1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCISelLowering.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPCCallingConv.h"
17 #include "PPCCCState.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCPerfectShuffle.h"
20 #include "PPCTargetMachine.h"
21 #include "PPCTargetObjectFile.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/CodeGen/CallingConvLower.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SelectionDAG.h"
33 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/Format.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Target/TargetOptions.h"
45 #include <list>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "ppc-lowering"
50 
51 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
52 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
53 
54 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
55 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
56 
57 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
58 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
59 
60 static cl::opt<bool> DisableSCO("disable-ppc-sco",
61 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
62 
63 STATISTIC(NumTailCalls, "Number of tail calls");
64 STATISTIC(NumSiblingCalls, "Number of sibling calls");
65 
66 // FIXME: Remove this once the bug has been fixed!
67 extern cl::opt<bool> ANDIGlueBug;
68 
PPCTargetLowering(const PPCTargetMachine & TM,const PPCSubtarget & STI)69 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
70                                      const PPCSubtarget &STI)
71     : TargetLowering(TM), Subtarget(STI) {
72   // Use _setjmp/_longjmp instead of setjmp/longjmp.
73   setUseUnderscoreSetJmp(true);
74   setUseUnderscoreLongJmp(true);
75 
76   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
77   // arguments are at least 4/8 bytes aligned.
78   bool isPPC64 = Subtarget.isPPC64();
79   setMinStackArgumentAlignment(isPPC64 ? 8:4);
80 
81   // Set up the register classes.
82   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
83   if (!useSoftFloat()) {
84     addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
85     addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
86   }
87 
88   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
89   for (MVT VT : MVT::integer_valuetypes()) {
90     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
91     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
92   }
93 
94   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
95 
96   // PowerPC has pre-inc load and store's.
97   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
98   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
99   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
100   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
101   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
102   setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
103   setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
104   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
105   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
106   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
107   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
108   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
109   setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
110   setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
111 
112   if (Subtarget.useCRBits()) {
113     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
114 
115     if (isPPC64 || Subtarget.hasFPCVT()) {
116       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
117       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
118                          isPPC64 ? MVT::i64 : MVT::i32);
119       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
120       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
121                         isPPC64 ? MVT::i64 : MVT::i32);
122     } else {
123       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
124       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
125     }
126 
127     // PowerPC does not support direct load / store of condition registers
128     setOperationAction(ISD::LOAD, MVT::i1, Custom);
129     setOperationAction(ISD::STORE, MVT::i1, Custom);
130 
131     // FIXME: Remove this once the ANDI glue bug is fixed:
132     if (ANDIGlueBug)
133       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
134 
135     for (MVT VT : MVT::integer_valuetypes()) {
136       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
137       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
138       setTruncStoreAction(VT, MVT::i1, Expand);
139     }
140 
141     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
142   }
143 
144   // This is used in the ppcf128->int sequence.  Note it has different semantics
145   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
146   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
147 
148   // We do not currently implement these libm ops for PowerPC.
149   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
150   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
151   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
152   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
153   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
154   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
155 
156   // PowerPC has no SREM/UREM instructions
157   setOperationAction(ISD::SREM, MVT::i32, Expand);
158   setOperationAction(ISD::UREM, MVT::i32, Expand);
159   setOperationAction(ISD::SREM, MVT::i64, Expand);
160   setOperationAction(ISD::UREM, MVT::i64, Expand);
161 
162   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
163   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
164   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
165   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
166   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
167   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
168   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
169   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
170   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
171 
172   // We don't support sin/cos/sqrt/fmod/pow
173   setOperationAction(ISD::FSIN , MVT::f64, Expand);
174   setOperationAction(ISD::FCOS , MVT::f64, Expand);
175   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
176   setOperationAction(ISD::FREM , MVT::f64, Expand);
177   setOperationAction(ISD::FPOW , MVT::f64, Expand);
178   setOperationAction(ISD::FMA  , MVT::f64, Legal);
179   setOperationAction(ISD::FSIN , MVT::f32, Expand);
180   setOperationAction(ISD::FCOS , MVT::f32, Expand);
181   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
182   setOperationAction(ISD::FREM , MVT::f32, Expand);
183   setOperationAction(ISD::FPOW , MVT::f32, Expand);
184   setOperationAction(ISD::FMA  , MVT::f32, Legal);
185 
186   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
187 
188   // If we're enabling GP optimizations, use hardware square root
189   if (!Subtarget.hasFSQRT() &&
190       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
191         Subtarget.hasFRE()))
192     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
193 
194   if (!Subtarget.hasFSQRT() &&
195       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
196         Subtarget.hasFRES()))
197     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
198 
199   if (Subtarget.hasFCPSGN()) {
200     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
201     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
202   } else {
203     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
204     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
205   }
206 
207   if (Subtarget.hasFPRND()) {
208     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
209     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
210     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
211     setOperationAction(ISD::FROUND, MVT::f64, Legal);
212 
213     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
214     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
215     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
216     setOperationAction(ISD::FROUND, MVT::f32, Legal);
217   }
218 
219   // PowerPC does not have BSWAP, CTPOP or CTTZ
220   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
221   setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
222   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
223   setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
224 
225   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
226     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
227     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
228   } else {
229     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
230     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
231   }
232 
233   // PowerPC does not have ROTR
234   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
235   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
236 
237   if (!Subtarget.useCRBits()) {
238     // PowerPC does not have Select
239     setOperationAction(ISD::SELECT, MVT::i32, Expand);
240     setOperationAction(ISD::SELECT, MVT::i64, Expand);
241     setOperationAction(ISD::SELECT, MVT::f32, Expand);
242     setOperationAction(ISD::SELECT, MVT::f64, Expand);
243   }
244 
245   // PowerPC wants to turn select_cc of FP into fsel when possible.
246   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
247   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
248 
249   // PowerPC wants to optimize integer setcc a bit
250   if (!Subtarget.useCRBits())
251     setOperationAction(ISD::SETCC, MVT::i32, Custom);
252 
253   // PowerPC does not have BRCOND which requires SetCC
254   if (!Subtarget.useCRBits())
255     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
256 
257   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
258 
259   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
260   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
261 
262   // PowerPC does not have [U|S]INT_TO_FP
263   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
264   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
265 
266   if (Subtarget.hasDirectMove() && isPPC64) {
267     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
268     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
269     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
270     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
271   } else {
272     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
273     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
274     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
275     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
276   }
277 
278   // We cannot sextinreg(i1).  Expand to shifts.
279   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
280 
281   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
282   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
283   // support continuation, user-level threading, and etc.. As a result, no
284   // other SjLj exception interfaces are implemented and please don't build
285   // your own exception handling based on them.
286   // LLVM/Clang supports zero-cost DWARF exception handling.
287   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
288   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
289 
290   // We want to legalize GlobalAddress and ConstantPool nodes into the
291   // appropriate instructions to materialize the address.
292   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
293   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
294   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
295   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
296   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
297   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
298   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
299   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
300   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
301   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
302 
303   // TRAP is legal.
304   setOperationAction(ISD::TRAP, MVT::Other, Legal);
305 
306   // TRAMPOLINE is custom lowered.
307   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
308   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
309 
310   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
311   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
312 
313   if (Subtarget.isSVR4ABI()) {
314     if (isPPC64) {
315       // VAARG always uses double-word chunks, so promote anything smaller.
316       setOperationAction(ISD::VAARG, MVT::i1, Promote);
317       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
318       setOperationAction(ISD::VAARG, MVT::i8, Promote);
319       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
320       setOperationAction(ISD::VAARG, MVT::i16, Promote);
321       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
322       setOperationAction(ISD::VAARG, MVT::i32, Promote);
323       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
324       setOperationAction(ISD::VAARG, MVT::Other, Expand);
325     } else {
326       // VAARG is custom lowered with the 32-bit SVR4 ABI.
327       setOperationAction(ISD::VAARG, MVT::Other, Custom);
328       setOperationAction(ISD::VAARG, MVT::i64, Custom);
329     }
330   } else
331     setOperationAction(ISD::VAARG, MVT::Other, Expand);
332 
333   if (Subtarget.isSVR4ABI() && !isPPC64)
334     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
335     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
336   else
337     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
338 
339   // Use the default implementation.
340   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
341   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
342   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
343   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
344   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
345   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
346   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
347 
348   // We want to custom lower some of our intrinsics.
349   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
350 
351   // To handle counter-based loop conditions.
352   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
353 
354   // Comparisons that require checking two conditions.
355   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
356   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
357   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
358   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
359   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
360   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
361   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
362   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
363   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
364   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
365   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
366   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
367 
368   if (Subtarget.has64BitSupport()) {
369     // They also have instructions for converting between i64 and fp.
370     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
371     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
372     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
373     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
374     // This is just the low 32 bits of a (signed) fp->i64 conversion.
375     // We cannot do this with Promote because i64 is not a legal type.
376     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
377 
378     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
379       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
380   } else {
381     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
382     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
383   }
384 
385   // With the instructions enabled under FPCVT, we can do everything.
386   if (Subtarget.hasFPCVT()) {
387     if (Subtarget.has64BitSupport()) {
388       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
389       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
390       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
391       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
392     }
393 
394     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
395     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
396     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
397     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
398   }
399 
400   if (Subtarget.use64BitRegs()) {
401     // 64-bit PowerPC implementations can support i64 types directly
402     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
403     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
404     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
405     // 64-bit PowerPC wants to expand i128 shifts itself.
406     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
407     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
408     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
409   } else {
410     // 32-bit PowerPC wants to expand i64 shifts itself.
411     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
412     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
413     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
414   }
415 
416   if (Subtarget.hasAltivec()) {
417     // First set operation action for all vector types to expand. Then we
418     // will selectively turn on ones that can be effectively codegen'd.
419     for (MVT VT : MVT::vector_valuetypes()) {
420       // add/sub are legal for all supported vector VT's.
421       setOperationAction(ISD::ADD, VT, Legal);
422       setOperationAction(ISD::SUB, VT, Legal);
423 
424       // Vector instructions introduced in P8
425       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
426         setOperationAction(ISD::CTPOP, VT, Legal);
427         setOperationAction(ISD::CTLZ, VT, Legal);
428       }
429       else {
430         setOperationAction(ISD::CTPOP, VT, Expand);
431         setOperationAction(ISD::CTLZ, VT, Expand);
432       }
433 
434       // We promote all shuffles to v16i8.
435       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
436       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
437 
438       // We promote all non-typed operations to v4i32.
439       setOperationAction(ISD::AND   , VT, Promote);
440       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
441       setOperationAction(ISD::OR    , VT, Promote);
442       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
443       setOperationAction(ISD::XOR   , VT, Promote);
444       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
445       setOperationAction(ISD::LOAD  , VT, Promote);
446       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
447       setOperationAction(ISD::SELECT, VT, Promote);
448       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
449       setOperationAction(ISD::SELECT_CC, VT, Promote);
450       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
451       setOperationAction(ISD::STORE, VT, Promote);
452       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
453 
454       // No other operations are legal.
455       setOperationAction(ISD::MUL , VT, Expand);
456       setOperationAction(ISD::SDIV, VT, Expand);
457       setOperationAction(ISD::SREM, VT, Expand);
458       setOperationAction(ISD::UDIV, VT, Expand);
459       setOperationAction(ISD::UREM, VT, Expand);
460       setOperationAction(ISD::FDIV, VT, Expand);
461       setOperationAction(ISD::FREM, VT, Expand);
462       setOperationAction(ISD::FNEG, VT, Expand);
463       setOperationAction(ISD::FSQRT, VT, Expand);
464       setOperationAction(ISD::FLOG, VT, Expand);
465       setOperationAction(ISD::FLOG10, VT, Expand);
466       setOperationAction(ISD::FLOG2, VT, Expand);
467       setOperationAction(ISD::FEXP, VT, Expand);
468       setOperationAction(ISD::FEXP2, VT, Expand);
469       setOperationAction(ISD::FSIN, VT, Expand);
470       setOperationAction(ISD::FCOS, VT, Expand);
471       setOperationAction(ISD::FABS, VT, Expand);
472       setOperationAction(ISD::FPOWI, VT, Expand);
473       setOperationAction(ISD::FFLOOR, VT, Expand);
474       setOperationAction(ISD::FCEIL,  VT, Expand);
475       setOperationAction(ISD::FTRUNC, VT, Expand);
476       setOperationAction(ISD::FRINT,  VT, Expand);
477       setOperationAction(ISD::FNEARBYINT, VT, Expand);
478       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
479       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
480       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
481       setOperationAction(ISD::MULHU, VT, Expand);
482       setOperationAction(ISD::MULHS, VT, Expand);
483       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
484       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
485       setOperationAction(ISD::UDIVREM, VT, Expand);
486       setOperationAction(ISD::SDIVREM, VT, Expand);
487       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
488       setOperationAction(ISD::FPOW, VT, Expand);
489       setOperationAction(ISD::BSWAP, VT, Expand);
490       setOperationAction(ISD::CTTZ, VT, Expand);
491       setOperationAction(ISD::VSELECT, VT, Expand);
492       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
493       setOperationAction(ISD::ROTL, VT, Expand);
494       setOperationAction(ISD::ROTR, VT, Expand);
495 
496       for (MVT InnerVT : MVT::vector_valuetypes()) {
497         setTruncStoreAction(VT, InnerVT, Expand);
498         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
499         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
500         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
501       }
502     }
503 
504     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
505     // with merges, splats, etc.
506     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
507 
508     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
509     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
510     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
511     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
512     setOperationAction(ISD::SELECT, MVT::v4i32,
513                        Subtarget.useCRBits() ? Legal : Expand);
514     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
515     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
516     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
517     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
518     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
519     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
520     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
521     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
522     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
523 
524     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
525     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
526     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
527     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
528 
529     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
530     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
531 
532     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
533       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
534       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
535     }
536 
537     if (Subtarget.hasP8Altivec())
538       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
539     else
540       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
541 
542     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
543     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
544 
545     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
546     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
547 
548     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
549     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
550     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
551     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
552 
553     // Altivec does not contain unordered floating-point compare instructions
554     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
555     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
556     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
557     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
558 
559     if (Subtarget.hasVSX()) {
560       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
561       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
562       if (Subtarget.hasP8Vector()) {
563         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
564         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
565       }
566       if (Subtarget.hasDirectMove() && isPPC64) {
567         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
568         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
569         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
570         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
571         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
572         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
573         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
574         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
575       }
576       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
577 
578       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
579       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
580       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
581       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
582       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
583 
584       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
585 
586       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
587       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
588 
589       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
590       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
591 
592       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
593       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
594       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
595       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
596       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
597 
598       // Share the Altivec comparison restrictions.
599       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
600       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
601       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
602       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
603 
604       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
605       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
606 
607       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
608 
609       if (Subtarget.hasP8Vector())
610         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
611 
612       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
613 
614       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
615       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
616       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
617 
618       if (Subtarget.hasP8Altivec()) {
619         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
620         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
621         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
622 
623         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
624       }
625       else {
626         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
627         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
628         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
629 
630         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
631 
632         // VSX v2i64 only supports non-arithmetic operations.
633         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
634         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
635       }
636 
637       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
638       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
639       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
640       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
641 
642       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
643 
644       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
645       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
646       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
647       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
648 
649       // Vector operation legalization checks the result type of
650       // SIGN_EXTEND_INREG, overall legalization checks the inner type.
651       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
652       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
653       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
654       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
655 
656       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
657       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
658       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
659       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
660 
661       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
662     }
663 
664     if (Subtarget.hasP8Altivec()) {
665       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
666       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
667     }
668     if (Subtarget.hasP9Vector()) {
669       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal);
670       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Legal);
671     }
672   }
673 
674   if (Subtarget.hasQPX()) {
675     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
676     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
677     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
678     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
679 
680     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
681     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
682 
683     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
684     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
685 
686     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
687     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
688 
689     if (!Subtarget.useCRBits())
690       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
691     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
692 
693     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
694     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
695     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
696     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
697     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
698     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
699     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
700 
701     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
702     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
703 
704     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
705     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
706     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
707 
708     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
709     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
710     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
711     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
712     setOperationAction(ISD::FPOWI , MVT::v4f64, Expand);
713     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
714     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
715     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
716     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
717     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
718     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
719 
720     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
721     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
722 
723     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
724     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
725 
726     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
727 
728     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
729     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
730     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
731     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
732 
733     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
734     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
735 
736     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
737     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
738 
739     if (!Subtarget.useCRBits())
740       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
741     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
742 
743     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
744     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
745     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
746     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
747     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
748     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
749     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
750 
751     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
752     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
753 
754     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
755     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
756     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
757     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
758     setOperationAction(ISD::FPOWI , MVT::v4f32, Expand);
759     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
760     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
761     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
762     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
763     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
764     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
765 
766     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
767     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
768 
769     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
770     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
771 
772     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
773 
774     setOperationAction(ISD::AND , MVT::v4i1, Legal);
775     setOperationAction(ISD::OR , MVT::v4i1, Legal);
776     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
777 
778     if (!Subtarget.useCRBits())
779       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
780     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
781 
782     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
783     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
784 
785     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
786     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
787     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
788     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
789     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
790     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
791     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
792 
793     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
794     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
795 
796     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
797 
798     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
799     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
800     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
801     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
802 
803     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
804     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
805     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
806     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
807 
808     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
809     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
810 
811     // These need to set FE_INEXACT, and so cannot be vectorized here.
812     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
813     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
814 
815     if (TM.Options.UnsafeFPMath) {
816       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
817       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
818 
819       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
820       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
821     } else {
822       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
823       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
824 
825       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
826       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
827     }
828   }
829 
830   if (Subtarget.has64BitSupport())
831     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
832 
833   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
834 
835   if (!isPPC64) {
836     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
837     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
838   }
839 
840   setBooleanContents(ZeroOrOneBooleanContent);
841 
842   if (Subtarget.hasAltivec()) {
843     // Altivec instructions set fields to all zeros or all ones.
844     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
845   }
846 
847   if (!isPPC64) {
848     // These libcalls are not available in 32-bit.
849     setLibcallName(RTLIB::SHL_I128, nullptr);
850     setLibcallName(RTLIB::SRL_I128, nullptr);
851     setLibcallName(RTLIB::SRA_I128, nullptr);
852   }
853 
854   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
855 
856   // We have target-specific dag combine patterns for the following nodes:
857   setTargetDAGCombine(ISD::SINT_TO_FP);
858   setTargetDAGCombine(ISD::BUILD_VECTOR);
859   if (Subtarget.hasFPCVT())
860     setTargetDAGCombine(ISD::UINT_TO_FP);
861   setTargetDAGCombine(ISD::LOAD);
862   setTargetDAGCombine(ISD::STORE);
863   setTargetDAGCombine(ISD::BR_CC);
864   if (Subtarget.useCRBits())
865     setTargetDAGCombine(ISD::BRCOND);
866   setTargetDAGCombine(ISD::BSWAP);
867   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
868   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
869   setTargetDAGCombine(ISD::INTRINSIC_VOID);
870 
871   setTargetDAGCombine(ISD::SIGN_EXTEND);
872   setTargetDAGCombine(ISD::ZERO_EXTEND);
873   setTargetDAGCombine(ISD::ANY_EXTEND);
874 
875   if (Subtarget.useCRBits()) {
876     setTargetDAGCombine(ISD::TRUNCATE);
877     setTargetDAGCombine(ISD::SETCC);
878     setTargetDAGCombine(ISD::SELECT_CC);
879   }
880 
881   // Use reciprocal estimates.
882   if (TM.Options.UnsafeFPMath) {
883     setTargetDAGCombine(ISD::FDIV);
884     setTargetDAGCombine(ISD::FSQRT);
885   }
886 
887   // Darwin long double math library functions have $LDBL128 appended.
888   if (Subtarget.isDarwin()) {
889     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
890     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
891     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
892     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
893     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
894     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
895     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
896     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
897     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
898     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
899   }
900 
901   // With 32 condition bits, we don't need to sink (and duplicate) compares
902   // aggressively in CodeGenPrep.
903   if (Subtarget.useCRBits()) {
904     setHasMultipleConditionRegisters();
905     setJumpIsExpensive();
906   }
907 
908   setMinFunctionAlignment(2);
909   if (Subtarget.isDarwin())
910     setPrefFunctionAlignment(4);
911 
912   switch (Subtarget.getDarwinDirective()) {
913   default: break;
914   case PPC::DIR_970:
915   case PPC::DIR_A2:
916   case PPC::DIR_E500mc:
917   case PPC::DIR_E5500:
918   case PPC::DIR_PWR4:
919   case PPC::DIR_PWR5:
920   case PPC::DIR_PWR5X:
921   case PPC::DIR_PWR6:
922   case PPC::DIR_PWR6X:
923   case PPC::DIR_PWR7:
924   case PPC::DIR_PWR8:
925   case PPC::DIR_PWR9:
926     setPrefFunctionAlignment(4);
927     setPrefLoopAlignment(4);
928     break;
929   }
930 
931   if (Subtarget.enableMachineScheduler())
932     setSchedulingPreference(Sched::Source);
933   else
934     setSchedulingPreference(Sched::Hybrid);
935 
936   computeRegisterProperties(STI.getRegisterInfo());
937 
938   // The Freescale cores do better with aggressive inlining of memcpy and
939   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
940   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
941       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
942     MaxStoresPerMemset = 32;
943     MaxStoresPerMemsetOptSize = 16;
944     MaxStoresPerMemcpy = 32;
945     MaxStoresPerMemcpyOptSize = 8;
946     MaxStoresPerMemmove = 32;
947     MaxStoresPerMemmoveOptSize = 8;
948   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
949     // The A2 also benefits from (very) aggressive inlining of memcpy and
950     // friends. The overhead of a the function call, even when warm, can be
951     // over one hundred cycles.
952     MaxStoresPerMemset = 128;
953     MaxStoresPerMemcpy = 128;
954     MaxStoresPerMemmove = 128;
955   }
956 }
957 
958 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
959 /// the desired ByVal argument alignment.
getMaxByValAlign(Type * Ty,unsigned & MaxAlign,unsigned MaxMaxAlign)960 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
961                              unsigned MaxMaxAlign) {
962   if (MaxAlign == MaxMaxAlign)
963     return;
964   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
965     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
966       MaxAlign = 32;
967     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
968       MaxAlign = 16;
969   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
970     unsigned EltAlign = 0;
971     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
972     if (EltAlign > MaxAlign)
973       MaxAlign = EltAlign;
974   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
975     for (auto *EltTy : STy->elements()) {
976       unsigned EltAlign = 0;
977       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
978       if (EltAlign > MaxAlign)
979         MaxAlign = EltAlign;
980       if (MaxAlign == MaxMaxAlign)
981         break;
982     }
983   }
984 }
985 
986 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
987 /// function arguments in the caller parameter area.
getByValTypeAlignment(Type * Ty,const DataLayout & DL) const988 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
989                                                   const DataLayout &DL) const {
990   // Darwin passes everything on 4 byte boundary.
991   if (Subtarget.isDarwin())
992     return 4;
993 
994   // 16byte and wider vectors are passed on 16byte boundary.
995   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
996   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
997   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
998     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
999   return Align;
1000 }
1001 
useSoftFloat() const1002 bool PPCTargetLowering::useSoftFloat() const {
1003   return Subtarget.useSoftFloat();
1004 }
1005 
getTargetNodeName(unsigned Opcode) const1006 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1007   switch ((PPCISD::NodeType)Opcode) {
1008   case PPCISD::FIRST_NUMBER:    break;
1009   case PPCISD::FSEL:            return "PPCISD::FSEL";
1010   case PPCISD::FCFID:           return "PPCISD::FCFID";
1011   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1012   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1013   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1014   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1015   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1016   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1017   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1018   case PPCISD::FRE:             return "PPCISD::FRE";
1019   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1020   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1021   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1022   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1023   case PPCISD::VPERM:           return "PPCISD::VPERM";
1024   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1025   case PPCISD::XXINSERT:        return "PPCISD::XXINSERT";
1026   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1027   case PPCISD::CMPB:            return "PPCISD::CMPB";
1028   case PPCISD::Hi:              return "PPCISD::Hi";
1029   case PPCISD::Lo:              return "PPCISD::Lo";
1030   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1031   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1032   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1033   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1034   case PPCISD::SRL:             return "PPCISD::SRL";
1035   case PPCISD::SRA:             return "PPCISD::SRA";
1036   case PPCISD::SHL:             return "PPCISD::SHL";
1037   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1038   case PPCISD::CALL:            return "PPCISD::CALL";
1039   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1040   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1041   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1042   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1043   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1044   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1045   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1046   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1047   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1048   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1049   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1050   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1051   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1052   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1053   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1054   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1055   case PPCISD::VCMP:            return "PPCISD::VCMP";
1056   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1057   case PPCISD::LBRX:            return "PPCISD::LBRX";
1058   case PPCISD::STBRX:           return "PPCISD::STBRX";
1059   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1060   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1061   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1062   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1063   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1064   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1065   case PPCISD::BDZ:             return "PPCISD::BDZ";
1066   case PPCISD::MFFS:            return "PPCISD::MFFS";
1067   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1068   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1069   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1070   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1071   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1072   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1073   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1074   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1075   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1076   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1077   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1078   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1079   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1080   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1081   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1082   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1083   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1084   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1085   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1086   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1087   case PPCISD::SC:              return "PPCISD::SC";
1088   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1089   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1090   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1091   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1092   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1093   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1094   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1095   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1096   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1097   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1098   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1099   }
1100   return nullptr;
1101 }
1102 
getSetCCResultType(const DataLayout & DL,LLVMContext & C,EVT VT) const1103 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1104                                           EVT VT) const {
1105   if (!VT.isVector())
1106     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1107 
1108   if (Subtarget.hasQPX())
1109     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1110 
1111   return VT.changeVectorElementTypeToInteger();
1112 }
1113 
enableAggressiveFMAFusion(EVT VT) const1114 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1115   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1116   return true;
1117 }
1118 
1119 //===----------------------------------------------------------------------===//
1120 // Node matching predicates, for use by the tblgen matching code.
1121 //===----------------------------------------------------------------------===//
1122 
1123 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
isFloatingPointZero(SDValue Op)1124 static bool isFloatingPointZero(SDValue Op) {
1125   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1126     return CFP->getValueAPF().isZero();
1127   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1128     // Maybe this has already been legalized into the constant pool?
1129     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1130       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1131         return CFP->getValueAPF().isZero();
1132   }
1133   return false;
1134 }
1135 
1136 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1137 /// true if Op is undef or if it matches the specified value.
isConstantOrUndef(int Op,int Val)1138 static bool isConstantOrUndef(int Op, int Val) {
1139   return Op < 0 || Op == Val;
1140 }
1141 
1142 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1143 /// VPKUHUM instruction.
1144 /// The ShuffleKind distinguishes between big-endian operations with
1145 /// two different inputs (0), either-endian operations with two identical
1146 /// inputs (1), and little-endian operations with two different inputs (2).
1147 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
isVPKUHUMShuffleMask(ShuffleVectorSDNode * N,unsigned ShuffleKind,SelectionDAG & DAG)1148 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1149                                SelectionDAG &DAG) {
1150   bool IsLE = DAG.getDataLayout().isLittleEndian();
1151   if (ShuffleKind == 0) {
1152     if (IsLE)
1153       return false;
1154     for (unsigned i = 0; i != 16; ++i)
1155       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1156         return false;
1157   } else if (ShuffleKind == 2) {
1158     if (!IsLE)
1159       return false;
1160     for (unsigned i = 0; i != 16; ++i)
1161       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1162         return false;
1163   } else if (ShuffleKind == 1) {
1164     unsigned j = IsLE ? 0 : 1;
1165     for (unsigned i = 0; i != 8; ++i)
1166       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1167           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1168         return false;
1169   }
1170   return true;
1171 }
1172 
1173 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1174 /// VPKUWUM instruction.
1175 /// The ShuffleKind distinguishes between big-endian operations with
1176 /// two different inputs (0), either-endian operations with two identical
1177 /// inputs (1), and little-endian operations with two different inputs (2).
1178 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
isVPKUWUMShuffleMask(ShuffleVectorSDNode * N,unsigned ShuffleKind,SelectionDAG & DAG)1179 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1180                                SelectionDAG &DAG) {
1181   bool IsLE = DAG.getDataLayout().isLittleEndian();
1182   if (ShuffleKind == 0) {
1183     if (IsLE)
1184       return false;
1185     for (unsigned i = 0; i != 16; i += 2)
1186       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1187           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1188         return false;
1189   } else if (ShuffleKind == 2) {
1190     if (!IsLE)
1191       return false;
1192     for (unsigned i = 0; i != 16; i += 2)
1193       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1194           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1195         return false;
1196   } else if (ShuffleKind == 1) {
1197     unsigned j = IsLE ? 0 : 2;
1198     for (unsigned i = 0; i != 8; i += 2)
1199       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1200           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1201           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1202           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1203         return false;
1204   }
1205   return true;
1206 }
1207 
1208 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1209 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1210 /// current subtarget.
1211 ///
1212 /// The ShuffleKind distinguishes between big-endian operations with
1213 /// two different inputs (0), either-endian operations with two identical
1214 /// inputs (1), and little-endian operations with two different inputs (2).
1215 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
isVPKUDUMShuffleMask(ShuffleVectorSDNode * N,unsigned ShuffleKind,SelectionDAG & DAG)1216 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1217                                SelectionDAG &DAG) {
1218   const PPCSubtarget& Subtarget =
1219     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1220   if (!Subtarget.hasP8Vector())
1221     return false;
1222 
1223   bool IsLE = DAG.getDataLayout().isLittleEndian();
1224   if (ShuffleKind == 0) {
1225     if (IsLE)
1226       return false;
1227     for (unsigned i = 0; i != 16; i += 4)
1228       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1229           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1230           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1231           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1232         return false;
1233   } else if (ShuffleKind == 2) {
1234     if (!IsLE)
1235       return false;
1236     for (unsigned i = 0; i != 16; i += 4)
1237       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1238           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1239           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1240           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1241         return false;
1242   } else if (ShuffleKind == 1) {
1243     unsigned j = IsLE ? 0 : 4;
1244     for (unsigned i = 0; i != 8; i += 4)
1245       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1246           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1247           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1248           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1249           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1250           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1251           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1252           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1253         return false;
1254   }
1255   return true;
1256 }
1257 
1258 /// isVMerge - Common function, used to match vmrg* shuffles.
1259 ///
isVMerge(ShuffleVectorSDNode * N,unsigned UnitSize,unsigned LHSStart,unsigned RHSStart)1260 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1261                      unsigned LHSStart, unsigned RHSStart) {
1262   if (N->getValueType(0) != MVT::v16i8)
1263     return false;
1264   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1265          "Unsupported merge size!");
1266 
1267   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1268     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1269       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1270                              LHSStart+j+i*UnitSize) ||
1271           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1272                              RHSStart+j+i*UnitSize))
1273         return false;
1274     }
1275   return true;
1276 }
1277 
1278 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1279 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1280 /// The ShuffleKind distinguishes between big-endian merges with two
1281 /// different inputs (0), either-endian merges with two identical inputs (1),
1282 /// and little-endian merges with two different inputs (2).  For the latter,
1283 /// the input operands are swapped (see PPCInstrAltivec.td).
isVMRGLShuffleMask(ShuffleVectorSDNode * N,unsigned UnitSize,unsigned ShuffleKind,SelectionDAG & DAG)1284 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1285                              unsigned ShuffleKind, SelectionDAG &DAG) {
1286   if (DAG.getDataLayout().isLittleEndian()) {
1287     if (ShuffleKind == 1) // unary
1288       return isVMerge(N, UnitSize, 0, 0);
1289     else if (ShuffleKind == 2) // swapped
1290       return isVMerge(N, UnitSize, 0, 16);
1291     else
1292       return false;
1293   } else {
1294     if (ShuffleKind == 1) // unary
1295       return isVMerge(N, UnitSize, 8, 8);
1296     else if (ShuffleKind == 0) // normal
1297       return isVMerge(N, UnitSize, 8, 24);
1298     else
1299       return false;
1300   }
1301 }
1302 
1303 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1304 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1305 /// The ShuffleKind distinguishes between big-endian merges with two
1306 /// different inputs (0), either-endian merges with two identical inputs (1),
1307 /// and little-endian merges with two different inputs (2).  For the latter,
1308 /// the input operands are swapped (see PPCInstrAltivec.td).
isVMRGHShuffleMask(ShuffleVectorSDNode * N,unsigned UnitSize,unsigned ShuffleKind,SelectionDAG & DAG)1309 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1310                              unsigned ShuffleKind, SelectionDAG &DAG) {
1311   if (DAG.getDataLayout().isLittleEndian()) {
1312     if (ShuffleKind == 1) // unary
1313       return isVMerge(N, UnitSize, 8, 8);
1314     else if (ShuffleKind == 2) // swapped
1315       return isVMerge(N, UnitSize, 8, 24);
1316     else
1317       return false;
1318   } else {
1319     if (ShuffleKind == 1) // unary
1320       return isVMerge(N, UnitSize, 0, 0);
1321     else if (ShuffleKind == 0) // normal
1322       return isVMerge(N, UnitSize, 0, 16);
1323     else
1324       return false;
1325   }
1326 }
1327 
1328 /**
1329  * \brief Common function used to match vmrgew and vmrgow shuffles
1330  *
1331  * The indexOffset determines whether to look for even or odd words in
1332  * the shuffle mask. This is based on the of the endianness of the target
1333  * machine.
1334  *   - Little Endian:
1335  *     - Use offset of 0 to check for odd elements
1336  *     - Use offset of 4 to check for even elements
1337  *   - Big Endian:
1338  *     - Use offset of 0 to check for even elements
1339  *     - Use offset of 4 to check for odd elements
1340  * A detailed description of the vector element ordering for little endian and
1341  * big endian can be found at
1342  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1343  * Targeting your applications - what little endian and big endian IBM XL C/C++
1344  * compiler differences mean to you
1345  *
1346  * The mask to the shuffle vector instruction specifies the indices of the
1347  * elements from the two input vectors to place in the result. The elements are
1348  * numbered in array-access order, starting with the first vector. These vectors
1349  * are always of type v16i8, thus each vector will contain 16 elements of size
1350  * 8. More info on the shuffle vector can be found in the
1351  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1352  * Language Reference.
1353  *
1354  * The RHSStartValue indicates whether the same input vectors are used (unary)
1355  * or two different input vectors are used, based on the following:
1356  *   - If the instruction uses the same vector for both inputs, the range of the
1357  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1358  *     be 0.
1359  *   - If the instruction has two different vectors then the range of the
1360  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1361  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1362  *     to 31 specify elements in the second vector).
1363  *
1364  * \param[in] N The shuffle vector SD Node to analyze
1365  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1366  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1367  * vector to the shuffle_vector instruction
1368  * \return true iff this shuffle vector represents an even or odd word merge
1369  */
isVMerge(ShuffleVectorSDNode * N,unsigned IndexOffset,unsigned RHSStartValue)1370 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1371                      unsigned RHSStartValue) {
1372   if (N->getValueType(0) != MVT::v16i8)
1373     return false;
1374 
1375   for (unsigned i = 0; i < 2; ++i)
1376     for (unsigned j = 0; j < 4; ++j)
1377       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1378                              i*RHSStartValue+j+IndexOffset) ||
1379           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1380                              i*RHSStartValue+j+IndexOffset+8))
1381         return false;
1382   return true;
1383 }
1384 
1385 /**
1386  * \brief Determine if the specified shuffle mask is suitable for the vmrgew or
1387  * vmrgow instructions.
1388  *
1389  * \param[in] N The shuffle vector SD Node to analyze
1390  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1391  * \param[in] ShuffleKind Identify the type of merge:
1392  *   - 0 = big-endian merge with two different inputs;
1393  *   - 1 = either-endian merge with two identical inputs;
1394  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1395  *     little-endian merges).
1396  * \param[in] DAG The current SelectionDAG
1397  * \return true iff this shuffle mask
1398  */
isVMRGEOShuffleMask(ShuffleVectorSDNode * N,bool CheckEven,unsigned ShuffleKind,SelectionDAG & DAG)1399 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1400                               unsigned ShuffleKind, SelectionDAG &DAG) {
1401   if (DAG.getDataLayout().isLittleEndian()) {
1402     unsigned indexOffset = CheckEven ? 4 : 0;
1403     if (ShuffleKind == 1) // Unary
1404       return isVMerge(N, indexOffset, 0);
1405     else if (ShuffleKind == 2) // swapped
1406       return isVMerge(N, indexOffset, 16);
1407     else
1408       return false;
1409   }
1410   else {
1411     unsigned indexOffset = CheckEven ? 0 : 4;
1412     if (ShuffleKind == 1) // Unary
1413       return isVMerge(N, indexOffset, 0);
1414     else if (ShuffleKind == 0) // Normal
1415       return isVMerge(N, indexOffset, 16);
1416     else
1417       return false;
1418   }
1419   return false;
1420 }
1421 
1422 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1423 /// amount, otherwise return -1.
1424 /// The ShuffleKind distinguishes between big-endian operations with two
1425 /// different inputs (0), either-endian operations with two identical inputs
1426 /// (1), and little-endian operations with two different inputs (2).  For the
1427 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
isVSLDOIShuffleMask(SDNode * N,unsigned ShuffleKind,SelectionDAG & DAG)1428 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1429                              SelectionDAG &DAG) {
1430   if (N->getValueType(0) != MVT::v16i8)
1431     return -1;
1432 
1433   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1434 
1435   // Find the first non-undef value in the shuffle mask.
1436   unsigned i;
1437   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1438     /*search*/;
1439 
1440   if (i == 16) return -1;  // all undef.
1441 
1442   // Otherwise, check to see if the rest of the elements are consecutively
1443   // numbered from this value.
1444   unsigned ShiftAmt = SVOp->getMaskElt(i);
1445   if (ShiftAmt < i) return -1;
1446 
1447   ShiftAmt -= i;
1448   bool isLE = DAG.getDataLayout().isLittleEndian();
1449 
1450   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1451     // Check the rest of the elements to see if they are consecutive.
1452     for (++i; i != 16; ++i)
1453       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1454         return -1;
1455   } else if (ShuffleKind == 1) {
1456     // Check the rest of the elements to see if they are consecutive.
1457     for (++i; i != 16; ++i)
1458       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1459         return -1;
1460   } else
1461     return -1;
1462 
1463   if (isLE)
1464     ShiftAmt = 16 - ShiftAmt;
1465 
1466   return ShiftAmt;
1467 }
1468 
1469 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1470 /// specifies a splat of a single element that is suitable for input to
1471 /// VSPLTB/VSPLTH/VSPLTW.
isSplatShuffleMask(ShuffleVectorSDNode * N,unsigned EltSize)1472 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1473   assert(N->getValueType(0) == MVT::v16i8 &&
1474          (EltSize == 1 || EltSize == 2 || EltSize == 4));
1475 
1476   // The consecutive indices need to specify an element, not part of two
1477   // different elements.  So abandon ship early if this isn't the case.
1478   if (N->getMaskElt(0) % EltSize != 0)
1479     return false;
1480 
1481   // This is a splat operation if each element of the permute is the same, and
1482   // if the value doesn't reference the second vector.
1483   unsigned ElementBase = N->getMaskElt(0);
1484 
1485   // FIXME: Handle UNDEF elements too!
1486   if (ElementBase >= 16)
1487     return false;
1488 
1489   // Check that the indices are consecutive, in the case of a multi-byte element
1490   // splatted with a v16i8 mask.
1491   for (unsigned i = 1; i != EltSize; ++i)
1492     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1493       return false;
1494 
1495   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1496     if (N->getMaskElt(i) < 0) continue;
1497     for (unsigned j = 0; j != EltSize; ++j)
1498       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1499         return false;
1500   }
1501   return true;
1502 }
1503 
isXXINSERTWMask(ShuffleVectorSDNode * N,unsigned & ShiftElts,unsigned & InsertAtByte,bool & Swap,bool IsLE)1504 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1505                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1506 
1507   // Check that the mask is shuffling words
1508   for (unsigned i = 0; i < 4; ++i) {
1509     unsigned B0 = N->getMaskElt(i*4);
1510     unsigned B1 = N->getMaskElt(i*4+1);
1511     unsigned B2 = N->getMaskElt(i*4+2);
1512     unsigned B3 = N->getMaskElt(i*4+3);
1513     if (B0 % 4)
1514       return false;
1515     if (B1 != B0+1 || B2 != B1+1 || B3 != B2+1)
1516       return false;
1517   }
1518 
1519   // Now we look at mask elements 0,4,8,12
1520   unsigned M0 = N->getMaskElt(0) / 4;
1521   unsigned M1 = N->getMaskElt(4) / 4;
1522   unsigned M2 = N->getMaskElt(8) / 4;
1523   unsigned M3 = N->getMaskElt(12) / 4;
1524   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1525   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1526 
1527   // Below, let H and L be arbitrary elements of the shuffle mask
1528   // where H is in the range [4,7] and L is in the range [0,3].
1529   // H, 1, 2, 3 or L, 5, 6, 7
1530   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1531       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1532     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1533     InsertAtByte = IsLE ? 12 : 0;
1534     Swap = M0 < 4;
1535     return true;
1536   }
1537   // 0, H, 2, 3 or 4, L, 6, 7
1538   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1539       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1540     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1541     InsertAtByte = IsLE ? 8 : 4;
1542     Swap = M1 < 4;
1543     return true;
1544   }
1545   // 0, 1, H, 3 or 4, 5, L, 7
1546   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1547       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1548     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1549     InsertAtByte = IsLE ? 4 : 8;
1550     Swap = M2 < 4;
1551     return true;
1552   }
1553   // 0, 1, 2, H or 4, 5, 6, L
1554   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1555       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1556     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1557     InsertAtByte = IsLE ? 0 : 12;
1558     Swap = M3 < 4;
1559     return true;
1560   }
1561 
1562   // If both vector operands for the shuffle are the same vector, the mask will
1563   // contain only elements from the first one and the second one will be undef.
1564   if (N->getOperand(1).isUndef()) {
1565     ShiftElts = 0;
1566     Swap = true;
1567     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1568     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1569       InsertAtByte = IsLE ? 12 : 0;
1570       return true;
1571     }
1572     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1573       InsertAtByte = IsLE ? 8 : 4;
1574       return true;
1575     }
1576     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1577       InsertAtByte = IsLE ? 4 : 8;
1578       return true;
1579     }
1580     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1581       InsertAtByte = IsLE ? 0 : 12;
1582       return true;
1583     }
1584   }
1585 
1586   return false;
1587 }
1588 
1589 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
1590 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
getVSPLTImmediate(SDNode * N,unsigned EltSize,SelectionDAG & DAG)1591 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
1592                                 SelectionDAG &DAG) {
1593   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1594   assert(isSplatShuffleMask(SVOp, EltSize));
1595   if (DAG.getDataLayout().isLittleEndian())
1596     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
1597   else
1598     return SVOp->getMaskElt(0) / EltSize;
1599 }
1600 
1601 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
1602 /// by using a vspltis[bhw] instruction of the specified element size, return
1603 /// the constant being splatted.  The ByteSize field indicates the number of
1604 /// bytes of each element [124] -> [bhw].
get_VSPLTI_elt(SDNode * N,unsigned ByteSize,SelectionDAG & DAG)1605 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
1606   SDValue OpVal(nullptr, 0);
1607 
1608   // If ByteSize of the splat is bigger than the element size of the
1609   // build_vector, then we have a case where we are checking for a splat where
1610   // multiple elements of the buildvector are folded together into a single
1611   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
1612   unsigned EltSize = 16/N->getNumOperands();
1613   if (EltSize < ByteSize) {
1614     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
1615     SDValue UniquedVals[4];
1616     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
1617 
1618     // See if all of the elements in the buildvector agree across.
1619     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1620       if (N->getOperand(i).isUndef()) continue;
1621       // If the element isn't a constant, bail fully out.
1622       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
1623 
1624 
1625       if (!UniquedVals[i&(Multiple-1)].getNode())
1626         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
1627       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
1628         return SDValue();  // no match.
1629     }
1630 
1631     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
1632     // either constant or undef values that are identical for each chunk.  See
1633     // if these chunks can form into a larger vspltis*.
1634 
1635     // Check to see if all of the leading entries are either 0 or -1.  If
1636     // neither, then this won't fit into the immediate field.
1637     bool LeadingZero = true;
1638     bool LeadingOnes = true;
1639     for (unsigned i = 0; i != Multiple-1; ++i) {
1640       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
1641 
1642       LeadingZero &= isNullConstant(UniquedVals[i]);
1643       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
1644     }
1645     // Finally, check the least significant entry.
1646     if (LeadingZero) {
1647       if (!UniquedVals[Multiple-1].getNode())
1648         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
1649       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
1650       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
1651         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1652     }
1653     if (LeadingOnes) {
1654       if (!UniquedVals[Multiple-1].getNode())
1655         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
1656       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
1657       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
1658         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
1659     }
1660 
1661     return SDValue();
1662   }
1663 
1664   // Check to see if this buildvec has a single non-undef value in its elements.
1665   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1666     if (N->getOperand(i).isUndef()) continue;
1667     if (!OpVal.getNode())
1668       OpVal = N->getOperand(i);
1669     else if (OpVal != N->getOperand(i))
1670       return SDValue();
1671   }
1672 
1673   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
1674 
1675   unsigned ValSizeInBytes = EltSize;
1676   uint64_t Value = 0;
1677   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1678     Value = CN->getZExtValue();
1679   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1680     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
1681     Value = FloatToBits(CN->getValueAPF().convertToFloat());
1682   }
1683 
1684   // If the splat value is larger than the element value, then we can never do
1685   // this splat.  The only case that we could fit the replicated bits into our
1686   // immediate field for would be zero, and we prefer to use vxor for it.
1687   if (ValSizeInBytes < ByteSize) return SDValue();
1688 
1689   // If the element value is larger than the splat value, check if it consists
1690   // of a repeated bit pattern of size ByteSize.
