);
7796 case BO_EQ: return Success(CompareLHS == CompareRHS, E);
7797 case BO_NE: return Success(CompareLHS != CompareRHS, E);
7798 }
7799 }
7800 }
7801
7802 if (LHSTy->isMemberPointerType()) {
7803 assert(E->isEqualityOp() && "unexpected member pointer operation");
7804 assert(RHSTy->isMemberPointerType() && "invalid comparison");
7805
7806 MemberPtr LHSValue, RHSValue;
7807
7808 bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
7809 if (!LHSOK && !Info.noteFailure())
7810 return false;
7811
7812 if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
7813 return false;
7814
7815 // C++11 [expr.eq]p2:
7816 // If both operands are null, they compare equal. Otherwise if only one is
7817 // null, they compare unequal.
7818 if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
7819 bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
7820 return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
7821 }
7822
7823 // Otherwise if either is a pointer to a virtual member function, the
7824 // result is unspecified.
7825 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
7826 if (MD->isVirtual())
7827 CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
7828 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
7829 if (MD->isVirtual())
7830 CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
7831
7832 // Otherwise they compare equal if and only if they would refer to the
7833 // same member of the same most derived object or the same subobject if
7834 // they were dereferenced with a hypothetical object of the associated
7835 // class type.
7836 bool Equal = LHSValue == RHSValue;
7837 return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
7838 }
7839
7840 if (LHSTy->isNullPtrType()) {
7841 assert(E->isComparisonOp() && "unexpected nullptr operation");
7842 assert(RHSTy->isNullPtrType() && "missing pointer conversion");
7843 // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
7844 // are compared, the result is true of the operator is <=, >= or ==, and
7845 // false otherwise.
7846 BinaryOperator::Opcode Opcode = E->getOpcode();
7847 return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
7848 }
7849
7850 assert((!LHSTy->isIntegralOrEnumerationType() ||
7851 !RHSTy->isIntegralOrEnumerationType()) &&
7852 "DataRecursiveIntBinOpEvaluator should have handled integral types");
7853 // We can't continue from here for non-integral types.
7854 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7855 }
7856
7857 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
7858 /// a result as the expression's type.
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)7859 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
7860 const UnaryExprOrTypeTraitExpr *E) {
7861 switch(E->getKind()) {
7862 case UETT_AlignOf: {
7863 if (E->isArgumentType())
7864 return Success(GetAlignOfType(Info, E->getArgumentType()), E);
7865 else
7866 return Success(GetAlignOfExpr(Info, E->getArgumentExpr()), E);
7867 }
7868
7869 case UETT_VecStep: {
7870 QualType Ty = E->getTypeOfArgument();
7871
7872 if (Ty->isVectorType()) {
7873 unsigned n = Ty->castAs<VectorType>()->getNumElements();
7874
7875 // The vec_step built-in functions that take a 3-component
7876 // vector return 4. (OpenCL 1.1 spec 6.11.12)
7877 if (n == 3)
7878 n = 4;
7879
7880 return Success(n, E);
7881 } else
7882 return Success(1, E);
7883 }
7884
7885 case UETT_SizeOf: {
7886 QualType SrcTy = E->getTypeOfArgument();
7887 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
7888 // the result is the size of the referenced type."
7889 if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
7890 SrcTy = Ref->getPointeeType();
7891
7892 CharUnits Sizeof;
7893 if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
7894 return false;
7895 return Success(Sizeof, E);
7896 }
7897 case UETT_OpenMPRequiredSimdAlign:
7898 assert(E->isArgumentType());
7899 return Success(
7900 Info.Ctx.toCharUnitsFromBits(
7901 Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
7902 .getQuantity(),
7903 E);
7904 }
7905
7906 llvm_unreachable("unknown expr/type trait");
7907 }
7908
VisitOffsetOfExpr(const OffsetOfExpr * OOE)7909 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
7910 CharUnits Result;
7911 unsigned n = OOE->getNumComponents();
7912 if (n == 0)
7913 return Error(OOE);
7914 QualType CurrentType = OOE->getTypeSourceInfo()->getType();
7915 for (unsigned i = 0; i != n; ++i) {
7916 OffsetOfNode ON = OOE->getComponent(i);
7917 switch (ON.getKind()) {
7918 case OffsetOfNode::Array: {
7919 const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
7920 APSInt IdxResult;
7921 if (!EvaluateInteger(Idx, IdxResult, Info))
7922 return false;
7923 const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
7924 if (!AT)
7925 return Error(OOE);
7926 CurrentType = AT->getElementType();
7927 CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
7928 Result += IdxResult.getSExtValue() * ElementSize;
7929 break;
7930 }
7931
7932 case OffsetOfNode::Field: {
7933 FieldDecl *MemberDecl = ON.getField();
7934 const RecordType *RT = CurrentType->getAs<RecordType>();
7935 if (!RT)
7936 return Error(OOE);
7937 RecordDecl *RD = RT->getDecl();
7938 if (RD->isInvalidDecl()) return false;
7939 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
7940 unsigned i = MemberDecl->getFieldIndex();
7941 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
7942 Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
7943 CurrentType = MemberDecl->getType().getNonReferenceType();
7944 break;
7945 }
7946
7947 case OffsetOfNode::Identifier:
7948 llvm_unreachable("dependent __builtin_offsetof");
7949
7950 case OffsetOfNode::Base: {
7951 CXXBaseSpecifier *BaseSpec = ON.getBase();
7952 if (BaseSpec->isVirtual())
7953 return Error(OOE);
7954
7955 // Find the layout of the class whose base we are looking into.
7956 const RecordType *RT = CurrentType->getAs<RecordType>();
7957 if (!RT)
7958 return Error(OOE);
7959 RecordDecl *RD = RT->getDecl();
7960 if (RD->isInvalidDecl()) return false;
7961 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
7962
7963 // Find the base class itself.
7964 CurrentType = BaseSpec->getType();
7965 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
7966 if (!BaseRT)
7967 return Error(OOE);
7968
7969 // Add the offset to the base.
7970 Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
7971 break;
7972 }
7973 }
7974 }
7975 return Success(Result, OOE);
7976 }
7977
VisitUnaryOperator(const UnaryOperator * E)7978 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7979 switch (E->getOpcode()) {
7980 default:
7981 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
7982 // See C99 6.6p3.
7983 return Error(E);
7984 case UO_Extension:
7985 // FIXME: Should extension allow i-c-e extension expressions in its scope?
7986 // If so, we could clear the diagnostic ID.
7987 return Visit(E->getSubExpr());
7988 case UO_Plus:
7989 // The result is just the value.
7990 return Visit(E->getSubExpr());
7991 case UO_Minus: {
7992 if (!Visit(E->getSubExpr()))
7993 return false;
7994 if (!Result.isInt()) return Error(E);
7995 const APSInt &Value = Result.getInt();
7996 if (Value.isSigned() && Value.isMinSignedValue() &&
7997 !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
7998 E->getType()))
7999 return false;
8000 return Success(-Value, E);
8001 }
8002 case UO_Not: {
8003 if (!Visit(E->getSubExpr()))
8004 return false;
8005 if (!Result.isInt()) return Error(E);
8006 return Success(~Result.getInt(), E);
8007 }
8008 case UO_LNot: {
8009 bool bres;
8010 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
8011 return false;
8012 return Success(!bres, E);
8013 }
8014 }
8015 }
8016
8017 /// HandleCast - This is used to evaluate implicit or explicit casts where the
8018 /// result type is integer.
VisitCastExpr(const CastExpr * E)8019 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
8020 const Expr *SubExpr = E->getSubExpr();
8021 QualType DestType = E->getType();
8022 QualType SrcType = SubExpr->getType();
8023
8024 switch (E->getCastKind()) {
8025 case CK_BaseToDerived:
8026 case CK_DerivedToBase:
8027 case CK_UncheckedDerivedToBase:
8028 case CK_Dynamic:
8029 case CK_ToUnion:
8030 case CK_ArrayToPointerDecay:
8031 case CK_FunctionToPointerDecay:
8032 case CK_NullToPointer:
8033 case CK_NullToMemberPointer:
8034 case CK_BaseToDerivedMemberPointer:
8035 case CK_DerivedToBaseMemberPointer:
8036 case CK_ReinterpretMemberPointer:
8037 case CK_ConstructorConversion:
8038 case CK_IntegralToPointer:
8039 case CK_ToVoid:
8040 case CK_VectorSplat:
8041 case CK_IntegralToFloating:
8042 case CK_FloatingCast:
8043 case CK_CPointerToObjCPointerCast:
8044 case CK_BlockPointerToObjCPointerCast:
8045 case CK_AnyPointerToBlockPointerCast:
8046 case CK_ObjCObjectLValueCast:
8047 case CK_FloatingRealToComplex:
8048 case CK_FloatingComplexToReal:
8049 case CK_FloatingComplexCast:
8050 case CK_FloatingComplexToIntegralComplex:
8051 case CK_IntegralRealToComplex:
8052 case CK_IntegralComplexCast:
8053 case CK_IntegralComplexToFloatingComplex:
8054 case CK_BuiltinFnToFnPtr:
8055 case CK_ZeroToOCLEvent:
8056 case CK_NonAtomicToAtomic:
8057 case CK_AddressSpaceConversion:
8058 llvm_unreachable("invalid cast kind for integral value");
8059
8060 case CK_BitCast:
8061 case CK_Dependent:
8062 case CK_LValueBitCast:
8063 case CK_ARCProduceObject:
8064 case CK_ARCConsumeObject:
8065 case CK_ARCReclaimReturnedObject:
8066 case CK_ARCExtendBlockObject:
8067 case CK_CopyAndAutoreleaseBlockObject:
8068 return Error(E);
8069
8070 case CK_UserDefinedConversion:
8071 case CK_LValueToRValue:
8072 case CK_AtomicToNonAtomic:
8073 case CK_NoOp:
8074 return ExprEvaluatorBaseTy::VisitCastExpr(E);
8075
8076 case CK_MemberPointerToBoolean:
8077 case CK_PointerToBoolean:
8078 case CK_IntegralToBoolean:
8079 case CK_FloatingToBoolean:
8080 case CK_BooleanToSignedIntegral:
8081 case CK_FloatingComplexToBoolean:
8082 case CK_IntegralComplexToBoolean: {
8083 bool BoolResult;
8084 if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
8085 return false;
8086 uint64_t IntResult = BoolResult;
8087 if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
8088 IntResult = (uint64_t)-1;
8089 return Success(IntResult, E);
8090 }
8091
8092 case CK_IntegralCast: {
8093 if (!Visit(SubExpr))
8094 return false;
8095
8096 if (!Result.isInt()) {
8097 // Allow casts of address-of-label differences if they are no-ops
8098 // or narrowing. (The narrowing case isn't actually guaranteed to
8099 // be constant-evaluatable except in some narrow cases which are hard
8100 // to detect here. We let it through on the assumption the user knows
8101 // what they are doing.)