1691   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
1692     return SDValue();
1693 
1694   // Properly sign extend the value.
1695   int MaskVal = SignExtend32(Value, ByteSize * 8);
1696 
1697   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
1698   if (MaskVal == 0) return SDValue();
1699 
1700   // Finally, if this value fits in a 5 bit sext field, return it
1701   if (SignExtend32<5>(MaskVal) == MaskVal)
1702     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
1703   return SDValue();
1704 }
1705 
1706 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
1707 /// amount, otherwise return -1.
isQVALIGNIShuffleMask(SDNode * N)1708 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
1709   EVT VT = N->getValueType(0);
1710   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
1711     return -1;
1712 
1713   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1714 
1715   // Find the first non-undef value in the shuffle mask.
1716   unsigned i;
1717   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
1718     /*search*/;
1719 
1720   if (i == 4) return -1;  // all undef.
1721 
1722   // Otherwise, check to see if the rest of the elements are consecutively
1723   // numbered from this value.
1724   unsigned ShiftAmt = SVOp->getMaskElt(i);
1725   if (ShiftAmt < i) return -1;
1726   ShiftAmt -= i;
1727 
1728   // Check the rest of the elements to see if they are consecutive.
1729   for (++i; i != 4; ++i)
1730     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1731       return -1;
1732 
1733   return ShiftAmt;
1734 }
1735 
1736 //===----------------------------------------------------------------------===//
1737 //  Addressing Mode Selection
1738 //===----------------------------------------------------------------------===//
1739 
1740 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
1741 /// or 64-bit immediate, and if the value can be accurately represented as a
1742 /// sign extension from a 16-bit value.  If so, this returns true and the
1743 /// immediate.
isIntS16Immediate(SDNode * N,short & Imm)1744 static bool isIntS16Immediate(SDNode *N, short &Imm) {
1745   if (!isa<ConstantSDNode>(N))
1746     return false;
1747 
1748   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
1749   if (N->getValueType(0) == MVT::i32)
1750     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
1751   else
1752     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
1753 }
isIntS16Immediate(SDValue Op,short & Imm)1754 static bool isIntS16Immediate(SDValue Op, short &Imm) {
1755   return isIntS16Immediate(Op.getNode(), Imm);
1756 }
1757 
1758 /// SelectAddressRegReg - Given the specified addressed, check to see if it
1759 /// can be represented as an indexed [r+r] operation.  Returns false if it
1760 /// can be more efficiently represented with [r+imm].
SelectAddressRegReg(SDValue N,SDValue & Base,SDValue & Index,SelectionDAG & DAG) const1761 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
1762                                             SDValue &Index,
1763                                             SelectionDAG &DAG) const {
1764   short imm = 0;
1765   if (N.getOpcode() == ISD::ADD) {
1766     if (isIntS16Immediate(N.getOperand(1), imm))
1767       return false;    // r+i
1768     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
1769       return false;    // r+i
1770 
1771     Base = N.getOperand(0);
1772     Index = N.getOperand(1);
1773     return true;
1774   } else if (N.getOpcode() == ISD::OR) {
1775     if (isIntS16Immediate(N.getOperand(1), imm))
1776       return false;    // r+i can fold it if we can.
1777 
1778     // If this is an or of disjoint bitfields, we can codegen this as an add
1779     // (for better address arithmetic) if the LHS and RHS of the OR are provably
1780     // disjoint.
1781     APInt LHSKnownZero, LHSKnownOne;
1782     APInt RHSKnownZero, RHSKnownOne;
1783     DAG.computeKnownBits(N.getOperand(0),
1784                          LHSKnownZero, LHSKnownOne);
1785 
1786     if (LHSKnownZero.getBoolValue()) {
1787       DAG.computeKnownBits(N.getOperand(1),
1788                            RHSKnownZero, RHSKnownOne);
1789       // If all of the bits are known zero on the LHS or RHS, the add won't
1790       // carry.
1791       if (~(LHSKnownZero | RHSKnownZero) == 0) {
1792         Base = N.getOperand(0);
1793         Index = N.getOperand(1);
1794         return true;
1795       }
1796     }
1797   }
1798 
1799   return false;
1800 }
1801 
1802 // If we happen to be doing an i64 load or store into a stack slot that has
1803 // less than a 4-byte alignment, then the frame-index elimination may need to
1804 // use an indexed load or store instruction (because the offset may not be a
1805 // multiple of 4). The extra register needed to hold the offset comes from the
1806 // register scavenger, and it is possible that the scavenger will need to use
1807 // an emergency spill slot. As a result, we need to make sure that a spill slot
1808 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
1809 // stack slot.
fixupFuncForFI(SelectionDAG & DAG,int FrameIdx,EVT VT)1810 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
1811   // FIXME: This does not handle the LWA case.
1812   if (VT != MVT::i64)
1813     return;
1814 
1815   // NOTE: We'll exclude negative FIs here, which come from argument
1816   // lowering, because there are no known test cases triggering this problem
1817   // using packed structures (or similar). We can remove this exclusion if
1818   // we find such a test case. The reason why this is so test-case driven is
1819   // because this entire 'fixup' is only to prevent crashes (from the
1820   // register scavenger) on not-really-valid inputs. For example, if we have:
1821   //   %a = alloca i1
1822   //   %b = bitcast i1* %a to i64*
1823   //   store i64* a, i64 b
1824   // then the store should really be marked as 'align 1', but is not. If it
1825   // were marked as 'align 1' then the indexed form would have been
1826   // instruction-selected initially, and the problem this 'fixup' is preventing
1827   // won't happen regardless.
1828   if (FrameIdx < 0)
1829     return;
1830 
1831   MachineFunction &MF = DAG.getMachineFunction();
1832   MachineFrameInfo *MFI = MF.getFrameInfo();
1833 
1834   unsigned Align = MFI->getObjectAlignment(FrameIdx);
1835   if (Align >= 4)
1836     return;
1837 
1838   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1839   FuncInfo->setHasNonRISpills();
1840 }
1841 
1842 /// Returns true if the address N can be represented by a base register plus
1843 /// a signed 16-bit displacement [r+imm], and if it is not better
1844 /// represented as reg+reg.  If Aligned is true, only accept displacements
1845 /// suitable for STD and friends, i.e. multiples of 4.
SelectAddressRegImm(SDValue N,SDValue & Disp,SDValue & Base,SelectionDAG & DAG,bool Aligned) const1846 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
1847                                             SDValue &Base,
1848                                             SelectionDAG &DAG,
1849                                             bool Aligned) const {
1850   // FIXME dl should come from parent load or store, not from address
1851   SDLoc dl(N);
1852   // If this can be more profitably realized as r+r, fail.
1853   if (SelectAddressRegReg(N, Disp, Base, DAG))
1854     return false;
1855 
1856   if (N.getOpcode() == ISD::ADD) {
1857     short imm = 0;
1858     if (isIntS16Immediate(N.getOperand(1), imm) &&
1859         (!Aligned || (imm & 3) == 0)) {
1860       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
1861       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1862         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1863         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1864       } else {
1865         Base = N.getOperand(0);
1866       }
1867       return true; // [r+i]
1868     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1869       // Match LOAD (ADD (X, Lo(G))).
1870       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1871              && "Cannot handle constant offsets yet!");
1872       Disp = N.getOperand(1).getOperand(0);  // The global address.
1873       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1874              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
1875              Disp.getOpcode() == ISD::TargetConstantPool ||
1876              Disp.getOpcode() == ISD::TargetJumpTable);
1877       Base = N.getOperand(0);
1878       return true;  // [&g+r]
1879     }
1880   } else if (N.getOpcode() == ISD::OR) {
1881     short imm = 0;
1882     if (isIntS16Immediate(N.getOperand(1), imm) &&
1883         (!Aligned || (imm & 3) == 0)) {
1884       // If this is an or of disjoint bitfields, we can codegen this as an add
1885       // (for better address arithmetic) if the LHS and RHS of the OR are
1886       // provably disjoint.
1887       APInt LHSKnownZero, LHSKnownOne;
1888       DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1889 
1890       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1891         // If all of the bits are known zero on the LHS or RHS, the add won't
1892         // carry.
1893         if (FrameIndexSDNode *FI =
1894               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1895           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1896           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1897         } else {
1898           Base = N.getOperand(0);
1899         }
1900         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
1901         return true;
1902       }
1903     }
1904   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1905     // Loading from a constant address.
1906 
1907     // If this address fits entirely in a 16-bit sext immediate field, codegen
1908     // this as "d, 0"
1909     short Imm;
1910     if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
1911       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
1912       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1913                              CN->getValueType(0));
1914       return true;
1915     }
1916 
1917     // Handle 32-bit sext immediates with LIS + addr mode.
1918     if ((CN->getValueType(0) == MVT::i32 ||
1919          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
1920         (!Aligned || (CN->getZExtValue() & 3) == 0)) {
1921       int Addr = (int)CN->getZExtValue();
1922 
1923       // Otherwise, break this down into an LIS + disp.
1924       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
1925 
1926       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
1927                                    MVT::i32);
1928       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1929       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1930       return true;
1931     }
1932   }
1933 
1934   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
1935   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
1936     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1937     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1938   } else
1939     Base = N;
1940   return true;      // [r+0]
1941 }
1942 
1943 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1944 /// represented as an indexed [r+r] operation.
SelectAddressRegRegOnly(SDValue N,SDValue & Base,SDValue & Index,SelectionDAG & DAG) const1945 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1946                                                 SDValue &Index,
1947                                                 SelectionDAG &DAG) const {
1948   // Check to see if we can easily represent this as an [r+r] address.  This
1949   // will fail if it thinks that the address is more profitably represented as
1950   // reg+imm, e.g. where imm = 0.
1951   if (SelectAddressRegReg(N, Base, Index, DAG))
1952     return true;
1953 
1954   // If the operand is an addition, always emit this as [r+r], since this is
1955   // better (for code size, and execution, as the memop does the add for free)
1956   // than emitting an explicit add.
1957   if (N.getOpcode() == ISD::ADD) {
1958     Base = N.getOperand(0);
1959     Index = N.getOperand(1);
1960     return true;
1961   }
1962 
1963   // Otherwise, do it the hard way, using R0 as the base register.
1964   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1965                          N.getValueType());
1966   Index = N;
1967   return true;
1968 }
1969 
1970 /// getPreIndexedAddressParts - returns true by value, base pointer and
1971 /// offset pointer and addressing mode by reference if the node's address
1972 /// can be legally represented as pre-indexed load / store address.
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const1973 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1974                                                   SDValue &Offset,
1975                                                   ISD::MemIndexedMode &AM,
1976                                                   SelectionDAG &DAG) const {
1977   if (DisablePPCPreinc) return false;
1978 
1979   bool isLoad = true;
1980   SDValue Ptr;
1981   EVT VT;
1982   unsigned Alignment;
1983   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1984     Ptr = LD->getBasePtr();
1985     VT = LD->getMemoryVT();
1986     Alignment = LD->getAlignment();
1987   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1988     Ptr = ST->getBasePtr();
1989     VT  = ST->getMemoryVT();
1990     Alignment = ST->getAlignment();
1991     isLoad = false;
1992   } else
1993     return false;
1994 
1995   // PowerPC doesn't have preinc load/store instructions for vectors (except
1996   // for QPX, which does have preinc r+r forms).
1997   if (VT.isVector()) {
1998     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
1999       return false;
2000     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2001       AM = ISD::PRE_INC;
2002       return true;
2003     }
2004   }
2005 
2006   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2007 
2008     // Common code will reject creating a pre-inc form if the base pointer
2009     // is a frame index, or if N is a store and the base pointer is either
2010     // the same as or a predecessor of the value being stored.  Check for
2011     // those situations here, and try with swapped Base/Offset instead.
2012     bool Swap = false;
2013 
2014     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2015       Swap = true;
2016     else if (!isLoad) {
2017       SDValue Val = cast<StoreSDNode>(N)->getValue();
2018       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2019         Swap = true;
2020     }
2021 
2022     if (Swap)
2023       std::swap(Base, Offset);
2024 
2025     AM = ISD::PRE_INC;
2026     return true;
2027   }
2028 
2029   // LDU/STU can only handle immediates that are a multiple of 4.
2030   if (VT != MVT::i64) {
2031     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
2032       return false;
2033   } else {
2034     // LDU/STU need an address with at least 4-byte alignment.
2035     if (Alignment < 4)
2036       return false;
2037 
2038     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
2039       return false;
2040   }
2041 
2042   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2043     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2044     // sext i32 to i64 when addr mode is r+i.
2045     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2046         LD->getExtensionType() == ISD::SEXTLOAD &&
2047         isa<ConstantSDNode>(Offset))
2048       return false;
2049   }
2050 
2051   AM = ISD::PRE_INC;
2052   return true;
2053 }
2054 
2055 //===----------------------------------------------------------------------===//
2056 //  LowerOperation implementation
2057 //===----------------------------------------------------------------------===//
2058 
2059 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2060 /// and LoOpFlags to the target MO flags.
getLabelAccessInfo(bool IsPIC,const PPCSubtarget & Subtarget,unsigned & HiOpFlags,unsigned & LoOpFlags,const GlobalValue * GV=nullptr)2061 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2062                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2063                                const GlobalValue *GV = nullptr) {
2064   HiOpFlags = PPCII::MO_HA;
2065   LoOpFlags = PPCII::MO_LO;
2066 
2067   // Don't use the pic base if not in PIC relocation model.
2068   if (IsPIC) {
2069     HiOpFlags |= PPCII::MO_PIC_FLAG;
2070     LoOpFlags |= PPCII::MO_PIC_FLAG;
2071   }
2072 
2073   // If this is a reference to a global value that requires a non-lazy-ptr, make
2074   // sure that instruction lowering adds it.
2075   if (GV && Subtarget.hasLazyResolverStub(GV)) {
2076     HiOpFlags |= PPCII::MO_NLP_FLAG;
2077     LoOpFlags |= PPCII::MO_NLP_FLAG;
2078 
2079     if (GV->hasHiddenVisibility()) {
2080       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2081       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2082     }
2083   }
2084 }
2085 
LowerLabelRef(SDValue HiPart,SDValue LoPart,bool isPIC,SelectionDAG & DAG)2086 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2087                              SelectionDAG &DAG) {
2088   SDLoc DL(HiPart);
2089   EVT PtrVT = HiPart.getValueType();
2090   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2091 
2092   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2093   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2094 
2095   // With PIC, the first instruction is actually "GR+hi(&G)".
2096   if (isPIC)
2097     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2098                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2099 
2100   // Generate non-pic code that has direct accesses to the constant pool.
2101   // The address of the global is just (hi(&g)+lo(&g)).
2102   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2103 }
2104 
setUsesTOCBasePtr(MachineFunction & MF)2105 static void setUsesTOCBasePtr(MachineFunction &MF) {
2106   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2107   FuncInfo->setUsesTOCBasePtr();
2108 }
2109 
setUsesTOCBasePtr(SelectionDAG & DAG)2110 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2111   setUsesTOCBasePtr(DAG.getMachineFunction());
2112 }
2113 
getTOCEntry(SelectionDAG & DAG,const SDLoc & dl,bool Is64Bit,SDValue GA)2114 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
2115                            SDValue GA) {
2116   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2117   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2118                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2119 
2120   SDValue Ops[] = { GA, Reg };
2121   return DAG.getMemIntrinsicNode(
2122       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2123       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, false, true,
2124       false, 0);
2125 }
2126 
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const2127 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2128                                              SelectionDAG &DAG) const {
2129   EVT PtrVT = Op.getValueType();
2130   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2131   const Constant *C = CP->getConstVal();
2132 
2133   // 64-bit SVR4 ABI code is always position-independent.
2134   // The actual address of the GlobalValue is stored in the TOC.
2135   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2136     setUsesTOCBasePtr(DAG);
2137     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2138     return getTOCEntry(DAG, SDLoc(CP), true, GA);
2139   }
2140 
2141   unsigned MOHiFlag, MOLoFlag;
2142   bool IsPIC = isPositionIndependent();
2143   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2144 
2145   if (IsPIC && Subtarget.isSVR4ABI()) {
2146     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2147                                            PPCII::MO_PIC_FLAG);
2148     return getTOCEntry(DAG, SDLoc(CP), false, GA);
2149   }
2150 
2151   SDValue CPIHi =
2152     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2153   SDValue CPILo =
2154     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2155   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2156 }
2157 
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const2158 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2159   EVT PtrVT = Op.getValueType();
2160   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2161 
2162   // 64-bit SVR4 ABI code is always position-independent.
2163   // The actual address of the GlobalValue is stored in the TOC.
2164   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2165     setUsesTOCBasePtr(DAG);
2166     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2167     return getTOCEntry(DAG, SDLoc(JT), true, GA);
2168   }
2169 
2170   unsigned MOHiFlag, MOLoFlag;
2171   bool IsPIC = isPositionIndependent();
2172   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2173 
2174   if (IsPIC && Subtarget.isSVR4ABI()) {
2175     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2176                                         PPCII::MO_PIC_FLAG);
2177     return getTOCEntry(DAG, SDLoc(GA), false, GA);
2178   }
2179 
2180   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2181   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2182   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2183 }
2184 
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const2185 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2186                                              SelectionDAG &DAG) const {
2187   EVT PtrVT = Op.getValueType();
2188   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2189   const BlockAddress *BA = BASDN->getBlockAddress();
2190 
2191   // 64-bit SVR4 ABI code is always position-independent.
2192   // The actual BlockAddress is stored in the TOC.
2193   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2194     setUsesTOCBasePtr(DAG);
2195     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2196     return getTOCEntry(DAG, SDLoc(BASDN), true, GA);
2197   }
2198 
2199   unsigned MOHiFlag, MOLoFlag;
2200   bool IsPIC = isPositionIndependent();
2201   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2202   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2203   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2204   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2205 }
2206 
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const2207 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2208                                               SelectionDAG &DAG) const {
2209 
2210   // FIXME: TLS addresses currently use medium model code sequences,
2211   // which is the most useful form.  Eventually support for small and
2212   // large models could be added if users need it, at the cost of
2213   // additional complexity.
2214   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2215   if (DAG.getTarget().Options.EmulatedTLS)
2216     return LowerToTLSEmulatedModel(GA, DAG);
2217 
2218   SDLoc dl(GA);
2219   const GlobalValue *GV = GA->getGlobal();
2220   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2221   bool is64bit = Subtarget.isPPC64();
2222   const Module *M = DAG.getMachineFunction().getFunction()->getParent();
2223   PICLevel::Level picLevel = M->getPICLevel();
2224 
2225   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
2226 
2227   if (Model == TLSModel::LocalExec) {
2228     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2229                                                PPCII::MO_TPREL_HA);
2230     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2231                                                PPCII::MO_TPREL_LO);
2232     SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
2233                                      is64bit ? MVT::i64 : MVT::i32);
2234     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2235     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2236   }
2237 
2238   if (Model == TLSModel::InitialExec) {
2239     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2240     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2241                                                 PPCII::MO_TLS);
2242     SDValue GOTPtr;
2243     if (is64bit) {
2244       setUsesTOCBasePtr(DAG);
2245       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2246       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2247                            PtrVT, GOTReg, TGA);
2248     } else
2249       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2250     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2251                                    PtrVT, TGA, GOTPtr);
2252     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2253   }
2254 
2255   if (Model == TLSModel::GeneralDynamic) {
2256     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2257     SDValue GOTPtr;
2258     if (is64bit) {
2259       setUsesTOCBasePtr(DAG);
2260       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2261       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2262                                    GOTReg, TGA);
2263     } else {
2264       if (picLevel == PICLevel::SmallPIC)
2265         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2266       else
2267         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2268     }
2269     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2270                        GOTPtr, TGA, TGA);
2271   }
2272 
2273   if (Model == TLSModel::LocalDynamic) {
2274     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2275     SDValue GOTPtr;
2276     if (is64bit) {
2277       setUsesTOCBasePtr(DAG);
2278       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2279       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2280                            GOTReg, TGA);
2281     } else {
2282       if (picLevel == PICLevel::SmallPIC)
2283         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2284       else
2285         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2286     }
2287     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2288                                   PtrVT, GOTPtr, TGA, TGA);
2289     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2290                                       PtrVT, TLSAddr, TGA);
2291     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2292   }
2293 
2294   llvm_unreachable("Unknown TLS model!");
2295 }
2296 
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const2297 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2298                                               SelectionDAG &DAG) const {
2299   EVT PtrVT = Op.getValueType();
2300   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2301   SDLoc DL(GSDN);
2302   const GlobalValue *GV = GSDN->getGlobal();
2303 
2304   // 64-bit SVR4 ABI code is always position-independent.
2305   // The actual address of the GlobalValue is stored in the TOC.
2306   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2307     setUsesTOCBasePtr(DAG);
2308     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2309     return getTOCEntry(DAG, DL, true, GA);
2310   }
2311 
2312   unsigned MOHiFlag, MOLoFlag;
2313   bool IsPIC = isPositionIndependent();
2314   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2315 
2316   if (IsPIC && Subtarget.isSVR4ABI()) {
2317     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2318                                             GSDN->getOffset(),
2319                                             PPCII::MO_PIC_FLAG);
2320     return getTOCEntry(DAG, DL, false, GA);
2321   }
2322 
2323   SDValue GAHi =
2324     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2325   SDValue GALo =
2326     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2327 
2328   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2329 
2330   // If the global reference is actually to a non-lazy-pointer, we have to do an
2331   // extra load to get the address of the global.
2332   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2333     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
2334                       false, false, false, 0);
2335   return Ptr;
2336 }
2337 
LowerSETCC(SDValue Op,SelectionDAG & DAG) const2338 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2339   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2340   SDLoc dl(Op);
2341 
2342   if (Op.getValueType() == MVT::v2i64) {
2343     // When the operands themselves are v2i64 values, we need to do something
2344     // special because VSX has no underlying comparison operations for these.
2345     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2346       // Equality can be handled by casting to the legal type for Altivec
2347       // comparisons, everything else needs to be expanded.
2348       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2349         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2350                  DAG.getSetCC(dl, MVT::v4i32,
2351                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2352                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2353                    CC));
2354       }
2355 
2356       return SDValue();
2357     }
2358 
2359     // We handle most of these in the usual way.
2360     return Op;
2361   }
2362 
2363   // If we're comparing for equality to zero, expose the fact that this is
2364   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
2365   // fold the new nodes.
2366   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2367     if (C->isNullValue() && CC == ISD::SETEQ) {
2368       EVT VT = Op.getOperand(0).getValueType();
2369       SDValue Zext = Op.getOperand(0);
2370       if (VT.bitsLT(MVT::i32)) {
2371         VT = MVT::i32;
2372         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
2373       }
2374       unsigned Log2b = Log2_32(VT.getSizeInBits());
2375       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
2376       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
2377                                 DAG.getConstant(Log2b, dl, MVT::i32));
2378       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
2379     }
2380     // Leave comparisons against 0 and -1 alone for now, since they're usually
2381     // optimized.  FIXME: revisit this when we can custom lower all setcc
2382     // optimizations.
2383     if (C->isAllOnesValue() || C->isNullValue())
2384       return SDValue();
2385   }
2386 
2387   // If we have an integer seteq/setne, turn it into a compare against zero
2388   // by xor'ing the rhs with the lhs, which is faster than setting a
2389   // condition register, reading it back out, and masking the correct bit.  The
2390   // normal approach here uses sub to do this instead of xor.  Using xor exposes
2391   // the result to other bit-twiddling opportunities.
2392   EVT LHSVT = Op.getOperand(0).getValueType();
2393   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2394     EVT VT = Op.getValueType();
2395     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2396                                 Op.getOperand(1));
2397     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2398   }
2399   return SDValue();
2400 }
2401 
LowerVAARG(SDValue Op,SelectionDAG & DAG) const2402 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2403   SDNode *Node = Op.getNode();
2404   EVT VT = Node->getValueType(0);
2405   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2406   SDValue InChain = Node->getOperand(0);
2407   SDValue VAListPtr = Node->getOperand(1);
2408   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2409   SDLoc dl(Node);
2410 
2411   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2412 
2413   // gpr_index
2414   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2415                                     VAListPtr, MachinePointerInfo(SV), MVT::i8,
2416                                     false, false, false, 0);
2417   InChain = GprIndex.getValue(1);
2418 
2419   if (VT == MVT::i64) {
2420     // Check if GprIndex is even
2421     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2422                                  DAG.getConstant(1, dl, MVT::i32));
2423     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2424                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2425     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2426                                           DAG.getConstant(1, dl, MVT::i32));
2427     // Align GprIndex to be even if it isn't
2428     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2429                            GprIndex);
2430   }
2431 
2432   // fpr index is 1 byte after gpr
2433   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2434                                DAG.getConstant(1, dl, MVT::i32));
2435 
2436   // fpr
2437   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2438                                     FprPtr, MachinePointerInfo(SV), MVT::i8,
2439                                     false, false, false, 0);
2440   InChain = FprIndex.getValue(1);
2441 
2442   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2443                                        DAG.getConstant(8, dl, MVT::i32));
2444 
2445   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2446                                         DAG.getConstant(4, dl, MVT::i32));
2447 
2448   // areas
2449   SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
2450                                      MachinePointerInfo(), false, false,
2451                                      false, 0);
2452   InChain = OverflowArea.getValue(1);
2453 
2454   SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
2455                                     MachinePointerInfo(), false, false,
2456                                     false, 0);
2457   InChain = RegSaveArea.getValue(1);
2458 
2459   // select overflow_area if index > 8
2460   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
2461                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
2462 
2463   // adjustment constant gpr_index * 4/8
2464   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
2465                                     VT.isInteger() ? GprIndex : FprIndex,
2466                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
2467                                                     MVT::i32));
2468 
2469   // OurReg = RegSaveArea + RegConstant
2470   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
2471                                RegConstant);
2472 
2473   // Floating types are 32 bytes into RegSaveArea
2474   if (VT.isFloatingPoint())
2475     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
2476                          DAG.getConstant(32, dl, MVT::i32));
2477 
2478   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
2479   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2480                                    VT.isInteger() ? GprIndex : FprIndex,
2481                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
2482                                                    MVT::i32));
2483 
2484   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
2485                               VT.isInteger() ? VAListPtr : FprPtr,
2486                               MachinePointerInfo(SV),
2487                               MVT::i8, false, false, 0);
2488 
2489   // determine if we should load from reg_save_area or overflow_area
2490   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
2491 
2492   // increase overflow_area by 4/8 if gpr/fpr > 8
2493   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
2494                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
2495                                           dl, MVT::i32));
2496 
2497   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
2498                              OverflowAreaPlusN);
2499 
2500   InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
2501                               OverflowAreaPtr,
2502                               MachinePointerInfo(),
2503                               MVT::i32, false, false, 0);
2504 
2505   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
2506                      false, false, false, 0);
2507 }
2508 
LowerVACOPY(SDValue Op,SelectionDAG & DAG) const2509 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
2510   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
2511 
2512   // We have to copy the entire va_list struct:
2513   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
2514   return DAG.getMemcpy(Op.getOperand(0), Op,
2515                        Op.getOperand(1), Op.getOperand(2),
2516                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
2517                        false, MachinePointerInfo(), MachinePointerInfo());
2518 }
2519 
LowerADJUST_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const2520 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
2521                                                   SelectionDAG &DAG) const {
2522   return Op.getOperand(0);
2523 }
2524 
LowerINIT_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const2525 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
2526                                                 SelectionDAG &DAG) const {
2527   SDValue Chain = Op.getOperand(0);
2528   SDValue Trmp = Op.getOperand(1); // trampoline
2529   SDValue FPtr = Op.getOperand(2); // nested function
2530   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
2531   SDLoc dl(Op);
2532 
2533   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2534   bool isPPC64 = (PtrVT == MVT::i64);
2535   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
2536 
2537   TargetLowering::ArgListTy Args;
2538   TargetLowering::ArgListEntry Entry;
2539 
2540   Entry.Ty = IntPtrTy;
2541   Entry.Node = Trmp; Args.push_back(Entry);
2542 
2543   // TrampSize == (isPPC64 ? 48 : 40);
2544   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
2545                                isPPC64 ? MVT::i64 : MVT::i32);
2546   Args.push_back(Entry);
2547 
2548   Entry.Node = FPtr; Args.push_back(Entry);
2549   Entry.Node = Nest; Args.push_back(Entry);
2550 
2551   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
2552   TargetLowering::CallLoweringInfo CLI(DAG);
2553   CLI.setDebugLoc(dl).setChain(Chain)
2554     .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
2555                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
2556                std::move(Args));
2557 
2558   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2559   return CallResult.second;
2560 }
2561 
LowerVASTART(SDValue Op,SelectionDAG & DAG) const2562 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2563   MachineFunction &MF = DAG.getMachineFunction();
2564   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2565   EVT PtrVT = getPointerTy(MF.getDataLayout());
2566 
2567   SDLoc dl(Op);
2568 
2569   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
2570     // vastart just stores the address of the VarArgsFrameIndex slot into the
2571     // memory location argument.
2572     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2573     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2574     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2575                         MachinePointerInfo(SV),
2576                         false, false, 0);
2577   }
2578 
2579   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
2580   // We suppose the given va_list is already allocated.
2581   //
2582   // typedef struct {
2583   //  char gpr;     /* index into the array of 8 GPRs
2584   //                 * stored in the register save area
2585   //                 * gpr=0 corresponds to r3,
2586   //                 * gpr=1 to r4, etc.
2587   //                 */
2588   //  char fpr;     /* index into the array of 8 FPRs
2589   //                 * stored in the register save area
2590   //                 * fpr=0 corresponds to f1,
2591   //                 * fpr=1 to f2, etc.
2592   //                 */
2593   //  char *overflow_arg_area;
2594   //                /* location on stack that holds
2595   //                 * the next overflow argument
2596   //                 */
2597   //  char *reg_save_area;
2598   //               /* where r3:r10 and f1:f8 (if saved)
2599   //                * are stored
2600   //                */
2601   // } va_list[1];
2602 
2603   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
2604   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
2605   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
2606                                             PtrVT);
2607   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2608                                  PtrVT);
2609 
2610   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
2611   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
2612 
2613   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
2614   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
2615 
2616   uint64_t FPROffset = 1;
2617   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
2618 
2619   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2620 
2621   // Store first byte : number of int regs
2622   SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
2623                                          Op.getOperand(1),
2624                                          MachinePointerInfo(SV),
2625                                          MVT::i8, false, false, 0);
2626   uint64_t nextOffset = FPROffset;
2627   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
2628                                   ConstFPROffset);
2629 
2630   // Store second byte : number of float regs
2631   SDValue secondStore =
2632     DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
2633                       MachinePointerInfo(SV, nextOffset), MVT::i8,
2634                       false, false, 0);
2635   nextOffset += StackOffset;
2636   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
2637 
2638   // Store second word : arguments given on stack
2639   SDValue thirdStore =
2640     DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
2641                  MachinePointerInfo(SV, nextOffset),
2642                  false, false, 0);
2643   nextOffset += FrameOffset;
2644   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
2645 
2646   // Store third word : arguments given in registers
2647   return DAG.getStore(thirdStore, dl, FR, nextPtr,
2648                       MachinePointerInfo(SV, nextOffset),
2649                       false, false, 0);
2650 
2651 }
2652 
2653 #include "PPCGenCallingConv.inc"
2654 
2655 // Function whose sole purpose is to kill compiler warnings
2656 // stemming from unused functions included from PPCGenCallingConv.inc.
useFastISelCCs(unsigned Flag) const2657 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
2658   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
2659 }
2660 
CC_PPC32_SVR4_Custom_Dummy(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)2661 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
2662                                       CCValAssign::LocInfo &LocInfo,
2663                                       ISD::ArgFlagsTy &ArgFlags,
2664                                       CCState &State) {
2665   return true;
2666 }
2667 
CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)2668 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
2669                                              MVT &LocVT,
2670                                              CCValAssign::LocInfo &LocInfo,
2671                                              ISD::ArgFlagsTy &ArgFlags,
2672                                              CCState &State) {
2673   static const MCPhysReg ArgRegs[] = {
2674     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2675     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2676   };
2677   const unsigned NumArgRegs = array_lengthof(ArgRegs);
2678 
2679   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2680 
2681   // Skip one register if the first unallocated register has an even register
2682   // number and there are still argument registers available which have not been
2683   // allocated yet. RegNum is actually an index into ArgRegs, which means we
2684   // need to skip a register if RegNum is odd.
2685   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
2686     State.AllocateReg(ArgRegs[RegNum]);
2687   }
2688 
2689   // Always return false here, as this function only makes sure that the first
2690   // unallocated register has an odd register number and does not actually
2691   // allocate a register for the current argument.
2692   return false;
2693 }
2694 
CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)2695 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
2696                                                MVT &LocVT,
2697                                                CCValAssign::LocInfo &LocInfo,
2698                                                ISD::ArgFlagsTy &ArgFlags,
2699                                                CCState &State) {
2700   static const MCPhysReg ArgRegs[] = {
2701     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2702     PPC::F8
2703   };
2704 
2705   const unsigned NumArgRegs = array_lengthof(ArgRegs);
2706 
2707   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
2708 
2709   // If there is only one Floating-point register left we need to put both f64
2710   // values of a split ppc_fp128 value on the stack.
2711   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
2712     State.AllocateReg(ArgRegs[RegNum]);
2713   }
2714 
2715   // Always return false here, as this function only makes sure that the two f64
2716   // values a ppc_fp128 value is split into are both passed in registers or both
2717   // passed on the stack and does not actually allocate a register for the
2718   // current argument.
2719   return false;
2720 }
2721 
2722 /// FPR - The set of FP registers that should be allocated for arguments,
2723 /// on Darwin.
2724 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
2725                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
2726                                 PPC::F11, PPC::F12, PPC::F13};
2727 
2728 /// QFPR - The set of QPX registers that should be allocated for arguments.
2729 static const MCPhysReg QFPR[] = {
2730     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
2731     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
2732 
2733 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
2734 /// the stack.
CalculateStackSlotSize(EVT ArgVT,ISD::ArgFlagsTy Flags,unsigned PtrByteSize)2735 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
2736                                        unsigned PtrByteSize) {
2737   unsigned ArgSize = ArgVT.getStoreSize();
2738   if (Flags.isByVal())
2739     ArgSize = Flags.getByValSize();
2740 
2741   // Round up to multiples of the pointer size, except for array members,
2742   // which are always packed.
2743   if (!Flags.isInConsecutiveRegs())
2744     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2745 
2746   return ArgSize;
2747 }
2748 
2749 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
2750 /// on the stack.
CalculateStackSlotAlignment(EVT ArgVT,EVT OrigVT,ISD::ArgFlagsTy Flags,unsigned PtrByteSize)2751 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
2752                                             ISD::ArgFlagsTy Flags,
2753                                             unsigned PtrByteSize) {
2754   unsigned Align = PtrByteSize;
2755 
2756   // Altivec parameters are padded to a 16 byte boundary.
2757   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
2758       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
2759       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
2760       ArgVT == MVT::v1i128)
2761     Align = 16;
2762   // QPX vector types stored in double-precision are padded to a 32 byte
2763   // boundary.
2764   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
2765     Align = 32;
2766 
2767   // ByVal parameters are aligned as requested.
2768   if (Flags.isByVal()) {
2769     unsigned BVAlign = Flags.getByValAlign();
2770     if (BVAlign > PtrByteSize) {
2771       if (BVAlign % PtrByteSize != 0)
2772           llvm_unreachable(
2773             "ByVal alignment is not a multiple of the pointer size");
2774 
2775       Align = BVAlign;
2776     }
2777   }
2778 
2779   // Array members are always packed to their original alignment.
2780   if (Flags.isInConsecutiveRegs()) {
2781     // If the array member was split into multiple registers, the first
2782     // needs to be aligned to the size of the full type.  (Except for
2783     // ppcf128, which is only aligned as its f64 components.)
2784     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
2785       Align = OrigVT.getStoreSize();
2786     else
2787       Align = ArgVT.getStoreSize();
2788   }
2789 
2790   return Align;
2791 }
2792 
2793 /// CalculateStackSlotUsed - Return whether this argument will use its
2794 /// stack slot (instead of being passed in registers).  ArgOffset,
2795 /// AvailableFPRs, and AvailableVRs must hold the current argument
2796 /// position, and will be updated to account for this argument.
CalculateStackSlotUsed(EVT ArgVT,EVT OrigVT,ISD::ArgFlagsTy Flags,unsigned PtrByteSize,unsigned LinkageSize,unsigned ParamAreaSize,unsigned & ArgOffset,unsigned & AvailableFPRs,unsigned & AvailableVRs,bool HasQPX)2797 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
2798                                    ISD::ArgFlagsTy Flags,
2799                                    unsigned PtrByteSize,
2800                                    unsigned LinkageSize,
2801                                    unsigned ParamAreaSize,
2802                                    unsigned &ArgOffset,
2803                                    unsigned &AvailableFPRs,
2804                                    unsigned &AvailableVRs, bool HasQPX) {
2805   bool UseMemory = false;
2806 
2807   // Respect alignment of argument on the stack.
2808   unsigned Align =
2809     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
2810   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
2811   // If there's no space left in the argument save area, we must
2812   // use memory (this check also catches zero-sized arguments).
2813   if (ArgOffset >= LinkageSize + ParamAreaSize)
2814     UseMemory = true;
2815 
2816   // Allocate argument on the stack.
2817   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2818   if (Flags.isInConsecutiveRegsLast())
2819     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2820   // If we overran the argument save area, we must use memory
2821   // (this check catches arguments passed partially in memory)
2822   if (ArgOffset > LinkageSize + ParamAreaSize)
2823     UseMemory = true;
2824 
2825   // However, if the argument is actually passed in an FPR or a VR,
2826   // we don't use memory after all.
2827   if (!Flags.isByVal()) {
2828     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
2829         // QPX registers overlap with the scalar FP registers.
2830         (HasQPX && (ArgVT == MVT::v4f32 ||
2831                     ArgVT == MVT::v4f64 ||
2832                     ArgVT == MVT::v4i1)))
2833       if (AvailableFPRs > 0) {
2834         --AvailableFPRs;
2835         return false;
2836       }
2837     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
2838         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
2839         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
2840         ArgVT == MVT::v1i128)
2841       if (AvailableVRs > 0) {
2842         --AvailableVRs;
2843         return false;
2844       }
2845   }
2846 
2847   return UseMemory;
2848 }
2849 
2850 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
2851 /// ensure minimum alignment required for target.
EnsureStackAlignment(const PPCFrameLowering * Lowering,unsigned NumBytes)2852 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
2853                                      unsigned NumBytes) {
2854   unsigned TargetAlign = Lowering->getStackAlignment();
2855   unsigned AlignMask = TargetAlign - 1;
2856   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2857   return NumBytes;
2858 }
2859 
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const2860 SDValue PPCTargetLowering::LowerFormalArguments(
2861     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2862     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2863     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2864   if (Subtarget.isSVR4ABI()) {
2865     if (Subtarget.isPPC64())
2866       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
2867                                          dl, DAG, InVals);
2868     else
2869       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
2870                                          dl, DAG, InVals);
2871   } else {
2872     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
2873                                        dl, DAG, InVals);
2874   }
2875 }
2876 
LowerFormalArguments_32SVR4(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const2877 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
2878     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2879     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2880     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2881 
2882   // 32-bit SVR4 ABI Stack Frame Layout:
2883   //              +-----------------------------------+
2884   //        +-->  |            Back chain             |
2885   //        |     +-----------------------------------+
2886   //        |     | Floating-point register save area |
2887   //        |     +-----------------------------------+
2888   //        |     |    General register save area     |
2889   //        |     +-----------------------------------+
2890   //        |     |          CR save word             |
2891   //        |     +-----------------------------------+
2892   //        |     |         VRSAVE save word          |
2893   //        |     +-----------------------------------+
2894   //        |     |         Alignment padding         |
2895   //        |     +-----------------------------------+
2896   //        |     |     Vector register save area     |
2897   //        |     +-----------------------------------+
2898   //        |     |       Local variable space        |
2899   //        |     +-----------------------------------+
2900   //        |     |        Parameter list area        |
2901   //        |     +-----------------------------------+
2902   //        |     |           LR save word            |
2903   //        |     +-----------------------------------+
2904   // SP-->  +---  |            Back chain             |
2905   //              +-----------------------------------+
2906   //
2907   // Specifications:
2908   //   System V Application Binary Interface PowerPC Processor Supplement
2909   //   AltiVec Technology Programming Interface Manual
2910 
2911   MachineFunction &MF = DAG.getMachineFunction();
2912   MachineFrameInfo *MFI = MF.getFrameInfo();
2913   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2914 
2915   EVT PtrVT = getPointerTy(MF.getDataLayout());
2916   // Potential tail calls could cause overwriting of argument stack slots.
2917   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2918                        (CallConv == CallingConv::Fast));
2919   unsigned PtrByteSize = 4;
2920 
2921   // Assign locations to all of the incoming arguments.
2922   SmallVector<CCValAssign, 16> ArgLocs;
2923   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2924                  *DAG.getContext());
2925 
2926   // Reserve space for the linkage area on the stack.
2927   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
2928   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
2929   if (useSoftFloat())
2930     CCInfo.PreAnalyzeFormalArguments(Ins);
2931 
2932   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
2933   CCInfo.clearWasPPCF128();
2934 
2935   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2936     CCValAssign &VA = ArgLocs[i];
2937 
2938     // Arguments stored in registers.
2939     if (VA.isRegLoc()) {
2940       const TargetRegisterClass *RC;
2941       EVT ValVT = VA.getValVT();
2942 
2943       switch (ValVT.getSimpleVT().SimpleTy) {
2944         default:
2945           llvm_unreachable("ValVT not supported by formal arguments Lowering");
2946         case MVT::i1:
2947         case MVT::i32:
2948           RC = &PPC::GPRCRegClass;
2949           break;
2950         case MVT::f32:
2951           if (Subtarget.hasP8Vector())
2952             RC = &PPC::VSSRCRegClass;
2953           else
2954             RC = &PPC::F4RCRegClass;
2955           break;
2956         case MVT::f64:
2957           if (Subtarget.hasVSX())
2958             RC = &PPC::VSFRCRegClass;
2959           else
2960             RC = &PPC::F8RCRegClass;
2961           break;
2962         case MVT::v16i8:
2963         case MVT::v8i16:
2964         case MVT::v4i32:
2965           RC = &PPC::VRRCRegClass;
2966           break;
2967         case MVT::v4f32:
2968           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
2969           break;
2970         case MVT::v2f64:
2971         case MVT::v2i64:
2972           RC = &PPC::VSHRCRegClass;
2973           break;
2974         case MVT::v4f64:
2975           RC = &PPC::QFRCRegClass;
2976           break;
2977         case MVT::v4i1:
2978           RC = &PPC::QBRCRegClass;
2979           break;
2980       }
2981 
2982       // Transform the arguments stored in physical registers into virtual ones.
2983       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2984       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
2985                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
2986 
2987       if (ValVT == MVT::i1)
2988         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
2989 
2990       InVals.push_back(ArgValue);
2991     } else {
2992       // Argument stored in memory.
2993       assert(VA.isMemLoc());
2994 
2995       unsigned ArgSize = VA.getLocVT().getStoreSize();
2996       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
2997                                       isImmutable);
2998 
2999       // Create load nodes to retrieve arguments from the stack.
3000       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3001       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
3002                                    MachinePointerInfo(),
3003                                    false, false, false, 0));
3004     }
3005   }
3006 
3007   // Assign locations to all of the incoming aggregate by value arguments.
3008   // Aggregates passed by value are stored in the local variable space of the
3009   // caller's stack frame, right above the parameter list area.
3010   SmallVector<CCValAssign, 16> ByValArgLocs;
3011   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3012                       ByValArgLocs, *DAG.getContext());
3013 
3014   // Reserve stack space for the allocations in CCInfo.
3015   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3016 
3017   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3018 
3019   // Area that is at least reserved in the caller of this function.
3020   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3021   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3022 
3023   // Set the size that is at least reserved in caller of this function.  Tail
3024   // call optimized function's reserved stack space needs to be aligned so that
3025   // taking the difference between two stack areas will result in an aligned
3026   // stack.
3027   MinReservedArea =
3028       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3029   FuncInfo->setMinReservedArea(MinReservedArea);
3030 
3031   SmallVector<SDValue, 8> MemOps;
3032 
3033   // If the function takes variable number of arguments, make a frame index for
3034   // the start of the first vararg value... for expansion of llvm.va_start.
3035   if (isVarArg) {
3036     static const MCPhysReg GPArgRegs[] = {
3037       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3038       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3039     };
3040     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3041 
3042     static const MCPhysReg FPArgRegs[] = {
3043       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3044       PPC::F8
3045     };
3046     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3047 
3048     if (useSoftFloat())
3049        NumFPArgRegs = 0;
3050 
3051     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3052     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3053 
3054     // Make room for NumGPArgRegs and NumFPArgRegs.
3055     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3056                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3057 
3058     FuncInfo->setVarArgsStackOffset(
3059       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
3060                              CCInfo.getNextStackOffset(), true));
3061 
3062     FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
3063     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3064 
3065     // The fixed integer arguments of a variadic function are stored to the
3066     // VarArgsFrameIndex on the stack so that they may be loaded by
3067     // dereferencing the result of va_next.
3068     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3069       // Get an existing live-in vreg, or add a new one.
3070       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3071       if (!VReg)
3072         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3073 
3074       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3075       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3076                                    MachinePointerInfo(), false, false, 0);
3077       MemOps.push_back(Store);
3078       // Increment the address by four for the next argument to store
3079       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3080       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3081     }
3082 
3083     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3084     // is set.
3085     // The double arguments are stored to the VarArgsFrameIndex
3086     // on the stack.