8102 if (Result.isAddrLabelDiff())
8103 return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
8104 // Only allow casts of lvalues if they are lossless.
8105 return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
8106 }
8107
8108 return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
8109 Result.getInt()), E);
8110 }
8111
8112 case CK_PointerToIntegral: {
8113 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8114
8115 LValue LV;
8116 if (!EvaluatePointer(SubExpr, LV, Info))
8117 return false;
8118
8119 if (LV.getLValueBase()) {
8120 // Only allow based lvalue casts if they are lossless.
8121 // FIXME: Allow a larger integer size than the pointer size, and allow
8122 // narrowing back down to pointer width in subsequent integral casts.
8123 // FIXME: Check integer type's active bits, not its type size.
8124 if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
8125 return Error(E);
8126
8127 LV.Designator.setInvalid();
8128 LV.moveInto(Result);
8129 return true;
8130 }
8131
8132 APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
8133 SrcType);
8134 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
8135 }
8136
8137 case CK_IntegralComplexToReal: {
8138 ComplexValue C;
8139 if (!EvaluateComplex(SubExpr, C, Info))
8140 return false;
8141 return Success(C.getComplexIntReal(), E);
8142 }
8143
8144 case CK_FloatingToIntegral: {
8145 APFloat F(0.0);
8146 if (!EvaluateFloat(SubExpr, F, Info))
8147 return false;
8148
8149 APSInt Value;
8150 if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
8151 return false;
8152 return Success(Value, E);
8153 }
8154 }
8155
8156 llvm_unreachable("unknown cast resulting in integral value");
8157 }
8158
VisitUnaryReal(const UnaryOperator * E)8159 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
8160 if (E->getSubExpr()->getType()->isAnyComplexType()) {
8161 ComplexValue LV;
8162 if (!EvaluateComplex(E->getSubExpr(), LV, Info))
8163 return false;
8164 if (!LV.isComplexInt())
8165 return Error(E);
8166 return Success(LV.getComplexIntReal(), E);
8167 }
8168
8169 return Visit(E->getSubExpr());
8170 }
8171
VisitUnaryImag(const UnaryOperator * E)8172 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8173 if (E->getSubExpr()->getType()->isComplexIntegerType()) {
8174 ComplexValue LV;
8175 if (!EvaluateComplex(E->getSubExpr(), LV, Info))
8176 return false;
8177 if (!LV.isComplexInt())
8178 return Error(E);
8179 return Success(LV.getComplexIntImag(), E);
8180 }
8181
8182 VisitIgnoredValue(E->getSubExpr());
8183 return Success(0, E);
8184 }
8185
VisitSizeOfPackExpr(const SizeOfPackExpr * E)8186 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
8187 return Success(E->getPackLength(), E);
8188 }
8189
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)8190 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
8191 return Success(E->getValue(), E);
8192 }
8193
8194 //===----------------------------------------------------------------------===//
8195 // Float Evaluation
8196 //===----------------------------------------------------------------------===//
8197
8198 namespace {
8199 class FloatExprEvaluator
8200 : public ExprEvaluatorBase<FloatExprEvaluator> {
8201 APFloat &Result;
8202 public:
FloatExprEvaluator(EvalInfo & info,APFloat & result)8203 FloatExprEvaluator(EvalInfo &info, APFloat &result)
8204 : ExprEvaluatorBaseTy(info), Result(result) {}
8205
Success(const APValue & V,const Expr * e)8206 bool Success(const APValue &V, const Expr *e) {
8207 Result = V.getFloat();
8208 return true;
8209 }
8210
ZeroInitialization(const Expr * E)8211 bool ZeroInitialization(const Expr *E) {
8212 Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
8213 return true;
8214 }
8215
8216 bool VisitCallExpr(const CallExpr *E);
8217
8218 bool VisitUnaryOperator(const UnaryOperator *E);
8219 bool VisitBinaryOperator(const BinaryOperator *E);
8220 bool VisitFloatingLiteral(const FloatingLiteral *E);
8221 bool VisitCastExpr(const CastExpr *E);
8222
8223 bool VisitUnaryReal(const UnaryOperator *E);
8224 bool VisitUnaryImag(const UnaryOperator *E);
8225
8226 // FIXME: Missing: array subscript of vector, member of vector
8227 };
8228 } // end anonymous namespace
8229
EvaluateFloat(const Expr * E,APFloat & Result,EvalInfo & Info)8230 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
8231 assert(E->isRValue() && E->getType()->isRealFloatingType());
8232 return FloatExprEvaluator(Info, Result).Visit(E);
8233 }
8234
TryEvaluateBuiltinNaN(const ASTContext & Context,QualType ResultTy,const Expr * Arg,bool SNaN,llvm::APFloat & Result)8235 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
8236 QualType ResultTy,
8237 const Expr *Arg,
8238 bool SNaN,
8239 llvm::APFloat &Result) {
8240 const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
8241 if (!S) return false;
8242
8243 const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
8244
8245 llvm::APInt fill;
8246
8247 // Treat empty strings as if they were zero.
8248 if (S->getString().empty())
8249 fill = llvm::APInt(32, 0);
8250 else if (S->getString().getAsInteger(0, fill))
8251 return false;
8252
8253 if (Context.getTargetInfo().isNan2008()) {
8254 if (SNaN)
8255 Result = llvm::APFloat::getSNaN(Sem, false, &fill);
8256 else
8257 Result = llvm::APFloat::getQNaN(Sem, false, &fill);
8258 } else {
8259 // Prior to IEEE 754-2008, architectures were allowed to choose whether
8260 // the first bit of their significand was set for qNaN or sNaN. MIPS chose
8261 // a different encoding to what became a standard in 2008, and for pre-
8262 // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
8263 // sNaN. This is now known as "legacy NaN" encoding.
8264 if (SNaN)
8265 Result = llvm::APFloat::getQNaN(Sem, false, &fill);
8266 else
8267 Result = llvm::APFloat::getSNaN(Sem, false, &fill);
8268 }
8269
8270 return true;
8271 }
8272
VisitCallExpr(const CallExpr * E)8273 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
8274 switch (E->getBuiltinCallee()) {
8275 default:
8276 return ExprEvaluatorBaseTy::VisitCallExpr(E);
8277
8278 case Builtin::BI__builtin_huge_val:
8279 case Builtin::BI__builtin_huge_valf:
8280 case Builtin::BI__builtin_huge_vall:
8281 case Builtin::BI__builtin_inf:
8282 case Builtin::BI__builtin_inff:
8283 case Builtin::BI__builtin_infl: {
8284 const llvm::fltSemantics &Sem =
8285 Info.Ctx.getFloatTypeSemantics(E->getType());
8286 Result = llvm::APFloat::getInf(Sem);
8287 return true;
8288 }
8289
8290 case Builtin::BI__builtin_nans:
8291 case Builtin::BI__builtin_nansf:
8292 case Builtin::BI__builtin_nansl:
8293 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
8294 true, Result))
8295 return Error(E);
8296 return true;
8297
8298 case Builtin::BI__builtin_nan:
8299 case Builtin::BI__builtin_nanf:
8300 case Builtin::BI__builtin_nanl:
8301 // If this is __builtin_nan() turn this into a nan, otherwise we
8302 // can't constant fold it.