3087     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3088       // Get an existing live-in vreg, or add a new one.
3089       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3090       if (!VReg)
3091         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3092 
3093       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3094       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3095                                    MachinePointerInfo(), false, false, 0);
3096       MemOps.push_back(Store);
3097       // Increment the address by eight for the next argument to store
3098       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3099                                          PtrVT);
3100       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3101     }
3102   }
3103 
3104   if (!MemOps.empty())
3105     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3106 
3107   return Chain;
3108 }
3109 
3110 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3111 // value to MVT::i64 and then truncate to the correct register size.
extendArgForPPC64(ISD::ArgFlagsTy Flags,EVT ObjectVT,SelectionDAG & DAG,SDValue ArgVal,const SDLoc & dl) const3112 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3113                                              EVT ObjectVT, SelectionDAG &DAG,
3114                                              SDValue ArgVal,
3115                                              const SDLoc &dl) const {
3116   if (Flags.isSExt())
3117     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3118                          DAG.getValueType(ObjectVT));
3119   else if (Flags.isZExt())
3120     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3121                          DAG.getValueType(ObjectVT));
3122 
3123   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3124 }
3125 
LowerFormalArguments_64SVR4(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const3126 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3127     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3128     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3129     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3130   // TODO: add description of PPC stack frame format, or at least some docs.
3131   //
3132   bool isELFv2ABI = Subtarget.isELFv2ABI();
3133   bool isLittleEndian = Subtarget.isLittleEndian();
3134   MachineFunction &MF = DAG.getMachineFunction();
3135   MachineFrameInfo *MFI = MF.getFrameInfo();
3136   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3137 
3138   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3139          "fastcc not supported on varargs functions");
3140 
3141   EVT PtrVT = getPointerTy(MF.getDataLayout());
3142   // Potential tail calls could cause overwriting of argument stack slots.
3143   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3144                        (CallConv == CallingConv::Fast));
3145   unsigned PtrByteSize = 8;
3146   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3147 
3148   static const MCPhysReg GPR[] = {
3149     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3150     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3151   };
3152   static const MCPhysReg VR[] = {
3153     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3154     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3155   };
3156   static const MCPhysReg VSRH[] = {
3157     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
3158     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
3159   };
3160 
3161   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3162   const unsigned Num_FPR_Regs = 13;
3163   const unsigned Num_VR_Regs  = array_lengthof(VR);
3164   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3165 
3166   // Do a first pass over the arguments to determine whether the ABI
3167   // guarantees that our caller has allocated the parameter save area
3168   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3169   // in the ELFv2 ABI, it is true if this is a vararg function or if
3170   // any parameter is located in a stack slot.
3171 
3172   bool HasParameterArea = !isELFv2ABI || isVarArg;
3173   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3174   unsigned NumBytes = LinkageSize;
3175   unsigned AvailableFPRs = Num_FPR_Regs;
3176   unsigned AvailableVRs = Num_VR_Regs;
3177   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3178     if (Ins[i].Flags.isNest())
3179       continue;
3180 
3181     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3182                                PtrByteSize, LinkageSize, ParamAreaSize,
3183                                NumBytes, AvailableFPRs, AvailableVRs,
3184                                Subtarget.hasQPX()))
3185       HasParameterArea = true;
3186   }
3187 
3188   // Add DAG nodes to load the arguments or copy them out of registers.  On
3189   // entry to a function on PPC, the arguments start after the linkage area,
3190   // although the first ones are often in registers.
3191 
3192   unsigned ArgOffset = LinkageSize;
3193   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3194   unsigned &QFPR_idx = FPR_idx;
3195   SmallVector<SDValue, 8> MemOps;
3196   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3197   unsigned CurArgIdx = 0;
3198   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3199     SDValue ArgVal;
3200     bool needsLoad = false;
3201     EVT ObjectVT = Ins[ArgNo].VT;
3202     EVT OrigVT = Ins[ArgNo].ArgVT;
3203     unsigned ObjSize = ObjectVT.getStoreSize();
3204     unsigned ArgSize = ObjSize;
3205     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3206     if (Ins[ArgNo].isOrigArg()) {
3207       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3208       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3209     }
3210     // We re-align the argument offset for each argument, except when using the
3211     // fast calling convention, when we need to make sure we do that only when
3212     // we'll actually use a stack slot.
3213     unsigned CurArgOffset, Align;
3214     auto ComputeArgOffset = [&]() {
3215       /* Respect alignment of argument on the stack.  */
3216       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3217       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3218       CurArgOffset = ArgOffset;
3219     };
3220 
3221     if (CallConv != CallingConv::Fast) {
3222       ComputeArgOffset();
3223 
3224       /* Compute GPR index associated with argument offset.  */
3225       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3226       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3227     }
3228 
3229     // FIXME the codegen can be much improved in some cases.
3230     // We do not have to keep everything in memory.
3231     if (Flags.isByVal()) {
3232       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3233 
3234       if (CallConv == CallingConv::Fast)
3235         ComputeArgOffset();
3236 
3237       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3238       ObjSize = Flags.getByValSize();
3239       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3240       // Empty aggregate parameters do not take up registers.  Examples:
3241       //   struct { } a;
3242       //   union  { } b;
3243       //   int c[0];
3244       // etc.  However, we have to provide a place-holder in InVals, so
3245       // pretend we have an 8-byte item at the current address for that
3246       // purpose.
3247       if (!ObjSize) {
3248         int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
3249         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3250         InVals.push_back(FIN);
3251         continue;
3252       }
3253 
3254       // Create a stack object covering all stack doublewords occupied
3255       // by the argument.  If the argument is (fully or partially) on
3256       // the stack, or if the argument is fully in registers but the
3257       // caller has allocated the parameter save anyway, we can refer
3258       // directly to the caller's stack frame.  Otherwise, create a
3259       // local copy in our own frame.
3260       int FI;
3261       if (HasParameterArea ||
3262           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3263         FI = MFI->CreateFixedObject(ArgSize, ArgOffset, false, true);
3264       else
3265         FI = MFI->CreateStackObject(ArgSize, Align, false);
3266       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3267 
3268       // Handle aggregates smaller than 8 bytes.
3269       if (ObjSize < PtrByteSize) {
3270         // The value of the object is its address, which differs from the
3271         // address of the enclosing doubleword on big-endian systems.
3272         SDValue Arg = FIN;
3273         if (!isLittleEndian) {
3274           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3275           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3276         }
3277         InVals.push_back(Arg);
3278 
3279         if (GPR_idx != Num_GPR_Regs) {
3280           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3281           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3282           SDValue Store;
3283 
3284           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3285             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3286                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3287             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3288                                       MachinePointerInfo(&*FuncArg), ObjType,
3289                                       false, false, 0);
3290           } else {
3291             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3292             // store the whole register as-is to the parameter save area
3293             // slot.
3294             Store =
3295                 DAG.getStore(Val.getValue(1), dl, Val, FIN,
3296                              MachinePointerInfo(&*FuncArg), false, false, 0);
3297           }
3298 
3299           MemOps.push_back(Store);
3300         }
3301         // Whether we copied from a register or not, advance the offset
3302         // into the parameter save area by a full doubleword.
3303         ArgOffset += PtrByteSize;
3304         continue;
3305       }
3306 
3307       // The value of the object is its address, which is the address of
3308       // its first stack doubleword.
3309       InVals.push_back(FIN);
3310 
3311       // Store whatever pieces of the object are in registers to memory.
3312       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3313         if (GPR_idx == Num_GPR_Regs)
3314           break;
3315 
3316         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3317         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3318         SDValue Addr = FIN;
3319         if (j) {
3320           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3321           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3322         }
3323         SDValue Store =
3324             DAG.getStore(Val.getValue(1), dl, Val, Addr,
3325                          MachinePointerInfo(&*FuncArg, j), false, false, 0);
3326         MemOps.push_back(Store);
3327         ++GPR_idx;
3328       }
3329       ArgOffset += ArgSize;
3330       continue;
3331     }
3332 
3333     switch (ObjectVT.getSimpleVT().SimpleTy) {
3334     default: llvm_unreachable("Unhandled argument type!");
3335     case MVT::i1:
3336     case MVT::i32:
3337     case MVT::i64:
3338       if (Flags.isNest()) {
3339         // The 'nest' parameter, if any, is passed in R11.
3340         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3341         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3342 
3343         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3344           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3345 
3346         break;
3347       }
3348 
3349       // These can be scalar arguments or elements of an integer array type
3350       // passed directly.  Clang may use those instead of "byval" aggregate
3351       // types to avoid forcing arguments to memory unnecessarily.
3352       if (GPR_idx != Num_GPR_Regs) {
3353         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3354         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3355 
3356         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3357           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3358           // value to MVT::i64 and then truncate to the correct register size.
3359           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3360       } else {
3361         if (CallConv == CallingConv::Fast)
3362           ComputeArgOffset();
3363 
3364         needsLoad = true;
3365         ArgSize = PtrByteSize;
3366       }
3367       if (CallConv != CallingConv::Fast || needsLoad)
3368         ArgOffset += 8;
3369       break;
3370 
3371     case MVT::f32:
3372     case MVT::f64:
3373       // These can be scalar arguments or elements of a float array type
3374       // passed directly.  The latter are used to implement ELFv2 homogenous
3375       // float aggregates.
3376       if (FPR_idx != Num_FPR_Regs) {
3377         unsigned VReg;
3378 
3379         if (ObjectVT == MVT::f32)
3380           VReg = MF.addLiveIn(FPR[FPR_idx],
3381                               Subtarget.hasP8Vector()
3382                                   ? &PPC::VSSRCRegClass
3383                                   : &PPC::F4RCRegClass);
3384         else
3385           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3386                                                 ? &PPC::VSFRCRegClass
3387                                                 : &PPC::F8RCRegClass);
3388 
3389         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3390         ++FPR_idx;
3391       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3392         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3393         // once we support fp <-> gpr moves.
3394 
3395         // This can only ever happen in the presence of f32 array types,
3396         // since otherwise we never run out of FPRs before running out
3397         // of GPRs.
3398         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3399         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3400 
3401         if (ObjectVT == MVT::f32) {
3402           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3403             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3404                                  DAG.getConstant(32, dl, MVT::i32));
3405           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3406         }
3407 
3408         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3409       } else {
3410         if (CallConv == CallingConv::Fast)
3411           ComputeArgOffset();
3412 
3413         needsLoad = true;
3414       }
3415 
3416       // When passing an array of floats, the array occupies consecutive
3417       // space in the argument area; only round up to the next doubleword
3418       // at the end of the array.  Otherwise, each float takes 8 bytes.
3419       if (CallConv != CallingConv::Fast || needsLoad) {
3420         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3421         ArgOffset += ArgSize;
3422         if (Flags.isInConsecutiveRegsLast())
3423           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3424       }
3425       break;
3426     case MVT::v4f32:
3427     case MVT::v4i32:
3428     case MVT::v8i16:
3429     case MVT::v16i8:
3430     case MVT::v2f64:
3431     case MVT::v2i64:
3432     case MVT::v1i128:
3433       if (!Subtarget.hasQPX()) {
3434       // These can be scalar arguments or elements of a vector array type
3435       // passed directly.  The latter are used to implement ELFv2 homogenous
3436       // vector aggregates.
3437       if (VR_idx != Num_VR_Regs) {
3438         unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ?
3439                         MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) :
3440                         MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3441         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3442         ++VR_idx;
3443       } else {
3444         if (CallConv == CallingConv::Fast)
3445           ComputeArgOffset();
3446 
3447         needsLoad = true;
3448       }
3449       if (CallConv != CallingConv::Fast || needsLoad)
3450         ArgOffset += 16;
3451       break;
3452       } // not QPX
3453 
3454       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3455              "Invalid QPX parameter type");
3456       /* fall through */
3457 
3458     case MVT::v4f64:
3459     case MVT::v4i1:
3460       // QPX vectors are treated like their scalar floating-point subregisters
3461       // (except that they're larger).
3462       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3463       if (QFPR_idx != Num_QFPR_Regs) {
3464         const TargetRegisterClass *RC;
3465         switch (ObjectVT.getSimpleVT().SimpleTy) {
3466         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3467         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3468         default:         RC = &PPC::QBRCRegClass; break;
3469         }
3470 
3471         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3472         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3473         ++QFPR_idx;
3474       } else {
3475         if (CallConv == CallingConv::Fast)
3476           ComputeArgOffset();
3477         needsLoad = true;
3478       }
3479       if (CallConv != CallingConv::Fast || needsLoad)
3480         ArgOffset += Sz;
3481       break;
3482     }
3483 
3484     // We need to load the argument to a virtual register if we determined
3485     // above that we ran out of physical registers of the appropriate type.
3486     if (needsLoad) {
3487       if (ObjSize < ArgSize && !isLittleEndian)
3488         CurArgOffset += ArgSize - ObjSize;
3489       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
3490       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3491       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
3492                            false, false, false, 0);
3493     }
3494 
3495     InVals.push_back(ArgVal);
3496   }
3497 
3498   // Area that is at least reserved in the caller of this function.
3499   unsigned MinReservedArea;
3500   if (HasParameterArea)
3501     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
3502   else
3503     MinReservedArea = LinkageSize;
3504 
3505   // Set the size that is at least reserved in caller of this function.  Tail
3506   // call optimized functions' reserved stack space needs to be aligned so that
3507   // taking the difference between two stack areas will result in an aligned
3508   // stack.
3509   MinReservedArea =
3510       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3511   FuncInfo->setMinReservedArea(MinReservedArea);
3512 
3513   // If the function takes variable number of arguments, make a frame index for
3514   // the start of the first vararg value... for expansion of llvm.va_start.
3515   if (isVarArg) {
3516     int Depth = ArgOffset;
3517 
3518     FuncInfo->setVarArgsFrameIndex(
3519       MFI->CreateFixedObject(PtrByteSize, Depth, true));
3520     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3521 
3522     // If this function is vararg, store any remaining integer argument regs
3523     // to their spots on the stack so that they may be loaded by dereferencing
3524     // the result of va_next.
3525     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3526          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
3527       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3528       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3529       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3530                                    MachinePointerInfo(), false, false, 0);
3531       MemOps.push_back(Store);
3532       // Increment the address by four for the next argument to store
3533       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
3534       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3535     }
3536   }
3537 
3538   if (!MemOps.empty())
3539     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3540 
3541   return Chain;
3542 }
3543 
LowerFormalArguments_Darwin(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const3544 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
3545     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3546     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3547     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3548   // TODO: add description of PPC stack frame format, or at least some docs.
3549   //
3550   MachineFunction &MF = DAG.getMachineFunction();
3551   MachineFrameInfo *MFI = MF.getFrameInfo();
3552   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3553 
3554   EVT PtrVT = getPointerTy(MF.getDataLayout());
3555   bool isPPC64 = PtrVT == MVT::i64;
3556   // Potential tail calls could cause overwriting of argument stack slots.
3557   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3558                        (CallConv == CallingConv::Fast));
3559   unsigned PtrByteSize = isPPC64 ? 8 : 4;
3560   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3561   unsigned ArgOffset = LinkageSize;
3562   // Area that is at least reserved in caller of this function.
3563   unsigned MinReservedArea = ArgOffset;
3564 
3565   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
3566     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3567     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3568   };
3569   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
3570     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3571     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3572   };
3573   static const MCPhysReg VR[] = {
3574     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3575     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3576   };
3577 
3578   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
3579   const unsigned Num_FPR_Regs = 13;
3580   const unsigned Num_VR_Regs  = array_lengthof( VR);
3581 
3582   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3583 
3584   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
3585 
3586   // In 32-bit non-varargs functions, the stack space for vectors is after the
3587   // stack space for non-vectors.  We do not use this space unless we have
3588   // too many vectors to fit in registers, something that only occurs in
3589   // constructed examples:), but we have to walk the arglist to figure
3590   // that out...for the pathological case, compute VecArgOffset as the
3591   // start of the vector parameter area.  Computing VecArgOffset is the
3592   // entire point of the following loop.
3593   unsigned VecArgOffset = ArgOffset;
3594   if (!isVarArg && !isPPC64) {
3595     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
3596          ++ArgNo) {
3597       EVT ObjectVT = Ins[ArgNo].VT;
3598       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3599 
3600       if (Flags.isByVal()) {
3601         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
3602         unsigned ObjSize = Flags.getByValSize();
3603         unsigned ArgSize =
3604                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3605         VecArgOffset += ArgSize;
3606         continue;
3607       }
3608 
3609       switch(ObjectVT.getSimpleVT().SimpleTy) {
3610       default: llvm_unreachable("Unhandled argument type!");
3611       case MVT::i1:
3612       case MVT::i32:
3613       case MVT::f32:
3614         VecArgOffset += 4;
3615         break;
3616       case MVT::i64:  // PPC64
3617       case MVT::f64:
3618         // FIXME: We are guaranteed to be !isPPC64 at this point.
3619         // Does MVT::i64 apply?
3620         VecArgOffset += 8;
3621         break;
3622       case MVT::v4f32:
3623       case MVT::v4i32:
3624       case MVT::v8i16:
3625       case MVT::v16i8:
3626         // Nothing to do, we're only looking at Nonvector args here.
3627         break;
3628       }
3629     }
3630   }
3631   // We've found where the vector parameter area in memory is.  Skip the
3632   // first 12 parameters; these don't use that memory.
3633   VecArgOffset = ((VecArgOffset+15)/16)*16;
3634   VecArgOffset += 12*16;
3635 
3636   // Add DAG nodes to load the arguments or copy them out of registers.  On
3637   // entry to a function on PPC, the arguments start after the linkage area,
3638   // although the first ones are often in registers.
3639 
3640   SmallVector<SDValue, 8> MemOps;
3641   unsigned nAltivecParamsAtEnd = 0;
3642   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
3643   unsigned CurArgIdx = 0;
3644   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3645     SDValue ArgVal;
3646     bool needsLoad = false;
3647     EVT ObjectVT = Ins[ArgNo].VT;
3648     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
3649     unsigned ArgSize = ObjSize;
3650     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3651     if (Ins[ArgNo].isOrigArg()) {
3652       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3653       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3654     }
3655     unsigned CurArgOffset = ArgOffset;
3656 
3657     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
3658     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
3659         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
3660       if (isVarArg || isPPC64) {
3661         MinReservedArea = ((MinReservedArea+15)/16)*16;
3662         MinReservedArea += CalculateStackSlotSize(ObjectVT,
3663                                                   Flags,
3664                                                   PtrByteSize);
3665       } else  nAltivecParamsAtEnd++;
3666     } else
3667       // Calculate min reserved area.
3668       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
3669                                                 Flags,
3670                                                 PtrByteSize);
3671 
3672     // FIXME the codegen can be much improved in some cases.
3673     // We do not have to keep everything in memory.
3674     if (Flags.isByVal()) {
3675       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3676 
3677       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3678       ObjSize = Flags.getByValSize();
3679       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3680       // Objects of size 1 and 2 are right justified, everything else is
3681       // left justified.  This means the memory address is adjusted forwards.
3682       if (ObjSize==1 || ObjSize==2) {
3683         CurArgOffset = CurArgOffset + (4 - ObjSize);
3684       }
3685       // The value of the object is its address.
3686       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, false, true);
3687       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3688       InVals.push_back(FIN);
3689       if (ObjSize==1 || ObjSize==2) {
3690         if (GPR_idx != Num_GPR_Regs) {
3691           unsigned VReg;
3692           if (isPPC64)
3693             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3694           else
3695             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3696           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3697           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
3698           SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
3699                                             MachinePointerInfo(&*FuncArg),
3700                                             ObjType, false, false, 0);
3701           MemOps.push_back(Store);
3702           ++GPR_idx;
3703         }
3704 
3705         ArgOffset += PtrByteSize;
3706 
3707         continue;
3708       }
3709       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3710         // Store whatever pieces of the object are in registers
3711         // to memory.  ArgOffset will be the address of the beginning
3712         // of the object.
3713         if (GPR_idx != Num_GPR_Regs) {
3714           unsigned VReg;
3715           if (isPPC64)
3716             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3717           else
3718             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3719           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
3720           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3721           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3722           SDValue Store =
3723               DAG.getStore(Val.getValue(1), dl, Val, FIN,
3724                            MachinePointerInfo(&*FuncArg, j), false, false, 0);
3725           MemOps.push_back(Store);
3726           ++GPR_idx;
3727           ArgOffset += PtrByteSize;
3728         } else {
3729           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
3730           break;
3731         }
3732       }
3733       continue;
3734     }
3735 
3736     switch (ObjectVT.getSimpleVT().SimpleTy) {
3737     default: llvm_unreachable("Unhandled argument type!");
3738     case MVT::i1:
3739     case MVT::i32:
3740       if (!isPPC64) {
3741         if (GPR_idx != Num_GPR_Regs) {
3742           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3743           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3744 
3745           if (ObjectVT == MVT::i1)
3746             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
3747 
3748           ++GPR_idx;
3749         } else {
3750           needsLoad = true;
3751           ArgSize = PtrByteSize;
3752         }
3753         // All int arguments reserve stack space in the Darwin ABI.
3754         ArgOffset += PtrByteSize;
3755         break;
3756       }
3757       // FALLTHROUGH
3758     case MVT::i64:  // PPC64
3759       if (GPR_idx != Num_GPR_Regs) {
3760         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3761         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3762 
3763         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3764           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3765           // value to MVT::i64 and then truncate to the correct register size.
3766           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3767 
3768         ++GPR_idx;
3769       } else {
3770         needsLoad = true;
3771         ArgSize = PtrByteSize;
3772       }
3773       // All int arguments reserve stack space in the Darwin ABI.
3774       ArgOffset += 8;
3775       break;
3776 
3777     case MVT::f32:
3778     case MVT::f64:
3779       // Every 4 bytes of argument space consumes one of the GPRs available for
3780       // argument passing.
3781       if (GPR_idx != Num_GPR_Regs) {
3782         ++GPR_idx;
3783         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
3784           ++GPR_idx;
3785       }
3786       if (FPR_idx != Num_FPR_Regs) {
3787         unsigned VReg;
3788 
3789         if (ObjectVT == MVT::f32)
3790           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
3791         else
3792           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
3793 
3794         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3795         ++FPR_idx;
3796       } else {
3797         needsLoad = true;
3798       }
3799 
3800       // All FP arguments reserve stack space in the Darwin ABI.
3801       ArgOffset += isPPC64 ? 8 : ObjSize;
3802       break;
3803     case MVT::v4f32:
3804     case MVT::v4i32:
3805     case MVT::v8i16:
3806     case MVT::v16i8:
3807       // Note that vector arguments in registers don't reserve stack space,
3808       // except in varargs functions.
3809       if (VR_idx != Num_VR_Regs) {
3810         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3811         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3812         if (isVarArg) {
3813           while ((ArgOffset % 16) != 0) {
3814             ArgOffset += PtrByteSize;
3815             if (GPR_idx != Num_GPR_Regs)
3816               GPR_idx++;
3817           }
3818           ArgOffset += 16;
3819           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
3820         }
3821         ++VR_idx;
3822       } else {
3823         if (!isVarArg && !isPPC64) {
3824           // Vectors go after all the nonvectors.
3825           CurArgOffset = VecArgOffset;
3826           VecArgOffset += 16;
3827         } else {
3828           // Vectors are aligned.
3829           ArgOffset = ((ArgOffset+15)/16)*16;
3830           CurArgOffset = ArgOffset;
3831           ArgOffset += 16;
3832         }
3833         needsLoad = true;
3834       }
3835       break;
3836     }
3837 
3838     // We need to load the argument to a virtual register if we determined above
3839     // that we ran out of physical registers of the appropriate type.
3840     if (needsLoad) {
3841       int FI = MFI->CreateFixedObject(ObjSize,
3842                                       CurArgOffset + (ArgSize - ObjSize),
3843                                       isImmutable);
3844       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3845       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
3846                            false, false, false, 0);
3847     }
3848 
3849     InVals.push_back(ArgVal);
3850   }
3851 
3852   // Allow for Altivec parameters at the end, if needed.
3853   if (nAltivecParamsAtEnd) {
3854     MinReservedArea = ((MinReservedArea+15)/16)*16;
3855     MinReservedArea += 16*nAltivecParamsAtEnd;
3856   }
3857 
3858   // Area that is at least reserved in the caller of this function.
3859   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
3860 
3861   // Set the size that is at least reserved in caller of this function.  Tail
3862   // call optimized functions' reserved stack space needs to be aligned so that
3863   // taking the difference between two stack areas will result in an aligned
3864   // stack.
3865   MinReservedArea =
3866       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3867   FuncInfo->setMinReservedArea(MinReservedArea);
3868 
3869   // If the function takes variable number of arguments, make a frame index for
3870   // the start of the first vararg value... for expansion of llvm.va_start.
3871   if (isVarArg) {
3872     int Depth = ArgOffset;
3873 
3874     FuncInfo->setVarArgsFrameIndex(
3875       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
3876                              Depth, true));
3877     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3878 
3879     // If this function is vararg, store any remaining integer argument regs
3880     // to their spots on the stack so that they may be loaded by dereferencing
3881     // the result of va_next.
3882     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
3883       unsigned VReg;
3884 
3885       if (isPPC64)
3886         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3887       else
3888         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3889 
3890       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3891       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3892                                    MachinePointerInfo(), false, false, 0);
3893       MemOps.push_back(Store);
3894       // Increment the address by four for the next argument to store
3895       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3896       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3897     }
3898   }
3899 
3900   if (!MemOps.empty())
3901     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3902 
3903   return Chain;
3904 }
3905 
3906 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
3907 /// adjusted to accommodate the arguments for the tailcall.
CalculateTailCallSPDiff(SelectionDAG & DAG,bool isTailCall,unsigned ParamSize)3908 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
3909                                    unsigned ParamSize) {
3910 
3911   if (!isTailCall) return 0;
3912 
3913   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
3914   unsigned CallerMinReservedArea = FI->getMinReservedArea();
3915   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
3916   // Remember only if the new adjustement is bigger.
3917   if (SPDiff < FI->getTailCallSPDelta())
3918     FI->setTailCallSPDelta(SPDiff);
3919 
3920   return SPDiff;
3921 }
3922 
3923 static bool isFunctionGlobalAddress(SDValue Callee);
3924 
3925 static bool
resideInSameModule(SDValue Callee,Reloc::Model RelMod)3926 resideInSameModule(SDValue Callee, Reloc::Model RelMod) {
3927   // If !G, Callee can be an external symbol.
3928   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
3929   if (!G) return false;
3930 
3931   const GlobalValue *GV = G->getGlobal();
3932 
3933   if (GV->isDeclaration()) return false;
3934 
3935   switch(GV->getLinkage()) {
3936   default: llvm_unreachable("unknow linkage type");
3937   case GlobalValue::AvailableExternallyLinkage:
3938   case GlobalValue::ExternalWeakLinkage:
3939     return false;
3940 
3941   // Callee with weak linkage is allowed if it has hidden or protected
3942   // visibility
3943   case GlobalValue::LinkOnceAnyLinkage:
3944   case GlobalValue::LinkOnceODRLinkage: // e.g. c++ inline functions
3945   case GlobalValue::WeakAnyLinkage:
3946   case GlobalValue::WeakODRLinkage:     // e.g. c++ template instantiation
3947     if (GV->hasDefaultVisibility())
3948       return false;
3949 
3950   case GlobalValue::ExternalLinkage:
3951   case GlobalValue::InternalLinkage:
3952   case GlobalValue::PrivateLinkage:
3953     break;
3954   }
3955 
3956   // With '-fPIC', calling default visiblity function need insert 'nop' after
3957   // function call, no matter that function resides in same module or not, so
3958   // we treat it as in different module.
3959   if (RelMod == Reloc::PIC_ && GV->hasDefaultVisibility())
3960     return false;
3961 
3962   return true;
3963 }
3964 
3965 static bool
needStackSlotPassParameters(const PPCSubtarget & Subtarget,const SmallVectorImpl<ISD::OutputArg> & Outs)3966 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
3967                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
3968   assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
3969 
3970   const unsigned PtrByteSize = 8;
3971   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3972 
3973   static const MCPhysReg GPR[] = {
3974     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3975     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3976   };
3977   static const MCPhysReg VR[] = {
3978     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3979     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3980   };
3981 
3982   const unsigned NumGPRs = array_lengthof(GPR);
3983   const unsigned NumFPRs = 13;
3984   const unsigned NumVRs = array_lengthof(VR);
3985   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
3986 
3987   unsigned NumBytes = LinkageSize;
3988   unsigned AvailableFPRs = NumFPRs;
3989   unsigned AvailableVRs = NumVRs;
3990 
3991   for (const ISD::OutputArg& Param : Outs) {
3992     if (Param.Flags.isNest()) continue;
3993 
3994     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
3995                                PtrByteSize, LinkageSize, ParamAreaSize,
3996                                NumBytes, AvailableFPRs, AvailableVRs,
3997                                Subtarget.hasQPX()))
3998       return true;
3999   }
4000   return false;
4001 }
4002 
4003 static bool
hasSameArgumentList(const Function * CallerFn,ImmutableCallSite * CS)4004 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite *CS) {
4005   if (CS->arg_size() != CallerFn->getArgumentList().size())
4006     return false;
4007 
4008   ImmutableCallSite::arg_iterator CalleeArgIter = CS->arg_begin();
4009   ImmutableCallSite::arg_iterator CalleeArgEnd = CS->arg_end();
4010   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4011 
4012   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4013     const Value* CalleeArg = *CalleeArgIter;
4014     const Value* CallerArg = &(*CallerArgIter);
4015     if (CalleeArg == CallerArg)
4016       continue;
4017 
4018     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4019     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4020     //      }
4021     // 1st argument of callee is undef and has the same type as caller.
4022     if (CalleeArg->getType() == CallerArg->getType() &&
4023         isa<UndefValue>(CalleeArg))
4024       continue;
4025 
4026     return false;
4027   }
4028 
4029   return true;
4030 }
4031 
4032 bool
IsEligibleForTailCallOptimization_64SVR4(SDValue Callee,CallingConv::ID CalleeCC,ImmutableCallSite * CS,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const4033 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4034                                     SDValue Callee,
4035                                     CallingConv::ID CalleeCC,
4036                                     ImmutableCallSite *CS,
4037                                     bool isVarArg,
4038                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4039                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4040                                     SelectionDAG& DAG) const {
4041   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4042 
4043   if (DisableSCO && !TailCallOpt) return false;
4044 
4045   // Variadic argument functions are not supported.
4046   if (isVarArg) return false;
4047 
4048   MachineFunction &MF = DAG.getMachineFunction();
4049   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
4050 
4051   // Tail or Sibling call optimization (TCO/SCO) needs callee and caller has
4052   // the same calling convention
4053   if (CallerCC != CalleeCC) return false;
4054 
4055   // SCO support C calling convention
4056   if (CalleeCC != CallingConv::Fast && CalleeCC != CallingConv::C)
4057     return false;
4058 
4059   // Functions containing by val parameters are not supported.
4060   if (std::any_of(Ins.begin(), Ins.end(),
4061                   [](const ISD::InputArg& IA) { return IA.Flags.isByVal(); }))
4062     return false;
4063 
4064   // No TCO/SCO on indirect call because Caller have to restore its TOC
4065   if (!isFunctionGlobalAddress(Callee) &&
4066       !isa<ExternalSymbolSDNode>(Callee))
4067     return false;
4068 
4069   // Check if Callee resides in the same module, because for now, PPC64 SVR4 ABI
4070   // (ELFv1/ELFv2) doesn't allow tail calls to a symbol resides in another
4071   // module.
4072   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4073   if (!resideInSameModule(Callee, getTargetMachine().getRelocationModel()))
4074     return false;
4075 
4076   // TCO allows altering callee ABI, so we don't have to check further.
4077   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4078     return true;
4079 
4080   if (DisableSCO) return false;
4081 
4082   // If callee use the same argument list that caller is using, then we can
4083   // apply SCO on this case. If it is not, then we need to check if callee needs
4084   // stack for passing arguments.
4085   if (!hasSameArgumentList(MF.getFunction(), CS) &&
4086       needStackSlotPassParameters(Subtarget, Outs)) {
4087     return false;
4088   }
4089 
4090   return true;
4091 }
4092 
4093 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4094 /// for tail call optimization. Targets which want to do tail call
4095 /// optimization should implement this function.
4096 bool
IsEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const4097 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4098                                                      CallingConv::ID CalleeCC,
4099                                                      bool isVarArg,
4100                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4101                                                      SelectionDAG& DAG) const {
4102   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4103     return false;
4104 
4105   // Variable argument functions are not supported.
4106   if (isVarArg)
4107     return false;
4108 
4109   MachineFunction &MF = DAG.getMachineFunction();
4110   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
4111   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4112     // Functions containing by val parameters are not supported.
4113     for (unsigned i = 0; i != Ins.size(); i++) {
4114        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4115        if (Flags.isByVal()) return false;
4116     }
4117 
4118     // Non-PIC/GOT tail calls are supported.
4119     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4120       return true;
4121 
4122     // At the moment we can only do local tail calls (in same module, hidden
4123     // or protected) if we are generating PIC.
4124     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4125       return G->getGlobal()->hasHiddenVisibility()
4126           || G->getGlobal()->hasProtectedVisibility();
4127   }
4128 
4129   return false;
4130 }
4131 
4132 /// isCallCompatibleAddress - Return the immediate to use if the specified
4133 /// 32-bit value is representable in the immediate field of a BxA instruction.
isBLACompatibleAddress(SDValue Op,SelectionDAG & DAG)4134 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4135   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4136   if (!C) return nullptr;
4137 
4138   int Addr = C->getZExtValue();
4139   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4140       SignExtend32<26>(Addr) != Addr)
4141     return nullptr;  // Top 6 bits have to be sext of immediate.
4142 
4143   return DAG
4144       .getConstant(
4145           (int)C->getZExtValue() >> 2, SDLoc(Op),
4146           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4147       .getNode();
4148 }
4149 
4150 namespace {
4151 
4152 struct TailCallArgumentInfo {
4153   SDValue Arg;
4154   SDValue FrameIdxOp;
4155   int       FrameIdx;
4156 
TailCallArgumentInfo__anonc88344ce0311::TailCallArgumentInfo4157   TailCallArgumentInfo() : FrameIdx(0) {}
4158 };
4159 }
4160 
4161 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
StoreTailCallArgumentsToStackSlot(SelectionDAG & DAG,SDValue Chain,const SmallVectorImpl<TailCallArgumentInfo> & TailCallArgs,SmallVectorImpl<SDValue> & MemOpChains,const SDLoc & dl)4162 static void StoreTailCallArgumentsToStackSlot(
4163     SelectionDAG &DAG, SDValue Chain,
4164     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4165     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4166   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4167     SDValue Arg = TailCallArgs[i].Arg;
4168     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4169     int FI = TailCallArgs[i].FrameIdx;
4170     // Store relative to framepointer.
4171     MemOpChains.push_back(DAG.getStore(
4172         Chain, dl, Arg, FIN,
4173         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
4174         false, 0));
4175   }
4176 }
4177 
4178 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4179 /// the appropriate stack slot for the tail call optimized function call.
EmitTailCallStoreFPAndRetAddr(SelectionDAG & DAG,SDValue Chain,SDValue OldRetAddr,SDValue OldFP,int SPDiff,const SDLoc & dl)4180 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4181                                              SDValue OldRetAddr, SDValue OldFP,
4182                                              int SPDiff, const SDLoc &dl) {
4183   if (SPDiff) {
4184     // Calculate the new stack slot for the return address.
4185     MachineFunction &MF = DAG.getMachineFunction();
4186     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4187     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4188     bool isPPC64 = Subtarget.isPPC64();
4189     int SlotSize = isPPC64 ? 8 : 4;
4190     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4191     int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
4192                                                           NewRetAddrLoc, true);
4193     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4194     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4195     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4196                          MachinePointerInfo::getFixedStack(MF, NewRetAddr),
4197                          false, false, 0);
4198 
4199     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4200     // slot as the FP is never overwritten.
4201     if (Subtarget.isDarwinABI()) {
4202       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4203       int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
4204                                                           true);
4205       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4206       Chain = DAG.getStore(
4207           Chain, dl, OldFP, NewFramePtrIdx,
4208           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewFPIdx),
4209           false, false, 0);
4210     }
4211   }
4212   return Chain;
4213 }
4214 
4215 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4216 /// the position of the argument.
4217 static void
CalculateTailCallArgDest(SelectionDAG & DAG,MachineFunction & MF,bool isPPC64,SDValue Arg,int SPDiff,unsigned ArgOffset,SmallVectorImpl<TailCallArgumentInfo> & TailCallArguments)4218 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4219                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4220                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4221   int Offset = ArgOffset + SPDiff;
4222   uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
4223   int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
4224   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4225   SDValue FIN = DAG.getFrameIndex(FI, VT);
4226   TailCallArgumentInfo Info;
4227   Info.Arg = Arg;
4228   Info.FrameIdxOp = FIN;
4229   Info.FrameIdx = FI;
4230   TailCallArguments.push_back(Info);
4231 }
4232 
4233 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4234 /// stack slot. Returns the chain as result and the loaded frame pointers in
4235 /// LROpOut/FPOpout. Used when tail calling.
EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,int SPDiff,SDValue Chain,SDValue & LROpOut,SDValue & FPOpOut,const SDLoc & dl) const4236 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4237     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4238     SDValue &FPOpOut, const SDLoc &dl) const {
4239   if (SPDiff) {
4240     // Load the LR and FP stack slot for later adjusting.
4241     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4242     LROpOut = getReturnAddrFrameIndex(DAG);
4243     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
4244                           false, false, false, 0);
4245     Chain = SDValue(LROpOut.getNode(), 1);
4246 
4247     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4248     // slot as the FP is never overwritten.
4249     if (Subtarget.isDarwinABI()) {
4250       FPOpOut = getFramePointerFrameIndex(DAG);
4251       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
4252                             false, false, false, 0);
4253       Chain = SDValue(FPOpOut.getNode(), 1);
4254     }
4255   }
4256   return Chain;
4257 }
4258 
4259 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4260 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4261 /// specified by the specific parameter attribute. The copy will be passed as
4262 /// a byval function parameter.
4263 /// Sometimes what we are copying is the end of a larger object, the part that
4264 /// does not fit in registers.
CreateCopyOfByValArgument(SDValue Src,SDValue Dst,SDValue Chain,ISD::ArgFlagsTy Flags,SelectionDAG & DAG,const SDLoc & dl)4265 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4266                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4267                                          SelectionDAG &DAG, const SDLoc &dl) {
4268   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4269   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4270                        false, false, false, MachinePointerInfo(),
4271                        MachinePointerInfo());
4272 }
4273 
4274 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4275 /// tail calls.
LowerMemOpCallTo(SelectionDAG & DAG,MachineFunction & MF,SDValue Chain,SDValue Arg,SDValue PtrOff,int SPDiff,unsigned ArgOffset,bool isPPC64,bool isTailCall,bool isVector,SmallVectorImpl<SDValue> & MemOpChains,SmallVectorImpl<TailCallArgumentInfo> & TailCallArguments,const SDLoc & dl)4276 static void LowerMemOpCallTo(
4277     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4278     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4279     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4280     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4281   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4282   if (!isTailCall) {
4283     if (isVector) {
4284       SDValue StackPtr;
4285       if (isPPC64)
4286         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4287       else
4288         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4289       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4290                            DAG.getConstant(ArgOffset, dl, PtrVT));
4291     }
4292     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
4293                                        MachinePointerInfo(), false, false, 0));
4294   // Calculate and remember argument location.
4295   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4296                                   TailCallArguments);
4297 }
4298 
4299 static void
PrepareTailCall(SelectionDAG & DAG,SDValue & InFlag,SDValue & Chain,const SDLoc & dl,int SPDiff,unsigned NumBytes,SDValue LROp,SDValue FPOp,SmallVectorImpl<TailCallArgumentInfo> & TailCallArguments)4300 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4301                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4302                 SDValue FPOp,
4303                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4304   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4305   // might overwrite each other in case of tail call optimization.
4306   SmallVector<SDValue, 8> MemOpChains2;
4307   // Do not flag preceding copytoreg stuff together with the following stuff.
4308   InFlag = SDValue();
4309   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4310                                     MemOpChains2, dl);
4311   if (!MemOpChains2.empty())
4312     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4313 
4314   // Store the return address to the appropriate stack slot.
4315   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4316 
4317   // Emit callseq_end just before tailcall node.
4318   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4319                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4320   InFlag = Chain.getValue(1);
4321 }
4322 
4323 // Is this global address that of a function that can be called by name? (as
4324 // opposed to something that must hold a descriptor for an indirect call).
isFunctionGlobalAddress(SDValue Callee)4325 static bool isFunctionGlobalAddress(SDValue Callee) {
4326   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4327     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4328         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4329       return false;
4330 
4331     return G->getGlobal()->getValueType()->isFunctionTy();
4332   }
4333 
4334   return false;
4335 }
4336 
4337 static unsigned
PrepareCall(SelectionDAG & DAG,SDValue & Callee,SDValue & InFlag,SDValue & Chain,SDValue CallSeqStart,const SDLoc & dl,int SPDiff,bool isTailCall,bool isPatchPoint,bool hasNest,SmallVectorImpl<std::pair<unsigned,SDValue>> & RegsToPass,SmallVectorImpl<SDValue> & Ops,std::vector<EVT> & NodeTys,ImmutableCallSite * CS,const PPCSubtarget & Subtarget)4338 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
4339             SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
4340             bool isPatchPoint, bool hasNest,
4341             SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
4342             SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4343             ImmutableCallSite *CS, const PPCSubtarget &Subtarget) {
4344 
4345   bool isPPC64 = Subtarget.isPPC64();
4346   bool isSVR4ABI = Subtarget.isSVR4ABI();
4347   bool isELFv2ABI = Subtarget.isELFv2ABI();
4348 
4349   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4350   NodeTys.push_back(MVT::Other);   // Returns a chain
4351   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
4352 
4353   unsigned CallOpc = PPCISD::CALL;
4354 
4355   bool needIndirectCall = true;
4356   if (!isSVR4ABI || !isPPC64)
4357     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4358       // If this is an absolute destination address, use the munged value.
4359       Callee = SDValue(Dest, 0);
4360       needIndirectCall = false;
4361     }
4362 
4363   // PC-relative references to external symbols should go through $stub, unless
4364   // we're building with the leopard linker or later, which automatically
4365   // synthesizes these stubs.
4366   const TargetMachine &TM = DAG.getTarget();
4367   const Module *Mod = DAG.getMachineFunction().getFunction()->getParent();
4368   const GlobalValue *GV = nullptr;
4369   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
4370     GV = G->getGlobal();
4371   bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
4372   bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
4373 
4374   if (isFunctionGlobalAddress(Callee)) {
4375     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4376     // A call to a TLS address is actually an indirect call to a
4377     // thread-specific pointer.
4378     unsigned OpFlags = 0;
4379     if (UsePlt)
4380       OpFlags = PPCII::MO_PLT;
4381 
4382     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4383     // every direct call is) turn it into a TargetGlobalAddress /
4384     // TargetExternalSymbol node so that legalize doesn't hack it.
4385     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4386                                         Callee.getValueType(), 0, OpFlags);
4387     needIndirectCall = false;
4388   }
4389 
4390   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4391     unsigned char OpFlags = 0;
4392 
4393     if (UsePlt)
4394       OpFlags = PPCII::MO_PLT;
4395 
4396     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4397                                          OpFlags);
4398     needIndirectCall = false;
4399   }
4400 
4401   if (isPatchPoint) {
4402     // We'll form an invalid direct call when lowering a patchpoint; the full
4403     // sequence for an indirect call is complicated, and many of the
4404     // instructions introduced might have side effects (and, thus, can't be
4405     // removed later). The call itself will be removed as soon as the
4406     // argument/return lowering is complete, so the fact that it has the wrong
4407     // kind of operands should not really matter.
4408     needIndirectCall = false;
4409   }
4410 
4411   if (needIndirectCall) {
4412     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
4413     // to do the call, we can't use PPCISD::CALL.
4414     SDValue MTCTROps[] = {Chain, Callee, InFlag};
4415 
4416     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4417       // Function pointers in the 64-bit SVR4 ABI do not point to the function
4418       // entry point, but to the function descriptor (the function entry point
4419       // address is part of the function descriptor though).
4420       // The function descriptor is a three doubleword structure with the
4421       // following fields: function entry point, TOC base address and
4422       // environment pointer.
4423       // Thus for a call through a function pointer, the following actions need
4424       // to be performed:
4425       //   1. Save the TOC of the caller in the TOC save area of its stack
4426       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4427       //   2. Load the address of the function entry point from the function
4428       //      descriptor.
4429       //   3. Load the TOC of the callee from the function descriptor into r2.
4430       //   4. Load the environment pointer from the function descriptor into
4431       //      r11.
4432       //   5. Branch to the function entry point address.
4433       //   6. On return of the callee, the TOC of the caller needs to be
4434       //      restored (this is done in FinishCall()).
4435       //
4436       // The loads are scheduled at the beginning of the call sequence, and the
4437       // register copies are flagged together to ensure that no other
4438       // operations can be scheduled in between. E.g. without flagging the
4439       // copies together, a TOC access in the caller could be scheduled between
4440       // the assignment of the callee TOC and the branch to the callee, which
4441       // results in the TOC access going through the TOC of the callee instead
4442       // of going through the TOC of the caller, which leads to incorrect code.
4443 
4444       // Load the address of the function entry point from the function
4445       // descriptor.
4446       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
4447       if (LDChain.getValueType() == MVT::Glue)
4448         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
4449 
4450       bool LoadsInv = Subtarget.hasInvariantFunctionDescriptors();
4451 
4452       MachinePointerInfo MPI(CS ? CS->getCalledValue() : nullptr);
4453       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
4454                                         false, false, LoadsInv, 8);
4455 
4456       // Load environment pointer into r11.
4457       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
4458       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
4459       SDValue LoadEnvPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddPtr,
4460                                        MPI.getWithOffset(16), false, false,
4461                                        LoadsInv, 8);
4462 
4463       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
4464       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
4465       SDValue TOCPtr = DAG.getLoad(MVT::i64, dl, LDChain, AddTOC,
4466                                    MPI.getWithOffset(8), false, false,
4467                                    LoadsInv, 8);
4468 
4469       setUsesTOCBasePtr(DAG);
4470       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
4471                                         InFlag);
4472       Chain = TOCVal.getValue(0);
4473       InFlag = TOCVal.getValue(1);
4474 
4475       // If the function call has an explicit 'nest' parameter, it takes the
4476       // place of the environment pointer.
4477       if (!hasNest) {
4478         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
4479                                           InFlag);
4480 
4481         Chain = EnvVal.getValue(0);
4482         InFlag = EnvVal.getValue(1);
4483       }
4484 
4485       MTCTROps[0] = Chain;
4486       MTCTROps[1] = LoadFuncPtr;
4487       MTCTROps[2] = InFlag;
4488     }
4489 
4490     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
4491                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
4492     InFlag = Chain.getValue(1);
4493 
4494     NodeTys.clear();
4495     NodeTys.push_back(MVT::Other);
4496     NodeTys.push_back(MVT::Glue);
4497     Ops.push_back(Chain);
4498     CallOpc = PPCISD::BCTRL;
4499     Callee.setNode(nullptr);
4500     // Add use of X11 (holding environment pointer)
4501     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
4502       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
4503     // Add CTR register as callee so a bctr can be emitted later.
4504     if (isTailCall)
4505       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
4506   }
4507 
4508   // If this is a direct call, pass the chain and the callee.
4509   if (Callee.getNode()) {
4510     Ops.push_back(Chain);
4511     Ops.push_back(Callee);
4512   }
4513   // If this is a tail call add stack pointer delta.
4514   if (isTailCall)
4515     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
4516 
4517   // Add argument registers to the end of the list so that they are known live
4518   // into the call.
4519   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
4520     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
4521                                   RegsToPass[i].second.getValueType()));
4522 
4523   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
4524   // into the call.
4525   if (isSVR4ABI && isPPC64 && !isPatchPoint) {
4526     setUsesTOCBasePtr(DAG);
4527     Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
4528   }
4529 
4530   return CallOpc;
4531 }
4532 
4533 static
isLocalCall(const SDValue & Callee)4534 bool isLocalCall(const SDValue &Callee)
4535 {
4536   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4537     return G->getGlobal()->isStrongDefinitionForLinker();
4538   return false;
4539 }
4540 
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const4541 SDValue PPCTargetLowering::LowerCallResult(
4542     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
4543     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4544     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4545 
4546   SmallVector<CCValAssign, 16> RVLocs;
4547   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
4548                     *DAG.getContext());
4549   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
4550 
4551   // Copy all of the result registers out of their specified physreg.
4552   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
4553     CCValAssign &VA = RVLocs[i];
4554     assert(VA.isRegLoc() && "Can only return in registers!");
4555 
4556     SDValue Val = DAG.getCopyFromReg(Chain, dl,
4557                                      VA.getLocReg(), VA.getLocVT(), InFlag);
4558     Chain = Val.getValue(1);
4559     InFlag = Val.getValue(2);
4560 
4561     switch (VA.getLocInfo()) {
4562     default: llvm_unreachable("Unknown loc info!");
4563     case CCValAssign::Full: break;
4564     case CCValAssign::AExt:
4565       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4566       break;
4567     case CCValAssign::ZExt:
4568       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
4569                         DAG.getValueType(VA.getValVT()));
4570       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4571       break;
4572     case CCValAssign::SExt:
4573       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
4574                         DAG.getValueType(VA.getValVT()));
4575       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
4576       break;
4577     }
4578 
4579     InVals.push_back(Val);
4580   }
4581 
4582   return Chain;
4583 }
4584 
FinishCall(CallingConv::ID CallConv,const SDLoc & dl,bool isTailCall,bool isVarArg,bool isPatchPoint,bool hasNest,SelectionDAG & DAG,SmallVector<std::pair<unsigned,SDValue>,8> & RegsToPass,SDValue InFlag,SDValue Chain,SDValue CallSeqStart,SDValue & Callee,int SPDiff,unsigned NumBytes,const SmallVectorImpl<ISD::InputArg> & Ins,SmallVectorImpl<SDValue> & InVals,ImmutableCallSite * CS) const4585 SDValue PPCTargetLowering::FinishCall(
4586     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
4587     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
4588     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
4589     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
4590     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
4591     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite *CS) const {
4592 
4593   std::vector<EVT> NodeTys;
4594   SmallVector<SDValue, 8> Ops;
4595   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
4596                                  SPDiff, isTailCall, isPatchPoint, hasNest,
4597                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
4598 
4599   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
4600   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
4601     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
4602 
4603   // When performing tail call optimization the callee pops its arguments off
4604   // the stack. Account for this here so these bytes can be pushed back on in
4605   // PPCFrameLowering::eliminateCallFramePseudoInstr.
4606   int BytesCalleePops =
4607     (CallConv == CallingConv::Fast &&
4608      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
4609 
4610   // Add a register mask operand representing the call-preserved registers.
4611   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
4612   const uint32_t *Mask =
4613       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
4614   assert(Mask && "Missing call preserved mask for calling convention");
4615   Ops.push_back(DAG.getRegisterMask(Mask));
4616 
4617   if (InFlag.getNode())
4618     Ops.push_back(InFlag);
4619 
4620   // Emit tail call.
4621   if (isTailCall) {
4622     assert(((Callee.getOpcode() == ISD::Register &&
4623              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
4624             Callee.getOpcode() == ISD::TargetExternalSymbol ||
4625             Callee.getOpcode() == ISD::TargetGlobalAddress ||
4626             isa<ConstantSDNode>(Callee)) &&
4627     "Expecting an global address, external symbol, absolute value or register");
4628 
4629     DAG.getMachineFunction().getFrameInfo()->setHasTailCall();
4630     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
4631   }
4632 
4633   // Add a NOP immediately after the branch instruction when using the 64-bit
4634   // SVR4 ABI. At link time, if caller and callee are in a different module and
4635   // thus have a different TOC, the call will be replaced with a call to a stub
4636   // function which saves the current TOC, loads the TOC of the callee and
4637   // branches to the callee. The NOP will be replaced with a load instruction
4638   // which restores the TOC of the caller from the TOC save slot of the current
4639   // stack frame. If caller and callee belong to the same module (and have the
4640   // same TOC), the NOP will remain unchanged.
4641 
4642   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
4643       !isPatchPoint) {
4644     if (CallOpc == PPCISD::BCTRL) {
4645       // This is a call through a function pointer.
4646       // Restore the caller TOC from the save area into R2.
4647       // See PrepareCall() for more information about calls through function
4648       // pointers in the 64-bit SVR4 ABI.
4649       // We are using a target-specific load with r2 hard coded, because the
4650       // result of a target-independent load would never go directly into r2,
4651       // since r2 is a reserved register (which prevents the register allocator
4652       // from allocating it), resulting in an additional register being
4653       // allocated and an unnecessary move instruction being generated.
4654       CallOpc = PPCISD::BCTRL_LOAD_TOC;
4655 
4656       EVT PtrVT = getPointerTy(DAG.getDataLayout());
4657       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
4658       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
4659       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
4660       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
4661 
4662       // The address needs to go after the chain input but before the flag (or
4663       // any other variadic arguments).
4664       Ops.insert(std::next(Ops.begin()), AddTOC);
4665     } else if ((CallOpc == PPCISD::CALL) &&
4666                (!isLocalCall(Callee) ||
4667                 DAG.getTarget().getRelocationModel() == Reloc::PIC_))
4668       // Otherwise insert NOP for non-local calls.
4669       CallOpc = PPCISD::CALL_NOP;
4670   }
4671 
4672   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
4673   InFlag = Chain.getValue(1);
4674 
4675   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4676                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
4677                              InFlag, dl);
4678   if (!Ins.empty())
4679     InFlag = Chain.getValue(1);
4680 
4681   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
4682                          Ins, dl, DAG, InVals);
4683 }
4684 
4685 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const4686 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
4687                              SmallVectorImpl<SDValue> &InVals) const {
4688   SelectionDAG &DAG                     = CLI.DAG;
4689   SDLoc &dl                             = CLI.DL;
4690   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
4691   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
4692   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
4693   SDValue Chain                         = CLI.Chain;
4694   SDValue Callee                        = CLI.Callee;
4695   bool &isTailCall                      = CLI.IsTailCall;
4696   CallingConv::ID CallConv              = CLI.CallConv;
4697   bool isVarArg                         = CLI.IsVarArg;
4698   bool isPatchPoint                     = CLI.IsPatchPoint;
4699   ImmutableCallSite *CS                 = CLI.CS;
4700 
4701   if (isTailCall) {
4702     if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
4703       isTailCall =
4704         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
4705                                                  isVarArg, Outs, Ins, DAG);
4706     else
4707       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
4708                                                      Ins, DAG);
4709     if (isTailCall) {
4710       ++NumTailCalls;
4711       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4712         ++NumSiblingCalls;
4713 
4714       assert(isa<GlobalAddressSDNode>(Callee) &&
4715              "Callee should be an llvm::Function object.");
4716       DEBUG(
4717         const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
4718         const unsigned Width = 80 - strlen("TCO caller: ")
4719                                   - strlen(", callee linkage: 0, 0");
4720         dbgs() << "TCO caller: "
4721                << left_justify(DAG.getMachineFunction().getName(), Width)
4722                << ", callee linkage: "
4723                << GV->getVisibility() << ", " << GV->getLinkage() << "\n"
4724       );
4725     }
4726   }
4727 
4728   if (!isTailCall && CS && CS->isMustTailCall())
4729     report_fatal_error("failed to perform tail call elimination on a call "
4730                        "site marked musttail");
4731 
4732   if (Subtarget.isSVR4ABI()) {
4733     if (Subtarget.isPPC64())
4734       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
4735                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
4736                               dl, DAG, InVals, CS);
4737     else
4738       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
4739                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
4740                               dl, DAG, InVals, CS);
4741   }
4742 
4743   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
4744                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
4745                           dl, DAG, InVals, CS);
4746 }
4747 
LowerCall_32SVR4(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,bool isPatchPoint,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,ImmutableCallSite * CS) const4748 SDValue PPCTargetLowering::LowerCall_32SVR4(
4749     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
4750     bool isTailCall, bool isPatchPoint,
4751     const SmallVectorImpl<ISD::OutputArg> &Outs,
4752     const SmallVectorImpl<SDValue> &OutVals,
4753     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4754     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
4755     ImmutableCallSite *CS) const {
4756   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
4757   // of the 32-bit SVR4 ABI stack frame layout.
4758 
4759   assert((CallConv == CallingConv::C ||
4760           CallConv == CallingConv::Fast) && "Unknown calling convention!");
4761 
4762   unsigned PtrByteSize = 4;
4763 
4764   MachineFunction &MF = DAG.getMachineFunction();
4765 
4766   // Mark this function as potentially containing a function that contains a
4767   // tail call. As a consequence the frame pointer will be used for dynamicalloc
4768   // and restoring the callers stack pointer in this functions epilog. This is
4769   // done because by tail calling the called function might overwrite the value
4770   // in this function's (MF) stack pointer stack slot 0(SP).
4771   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4772       CallConv == CallingConv::Fast)
4773     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4774 
4775   // Count how many bytes are to be pushed on the stack, including the linkage
4776   // area, parameter list area and the part of the local variable space which
4777   // contains copies of aggregates which are passed by value.
4778 
4779   // Assign locations to all of the outgoing arguments.
4780   SmallVector<CCValAssign, 16> ArgLocs;
4781   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
4782 
4783   // Reserve space for the linkage area on the stack.
4784   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
4785                        PtrByteSize);
4786   if (useSoftFloat())
4787     CCInfo.PreAnalyzeCallOperands(Outs);
4788 
4789   if (isVarArg) {
4790     // Handle fixed and variable vector arguments differently.
4791     // Fixed vector arguments go into registers as long as registers are
4792     // available. Variable vector arguments always go into memory.
4793     unsigned NumArgs = Outs.size();
4794 
4795     for (unsigned i = 0; i != NumArgs; ++i) {
4796       MVT ArgVT = Outs[i].VT;
4797       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
4798       bool Result;
4799 
4800       if (Outs[i].IsFixed) {
4801         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
4802                                CCInfo);
4803       } else {
4804         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
4805                                       ArgFlags, CCInfo);
4806       }
4807 
4808       if (Result) {
4809 #ifndef NDEBUG
4810         errs() << "Call operand #" << i << " has unhandled type "
4811              << EVT(ArgVT).getEVTString() << "\n";
4812 #endif
4813         llvm_unreachable(nullptr);
4814       }
4815     }
4816   } else {
4817     // All arguments are treated the same.
4818     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
4819   }
4820   CCInfo.clearWasPPCF128();
4821 
4822   // Assign locations to all of the outgoing aggregate by value arguments.
4823   SmallVector<CCValAssign, 16> ByValArgLocs;
4824   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
4825 
4826   // Reserve stack space for the allocations in CCInfo.
4827   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
4828 
4829   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
4830 
4831   // Size of the linkage area, parameter list area and the part of the local
4832   // space variable where copies of aggregates which are passed by value are
4833   // stored.
4834   unsigned NumBytes = CCByValInfo.getNextStackOffset();
4835 
4836   // Calculate by how many bytes the stack has to be adjusted in case of tail
4837   // call optimization.
4838   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4839 
4840   // Adjust the stack pointer for the new arguments...
4841   // These operations are automatically eliminated by the prolog/epilog pass
4842   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4843                                dl);
4844   SDValue CallSeqStart = Chain;
4845 
4846   // Load the return address and frame pointer so it can be moved somewhere else
4847   // later.
4848   SDValue LROp, FPOp;
4849   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
4850 
4851   // Set up a copy of the stack pointer for use loading and storing any
4852   // arguments that may not fit in the registers available for argument
4853   // passing.
4854   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4855 
4856   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4857   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4858   SmallVector<SDValue, 8> MemOpChains;
4859 
4860   bool seenFloatArg = false;
4861   // Walk the register/memloc assignments, inserting copies/loads.
4862   for (unsigned i = 0, j = 0, e = ArgLocs.size();
4863        i != e;
4864        ++i) {
4865     CCValAssign &VA = ArgLocs[i];
4866     SDValue Arg = OutVals[i];
4867     ISD::ArgFlagsTy Flags = Outs[i].Flags;
4868 
4869     if (Flags.isByVal()) {
4870       // Argument is an aggregate which is passed by value, thus we need to
4871       // create a copy of it in the local variable space of the current stack
4872       // frame (which is the stack frame of the caller) and pass the address of
4873       // this copy to the callee.
4874       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
4875       CCValAssign &ByValVA = ByValArgLocs[j++];
4876       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
4877 
4878       // Memory reserved in the local variable space of the callers stack frame.
4879       unsigned LocMemOffset = ByValVA.getLocMemOffset();
4880 
4881       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
4882       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
4883                            StackPtr, PtrOff);
4884 
4885       // Create a copy of the argument in the local area of the current
4886       // stack frame.
4887       SDValue MemcpyCall =
4888         CreateCopyOfByValArgument(Arg, PtrOff,
4889                                   CallSeqStart.getNode()->getOperand(0),
4890                                   Flags, DAG, dl);
4891 
4892       // This must go outside the CALLSEQ_START..END.
4893       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
4894                            CallSeqStart.getNode()->getOperand(1),
4895                            SDLoc(MemcpyCall));
4896       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
4897                              NewCallSeqStart.getNode());
4898       Chain = CallSeqStart = NewCallSeqStart;
4899 
4900       // Pass the address of the aggregate copy on the stack either in a
4901       // physical register or in the parameter list area of the current stack
4902       // frame to the callee.
4903       Arg = PtrOff;
4904     }
4905 
4906     if (VA.isRegLoc()) {
4907       if (Arg.getValueType() == MVT::i1)
4908         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
4909 
4910       seenFloatArg |= VA.getLocVT().isFloatingPoint();
4911       // Put argument in a physical register.
4912       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
4913     } else {
4914       // Put argument in the parameter list area of the current stack frame.
4915       assert(VA.isMemLoc());
4916       unsigned LocMemOffset = VA.getLocMemOffset();
4917 
4918       if (!isTailCall) {
4919         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
4920         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
4921                              StackPtr, PtrOff);
4922 
4923         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
4924                                            MachinePointerInfo(),
4925                                            false, false, 0));
4926       } else {
4927         // Calculate and remember argument location.
4928         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
4929                                  TailCallArguments);
4930       }
4931     }
4932   }
4933 
4934   if (!MemOpChains.empty())
4935     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
4936 
4937   // Build a sequence of copy-to-reg nodes chained together with token chain
4938   // and flag operands which copy the outgoing args into the appropriate regs.
4939   SDValue InFlag;
4940   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4941     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4942                              RegsToPass[i].second, InFlag);
4943     InFlag = Chain.getValue(1);
4944   }
4945 
4946   // Set CR bit 6 to true if this is a vararg call with floating args passed in
4947   // registers.
4948   if (isVarArg) {
4949     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
4950     SDValue Ops[] = { Chain, InFlag };
4951 
4952     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
4953                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
4954 
4955     InFlag = Chain.getValue(1);
4956   }
4957 
4958   if (isTailCall)
4959     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
4960                     TailCallArguments);
4961 
4962   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
4963                     /* unused except on PPC64 ELFv1 */ false, DAG,
4964                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
4965                     NumBytes, Ins, InVals, CS);
4966 }
4967 
4968 // Copy an argument into memory, being careful to do this outside the
4969 // call sequence for the call to which the argument belongs.
createMemcpyOutsideCallSeq(SDValue Arg,SDValue PtrOff,SDValue CallSeqStart,ISD::ArgFlagsTy Flags,SelectionDAG & DAG,const SDLoc & dl) const4970 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
4971     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
4972     SelectionDAG &DAG, const SDLoc &dl) const {
4973   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
4974                         CallSeqStart.getNode()->getOperand(0),
4975                         Flags, DAG, dl);
4976   // The MEMCPY must go outside the CALLSEQ_START..END.
4977   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
4978                              CallSeqStart.getNode()->getOperand(1),
4979                              SDLoc(MemcpyCall));
4980   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
4981                          NewCallSeqStart.getNode());
4982   return NewCallSeqStart;
4983 }
4984 
LowerCall_64SVR4(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,bool isPatchPoint,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,ImmutableCallSite * CS) const4985 SDValue PPCTargetLowering::LowerCall_64SVR4(
4986     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
4987     bool isTailCall, bool isPatchPoint,
4988     const SmallVectorImpl<ISD::OutputArg> &Outs,
4989     const SmallVectorImpl<SDValue> &OutVals,
4990     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4991     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
4992     ImmutableCallSite *CS) const {
4993 
4994   bool isELFv2ABI = Subtarget.isELFv2ABI();
4995   bool isLittleEndian = Subtarget.isLittleEndian();
4996   unsigned NumOps = Outs.size();
4997   bool hasNest = false;
4998   bool IsSibCall = false;
4999 
5000   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5001   unsigned PtrByteSize = 8;
5002 
5003   MachineFunction &MF = DAG.getMachineFunction();
5004 
5005   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5006     IsSibCall = true;
5007 
5008   // Mark this function as potentially containing a function that contains a
5009   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5010   // and restoring the callers stack pointer in this functions epilog. This is
5011   // done because by tail calling the called function might overwrite the value
5012   // in this function's (MF) stack pointer stack slot 0(SP).
5013   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5014       CallConv == CallingConv::Fast)
5015     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5016 
5017   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5018          "fastcc not supported on varargs functions");
5019 
5020   // Count how many bytes are to be pushed on the stack, including the linkage
5021   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5022   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5023   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5024   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5025   unsigned NumBytes = LinkageSize;
5026   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5027   unsigned &QFPR_idx = FPR_idx;
5028 
5029   static const MCPhysReg GPR[] = {
5030     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5031     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5032   };
5033   static const MCPhysReg VR[] = {
5034     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5035     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5036   };
5037   static const MCPhysReg VSRH[] = {
5038     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
5039     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
5040   };
5041 
5042   const unsigned NumGPRs = array_lengthof(GPR);
5043   const unsigned NumFPRs = 13;
5044   const unsigned NumVRs  = array_lengthof(VR);
5045   const unsigned NumQFPRs = NumFPRs;
5046 
5047   // When using the fast calling convention, we don't provide backing for
5048   // arguments that will be in registers.
5049   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5050 
5051   // Add up all the space actually used.
5052   for (unsigned i = 0; i != NumOps; ++i) {
5053     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5054     EVT ArgVT = Outs[i].VT;
5055     EVT OrigVT = Outs[i].ArgVT;
5056 
5057     if (Flags.isNest())
5058       continue;
5059 
5060     if (CallConv == CallingConv::Fast) {
5061       if (Flags.isByVal())
5062         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5063       else
5064         switch (ArgVT.getSimpleVT().SimpleTy) {
5065         default: llvm_unreachable("Unexpected ValueType for argument!");
5066         case MVT::i1:
5067         case MVT::i32:
5068         case MVT::i64:
5069           if (++NumGPRsUsed <= NumGPRs)
5070             continue;
5071           break;
5072         case MVT::v4i32:
5073         case MVT::v8i16:
5074         case MVT::v16i8:
5075         case MVT::v2f64:
5076         case MVT::v2i64:
5077         case MVT::v1i128:
5078           if (++NumVRsUsed <= NumVRs)
5079             continue;
5080           break;
5081         case MVT::v4f32:
5082           // When using QPX, this is handled like a FP register, otherwise, it
5083           // is an Altivec register.
5084           if (Subtarget.hasQPX()) {
5085             if (++NumFPRsUsed <= NumFPRs)
5086               continue;
5087           } else {
5088             if (++NumVRsUsed <= NumVRs)
5089               continue;
5090           }
5091           break;
5092         case MVT::f32:
5093         case MVT::f64:
5094         case MVT::v4f64: // QPX
5095         case MVT::v4i1:  // QPX
5096           if (++NumFPRsUsed <= NumFPRs)
5097             continue;
5098           break;
5099         }
5100     }
5101 
5102     /* Respect alignment of argument on the stack.  */
5103     unsigned Align =
5104       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5105     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5106 
5107     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5108     if (Flags.isInConsecutiveRegsLast())
5109       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5110   }
5111 
5112   unsigned NumBytesActuallyUsed = NumBytes;
5113 
5114   // The prolog code of the callee may store up to 8 GPR argument registers to
5115   // the stack, allowing va_start to index over them in memory if its varargs.
5116   // Because we cannot tell if this is needed on the caller side, we have to
5117   // conservatively assume that it is needed.  As such, make sure we have at
5118   // least enough stack space for the caller to store the 8 GPRs.
5119   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
5120   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5121 
5122   // Tail call needs the stack to be aligned.
5123   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5124       CallConv == CallingConv::Fast)
5125     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5126 
5127   int SPDiff = 0;
5128 
5129   // Calculate by how many bytes the stack has to be adjusted in case of tail
5130   // call optimization.
5131   if (!IsSibCall)
5132     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5133 
5134   // To protect arguments on the stack from being clobbered in a tail call,
5135   // force all the loads to happen before doing any other lowering.
5136   if (isTailCall)
5137     Chain = DAG.getStackArgumentTokenFactor(Chain);
5138 
5139   // Adjust the stack pointer for the new arguments...
5140   // These operations are automatically eliminated by the prolog/epilog pass
5141   if (!IsSibCall)
5142     Chain = DAG.getCALLSEQ_START(Chain,
5143                                  DAG.getIntPtrConstant(NumBytes, dl, true), dl);
5144   SDValue CallSeqStart = Chain;
5145 
5146   // Load the return address and frame pointer so it can be move somewhere else
5147   // later.
5148   SDValue LROp, FPOp;
5149   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5150 
5151   // Set up a copy of the stack pointer for use loading and storing any
5152   // arguments that may not fit in the registers available for argument
5153   // passing.
5154   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5155 
5156   // Figure out which arguments are going to go in registers, and which in
5157   // memory.  Also, if this is a vararg function, floating point operations
5158   // must be stored to our stack, and loaded into integer regs as well, if
5159   // any integer regs are available for argument passing.
5160   unsigned ArgOffset = LinkageSize;
5161 
5162   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5163   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5164 
5165   SmallVector<SDValue, 8> MemOpChains;
5166   for (unsigned i = 0; i != NumOps; ++i) {
5167     SDValue Arg = OutVals[i];
5168     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5169     EVT ArgVT = Outs[i].VT;
5170     EVT OrigVT = Outs[i].ArgVT;
5171 
5172     // PtrOff will be used to store the current argument to the stack if a
5173     // register cannot be found for it.
5174     SDValue PtrOff;
5175 
5176     // We re-align the argument offset for each argument, except when using the
5177     // fast calling convention, when we need to make sure we do that only when
5178     // we'll actually use a stack slot.
5179     auto ComputePtrOff = [&]() {
5180       /* Respect alignment of argument on the stack.  */
5181       unsigned Align =
5182         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5183       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5184 
5185       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5186 
5187       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5188     };
5189 
5190     if (CallConv != CallingConv::Fast) {
5191       ComputePtrOff();
5192 
5193       /* Compute GPR index associated with argument offset.  */
5194       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5195       GPR_idx = std::min(GPR_idx, NumGPRs);
5196     }
5197 
5198     // Promote integers to 64-bit values.
5199     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5200       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5201       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5202       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5203     }
5204 
5205     // FIXME memcpy is used way more than necessary.  Correctness first.
5206     // Note: "by value" is code for passing a structure by value, not
5207     // basic types.
5208     if (Flags.isByVal()) {
5209       // Note: Size includes alignment padding, so
5210       //   struct x { short a; char b; }
5211       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
5212       // These are the proper values we need for right-justifying the
5213       // aggregate in a parameter register.
5214       unsigned Size = Flags.getByValSize();
5215 
5216       // An empty aggregate parameter takes up no storage and no
5217       // registers.
5218       if (Size == 0)
5219         continue;
5220 
5221       if (CallConv == CallingConv::Fast)
5222         ComputePtrOff();
5223 
5224       // All aggregates smaller than 8 bytes must be passed right-justified.
5225       if (Size==1 || Size==2 || Size==4) {
5226         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5227         if (GPR_idx != NumGPRs) {
5228           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5229                                         MachinePointerInfo(), VT,
5230                                         false, false, false, 0);
5231           MemOpChains.push_back(Load.getValue(1));
5232           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5233 
5234           ArgOffset += PtrByteSize;
5235           continue;
5236         }
5237       }
5238 
5239       if (GPR_idx == NumGPRs && Size < 8) {
5240         SDValue AddPtr = PtrOff;
5241         if (!isLittleEndian) {
5242           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5243                                           PtrOff.getValueType());
5244           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5245         }
5246         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5247                                                           CallSeqStart,
5248                                                           Flags, DAG, dl);
5249         ArgOffset += PtrByteSize;
5250         continue;
5251       }
5252       // Copy entire object into memory.  There are cases where gcc-generated
5253       // code assumes it is there, even if it could be put entirely into
5254       // registers.  (This is not what the doc says.)
5255 
5256       // FIXME: The above statement is likely due to a misunderstanding of the
5257       // documents.  All arguments must be copied into the parameter area BY
5258       // THE CALLEE in the event that the callee takes the address of any
5259       // formal argument.  That has not yet been implemented.  However, it is
5260       // reasonable to use the stack area as a staging area for the register
5261       // load.
5262 
5263       // Skip this for small aggregates, as we will use the same slot for a
5264       // right-justified copy, below.
5265       if (Size >= 8)
5266         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5267                                                           CallSeqStart,
5268                                                           Flags, DAG, dl);
5269 
5270       // When a register is available, pass a small aggregate right-justified.
5271       if (Size < 8 && GPR_idx != NumGPRs) {
5272         // The easiest way to get this right-justified in a register
5273         // is to copy the structure into the rightmost portion of a
5274         // local variable slot, then load the whole slot into the
5275         // register.
5276         // FIXME: The memcpy seems to produce pretty awful code for
5277         // small aggregates, particularly for packed ones.
5278         // FIXME: It would be preferable to use the slot in the
5279         // parameter save area instead of a new local variable.
5280         SDValue AddPtr = PtrOff;
5281         if (!isLittleEndian) {
5282           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5283           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5284         }
5285         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5286                                                           CallSeqStart,
5287                                                           Flags, DAG, dl);
5288 
5289         // Load the slot into the register.
5290         SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
5291                                    MachinePointerInfo(),
5292                                    false, false, false, 0);
5293         MemOpChains.push_back(Load.getValue(1));
5294         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5295 
5296         // Done with this argument.
5297         ArgOffset += PtrByteSize;
5298         continue;
5299       }
5300 
5301       // For aggregates larger than PtrByteSize, copy the pieces of the
5302       // object that fit into registers from the parameter save area.
5303       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5304         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5305         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5306         if (GPR_idx != NumGPRs) {
5307           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
5308                                      MachinePointerInfo(),
5309                                      false, false, false, 0);
5310           MemOpChains.push_back(Load.getValue(1));
5311           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5312           ArgOffset += PtrByteSize;
5313         } else {
5314           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5315           break;
5316         }
5317       }
5318       continue;
5319     }
5320 
5321     switch (Arg.getSimpleValueType().SimpleTy) {
5322     default: llvm_unreachable("Unexpected ValueType for argument!");
5323     case MVT::i1:
5324     case MVT::i32:
5325     case MVT::i64:
5326       if (Flags.isNest()) {
5327         // The 'nest' parameter, if any, is passed in R11.
5328         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5329         hasNest = true;
5330         break;
5331       }
5332 
5333       // These can be scalar arguments or elements of an integer array type
5334       // passed directly.  Clang may use those instead of "byval" aggregate
5335       // types to avoid forcing arguments to memory unnecessarily.
5336       if (GPR_idx != NumGPRs) {
5337         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5338       } else {
5339         if (CallConv == CallingConv::Fast)
5340           ComputePtrOff();
5341 
5342         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5343                          true, isTailCall, false, MemOpChains,
5344                          TailCallArguments, dl);
5345         if (CallConv == CallingConv::Fast)
5346           ArgOffset += PtrByteSize;
5347       }
5348       if (CallConv != CallingConv::Fast)
5349         ArgOffset += PtrByteSize;
5350       break;
5351     case MVT::f32:
5352     case MVT::f64: {
5353       // These can be scalar arguments or elements of a float array type
5354       // passed directly.  The latter are used to implement ELFv2 homogenous
5355       // float aggregates.
5356 
5357       // Named arguments go into FPRs first, and once they overflow, the
5358       // remaining arguments go into GPRs and then the parameter save area.
5359       // Unnamed arguments for vararg functions always go to GPRs and
5360       // then the parameter save area.  For now, put all arguments to vararg
5361       // routines always in both locations (FPR *and* GPR or stack slot).
5362       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
5363       bool NeededLoad = false;
5364 
5365       // First load the argument into the next available FPR.
5366       if (FPR_idx != NumFPRs)
5367         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5368 
5369       // Next, load the argument into GPR or stack slot if needed.
5370       if (!NeedGPROrStack)
5371         ;
5372       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
5373         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
5374         // once we support fp <-> gpr moves.
5375 
5376         // In the non-vararg case, this can only ever happen in the
5377         // presence of f32 array types, since otherwise we never run
5378         // out of FPRs before running out of GPRs.
5379         SDValue ArgVal;
5380 
5381         // Double values are always passed in a single GPR.
5382         if (Arg.getValueType() != MVT::f32) {
5383           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
5384 
5385         // Non-array float values are extended and passed in a GPR.
5386         } else if (!Flags.isInConsecutiveRegs()) {
5387           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5388           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5389 
5390         // If we have an array of floats, we collect every odd element
5391         // together with its predecessor into one GPR.
5392         } else if (ArgOffset % PtrByteSize != 0) {
5393           SDValue Lo, Hi;
5394           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
5395           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5396           if (!isLittleEndian)
5397             std::swap(Lo, Hi);
5398           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5399 
5400         // The final element, if even, goes into the first half of a GPR.
5401         } else if (Flags.isInConsecutiveRegsLast()) {
5402           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5403           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5404           if (!isLittleEndian)
5405             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
5406                                  DAG.getConstant(32, dl, MVT::i32));
5407 
5408         // Non-final even elements are skipped; they will be handled
5409         // together the with subsequent argument on the next go-around.
5410         } else
5411           ArgVal = SDValue();
5412 
5413         if (ArgVal.getNode())
5414           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
5415       } else {
5416         if (CallConv == CallingConv::Fast)
5417           ComputePtrOff();
5418 
5419         // Single-precision floating-point values are mapped to the
5420         // second (rightmost) word of the stack doubleword.
5421         if (Arg.getValueType() == MVT::f32 &&
5422             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
5423           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5424           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5425         }
5426 
5427         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5428                          true, isTailCall, false, MemOpChains,
5429                          TailCallArguments, dl);
5430 
5431         NeededLoad = true;
5432       }
5433       // When passing an array of floats, the array occupies consecutive
5434       // space in the argument area; only round up to the next doubleword
5435       // at the end of the array.  Otherwise, each float takes 8 bytes.
5436       if (CallConv != CallingConv::Fast || NeededLoad) {
5437         ArgOffset += (Arg.getValueType() == MVT::f32 &&
5438                       Flags.isInConsecutiveRegs()) ? 4 : 8;
5439         if (Flags.isInConsecutiveRegsLast())
5440           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5441       }
5442       break;
5443     }
5444     case MVT::v4f32:
5445     case MVT::v4i32:
5446     case MVT::v8i16:
5447     case MVT::v16i8:
5448     case MVT::v2f64:
5449     case MVT::v2i64:
5450     case MVT::v1i128:
5451       if (!Subtarget.hasQPX()) {
5452       // These can be scalar arguments or elements of a vector array type
5453       // passed directly.  The latter are used to implement ELFv2 homogenous
5454       // vector aggregates.
5455 
5456       // For a varargs call, named arguments go into VRs or on the stack as
5457       // usual; unnamed arguments always go to the stack or the corresponding
5458       // GPRs when within range.  For now, we always put the value in both
5459       // locations (or even all three).
5460       if (isVarArg) {
5461         // We could elide this store in the case where the object fits
5462         // entirely in R registers.  Maybe later.
5463         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5464                                      MachinePointerInfo(), false, false, 0);
5465         MemOpChains.push_back(Store);
5466         if (VR_idx != NumVRs) {
5467           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
5468                                      MachinePointerInfo(),
5469                                      false, false, false, 0);
5470           MemOpChains.push_back(Load.getValue(1));
5471 
5472           unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
5473                            Arg.getSimpleValueType() == MVT::v2i64) ?
5474                           VSRH[VR_idx] : VR[VR_idx];
5475           ++VR_idx;
5476 
5477           RegsToPass.push_back(std::make_pair(VReg, Load));
5478         }
5479         ArgOffset += 16;
5480         for (unsigned i=0; i<16; i+=PtrByteSize) {
5481           if (GPR_idx == NumGPRs)
5482             break;
5483           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5484                                    DAG.getConstant(i, dl, PtrVT));
5485           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5486                                      false, false, false, 0);
5487           MemOpChains.push_back(Load.getValue(1));
5488           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5489         }
5490         break;
5491       }
5492 
5493       // Non-varargs Altivec params go into VRs or on the stack.
5494       if (VR_idx != NumVRs) {
5495         unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
5496                          Arg.getSimpleValueType() == MVT::v2i64) ?
5497                         VSRH[VR_idx] : VR[VR_idx];
5498         ++VR_idx;
5499 
5500         RegsToPass.push_back(std::make_pair(VReg, Arg));
5501       } else {
5502         if (CallConv == CallingConv::Fast)
5503           ComputePtrOff();
5504 
5505         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5506                          true, isTailCall, true, MemOpChains,
5507                          TailCallArguments, dl);
5508         if (CallConv == CallingConv::Fast)
5509           ArgOffset += 16;
5510       }
5511 
5512       if (CallConv != CallingConv::Fast)
5513         ArgOffset += 16;
5514       break;
5515       } // not QPX
5516 
5517       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
5518              "Invalid QPX parameter type");
5519 
5520       /* fall through */
5521     case MVT::v4f64:
5522     case MVT::v4i1: {
5523       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
5524       if (isVarArg) {
5525         // We could elide this store in the case where the object fits
5526         // entirely in R registers.  Maybe later.
5527         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5528                                      MachinePointerInfo(), false, false, 0);
5529         MemOpChains.push_back(Store);
5530         if (QFPR_idx != NumQFPRs) {
5531           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl,
5532                                      Store, PtrOff, MachinePointerInfo(),
5533                                      false, false, false, 0);
5534           MemOpChains.push_back(Load.getValue(1));
5535           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
5536         }
5537         ArgOffset += (IsF32 ? 16 : 32);
5538         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
5539           if (GPR_idx == NumGPRs)
5540             break;
5541           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5542                                    DAG.getConstant(i, dl, PtrVT));
5543           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5544                                      false, false, false, 0);
5545           MemOpChains.push_back(Load.getValue(1));
5546           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5547         }
5548         break;
5549       }
5550 
5551       // Non-varargs QPX params go into registers or on the stack.
5552       if (QFPR_idx != NumQFPRs) {
5553         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
5554       } else {
5555         if (CallConv == CallingConv::Fast)
5556           ComputePtrOff();
5557 
5558         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5559                          true, isTailCall, true, MemOpChains,
5560                          TailCallArguments, dl);
5561         if (CallConv == CallingConv::Fast)
5562           ArgOffset += (IsF32 ? 16 : 32);
5563       }
5564 
5565       if (CallConv != CallingConv::Fast)
5566         ArgOffset += (IsF32 ? 16 : 32);
5567       break;
5568       }
5569     }
5570   }
5571 
5572   assert(NumBytesActuallyUsed == ArgOffset);
5573   (void)NumBytesActuallyUsed;
5574 
5575   if (!MemOpChains.empty())
5576     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5577 
5578   // Check if this is an indirect call (MTCTR/BCTRL).
5579   // See PrepareCall() for more information about calls through function
5580   // pointers in the 64-bit SVR4 ABI.
5581   if (!isTailCall && !isPatchPoint &&
5582       !isFunctionGlobalAddress(Callee) &&
5583       !isa<ExternalSymbolSDNode>(Callee)) {
5584     // Load r2 into a virtual register and store it to the TOC save area.
5585     setUsesTOCBasePtr(DAG);
5586     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
5587     // TOC save area offset.
5588     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5589     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5590     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5591     Chain = DAG.getStore(
5592         Val.getValue(1), dl, Val, AddPtr,
5593         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset),
5594         false, false, 0);
5595     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
5596     // This does not mean the MTCTR instruction must use R12; it's easier
5597     // to model this as an extra parameter, so do that.
5598     if (isELFv2ABI && !isPatchPoint)
5599       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
5600   }
5601 
5602   // Build a sequence of copy-to-reg nodes chained together with token chain
5603   // and flag operands which copy the outgoing args into the appropriate regs.
5604   SDValue InFlag;
5605   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5606     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5607                              RegsToPass[i].second, InFlag);
5608     InFlag = Chain.getValue(1);
5609   }
5610 
5611   if (isTailCall && !IsSibCall)
5612     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5613                     TailCallArguments);
5614 
5615   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
5616                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
5617                     SPDiff, NumBytes, Ins, InVals, CS);
5618 }
5619 
LowerCall_Darwin(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,bool isPatchPoint,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,ImmutableCallSite * CS) const5620 SDValue PPCTargetLowering::LowerCall_Darwin(
5621     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5622     bool isTailCall, bool isPatchPoint,
5623     const SmallVectorImpl<ISD::OutputArg> &Outs,
5624     const SmallVectorImpl<SDValue> &OutVals,
5625     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5626     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5627     ImmutableCallSite *CS) const {
5628 
5629   unsigned NumOps = Outs.size();
5630 
5631   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5632   bool isPPC64 = PtrVT == MVT::i64;
5633   unsigned PtrByteSize = isPPC64 ? 8 : 4;
5634 
5635   MachineFunction &MF = DAG.getMachineFunction();
5636 
5637   // Mark this function as potentially containing a function that contains a
5638   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5639   // and restoring the callers stack pointer in this functions epilog. This is
5640   // done because by tail calling the called function might overwrite the value
5641   // in this function's (MF) stack pointer stack slot 0(SP).
5642   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5643       CallConv == CallingConv::Fast)
5644     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5645 
5646   // Count how many bytes are to be pushed on the stack, including the linkage
5647   // area, and parameter passing area.  We start with 24/48 bytes, which is
5648   // prereserved space for [SP][CR][LR][3 x unused].
5649   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5650   unsigned NumBytes = LinkageSize;
5651 
5652   // Add up all the space actually used.
5653   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
5654   // they all go in registers, but we must reserve stack space for them for
5655   // possible use by the caller.  In varargs or 64-bit calls, parameters are
5656   // assigned stack space in order, with padding so Altivec parameters are
5657   // 16-byte aligned.
5658   unsigned nAltivecParamsAtEnd = 0;
5659   for (unsigned i = 0; i != NumOps; ++i) {
5660     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5661     EVT ArgVT = Outs[i].VT;
5662     // Varargs Altivec parameters are padded to a 16 byte boundary.
5663     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
5664         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
5665         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
5666       if (!isVarArg && !isPPC64) {
5667         // Non-varargs Altivec parameters go after all the non-Altivec
5668         // parameters; handle those later so we know how much padding we need.
5669         nAltivecParamsAtEnd++;
5670         continue;
5671       }
5672       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
5673       NumBytes = ((NumBytes+15)/16)*16;
5674     }
5675     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5676   }
5677 
5678   // Allow for Altivec parameters at the end, if needed.
5679   if (nAltivecParamsAtEnd) {
5680     NumBytes = ((NumBytes+15)/16)*16;
5681     NumBytes += 16*nAltivecParamsAtEnd;
5682   }
5683 
5684   // The prolog code of the callee may store up to 8 GPR argument registers to
5685   // the stack, allowing va_start to index over them in memory if its varargs.
5686   // Because we cannot tell if this is needed on the caller side, we have to
5687   // conservatively assume that it is needed.  As such, make sure we have at
5688   // least enough stack space for the caller to store the 8 GPRs.
5689   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5690 
5691   // Tail call needs the stack to be aligned.
5692   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5693       CallConv == CallingConv::Fast)
5694     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5695 
5696   // Calculate by how many bytes the stack has to be adjusted in case of tail
5697   // call optimization.
5698   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5699 
5700   // To protect arguments on the stack from being clobbered in a tail call,
5701   // force all the loads to happen before doing any other lowering.
5702   if (isTailCall)
5703     Chain = DAG.getStackArgumentTokenFactor(Chain);
5704 
5705   // Adjust the stack pointer for the new arguments...
5706   // These operations are automatically eliminated by the prolog/epilog pass
5707   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5708                                dl);
5709   SDValue CallSeqStart = Chain;
5710 
5711   // Load the return address and frame pointer so it can be move somewhere else
5712   // later.
5713   SDValue LROp, FPOp;
5714   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5715 
5716   // Set up a copy of the stack pointer for use loading and storing any
5717   // arguments that may not fit in the registers available for argument
5718   // passing.
5719   SDValue StackPtr;
5720   if (isPPC64)
5721     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5722   else
5723     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5724 
5725   // Figure out which arguments are going to go in registers, and which in
5726   // memory.  Also, if this is a vararg function, floating point operations
5727   // must be stored to our stack, and loaded into integer regs as well, if
5728   // any integer regs are available for argument passing.
5729   unsigned ArgOffset = LinkageSize;
5730   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5731 
5732   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
5733     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
5734     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
5735   };
5736   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
5737     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5738     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5739   };
5740   static const MCPhysReg VR[] = {
5741     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5742     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5743   };
5744   const unsigned NumGPRs = array_lengthof(GPR_32);
5745   const unsigned NumFPRs = 13;
5746   const unsigned NumVRs  = array_lengthof(VR);
5747 
5748   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
5749 
5750   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5751   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5752 
5753   SmallVector<SDValue, 8> MemOpChains;
5754   for (unsigned i = 0; i != NumOps; ++i) {
5755     SDValue Arg = OutVals[i];
5756     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5757 
5758     // PtrOff will be used to store the current argument to the stack if a
5759     // register cannot be found for it.
5760     SDValue PtrOff;
5761 
5762     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5763 
5764     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5765 
5766     // On PPC64, promote integers to 64-bit values.
5767     if (isPPC64 && Arg.getValueType() == MVT::i32) {
5768       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5769       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5770       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5771     }
5772 
5773     // FIXME memcpy is used way more than necessary.  Correctness first.
5774     // Note: "by value" is code for passing a structure by value, not
5775     // basic types.
5776     if (Flags.isByVal()) {
5777       unsigned Size = Flags.getByValSize();
5778       // Very small objects are passed right-justified.  Everything else is
5779       // passed left-justified.
5780       if (Size==1 || Size==2) {
5781         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
5782         if (GPR_idx != NumGPRs) {
5783           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5784                                         MachinePointerInfo(), VT,
5785                                         false, false, false, 0);
5786           MemOpChains.push_back(Load.getValue(1));
5787           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5788 
5789           ArgOffset += PtrByteSize;
5790         } else {
5791           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5792                                           PtrOff.getValueType());
5793           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5794           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5795                                                             CallSeqStart,
5796                                                             Flags, DAG, dl);
5797           ArgOffset += PtrByteSize;
5798         }
5799         continue;
5800       }
5801       // Copy entire object into memory.  There are cases where gcc-generated
5802       // code assumes it is there, even if it could be put entirely into
5803       // registers.  (This is not what the doc says.)