8303 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
8304 false, Result))
8305 return Error(E);
8306 return true;
8307
8308 case Builtin::BI__builtin_fabs:
8309 case Builtin::BI__builtin_fabsf:
8310 case Builtin::BI__builtin_fabsl:
8311 if (!EvaluateFloat(E->getArg(0), Result, Info))
8312 return false;
8313
8314 if (Result.isNegative())
8315 Result.changeSign();
8316 return true;
8317
8318 // FIXME: Builtin::BI__builtin_powi
8319 // FIXME: Builtin::BI__builtin_powif
8320 // FIXME: Builtin::BI__builtin_powil
8321
8322 case Builtin::BI__builtin_copysign:
8323 case Builtin::BI__builtin_copysignf:
8324 case Builtin::BI__builtin_copysignl: {
8325 APFloat RHS(0.);
8326 if (!EvaluateFloat(E->getArg(0), Result, Info) ||
8327 !EvaluateFloat(E->getArg(1), RHS, Info))
8328 return false;
8329 Result.copySign(RHS);
8330 return true;
8331 }
8332 }
8333 }
8334
VisitUnaryReal(const UnaryOperator * E)8335 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
8336 if (E->getSubExpr()->getType()->isAnyComplexType()) {
8337 ComplexValue CV;
8338 if (!EvaluateComplex(E->getSubExpr(), CV, Info))
8339 return false;
8340 Result = CV.FloatReal;
8341 return true;
8342 }
8343
8344 return Visit(E->getSubExpr());
8345 }
8346
VisitUnaryImag(const UnaryOperator * E)8347 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8348 if (E->getSubExpr()->getType()->isAnyComplexType()) {
8349 ComplexValue CV;
8350 if (!EvaluateComplex(E->getSubExpr(), CV, Info))
8351 return false;
8352 Result = CV.FloatImag;
8353 return true;
8354 }
8355
8356 VisitIgnoredValue(E->getSubExpr());
8357 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
8358 Result = llvm::APFloat::getZero(Sem);
8359 return true;
8360 }
8361
VisitUnaryOperator(const UnaryOperator * E)8362 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
8363 switch (E->getOpcode()) {
8364 default: return Error(E);
8365 case UO_Plus:
8366 return EvaluateFloat(E->getSubExpr(), Result, Info);
8367 case UO_Minus:
8368 if (!EvaluateFloat(E->getSubExpr(), Result, Info))
8369 return false;
8370 Result.changeSign();
8371 return true;
8372 }
8373 }
8374
VisitBinaryOperator(const BinaryOperator * E)8375 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
8376 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
8377 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8378
8379 APFloat RHS(0.0);
8380 bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
8381 if (!LHSOK && !Info.noteFailure())
8382 return false;
8383 return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
8384 handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
8385 }
8386
VisitFloatingLiteral(const FloatingLiteral * E)8387 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
8388 Result = E->getValue();
8389 return true;
8390 }
8391
VisitCastExpr(const CastExpr * E)8392 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
8393 const Expr* SubExpr = E->getSubExpr();
8394
8395 switch (E->getCastKind()) {
8396 default:
8397 return ExprEvaluatorBaseTy::VisitCastExpr(E);
8398
8399 case CK_IntegralToFloating: {
8400 APSInt IntResult;
8401 return EvaluateInteger(SubExpr, IntResult, Info) &&
8402 HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
8403 E->getType(), Result);
8404 }
8405
8406 case CK_FloatingCast: {
8407 if (!Visit(SubExpr))
8408 return false;
8409 return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
8410 Result);
8411 }
8412
8413 case CK_FloatingComplexToReal: {
8414 ComplexValue V;
8415 if (!EvaluateComplex(SubExpr, V, Info))
8416 return false;
8417 Result = V.getComplexFloatReal();
8418 return true;
8419 }
8420 }
8421 }
8422
8423 //===----------------------------------------------------------------------===//
8424 // Complex Evaluation (for float and integer)
8425 //===----------------------------------------------------------------------===//
8426
8427 namespace {
8428 class ComplexExprEvaluator
8429 : public ExprEvaluatorBase<ComplexExprEvaluator> {
8430 ComplexValue &Result;
8431
8432 public:
ComplexExprEvaluator(EvalInfo & info,ComplexValue & Result)8433 ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
8434 : ExprEvaluatorBaseTy(info), Result(Result) {}
8435
Success(const APValue & V,const Expr * e)8436 bool Success(const APValue &V, const Expr *e) {
8437 Result.setFrom(V);
8438 return true;
8439 }
8440
8441 bool ZeroInitialization(const Expr *E);
8442
8443 //===--------------------------------------------------------------------===//
8444 // Visitor Methods
8445 //===--------------------------------------------------------------------===//
8446
8447 bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
8448 bool VisitCastExpr(const CastExpr *E);
8449 bool VisitBinaryOperator(const BinaryOperator *E);
8450 bool VisitUnaryOperator(const UnaryOperator *E);
8451 bool VisitInitListExpr(const InitListExpr *E);
8452 };
8453 } // end anonymous namespace
8454
EvaluateComplex(const Expr * E,ComplexValue & Result,EvalInfo & Info)8455 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
8456 EvalInfo &Info) {
8457 assert(E->isRValue() && E->getType()->isAnyComplexType());
8458 return ComplexExprEvaluator(Info, Result).Visit(E);
8459 }
8460
ZeroInitialization(const Expr * E)8461 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
8462 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
8463 if (ElemTy->isRealFloatingType()) {
8464 Result.makeComplexFloat();
8465 APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
8466 Result.FloatReal = Zero;
8467 Result.FloatImag = Zero;
8468 } else {
8469 Result.makeComplexInt();
8470 APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
8471 Result.IntReal = Zero;
8472 Result.IntImag = Zero;
8473 }
8474 return true;
8475 }
8476
VisitImaginaryLiteral(const ImaginaryLiteral * E)8477 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
8478 const Expr* SubExpr = E->getSubExpr();
8479
8480 if (SubExpr->getType()->isRealFloatingType()) {
8481 Result.makeComplexFloat();
8482 APFloat &Imag = Result.FloatImag;
8483 if (!EvaluateFloat(SubExpr, Imag, Info))
8484 return false;
8485
8486 Result.FloatReal = APFloat(Imag.getSemantics());
8487 return true;
8488 } else {
8489 assert(SubExpr->getType()->isIntegerType() &&
8490 "Unexpected imaginary literal.");
8491
8492 Result.makeComplexInt();
8493 APSInt &Imag = Result.IntImag;
8494 if (!EvaluateInteger(SubExpr, Imag, Info))
8495 return false;
8496
8497 Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
8498 return true;
8499 }
8500 }
8501
VisitCastExpr(const CastExpr * E)8502 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
8503
8504 switch (E->getCastKind()) {
8505 case CK_BitCast:
8506 case CK_BaseToDerived:
8507 case CK_DerivedToBase:
8508 case CK_UncheckedDerivedToBase:
8509 case CK_Dynamic:
8510 case CK_ToUnion:
8511 case CK_ArrayToPointerDecay:
8512 case CK_FunctionToPointerDecay:
8513 case CK_NullToPointer:
8514 case CK_NullToMemberPointer:
8515 case CK_BaseToDerivedMemberPointer:
8516 case CK_DerivedToBaseMemberPointer:
8517 case CK_MemberPointerToBoolean:
8518 case CK_ReinterpretMemberPointer:
8519 case CK_ConstructorConversion:
8520 case CK_IntegralToPointer:
8521 case CK_PointerToIntegral:
8522 case CK_PointerToBoolean:
8523 case CK_ToVoid:
8524 case CK_VectorSplat:
8525 case CK_IntegralCast:
8526 case CK_BooleanToSignedIntegral:
8527 case CK_IntegralToBoolean:
8528 case CK_IntegralToFloating:
8529 case CK_FloatingToIntegral:
8530 case CK_FloatingToBoolean:
8531 case CK_FloatingCast:
8532 case CK_CPointerToObjCPointerCast:
8533 case CK_BlockPointerToObjCPointerCast:
8534 case CK_AnyPointerToBlockPointerCast:
8535 case CK_ObjCObjectLValueCast:
8536 case CK_FloatingComplexToReal:
8537 case CK_FloatingComplexToBoolean:
8538 case CK_IntegralComplexToReal:
8539 case CK_IntegralComplexToBoolean:
8540 case CK_ARCProduceObject:
8541 case CK_ARCConsumeObject:
8542 case CK_ARCReclaimReturnedObject:
8543 case CK_ARCExtendBlockObject:
8544 case CK_CopyAndAutoreleaseBlockObject:
8545 case CK_BuiltinFnToFnPtr:
8546 case CK_ZeroToOCLEvent:
8547 case CK_NonAtomicToAtomic:
8548 case CK_AddressSpaceConversion:
8549 llvm_unreachable("invalid cast kind for complex value");
8550
8551 case CK_LValueToRValue:
8552 case CK_AtomicToNonAtomic:
8553 case CK_NoOp:
8554 return ExprEvaluatorBaseTy::VisitCastExpr(E);
8555
8556 case CK_Dependent:
8557 case CK_LValueBitCast:
8558 case CK_UserDefinedConversion:
8559 return Error(E);
8560
8561 case CK_FloatingRealToComplex: {
8562 APFloat &Real = Result.FloatReal;
8563 if (!EvaluateFloat(E->getSubExpr(), Real, Info))
8564 return false;
8565
8566 Result.makeComplexFloat();
8567 Result.FloatImag = APFloat(Real.getSemantics());
8568 return true;
8569 }
8570
8571 case CK_FloatingComplexCast: {
8572 if (!Visit(E->getSubExpr()))
8573 return false;
8574
8575 QualType To = E->getType()->getAs<ComplexType>()->getElementType();
8576 QualType From
8577 = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
8578
8579 return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
8580 HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
8581 }
8582
8583 case CK_FloatingComplexToIntegralComplex: {
8584 if (!Visit(E->getSubExpr()))
8585 return false;
8586
8587 QualType To = E->getType()->getAs<ComplexType>()->getElementType();
8588 QualType From
8589 = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
8590 Result.makeComplexInt();
8591 return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
8592 To, Result.IntReal) &&
8593 HandleFloatToIntCast(Info, E, From, Result.FloatImag,
8594 To, Result.IntImag);
8595 }
8596
8597 case CK_IntegralRealToComplex: {
8598 APSInt &Real = Result.IntReal;
8599 if (!EvaluateInteger(E->getSubExpr(), Real, Info))
8600 return false;
8601
8602 Result.makeComplexInt();
8603 Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
8604 return true;
8605 }
8606
8607 case CK_IntegralComplexCast: {
8608 if (!Visit(E->getSubExpr()))
8609 return false;
8610
8611 QualType To = E->getType()->getAs<ComplexType>()->getElementType();
8612 QualType From
8613 = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
8614
8615 Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
8616 Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
8617 return true;
8618 }
8619
8620 case CK_IntegralComplexToFloatingComplex: {
8621 if (!Visit(E->getSubExpr()))
8622 return false;
8623
8624 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
8625 QualType From
8626 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
8627 Result.makeComplexFloat();
8628 return HandleIntToFloatCast(Info, E, From, Result.IntReal,
8629 To, Result.FloatReal) &&
8630 HandleIntToFloatCast(Info, E, From, Result.IntImag,
8631 To, Result.FloatImag);
8632 }
8633 }
8634
8635 llvm_unreachable("unknown cast resulting in complex value");
8636 }
8637
VisitBinaryOperator(const BinaryOperator * E)8638 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
8639 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
8640 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8641
8642 // Track whether the LHS or RHS is real at the type system level. When this is
8643 // the case we can simplify our evaluation strategy.