5804       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5805                                                         CallSeqStart,
5806                                                         Flags, DAG, dl);
5807 
5808       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
5809       // copy the pieces of the object that fit into registers from the
5810       // parameter save area.
5811       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5812         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5813         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5814         if (GPR_idx != NumGPRs) {
5815           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
5816                                      MachinePointerInfo(),
5817                                      false, false, false, 0);
5818           MemOpChains.push_back(Load.getValue(1));
5819           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5820           ArgOffset += PtrByteSize;
5821         } else {
5822           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5823           break;
5824         }
5825       }
5826       continue;
5827     }
5828 
5829     switch (Arg.getSimpleValueType().SimpleTy) {
5830     default: llvm_unreachable("Unexpected ValueType for argument!");
5831     case MVT::i1:
5832     case MVT::i32:
5833     case MVT::i64:
5834       if (GPR_idx != NumGPRs) {
5835         if (Arg.getValueType() == MVT::i1)
5836           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
5837 
5838         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5839       } else {
5840         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5841                          isPPC64, isTailCall, false, MemOpChains,
5842                          TailCallArguments, dl);
5843       }
5844       ArgOffset += PtrByteSize;
5845       break;
5846     case MVT::f32:
5847     case MVT::f64:
5848       if (FPR_idx != NumFPRs) {
5849         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5850 
5851         if (isVarArg) {
5852           SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5853                                        MachinePointerInfo(), false, false, 0);
5854           MemOpChains.push_back(Store);
5855 
5856           // Float varargs are always shadowed in available integer registers
5857           if (GPR_idx != NumGPRs) {
5858             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
5859                                        MachinePointerInfo(), false, false,
5860                                        false, 0);
5861             MemOpChains.push_back(Load.getValue(1));
5862             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5863           }
5864           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
5865             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5866             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5867             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
5868                                        MachinePointerInfo(),
5869                                        false, false, false, 0);
5870             MemOpChains.push_back(Load.getValue(1));
5871             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5872           }
5873         } else {
5874           // If we have any FPRs remaining, we may also have GPRs remaining.
5875           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
5876           // GPRs.
5877           if (GPR_idx != NumGPRs)
5878             ++GPR_idx;
5879           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
5880               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
5881             ++GPR_idx;
5882         }
5883       } else
5884         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5885                          isPPC64, isTailCall, false, MemOpChains,
5886                          TailCallArguments, dl);
5887       if (isPPC64)
5888         ArgOffset += 8;
5889       else
5890         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
5891       break;
5892     case MVT::v4f32:
5893     case MVT::v4i32:
5894     case MVT::v8i16:
5895     case MVT::v16i8:
5896       if (isVarArg) {
5897         // These go aligned on the stack, or in the corresponding R registers
5898         // when within range.  The Darwin PPC ABI doc claims they also go in
5899         // V registers; in fact gcc does this only for arguments that are
5900         // prototyped, not for those that match the ...  We do it for all
5901         // arguments, seems to work.
5902         while (ArgOffset % 16 !=0) {
5903           ArgOffset += PtrByteSize;
5904           if (GPR_idx != NumGPRs)
5905             GPR_idx++;
5906         }
5907         // We could elide this store in the case where the object fits
5908         // entirely in R registers.  Maybe later.
5909         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5910                              DAG.getConstant(ArgOffset, dl, PtrVT));
5911         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
5912                                      MachinePointerInfo(), false, false, 0);
5913         MemOpChains.push_back(Store);
5914         if (VR_idx != NumVRs) {
5915           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
5916                                      MachinePointerInfo(),
5917                                      false, false, false, 0);
5918           MemOpChains.push_back(Load.getValue(1));
5919           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
5920         }
5921         ArgOffset += 16;
5922         for (unsigned i=0; i<16; i+=PtrByteSize) {
5923           if (GPR_idx == NumGPRs)
5924             break;
5925           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
5926                                    DAG.getConstant(i, dl, PtrVT));
5927           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
5928                                      false, false, false, 0);
5929           MemOpChains.push_back(Load.getValue(1));
5930           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5931         }
5932         break;
5933       }
5934 
5935       // Non-varargs Altivec params generally go in registers, but have
5936       // stack space allocated at the end.
5937       if (VR_idx != NumVRs) {
5938         // Doesn't have GPR space allocated.
5939         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
5940       } else if (nAltivecParamsAtEnd==0) {
5941         // We are emitting Altivec params in order.
5942         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5943                          isPPC64, isTailCall, true, MemOpChains,
5944                          TailCallArguments, dl);
5945         ArgOffset += 16;
5946       }
5947       break;
5948     }
5949   }
5950   // If all Altivec parameters fit in registers, as they usually do,
5951   // they get stack space following the non-Altivec parameters.  We
5952   // don't track this here because nobody below needs it.
5953   // If there are more Altivec parameters than fit in registers emit
5954   // the stores here.
5955   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
5956     unsigned j = 0;
5957     // Offset is aligned; skip 1st 12 params which go in V registers.
5958     ArgOffset = ((ArgOffset+15)/16)*16;
5959     ArgOffset += 12*16;
5960     for (unsigned i = 0; i != NumOps; ++i) {
5961       SDValue Arg = OutVals[i];
5962       EVT ArgType = Outs[i].VT;
5963       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
5964           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
5965         if (++j > NumVRs) {
5966           SDValue PtrOff;
5967           // We are emitting Altivec params in order.
5968           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5969                            isPPC64, isTailCall, true, MemOpChains,
5970                            TailCallArguments, dl);
5971           ArgOffset += 16;
5972         }
5973       }
5974     }
5975   }
5976 
5977   if (!MemOpChains.empty())
5978     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5979 
5980   // On Darwin, R12 must contain the address of an indirect callee.  This does
5981   // not mean the MTCTR instruction must use R12; it's easier to model this as
5982   // an extra parameter, so do that.
5983   if (!isTailCall &&
5984       !isFunctionGlobalAddress(Callee) &&
5985       !isa<ExternalSymbolSDNode>(Callee) &&
5986       !isBLACompatibleAddress(Callee, DAG))
5987     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
5988                                                    PPC::R12), Callee));
5989 
5990   // Build a sequence of copy-to-reg nodes chained together with token chain
5991   // and flag operands which copy the outgoing args into the appropriate regs.
5992   SDValue InFlag;
5993   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5994     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5995                              RegsToPass[i].second, InFlag);
5996     InFlag = Chain.getValue(1);
5997   }
5998 
5999   if (isTailCall)
6000     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6001                     TailCallArguments);
6002 
6003   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6004                     /* unused except on PPC64 ELFv1 */ false, DAG,
6005                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6006                     NumBytes, Ins, InVals, CS);
6007 }
6008 
6009 bool
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const6010 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
6011                                   MachineFunction &MF, bool isVarArg,
6012                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
6013                                   LLVMContext &Context) const {
6014   SmallVector<CCValAssign, 16> RVLocs;
6015   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
6016   return CCInfo.CheckReturn(Outs, RetCC_PPC);
6017 }
6018 
6019 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const6020 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
6021                                bool isVarArg,
6022                                const SmallVectorImpl<ISD::OutputArg> &Outs,
6023                                const SmallVectorImpl<SDValue> &OutVals,
6024                                const SDLoc &dl, SelectionDAG &DAG) const {
6025 
6026   SmallVector<CCValAssign, 16> RVLocs;
6027   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
6028                  *DAG.getContext());
6029   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
6030 
6031   SDValue Flag;
6032   SmallVector<SDValue, 4> RetOps(1, Chain);
6033 
6034   // Copy the result values into the output registers.
6035   for (unsigned i = 0; i != RVLocs.size(); ++i) {
6036     CCValAssign &VA = RVLocs[i];
6037     assert(VA.isRegLoc() && "Can only return in registers!");
6038 
6039     SDValue Arg = OutVals[i];
6040 
6041     switch (VA.getLocInfo()) {
6042     default: llvm_unreachable("Unknown loc info!");
6043     case CCValAssign::Full: break;
6044     case CCValAssign::AExt:
6045       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
6046       break;
6047     case CCValAssign::ZExt:
6048       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6049       break;
6050     case CCValAssign::SExt:
6051       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6052       break;
6053     }
6054 
6055     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
6056     Flag = Chain.getValue(1);
6057     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6058   }
6059 
6060   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
6061   const MCPhysReg *I =
6062     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
6063   if (I) {
6064     for (; *I; ++I) {
6065 
6066       if (PPC::G8RCRegClass.contains(*I))
6067         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
6068       else if (PPC::F8RCRegClass.contains(*I))
6069         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
6070       else if (PPC::CRRCRegClass.contains(*I))
6071         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
6072       else if (PPC::VRRCRegClass.contains(*I))
6073         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
6074       else
6075         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
6076     }
6077   }
6078 
6079   RetOps[0] = Chain;  // Update chain.
6080 
6081   // Add the flag if we have it.
6082   if (Flag.getNode())
6083     RetOps.push_back(Flag);
6084 
6085   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
6086 }
6087 
6088 SDValue
LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,SelectionDAG & DAG) const6089 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
6090                                                 SelectionDAG &DAG) const {
6091   SDLoc dl(Op);
6092 
6093   // Get the corect type for integers.
6094   EVT IntVT = Op.getValueType();
6095 
6096   // Get the inputs.
6097   SDValue Chain = Op.getOperand(0);
6098   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6099   // Build a DYNAREAOFFSET node.
6100   SDValue Ops[2] = {Chain, FPSIdx};
6101   SDVTList VTs = DAG.getVTList(IntVT);
6102   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
6103 }
6104 
LowerSTACKRESTORE(SDValue Op,SelectionDAG & DAG) const6105 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
6106                                              SelectionDAG &DAG) const {
6107   // When we pop the dynamic allocation we need to restore the SP link.
6108   SDLoc dl(Op);
6109 
6110   // Get the corect type for pointers.
6111   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6112 
6113   // Construct the stack pointer operand.
6114   bool isPPC64 = Subtarget.isPPC64();
6115   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
6116   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
6117 
6118   // Get the operands for the STACKRESTORE.
6119   SDValue Chain = Op.getOperand(0);
6120   SDValue SaveSP = Op.getOperand(1);
6121 
6122   // Load the old link SP.
6123   SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
6124                                    MachinePointerInfo(),
6125                                    false, false, false, 0);
6126 
6127   // Restore the stack pointer.
6128   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
6129 
6130   // Store the old link SP.
6131   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
6132                       false, false, 0);
6133 }
6134 
getReturnAddrFrameIndex(SelectionDAG & DAG) const6135 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
6136   MachineFunction &MF = DAG.getMachineFunction();
6137   bool isPPC64 = Subtarget.isPPC64();
6138   EVT PtrVT = getPointerTy(MF.getDataLayout());
6139 
6140   // Get current frame pointer save index.  The users of this index will be
6141   // primarily DYNALLOC instructions.
6142   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6143   int RASI = FI->getReturnAddrSaveIndex();
6144 
6145   // If the frame pointer save index hasn't been defined yet.
6146   if (!RASI) {
6147     // Find out what the fix offset of the frame pointer save area.
6148     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
6149     // Allocate the frame index for frame pointer save area.
6150     RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
6151     // Save the result.
6152     FI->setReturnAddrSaveIndex(RASI);
6153   }
6154   return DAG.getFrameIndex(RASI, PtrVT);
6155 }
6156 
6157 SDValue
getFramePointerFrameIndex(SelectionDAG & DAG) const6158 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
6159   MachineFunction &MF = DAG.getMachineFunction();
6160   bool isPPC64 = Subtarget.isPPC64();
6161   EVT PtrVT = getPointerTy(MF.getDataLayout());
6162 
6163   // Get current frame pointer save index.  The users of this index will be
6164   // primarily DYNALLOC instructions.
6165   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6166   int FPSI = FI->getFramePointerSaveIndex();
6167 
6168   // If the frame pointer save index hasn't been defined yet.
6169   if (!FPSI) {
6170     // Find out what the fix offset of the frame pointer save area.
6171     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
6172     // Allocate the frame index for frame pointer save area.
6173     FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
6174     // Save the result.
6175     FI->setFramePointerSaveIndex(FPSI);
6176   }
6177   return DAG.getFrameIndex(FPSI, PtrVT);
6178 }
6179 
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const6180 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6181                                                    SelectionDAG &DAG) const {
6182   // Get the inputs.
6183   SDValue Chain = Op.getOperand(0);
6184   SDValue Size  = Op.getOperand(1);
6185   SDLoc dl(Op);
6186 
6187   // Get the corect type for pointers.
6188   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6189   // Negate the size.
6190   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
6191                                 DAG.getConstant(0, dl, PtrVT), Size);
6192   // Construct a node for the frame pointer save index.
6193   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6194   // Build a DYNALLOC node.
6195   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
6196   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
6197   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
6198 }
6199 
lowerEH_SJLJ_SETJMP(SDValue Op,SelectionDAG & DAG) const6200 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
6201                                                SelectionDAG &DAG) const {
6202   SDLoc DL(Op);
6203   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
6204                      DAG.getVTList(MVT::i32, MVT::Other),
6205                      Op.getOperand(0), Op.getOperand(1));
6206 }
6207 
lowerEH_SJLJ_LONGJMP(SDValue Op,SelectionDAG & DAG) const6208 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
6209                                                 SelectionDAG &DAG) const {
6210   SDLoc DL(Op);
6211   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
6212                      Op.getOperand(0), Op.getOperand(1));
6213 }
6214 
LowerLOAD(SDValue Op,SelectionDAG & DAG) const6215 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
6216   if (Op.getValueType().isVector())
6217     return LowerVectorLoad(Op, DAG);
6218 
6219   assert(Op.getValueType() == MVT::i1 &&
6220          "Custom lowering only for i1 loads");
6221 
6222   // First, load 8 bits into 32 bits, then truncate to 1 bit.
6223 
6224   SDLoc dl(Op);
6225   LoadSDNode *LD = cast<LoadSDNode>(Op);
6226 
6227   SDValue Chain = LD->getChain();
6228   SDValue BasePtr = LD->getBasePtr();
6229   MachineMemOperand *MMO = LD->getMemOperand();
6230 
6231   SDValue NewLD =
6232       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
6233                      BasePtr, MVT::i8, MMO);
6234   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
6235 
6236   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
6237   return DAG.getMergeValues(Ops, dl);
6238 }
6239 
LowerSTORE(SDValue Op,SelectionDAG & DAG) const6240 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
6241   if (Op.getOperand(1).getValueType().isVector())
6242     return LowerVectorStore(Op, DAG);
6243 
6244   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
6245          "Custom lowering only for i1 stores");
6246 
6247   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
6248 
6249   SDLoc dl(Op);
6250   StoreSDNode *ST = cast<StoreSDNode>(Op);
6251 
6252   SDValue Chain = ST->getChain();
6253   SDValue BasePtr = ST->getBasePtr();
6254   SDValue Value = ST->getValue();
6255   MachineMemOperand *MMO = ST->getMemOperand();
6256 
6257   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
6258                       Value);
6259   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
6260 }
6261 
6262 // FIXME: Remove this once the ANDI glue bug is fixed:
LowerTRUNCATE(SDValue Op,SelectionDAG & DAG) const6263 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
6264   assert(Op.getValueType() == MVT::i1 &&
6265          "Custom lowering only for i1 results");
6266 
6267   SDLoc DL(Op);
6268   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
6269                      Op.getOperand(0));
6270 }
6271 
6272 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
6273 /// possible.
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const6274 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
6275   // Not FP? Not a fsel.
6276   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
6277       !Op.getOperand(2).getValueType().isFloatingPoint())
6278     return Op;
6279 
6280   // We might be able to do better than this under some circumstances, but in
6281   // general, fsel-based lowering of select is a finite-math-only optimization.
6282   // For more information, see section F.3 of the 2.06 ISA specification.
6283   if (!DAG.getTarget().Options.NoInfsFPMath ||
6284       !DAG.getTarget().Options.NoNaNsFPMath)
6285     return Op;
6286   // TODO: Propagate flags from the select rather than global settings.
6287   SDNodeFlags Flags;
6288   Flags.setNoInfs(true);
6289   Flags.setNoNaNs(true);
6290 
6291   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
6292 
6293   EVT ResVT = Op.getValueType();
6294   EVT CmpVT = Op.getOperand(0).getValueType();
6295   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6296   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
6297   SDLoc dl(Op);
6298 
6299   // If the RHS of the comparison is a 0.0, we don't need to do the
6300   // subtraction at all.
6301   SDValue Sel1;
6302   if (isFloatingPointZero(RHS))
6303     switch (CC) {
6304     default: break;       // SETUO etc aren't handled by fsel.
6305     case ISD::SETNE:
6306       std::swap(TV, FV);
6307     case ISD::SETEQ:
6308       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6309         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6310       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6311       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6312         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6313       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6314                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
6315     case ISD::SETULT:
6316     case ISD::SETLT:
6317       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6318     case ISD::SETOGE:
6319     case ISD::SETGE:
6320       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6321         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6322       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6323     case ISD::SETUGT:
6324     case ISD::SETGT:
6325       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6326     case ISD::SETOLE:
6327     case ISD::SETLE:
6328       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6329         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6330       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6331                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
6332     }
6333 
6334   SDValue Cmp;
6335   switch (CC) {
6336   default: break;       // SETUO etc aren't handled by fsel.
6337   case ISD::SETNE:
6338     std::swap(TV, FV);
6339   case ISD::SETEQ:
6340     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6341     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6342       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6343     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6344     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6345       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6346     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6347                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
6348   case ISD::SETULT:
6349   case ISD::SETLT:
6350     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6351     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6352       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6353     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6354   case ISD::SETOGE:
6355   case ISD::SETGE:
6356     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, &Flags);
6357     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6358       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6359     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6360   case ISD::SETUGT:
6361   case ISD::SETGT:
6362     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags);
6363     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6364       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6365     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6366   case ISD::SETOLE:
6367   case ISD::SETLE:
6368     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, &Flags);
6369     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6370       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6371     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6372   }
6373   return Op;
6374 }
6375 
LowerFP_TO_INTForReuse(SDValue Op,ReuseLoadInfo & RLI,SelectionDAG & DAG,const SDLoc & dl) const6376 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
6377                                                SelectionDAG &DAG,
6378                                                const SDLoc &dl) const {
6379   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6380   SDValue Src = Op.getOperand(0);
6381   if (Src.getValueType() == MVT::f32)
6382     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6383 
6384   SDValue Tmp;
6385   switch (Op.getSimpleValueType().SimpleTy) {
6386   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6387   case MVT::i32:
6388     Tmp = DAG.getNode(
6389         Op.getOpcode() == ISD::FP_TO_SINT
6390             ? PPCISD::FCTIWZ
6391             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6392         dl, MVT::f64, Src);
6393     break;
6394   case MVT::i64:
6395     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6396            "i64 FP_TO_UINT is supported only with FPCVT");
6397     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6398                                                         PPCISD::FCTIDUZ,
6399                       dl, MVT::f64, Src);
6400     break;
6401   }
6402 
6403   // Convert the FP value to an int value through memory.
6404   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
6405     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
6406   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
6407   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
6408   MachinePointerInfo MPI =
6409       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
6410 
6411   // Emit a store to the stack slot.
6412   SDValue Chain;
6413   if (i32Stack) {
6414     MachineFunction &MF = DAG.getMachineFunction();
6415     MachineMemOperand *MMO =
6416       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
6417     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
6418     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
6419               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
6420   } else
6421     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
6422                          MPI, false, false, 0);
6423 
6424   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
6425   // add in a bias on big endian.
6426   if (Op.getValueType() == MVT::i32 && !i32Stack) {
6427     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
6428                         DAG.getConstant(4, dl, FIPtr.getValueType()));
6429     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
6430   }
6431 
6432   RLI.Chain = Chain;
6433   RLI.Ptr = FIPtr;
6434   RLI.MPI = MPI;
6435 }
6436 
6437 /// \brief Custom lowers floating point to integer conversions to use
6438 /// the direct move instructions available in ISA 2.07 to avoid the
6439 /// need for load/store combinations.
LowerFP_TO_INTDirectMove(SDValue Op,SelectionDAG & DAG,const SDLoc & dl) const6440 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
6441                                                     SelectionDAG &DAG,
6442                                                     const SDLoc &dl) const {
6443   assert(Op.getOperand(0).getValueType().isFloatingPoint());
6444   SDValue Src = Op.getOperand(0);
6445 
6446   if (Src.getValueType() == MVT::f32)
6447     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6448 
6449   SDValue Tmp;
6450   switch (Op.getSimpleValueType().SimpleTy) {
6451   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6452   case MVT::i32:
6453     Tmp = DAG.getNode(
6454         Op.getOpcode() == ISD::FP_TO_SINT
6455             ? PPCISD::FCTIWZ
6456             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6457         dl, MVT::f64, Src);
6458     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
6459     break;
6460   case MVT::i64:
6461     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6462            "i64 FP_TO_UINT is supported only with FPCVT");
6463     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6464                                                         PPCISD::FCTIDUZ,
6465                       dl, MVT::f64, Src);
6466     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
6467     break;
6468   }
6469   return Tmp;
6470 }
6471 
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG,const SDLoc & dl) const6472 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
6473                                           const SDLoc &dl) const {
6474   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
6475     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
6476 
6477   ReuseLoadInfo RLI;
6478   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6479 
6480   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
6481                      false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
6482                      RLI.Ranges);
6483 }
6484 
6485 // We're trying to insert a regular store, S, and then a load, L. If the
6486 // incoming value, O, is a load, we might just be able to have our load use the
6487 // address used by O. However, we don't know if anything else will store to
6488 // that address before we can load from it. To prevent this situation, we need
6489 // to insert our load, L, into the chain as a peer of O. To do this, we give L
6490 // the same chain operand as O, we create a token factor from the chain results
6491 // of O and L, and we replace all uses of O's chain result with that token
6492 // factor (see spliceIntoChain below for this last part).
canReuseLoadAddress(SDValue Op,EVT MemVT,ReuseLoadInfo & RLI,SelectionDAG & DAG,ISD::LoadExtType ET) const6493 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
6494                                             ReuseLoadInfo &RLI,
6495                                             SelectionDAG &DAG,
6496                                             ISD::LoadExtType ET) const {
6497   SDLoc dl(Op);
6498   if (ET == ISD::NON_EXTLOAD &&
6499       (Op.getOpcode() == ISD::FP_TO_UINT ||
6500        Op.getOpcode() == ISD::FP_TO_SINT) &&
6501       isOperationLegalOrCustom(Op.getOpcode(),
6502                                Op.getOperand(0).getValueType())) {
6503 
6504     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
6505     return true;
6506   }
6507 
6508   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
6509   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
6510       LD->isNonTemporal())
6511     return false;
6512   if (LD->getMemoryVT() != MemVT)
6513     return false;
6514 
6515   RLI.Ptr = LD->getBasePtr();
6516   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
6517     assert(LD->getAddressingMode() == ISD::PRE_INC &&
6518            "Non-pre-inc AM on PPC?");
6519     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
6520                           LD->getOffset());
6521   }
6522 
6523   RLI.Chain = LD->getChain();
6524   RLI.MPI = LD->getPointerInfo();
6525   RLI.IsInvariant = LD->isInvariant();
6526   RLI.Alignment = LD->getAlignment();
6527   RLI.AAInfo = LD->getAAInfo();
6528   RLI.Ranges = LD->getRanges();
6529 
6530   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
6531   return true;
6532 }
6533 
6534 // Given the head of the old chain, ResChain, insert a token factor containing
6535 // it and NewResChain, and make users of ResChain now be users of that token
6536 // factor.
spliceIntoChain(SDValue ResChain,SDValue NewResChain,SelectionDAG & DAG) const6537 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
6538                                         SDValue NewResChain,
6539                                         SelectionDAG &DAG) const {
6540   if (!ResChain)
6541     return;
6542 
6543   SDLoc dl(NewResChain);
6544 
6545   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6546                            NewResChain, DAG.getUNDEF(MVT::Other));
6547   assert(TF.getNode() != NewResChain.getNode() &&
6548          "A new TF really is required here");
6549 
6550   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
6551   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
6552 }
6553 
6554 /// \brief Analyze profitability of direct move
6555 /// prefer float load to int load plus direct move
6556 /// when there is no integer use of int load
directMoveIsProfitable(const SDValue & Op)6557 static bool directMoveIsProfitable(const SDValue &Op) {
6558   SDNode *Origin = Op.getOperand(0).getNode();
6559   if (Origin->getOpcode() != ISD::LOAD)
6560     return true;
6561 
6562   for (SDNode::use_iterator UI = Origin->use_begin(),
6563                             UE = Origin->use_end();
6564        UI != UE; ++UI) {
6565 
6566     // Only look at the users of the loaded value.
6567     if (UI.getUse().get().getResNo() != 0)
6568       continue;
6569 
6570     if (UI->getOpcode() != ISD::SINT_TO_FP &&
6571         UI->getOpcode() != ISD::UINT_TO_FP)
6572       return true;
6573   }
6574 
6575   return false;
6576 }
6577 
6578 /// \brief Custom lowers integer to floating point conversions to use
6579 /// the direct move instructions available in ISA 2.07 to avoid the
6580 /// need for load/store combinations.
LowerINT_TO_FPDirectMove(SDValue Op,SelectionDAG & DAG,const SDLoc & dl) const6581 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
6582                                                     SelectionDAG &DAG,
6583                                                     const SDLoc &dl) const {
6584   assert((Op.getValueType() == MVT::f32 ||
6585           Op.getValueType() == MVT::f64) &&
6586          "Invalid floating point type as target of conversion");
6587   assert(Subtarget.hasFPCVT() &&
6588          "Int to FP conversions with direct moves require FPCVT");
6589   SDValue FP;
6590   SDValue Src = Op.getOperand(0);
6591   bool SinglePrec = Op.getValueType() == MVT::f32;
6592   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
6593   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
6594   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
6595                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
6596 
6597   if (WordInt) {
6598     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
6599                      dl, MVT::f64, Src);
6600     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6601   }
6602   else {
6603     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
6604     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
6605   }
6606 
6607   return FP;
6608 }
6609 
LowerINT_TO_FP(SDValue Op,SelectionDAG & DAG) const6610 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
6611                                           SelectionDAG &DAG) const {
6612   SDLoc dl(Op);
6613 
6614   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
6615     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
6616       return SDValue();
6617 
6618     SDValue Value = Op.getOperand(0);
6619     // The values are now known to be -1 (false) or 1 (true). To convert this
6620     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
6621     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
6622     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
6623 
6624     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
6625 
6626     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
6627 
6628     if (Op.getValueType() != MVT::v4f64)
6629       Value = DAG.getNode(ISD::FP_ROUND, dl,
6630                           Op.getValueType(), Value,
6631                           DAG.getIntPtrConstant(1, dl));
6632     return Value;
6633   }
6634 
6635   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
6636   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
6637     return SDValue();
6638 
6639   if (Op.getOperand(0).getValueType() == MVT::i1)
6640     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
6641                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
6642                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
6643 
6644   // If we have direct moves, we can do all the conversion, skip the store/load
6645   // however, without FPCVT we can't do most conversions.
6646   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
6647       Subtarget.isPPC64() && Subtarget.hasFPCVT())
6648     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
6649 
6650   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
6651          "UINT_TO_FP is supported only with FPCVT");
6652 
6653   // If we have FCFIDS, then use it when converting to single-precision.
6654   // Otherwise, convert to double-precision and then round.
6655   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
6656                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
6657                                                             : PPCISD::FCFIDS)
6658                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
6659                                                             : PPCISD::FCFID);
6660   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
6661                   ? MVT::f32
6662                   : MVT::f64;
6663 
6664   if (Op.getOperand(0).getValueType() == MVT::i64) {
6665     SDValue SINT = Op.getOperand(0);
6666     // When converting to single-precision, we actually need to convert
6667     // to double-precision first and then round to single-precision.
6668     // To avoid double-rounding effects during that operation, we have
6669     // to prepare the input operand.  Bits that might be truncated when
6670     // converting to double-precision are replaced by a bit that won't
6671     // be lost at this stage, but is below the single-precision rounding
6672     // position.
6673     //
6674     // However, if -enable-unsafe-fp-math is in effect, accept double
6675     // rounding to avoid the extra overhead.
6676     if (Op.getValueType() == MVT::f32 &&
6677         !Subtarget.hasFPCVT() &&
6678         !DAG.getTarget().Options.UnsafeFPMath) {
6679 
6680       // Twiddle input to make sure the low 11 bits are zero.  (If this
6681       // is the case, we are guaranteed the value will fit into the 53 bit
6682       // mantissa of an IEEE double-precision value without rounding.)
6683       // If any of those low 11 bits were not zero originally, make sure
6684       // bit 12 (value 2048) is set instead, so that the final rounding
6685       // to single-precision gets the correct result.
6686       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
6687                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
6688       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
6689                           Round, DAG.getConstant(2047, dl, MVT::i64));
6690       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
6691       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
6692                           Round, DAG.getConstant(-2048, dl, MVT::i64));
6693 
6694       // However, we cannot use that value unconditionally: if the magnitude
6695       // of the input value is small, the bit-twiddling we did above might
6696       // end up visibly changing the output.  Fortunately, in that case, we
6697       // don't need to twiddle bits since the original input will convert
6698       // exactly to double-precision floating-point already.  Therefore,
6699       // construct a conditional to use the original value if the top 11
6700       // bits are all sign-bit copies, and use the rounded value computed
6701       // above otherwise.
6702       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
6703                                  SINT, DAG.getConstant(53, dl, MVT::i32));
6704       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
6705                          Cond, DAG.getConstant(1, dl, MVT::i64));
6706       Cond = DAG.getSetCC(dl, MVT::i32,
6707                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
6708 
6709       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
6710     }
6711 
6712     ReuseLoadInfo RLI;
6713     SDValue Bits;
6714 
6715     MachineFunction &MF = DAG.getMachineFunction();
6716     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
6717       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, false,
6718                          false, RLI.IsInvariant, RLI.Alignment, RLI.AAInfo,
6719                          RLI.Ranges);
6720       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6721     } else if (Subtarget.hasLFIWAX() &&
6722                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
6723       MachineMemOperand *MMO =
6724         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6725                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6726       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6727       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
6728                                      DAG.getVTList(MVT::f64, MVT::Other),
6729                                      Ops, MVT::i32, MMO);
6730       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6731     } else if (Subtarget.hasFPCVT() &&
6732                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
6733       MachineMemOperand *MMO =
6734         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6735                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6736       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6737       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
6738                                      DAG.getVTList(MVT::f64, MVT::Other),
6739                                      Ops, MVT::i32, MMO);
6740       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
6741     } else if (((Subtarget.hasLFIWAX() &&
6742                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
6743                 (Subtarget.hasFPCVT() &&
6744                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
6745                SINT.getOperand(0).getValueType() == MVT::i32) {
6746       MachineFrameInfo *FrameInfo = MF.getFrameInfo();
6747       EVT PtrVT = getPointerTy(DAG.getDataLayout());
6748 
6749       int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
6750       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6751 
6752       SDValue Store = DAG.getStore(
6753           DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
6754           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6755           false, false, 0);
6756 
6757       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
6758              "Expected an i32 store");
6759 
6760       RLI.Ptr = FIdx;
6761       RLI.Chain = Store;
6762       RLI.MPI =
6763           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
6764       RLI.Alignment = 4;
6765 
6766       MachineMemOperand *MMO =
6767         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6768                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6769       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6770       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
6771                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
6772                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
6773                                      Ops, MVT::i32, MMO);
6774     } else
6775       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
6776 
6777     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
6778 
6779     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
6780       FP = DAG.getNode(ISD::FP_ROUND, dl,
6781                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
6782     return FP;
6783   }
6784 
6785   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
6786          "Unhandled INT_TO_FP type in custom expander!");
6787   // Since we only generate this in 64-bit mode, we can take advantage of
6788   // 64-bit registers.  In particular, sign extend the input value into the
6789   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
6790   // then lfd it and fcfid it.
6791   MachineFunction &MF = DAG.getMachineFunction();
6792   MachineFrameInfo *FrameInfo = MF.getFrameInfo();
6793   EVT PtrVT = getPointerTy(MF.getDataLayout());
6794 
6795   SDValue Ld;
6796   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
6797     ReuseLoadInfo RLI;
6798     bool ReusingLoad;
6799     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
6800                                             DAG))) {
6801       int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
6802       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6803 
6804       SDValue Store = DAG.getStore(
6805           DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
6806           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6807           false, false, 0);
6808 
6809       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
6810              "Expected an i32 store");
6811 
6812       RLI.Ptr = FIdx;
6813       RLI.Chain = Store;
6814       RLI.MPI =
6815           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
6816       RLI.Alignment = 4;
6817     }
6818 
6819     MachineMemOperand *MMO =
6820       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
6821                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
6822     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
6823     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
6824                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
6825                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
6826                                  Ops, MVT::i32, MMO);
6827     if (ReusingLoad)
6828       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
6829   } else {
6830     assert(Subtarget.isPPC64() &&
6831            "i32->FP without LFIWAX supported only on PPC64");
6832 
6833     int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
6834     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
6835 
6836     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
6837                                 Op.getOperand(0));
6838 
6839     // STD the extended value into the stack slot.
6840     SDValue Store = DAG.getStore(
6841         DAG.getEntryNode(), dl, Ext64, FIdx,
6842         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6843         false, false, 0);
6844 
6845     // Load the value as a double.
6846     Ld = DAG.getLoad(
6847         MVT::f64, dl, Store, FIdx,
6848         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx),
6849         false, false, false, 0);
6850   }
6851 
6852   // FCFID it and return it.
6853   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
6854   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
6855     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
6856                      DAG.getIntPtrConstant(0, dl));
6857   return FP;
6858 }
6859 
LowerFLT_ROUNDS_(SDValue Op,SelectionDAG & DAG) const6860 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
6861                                             SelectionDAG &DAG) const {
6862   SDLoc dl(Op);
6863   /*
6864    The rounding mode is in bits 30:31 of FPSR, and has the following
6865    settings:
6866      00 Round to nearest
6867      01 Round to 0
6868      10 Round to +inf
6869      11 Round to -inf
6870 
6871   FLT_ROUNDS, on the other hand, expects the following:
6872     -1 Undefined
6873      0 Round to 0
6874      1 Round to nearest
6875      2 Round to +inf
6876      3 Round to -inf
6877 
6878   To perform the conversion, we do:
6879     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
6880   */
6881 
6882   MachineFunction &MF = DAG.getMachineFunction();
6883   EVT VT = Op.getValueType();
6884   EVT PtrVT = getPointerTy(MF.getDataLayout());
6885 
6886   // Save FP Control Word to register
6887   EVT NodeTys[] = {
6888     MVT::f64,    // return register
6889     MVT::Glue    // unused in this context
6890   };
6891   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
6892 
6893   // Save FP register to stack slot
6894   int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
6895   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
6896   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
6897                                StackSlot, MachinePointerInfo(), false, false,0);
6898 
6899   // Load FP Control Word from low 32 bits of stack slot.
6900   SDValue Four = DAG.getConstant(4, dl, PtrVT);
6901   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
6902   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
6903                             false, false, false, 0);
6904 
6905   // Transform as necessary
6906   SDValue CWD1 =
6907     DAG.getNode(ISD::AND, dl, MVT::i32,
6908                 CWD, DAG.getConstant(3, dl, MVT::i32));
6909   SDValue CWD2 =
6910     DAG.getNode(ISD::SRL, dl, MVT::i32,
6911                 DAG.getNode(ISD::AND, dl, MVT::i32,
6912                             DAG.getNode(ISD::XOR, dl, MVT::i32,
6913                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
6914                             DAG.getConstant(3, dl, MVT::i32)),
6915                 DAG.getConstant(1, dl, MVT::i32));
6916 
6917   SDValue RetVal =
6918     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
6919 
6920   return DAG.getNode((VT.getSizeInBits() < 16 ?
6921                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6922 }
6923 
LowerSHL_PARTS(SDValue Op,SelectionDAG & DAG) const6924 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
6925   EVT VT = Op.getValueType();
6926   unsigned BitWidth = VT.getSizeInBits();
6927   SDLoc dl(Op);
6928   assert(Op.getNumOperands() == 3 &&
6929          VT == Op.getOperand(1).getValueType() &&
6930          "Unexpected SHL!");
6931 
6932   // Expand into a bunch of logical ops.  Note that these ops
6933   // depend on the PPC behavior for oversized shift amounts.
6934   SDValue Lo = Op.getOperand(0);
6935   SDValue Hi = Op.getOperand(1);
6936   SDValue Amt = Op.getOperand(2);
6937   EVT AmtVT = Amt.getValueType();
6938 
6939   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6940                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6941   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
6942   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
6943   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
6944   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6945                              DAG.getConstant(-BitWidth, dl, AmtVT));
6946   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
6947   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
6948   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
6949   SDValue OutOps[] = { OutLo, OutHi };
6950   return DAG.getMergeValues(OutOps, dl);
6951 }
6952 
LowerSRL_PARTS(SDValue Op,SelectionDAG & DAG) const6953 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
6954   EVT VT = Op.getValueType();
6955   SDLoc dl(Op);
6956   unsigned BitWidth = VT.getSizeInBits();
6957   assert(Op.getNumOperands() == 3 &&
6958          VT == Op.getOperand(1).getValueType() &&
6959          "Unexpected SRL!");
6960 
6961   // Expand into a bunch of logical ops.  Note that these ops
6962   // depend on the PPC behavior for oversized shift amounts.
6963   SDValue Lo = Op.getOperand(0);
6964   SDValue Hi = Op.getOperand(1);
6965   SDValue Amt = Op.getOperand(2);
6966   EVT AmtVT = Amt.getValueType();
6967 
6968   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6969                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6970   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
6971   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
6972   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
6973   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
6974                              DAG.getConstant(-BitWidth, dl, AmtVT));
6975   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
6976   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
6977   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
6978   SDValue OutOps[] = { OutLo, OutHi };
6979   return DAG.getMergeValues(OutOps, dl);
6980 }
6981 
LowerSRA_PARTS(SDValue Op,SelectionDAG & DAG) const6982 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
6983   SDLoc dl(Op);
6984   EVT VT = Op.getValueType();
6985   unsigned BitWidth = VT.getSizeInBits();
6986   assert(Op.getNumOperands() == 3 &&
6987          VT == Op.getOperand(1).getValueType() &&
6988          "Unexpected SRA!");
6989 
6990   // Expand into a bunch of logical ops, followed by a select_cc.
6991   SDValue Lo = Op.getOperand(0);
6992   SDValue Hi = Op.getOperand(1);
6993   SDValue Amt = Op.getOperand(2);
6994   EVT AmtVT = Amt.getValueType();
6995 
6996   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
6997                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
6998   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
6999   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7000   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7001   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7002                              DAG.getConstant(-BitWidth, dl, AmtVT));
7003   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
7004   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
7005   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
7006                                   Tmp4, Tmp6, ISD::SETLE);
7007   SDValue OutOps[] = { OutLo, OutHi };
7008   return DAG.getMergeValues(OutOps, dl);
7009 }
7010 
7011 //===----------------------------------------------------------------------===//
7012 // Vector related lowering.
7013 //
7014 
7015 /// BuildSplatI - Build a canonical splati of Val with an element size of
7016 /// SplatSize.  Cast the result to VT.
BuildSplatI(int Val,unsigned SplatSize,EVT VT,SelectionDAG & DAG,const SDLoc & dl)7017 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
7018                            SelectionDAG &DAG, const SDLoc &dl) {
7019   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
7020 
7021   static const MVT VTys[] = { // canonical VT to use for each size.
7022     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
7023   };
7024 
7025   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
7026 
7027   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
7028   if (Val == -1)
7029     SplatSize = 1;
7030 
7031   EVT CanonicalVT = VTys[SplatSize-1];
7032 
7033   // Build a canonical splat for this value.
7034   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
7035 }
7036 
7037 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
7038 /// specified intrinsic ID.
BuildIntrinsicOp(unsigned IID,SDValue Op,SelectionDAG & DAG,const SDLoc & dl,EVT DestVT=MVT::Other)7039 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
7040                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
7041   if (DestVT == MVT::Other) DestVT = Op.getValueType();
7042   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7043                      DAG.getConstant(IID, dl, MVT::i32), Op);
7044 }
7045 
7046 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
7047 /// specified intrinsic ID.
BuildIntrinsicOp(unsigned IID,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl,EVT DestVT=MVT::Other)7048 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
7049                                 SelectionDAG &DAG, const SDLoc &dl,
7050                                 EVT DestVT = MVT::Other) {
7051   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
7052   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7053                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
7054 }
7055 
7056 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
7057 /// specified intrinsic ID.
BuildIntrinsicOp(unsigned IID,SDValue Op0,SDValue Op1,SDValue Op2,SelectionDAG & DAG,const SDLoc & dl,EVT DestVT=MVT::Other)7058 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
7059                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
7060                                 EVT DestVT = MVT::Other) {
7061   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
7062   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7063                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
7064 }
7065 
7066 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
7067 /// amount.  The result has the specified value type.
BuildVSLDOI(SDValue LHS,SDValue RHS,unsigned Amt,EVT VT,SelectionDAG & DAG,const SDLoc & dl)7068 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
7069                            SelectionDAG &DAG, const SDLoc &dl) {
7070   // Force LHS/RHS to be the right type.
7071   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
7072   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
7073 
7074   int Ops[16];
7075   for (unsigned i = 0; i != 16; ++i)
7076     Ops[i] = i + Amt;
7077   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
7078   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7079 }
7080 
7081 // If this is a case we can't handle, return null and let the default
7082 // expansion code take care of it.  If we CAN select this case, and if it
7083 // selects to a single instruction, return Op.  Otherwise, if we can codegen
7084 // this case more efficiently than a constant pool load, lower it to the
7085 // sequence of ops that should be used.
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const7086 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
7087                                              SelectionDAG &DAG) const {
7088   SDLoc dl(Op);
7089   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7090   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
7091 
7092   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
7093     // We first build an i32 vector, load it into a QPX register,
7094     // then convert it to a floating-point vector and compare it
7095     // to a zero vector to get the boolean result.
7096     MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7097     int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7098     MachinePointerInfo PtrInfo =
7099         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7100     EVT PtrVT = getPointerTy(DAG.getDataLayout());
7101     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7102 
7103     assert(BVN->getNumOperands() == 4 &&
7104       "BUILD_VECTOR for v4i1 does not have 4 operands");
7105 
7106     bool IsConst = true;
7107     for (unsigned i = 0; i < 4; ++i) {
7108       if (BVN->getOperand(i).isUndef()) continue;
7109       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
7110         IsConst = false;
7111         break;
7112       }
7113     }
7114 
7115     if (IsConst) {
7116       Constant *One =
7117         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
7118       Constant *NegOne =
7119         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
7120 
7121       Constant *CV[4];
7122       for (unsigned i = 0; i < 4; ++i) {
7123         if (BVN->getOperand(i).isUndef())
7124           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
7125         else if (isNullConstant(BVN->getOperand(i)))
7126           CV[i] = NegOne;
7127         else
7128           CV[i] = One;
7129       }
7130 
7131       Constant *CP = ConstantVector::get(CV);
7132       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
7133                                           16 /* alignment */);
7134 
7135       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
7136       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
7137       return DAG.getMemIntrinsicNode(
7138           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
7139           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
7140     }
7141 
7142     SmallVector<SDValue, 4> Stores;
7143     for (unsigned i = 0; i < 4; ++i) {
7144       if (BVN->getOperand(i).isUndef()) continue;
7145 
7146       unsigned Offset = 4*i;
7147       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7148       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7149 
7150       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
7151       if (StoreSize > 4) {
7152         Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
7153                                            BVN->getOperand(i), Idx,
7154                                            PtrInfo.getWithOffset(Offset),
7155                                            MVT::i32, false, false, 0));
7156       } else {
7157         SDValue StoreValue = BVN->getOperand(i);
7158         if (StoreSize < 4)
7159           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
7160 
7161         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
7162                                       StoreValue, Idx,
7163                                       PtrInfo.getWithOffset(Offset),
7164                                       false, false, 0));
7165       }
7166     }
7167 
7168     SDValue StoreChain;
7169     if (!Stores.empty())
7170       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7171     else
7172       StoreChain = DAG.getEntryNode();
7173 
7174     // Now load from v4i32 into the QPX register; this will extend it to
7175     // v4i64 but not yet convert it to a floating point. Nevertheless, this
7176     // is typed as v4f64 because the QPX register integer states are not
7177     // explicitly represented.
7178 
7179     SDValue Ops[] = {StoreChain,
7180                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
7181                      FIdx};
7182     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
7183 
7184     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
7185       dl, VTs, Ops, MVT::v4i32, PtrInfo);
7186     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7187       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
7188       LoadedVect);
7189 
7190     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
7191 
7192     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
7193   }
7194 
7195   // All other QPX vectors are handled by generic code.
7196   if (Subtarget.hasQPX())
7197     return SDValue();
7198 
7199   // Check if this is a splat of a constant value.
7200   APInt APSplatBits, APSplatUndef;
7201   unsigned SplatBitSize;
7202   bool HasAnyUndefs;
7203   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
7204                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
7205       SplatBitSize > 32)
7206     return SDValue();
7207 
7208   unsigned SplatBits = APSplatBits.getZExtValue();
7209   unsigned SplatUndef = APSplatUndef.getZExtValue();
7210   unsigned SplatSize = SplatBitSize / 8;
7211 
7212   // First, handle single instruction cases.
7213 
7214   // All zeros?
7215   if (SplatBits == 0) {
7216     // Canonicalize all zero vectors to be v4i32.
7217     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
7218       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
7219       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
7220     }
7221     return Op;
7222   }
7223 
7224   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
7225   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
7226                     (32-SplatBitSize));
7227   if (SextVal >= -16 && SextVal <= 15)
7228     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
7229 
7230   // Two instruction sequences.
7231 
7232   // If this value is in the range [-32,30] and is even, use:
7233   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
7234   // If this value is in the range [17,31] and is odd, use:
7235   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
7236   // If this value is in the range [-31,-17] and is odd, use:
7237   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
7238   // Note the last two are three-instruction sequences.
7239   if (SextVal >= -32 && SextVal <= 31) {
7240     // To avoid having these optimizations undone by constant folding,
7241     // we convert to a pseudo that will be expanded later into one of
7242     // the above forms.
7243     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
7244     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
7245               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
7246     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
7247     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
7248     if (VT == Op.getValueType())
7249       return RetVal;
7250     else
7251       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
7252   }
7253 
7254   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
7255   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
7256   // for fneg/fabs.
7257   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
7258     // Make -1 and vspltisw -1:
7259     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
7260 
7261     // Make the VSLW intrinsic, computing 0x8000_0000.
7262     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
7263                                    OnesV, DAG, dl);
7264 
7265     // xor by OnesV to invert it.
7266     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
7267     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7268   }
7269 
7270   // Check to see if this is a wide variety of vsplti*, binop self cases.
7271   static const signed char SplatCsts[] = {
7272     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
7273     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
7274   };
7275 
7276   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
7277     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
7278     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
7279     int i = SplatCsts[idx];
7280 
7281     // Figure out what shift amount will be used by altivec if shifted by i in
7282     // this splat size.
7283     unsigned TypeShiftAmt = i & (SplatBitSize-1);
7284 
7285     // vsplti + shl self.
7286     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
7287       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7288       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7289         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
7290         Intrinsic::ppc_altivec_vslw
7291       };
7292       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7293       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7294     }
7295 
7296     // vsplti + srl self.
7297     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7298       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7299       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7300         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
7301         Intrinsic::ppc_altivec_vsrw
7302       };
7303       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7304       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7305     }
7306 
7307     // vsplti + sra self.
7308     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
7309       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7310       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7311         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
7312         Intrinsic::ppc_altivec_vsraw
7313       };
7314       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7315       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7316     }
7317 
7318     // vsplti + rol self.
7319     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
7320                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
7321       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
7322       static const unsigned IIDs[] = { // Intrinsic to use for each size.
7323         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
7324         Intrinsic::ppc_altivec_vrlw
7325       };
7326       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
7327       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7328     }
7329 
7330     // t = vsplti c, result = vsldoi t, t, 1
7331     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
7332       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7333       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
7334       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7335     }
7336     // t = vsplti c, result = vsldoi t, t, 2
7337     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
7338       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7339       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
7340       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7341     }
7342     // t = vsplti c, result = vsldoi t, t, 3
7343     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
7344       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
7345       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
7346       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
7347     }
7348   }
7349 
7350   return SDValue();
7351 }
7352 
7353 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7354 /// the specified operations to build the shuffle.
GeneratePerfectShuffle(unsigned PFEntry,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl)7355 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
7356                                       SDValue RHS, SelectionDAG &DAG,
7357                                       const SDLoc &dl) {
7358   unsigned OpNum = (PFEntry >> 26) & 0x0F;
7359   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7360   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
7361 
7362   enum {
7363     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7364     OP_VMRGHW,
7365     OP_VMRGLW,
7366     OP_VSPLTISW0,
7367     OP_VSPLTISW1,
7368     OP_VSPLTISW2,
7369     OP_VSPLTISW3,
7370     OP_VSLDOI4,
7371     OP_VSLDOI8,
7372     OP_VSLDOI12
7373   };
7374 
7375   if (OpNum == OP_COPY) {
7376     if (LHSID == (1*9+2)*9+3) return LHS;
7377     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7378     return RHS;
7379   }
7380 
7381   SDValue OpLHS, OpRHS;
7382   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
7383   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
7384 
7385   int ShufIdxs[16];
7386   switch (OpNum) {
7387   default: llvm_unreachable("Unknown i32 permute!");
7388   case OP_VMRGHW:
7389     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
7390     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
7391     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
7392     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
7393     break;
7394   case OP_VMRGLW:
7395     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
7396     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
7397     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
7398     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
7399     break;
7400   case OP_VSPLTISW0:
7401     for (unsigned i = 0; i != 16; ++i)
7402       ShufIdxs[i] = (i&3)+0;
7403     break;
7404   case OP_VSPLTISW1:
7405     for (unsigned i = 0; i != 16; ++i)
7406       ShufIdxs[i] = (i&3)+4;
7407     break;
7408   case OP_VSPLTISW2:
7409     for (unsigned i = 0; i != 16; ++i)
7410       ShufIdxs[i] = (i&3)+8;
7411     break;
7412   case OP_VSPLTISW3:
7413     for (unsigned i = 0; i != 16; ++i)
7414       ShufIdxs[i] = (i&3)+12;
7415     break;
7416   case OP_VSLDOI4:
7417     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
7418   case OP_VSLDOI8:
7419     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
7420   case OP_VSLDOI12:
7421     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
7422   }
7423   EVT VT = OpLHS.getValueType();
7424   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
7425   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
7426   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
7427   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7428 }
7429 
7430 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
7431 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
7432 /// return the code it can be lowered into.  Worst case, it can always be
7433 /// lowered into a vperm.
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const7434 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
7435                                                SelectionDAG &DAG) const {
7436   SDLoc dl(Op);
7437   SDValue V1 = Op.getOperand(0);
7438   SDValue V2 = Op.getOperand(1);
7439   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7440   EVT VT = Op.getValueType();
7441   bool isLittleEndian = Subtarget.isLittleEndian();
7442 
7443   unsigned ShiftElts, InsertAtByte;
7444   bool Swap;
7445   if (Subtarget.hasP9Vector() &&
7446       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
7447                            isLittleEndian)) {
7448     if (Swap)
7449       std::swap(V1, V2);
7450     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
7451     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
7452     if (ShiftElts) {
7453       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
7454                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
7455       SDValue Ins = DAG.getNode(PPCISD::XXINSERT, dl, MVT::v4i32, Conv1, Shl,
7456                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
7457       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
7458     }
7459     SDValue Ins = DAG.getNode(PPCISD::XXINSERT, dl, MVT::v4i32, Conv1, Conv2,
7460                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
7461     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
7462   }
7463 
7464   if (Subtarget.hasVSX()) {
7465     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
7466       int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
7467       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
7468       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
7469                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
7470       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
7471     }
7472 
7473     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
7474     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
7475       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
7476       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
7477       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
7478     }
7479 
7480   }
7481 
7482   if (Subtarget.hasQPX()) {
7483     if (VT.getVectorNumElements() != 4)
7484       return SDValue();
7485 
7486     if (V2.isUndef()) V2 = V1;
7487 
7488     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
7489     if (AlignIdx != -1) {
7490       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
7491                          DAG.getConstant(AlignIdx, dl, MVT::i32));
7492     } else if (SVOp->isSplat()) {
7493       int SplatIdx = SVOp->getSplatIndex();
7494       if (SplatIdx >= 4) {
7495         std::swap(V1, V2);
7496         SplatIdx -= 4;
7497       }
7498 
7499       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
7500                          DAG.getConstant(SplatIdx, dl, MVT::i32));
7501     }
7502 
7503     // Lower this into a qvgpci/qvfperm pair.
7504 
7505     // Compute the qvgpci literal
7506     unsigned idx = 0;
7507     for (unsigned i = 0; i < 4; ++i) {
7508       int m = SVOp->getMaskElt(i);
7509       unsigned mm = m >= 0 ? (unsigned) m : i;
7510       idx |= mm << (3-i)*3;
7511     }
7512 
7513     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
7514                              DAG.getConstant(idx, dl, MVT::i32));
7515     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
7516   }
7517 
7518   // Cases that are handled by instructions that take permute immediates
7519   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
7520   // selected by the instruction selector.
7521   if (V2.isUndef()) {
7522     if (PPC::isSplatShuffleMask(SVOp, 1) ||
7523         PPC::isSplatShuffleMask(SVOp, 2) ||
7524         PPC::isSplatShuffleMask(SVOp, 4) ||
7525         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
7526         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
7527         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
7528         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
7529         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
7530         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
7531         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
7532         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
7533         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
7534         (Subtarget.hasP8Altivec() && (
7535          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
7536          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
7537          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
7538       return Op;
7539     }
7540   }
7541 
7542   // Altivec has a variety of "shuffle immediates" that take two vector inputs
7543   // and produce a fixed permutation.  If any of these match, do not lower to
7544   // VPERM.
7545   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
7546   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7547       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7548       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
7549       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
7550       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
7551       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
7552       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
7553       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
7554       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
7555       (Subtarget.hasP8Altivec() && (
7556        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
7557        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
7558        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
7559     return Op;
7560 
7561   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
7562   // perfect shuffle table to emit an optimal matching sequence.
7563   ArrayRef<int> PermMask = SVOp->getMask();
7564 
7565   unsigned PFIndexes[4];
7566   bool isFourElementShuffle = true;
7567   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
7568     unsigned EltNo = 8;   // Start out undef.
7569     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
7570       if (PermMask[i*4+j] < 0)
7571         continue;   // Undef, ignore it.
7572 
7573       unsigned ByteSource = PermMask[i*4+j];
7574       if ((ByteSource & 3) != j) {
7575         isFourElementShuffle = false;
7576         break;
7577       }
7578 
7579       if (EltNo == 8) {
7580         EltNo = ByteSource/4;
7581       } else if (EltNo != ByteSource/4) {
7582         isFourElementShuffle = false;
7583         break;
7584       }
7585     }
7586     PFIndexes[i] = EltNo;
7587   }
7588 
7589   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
7590   // perfect shuffle vector to determine if it is cost effective to do this as
7591   // discrete instructions, or whether we should use a vperm.
7592   // For now, we skip this for little endian until such time as we have a
7593   // little-endian perfect shuffle table.
7594   if (isFourElementShuffle && !isLittleEndian) {
7595     // Compute the index in the perfect shuffle table.
7596     unsigned PFTableIndex =
7597       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7598 
7599     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7600     unsigned Cost  = (PFEntry >> 30);
7601 
7602     // Determining when to avoid vperm is tricky.  Many things affect the cost
7603     // of vperm, particularly how many times the perm mask needs to be computed.
7604     // For example, if the perm mask can be hoisted out of a loop or is already
7605     // used (perhaps because there are multiple permutes with the same shuffle
7606     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
7607     // the loop requires an extra register.
7608     //
7609     // As a compromise, we only emit discrete instructions if the shuffle can be
7610     // generated in 3 or fewer operations.  When we have loop information
7611     // available, if this block is within a loop, we should avoid using vperm
7612     // for 3-operation perms and use a constant pool load instead.
7613     if (Cost < 3)
7614       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7615   }
7616 
7617   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
7618   // vector that will get spilled to the constant pool.
7619   if (V2.isUndef()) V2 = V1;
7620 
7621   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
7622   // that it is in input element units, not in bytes.  Convert now.
7623 
7624   // For little endian, the order of the input vectors is reversed, and
7625   // the permutation mask is complemented with respect to 31.  This is
7626   // necessary to produce proper semantics with the big-endian-biased vperm
7627   // instruction.
7628   EVT EltVT = V1.getValueType().getVectorElementType();
7629   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
7630 
7631   SmallVector<SDValue, 16> ResultMask;
7632   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
7633     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
7634 
7635     for (unsigned j = 0; j != BytesPerElement; ++j)
7636       if (isLittleEndian)
7637         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
7638                                              dl, MVT::i32));
7639       else
7640         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
7641                                              MVT::i32));
7642   }
7643 
7644   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
7645   if (isLittleEndian)
7646     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
7647                        V2, V1, VPermMask);
7648   else
7649     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
7650                        V1, V2, VPermMask);
7651 }
7652 
7653 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
7654 /// vector comparison.  If it is, return true and fill in Opc/isDot with
7655 /// information about the intrinsic.
getVectorCompareInfo(SDValue Intrin,int & CompareOpc,bool & isDot,const PPCSubtarget & Subtarget)7656 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
7657                                  bool &isDot, const PPCSubtarget &Subtarget) {
7658   unsigned IntrinsicID =
7659     cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
7660   CompareOpc = -1;
7661   isDot = false;
7662   switch (IntrinsicID) {
7663   default: return false;
7664     // Comparison predicates.
7665   case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
7666   case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
7667   case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
7668   case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
7669   case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
7670   case Intrinsic::ppc_altivec_vcmpequd_p:
7671     if (Subtarget.hasP8Altivec()) {
7672       CompareOpc = 199;
7673       isDot = 1;
7674     } else
7675       return false;
7676 
7677     break;
7678   case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
7679   case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
7680   case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
7681   case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
7682   case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
7683   case Intrinsic::ppc_altivec_vcmpgtsd_p:
7684     if (Subtarget.hasP8Altivec()) {
7685       CompareOpc = 967;
7686       isDot = 1;
7687     } else
7688       return false;
7689 
7690     break;
7691   case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
7692   case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
7693   case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
7694   case Intrinsic::ppc_altivec_vcmpgtud_p:
7695     if (Subtarget.hasP8Altivec()) {
7696       CompareOpc = 711;
7697       isDot = 1;
7698     } else
7699       return false;
7700 
7701     break;
7702     // VSX predicate comparisons use the same infrastructure
7703   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
7704   case Intrinsic::ppc_vsx_xvcmpgedp_p:
7705   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
7706   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
7707   case Intrinsic::ppc_vsx_xvcmpgesp_p:
7708   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
7709     if (Subtarget.hasVSX()) {
7710       switch (IntrinsicID) {
7711       case Intrinsic::ppc_vsx_xvcmpeqdp_p: CompareOpc = 99; break;
7712       case Intrinsic::ppc_vsx_xvcmpgedp_p: CompareOpc = 115; break;
7713       case Intrinsic::ppc_vsx_xvcmpgtdp_p: CompareOpc = 107; break;
7714       case Intrinsic::ppc_vsx_xvcmpeqsp_p: CompareOpc = 67; break;
7715       case Intrinsic::ppc_vsx_xvcmpgesp_p: CompareOpc = 83; break;
7716       case Intrinsic::ppc_vsx_xvcmpgtsp_p: CompareOpc = 75; break;
7717       }
7718       isDot = 1;
7719     }
7720     else
7721       return false;
7722 
7723     break;
7724 
7725     // Normal Comparisons.
7726   case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
7727   case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
7728   case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
7729   case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
7730   case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
7731   case Intrinsic::ppc_altivec_vcmpequd:
7732     if (Subtarget.hasP8Altivec()) {
7733       CompareOpc = 199;
7734       isDot = 0;
7735     } else
7736       return false;
7737 
7738     break;
7739   case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
7740   case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
7741   case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
7742   case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
7743   case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
7744   case Intrinsic::ppc_altivec_vcmpgtsd:
7745     if (Subtarget.hasP8Altivec()) {
7746       CompareOpc = 967;
7747       isDot = 0;
7748     } else
7749       return false;
7750 
7751     break;
7752   case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
7753   case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
7754   case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
7755   case Intrinsic::ppc_altivec_vcmpgtud:
7756     if (Subtarget.hasP8Altivec()) {
7757       CompareOpc = 711;
7758       isDot = 0;
7759     } else
7760       return false;
7761 
7762     break;
7763   }
7764   return true;
7765 }
7766 
7767 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
7768 /// lower, do it, otherwise return null.
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const7769 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
7770                                                    SelectionDAG &DAG) const {
7771   unsigned IntrinsicID =
7772     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7773 
7774   if (IntrinsicID == Intrinsic::thread_pointer) {
7775     // Reads the thread pointer register, used for __builtin_thread_pointer.
7776     bool is64bit = Subtarget.isPPC64();
7777     return DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
7778                            is64bit ? MVT::i64 : MVT::i32);
7779   }
7780 
7781   // If this is a lowered altivec predicate compare, CompareOpc is set to the
7782   // opcode number of the comparison.
7783   SDLoc dl(Op);
7784   int CompareOpc;
7785   bool isDot;
7786   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
7787     return SDValue();    // Don't custom lower most intrinsics.
7788 
7789   // If this is a non-dot comparison, make the VCMP node and we are done.
7790   if (!isDot) {
7791     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
7792                               Op.getOperand(1), Op.getOperand(2),
7793                               DAG.getConstant(CompareOpc, dl, MVT::i32));
7794     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
7795   }
7796 
7797   // Create the PPCISD altivec 'dot' comparison node.
7798   SDValue Ops[] = {
7799     Op.getOperand(2),  // LHS
7800     Op.getOperand(3),  // RHS
7801     DAG.getConstant(CompareOpc, dl, MVT::i32)
7802   };
7803   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
7804   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
7805 
7806   // Now that we have the comparison, emit a copy from the CR to a GPR.
7807   // This is flagged to the above dot comparison.
7808   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
7809                                 DAG.getRegister(PPC::CR6, MVT::i32),
7810                                 CompNode.getValue(1));
7811 
7812   // Unpack the result based on how the target uses it.
7813   unsigned BitNo;   // Bit # of CR6.
7814   bool InvertBit;   // Invert result?
7815   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
7816   default:  // Can't happen, don't crash on invalid number though.
7817   case 0:   // Return the value of the EQ bit of CR6.
7818     BitNo = 0; InvertBit = false;
7819     break;
7820   case 1:   // Return the inverted value of the EQ bit of CR6.
7821     BitNo = 0; InvertBit = true;
7822     break;
7823   case 2:   // Return the value of the LT bit of CR6.
7824     BitNo = 2; InvertBit = false;
7825     break;
7826   case 3:   // Return the inverted value of the LT bit of CR6.
7827     BitNo = 2; InvertBit = true;
7828     break;
7829   }
7830 
7831   // Shift the bit into the low position.
7832   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
7833                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
7834   // Isolate the bit.
7835   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
7836                       DAG.getConstant(1, dl, MVT::i32));
7837 
7838   // If we are supposed to, toggle the bit.
7839   if (InvertBit)
7840     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
7841                         DAG.getConstant(1, dl, MVT::i32));
7842   return Flags;
7843 }
7844 
LowerSIGN_EXTEND_INREG(SDValue Op,SelectionDAG & DAG) const7845 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
7846                                                   SelectionDAG &DAG) const {
7847   SDLoc dl(Op);
7848   // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
7849   // instructions), but for smaller types, we need to first extend up to v2i32
7850   // before doing going farther.
7851   if (Op.getValueType() == MVT::v2i64) {
7852     EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
7853     if (ExtVT != MVT::v2i32) {
7854       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
7855       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
7856                        DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
7857                                         ExtVT.getVectorElementType(), 4)));
7858       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
7859       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
7860                        DAG.getValueType(MVT::v2i32));
7861     }
7862 
7863     return Op;
7864   }
7865 
7866   return SDValue();
7867 }
7868 
LowerSCALAR_TO_VECTOR(SDValue Op,SelectionDAG & DAG) const7869 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
7870                                                    SelectionDAG &DAG) const {
7871   SDLoc dl(Op);
7872   // Create a stack slot that is 16-byte aligned.
7873   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7874   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7875   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7876   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7877 
7878   // Store the input value into Value#0 of the stack slot.
7879   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
7880                                Op.getOperand(0), FIdx, MachinePointerInfo(),
7881                                false, false, 0);
7882   // Load it out.
7883   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
7884                      false, false, false, 0);
7885 }
7886 
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const7887 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7888                                                    SelectionDAG &DAG) const {
7889   SDLoc dl(Op);
7890   SDNode *N = Op.getNode();
7891 
7892   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
7893          "Unknown extract_vector_elt type");
7894 
7895   SDValue Value = N->getOperand(0);
7896 
7897   // The first part of this is like the store lowering except that we don't
7898   // need to track the chain.
7899 
7900   // The values are now known to be -1 (false) or 1 (true). To convert this
7901   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7902   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7903   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7904 
7905   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
7906   // understand how to form the extending load.
7907   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
7908 
7909   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7910 
7911   // Now convert to an integer and store.
7912   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7913     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
7914     Value);
7915 
7916   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
7917   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
7918   MachinePointerInfo PtrInfo =
7919       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7920   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7921   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7922 
7923   SDValue StoreChain = DAG.getEntryNode();
7924   SDValue Ops[] = {StoreChain,
7925                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
7926                    Value, FIdx};
7927   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
7928 
7929   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
7930     dl, VTs, Ops, MVT::v4i32, PtrInfo);
7931 
7932   // Extract the value requested.
7933   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7934   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7935   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7936 
7937   SDValue IntVal = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
7938                                PtrInfo.getWithOffset(Offset),
7939                                false, false, false, 0);
7940 
7941   if (!Subtarget.useCRBits())
7942     return IntVal;
7943 
7944   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
7945 }
7946 
7947 /// Lowering for QPX v4i1 loads
LowerVectorLoad(SDValue Op,SelectionDAG & DAG) const7948 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
7949                                            SelectionDAG &DAG) const {
7950   SDLoc dl(Op);
7951   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
7952   SDValue LoadChain = LN->getChain();
7953   SDValue BasePtr = LN->getBasePtr();
7954 
7955   if (Op.getValueType() == MVT::v4f64 ||
7956       Op.getValueType() == MVT::v4f32) {
7957     EVT MemVT = LN->getMemoryVT();
7958     unsigned Alignment = LN->getAlignment();
7959 
7960     // If this load is properly aligned, then it is legal.
7961     if (Alignment >= MemVT.getStoreSize())
7962       return Op;
7963 
7964     EVT ScalarVT = Op.getValueType().getScalarType(),
7965         ScalarMemVT = MemVT.getScalarType();
7966     unsigned Stride = ScalarMemVT.getStoreSize();
7967 
7968     SDValue Vals[4], LoadChains[4];
7969     for (unsigned Idx = 0; Idx < 4; ++Idx) {
7970       SDValue Load;
7971       if (ScalarVT != ScalarMemVT)
7972         Load =
7973           DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
7974                          BasePtr,
7975                          LN->getPointerInfo().getWithOffset(Idx*Stride),
7976                          ScalarMemVT, LN->isVolatile(), LN->isNonTemporal(),
7977                          LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
7978                          LN->getAAInfo());
7979       else
7980         Load =
7981           DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
7982                        LN->getPointerInfo().getWithOffset(Idx*Stride),
7983                        LN->isVolatile(), LN->isNonTemporal(),
7984                        LN->isInvariant(), MinAlign(Alignment, Idx*Stride),
7985                        LN->getAAInfo());
7986 
7987       if (Idx == 0 && LN->isIndexed()) {
7988         assert(LN->getAddressingMode() == ISD::PRE_INC &&
7989                "Unknown addressing mode on vector load");
7990         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
7991                                   LN->getAddressingMode());
7992       }
7993 
7994       Vals[Idx] = Load;
7995       LoadChains[Idx] = Load.getValue(1);
7996 
7997       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
7998                             DAG.getConstant(Stride, dl,
7999                                             BasePtr.getValueType()));
8000     }
8001 
8002     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
8003     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
8004 
8005     if (LN->isIndexed()) {
8006       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
8007       return DAG.getMergeValues(RetOps, dl);
8008     }
8009 
8010     SDValue RetOps[] = { Value, TF };
8011     return DAG.getMergeValues(RetOps, dl);
8012   }
8013 
8014   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
8015   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
8016 
8017   // To lower v4i1 from a byte array, we load the byte elements of the
8018   // vector and then reuse the BUILD_VECTOR logic.
8019 
8020   SDValue VectElmts[4], VectElmtChains[4];
8021   for (unsigned i = 0; i < 4; ++i) {
8022     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
8023     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
8024 
8025     VectElmts[i] = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
8026                                   LN->getPointerInfo().getWithOffset(i),
8027                                   MVT::i8 /* memory type */, LN->isVolatile(),
8028                                   LN->isNonTemporal(), LN->isInvariant(),
8029                                   1 /* alignment */, LN->getAAInfo());
8030     VectElmtChains[i] = VectElmts[i].getValue(1);
8031   }
8032 
8033   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
8034   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
8035 
8036   SDValue RVals[] = { Value, LoadChain };
8037   return DAG.getMergeValues(RVals, dl);
8038 }
8039 
8040 /// Lowering for QPX v4i1 stores
LowerVectorStore(SDValue Op,SelectionDAG & DAG) const8041 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
8042                                             SelectionDAG &DAG) const {
8043   SDLoc dl(Op);
8044   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
8045   SDValue StoreChain = SN->getChain();
8046   SDValue BasePtr = SN->getBasePtr();
8047   SDValue Value = SN->getValue();
8048 
8049   if (Value.getValueType() == MVT::v4f64 ||
8050       Value.getValueType() == MVT::v4f32) {
8051     EVT MemVT = SN->getMemoryVT();
8052     unsigned Alignment = SN->getAlignment();
8053 
8054     // If this store is properly aligned, then it is legal.
8055     if (Alignment >= MemVT.getStoreSize())
8056       return Op;
8057 
8058     EVT ScalarVT = Value.getValueType().getScalarType(),
8059         ScalarMemVT = MemVT.getScalarType();
8060     unsigned Stride = ScalarMemVT.getStoreSize();
8061 
8062     SDValue Stores[4];
8063     for (unsigned Idx = 0; Idx < 4; ++Idx) {
8064       SDValue Ex = DAG.getNode(
8065           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
8066           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
8067       SDValue Store;
8068       if (ScalarVT != ScalarMemVT)
8069         Store =
8070           DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
8071                             SN->getPointerInfo().getWithOffset(Idx*Stride),
8072                             ScalarMemVT, SN->isVolatile(), SN->isNonTemporal(),
8073                             MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
8074       else
8075         Store =
8076           DAG.getStore(StoreChain, dl, Ex, BasePtr,
8077                        SN->getPointerInfo().getWithOffset(Idx*Stride),
8078                        SN->isVolatile(), SN->isNonTemporal(),
8079                        MinAlign(Alignment, Idx*Stride), SN->getAAInfo());
8080 
8081       if (Idx == 0 && SN->isIndexed()) {
8082         assert(SN->getAddressingMode() == ISD::PRE_INC &&
8083                "Unknown addressing mode on vector store");
8084         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
8085                                     SN->getAddressingMode());
8086       }
8087 
8088       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
8089                             DAG.getConstant(Stride, dl,
8090                                             BasePtr.getValueType()));
8091       Stores[Idx] = Store;
8092     }
8093 
8094     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8095 
8096     if (SN->isIndexed()) {
8097       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
8098       return DAG.getMergeValues(RetOps, dl);
8099     }
8100 
8101     return TF;
8102   }
8103 
8104   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
8105   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
8106 
8107   // The values are now known to be -1 (false) or 1 (true). To convert this
8108   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
8109   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
8110   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
8111 
8112   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
8113   // understand how to form the extending load.
8114   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
8115 
8116   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
8117 
8118   // Now convert to an integer and store.
8119   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8120     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
8121     Value);
8122 
8123   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
8124   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
8125   MachinePointerInfo PtrInfo =
8126       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8127   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8128   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8129 
8130   SDValue Ops[] = {StoreChain,
8131                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
8132                    Value, FIdx};
8133   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
8134 
8135   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
8136     dl, VTs, Ops, MVT::v4i32, PtrInfo);
8137 
8138   // Move data into the byte array.
8139   SDValue Loads[4], LoadChains[4];
8140   for (unsigned i = 0; i < 4; ++i) {
8141     unsigned Offset = 4*i;
8142     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
8143     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
8144 
8145     Loads[i] =
8146         DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
8147                     PtrInfo.getWithOffset(Offset), false, false, false, 0);
8148     LoadChains[i] = Loads[i].getValue(1);
8149   }
8150 
8151   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
8152 
8153   SDValue Stores[4];
8154   for (unsigned i = 0; i < 4; ++i) {
8155     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
8156     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
8157 
8158     Stores[i] = DAG.getTruncStore(
8159         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
8160         MVT::i8 /* memory type */, SN->isNonTemporal(), SN->isVolatile(),
8161         1 /* alignment */, SN->getAAInfo());
8162   }
8163 
8164   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8165 
8166   return StoreChain;
8167 }
8168 
LowerMUL(SDValue Op,SelectionDAG & DAG) const8169 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
8170   SDLoc dl(Op);
8171   if (Op.getValueType() == MVT::v4i32) {
8172     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8173 
8174     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
8175     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
8176 
8177     SDValue RHSSwap =   // = vrlw RHS, 16
8178       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
8179 
8180     // Shrinkify inputs to v8i16.
8181     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
8182     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
8183     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
8184 
8185     // Low parts multiplied together, generating 32-bit results (we ignore the
8186     // top parts).
8187     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
8188                                         LHS, RHS, DAG, dl, MVT::v4i32);
8189 
8190     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
8191                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
8192     // Shift the high parts up 16 bits.
8193     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
8194                               Neg16, DAG, dl);
8195     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
8196   } else if (Op.getValueType() == MVT::v8i16) {
8197     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8198 
8199     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
8200 
8201     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
8202                             LHS, RHS, Zero, DAG, dl);
8203   } else if (Op.getValueType() == MVT::v16i8) {
8204     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8205     bool isLittleEndian = Subtarget.isLittleEndian();
8206 
8207     // Multiply the even 8-bit parts, producing 16-bit sums.
8208     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
8209                                            LHS, RHS, DAG, dl, MVT::v8i16);
8210     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
8211 
8212     // Multiply the odd 8-bit parts, producing 16-bit sums.
8213     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
8214                                           LHS, RHS, DAG, dl, MVT::v8i16);
8215     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
8216 
8217     // Merge the results together.  Because vmuleub and vmuloub are
8218     // instructions with a big-endian bias, we must reverse the
8219     // element numbering and reverse the meaning of "odd" and "even"
8220     // when generating little endian code.
8221     int Ops[16];
8222     for (unsigned i = 0; i != 8; ++i) {
8223       if (isLittleEndian) {
8224         Ops[i*2  ] = 2*i;
8225         Ops[i*2+1] = 2*i+16;
8226       } else {
8227         Ops[i*2  ] = 2*i+1;
8228         Ops[i*2+1] = 2*i+1+16;
8229       }
8230     }
8231     if (isLittleEndian)
8232       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
8233     else
8234       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
8235   } else {
8236     llvm_unreachable("Unknown mul to lower!");
8237   }
8238 }
8239 
8240 /// LowerOperation - Provide custom lowering hooks for some operations.
8241 ///
LowerOperation(SDValue Op,SelectionDAG & DAG) const8242 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8243   switch (Op.getOpcode()) {
8244   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
8245   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
8246   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
8247   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
8248   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
8249   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
8250   case ISD::SETCC:              return LowerSETCC(Op, DAG);
8251   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
8252   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
8253   case ISD::VASTART:
8254     return LowerVASTART(Op, DAG);
8255 
8256   case ISD::VAARG:
8257     return LowerVAARG(Op, DAG);
8258 
8259   case ISD::VACOPY:
8260     return LowerVACOPY(Op, DAG);
8261 
8262   case ISD::STACKRESTORE:
8263     return LowerSTACKRESTORE(Op, DAG);
8264 
8265   case ISD::DYNAMIC_STACKALLOC:
8266     return LowerDYNAMIC_STACKALLOC(Op, DAG);
8267 
8268   case ISD::GET_DYNAMIC_AREA_OFFSET:
8269     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
8270 
8271   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
8272   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
8273 
8274   case ISD::LOAD:               return LowerLOAD(Op, DAG);
8275   case ISD::STORE:              return LowerSTORE(Op, DAG);
8276   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
8277   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
8278   case ISD::FP_TO_UINT:
8279   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
8280                                                       SDLoc(Op));
8281   case ISD::UINT_TO_FP:
8282   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
8283   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
8284 
8285   // Lower 64-bit shifts.
8286   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
8287   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
8288   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
8289 
8290   // Vector-related lowering.
8291   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
8292   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
8293   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
8294   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
8295   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG);
8296   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8297   case ISD::MUL:                return LowerMUL(Op, DAG);
8298 
8299   // For counter-based loop handling.
8300   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
8301 
8302   // Frame & Return address.
8303   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
8304   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
8305   }
8306 }
8307 
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const8308 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
8309                                            SmallVectorImpl<SDValue>&Results,
8310                                            SelectionDAG &DAG) const {
8311   SDLoc dl(N);
8312   switch (N->getOpcode()) {
8313   default:
8314     llvm_unreachable("Do not know how to custom type legalize this operation!");
8315   case ISD::READCYCLECOUNTER: {
8316     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
8317     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
8318 
8319     Results.push_back(RTB);
8320     Results.push_back(RTB.getValue(1));
8321     Results.push_back(RTB.getValue(2));
8322     break;
8323   }
8324   case ISD::INTRINSIC_W_CHAIN: {
8325     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
8326         Intrinsic::ppc_is_decremented_ctr_nonzero)
8327       break;
8328 
8329     assert(N->getValueType(0) == MVT::i1 &&
8330            "Unexpected result type for CTR decrement intrinsic");
8331     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
8332                                  N->getValueType(0));
8333     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
8334     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
8335                                  N->getOperand(1));
8336 
8337     Results.push_back(NewInt);
8338     Results.push_back(NewInt.getValue(1));
8339     break;
8340   }
8341   case ISD::VAARG: {
8342     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
8343       return;
8344 
8345     EVT VT = N->getValueType(0);
8346 
8347     if (VT == MVT::i64) {
8348       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
8349 
8350       Results.push_back(NewNode);
8351       Results.push_back(NewNode.getValue(1));
8352     }
8353     return;
8354   }
8355   case ISD::FP_ROUND_INREG: {
8356     assert(N->getValueType(0) == MVT::ppcf128);
8357     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
8358     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8359                              MVT::f64, N->getOperand(0),
8360                              DAG.getIntPtrConstant(0, dl));
8361     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
8362                              MVT::f64, N->getOperand(0),
8363                              DAG.getIntPtrConstant(1, dl));
8364 
8365     // Add the two halves of the long double in round-to-zero mode.
8366     SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8367 
8368     // We know the low half is about to be thrown away, so just use something
8369     // convenient.
8370     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
8371                                 FPreg, FPreg));
8372     return;
8373   }
8374   case ISD::FP_TO_SINT:
8375   case ISD::FP_TO_UINT:
8376     // LowerFP_TO_INT() can only handle f32 and f64.
8377     if (N->getOperand(0).getValueType() == MVT::ppcf128)
8378       return;
8379     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
8380     return;
8381   }
8382 }
8383 
8384 //===----------------------------------------------------------------------===//
8385 //  Other Lowering Code
8386 //===----------------------------------------------------------------------===//
8387 
callIntrinsic(IRBuilder<> & Builder,Intrinsic::ID Id)8388 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
8389   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
8390   Function *Func = Intrinsic::getDeclaration(M, Id);
8391   return Builder.CreateCall(Func, {});
8392 }
8393 
8394 // The mappings for emitLeading/TrailingFence is taken from
8395 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
emitLeadingFence(IRBuilder<> & Builder,AtomicOrdering Ord,bool IsStore,bool IsLoad) const8396 Instruction* PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
8397                                          AtomicOrdering Ord, bool IsStore,
8398                                          bool IsLoad) const {
8399   if (Ord == AtomicOrdering::SequentiallyConsistent)
8400     return callIntrinsic(Builder, Intrinsic::ppc_sync);
8401   if (isReleaseOrStronger(Ord))
8402     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
8403   return nullptr;
8404 }
8405 
emitTrailingFence(IRBuilder<> & Builder,AtomicOrdering Ord,bool IsStore,bool IsLoad) const8406 Instruction* PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
8407                                           AtomicOrdering Ord, bool IsStore,
8408                                           bool IsLoad) const {
8409   if (IsLoad && isAcquireOrStronger(Ord))
8410     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
8411   // FIXME: this is too conservative, a dependent branch + isync is enough.
8412   // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
8413   // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
8414   // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
8415   return nullptr;
8416 }
8417 
8418 MachineBasicBlock *
EmitAtomicBinary(MachineInstr & MI,MachineBasicBlock * BB,unsigned AtomicSize,unsigned BinOpcode) const8419 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
8420                                     unsigned AtomicSize,
8421                                     unsigned BinOpcode) const {
8422   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
8423   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8424 
8425   auto LoadMnemonic = PPC::LDARX;
8426   auto StoreMnemonic = PPC::STDCX;
8427   switch (AtomicSize) {
8428   default:
8429     llvm_unreachable("Unexpected size of atomic entity");
8430   case 1:
8431     LoadMnemonic = PPC::LBARX;
8432     StoreMnemonic = PPC::STBCX;
8433     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
8434     break;
8435   case 2:
8436     LoadMnemonic = PPC::LHARX;
8437     StoreMnemonic = PPC::STHCX;
8438     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
8439     break;
8440   case 4:
8441     LoadMnemonic = PPC::LWARX;
8442     StoreMnemonic = PPC::STWCX;
8443     break;
8444   case 8:
8445     LoadMnemonic = PPC::LDARX;
8446     StoreMnemonic = PPC::STDCX;
8447     break;
8448   }
8449 
8450   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8451   MachineFunction *F = BB->getParent();
8452   MachineFunction::iterator It = ++BB->getIterator();
8453 
8454   unsigned dest = MI.getOperand(0).getReg();
8455   unsigned ptrA = MI.getOperand(1).getReg();
8456   unsigned ptrB = MI.getOperand(2).getReg();
8457   unsigned incr = MI.getOperand(3).getReg();
8458   DebugLoc dl = MI.getDebugLoc();
8459 
8460   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
8461   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8462   F->insert(It, loopMBB);
8463   F->insert(It, exitMBB);
8464   exitMBB->splice(exitMBB->begin(), BB,
8465                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8466   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8467 
8468   MachineRegisterInfo &RegInfo = F->getRegInfo();
8469   unsigned TmpReg = (!BinOpcode) ? incr :
8470     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
8471                                            : &PPC::GPRCRegClass);
8472 
8473   //  thisMBB:
8474   //   ...
8475   //   fallthrough --> loopMBB
8476   BB->addSuccessor(loopMBB);
8477 
8478   //  loopMBB:
8479   //   l[wd]arx dest, ptr
8480   //   add r0, dest, incr
8481   //   st[wd]cx. r0, ptr
8482   //   bne- loopMBB
8483   //   fallthrough --> exitMBB
8484   BB = loopMBB;
8485   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
8486     .addReg(ptrA).addReg(ptrB);
8487   if (BinOpcode)
8488     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
8489   BuildMI(BB, dl, TII->get(StoreMnemonic))
8490     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
8491   BuildMI(BB, dl, TII->get(PPC::BCC))
8492     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
8493   BB->addSuccessor(loopMBB);
8494   BB->addSuccessor(exitMBB);
8495 
8496   //  exitMBB:
8497   //   ...
8498   BB = exitMBB;
8499   return BB;
8500 }
8501 
8502 MachineBasicBlock *
EmitPartwordAtomicBinary(MachineInstr & MI,MachineBasicBlock * BB,bool is8bit,unsigned BinOpcode) const8503 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI,
8504                                             MachineBasicBlock *BB,
8505                                             bool is8bit, // operation
8506                                             unsigned BinOpcode) const {
8507   // If we support part-word atomic mnemonics, just use them
8508   if (Subtarget.hasPartwordAtomics())
8509     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode);
8510 
8511   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
8512   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8513   // In 64 bit mode we have to use 64 bits for addresses, even though the
8514   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
8515   // registers without caring whether they're 32 or 64, but here we're
8516   // doing actual arithmetic on the addresses.
8517   bool is64bit = Subtarget.isPPC64();
8518   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
8519 
8520   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8521   MachineFunction *F = BB->getParent();
8522   MachineFunction::iterator It = ++BB->getIterator();
8523 
8524   unsigned dest = MI.getOperand(0).getReg();
8525   unsigned ptrA = MI.getOperand(1).getReg();
8526   unsigned ptrB = MI.getOperand(2).getReg();
8527   unsigned incr = MI.getOperand(3).getReg();
8528   DebugLoc dl = MI.getDebugLoc();
8529 
8530   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
8531   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
8532   F->insert(It, loopMBB);
8533   F->insert(It, exitMBB);
8534   exitMBB->splice(exitMBB->begin(), BB,
8535                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8536   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8537 
8538   MachineRegisterInfo &RegInfo = F->getRegInfo();
8539   const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
8540                                           : &PPC::GPRCRegClass;
8541   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
8542   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
8543   unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
8544   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
8545   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
8546   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
8547   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
8548   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
8549   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
8550   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
8551   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
8552   unsigned Ptr1Reg;
8553   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
8554 
8555   //  thisMBB:
8556   //   ...
8557   //   fallthrough --> loopMBB
8558   BB->addSuccessor(loopMBB);
8559 
8560   // The 4-byte load must be aligned, while a char or short may be
8561   // anywhere in the word.  Hence all this nasty bookkeeping code.
8562   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
8563   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
8564   //   xori shift, shift1, 24 [16]
8565   //   rlwinm ptr, ptr1, 0, 0, 29
8566   //   slw incr2, incr, shift
8567   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
8568   //   slw mask, mask2, shift
8569   //  loopMBB:
8570   //   lwarx tmpDest, ptr
8571   //   add tmp, tmpDest, incr2
8572   //   andc tmp2, tmpDest, mask
8573   //   and tmp3, tmp, mask
8574   //   or tmp4, tmp3, tmp2
8575   //   stwcx. tmp4, ptr
8576   //   bne- loopMBB
8577   //   fallthrough --> exitMBB
8578   //   srw dest, tmpDest, shift
8579   if (ptrA != ZeroReg) {
8580     Ptr1Reg = RegInfo.createVirtualRegister(RC);
8581     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
8582       .addReg(ptrA).addReg(ptrB);
8583   } else {
8584     Ptr1Reg = ptrB;
8585   }
8586   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
8587       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
8588   BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
8589       .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
8590   if (is64bit)
8591     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
8592       .addReg(Ptr1Reg).addImm(0).addImm(61);
8593   else
8594     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
8595       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
8596   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
8597       .addReg(incr).addReg(ShiftReg);
8598   if (is8bit)
8599     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
8600   else {
8601     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
8602     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
8603   }
8604   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
8605       .addReg(Mask2Reg).addReg(ShiftReg);
8606 
8607   BB = loopMBB;
8608   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
8609     .addReg(ZeroReg).addReg(PtrReg);
8610   if (BinOpcode)
8611     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
8612       .addReg(Incr2Reg).addReg(TmpDestReg);
8613   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
8614     .addReg(TmpDestReg).addReg(MaskReg);
8615   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
8616     .addReg(TmpReg).addReg(MaskReg);
8617   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
8618     .addReg(Tmp3Reg).addReg(Tmp2Reg);
8619   BuildMI(BB, dl, TII->get(PPC::STWCX))
8620     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
8621   BuildMI(BB, dl, TII->get(PPC::BCC))
8622     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
8623   BB->addSuccessor(loopMBB);
8624   BB->addSuccessor(exitMBB);
8625 
8626   //  exitMBB:
8627   //   ...
8628   BB = exitMBB;
8629   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
8630     .addReg(ShiftReg);
8631   return BB;
8632 }
8633 
8634 llvm::MachineBasicBlock *
emitEHSjLjSetJmp(MachineInstr & MI,MachineBasicBlock * MBB) const8635 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
8636                                     MachineBasicBlock *MBB) const {
8637   DebugLoc DL = MI.getDebugLoc();
8638   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8639 
8640   MachineFunction *MF = MBB->getParent();
8641   MachineRegisterInfo &MRI = MF->getRegInfo();
8642 
8643   const BasicBlock *BB = MBB->getBasicBlock();
8644   MachineFunction::iterator I = ++MBB->getIterator();
8645 
8646   // Memory Reference
8647   MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
8648   MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
8649 
8650   unsigned DstReg = MI.getOperand(0).getReg();
8651   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
8652   assert(RC->hasType(MVT::i32) && "Invalid destination!");
8653   unsigned mainDstReg = MRI.createVirtualRegister(RC);
8654   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
8655 
8656   MVT PVT = getPointerTy(MF->getDataLayout());
8657   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
8658          "Invalid Pointer Size!");
8659   // For v = setjmp(buf), we generate
8660   //
8661   // thisMBB:
8662   //  SjLjSetup mainMBB
8663   //  bl mainMBB
8664   //  v_restore = 1
8665   //  b sinkMBB
8666   //
8667   // mainMBB:
8668   //  buf[LabelOffset] = LR
8669   //  v_main = 0
8670   //
8671   // sinkMBB:
8672   //  v = phi(main, restore)
8673   //
8674 
8675   MachineBasicBlock *thisMBB = MBB;
8676   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
8677   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
8678   MF->insert(I, mainMBB);
8679   MF->insert(I, sinkMBB);
8680 
8681   MachineInstrBuilder MIB;
8682 
8683   // Transfer the remainder of BB and its successor edges to sinkMBB.
8684   sinkMBB->splice(sinkMBB->begin(), MBB,
8685                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
8686   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
8687 
8688   // Note that the structure of the jmp_buf used here is not compatible
8689   // with that used by libc, and is not designed to be. Specifically, it
8690   // stores only those 'reserved' registers that LLVM does not otherwise
8691   // understand how to spill. Also, by convention, by the time this
8692   // intrinsic is called, Clang has already stored the frame address in the
8693   // first slot of the buffer and stack address in the third. Following the
8694   // X86 target code, we'll store the jump address in the second slot. We also
8695   // need to save the TOC pointer (R2) to handle jumps between shared
8696   // libraries, and that will be stored in the fourth slot. The thread
8697   // identifier (R13) is not affected.
8698 
8699   // thisMBB:
8700   const int64_t LabelOffset = 1 * PVT.getStoreSize();
8701   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
8702   const int64_t BPOffset    = 4 * PVT.getStoreSize();
8703 
8704   // Prepare IP either in reg.
8705   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
8706   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
8707   unsigned BufReg = MI.getOperand(1).getReg();
8708 
8709   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
8710     setUsesTOCBasePtr(*MBB->getParent());
8711     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
8712             .addReg(PPC::X2)
8713             .addImm(TOCOffset)
8714             .addReg(BufReg);
8715     MIB.setMemRefs(MMOBegin, MMOEnd);
8716   }
8717 
8718   // Naked functions never have a base pointer, and so we use r1. For all
8719   // other functions, this decision must be delayed until during PEI.