8644 bool LHSReal = false, RHSReal = false;
8645
8646 bool LHSOK;
8647 if (E->getLHS()->getType()->isRealFloatingType()) {
8648 LHSReal = true;
8649 APFloat &Real = Result.FloatReal;
8650 LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
8651 if (LHSOK) {
8652 Result.makeComplexFloat();
8653 Result.FloatImag = APFloat(Real.getSemantics());
8654 }
8655 } else {
8656 LHSOK = Visit(E->getLHS());
8657 }
8658 if (!LHSOK && !Info.noteFailure())
8659 return false;
8660
8661 ComplexValue RHS;
8662 if (E->getRHS()->getType()->isRealFloatingType()) {
8663 RHSReal = true;
8664 APFloat &Real = RHS.FloatReal;
8665 if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
8666 return false;
8667 RHS.makeComplexFloat();
8668 RHS.FloatImag = APFloat(Real.getSemantics());
8669 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
8670 return false;
8671
8672 assert(!(LHSReal && RHSReal) &&
8673 "Cannot have both operands of a complex operation be real.");
8674 switch (E->getOpcode()) {
8675 default: return Error(E);
8676 case BO_Add:
8677 if (Result.isComplexFloat()) {
8678 Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
8679 APFloat::rmNearestTiesToEven);
8680 if (LHSReal)
8681 Result.getComplexFloatImag() = RHS.getComplexFloatImag();
8682 else if (!RHSReal)
8683 Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
8684 APFloat::rmNearestTiesToEven);
8685 } else {
8686 Result.getComplexIntReal() += RHS.getComplexIntReal();
8687 Result.getComplexIntImag() += RHS.getComplexIntImag();
8688 }
8689 break;
8690 case BO_Sub:
8691 if (Result.isComplexFloat()) {
8692 Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
8693 APFloat::rmNearestTiesToEven);
8694 if (LHSReal) {
8695 Result.getComplexFloatImag() = RHS.getComplexFloatImag();
8696 Result.getComplexFloatImag().changeSign();
8697 } else if (!RHSReal) {
8698 Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
8699 APFloat::rmNearestTiesToEven);
8700 }
8701 } else {
8702 Result.getComplexIntReal() -= RHS.getComplexIntReal();
8703 Result.getComplexIntImag() -= RHS.getComplexIntImag();
8704 }
8705 break;
8706 case BO_Mul:
8707 if (Result.isComplexFloat()) {
8708 // This is an implementation of complex multiplication according to the
8709 // constraints laid out in C11 Annex G. The implemantion uses the
8710 // following naming scheme:
8711 // (a + ib) * (c + id)
8712 ComplexValue LHS = Result;
8713 APFloat &A = LHS.getComplexFloatReal();
8714 APFloat &B = LHS.getComplexFloatImag();
8715 APFloat &C = RHS.getComplexFloatReal();
8716 APFloat &D = RHS.getComplexFloatImag();
8717 APFloat &ResR = Result.getComplexFloatReal();
8718 APFloat &ResI = Result.getComplexFloatImag();
8719 if (LHSReal) {
8720 assert(!RHSReal && "Cannot have two real operands for a complex op!");
8721 ResR = A * C;
8722 ResI = A * D;
8723 } else if (RHSReal) {
8724 ResR = C * A;
8725 ResI = C * B;
8726 } else {
8727 // In the fully general case, we need to handle NaNs and infinities
8728 // robustly.
8729 APFloat AC = A * C;
8730 APFloat BD = B * D;
8731 APFloat AD = A * D;
8732 APFloat BC = B * C;
8733 ResR = AC - BD;
8734 ResI = AD + BC;
8735 if (ResR.isNaN() && ResI.isNaN()) {
8736 bool Recalc = false;
8737 if (A.isInfinity() || B.isInfinity()) {
8738 A = APFloat::copySign(
8739 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
8740 B = APFloat::copySign(
8741 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
8742 if (C.isNaN())
8743 C = APFloat::copySign(APFloat(C.getSemantics()), C);
8744 if (D.isNaN())
8745 D = APFloat::copySign(APFloat(D.getSemantics()), D);
8746 Recalc = true;
8747 }
8748 if (C.isInfinity() || D.isInfinity()) {
8749 C = APFloat::copySign(
8750 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
8751 D = APFloat::copySign(
8752 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
8753 if (A.isNaN())
8754 A = APFloat::copySign(APFloat(A.getSemantics()), A);
8755 if (B.isNaN())
8756 B = APFloat::copySign(APFloat(B.getSemantics()), B);
8757 Recalc = true;
8758 }
8759 if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
8760 AD.isInfinity() || BC.isInfinity())) {
8761 if (A.isNaN())
8762 A = APFloat::copySign(APFloat(A.getSemantics()), A);
8763 if (B.isNaN())
8764 B = APFloat::copySign(APFloat(B.getSemantics()), B);
8765 if (C.isNaN())
8766 C = APFloat::copySign(APFloat(C.getSemantics()), C);
8767 if (D.isNaN())
8768 D = APFloat::copySign(APFloat(D.getSemantics()), D);
8769 Recalc = true;
8770 }
8771 if (Recalc) {
8772 ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
8773 ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
8774 }
8775 }
8776 }
8777 } else {
8778 ComplexValue LHS = Result;
8779 Result.getComplexIntReal() =
8780 (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
8781 LHS.getComplexIntImag() * RHS.getComplexIntImag());
8782 Result.getComplexIntImag() =
8783 (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
8784 LHS.getComplexIntImag() * RHS.getComplexIntReal());
8785 }
8786 break;
8787 case BO_Div:
8788 if (Result.isComplexFloat()) {
8789 // This is an implementation of complex division according to the
8790 // constraints laid out in C11 Annex G. The implemantion uses the
8791 // following naming scheme:
8792 // (a + ib) / (c + id)
8793 ComplexValue LHS = Result;
8794 APFloat &A = LHS.getComplexFloatReal();
8795 APFloat &B = LHS.getComplexFloatImag();
8796 APFloat &C = RHS.getComplexFloatReal();
8797 APFloat &D = RHS.getComplexFloatImag();
8798 APFloat &ResR = Result.getComplexFloatReal();
8799 APFloat &ResI = Result.getComplexFloatImag();
8800 if (RHSReal) {
8801 ResR = A / C;
8802 ResI = B / C;
8803 } else {
8804 if (LHSReal) {
8805 // No real optimizations we can do here, stub out with zero.
8806 B = APFloat::getZero(A.getSemantics());
8807 }
8808 int DenomLogB = 0;
8809 APFloat MaxCD = maxnum(abs(C), abs(D));
8810 if (MaxCD.isFinite()) {
8811 DenomLogB = ilogb(MaxCD);
8812 C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
8813 D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
8814 }
8815 APFloat Denom = C * C + D * D;
8816 ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
8817 APFloat::rmNearestTiesToEven);
8818 ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
8819 APFloat::rmNearestTiesToEven);
8820 if (ResR.isNaN() && ResI.isNaN()) {
8821 if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
8822 ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
8823 ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
8824 } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
8825 D.isFinite()) {
8826 A = APFloat::copySign(
8827 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
8828 B = APFloat::copySign(
8829 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
8830 ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
8831 ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
8832 } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
8833 C = APFloat::copySign(
8834 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
8835 D = APFloat::copySign(
8836 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
8837 ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
8838 ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
8839 }
8840 }
8841 }
8842 } else {
8843 if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
8844 return Error(E, diag::note_expr_divide_by_zero);
8845
8846 ComplexValue LHS = Result;
8847 APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
8848 RHS.getComplexIntImag() * RHS.getComplexIntImag();
8849 Result.getComplexIntReal() =
8850 (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
8851 LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
8852 Result.getComplexIntImag() =
8853 (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
8854 LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
8855 }
8856 break;
8857 }
8858
8859 return true;
8860 }
8861
VisitUnaryOperator(const UnaryOperator * E)8862 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
8863 // Get the operand value into 'Result'.
8864 if (!Visit(E->getSubExpr()))
8865 return false;
8866
8867 switch (E->getOpcode()) {
8868 default:
8869 return Error(E);
8870 case UO_Extension:
8871 return true;
8872 case UO_Plus:
8873 // The result is always just the subexpr.