8720   unsigned BaseReg;
8721   if (MF->getFunction()->hasFnAttribute(Attribute::Naked))
8722     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
8723   else
8724     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
8725 
8726   MIB = BuildMI(*thisMBB, MI, DL,
8727                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
8728             .addReg(BaseReg)
8729             .addImm(BPOffset)
8730             .addReg(BufReg);
8731   MIB.setMemRefs(MMOBegin, MMOEnd);
8732 
8733   // Setup
8734   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
8735   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
8736   MIB.addRegMask(TRI->getNoPreservedMask());
8737 
8738   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
8739 
8740   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
8741           .addMBB(mainMBB);
8742   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
8743 
8744   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
8745   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
8746 
8747   // mainMBB:
8748   //  mainDstReg = 0
8749   MIB =
8750       BuildMI(mainMBB, DL,
8751               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
8752 
8753   // Store IP
8754   if (Subtarget.isPPC64()) {
8755     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
8756             .addReg(LabelReg)
8757             .addImm(LabelOffset)
8758             .addReg(BufReg);
8759   } else {
8760     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
8761             .addReg(LabelReg)
8762             .addImm(LabelOffset)
8763             .addReg(BufReg);
8764   }
8765 
8766   MIB.setMemRefs(MMOBegin, MMOEnd);
8767 
8768   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
8769   mainMBB->addSuccessor(sinkMBB);
8770 
8771   // sinkMBB:
8772   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
8773           TII->get(PPC::PHI), DstReg)
8774     .addReg(mainDstReg).addMBB(mainMBB)
8775     .addReg(restoreDstReg).addMBB(thisMBB);
8776 
8777   MI.eraseFromParent();
8778   return sinkMBB;
8779 }
8780 
8781 MachineBasicBlock *
emitEHSjLjLongJmp(MachineInstr & MI,MachineBasicBlock * MBB) const8782 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
8783                                      MachineBasicBlock *MBB) const {
8784   DebugLoc DL = MI.getDebugLoc();
8785   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8786 
8787   MachineFunction *MF = MBB->getParent();
8788   MachineRegisterInfo &MRI = MF->getRegInfo();
8789 
8790   // Memory Reference
8791   MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
8792   MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
8793 
8794   MVT PVT = getPointerTy(MF->getDataLayout());
8795   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
8796          "Invalid Pointer Size!");
8797 
8798   const TargetRegisterClass *RC =
8799     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
8800   unsigned Tmp = MRI.createVirtualRegister(RC);
8801   // Since FP is only updated here but NOT referenced, it's treated as GPR.
8802   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
8803   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
8804   unsigned BP =
8805       (PVT == MVT::i64)
8806           ? PPC::X30
8807           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
8808                                                               : PPC::R30);
8809 
8810   MachineInstrBuilder MIB;
8811 
8812   const int64_t LabelOffset = 1 * PVT.getStoreSize();
8813   const int64_t SPOffset    = 2 * PVT.getStoreSize();
8814   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
8815   const int64_t BPOffset    = 4 * PVT.getStoreSize();
8816 
8817   unsigned BufReg = MI.getOperand(0).getReg();
8818 
8819   // Reload FP (the jumped-to function may not have had a
8820   // frame pointer, and if so, then its r31 will be restored
8821   // as necessary).
8822   if (PVT == MVT::i64) {
8823     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
8824             .addImm(0)
8825             .addReg(BufReg);
8826   } else {
8827     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
8828             .addImm(0)
8829             .addReg(BufReg);
8830   }
8831   MIB.setMemRefs(MMOBegin, MMOEnd);
8832 
8833   // Reload IP
8834   if (PVT == MVT::i64) {
8835     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
8836             .addImm(LabelOffset)
8837             .addReg(BufReg);
8838   } else {
8839     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
8840             .addImm(LabelOffset)
8841             .addReg(BufReg);
8842   }
8843   MIB.setMemRefs(MMOBegin, MMOEnd);
8844 
8845   // Reload SP
8846   if (PVT == MVT::i64) {
8847     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
8848             .addImm(SPOffset)
8849             .addReg(BufReg);
8850   } else {
8851     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
8852             .addImm(SPOffset)
8853             .addReg(BufReg);
8854   }
8855   MIB.setMemRefs(MMOBegin, MMOEnd);
8856 
8857   // Reload BP
8858   if (PVT == MVT::i64) {
8859     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
8860             .addImm(BPOffset)
8861             .addReg(BufReg);
8862   } else {
8863     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
8864             .addImm(BPOffset)
8865             .addReg(BufReg);
8866   }
8867   MIB.setMemRefs(MMOBegin, MMOEnd);
8868 
8869   // Reload TOC
8870   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
8871     setUsesTOCBasePtr(*MBB->getParent());
8872     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
8873             .addImm(TOCOffset)
8874             .addReg(BufReg);
8875 
8876     MIB.setMemRefs(MMOBegin, MMOEnd);
8877   }
8878 
8879   // Jump
8880   BuildMI(*MBB, MI, DL,
8881           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
8882   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
8883 
8884   MI.eraseFromParent();
8885   return MBB;
8886 }
8887 
8888 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const8889 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
8890                                                MachineBasicBlock *BB) const {
8891   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
8892       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
8893     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
8894         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
8895       // Call lowering should have added an r2 operand to indicate a dependence
8896       // on the TOC base pointer value. It can't however, because there is no
8897       // way to mark the dependence as implicit there, and so the stackmap code
8898       // will confuse it with a regular operand. Instead, add the dependence
8899       // here.
8900       setUsesTOCBasePtr(*BB->getParent());
8901       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
8902     }
8903 
8904     return emitPatchPoint(MI, BB);
8905   }
8906 
8907   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
8908       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
8909     return emitEHSjLjSetJmp(MI, BB);
8910   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
8911              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
8912     return emitEHSjLjLongJmp(MI, BB);
8913   }
8914 
8915   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
8916 
8917   // To "insert" these instructions we actually have to insert their
8918   // control-flow patterns.
8919   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8920   MachineFunction::iterator It = ++BB->getIterator();
8921 
8922   MachineFunction *F = BB->getParent();
8923 
8924   if (Subtarget.hasISEL() &&
8925       (MI.getOpcode() == PPC::SELECT_CC_I4 ||
8926        MI.getOpcode() == PPC::SELECT_CC_I8 ||
8927        MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8)) {
8928     SmallVector<MachineOperand, 2> Cond;
8929     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
8930         MI.getOpcode() == PPC::SELECT_CC_I8)
8931       Cond.push_back(MI.getOperand(4));
8932     else
8933       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
8934     Cond.push_back(MI.getOperand(1));
8935 
8936     DebugLoc dl = MI.getDebugLoc();
8937     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
8938                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
8939   } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
8940              MI.getOpcode() == PPC::SELECT_CC_I8 ||
8941              MI.getOpcode() == PPC::SELECT_CC_F4 ||
8942              MI.getOpcode() == PPC::SELECT_CC_F8 ||
8943              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
8944              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
8945              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
8946              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
8947              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
8948              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
8949              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
8950              MI.getOpcode() == PPC::SELECT_I4 ||
8951              MI.getOpcode() == PPC::SELECT_I8 ||
8952              MI.getOpcode() == PPC::SELECT_F4 ||
8953              MI.getOpcode() == PPC::SELECT_F8 ||
8954              MI.getOpcode() == PPC::SELECT_QFRC ||
8955              MI.getOpcode() == PPC::SELECT_QSRC ||
8956              MI.getOpcode() == PPC::SELECT_QBRC ||
8957              MI.getOpcode() == PPC::SELECT_VRRC ||
8958              MI.getOpcode() == PPC::SELECT_VSFRC ||
8959              MI.getOpcode() == PPC::SELECT_VSSRC ||
8960              MI.getOpcode() == PPC::SELECT_VSRC) {
8961     // The incoming instruction knows the destination vreg to set, the
8962     // condition code register to branch on, the true/false values to
8963     // select between, and a branch opcode to use.
8964 
8965     //  thisMBB:
8966     //  ...
8967     //   TrueVal = ...
8968     //   cmpTY ccX, r1, r2
8969     //   bCC copy1MBB
8970     //   fallthrough --> copy0MBB
8971     MachineBasicBlock *thisMBB = BB;
8972     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8973     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8974     DebugLoc dl = MI.getDebugLoc();
8975     F->insert(It, copy0MBB);
8976     F->insert(It, sinkMBB);
8977 
8978     // Transfer the remainder of BB and its successor edges to sinkMBB.
8979     sinkMBB->splice(sinkMBB->begin(), BB,
8980                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8981     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8982 
8983     // Next, add the true and fallthrough blocks as its successors.
8984     BB->addSuccessor(copy0MBB);
8985     BB->addSuccessor(sinkMBB);
8986 
8987     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
8988         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
8989         MI.getOpcode() == PPC::SELECT_QFRC ||
8990         MI.getOpcode() == PPC::SELECT_QSRC ||
8991         MI.getOpcode() == PPC::SELECT_QBRC ||
8992         MI.getOpcode() == PPC::SELECT_VRRC ||
8993         MI.getOpcode() == PPC::SELECT_VSFRC ||
8994         MI.getOpcode() == PPC::SELECT_VSSRC ||
8995         MI.getOpcode() == PPC::SELECT_VSRC) {
8996       BuildMI(BB, dl, TII->get(PPC::BC))
8997           .addReg(MI.getOperand(1).getReg())
8998           .addMBB(sinkMBB);
8999     } else {
9000       unsigned SelectPred = MI.getOperand(4).getImm();
9001       BuildMI(BB, dl, TII->get(PPC::BCC))
9002           .addImm(SelectPred)
9003           .addReg(MI.getOperand(1).getReg())
9004           .addMBB(sinkMBB);
9005     }
9006 
9007     //  copy0MBB:
9008     //   %FalseValue = ...
9009     //   # fallthrough to sinkMBB
9010     BB = copy0MBB;
9011 
9012     // Update machine-CFG edges
9013     BB->addSuccessor(sinkMBB);
9014 
9015     //  sinkMBB:
9016     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9017     //  ...
9018     BB = sinkMBB;
9019     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
9020         .addReg(MI.getOperand(3).getReg())
9021         .addMBB(copy0MBB)
9022         .addReg(MI.getOperand(2).getReg())
9023         .addMBB(thisMBB);
9024   } else if (MI.getOpcode() == PPC::ReadTB) {
9025     // To read the 64-bit time-base register on a 32-bit target, we read the
9026     // two halves. Should the counter have wrapped while it was being read, we
9027     // need to try again.
9028     // ...
9029     // readLoop:
9030     // mfspr Rx,TBU # load from TBU
9031     // mfspr Ry,TB  # load from TB
9032     // mfspr Rz,TBU # load from TBU
9033     // cmpw crX,Rx,Rz # check if 'old'='new'
9034     // bne readLoop   # branch if they're not equal
9035     // ...
9036 
9037     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
9038     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9039     DebugLoc dl = MI.getDebugLoc();
9040     F->insert(It, readMBB);
9041     F->insert(It, sinkMBB);
9042 
9043     // Transfer the remainder of BB and its successor edges to sinkMBB.
9044     sinkMBB->splice(sinkMBB->begin(), BB,
9045                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
9046     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9047 
9048     BB->addSuccessor(readMBB);
9049     BB = readMBB;
9050 
9051     MachineRegisterInfo &RegInfo = F->getRegInfo();
9052     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
9053     unsigned LoReg = MI.getOperand(0).getReg();
9054     unsigned HiReg = MI.getOperand(1).getReg();
9055 
9056     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
9057     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
9058     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
9059 
9060     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
9061 
9062     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
9063       .addReg(HiReg).addReg(ReadAgainReg);
9064     BuildMI(BB, dl, TII->get(PPC::BCC))
9065       .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
9066 
9067     BB->addSuccessor(readMBB);
9068     BB->addSuccessor(sinkMBB);
9069   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
9070     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
9071   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
9072     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
9073   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
9074     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
9075   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
9076     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
9077 
9078   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
9079     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
9080   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
9081     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
9082   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
9083     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
9084   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
9085     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
9086 
9087   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
9088     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
9089   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
9090     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
9091   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
9092     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
9093   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
9094     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
9095 
9096   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
9097     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
9098   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
9099     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
9100   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
9101     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
9102   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
9103     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
9104 
9105   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
9106     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
9107   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
9108     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
9109   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
9110     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
9111   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
9112     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
9113 
9114   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
9115     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
9116   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
9117     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
9118   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
9119     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
9120   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
9121     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
9122 
9123   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
9124     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
9125   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
9126     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
9127   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
9128     BB = EmitAtomicBinary(MI, BB, 4, 0);
9129   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
9130     BB = EmitAtomicBinary(MI, BB, 8, 0);
9131 
9132   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
9133            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
9134            (Subtarget.hasPartwordAtomics() &&
9135             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
9136            (Subtarget.hasPartwordAtomics() &&
9137             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
9138     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
9139 
9140     auto LoadMnemonic = PPC::LDARX;
9141     auto StoreMnemonic = PPC::STDCX;
9142     switch (MI.getOpcode()) {
9143     default:
9144       llvm_unreachable("Compare and swap of unknown size");
9145     case PPC::ATOMIC_CMP_SWAP_I8:
9146       LoadMnemonic = PPC::LBARX;
9147       StoreMnemonic = PPC::STBCX;
9148       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
9149       break;
9150     case PPC::ATOMIC_CMP_SWAP_I16:
9151       LoadMnemonic = PPC::LHARX;
9152       StoreMnemonic = PPC::STHCX;
9153       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
9154       break;
9155     case PPC::ATOMIC_CMP_SWAP_I32:
9156       LoadMnemonic = PPC::LWARX;
9157       StoreMnemonic = PPC::STWCX;
9158       break;
9159     case PPC::ATOMIC_CMP_SWAP_I64:
9160       LoadMnemonic = PPC::LDARX;
9161       StoreMnemonic = PPC::STDCX;
9162       break;
9163     }
9164     unsigned dest = MI.getOperand(0).getReg();
9165     unsigned ptrA = MI.getOperand(1).getReg();
9166     unsigned ptrB = MI.getOperand(2).getReg();
9167     unsigned oldval = MI.getOperand(3).getReg();
9168     unsigned newval = MI.getOperand(4).getReg();
9169     DebugLoc dl = MI.getDebugLoc();
9170 
9171     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
9172     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
9173     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
9174     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9175     F->insert(It, loop1MBB);
9176     F->insert(It, loop2MBB);
9177     F->insert(It, midMBB);
9178     F->insert(It, exitMBB);
9179     exitMBB->splice(exitMBB->begin(), BB,
9180                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
9181     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9182 
9183     //  thisMBB:
9184     //   ...
9185     //   fallthrough --> loopMBB
9186     BB->addSuccessor(loop1MBB);
9187 
9188     // loop1MBB:
9189     //   l[bhwd]arx dest, ptr
9190     //   cmp[wd] dest, oldval
9191     //   bne- midMBB
9192     // loop2MBB:
9193     //   st[bhwd]cx. newval, ptr
9194     //   bne- loopMBB
9195     //   b exitBB
9196     // midMBB:
9197     //   st[bhwd]cx. dest, ptr
9198     // exitBB:
9199     BB = loop1MBB;
9200     BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
9201       .addReg(ptrA).addReg(ptrB);
9202     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
9203       .addReg(oldval).addReg(dest);
9204     BuildMI(BB, dl, TII->get(PPC::BCC))
9205       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
9206     BB->addSuccessor(loop2MBB);
9207     BB->addSuccessor(midMBB);
9208 
9209     BB = loop2MBB;
9210     BuildMI(BB, dl, TII->get(StoreMnemonic))
9211       .addReg(newval).addReg(ptrA).addReg(ptrB);
9212     BuildMI(BB, dl, TII->get(PPC::BCC))
9213       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
9214     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
9215     BB->addSuccessor(loop1MBB);
9216     BB->addSuccessor(exitMBB);
9217 
9218     BB = midMBB;
9219     BuildMI(BB, dl, TII->get(StoreMnemonic))
9220       .addReg(dest).addReg(ptrA).addReg(ptrB);
9221     BB->addSuccessor(exitMBB);
9222 
9223     //  exitMBB:
9224     //   ...
9225     BB = exitMBB;
9226   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
9227              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
9228     // We must use 64-bit registers for addresses when targeting 64-bit,
9229     // since we're actually doing arithmetic on them.  Other registers
9230     // can be 32-bit.
9231     bool is64bit = Subtarget.isPPC64();
9232     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
9233 
9234     unsigned dest = MI.getOperand(0).getReg();
9235     unsigned ptrA = MI.getOperand(1).getReg();
9236     unsigned ptrB = MI.getOperand(2).getReg();
9237     unsigned oldval = MI.getOperand(3).getReg();
9238     unsigned newval = MI.getOperand(4).getReg();
9239     DebugLoc dl = MI.getDebugLoc();
9240 
9241     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
9242     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
9243     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
9244     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9245     F->insert(It, loop1MBB);
9246     F->insert(It, loop2MBB);
9247     F->insert(It, midMBB);
9248     F->insert(It, exitMBB);
9249     exitMBB->splice(exitMBB->begin(), BB,
9250                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
9251     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9252 
9253     MachineRegisterInfo &RegInfo = F->getRegInfo();
9254     const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
9255                                             : &PPC::GPRCRegClass;
9256     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
9257     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
9258     unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
9259     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
9260     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
9261     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
9262     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
9263     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
9264     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
9265     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
9266     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
9267     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
9268     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
9269     unsigned Ptr1Reg;
9270     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
9271     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
9272     //  thisMBB:
9273     //   ...
9274     //   fallthrough --> loopMBB
9275     BB->addSuccessor(loop1MBB);
9276 
9277     // The 4-byte load must be aligned, while a char or short may be
9278     // anywhere in the word.  Hence all this nasty bookkeeping code.
9279     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
9280     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
9281     //   xori shift, shift1, 24 [16]
9282     //   rlwinm ptr, ptr1, 0, 0, 29
9283     //   slw newval2, newval, shift
9284     //   slw oldval2, oldval,shift
9285     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
9286     //   slw mask, mask2, shift
9287     //   and newval3, newval2, mask
9288     //   and oldval3, oldval2, mask
9289     // loop1MBB:
9290     //   lwarx tmpDest, ptr
9291     //   and tmp, tmpDest, mask
9292     //   cmpw tmp, oldval3
9293     //   bne- midMBB
9294     // loop2MBB:
9295     //   andc tmp2, tmpDest, mask
9296     //   or tmp4, tmp2, newval3
9297     //   stwcx. tmp4, ptr
9298     //   bne- loop1MBB
9299     //   b exitBB
9300     // midMBB:
9301     //   stwcx. tmpDest, ptr
9302     // exitBB:
9303     //   srw dest, tmpDest, shift
9304     if (ptrA != ZeroReg) {
9305       Ptr1Reg = RegInfo.createVirtualRegister(RC);
9306       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
9307         .addReg(ptrA).addReg(ptrB);
9308     } else {
9309       Ptr1Reg = ptrB;
9310     }
9311     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
9312         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
9313     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
9314         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
9315     if (is64bit)
9316       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
9317         .addReg(Ptr1Reg).addImm(0).addImm(61);
9318     else
9319       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
9320         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
9321     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
9322         .addReg(newval).addReg(ShiftReg);
9323     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
9324         .addReg(oldval).addReg(ShiftReg);
9325     if (is8bit)
9326       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
9327     else {
9328       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
9329       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
9330         .addReg(Mask3Reg).addImm(65535);
9331     }
9332     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
9333         .addReg(Mask2Reg).addReg(ShiftReg);
9334     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
9335         .addReg(NewVal2Reg).addReg(MaskReg);
9336     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
9337         .addReg(OldVal2Reg).addReg(MaskReg);
9338 
9339     BB = loop1MBB;
9340     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
9341         .addReg(ZeroReg).addReg(PtrReg);
9342     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
9343         .addReg(TmpDestReg).addReg(MaskReg);
9344     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
9345         .addReg(TmpReg).addReg(OldVal3Reg);
9346     BuildMI(BB, dl, TII->get(PPC::BCC))
9347         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
9348     BB->addSuccessor(loop2MBB);
9349     BB->addSuccessor(midMBB);
9350 
9351     BB = loop2MBB;
9352     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
9353         .addReg(TmpDestReg).addReg(MaskReg);
9354     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
9355         .addReg(Tmp2Reg).addReg(NewVal3Reg);
9356     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
9357         .addReg(ZeroReg).addReg(PtrReg);
9358     BuildMI(BB, dl, TII->get(PPC::BCC))
9359       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
9360     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
9361     BB->addSuccessor(loop1MBB);
9362     BB->addSuccessor(exitMBB);
9363 
9364     BB = midMBB;
9365     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
9366       .addReg(ZeroReg).addReg(PtrReg);
9367     BB->addSuccessor(exitMBB);
9368 
9369     //  exitMBB:
9370     //   ...
9371     BB = exitMBB;
9372     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
9373       .addReg(ShiftReg);
9374   } else if (MI.getOpcode() == PPC::FADDrtz) {
9375     // This pseudo performs an FADD with rounding mode temporarily forced
9376     // to round-to-zero.  We emit this via custom inserter since the FPSCR
9377     // is not modeled at the SelectionDAG level.
9378     unsigned Dest = MI.getOperand(0).getReg();
9379     unsigned Src1 = MI.getOperand(1).getReg();
9380     unsigned Src2 = MI.getOperand(2).getReg();
9381     DebugLoc dl = MI.getDebugLoc();
9382 
9383     MachineRegisterInfo &RegInfo = F->getRegInfo();
9384     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
9385 
9386     // Save FPSCR value.
9387     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
9388 
9389     // Set rounding mode to round-to-zero.
9390     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
9391     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
9392 
9393     // Perform addition.
9394     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
9395 
9396     // Restore FPSCR value.
9397     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
9398   } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
9399              MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
9400              MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
9401              MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
9402     unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
9403                        MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
9404                           ? PPC::ANDIo8
9405                           : PPC::ANDIo;
9406     bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
9407                  MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
9408 
9409     MachineRegisterInfo &RegInfo = F->getRegInfo();
9410     unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
9411                                                   &PPC::GPRCRegClass :
9412                                                   &PPC::G8RCRegClass);
9413 
9414     DebugLoc dl = MI.getDebugLoc();
9415     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
9416         .addReg(MI.getOperand(1).getReg())
9417         .addImm(1);
9418     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
9419             MI.getOperand(0).getReg())
9420         .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
9421   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
9422     DebugLoc Dl = MI.getDebugLoc();
9423     MachineRegisterInfo &RegInfo = F->getRegInfo();
9424     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
9425     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
9426     return BB;
9427   } else {
9428     llvm_unreachable("Unexpected instr type to insert");
9429   }
9430 
9431   MI.eraseFromParent(); // The pseudo instruction is gone now.
9432   return BB;
9433 }
9434 
9435 //===----------------------------------------------------------------------===//
9436 // Target Optimization Hooks
9437 //===----------------------------------------------------------------------===//
9438 
getRecipOp(const char * Base,EVT VT)9439 static std::string getRecipOp(const char *Base, EVT VT) {
9440   std::string RecipOp(Base);
9441   if (VT.getScalarType() == MVT::f64)
9442     RecipOp += "d";
9443   else
9444     RecipOp += "f";
9445 
9446   if (VT.isVector())
9447     RecipOp = "vec-" + RecipOp;
9448 
9449   return RecipOp;
9450 }
9451 
getRsqrtEstimate(SDValue Operand,DAGCombinerInfo & DCI,unsigned & RefinementSteps,bool & UseOneConstNR) const9452 SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand,
9453                                             DAGCombinerInfo &DCI,
9454                                             unsigned &RefinementSteps,
9455                                             bool &UseOneConstNR) const {
9456   EVT VT = Operand.getValueType();
9457   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
9458       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
9459       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
9460       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
9461       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
9462       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
9463     TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
9464     std::string RecipOp = getRecipOp("sqrt", VT);
9465     if (!Recips.isEnabled(RecipOp))
9466       return SDValue();
9467 
9468     RefinementSteps = Recips.getRefinementSteps(RecipOp);
9469     UseOneConstNR = true;
9470     return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
9471   }
9472   return SDValue();
9473 }
9474 
getRecipEstimate(SDValue Operand,DAGCombinerInfo & DCI,unsigned & RefinementSteps) const9475 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand,
9476                                             DAGCombinerInfo &DCI,
9477                                             unsigned &RefinementSteps) const {
9478   EVT VT = Operand.getValueType();
9479   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
9480       (VT == MVT::f64 && Subtarget.hasFRE()) ||
9481       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
9482       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
9483       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
9484       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
9485     TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
9486     std::string RecipOp = getRecipOp("div", VT);
9487     if (!Recips.isEnabled(RecipOp))
9488       return SDValue();
9489 
9490     RefinementSteps = Recips.getRefinementSteps(RecipOp);
9491     return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
9492   }
9493   return SDValue();
9494 }
9495 
combineRepeatedFPDivisors() const9496 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
9497   // Note: This functionality is used only when unsafe-fp-math is enabled, and
9498   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
9499   // enabled for division), this functionality is redundant with the default
9500   // combiner logic (once the division -> reciprocal/multiply transformation
9501   // has taken place). As a result, this matters more for older cores than for
9502   // newer ones.
9503 
9504   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
9505   // reciprocal if there are two or more FDIVs (for embedded cores with only
9506   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
9507   switch (Subtarget.getDarwinDirective()) {
9508   default:
9509     return 3;
9510   case PPC::DIR_440:
9511   case PPC::DIR_A2:
9512   case PPC::DIR_E500mc:
9513   case PPC::DIR_E5500:
9514     return 2;
9515   }
9516 }
9517 
9518 // isConsecutiveLSLoc needs to work even if all adds have not yet been
9519 // collapsed, and so we need to look through chains of them.
getBaseWithConstantOffset(SDValue Loc,SDValue & Base,int64_t & Offset,SelectionDAG & DAG)9520 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
9521                                      int64_t& Offset, SelectionDAG &DAG) {
9522   if (DAG.isBaseWithConstantOffset(Loc)) {
9523     Base = Loc.getOperand(0);
9524     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
9525 
9526     // The base might itself be a base plus an offset, and if so, accumulate
9527     // that as well.
9528     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
9529   }
9530 }
9531 
isConsecutiveLSLoc(SDValue Loc,EVT VT,LSBaseSDNode * Base,unsigned Bytes,int Dist,SelectionDAG & DAG)9532 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
9533                             unsigned Bytes, int Dist,
9534                             SelectionDAG &DAG) {
9535   if (VT.getSizeInBits() / 8 != Bytes)
9536     return false;
9537 
9538   SDValue BaseLoc = Base->getBasePtr();
9539   if (Loc.getOpcode() == ISD::FrameIndex) {
9540     if (BaseLoc.getOpcode() != ISD::FrameIndex)
9541       return false;
9542     const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9543     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
9544     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
9545     int FS  = MFI->getObjectSize(FI);
9546     int BFS = MFI->getObjectSize(BFI);
9547     if (FS != BFS || FS != (int)Bytes) return false;
9548     return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
9549   }
9550 
9551   SDValue Base1 = Loc, Base2 = BaseLoc;
9552   int64_t Offset1 = 0, Offset2 = 0;
9553   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
9554   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
9555   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
9556     return true;
9557 
9558   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9559   const GlobalValue *GV1 = nullptr;
9560   const GlobalValue *GV2 = nullptr;
9561   Offset1 = 0;
9562   Offset2 = 0;
9563   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
9564   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
9565   if (isGA1 && isGA2 && GV1 == GV2)
9566     return Offset1 == (Offset2 + Dist*Bytes);
9567   return false;
9568 }
9569 
9570 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
9571 // not enforce equality of the chain operands.
isConsecutiveLS(SDNode * N,LSBaseSDNode * Base,unsigned Bytes,int Dist,SelectionDAG & DAG)9572 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
9573                             unsigned Bytes, int Dist,
9574                             SelectionDAG &DAG) {
9575   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
9576     EVT VT = LS->getMemoryVT();
9577     SDValue Loc = LS->getBasePtr();
9578     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
9579   }
9580 
9581   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
9582     EVT VT;
9583     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9584     default: return false;
9585     case Intrinsic::ppc_qpx_qvlfd:
9586     case Intrinsic::ppc_qpx_qvlfda:
9587       VT = MVT::v4f64;
9588       break;
9589     case Intrinsic::ppc_qpx_qvlfs:
9590     case Intrinsic::ppc_qpx_qvlfsa:
9591       VT = MVT::v4f32;
9592       break;
9593     case Intrinsic::ppc_qpx_qvlfcd:
9594     case Intrinsic::ppc_qpx_qvlfcda:
9595       VT = MVT::v2f64;
9596       break;
9597     case Intrinsic::ppc_qpx_qvlfcs:
9598     case Intrinsic::ppc_qpx_qvlfcsa:
9599       VT = MVT::v2f32;
9600       break;
9601     case Intrinsic::ppc_qpx_qvlfiwa:
9602     case Intrinsic::ppc_qpx_qvlfiwz:
9603     case Intrinsic::ppc_altivec_lvx:
9604     case Intrinsic::ppc_altivec_lvxl:
9605     case Intrinsic::ppc_vsx_lxvw4x:
9606       VT = MVT::v4i32;
9607       break;
9608     case Intrinsic::ppc_vsx_lxvd2x:
9609       VT = MVT::v2f64;
9610       break;
9611     case Intrinsic::ppc_altivec_lvebx:
9612       VT = MVT::i8;
9613       break;
9614     case Intrinsic::ppc_altivec_lvehx:
9615       VT = MVT::i16;
9616       break;
9617     case Intrinsic::ppc_altivec_lvewx:
9618       VT = MVT::i32;
9619       break;
9620     }
9621 
9622     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
9623   }
9624 
9625   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
9626     EVT VT;
9627     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9628     default: return false;
9629     case Intrinsic::ppc_qpx_qvstfd:
9630     case Intrinsic::ppc_qpx_qvstfda:
9631       VT = MVT::v4f64;
9632       break;
9633     case Intrinsic::ppc_qpx_qvstfs:
9634     case Intrinsic::ppc_qpx_qvstfsa:
9635       VT = MVT::v4f32;
9636       break;
9637     case Intrinsic::ppc_qpx_qvstfcd:
9638     case Intrinsic::ppc_qpx_qvstfcda:
9639       VT = MVT::v2f64;
9640       break;
9641     case Intrinsic::ppc_qpx_qvstfcs:
9642     case Intrinsic::ppc_qpx_qvstfcsa:
9643       VT = MVT::v2f32;
9644       break;
9645     case Intrinsic::ppc_qpx_qvstfiw:
9646     case Intrinsic::ppc_qpx_qvstfiwa:
9647     case Intrinsic::ppc_altivec_stvx:
9648     case Intrinsic::ppc_altivec_stvxl:
9649     case Intrinsic::ppc_vsx_stxvw4x:
9650       VT = MVT::v4i32;
9651       break;
9652     case Intrinsic::ppc_vsx_stxvd2x:
9653       VT = MVT::v2f64;
9654       break;
9655     case Intrinsic::ppc_altivec_stvebx:
9656       VT = MVT::i8;
9657       break;
9658     case Intrinsic::ppc_altivec_stvehx:
9659       VT = MVT::i16;
9660       break;
9661     case Intrinsic::ppc_altivec_stvewx:
9662       VT = MVT::i32;
9663       break;
9664     }
9665 
9666     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
9667   }
9668 
9669   return false;
9670 }
9671 
9672 // Return true is there is a nearyby consecutive load to the one provided
9673 // (regardless of alignment). We search up and down the chain, looking though
9674 // token factors and other loads (but nothing else). As a result, a true result
9675 // indicates that it is safe to create a new consecutive load adjacent to the
9676 // load provided.
findConsecutiveLoad(LoadSDNode * LD,SelectionDAG & DAG)9677 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
9678   SDValue Chain = LD->getChain();
9679   EVT VT = LD->getMemoryVT();
9680 
9681   SmallSet<SDNode *, 16> LoadRoots;
9682   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
9683   SmallSet<SDNode *, 16> Visited;
9684 
9685   // First, search up the chain, branching to follow all token-factor operands.
9686   // If we find a consecutive load, then we're done, otherwise, record all
9687   // nodes just above the top-level loads and token factors.
9688   while (!Queue.empty()) {
9689     SDNode *ChainNext = Queue.pop_back_val();
9690     if (!Visited.insert(ChainNext).second)
9691       continue;
9692 
9693     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
9694       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
9695         return true;
9696 
9697       if (!Visited.count(ChainLD->getChain().getNode()))
9698         Queue.push_back(ChainLD->getChain().getNode());
9699     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
9700       for (const SDUse &O : ChainNext->ops())
9701         if (!Visited.count(O.getNode()))
9702           Queue.push_back(O.getNode());
9703     } else
9704       LoadRoots.insert(ChainNext);
9705   }
9706 
9707   // Second, search down the chain, starting from the top-level nodes recorded
9708   // in the first phase. These top-level nodes are the nodes just above all
9709   // loads and token factors. Starting with their uses, recursively look though
9710   // all loads (just the chain uses) and token factors to find a consecutive
9711   // load.
9712   Visited.clear();
9713   Queue.clear();
9714 
9715   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
9716        IE = LoadRoots.end(); I != IE; ++I) {
9717     Queue.push_back(*I);
9718 
9719     while (!Queue.empty()) {
9720       SDNode *LoadRoot = Queue.pop_back_val();
9721       if (!Visited.insert(LoadRoot).second)
9722         continue;
9723 
9724       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
9725         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
9726           return true;
9727 
9728       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
9729            UE = LoadRoot->use_end(); UI != UE; ++UI)
9730         if (((isa<MemSDNode>(*UI) &&
9731             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
9732             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
9733           Queue.push_back(*UI);
9734     }
9735   }
9736 
9737   return false;
9738 }
9739 
DAGCombineTruncBoolExt(SDNode * N,DAGCombinerInfo & DCI) const9740 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
9741                                                   DAGCombinerInfo &DCI) const {
9742   SelectionDAG &DAG = DCI.DAG;
9743   SDLoc dl(N);
9744 
9745   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
9746   // If we're tracking CR bits, we need to be careful that we don't have:
9747   //   trunc(binary-ops(zext(x), zext(y)))
9748   // or
9749   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
9750   // such that we're unnecessarily moving things into GPRs when it would be
9751   // better to keep them in CR bits.
9752 
9753   // Note that trunc here can be an actual i1 trunc, or can be the effective
9754   // truncation that comes from a setcc or select_cc.
9755   if (N->getOpcode() == ISD::TRUNCATE &&
9756       N->getValueType(0) != MVT::i1)
9757     return SDValue();
9758 
9759   if (N->getOperand(0).getValueType() != MVT::i32 &&
9760       N->getOperand(0).getValueType() != MVT::i64)
9761     return SDValue();
9762 
9763   if (N->getOpcode() == ISD::SETCC ||
9764       N->getOpcode() == ISD::SELECT_CC) {
9765     // If we're looking at a comparison, then we need to make sure that the
9766     // high bits (all except for the first) don't matter the result.
9767     ISD::CondCode CC =
9768       cast<CondCodeSDNode>(N->getOperand(
9769         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
9770     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
9771 
9772     if (ISD::isSignedIntSetCC(CC)) {
9773       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
9774           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
9775         return SDValue();
9776     } else if (ISD::isUnsignedIntSetCC(CC)) {
9777       if (!DAG.MaskedValueIsZero(N->getOperand(0),
9778                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
9779           !DAG.MaskedValueIsZero(N->getOperand(1),
9780                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
9781         return SDValue();
9782     } else {
9783       // This is neither a signed nor an unsigned comparison, just make sure
9784       // that the high bits are equal.
9785       APInt Op1Zero, Op1One;
9786       APInt Op2Zero, Op2One;
9787       DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One);
9788       DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One);
9789 
9790       // We don't really care about what is known about the first bit (if
9791       // anything), so clear it in all masks prior to comparing them.
9792       Op1Zero.clearBit(0); Op1One.clearBit(0);
9793       Op2Zero.clearBit(0); Op2One.clearBit(0);
9794 
9795       if (Op1Zero != Op2Zero || Op1One != Op2One)
9796         return SDValue();
9797     }
9798   }
9799 
9800   // We now know that the higher-order bits are irrelevant, we just need to
9801   // make sure that all of the intermediate operations are bit operations, and
9802   // all inputs are extensions.
9803   if (N->getOperand(0).getOpcode() != ISD::AND &&
9804       N->getOperand(0).getOpcode() != ISD::OR  &&
9805       N->getOperand(0).getOpcode() != ISD::XOR &&
9806       N->getOperand(0).getOpcode() != ISD::SELECT &&
9807       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
9808       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
9809       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
9810       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
9811       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
9812     return SDValue();
9813 
9814   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
9815       N->getOperand(1).getOpcode() != ISD::AND &&
9816       N->getOperand(1).getOpcode() != ISD::OR  &&
9817       N->getOperand(1).getOpcode() != ISD::XOR &&
9818       N->getOperand(1).getOpcode() != ISD::SELECT &&
9819       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
9820       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
9821       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
9822       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
9823       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
9824     return SDValue();
9825 
9826   SmallVector<SDValue, 4> Inputs;
9827   SmallVector<SDValue, 8> BinOps, PromOps;
9828   SmallPtrSet<SDNode *, 16> Visited;
9829 
9830   for (unsigned i = 0; i < 2; ++i) {
9831     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9832           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9833           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
9834           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
9835         isa<ConstantSDNode>(N->getOperand(i)))
9836       Inputs.push_back(N->getOperand(i));
9837     else
9838       BinOps.push_back(N->getOperand(i));
9839 
9840     if (N->getOpcode() == ISD::TRUNCATE)
9841       break;
9842   }
9843 
9844   // Visit all inputs, collect all binary operations (and, or, xor and
9845   // select) that are all fed by extensions.
9846   while (!BinOps.empty()) {
9847     SDValue BinOp = BinOps.back();
9848     BinOps.pop_back();
9849 
9850     if (!Visited.insert(BinOp.getNode()).second)
9851       continue;
9852 
9853     PromOps.push_back(BinOp);
9854 
9855     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
9856       // The condition of the select is not promoted.
9857       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
9858         continue;
9859       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
9860         continue;
9861 
9862       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9863             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9864             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
9865            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
9866           isa<ConstantSDNode>(BinOp.getOperand(i))) {
9867         Inputs.push_back(BinOp.getOperand(i));
9868       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
9869                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
9870                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
9871                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
9872                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
9873                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
9874                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
9875                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
9876                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
9877         BinOps.push_back(BinOp.getOperand(i));
9878       } else {
9879         // We have an input that is not an extension or another binary
9880         // operation; we'll abort this transformation.
9881         return SDValue();
9882       }
9883     }
9884   }
9885 
9886   // Make sure that this is a self-contained cluster of operations (which
9887   // is not quite the same thing as saying that everything has only one
9888   // use).
9889   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9890     if (isa<ConstantSDNode>(Inputs[i]))
9891       continue;
9892 
9893     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
9894                               UE = Inputs[i].getNode()->use_end();
9895          UI != UE; ++UI) {
9896       SDNode *User = *UI;
9897       if (User != N && !Visited.count(User))
9898         return SDValue();
9899 
9900       // Make sure that we're not going to promote the non-output-value
9901       // operand(s) or SELECT or SELECT_CC.
9902       // FIXME: Although we could sometimes handle this, and it does occur in
9903       // practice that one of the condition inputs to the select is also one of
9904       // the outputs, we currently can't deal with this.
9905       if (User->getOpcode() == ISD::SELECT) {
9906         if (User->getOperand(0) == Inputs[i])
9907           return SDValue();
9908       } else if (User->getOpcode() == ISD::SELECT_CC) {
9909         if (User->getOperand(0) == Inputs[i] ||
9910             User->getOperand(1) == Inputs[i])
9911           return SDValue();
9912       }
9913     }
9914   }
9915 
9916   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
9917     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
9918                               UE = PromOps[i].getNode()->use_end();
9919          UI != UE; ++UI) {
9920       SDNode *User = *UI;
9921       if (User != N && !Visited.count(User))
9922         return SDValue();
9923 
9924       // Make sure that we're not going to promote the non-output-value
9925       // operand(s) or SELECT or SELECT_CC.
9926       // FIXME: Although we could sometimes handle this, and it does occur in
9927       // practice that one of the condition inputs to the select is also one of
9928       // the outputs, we currently can't deal with this.
9929       if (User->getOpcode() == ISD::SELECT) {
9930         if (User->getOperand(0) == PromOps[i])
9931           return SDValue();
9932       } else if (User->getOpcode() == ISD::SELECT_CC) {
9933         if (User->getOperand(0) == PromOps[i] ||
9934             User->getOperand(1) == PromOps[i])
9935           return SDValue();
9936       }
9937     }
9938   }
9939 
9940   // Replace all inputs with the extension operand.
9941   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
9942     // Constants may have users outside the cluster of to-be-promoted nodes,
9943     // and so we need to replace those as we do the promotions.
9944     if (isa<ConstantSDNode>(Inputs[i]))
9945       continue;
9946     else
9947       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
9948   }
9949 
9950   std::list<HandleSDNode> PromOpHandles;
9951   for (auto &PromOp : PromOps)
9952     PromOpHandles.emplace_back(PromOp);
9953 
9954   // Replace all operations (these are all the same, but have a different
9955   // (i1) return type). DAG.getNode will validate that the types of
9956   // a binary operator match, so go through the list in reverse so that
9957   // we've likely promoted both operands first. Any intermediate truncations or
9958   // extensions disappear.
9959   while (!PromOpHandles.empty()) {
9960     SDValue PromOp = PromOpHandles.back().getValue();
9961     PromOpHandles.pop_back();
9962 
9963     if (PromOp.getOpcode() == ISD::TRUNCATE ||
9964         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
9965         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
9966         PromOp.getOpcode() == ISD::ANY_EXTEND) {
9967       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
9968           PromOp.getOperand(0).getValueType() != MVT::i1) {
9969         // The operand is not yet ready (see comment below).
9970         PromOpHandles.emplace_front(PromOp);
9971         continue;
9972       }
9973 
9974       SDValue RepValue = PromOp.getOperand(0);
9975       if (isa<ConstantSDNode>(RepValue))
9976         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
9977 
9978       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
9979       continue;
9980     }
9981 
9982     unsigned C;
9983     switch (PromOp.getOpcode()) {
9984     default:             C = 0; break;
9985     case ISD::SELECT:    C = 1; break;
9986     case ISD::SELECT_CC: C = 2; break;
9987     }
9988 
9989     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
9990          PromOp.getOperand(C).getValueType() != MVT::i1) ||
9991         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
9992          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
9993       // The to-be-promoted operands of this node have not yet been
9994       // promoted (this should be rare because we're going through the
9995       // list backward, but if one of the operands has several users in
9996       // this cluster of to-be-promoted nodes, it is possible).
9997       PromOpHandles.emplace_front(PromOp);
9998       continue;
9999     }
10000 
10001     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
10002                                 PromOp.getNode()->op_end());
10003 
10004     // If there are any constant inputs, make sure they're replaced now.
10005     for (unsigned i = 0; i < 2; ++i)
10006       if (isa<ConstantSDNode>(Ops[C+i]))
10007         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
10008 
10009     DAG.ReplaceAllUsesOfValueWith(PromOp,
10010       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
10011   }
10012 
10013   // Now we're left with the initial truncation itself.
10014   if (N->getOpcode() == ISD::TRUNCATE)
10015     return N->getOperand(0);
10016 
10017   // Otherwise, this is a comparison. The operands to be compared have just
10018   // changed type (to i1), but everything else is the same.
10019   return SDValue(N, 0);
10020 }
10021 
DAGCombineExtBoolTrunc(SDNode * N,DAGCombinerInfo & DCI) const10022 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
10023                                                   DAGCombinerInfo &DCI) const {
10024   SelectionDAG &DAG = DCI.DAG;
10025   SDLoc dl(N);
10026 
10027   // If we're tracking CR bits, we need to be careful that we don't have:
10028   //   zext(binary-ops(trunc(x), trunc(y)))
10029   // or
10030   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
10031   // such that we're unnecessarily moving things into CR bits that can more
10032   // efficiently stay in GPRs. Note that if we're not certain that the high
10033   // bits are set as required by the final extension, we still may need to do
10034   // some masking to get the proper behavior.
10035 
10036   // This same functionality is important on PPC64 when dealing with
10037   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
10038   // the return values of functions. Because it is so similar, it is handled
10039   // here as well.
10040 
10041   if (N->getValueType(0) != MVT::i32 &&
10042       N->getValueType(0) != MVT::i64)
10043     return SDValue();
10044 
10045   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
10046         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
10047     return SDValue();
10048 
10049   if (N->getOperand(0).getOpcode() != ISD::AND &&
10050       N->getOperand(0).getOpcode() != ISD::OR  &&
10051       N->getOperand(0).getOpcode() != ISD::XOR &&
10052       N->getOperand(0).getOpcode() != ISD::SELECT &&
10053       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
10054     return SDValue();
10055 
10056   SmallVector<SDValue, 4> Inputs;
10057   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
10058   SmallPtrSet<SDNode *, 16> Visited;
10059 
10060   // Visit all inputs, collect all binary operations (and, or, xor and
10061   // select) that are all fed by truncations.
10062   while (!BinOps.empty()) {
10063     SDValue BinOp = BinOps.back();
10064     BinOps.pop_back();
10065 
10066     if (!Visited.insert(BinOp.getNode()).second)
10067       continue;
10068 
10069     PromOps.push_back(BinOp);
10070 
10071     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
10072       // The condition of the select is not promoted.