8874 return true;
8875 case UO_Minus:
8876 if (Result.isComplexFloat()) {
8877 Result.getComplexFloatReal().changeSign();
8878 Result.getComplexFloatImag().changeSign();
8879 }
8880 else {
8881 Result.getComplexIntReal() = -Result.getComplexIntReal();
8882 Result.getComplexIntImag() = -Result.getComplexIntImag();
8883 }
8884 return true;
8885 case UO_Not:
8886 if (Result.isComplexFloat())
8887 Result.getComplexFloatImag().changeSign();
8888 else
8889 Result.getComplexIntImag() = -Result.getComplexIntImag();
8890 return true;
8891 }
8892 }
8893
VisitInitListExpr(const InitListExpr * E)8894 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
8895 if (E->getNumInits() == 2) {
8896 if (E->getType()->isComplexType()) {
8897 Result.makeComplexFloat();
8898 if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
8899 return false;
8900 if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
8901 return false;
8902 } else {
8903 Result.makeComplexInt();
8904 if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
8905 return false;
8906 if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
8907 return false;
8908 }
8909 return true;
8910 }
8911 return ExprEvaluatorBaseTy::VisitInitListExpr(E);
8912 }
8913
8914 //===----------------------------------------------------------------------===//
8915 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
8916 // implicit conversion.
8917 //===----------------------------------------------------------------------===//
8918
8919 namespace {
8920 class AtomicExprEvaluator :
8921 public ExprEvaluatorBase<AtomicExprEvaluator> {
8922 APValue &Result;
8923 public:
AtomicExprEvaluator(EvalInfo & Info,APValue & Result)8924 AtomicExprEvaluator(EvalInfo &Info, APValue &Result)
8925 : ExprEvaluatorBaseTy(Info), Result(Result) {}
8926
Success(const APValue & V,const Expr * E)8927 bool Success(const APValue &V, const Expr *E) {
8928 Result = V;
8929 return true;
8930 }
8931
ZeroInitialization(const Expr * E)8932 bool ZeroInitialization(const Expr *E) {
8933 ImplicitValueInitExpr VIE(
8934 E->getType()->castAs<AtomicType>()->getValueType());
8935 return Evaluate(Result, Info, &VIE);
8936 }
8937
VisitCastExpr(const CastExpr * E)8938 bool VisitCastExpr(const CastExpr *E) {
8939 switch (E->getCastKind()) {
8940 default:
8941 return ExprEvaluatorBaseTy::VisitCastExpr(E);
8942 case CK_NonAtomicToAtomic:
8943 return Evaluate(Result, Info, E->getSubExpr());
8944 }
8945 }
8946 };
8947 } // end anonymous namespace
8948
EvaluateAtomic(const Expr * E,APValue & Result,EvalInfo & Info)8949 static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info) {
8950 assert(E->isRValue() && E->getType()->isAtomicType());
8951 return AtomicExprEvaluator(Info, Result).Visit(E);
8952 }
8953
8954 //===----------------------------------------------------------------------===//
8955 // Void expression evaluation, primarily for a cast to void on the LHS of a
8956 // comma operator
8957 //===----------------------------------------------------------------------===//
8958
8959 namespace {
8960 class VoidExprEvaluator
8961 : public ExprEvaluatorBase<VoidExprEvaluator> {
8962 public:
VoidExprEvaluator(EvalInfo & Info)8963 VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
8964
Success(const APValue & V,const Expr * e)8965 bool Success(const APValue &V, const Expr *e) { return true; }
8966
VisitCastExpr(const CastExpr * E)8967 bool VisitCastExpr(const CastExpr *E) {
8968 switch (E->getCastKind()) {
8969 default:
8970 return ExprEvaluatorBaseTy::VisitCastExpr(E);
8971 case CK_ToVoid:
8972 VisitIgnoredValue(E->getSubExpr());
8973 return true;
8974 }
8975 }
8976
VisitCallExpr(const CallExpr * E)8977 bool VisitCallExpr(const CallExpr *E) {
8978 switch (E->getBuiltinCallee()) {
8979 default:
8980 return ExprEvaluatorBaseTy::VisitCallExpr(E);
8981 case Builtin::BI__assume:
8982 case Builtin::BI__builtin_assume:
8983 // The argument is not evaluated!
8984 return true;
8985 }
8986 }
8987 };
8988 } // end anonymous namespace
8989
EvaluateVoid(const Expr * E,EvalInfo & Info)8990 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
8991 assert(E->isRValue() && E->getType()->isVoidType());
8992 return VoidExprEvaluator(Info).Visit(E);
8993 }
8994
8995 //===----------------------------------------------------------------------===//
8996 // Top level Expr::EvaluateAsRValue method.
8997 //===----------------------------------------------------------------------===//
8998
Evaluate(APValue & Result,EvalInfo & Info,const Expr * E)8999 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
9000 // In C, function designators are not lvalues, but we evaluate them as if they
9001 // are.
9002 QualType T = E->getType();
9003 if (E->isGLValue() || T->isFunctionType()) {
9004 LValue LV;
9005 if (!EvaluateLValue(E, LV, Info))
9006 return false;
9007 LV.moveInto(Result);
9008 } else if (T->isVectorType()) {
9009 if (!EvaluateVector(E, Result, Info))
9010 return false;
9011 } else if (T->isIntegralOrEnumerationType()) {
9012 if (!IntExprEvaluator(Info, Result).Visit(E))
9013 return false;
9014 } else if (T->hasPointerRepresentation()) {
9015 LValue LV;
9016 if (!EvaluatePointer(E, LV, Info))
9017 return false;
9018 LV.moveInto(Result);
9019 } else if (T->isRealFloatingType()) {
9020 llvm::APFloat F(0.0);
9021 if (!EvaluateFloat(E, F, Info))
9022 return false;
9023 Result = APValue(F);
9024 } else if (T->isAnyComplexType()) {
9025 ComplexValue C;
9026 if (!EvaluateComplex(E, C, Info))
9027 return false;
9028 C.moveInto(Result);
9029 } else if (T->isMemberPointerType()) {
9030 MemberPtr P;
9031 if (!EvaluateMemberPointer(E, P, Info))
9032 return false;
9033 P.moveInto(Result);
9034 return true;
9035 } else if (T->isArrayType()) {
9036 LValue LV;
9037 LV.set(E, Info.CurrentCall->Index);
9038 APValue &Value = Info.CurrentCall->createTemporary(E, false);
9039 if (!EvaluateArray(E, LV, Value, Info))
9040 return false;
9041 Result = Value;
9042 } else if (T->isRecordType()) {
9043 LValue LV;
9044 LV.set(E, Info.CurrentCall->Index);
9045 APValue &Value = Info.CurrentCall->createTemporary(E, false);
9046 if (!EvaluateRecord(E, LV, Value, Info))
9047 return false;
9048 Result = Value;
9049 } else if (T->isVoidType()) {
9050 if (!Info.getLangOpts().CPlusPlus11)
9051 Info.CCEDiag(E, diag::note_constexpr_nonliteral)
9052 << E->getType();
9053 if (!EvaluateVoid(E, Info))
9054 return false;
9055 } else if (T->isAtomicType()) {
9056 if (!EvaluateAtomic(E, Result, Info))
9057 return false;
9058 } else if (Info.getLangOpts().CPlusPlus11) {
9059 Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
9060 return false;
9061 } else {
9062 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
9063 return false;
9064 }
9065
9066 return true;
9067 }
9068
9069 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
9070 /// cases, the in-place evaluation is essential, since later initializers for
9071 /// an object can indirectly refer to subobjects which were initialized earlier.
EvaluateInPlace(APValue & Result,EvalInfo & Info,const LValue & This,const Expr * E,bool AllowNonLiteralTypes)9072 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
9073 const Expr *E, bool AllowNonLiteralTypes) {
9074 assert(!E->isValueDependent());
9075
9076 if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
9077 return false;
9078
9079 if (E->isRValue()) {
9080 // Evaluate arrays and record types in-place, so that later initializers can
9081 // refer to earlier-initialized members of the object.
9082 if (E->getType()->isArrayType())
9083 return EvaluateArray(E, This, Result, Info);
9084 else if (E->getType()->isRecordType())
9085 return EvaluateRecord(E, This, Result, Info);
9086 }
9087
9088 // For any other type, in-place evaluation is unimportant.
9089 return Evaluate(Result, Info, E);
9090 }
9091
9092 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
9093 /// lvalue-to-rvalue cast if it is an lvalue.
EvaluateAsRValue(EvalInfo & Info,const Expr * E,APValue & Result)9094 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
9095 if (E->getType().isNull())
9096 return false;
9097
9098 if (!CheckLiteralType(Info, E))
9099 return false;
9100
9101 if (!::Evaluate(Result, Info, E))
9102 return false;
9103
9104 if (E->isGLValue()) {
9105 LValue LV;
9106 LV.setFrom(Info.Ctx, Result);
9107 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
9108 return false;
9109 }
9110
9111 // Check this core constant expression is a constant expression.
9112 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
9113 }
9114
FastEvaluateAsRValue(const Expr * Exp,Expr::EvalResult & Result,const ASTContext & Ctx,bool & IsConst)9115 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
9116 const ASTContext &Ctx, bool &IsConst) {
9117 // Fast-path evaluations of integer literals, since we sometimes see files
9118 // containing vast quantities of these.
9119 if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
9120 Result.Val = APValue(APSInt(L->getValue(),
9121 L->getType()->isUnsignedIntegerType()));
9122 IsConst = true;
9123 return true;
9124 }
9125
9126 // This case should be rare, but we need to check it before we check on
9127 // the type below.
9128 if (Exp->getType().isNull()) {
9129 IsConst = false;
9130 return true;
9131 }
9132
9133 // FIXME: Evaluating values of large array and record types can cause
9134 // performance problems. Only do so in C++11 for now.
9135 if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
9136 Exp->getType()->isRecordType()) &&
9137 !Ctx.getLangOpts().CPlusPlus11) {
9138 IsConst = false;
9139 return true;
9140 }
9141 return false;
9142 }
9143
9144
9145 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
9146 /// any crazy technique (that has nothing to do with language standards) that
9147 /// we want to. If this function returns true, it returns the folded constant
9148 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
9149 /// will be applied to the result.
EvaluateAsRValue(EvalResult & Result,const ASTContext & Ctx) const9150 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
9151 bool IsConst;
9152 if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
9153 return IsConst;
9154
9155 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
9156 return ::EvaluateAsRValue(Info, this, Result.Val);
9157 }
9158
EvaluateAsBooleanCondition(bool & Result,const ASTContext & Ctx) const9159 bool Expr::EvaluateAsBooleanCondition(bool &Result,
9160 const ASTContext &Ctx) const {
9161 EvalResult Scratch;
9162 return EvaluateAsRValue(Scratch, Ctx) &&
9163 HandleConversionToBool(Scratch.Val, Result);
9164 }
9165
hasUnacceptableSideEffect(Expr::EvalStatus & Result,Expr::SideEffectsKind SEK)9166 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
9167 Expr::SideEffectsKind SEK) {
9168 return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
9169 (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
9170 }
9171
EvaluateAsInt(APSInt & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects) const9172 bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
9173 SideEffectsKind AllowSideEffects) const {
9174 if (!getType()->isIntegralOrEnumerationType())
9175 return false;
9176
9177 EvalResult ExprResult;
9178 if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
9179 hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
9180 return false;
9181
9182 Result = ExprResult.Val.getInt();
9183 return true;
9184 }
9185
EvaluateAsFloat(APFloat & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects) const9186 bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
9187 SideEffectsKind AllowSideEffects) const {
9188 if (!getType()->isRealFloatingType())
9189 return false;
9190
9191 EvalResult ExprResult;
9192 if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isFloat() ||
9193 hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
9194 return false;
9195
9196 Result = ExprResult.Val.getFloat();
9197 return true;
9198 }
9199
EvaluateAsLValue(EvalResult & Result,const ASTContext & Ctx) const9200 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
9201 EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
9202
9203 LValue LV;
9204 if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
9205 !CheckLValueConstantExpression(Info, getExprLoc(),
9206 Ctx.getLValueReferenceType(getType()), LV))
9207 return false;
9208
9209 LV.moveInto(Result.Val);
9210 return true;
9211 }
9212
EvaluateAsInitializer(APValue & Value,const ASTContext & Ctx,const VarDecl * VD,SmallVectorImpl<PartialDiagnosticAt> & Notes) const9213 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
9214 const VarDecl *VD,
9215 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
9216 // FIXME: Evaluating initializers for large array and record types can cause
9217 // performance problems. Only do so in C++11 for now.
9218 if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
9219 !Ctx.getLangOpts().CPlusPlus11)
9220 return false;
9221
9222 Expr::EvalStatus EStatus;
9223 EStatus.Diag = &Notes;
9224
9225 EvalInfo InitInfo(Ctx, EStatus, VD->isConstexpr()
9226 ? EvalInfo::EM_ConstantExpression
9227 : EvalInfo::EM_ConstantFold);
9228 InitInfo.setEvaluatingDecl(VD, Value);
9229
9230 LValue LVal;
9231 LVal.set(VD);
9232
9233 // C++11 [basic.start.init]p2:
9234 // Variables with static storage duration or thread storage duration shall be
9235 // zero-initialized before any other initialization takes place.
9236 // This behavior is not present in C.
9237 if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
9238 !VD->getType()->isReferenceType()) {
9239 ImplicitValueInitExpr VIE(VD->getType());
9240 if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE,
9241 /*AllowNonLiteralTypes=*/true))
9242 return false;
9243 }
9244
9245 if (!EvaluateInPlace(Value, InitInfo, LVal, this,
9246 /*AllowNonLiteralTypes=*/true) ||
9247 EStatus.HasSideEffects)
9248 return false;
9249
9250 return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
9251 Value);
9252 }
9253
9254 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
9255 /// constant folded, but discard the result.
isEvaluatable(const ASTContext & Ctx,SideEffectsKind SEK) const9256 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
9257 EvalResult Result;
9258 return EvaluateAsRValue(Result, Ctx) &&
9259 !hasUnacceptableSideEffect(Result, SEK);
9260 }
9261
EvaluateKnownConstInt(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diag) const9262 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
9263 SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
9264 EvalResult EvalResult;
9265 EvalResult.Diag = Diag;
9266 bool Result = EvaluateAsRValue(EvalResult, Ctx);
9267 (void)Result;
9268 assert(Result && "Could not evaluate expression");
9269 assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
9270
9271 return EvalResult.Val.getInt();
9272 }
9273
EvaluateForOverflow(const ASTContext & Ctx) const9274 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
9275 bool IsConst;
9276 EvalResult EvalResult;
9277 if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
9278 EvalInfo Info(Ctx, EvalResult, EvalInfo::EM_EvaluateForOverflow);
9279 (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
9280 }
9281 }
9282
isGlobalLValue() const9283 bool Expr::EvalResult::isGlobalLValue() const {
9284 assert(Val.isLValue());
9285 return IsGlobalLValue(Val.getLValueBase());
9286 }
9287
9288
9289 /// isIntegerConstantExpr - this recursive routine will test if an expression is
9290 /// an integer constant expression.
9291
9292 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
9293 /// comma, etc
9294
9295 // CheckICE - This function does the fundamental ICE checking: the returned
9296 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
9297 // and a (possibly null) SourceLocation indicating the location of the problem.
9298 //
9299 // Note that to reduce code duplication, this helper does no evaluation
9300 // itself; the caller checks whether the expression is evaluatable, and
9301 // in the rare cases where CheckICE actually cares about the evaluated
9302 // value, it calls into Evalute.
9303
9304 namespace {
9305
9306 enum ICEKind {
9307 /// This expression is an ICE.
9308 IK_ICE,
9309 /// This expression is not an ICE, but if it isn't evaluated, it's
9310 /// a legal subexpression for an ICE. This return value is used to handle
9311 /// the comma operator in C99 mode, and non-constant subexpressions.
9312 IK_ICEIfUnevaluated,
9313 /// This expression is not an ICE, and is not a legal subexpression for one.
9314 IK_NotICE
9315 };
9316
9317 struct ICEDiag {
9318 ICEKind Kind;
9319 SourceLocation Loc;
9320
ICEDiag__anon7264eadc1f11::ICEDiag9321 ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
9322 };
9323
9324 }
9325
NoDiag()9326 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
9327
Worst(ICEDiag A,ICEDiag B)9328 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
9329
CheckEvalInICE(const Expr * E,const ASTContext & Ctx)9330 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
9331 Expr::EvalResult EVResult;
9332 if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
9333 !EVResult.Val.isInt())
9334 return ICEDiag(IK_NotICE, E->getLocStart());
9335
9336 return NoDiag();
9337 }
9338
CheckICE(const Expr * E,const ASTContext & Ctx)9339 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
9340 assert(!E->isValueDependent() && "Should not see value dependent exprs!");
9341 if (!E->getType()->isIntegralOrEnumerationType())
9342 return ICEDiag(IK_NotICE, E->getLocStart());
9343
9344 switch (E->getStmtClass()) {
9345 #define ABSTRACT_STMT(Node)
9346 #define STMT(Node, Base) case Expr::Node##Class:
9347 #define EXPR(Node, Base)
9348 #include "clang/AST/StmtNodes.inc"
9349 case Expr::PredefinedExprClass:
9350 case Expr::FloatingLiteralClass:
9351 case Expr::ImaginaryLiteralClass:
9352 case Expr::StringLiteralClass:
9353 case Expr::ArraySubscriptExprClass:
9354 case Expr::OMPArraySectionExprClass:
9355 case Expr::MemberExprClass:
9356 case Expr::CompoundAssignOperatorClass:
9357 case Expr::CompoundLiteralExprClass:
9358 case Expr::ExtVectorElementExprClass:
9359 case Expr::DesignatedInitExprClass:
9360 case Expr::NoInitExprClass:
9361 case Expr::DesignatedInitUpdateExprClass:
9362 case Expr::ImplicitValueInitExprClass:
9363 case Expr::ParenListExprClass:
9364 case Expr::VAArgExprClass:
9365 case Expr::AddrLabelExprClass:
9366 case Expr::StmtExprClass:
9367 case Expr::CXXMemberCallExprClass:
9368 case Expr::CUDAKernelCallExprClass:
9369 case Expr::CXXDynamicCastExprClass:
9370 case Expr::CXXTypeidExprClass:
9371 case Expr::CXXUuidofExprClass:
9372 case Expr::MSPropertyRefExprClass:
9373 case Expr::MSPropertySubscriptExprClass:
9374 case Expr::CXXNullPtrLiteralExprClass:
9375 case Expr::UserDefinedLiteralClass:
9376 case Expr::CXXThisExprClass:
9377 case Expr::CXXThrowExprClass:
9378 case Expr::CXXNewExprClass:
9379 case Expr::CXXDeleteExprClass:
9380 case Expr::CXXPseudoDestructorExprClass:
9381 case Expr::UnresolvedLookupExprClass:
9382 case Expr::TypoExprClass:
9383 case Expr::DependentScopeDeclRefExprClass:
9384 case Expr::CXXConstructExprClass:
9385 case Expr::CXXInheritedCtorInitExprClass:
9386 case Expr::CXXStdInitializerListExprClass:
9387 case Expr::CXXBindTemporaryExprClass:
9388 case Expr::ExprWithCleanupsClass:
9389 case Expr::CXXTemporaryObjectExprClass:
9390 case Expr::CXXUnresolvedConstructExprClass:
9391 case Expr::CXXDependentScopeMemberExprClass:
9392 case Expr::UnresolvedMemberExprClass:
9393 case Expr::ObjCStringLiteralClass:
9394 case Expr::ObjCBoxedExprClass:
9395 case Expr::ObjCArrayLiteralClass:
9396 case Expr::ObjCDictionaryLiteralClass:
9397 case Expr::ObjCEncodeExprClass:
9398 case Expr::ObjCMessageExprClass:
9399 case Expr::ObjCSelectorExprClass:
9400 case Expr::ObjCProtocolExprClass:
9401 case Expr::ObjCIvarRefExprClass:
9402 case Expr::ObjCPropertyRefExprClass:
9403 case Expr::ObjCSubscriptRefExprClass:
9404 case Expr::ObjCIsaExprClass:
9405 case Expr::ShuffleVectorExprClass:
9406 case Expr::ConvertVectorExprClass:
9407 case Expr::BlockExprClass:
9408 case Expr::NoStmtClass:
9409 case Expr::OpaqueValueExprClass:
9410 case Expr::PackExpansionExprClass:
9411 case Expr::SubstNonTypeTemplateParmPackExprClass:
9412 case Expr::FunctionParmPackExprClass:
9413 case Expr::AsTypeExprClass:
9414 case Expr::ObjCIndirectCopyRestoreExprClass:
9415 case Expr::MaterializeTemporaryExprClass:
9416 case Expr::PseudoObjectExprClass:
9417 case Expr::AtomicExprClass:
9418 case Expr::LambdaExprClass:
9419 case Expr::CXXFoldExprClass:
9420 case Expr::CoawaitExprClass:
9421 case Expr::CoyieldExprClass:
9422 return ICEDiag(IK_NotICE, E->getLocStart());
9423
9424 case Expr::InitListExprClass: {
9425 // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
9426 // form "T x = { a };" is equivalent to "T x = a;".
9427 // Unless we're initializing a reference, T is a scalar as it is known to be
9428 // of integral or enumeration type.
9429 if (E->isRValue())
9430 if (cast<InitListExpr>(E)->getNumInits() == 1)
9431 return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
9432 return ICEDiag(IK_NotICE, E->getLocStart());
9433 }
9434
9435 case Expr::SizeOfPackExprClass:
9436 case Expr::GNUNullExprClass:
9437 // GCC considers the GNU __null value to be an integral constant expression.
9438 return NoDiag();
9439
9440 case Expr::SubstNonTypeTemplateParmExprClass:
9441 return
9442 CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
9443
9444 case Expr::ParenExprClass:
9445 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
9446 case Expr::GenericSelectionExprClass:
9447 return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
9448 case Expr::IntegerLiteralClass:
9449 case Expr::CharacterLiteralClass:
9450 case Expr::ObjCBoolLiteralExprClass:
9451 case Expr::CXXBoolLiteralExprClass:
9452 case Expr::CXXScalarValueInitExprClass:
9453 case Expr::TypeTraitExprClass:
9454 case Expr::ArrayTypeTraitExprClass:
9455 case Expr::ExpressionTraitExprClass:
9456 case Expr::CXXNoexceptExprClass:
9457 return NoDiag();
9458 case Expr::CallExprClass:
9459 case Expr::CXXOperatorCallExprClass: {
9460 // C99 6.6/3 allows function calls within unevaluated subexpressions of
9461 // constant expressions, but they can never be ICEs because an ICE cannot
9462 // contain an operand of (pointer to) function type.
9463 const CallExpr *CE = cast<CallExpr>(E);
9464 if (CE->getBuiltinCallee())
9465 return CheckEvalInICE(E, Ctx);
9466 return ICEDiag(IK_NotICE, E->getLocStart());
9467 }
9468 case Expr::DeclRefExprClass: {
9469 if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
9470 return NoDiag();
9471 const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
9472 if (Ctx.getLangOpts().CPlusPlus &&
9473 D && IsConstNonVolatile(D->getType())) {
9474 // Parameter variables are never constants. Without this check,
9475 // getAnyInitializer() can find a default argument, which leads
9476 // to chaos.
9477 if (isa<ParmVarDecl>(D))
9478 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
9479
9480 // C++ 7.1.5.1p2
9481 // A variable of non-volatile const-qualified integral or enumeration
9482 // type initialized by an ICE can be used in ICEs.
9483 if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
9484 if (!Dcl->getType()->isIntegralOrEnumerationType())
9485 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
9486
9487 const VarDecl *VD;
9488 // Look for a declaration of this variable that has an initializer, and
9489 // check whether it is an ICE.
9490 if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
9491 return NoDiag();
9492 else
9493 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
9494 }
9495 }
9496 return ICEDiag(IK_NotICE, E->getLocStart());
9497 }
9498 case Expr::UnaryOperatorClass: {
9499 const UnaryOperator *Exp = cast<UnaryOperator>(E);
9500 switch (Exp->getOpcode()) {
9501 case UO_PostInc:
9502 case UO_PostDec:
9503 case UO_PreInc:
9504 case UO_PreDec:
9505 case UO_AddrOf:
9506 case UO_Deref:
9507 case UO_Coawait:
9508 // C99 6.6/3 allows increment and decrement within unevaluated
9509 // subexpressions of constant expressions, but they can never be ICEs
9510 // because an ICE cannot contain an lvalue operand.
9511 return ICEDiag(IK_NotICE, E->getLocStart());
9512 case UO_Extension:
9513 case UO_LNot:
9514 case UO_Plus:
9515 case UO_Minus:
9516 case UO_Not:
9517 case UO_Real:
9518 case UO_Imag:
9519 return CheckICE(Exp->getSubExpr(), Ctx);
9520 }
9521
9522 // OffsetOf falls through here.
9523 }
9524 case Expr::OffsetOfExprClass: {
9525 // Note that per C99, offsetof must be an ICE. And AFAIK, using
9526 // EvaluateAsRValue matches the proposed gcc behavior for cases like
9527 // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
9528 // compliance: we should warn earlier for offsetof expressions with
9529 // array subscripts that aren't ICEs, and if the array subscripts
9530 // are ICEs, the value of the offsetof must be an integer constant.
9531 return CheckEvalInICE(E, Ctx);
9532 }
9533 case Expr::UnaryExprOrTypeTraitExprClass: {
9534 const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
9535 if ((Exp->getKind() == UETT_SizeOf) &&
9536 Exp->getTypeOfArgument()->isVariableArrayType())
9537 return ICEDiag(IK_NotICE, E->getLocStart());
9538 return NoDiag();
9539 }
9540 case Expr::BinaryOperatorClass: {
9541 const BinaryOperator *Exp = cast<BinaryOperator>(E);
9542 switch (Exp->getOpcode()) {
9543 case BO_PtrMemD:
9544 case BO_PtrMemI:
9545 case BO_Assign:
9546 case BO_MulAssign:
9547 case BO_DivAssign:
9548 case BO_RemAssign:
9549 case BO_AddAssign:
9550 case BO_SubAssign:
9551 case BO_ShlAssign:
9552 case BO_ShrAssign:
9553 case BO_AndAssign:
9554 case BO_XorAssign:
9555 case BO_OrAssign:
9556 // C99 6.6/3 allows assignments within unevaluated subexpressions of
9557 // constant expressions, but they can never be ICEs because an ICE cannot
9558 // contain an lvalue operand.
9559 return ICEDiag(IK_NotICE, E->getLocStart());
9560
9561 case BO_Mul:
9562 case BO_Div:
9563 case BO_Rem:
9564 case BO_Add:
9565 case BO_Sub:
9566 case BO_Shl:
9567 case BO_Shr:
9568 case BO_LT:
9569 case BO_GT:
9570 case BO_LE:
9571 case BO_GE:
9572 case BO_EQ:
9573 case BO_NE:
9574 case BO_And:
9575 case BO_Xor:
9576 case BO_Or:
9577 case BO_Comma: {
9578 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
9579 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
9580 if (Exp->getOpcode() == BO_Div ||
9581 Exp->getOpcode() == BO_Rem) {
9582 // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
9583 // we don't evaluate one.
9584 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
9585 llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
9586 if (REval == 0)
9587 return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
9588 if (REval.isSigned() && REval.isAllOnesValue()) {
9589 llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
9590 if (LEval.isMinSignedValue())
9591 return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
9592 }
9593 }
9594 }
9595 if (Exp->getOpcode() == BO_Comma) {
9596 if (Ctx.getLangOpts().C99) {
9597 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
9598 // if it isn't evaluated.
9599 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
9600 return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
9601 } else {
9602 // In both C89 and C++, commas in ICEs are illegal.
9603 return ICEDiag(IK_NotICE, E->getLocStart());
9604 }
9605 }
9606 return Worst(LHSResult, RHSResult);
9607 }
9608 case BO_LAnd:
9609 case BO_LOr: {
9610 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
9611 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
9612 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
9613 // Rare case where the RHS has a comma "side-effect"; we need
9614 // to actually check the condition to see whether the side
9615 // with the comma is evaluated.
9616 if ((Exp->getOpcode() == BO_LAnd) !=
9617 (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
9618 return RHSResult;
9619 return NoDiag();
9620 }
9621
9622 return Worst(LHSResult, RHSResult);
9623 }
9624 }
9625 }
9626 case Expr::ImplicitCastExprClass:
9627 case Expr::CStyleCastExprClass:
9628 case Expr::CXXFunctionalCastExprClass:
9629 case Expr::CXXStaticCastExprClass:
9630 case Expr::CXXReinterpretCastExprClass:
9631 case Expr::CXXConstCastExprClass:
9632 case Expr::ObjCBridgedCastExprClass: {
9633 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
9634 if (isa<ExplicitCastExpr>(E)) {
9635 if (const FloatingLiteral *FL
9636 = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
9637 unsigned DestWidth = Ctx.getIntWidth(E->getType());
9638 bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
9639 APSInt IgnoredVal(DestWidth, !DestSigned);
9640 bool Ignored;
9641 // If the value does not fit in the destination type, the behavior is
9642 // undefined, so we are not required to treat it as a constant
9643 // expression.
9644 if (FL->getValue().convertToInteger(IgnoredVal,
9645 llvm::APFloat::rmTowardZero,
9646 &Ignored) & APFloat::opInvalidOp)
9647 return ICEDiag(IK_NotICE, E->getLocStart());
9648 return NoDiag();
9649 }
9650 }
9651 switch (cast<CastExpr>(E)->getCastKind()) {
9652 case CK_LValueToRValue:
9653 case CK_AtomicToNonAtomic:
9654 case CK_NonAtomicToAtomic:
9655 case CK_NoOp:
9656 case CK_IntegralToBoolean:
9657 case CK_IntegralCast:
9658 return CheckICE(SubExpr, Ctx);
9659 default:
9660 return ICEDiag(IK_NotICE, E->getLocStart());
9661 }
9662 }
9663 case Expr::BinaryConditionalOperatorClass: {
9664 const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
9665 ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
9666 if (CommonResult.Kind == IK_NotICE) return CommonResult;
9667 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
9668 if (FalseResult.Kind == IK_NotICE) return FalseResult;
9669 if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
9670 if (FalseResult.Kind == IK_ICEIfUnevaluated &&
9671 Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
9672 return FalseResult;
9673 }
9674 case Expr::ConditionalOperatorClass: {
9675 const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
9676 // If the condition (ignoring parens) is a __builtin_constant_p call,
9677 // then only the true side is actually considered in an integer constant
9678 // expression, and it is fully evaluated. This is an important GNU
9679 // extension. See GCC PR38377 for discussion.
9680 if (const CallExpr *CallCE
9681 = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
9682 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
9683 return CheckEvalInICE(E, Ctx);
9684 ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
9685 if (CondResult.Kind == IK_NotICE)
9686 return CondResult;
9687
9688 ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
9689 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
9690
9691 if (TrueResult.Kind == IK_NotICE)
9692 return TrueResult;
9693 if (FalseResult.Kind == IK_NotICE)
9694 return FalseResult;
9695 if (CondResult.Kind == IK_ICEIfUnevaluated)
9696 return CondResult;
9697 if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
9698 return NoDiag();
9699 // Rare case where the diagnostics depend on which side is evaluated
9700 // Note that if we get here, CondResult is 0, and at least one of
9701 // TrueResult and FalseResult is non-zero.
9702 if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
9703 return FalseResult;
9704 return TrueResult;
9705 }
9706 case Expr::CXXDefaultArgExprClass:
9707 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
9708 case Expr::CXXDefaultInitExprClass:
9709 return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
9710 case Expr::ChooseExprClass: {
9711 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
9712 }
9713 }
9714
9715 llvm_unreachable("Invalid StmtClass!");
9716 }
9717
9718 /// Evaluate an expression as a C++11 integral constant expression.
EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext & Ctx,const Expr * E,llvm::APSInt * Value,SourceLocation * Loc)9719 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
9720 const Expr *E,
9721 llvm::APSInt *Value,
9722 SourceLocation *Loc) {
9723 if (!E->getType()->isIntegralOrEnumerationType()) {
9724 if (Loc) *Loc = E->getExprLoc();
9725 return false;
9726 }
9727
9728 APValue Result;
9729 if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
9730 return false;
9731
9732 if (!Result.isInt()) {
9733 if (Loc) *Loc = E->getExprLoc();
9734 return false;
9735 }
9736
9737 if (Value) *Value = Result.getInt();
9738 return true;
9739 }
9740
isIntegerConstantExpr(const ASTContext & Ctx,SourceLocation * Loc) const9741 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
9742 SourceLocation *Loc) const {
9743 if (Ctx.getLangOpts().CPlusPlus11)
9744 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
9745
9746 ICEDiag D = CheckICE(this, Ctx);
9747 if (D.Kind != IK_ICE) {
9748 if (Loc) *Loc = D.Loc;
9749 return false;
9750 }
9751 return true;
9752 }
9753
isIntegerConstantExpr(llvm::APSInt & Value,const ASTContext & Ctx,SourceLocation * Loc,bool isEvaluated) const9754 bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx,
9755 SourceLocation *Loc, bool isEvaluated) const {
9756 if (Ctx.getLangOpts().CPlusPlus11)
9757 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
9758
9759 if (!isIntegerConstantExpr(Ctx, Loc))
9760 return false;
9761 // The only possible side-effects here are due to UB discovered in the
9762 // evaluation (for instance, INT_MAX + 1). In such a case, we are still
9763 // required to treat the expression as an ICE, so we produce the folded
9764 // value.
9765 if (!EvaluateAsInt(Value, Ctx, SE_AllowSideEffects))
9766 llvm_unreachable("ICE cannot be evaluated!");
9767 return true;
9768 }
9769
isCXX98IntegralConstantExpr(const ASTContext & Ctx) const9770 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
9771 return CheckICE(this, Ctx).Kind == IK_ICE;
9772 }
9773
isCXX11ConstantExpr(const ASTContext & Ctx,APValue * Result,SourceLocation * Loc) const9774 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
9775 SourceLocation *Loc) const {
9776 // We support this checking in C++98 mode in order to diagnose compatibility
9777 // issues.
9778 assert(Ctx.getLangOpts().CPlusPlus);
9779
9780 // Build evaluation settings.
9781 Expr::EvalStatus Status;
9782 SmallVector<PartialDiagnosticAt, 8> Diags;
9783 Status.Diag = &Diags;
9784 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
9785
9786 APValue Scratch;
9787 bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
9788
9789 if (!Diags.empty()) {
9790 IsConstExpr = false;
9791 if (Loc) *Loc = Diags[0].first;
9792 } else if (!IsConstExpr) {
9793 // FIXME: This shouldn't happen.
9794 if (Loc) *Loc = getExprLoc();
9795 }
9796
9797 return IsConstExpr;
9798 }
9799
EvaluateWithSubstitution(APValue & Value,ASTContext & Ctx,const FunctionDecl * Callee,ArrayRef<const Expr * > Args) const9800 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
9801 const FunctionDecl *Callee,
9802 ArrayRef<const Expr*> Args) const {
9803 Expr::EvalStatus Status;
9804 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
9805
9806 ArgVector ArgValues(Args.size());
9807 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
9808 I != E; ++I) {
9809 if ((*I)->isValueDependent() ||
9810 !Evaluate(ArgValues[I - Args.begin()], Info, *I))
9811 // If evaluation fails, throw away the argument entirely.
9812 ArgValues[I - Args.begin()] = APValue();
9813 if (Info.EvalStatus.HasSideEffects)
9814 return false;
9815 }
9816
9817 // Build fake call to Callee.
9818 CallStackFrame Frame(Info, Callee->getLocation(), Callee, /*This*/nullptr,
9819 ArgValues.data());
9820 return Evaluate(Value, Info, this) && !Info.EvalStatus.HasSideEffects;
9821 }
9822
isPotentialConstantExpr(const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)9823 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
9824 SmallVectorImpl<
9825 PartialDiagnosticAt> &Diags) {
9826 // FIXME: It would be useful to check constexpr function templates, but at the
9827 // moment the constant expression evaluator cannot cope with the non-rigorous
9828 // ASTs which we build for dependent expressions.
9829 if (FD->isDependentContext())
9830 return true;
9831
9832 Expr::EvalStatus Status;
9833 Status.Diag = &Diags;
9834
9835 EvalInfo Info(FD->getASTContext(), Status,
9836 EvalInfo::EM_PotentialConstantExpression);
9837
9838 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
9839 const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
9840
9841 // Fabricate an arbitrary expression on the stack and pretend that it
9842 // is a temporary being used as the 'this' pointer.
9843 LValue This;
9844 ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
9845 This.set(&VIE, Info.CurrentCall->Index);
9846
9847 ArrayRef<const Expr*> Args;
9848
9849 APValue Scratch;
9850 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
9851 // Evaluate the call as a constant initializer, to allow the construction
9852 // of objects of non-literal types.
9853 Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
9854 HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
9855 } else {
9856 SourceLocation Loc = FD->getLocation();
9857 HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
9858 Args, FD->getBody(), Info, Scratch, nullptr);
9859 }
9860
9861 return Diags.empty();
9862 }
9863
isPotentialConstantExprUnevaluated(Expr * E,const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)9864 bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
9865 const FunctionDecl *FD,
9866 SmallVectorImpl<
9867 PartialDiagnosticAt> &Diags) {
9868 Expr::EvalStatus Status;
9869 Status.Diag = &Diags;
9870
9871 EvalInfo Info(FD->getASTContext(), Status,
9872 EvalInfo::EM_PotentialConstantExpressionUnevaluated);
9873
9874 // Fabricate a call stack frame to give the arguments a plausible cover story.
9875 ArrayRef<const Expr*> Args;
9876 ArgVector ArgValues(0);
9877 bool Success = EvaluateArgs(Args, ArgValues, Info);
9878 (void)Success;
9879 assert(Success &&
9880 "Failed to set up arguments for potential constant evaluation");
9881 CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data());
9882
9883 APValue ResultScratch;
9884 Evaluate(ResultScratch, Info, E);
9885 return Diags.empty();
9886 }
9887
tryEvaluateObjectSize(uint64_t & Result,ASTContext & Ctx,unsigned Type) const9888 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
9889 unsigned Type) const {
9890 if (!getType()->isPointerType())
9891 return false;
9892
9893 Expr::EvalStatus Status;
9894 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
9895 return ::tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
9896 }
9897