10073       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
10074         continue;
10075       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
10076         continue;
10077 
10078       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
10079           isa<ConstantSDNode>(BinOp.getOperand(i))) {
10080         Inputs.push_back(BinOp.getOperand(i));
10081       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
10082                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
10083                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
10084                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
10085                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
10086         BinOps.push_back(BinOp.getOperand(i));
10087       } else {
10088         // We have an input that is not a truncation or another binary
10089         // operation; we'll abort this transformation.
10090         return SDValue();
10091       }
10092     }
10093   }
10094 
10095   // The operands of a select that must be truncated when the select is
10096   // promoted because the operand is actually part of the to-be-promoted set.
10097   DenseMap<SDNode *, EVT> SelectTruncOp[2];
10098 
10099   // Make sure that this is a self-contained cluster of operations (which
10100   // is not quite the same thing as saying that everything has only one
10101   // use).
10102   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
10103     if (isa<ConstantSDNode>(Inputs[i]))
10104       continue;
10105 
10106     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
10107                               UE = Inputs[i].getNode()->use_end();
10108          UI != UE; ++UI) {
10109       SDNode *User = *UI;
10110       if (User != N && !Visited.count(User))
10111         return SDValue();
10112 
10113       // If we're going to promote the non-output-value operand(s) or SELECT or
10114       // SELECT_CC, record them for truncation.
10115       if (User->getOpcode() == ISD::SELECT) {
10116         if (User->getOperand(0) == Inputs[i])
10117           SelectTruncOp[0].insert(std::make_pair(User,
10118                                     User->getOperand(0).getValueType()));
10119       } else if (User->getOpcode() == ISD::SELECT_CC) {
10120         if (User->getOperand(0) == Inputs[i])
10121           SelectTruncOp[0].insert(std::make_pair(User,
10122                                     User->getOperand(0).getValueType()));
10123         if (User->getOperand(1) == Inputs[i])
10124           SelectTruncOp[1].insert(std::make_pair(User,
10125                                     User->getOperand(1).getValueType()));
10126       }
10127     }
10128   }
10129 
10130   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
10131     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
10132                               UE = PromOps[i].getNode()->use_end();
10133          UI != UE; ++UI) {
10134       SDNode *User = *UI;
10135       if (User != N && !Visited.count(User))
10136         return SDValue();
10137 
10138       // If we're going to promote the non-output-value operand(s) or SELECT or
10139       // SELECT_CC, record them for truncation.
10140       if (User->getOpcode() == ISD::SELECT) {
10141         if (User->getOperand(0) == PromOps[i])
10142           SelectTruncOp[0].insert(std::make_pair(User,
10143                                     User->getOperand(0).getValueType()));
10144       } else if (User->getOpcode() == ISD::SELECT_CC) {
10145         if (User->getOperand(0) == PromOps[i])
10146           SelectTruncOp[0].insert(std::make_pair(User,
10147                                     User->getOperand(0).getValueType()));
10148         if (User->getOperand(1) == PromOps[i])
10149           SelectTruncOp[1].insert(std::make_pair(User,
10150                                     User->getOperand(1).getValueType()));
10151       }
10152     }
10153   }
10154 
10155   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
10156   bool ReallyNeedsExt = false;
10157   if (N->getOpcode() != ISD::ANY_EXTEND) {
10158     // If all of the inputs are not already sign/zero extended, then
10159     // we'll still need to do that at the end.
10160     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
10161       if (isa<ConstantSDNode>(Inputs[i]))
10162         continue;
10163 
10164       unsigned OpBits =
10165         Inputs[i].getOperand(0).getValueSizeInBits();
10166       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
10167 
10168       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
10169            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
10170                                   APInt::getHighBitsSet(OpBits,
10171                                                         OpBits-PromBits))) ||
10172           (N->getOpcode() == ISD::SIGN_EXTEND &&
10173            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
10174              (OpBits-(PromBits-1)))) {
10175         ReallyNeedsExt = true;
10176         break;
10177       }
10178     }
10179   }
10180 
10181   // Replace all inputs, either with the truncation operand, or a
10182   // truncation or extension to the final output type.
10183   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
10184     // Constant inputs need to be replaced with the to-be-promoted nodes that
10185     // use them because they might have users outside of the cluster of
10186     // promoted nodes.
10187     if (isa<ConstantSDNode>(Inputs[i]))
10188       continue;
10189 
10190     SDValue InSrc = Inputs[i].getOperand(0);
10191     if (Inputs[i].getValueType() == N->getValueType(0))
10192       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
10193     else if (N->getOpcode() == ISD::SIGN_EXTEND)
10194       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
10195         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
10196     else if (N->getOpcode() == ISD::ZERO_EXTEND)
10197       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
10198         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
10199     else
10200       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
10201         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
10202   }
10203 
10204   std::list<HandleSDNode> PromOpHandles;
10205   for (auto &PromOp : PromOps)
10206     PromOpHandles.emplace_back(PromOp);
10207 
10208   // Replace all operations (these are all the same, but have a different
10209   // (promoted) return type). DAG.getNode will validate that the types of
10210   // a binary operator match, so go through the list in reverse so that
10211   // we've likely promoted both operands first.
10212   while (!PromOpHandles.empty()) {
10213     SDValue PromOp = PromOpHandles.back().getValue();
10214     PromOpHandles.pop_back();
10215 
10216     unsigned C;
10217     switch (PromOp.getOpcode()) {
10218     default:             C = 0; break;
10219     case ISD::SELECT:    C = 1; break;
10220     case ISD::SELECT_CC: C = 2; break;
10221     }
10222 
10223     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
10224          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
10225         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
10226          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
10227       // The to-be-promoted operands of this node have not yet been
10228       // promoted (this should be rare because we're going through the
10229       // list backward, but if one of the operands has several users in
10230       // this cluster of to-be-promoted nodes, it is possible).
10231       PromOpHandles.emplace_front(PromOp);
10232       continue;
10233     }
10234 
10235     // For SELECT and SELECT_CC nodes, we do a similar check for any
10236     // to-be-promoted comparison inputs.
10237     if (PromOp.getOpcode() == ISD::SELECT ||
10238         PromOp.getOpcode() == ISD::SELECT_CC) {
10239       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
10240            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
10241           (SelectTruncOp[1].count(PromOp.getNode()) &&
10242            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
10243         PromOpHandles.emplace_front(PromOp);
10244         continue;
10245       }
10246     }
10247 
10248     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
10249                                 PromOp.getNode()->op_end());
10250 
10251     // If this node has constant inputs, then they'll need to be promoted here.
10252     for (unsigned i = 0; i < 2; ++i) {
10253       if (!isa<ConstantSDNode>(Ops[C+i]))
10254         continue;
10255       if (Ops[C+i].getValueType() == N->getValueType(0))
10256         continue;
10257 
10258       if (N->getOpcode() == ISD::SIGN_EXTEND)
10259         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
10260       else if (N->getOpcode() == ISD::ZERO_EXTEND)
10261         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
10262       else
10263         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
10264     }
10265 
10266     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
10267     // truncate them again to the original value type.
10268     if (PromOp.getOpcode() == ISD::SELECT ||
10269         PromOp.getOpcode() == ISD::SELECT_CC) {
10270       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
10271       if (SI0 != SelectTruncOp[0].end())
10272         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
10273       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
10274       if (SI1 != SelectTruncOp[1].end())
10275         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
10276     }
10277 
10278     DAG.ReplaceAllUsesOfValueWith(PromOp,
10279       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
10280   }
10281 
10282   // Now we're left with the initial extension itself.
10283   if (!ReallyNeedsExt)
10284     return N->getOperand(0);
10285 
10286   // To zero extend, just mask off everything except for the first bit (in the
10287   // i1 case).
10288   if (N->getOpcode() == ISD::ZERO_EXTEND)
10289     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
10290                        DAG.getConstant(APInt::getLowBitsSet(
10291                                          N->getValueSizeInBits(0), PromBits),
10292                                        dl, N->getValueType(0)));
10293 
10294   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
10295          "Invalid extension type");
10296   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
10297   SDValue ShiftCst =
10298       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
10299   return DAG.getNode(
10300       ISD::SRA, dl, N->getValueType(0),
10301       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
10302       ShiftCst);
10303 }
10304 
DAGCombineBuildVector(SDNode * N,DAGCombinerInfo & DCI) const10305 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
10306                                                  DAGCombinerInfo &DCI) const {
10307   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
10308          "Should be called with a BUILD_VECTOR node");
10309 
10310   SelectionDAG &DAG = DCI.DAG;
10311   SDLoc dl(N);
10312   if (N->getValueType(0) != MVT::v2f64 || !Subtarget.hasVSX())
10313     return SDValue();
10314 
10315   // Looking for:
10316   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
10317   if (N->getOperand(0).getOpcode() != ISD::SINT_TO_FP &&
10318       N->getOperand(0).getOpcode() != ISD::UINT_TO_FP)
10319     return SDValue();
10320   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
10321       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
10322     return SDValue();
10323   if (N->getOperand(0).getOpcode() != N->getOperand(1).getOpcode())
10324     return SDValue();
10325 
10326   SDValue Ext1 = N->getOperand(0).getOperand(0);
10327   SDValue Ext2 = N->getOperand(1).getOperand(0);
10328   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10329      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10330     return SDValue();
10331 
10332   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
10333   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
10334   if (!Ext1Op || !Ext2Op)
10335     return SDValue();
10336   if (Ext1.getValueType() != MVT::i32 ||
10337       Ext2.getValueType() != MVT::i32)
10338   if (Ext1.getOperand(0) != Ext2.getOperand(0))
10339     return SDValue();
10340 
10341   int FirstElem = Ext1Op->getZExtValue();
10342   int SecondElem = Ext2Op->getZExtValue();
10343   int SubvecIdx;
10344   if (FirstElem == 0 && SecondElem == 1)
10345     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
10346   else if (FirstElem == 2 && SecondElem == 3)
10347     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
10348   else
10349     return SDValue();
10350 
10351   SDValue SrcVec = Ext1.getOperand(0);
10352   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
10353     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
10354   return DAG.getNode(NodeType, dl, MVT::v2f64,
10355                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
10356 }
10357 
combineFPToIntToFP(SDNode * N,DAGCombinerInfo & DCI) const10358 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
10359                                               DAGCombinerInfo &DCI) const {
10360   assert((N->getOpcode() == ISD::SINT_TO_FP ||
10361           N->getOpcode() == ISD::UINT_TO_FP) &&
10362          "Need an int -> FP conversion node here");
10363 
10364   if (!Subtarget.has64BitSupport())
10365     return SDValue();
10366 
10367   SelectionDAG &DAG = DCI.DAG;
10368   SDLoc dl(N);
10369   SDValue Op(N, 0);
10370 
10371   // Don't handle ppc_fp128 here or i1 conversions.
10372   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
10373     return SDValue();
10374   if (Op.getOperand(0).getValueType() == MVT::i1)
10375     return SDValue();
10376 
10377   // For i32 intermediate values, unfortunately, the conversion functions
10378   // leave the upper 32 bits of the value are undefined. Within the set of
10379   // scalar instructions, we have no method for zero- or sign-extending the
10380   // value. Thus, we cannot handle i32 intermediate values here.
10381   if (Op.getOperand(0).getValueType() == MVT::i32)
10382     return SDValue();
10383 
10384   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
10385          "UINT_TO_FP is supported only with FPCVT");
10386 
10387   // If we have FCFIDS, then use it when converting to single-precision.
10388   // Otherwise, convert to double-precision and then round.
10389   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
10390                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
10391                                                             : PPCISD::FCFIDS)
10392                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
10393                                                             : PPCISD::FCFID);
10394   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
10395                   ? MVT::f32
10396                   : MVT::f64;
10397 
10398   // If we're converting from a float, to an int, and back to a float again,
10399   // then we don't need the store/load pair at all.
10400   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
10401        Subtarget.hasFPCVT()) ||
10402       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
10403     SDValue Src = Op.getOperand(0).getOperand(0);
10404     if (Src.getValueType() == MVT::f32) {
10405       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
10406       DCI.AddToWorklist(Src.getNode());
10407     } else if (Src.getValueType() != MVT::f64) {
10408       // Make sure that we don't pick up a ppc_fp128 source value.
10409       return SDValue();
10410     }
10411 
10412     unsigned FCTOp =
10413       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
10414                                                         PPCISD::FCTIDUZ;
10415 
10416     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
10417     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
10418 
10419     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
10420       FP = DAG.getNode(ISD::FP_ROUND, dl,
10421                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
10422       DCI.AddToWorklist(FP.getNode());
10423     }
10424 
10425     return FP;
10426   }
10427 
10428   return SDValue();
10429 }
10430 
10431 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
10432 // builtins) into loads with swaps.
expandVSXLoadForLE(SDNode * N,DAGCombinerInfo & DCI) const10433 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
10434                                               DAGCombinerInfo &DCI) const {
10435   SelectionDAG &DAG = DCI.DAG;
10436   SDLoc dl(N);
10437   SDValue Chain;
10438   SDValue Base;
10439   MachineMemOperand *MMO;
10440 
10441   switch (N->getOpcode()) {
10442   default:
10443     llvm_unreachable("Unexpected opcode for little endian VSX load");
10444   case ISD::LOAD: {
10445     LoadSDNode *LD = cast<LoadSDNode>(N);
10446     Chain = LD->getChain();
10447     Base = LD->getBasePtr();
10448     MMO = LD->getMemOperand();
10449     // If the MMO suggests this isn't a load of a full vector, leave
10450     // things alone.  For a built-in, we have to make the change for
10451     // correctness, so if there is a size problem that will be a bug.
10452     if (MMO->getSize() < 16)
10453       return SDValue();
10454     break;
10455   }
10456   case ISD::INTRINSIC_W_CHAIN: {
10457     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
10458     Chain = Intrin->getChain();
10459     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
10460     // us what we want. Get operand 2 instead.
10461     Base = Intrin->getOperand(2);
10462     MMO = Intrin->getMemOperand();
10463     break;
10464   }
10465   }
10466 
10467   MVT VecTy = N->getValueType(0).getSimpleVT();
10468   SDValue LoadOps[] = { Chain, Base };
10469   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
10470                                          DAG.getVTList(MVT::v2f64, MVT::Other),
10471                                          LoadOps, MVT::v2f64, MMO);
10472 
10473   DCI.AddToWorklist(Load.getNode());
10474   Chain = Load.getValue(1);
10475   SDValue Swap = DAG.getNode(
10476       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
10477   DCI.AddToWorklist(Swap.getNode());
10478 
10479   // Add a bitcast if the resulting load type doesn't match v2f64.
10480   if (VecTy != MVT::v2f64) {
10481     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
10482     DCI.AddToWorklist(N.getNode());
10483     // Package {bitcast value, swap's chain} to match Load's shape.
10484     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
10485                        N, Swap.getValue(1));
10486   }
10487 
10488   return Swap;
10489 }
10490 
10491 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
10492 // builtins) into stores with swaps.
expandVSXStoreForLE(SDNode * N,DAGCombinerInfo & DCI) const10493 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
10494                                                DAGCombinerInfo &DCI) const {
10495   SelectionDAG &DAG = DCI.DAG;
10496   SDLoc dl(N);
10497   SDValue Chain;
10498   SDValue Base;
10499   unsigned SrcOpnd;
10500   MachineMemOperand *MMO;
10501 
10502   switch (N->getOpcode()) {
10503   default:
10504     llvm_unreachable("Unexpected opcode for little endian VSX store");
10505   case ISD::STORE: {
10506     StoreSDNode *ST = cast<StoreSDNode>(N);
10507     Chain = ST->getChain();
10508     Base = ST->getBasePtr();
10509     MMO = ST->getMemOperand();
10510     SrcOpnd = 1;
10511     // If the MMO suggests this isn't a store of a full vector, leave
10512     // things alone.  For a built-in, we have to make the change for
10513     // correctness, so if there is a size problem that will be a bug.
10514     if (MMO->getSize() < 16)
10515       return SDValue();
10516     break;
10517   }
10518   case ISD::INTRINSIC_VOID: {
10519     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
10520     Chain = Intrin->getChain();
10521     // Intrin->getBasePtr() oddly does not get what we want.
10522     Base = Intrin->getOperand(3);
10523     MMO = Intrin->getMemOperand();
10524     SrcOpnd = 2;
10525     break;
10526   }
10527   }
10528 
10529   SDValue Src = N->getOperand(SrcOpnd);
10530   MVT VecTy = Src.getValueType().getSimpleVT();
10531 
10532   // All stores are done as v2f64 and possible bit cast.
10533   if (VecTy != MVT::v2f64) {
10534     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
10535     DCI.AddToWorklist(Src.getNode());
10536   }
10537 
10538   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
10539                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
10540   DCI.AddToWorklist(Swap.getNode());
10541   Chain = Swap.getValue(1);
10542   SDValue StoreOps[] = { Chain, Swap, Base };
10543   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
10544                                           DAG.getVTList(MVT::Other),
10545                                           StoreOps, VecTy, MMO);
10546   DCI.AddToWorklist(Store.getNode());
10547   return Store;
10548 }
10549 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const10550 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
10551                                              DAGCombinerInfo &DCI) const {
10552   SelectionDAG &DAG = DCI.DAG;
10553   SDLoc dl(N);
10554   switch (N->getOpcode()) {
10555   default: break;
10556   case PPCISD::SHL:
10557     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
10558         return N->getOperand(0);
10559     break;
10560   case PPCISD::SRL:
10561     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
10562         return N->getOperand(0);
10563     break;
10564   case PPCISD::SRA:
10565     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10566       if (C->isNullValue() ||   //  0 >>s V -> 0.
10567           C->isAllOnesValue())    // -1 >>s V -> -1.
10568         return N->getOperand(0);
10569     }
10570     break;
10571   case ISD::SIGN_EXTEND:
10572   case ISD::ZERO_EXTEND:
10573   case ISD::ANY_EXTEND:
10574     return DAGCombineExtBoolTrunc(N, DCI);
10575   case ISD::TRUNCATE:
10576   case ISD::SETCC:
10577   case ISD::SELECT_CC:
10578     return DAGCombineTruncBoolExt(N, DCI);
10579   case ISD::SINT_TO_FP:
10580   case ISD::UINT_TO_FP:
10581     return combineFPToIntToFP(N, DCI);
10582   case ISD::STORE: {
10583     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
10584     if (Subtarget.hasSTFIWX() && !cast<StoreSDNode>(N)->isTruncatingStore() &&
10585         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
10586         N->getOperand(1).getValueType() == MVT::i32 &&
10587         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
10588       SDValue Val = N->getOperand(1).getOperand(0);
10589       if (Val.getValueType() == MVT::f32) {
10590         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
10591         DCI.AddToWorklist(Val.getNode());
10592       }
10593       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
10594       DCI.AddToWorklist(Val.getNode());
10595 
10596       SDValue Ops[] = {
10597         N->getOperand(0), Val, N->getOperand(2),
10598         DAG.getValueType(N->getOperand(1).getValueType())
10599       };
10600 
10601       Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
10602               DAG.getVTList(MVT::Other), Ops,
10603               cast<StoreSDNode>(N)->getMemoryVT(),
10604               cast<StoreSDNode>(N)->getMemOperand());
10605       DCI.AddToWorklist(Val.getNode());
10606       return Val;
10607     }
10608 
10609     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
10610     if (cast<StoreSDNode>(N)->isUnindexed() &&
10611         N->getOperand(1).getOpcode() == ISD::BSWAP &&
10612         N->getOperand(1).getNode()->hasOneUse() &&
10613         (N->getOperand(1).getValueType() == MVT::i32 ||
10614          N->getOperand(1).getValueType() == MVT::i16 ||
10615          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
10616           N->getOperand(1).getValueType() == MVT::i64))) {
10617       SDValue BSwapOp = N->getOperand(1).getOperand(0);
10618       // Do an any-extend to 32-bits if this is a half-word input.
10619       if (BSwapOp.getValueType() == MVT::i16)
10620         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
10621 
10622       SDValue Ops[] = {
10623         N->getOperand(0), BSwapOp, N->getOperand(2),
10624         DAG.getValueType(N->getOperand(1).getValueType())
10625       };
10626       return
10627         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
10628                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
10629                                 cast<StoreSDNode>(N)->getMemOperand());
10630     }
10631 
10632     // For little endian, VSX stores require generating xxswapd/lxvd2x.
10633     EVT VT = N->getOperand(1).getValueType();
10634     if (VT.isSimple()) {
10635       MVT StoreVT = VT.getSimpleVT();
10636       if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
10637           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
10638            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
10639         return expandVSXStoreForLE(N, DCI);
10640     }
10641     break;
10642   }
10643   case ISD::LOAD: {
10644     LoadSDNode *LD = cast<LoadSDNode>(N);
10645     EVT VT = LD->getValueType(0);
10646 
10647     // For little endian, VSX loads require generating lxvd2x/xxswapd.
10648     if (VT.isSimple()) {
10649       MVT LoadVT = VT.getSimpleVT();
10650       if (Subtarget.hasVSX() && Subtarget.isLittleEndian() &&
10651           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
10652            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
10653         return expandVSXLoadForLE(N, DCI);
10654     }
10655 
10656     // We sometimes end up with a 64-bit integer load, from which we extract
10657     // two single-precision floating-point numbers. This happens with
10658     // std::complex<float>, and other similar structures, because of the way we
10659     // canonicalize structure copies. However, if we lack direct moves,
10660     // then the final bitcasts from the extracted integer values to the
10661     // floating-point numbers turn into store/load pairs. Even with direct moves,
10662     // just loading the two floating-point numbers is likely better.
10663     auto ReplaceTwoFloatLoad = [&]() {
10664       if (VT != MVT::i64)
10665         return false;
10666 
10667       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
10668           LD->isVolatile())
10669         return false;
10670 
10671       //  We're looking for a sequence like this:
10672       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
10673       //      t16: i64 = srl t13, Constant:i32<32>
10674       //    t17: i32 = truncate t16
10675       //  t18: f32 = bitcast t17
10676       //    t19: i32 = truncate t13
10677       //  t20: f32 = bitcast t19
10678 
10679       if (!LD->hasNUsesOfValue(2, 0))
10680         return false;
10681 
10682       auto UI = LD->use_begin();
10683       while (UI.getUse().getResNo() != 0) ++UI;
10684       SDNode *Trunc = *UI++;
10685       while (UI.getUse().getResNo() != 0) ++UI;
10686       SDNode *RightShift = *UI;
10687       if (Trunc->getOpcode() != ISD::TRUNCATE)
10688         std::swap(Trunc, RightShift);
10689 
10690       if (Trunc->getOpcode() != ISD::TRUNCATE ||
10691           Trunc->getValueType(0) != MVT::i32 ||
10692           !Trunc->hasOneUse())
10693         return false;
10694       if (RightShift->getOpcode() != ISD::SRL ||
10695           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
10696           RightShift->getConstantOperandVal(1) != 32 ||
10697           !RightShift->hasOneUse())
10698         return false;
10699 
10700       SDNode *Trunc2 = *RightShift->use_begin();
10701       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
10702           Trunc2->getValueType(0) != MVT::i32 ||
10703           !Trunc2->hasOneUse())
10704         return false;
10705 
10706       SDNode *Bitcast = *Trunc->use_begin();
10707       SDNode *Bitcast2 = *Trunc2->use_begin();
10708 
10709       if (Bitcast->getOpcode() != ISD::BITCAST ||
10710           Bitcast->getValueType(0) != MVT::f32)
10711         return false;
10712       if (Bitcast2->getOpcode() != ISD::BITCAST ||
10713           Bitcast2->getValueType(0) != MVT::f32)
10714         return false;
10715 
10716       if (Subtarget.isLittleEndian())
10717         std::swap(Bitcast, Bitcast2);
10718 
10719       // Bitcast has the second float (in memory-layout order) and Bitcast2
10720       // has the first one.
10721 
10722       SDValue BasePtr = LD->getBasePtr();
10723       if (LD->isIndexed()) {
10724         assert(LD->getAddressingMode() == ISD::PRE_INC &&
10725                "Non-pre-inc AM on PPC?");
10726         BasePtr =
10727           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10728                       LD->getOffset());
10729       }
10730 
10731       SDValue FloatLoad =
10732         DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
10733                     LD->getPointerInfo(), false, LD->isNonTemporal(),
10734                     LD->isInvariant(), LD->getAlignment(), LD->getAAInfo());
10735       SDValue AddPtr =
10736         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
10737                     BasePtr, DAG.getIntPtrConstant(4, dl));
10738       SDValue FloatLoad2 =
10739         DAG.getLoad(MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
10740                     LD->getPointerInfo().getWithOffset(4), false,
10741                     LD->isNonTemporal(), LD->isInvariant(),
10742                     MinAlign(LD->getAlignment(), 4), LD->getAAInfo());
10743 
10744       if (LD->isIndexed()) {
10745         // Note that DAGCombine should re-form any pre-increment load(s) from
10746         // what is produced here if that makes sense.
10747         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
10748       }
10749 
10750       DCI.CombineTo(Bitcast2, FloatLoad);
10751       DCI.CombineTo(Bitcast, FloatLoad2);
10752 
10753       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
10754                                     SDValue(FloatLoad2.getNode(), 1));
10755       return true;
10756     };
10757 
10758     if (ReplaceTwoFloatLoad())
10759       return SDValue(N, 0);
10760 
10761     EVT MemVT = LD->getMemoryVT();
10762     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
10763     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
10764     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
10765     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
10766     if (LD->isUnindexed() && VT.isVector() &&
10767         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
10768           // P8 and later hardware should just use LOAD.
10769           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
10770                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
10771          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
10772           LD->getAlignment() >= ScalarABIAlignment)) &&
10773         LD->getAlignment() < ABIAlignment) {
10774       // This is a type-legal unaligned Altivec or QPX load.
10775       SDValue Chain = LD->getChain();
10776       SDValue Ptr = LD->getBasePtr();
10777       bool isLittleEndian = Subtarget.isLittleEndian();
10778 
10779       // This implements the loading of unaligned vectors as described in
10780       // the venerable Apple Velocity Engine overview. Specifically:
10781       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
10782       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
10783       //
10784       // The general idea is to expand a sequence of one or more unaligned
10785       // loads into an alignment-based permutation-control instruction (lvsl
10786       // or lvsr), a series of regular vector loads (which always truncate
10787       // their input address to an aligned address), and a series of
10788       // permutations.  The results of these permutations are the requested
10789       // loaded values.  The trick is that the last "extra" load is not taken
10790       // from the address you might suspect (sizeof(vector) bytes after the
10791       // last requested load), but rather sizeof(vector) - 1 bytes after the
10792       // last requested vector. The point of this is to avoid a page fault if
10793       // the base address happened to be aligned. This works because if the
10794       // base address is aligned, then adding less than a full vector length
10795       // will cause the last vector in the sequence to be (re)loaded.
10796       // Otherwise, the next vector will be fetched as you might suspect was
10797       // necessary.
10798 
10799       // We might be able to reuse the permutation generation from
10800       // a different base address offset from this one by an aligned amount.
10801       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
10802       // optimization later.
10803       Intrinsic::ID Intr, IntrLD, IntrPerm;
10804       MVT PermCntlTy, PermTy, LDTy;
10805       if (Subtarget.hasAltivec()) {
10806         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
10807                                  Intrinsic::ppc_altivec_lvsl;
10808         IntrLD = Intrinsic::ppc_altivec_lvx;
10809         IntrPerm = Intrinsic::ppc_altivec_vperm;
10810         PermCntlTy = MVT::v16i8;
10811         PermTy = MVT::v4i32;
10812         LDTy = MVT::v4i32;
10813       } else {
10814         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
10815                                        Intrinsic::ppc_qpx_qvlpcls;
10816         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
10817                                        Intrinsic::ppc_qpx_qvlfs;
10818         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
10819         PermCntlTy = MVT::v4f64;
10820         PermTy = MVT::v4f64;
10821         LDTy = MemVT.getSimpleVT();
10822       }
10823 
10824       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
10825 
10826       // Create the new MMO for the new base load. It is like the original MMO,
10827       // but represents an area in memory almost twice the vector size centered
10828       // on the original address. If the address is unaligned, we might start
10829       // reading up to (sizeof(vector)-1) bytes below the address of the
10830       // original unaligned load.
10831       MachineFunction &MF = DAG.getMachineFunction();
10832       MachineMemOperand *BaseMMO =
10833         MF.getMachineMemOperand(LD->getMemOperand(),
10834                                 -(long)MemVT.getStoreSize()+1,
10835                                 2*MemVT.getStoreSize()-1);
10836 
10837       // Create the new base load.
10838       SDValue LDXIntID =
10839           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
10840       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
10841       SDValue BaseLoad =
10842         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
10843                                 DAG.getVTList(PermTy, MVT::Other),
10844                                 BaseLoadOps, LDTy, BaseMMO);
10845 
10846       // Note that the value of IncOffset (which is provided to the next
10847       // load's pointer info offset value, and thus used to calculate the
10848       // alignment), and the value of IncValue (which is actually used to
10849       // increment the pointer value) are different! This is because we
10850       // require the next load to appear to be aligned, even though it
10851       // is actually offset from the base pointer by a lesser amount.
10852       int IncOffset = VT.getSizeInBits() / 8;
10853       int IncValue = IncOffset;
10854 
10855       // Walk (both up and down) the chain looking for another load at the real
10856       // (aligned) offset (the alignment of the other load does not matter in
10857       // this case). If found, then do not use the offset reduction trick, as
10858       // that will prevent the loads from being later combined (as they would
10859       // otherwise be duplicates).
10860       if (!findConsecutiveLoad(LD, DAG))
10861         --IncValue;
10862 
10863       SDValue Increment =
10864           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
10865       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
10866 
10867       MachineMemOperand *ExtraMMO =
10868         MF.getMachineMemOperand(LD->getMemOperand(),
10869                                 1, 2*MemVT.getStoreSize()-1);
10870       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
10871       SDValue ExtraLoad =
10872         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
10873                                 DAG.getVTList(PermTy, MVT::Other),
10874                                 ExtraLoadOps, LDTy, ExtraMMO);
10875 
10876       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
10877         BaseLoad.getValue(1), ExtraLoad.getValue(1));
10878 
10879       // Because vperm has a big-endian bias, we must reverse the order
10880       // of the input vectors and complement the permute control vector
10881       // when generating little endian code.  We have already handled the
10882       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
10883       // and ExtraLoad here.
10884       SDValue Perm;
10885       if (isLittleEndian)
10886         Perm = BuildIntrinsicOp(IntrPerm,
10887                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
10888       else
10889         Perm = BuildIntrinsicOp(IntrPerm,
10890                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
10891 
10892       if (VT != PermTy)
10893         Perm = Subtarget.hasAltivec() ?
10894                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
10895                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
10896                                DAG.getTargetConstant(1, dl, MVT::i64));
10897                                // second argument is 1 because this rounding
10898                                // is always exact.
10899 
10900       // The output of the permutation is our loaded result, the TokenFactor is
10901       // our new chain.
10902       DCI.CombineTo(N, Perm, TF);
10903       return SDValue(N, 0);
10904     }
10905     }
10906     break;
10907     case ISD::INTRINSIC_WO_CHAIN: {
10908       bool isLittleEndian = Subtarget.isLittleEndian();
10909       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
10910       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
10911                                            : Intrinsic::ppc_altivec_lvsl);
10912       if ((IID == Intr ||
10913            IID == Intrinsic::ppc_qpx_qvlpcld  ||
10914            IID == Intrinsic::ppc_qpx_qvlpcls) &&
10915         N->getOperand(1)->getOpcode() == ISD::ADD) {
10916         SDValue Add = N->getOperand(1);
10917 
10918         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
10919                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
10920 
10921         if (DAG.MaskedValueIsZero(
10922                 Add->getOperand(1),
10923                 APInt::getAllOnesValue(Bits /* alignment */)
10924                     .zext(
10925                         Add.getValueType().getScalarType().getSizeInBits()))) {
10926           SDNode *BasePtr = Add->getOperand(0).getNode();
10927           for (SDNode::use_iterator UI = BasePtr->use_begin(),
10928                                     UE = BasePtr->use_end();
10929                UI != UE; ++UI) {
10930             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
10931                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
10932               // We've found another LVSL/LVSR, and this address is an aligned
10933               // multiple of that one. The results will be the same, so use the
10934               // one we've just found instead.
10935 
10936               return SDValue(*UI, 0);
10937             }
10938           }
10939         }
10940 
10941         if (isa<ConstantSDNode>(Add->getOperand(1))) {
10942           SDNode *BasePtr = Add->getOperand(0).getNode();
10943           for (SDNode::use_iterator UI = BasePtr->use_begin(),
10944                UE = BasePtr->use_end(); UI != UE; ++UI) {
10945             if (UI->getOpcode() == ISD::ADD &&
10946                 isa<ConstantSDNode>(UI->getOperand(1)) &&
10947                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
10948                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
10949                 (1ULL << Bits) == 0) {
10950               SDNode *OtherAdd = *UI;
10951               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
10952                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
10953                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
10954                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
10955                   return SDValue(*VI, 0);
10956                 }
10957               }
10958             }
10959           }
10960         }
10961       }
10962     }
10963 
10964     break;
10965   case ISD::INTRINSIC_W_CHAIN: {
10966     // For little endian, VSX loads require generating lxvd2x/xxswapd.
10967     if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
10968       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10969       default:
10970         break;
10971       case Intrinsic::ppc_vsx_lxvw4x:
10972       case Intrinsic::ppc_vsx_lxvd2x:
10973         return expandVSXLoadForLE(N, DCI);
10974       }
10975     }
10976     break;
10977   }
10978   case ISD::INTRINSIC_VOID: {
10979     // For little endian, VSX stores require generating xxswapd/stxvd2x.
10980     if (Subtarget.hasVSX() && Subtarget.isLittleEndian()) {
10981       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10982       default:
10983         break;
10984       case Intrinsic::ppc_vsx_stxvw4x:
10985       case Intrinsic::ppc_vsx_stxvd2x:
10986         return expandVSXStoreForLE(N, DCI);
10987       }
10988     }
10989     break;
10990   }
10991   case ISD::BSWAP:
10992     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
10993     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
10994         N->getOperand(0).hasOneUse() &&
10995         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
10996          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
10997           N->getValueType(0) == MVT::i64))) {
10998       SDValue Load = N->getOperand(0);
10999       LoadSDNode *LD = cast<LoadSDNode>(Load);
11000       // Create the byte-swapping load.
11001       SDValue Ops[] = {
11002         LD->getChain(),    // Chain
11003         LD->getBasePtr(),  // Ptr
11004         DAG.getValueType(N->getValueType(0)) // VT
11005       };
11006       SDValue BSLoad =
11007         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
11008                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
11009                                               MVT::i64 : MVT::i32, MVT::Other),
11010                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
11011 
11012       // If this is an i16 load, insert the truncate.
11013       SDValue ResVal = BSLoad;
11014       if (N->getValueType(0) == MVT::i16)
11015         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
11016 
11017       // First, combine the bswap away.  This makes the value produced by the
11018       // load dead.
11019       DCI.CombineTo(N, ResVal);
11020 
11021       // Next, combine the load away, we give it a bogus result value but a real
11022       // chain result.  The result value is dead because the bswap is dead.
11023       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
11024 
11025       // Return N so it doesn't get rechecked!
11026       return SDValue(N, 0);
11027     }
11028 
11029     break;
11030   case PPCISD::VCMP: {
11031     // If a VCMPo node already exists with exactly the same operands as this
11032     // node, use its result instead of this node (VCMPo computes both a CR6 and
11033     // a normal output).
11034     //
11035     if (!N->getOperand(0).hasOneUse() &&
11036         !N->getOperand(1).hasOneUse() &&
11037         !N->getOperand(2).hasOneUse()) {
11038 
11039       // Scan all of the users of the LHS, looking for VCMPo's that match.
11040       SDNode *VCMPoNode = nullptr;
11041 
11042       SDNode *LHSN = N->getOperand(0).getNode();
11043       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
11044            UI != E; ++UI)
11045         if (UI->getOpcode() == PPCISD::VCMPo &&
11046             UI->getOperand(1) == N->getOperand(1) &&
11047             UI->getOperand(2) == N->getOperand(2) &&
11048             UI->getOperand(0) == N->getOperand(0)) {
11049           VCMPoNode = *UI;
11050           break;
11051         }
11052 
11053       // If there is no VCMPo node, or if the flag value has a single use, don't
11054       // transform this.
11055       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
11056         break;
11057 
11058       // Look at the (necessarily single) use of the flag value.  If it has a
11059       // chain, this transformation is more complex.  Note that multiple things
11060       // could use the value result, which we should ignore.
11061       SDNode *FlagUser = nullptr;
11062       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
11063            FlagUser == nullptr; ++UI) {
11064         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
11065         SDNode *User = *UI;
11066         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
11067           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
11068             FlagUser = User;
11069             break;
11070           }
11071         }
11072       }
11073 
11074       // If the user is a MFOCRF instruction, we know this is safe.
11075       // Otherwise we give up for right now.
11076       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
11077         return SDValue(VCMPoNode, 0);
11078     }
11079     break;
11080   }
11081   case ISD::BRCOND: {
11082     SDValue Cond = N->getOperand(1);
11083     SDValue Target = N->getOperand(2);
11084 
11085     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
11086         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
11087           Intrinsic::ppc_is_decremented_ctr_nonzero) {
11088 
11089       // We now need to make the intrinsic dead (it cannot be instruction
11090       // selected).
11091       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
11092       assert(Cond.getNode()->hasOneUse() &&
11093              "Counter decrement has more than one use");
11094 
11095       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
11096                          N->getOperand(0), Target);
11097     }
11098   }
11099   break;
11100   case ISD::BR_CC: {
11101     // If this is a branch on an altivec predicate comparison, lower this so
11102     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
11103     // lowering is done pre-legalize, because the legalizer lowers the predicate
11104     // compare down to code that is difficult to reassemble.
11105     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
11106     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
11107 
11108     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
11109     // value. If so, pass-through the AND to get to the intrinsic.
11110     if (LHS.getOpcode() == ISD::AND &&
11111         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
11112         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
11113           Intrinsic::ppc_is_decremented_ctr_nonzero &&
11114         isa<ConstantSDNode>(LHS.getOperand(1)) &&
11115         !isNullConstant(LHS.getOperand(1)))
11116       LHS = LHS.getOperand(0);
11117 
11118     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
11119         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
11120           Intrinsic::ppc_is_decremented_ctr_nonzero &&
11121         isa<ConstantSDNode>(RHS)) {
11122       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
11123              "Counter decrement comparison is not EQ or NE");
11124 
11125       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
11126       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
11127                     (CC == ISD::SETNE && !Val);
11128 
11129       // We now need to make the intrinsic dead (it cannot be instruction
11130       // selected).
11131       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
11132       assert(LHS.getNode()->hasOneUse() &&
11133              "Counter decrement has more than one use");
11134 
11135       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
11136                          N->getOperand(0), N->getOperand(4));
11137     }
11138 
11139     int CompareOpc;
11140     bool isDot;
11141 
11142     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
11143         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
11144         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
11145       assert(isDot && "Can't compare against a vector result!");
11146 
11147       // If this is a comparison against something other than 0/1, then we know
11148       // that the condition is never/always true.
11149       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
11150       if (Val != 0 && Val != 1) {
11151         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
11152           return N->getOperand(0);
11153         // Always !=, turn it into an unconditional branch.
11154         return DAG.getNode(ISD::BR, dl, MVT::Other,
11155                            N->getOperand(0), N->getOperand(4));
11156       }
11157 
11158       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
11159 
11160       // Create the PPCISD altivec 'dot' comparison node.
11161       SDValue Ops[] = {
11162         LHS.getOperand(2),  // LHS of compare
11163         LHS.getOperand(3),  // RHS of compare
11164         DAG.getConstant(CompareOpc, dl, MVT::i32)
11165       };
11166       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
11167       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
11168 
11169       // Unpack the result based on how the target uses it.
11170       PPC::Predicate CompOpc;
11171       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
11172       default:  // Can't happen, don't crash on invalid number though.
11173       case 0:   // Branch on the value of the EQ bit of CR6.
11174         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
11175         break;
11176       case 1:   // Branch on the inverted value of the EQ bit of CR6.
11177         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
11178         break;
11179       case 2:   // Branch on the value of the LT bit of CR6.
11180         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
11181         break;
11182       case 3:   // Branch on the inverted value of the LT bit of CR6.
11183         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
11184         break;
11185       }
11186 
11187       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
11188                          DAG.getConstant(CompOpc, dl, MVT::i32),
11189                          DAG.getRegister(PPC::CR6, MVT::i32),
11190                          N->getOperand(4), CompNode.getValue(1));
11191     }
11192     break;
11193   }
11194   case ISD::BUILD_VECTOR:
11195     return DAGCombineBuildVector(N, DCI);
11196   }
11197 
11198   return SDValue();
11199 }
11200 
11201 SDValue
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,std::vector<SDNode * > * Created) const11202 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
11203                                   SelectionDAG &DAG,
11204                                   std::vector<SDNode *> *Created) const {
11205   // fold (sdiv X, pow2)
11206   EVT VT = N->getValueType(0);
11207   if (VT == MVT::i64 && !Subtarget.isPPC64())
11208     return SDValue();
11209   if ((VT != MVT::i32 && VT != MVT::i64) ||
11210       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
11211     return SDValue();
11212 
11213   SDLoc DL(N);
11214   SDValue N0 = N->getOperand(0);
11215 
11216   bool IsNegPow2 = (-Divisor).isPowerOf2();
11217   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
11218   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
11219 
11220   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
11221   if (Created)
11222     Created->push_back(Op.getNode());
11223 
11224   if (IsNegPow2) {
11225     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
11226     if (Created)
11227       Created->push_back(Op.getNode());
11228   }
11229 
11230   return Op;
11231 }
11232 
11233 //===----------------------------------------------------------------------===//
11234 // Inline Assembly Support
11235 //===----------------------------------------------------------------------===//
11236 
computeKnownBitsForTargetNode(const SDValue Op,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const11237 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
11238                                                       APInt &KnownZero,
11239                                                       APInt &KnownOne,
11240                                                       const SelectionDAG &DAG,
11241                                                       unsigned Depth) const {
11242   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
11243   switch (Op.getOpcode()) {
11244   default: break;
11245   case PPCISD::LBRX: {
11246     // lhbrx is known to have the top bits cleared out.
11247     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
11248       KnownZero = 0xFFFF0000;
11249     break;
11250   }
11251   case ISD::INTRINSIC_WO_CHAIN: {
11252     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
11253     default: break;
11254     case Intrinsic::ppc_altivec_vcmpbfp_p:
11255     case Intrinsic::ppc_altivec_vcmpeqfp_p:
11256     case Intrinsic::ppc_altivec_vcmpequb_p:
11257     case Intrinsic::ppc_altivec_vcmpequh_p:
11258     case Intrinsic::ppc_altivec_vcmpequw_p:
11259     case Intrinsic::ppc_altivec_vcmpequd_p:
11260     case Intrinsic::ppc_altivec_vcmpgefp_p:
11261     case Intrinsic::ppc_altivec_vcmpgtfp_p:
11262     case Intrinsic::ppc_altivec_vcmpgtsb_p:
11263     case Intrinsic::ppc_altivec_vcmpgtsh_p:
11264     case Intrinsic::ppc_altivec_vcmpgtsw_p:
11265     case Intrinsic::ppc_altivec_vcmpgtsd_p:
11266     case Intrinsic::ppc_altivec_vcmpgtub_p:
11267     case Intrinsic::ppc_altivec_vcmpgtuh_p:
11268     case Intrinsic::ppc_altivec_vcmpgtuw_p:
11269     case Intrinsic::ppc_altivec_vcmpgtud_p:
11270       KnownZero = ~1U;  // All bits but the low one are known to be zero.
11271       break;
11272     }
11273   }
11274   }
11275 }
11276 
getPrefLoopAlignment(MachineLoop * ML) const11277 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
11278   switch (Subtarget.getDarwinDirective()) {
11279   default: break;
11280   case PPC::DIR_970:
11281   case PPC::DIR_PWR4:
11282   case PPC::DIR_PWR5:
11283   case PPC::DIR_PWR5X:
11284   case PPC::DIR_PWR6:
11285   case PPC::DIR_PWR6X:
11286   case PPC::DIR_PWR7:
11287   case PPC::DIR_PWR8:
11288   case PPC::DIR_PWR9: {
11289     if (!ML)
11290       break;
11291 
11292     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
11293 
11294     // For small loops (between 5 and 8 instructions), align to a 32-byte
11295     // boundary so that the entire loop fits in one instruction-cache line.
11296     uint64_t LoopSize = 0;
11297     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
11298       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
11299         LoopSize += TII->GetInstSizeInBytes(*J);
11300         if (LoopSize > 32)
11301           break;
11302       }
11303 
11304     if (LoopSize > 16 && LoopSize <= 32)
11305       return 5;
11306 
11307     break;
11308   }
11309   }
11310 
11311   return TargetLowering::getPrefLoopAlignment(ML);
11312 }
11313 
11314 /// getConstraintType - Given a constraint, return the type of
11315 /// constraint it is for this target.
11316 PPCTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const11317 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
11318   if (Constraint.size() == 1) {
11319     switch (Constraint[0]) {
11320     default: break;
11321     case 'b':
11322     case 'r':
11323     case 'f':
11324     case 'd':
11325     case 'v':
11326     case 'y':
11327       return C_RegisterClass;
11328     case 'Z':
11329       // FIXME: While Z does indicate a memory constraint, it specifically
11330       // indicates an r+r address (used in conjunction with the 'y' modifier
11331       // in the replacement string). Currently, we're forcing the base
11332       // register to be r0 in the asm printer (which is interpreted as zero)
11333       // and forming the complete address in the second register. This is
11334       // suboptimal.
11335       return C_Memory;
11336     }
11337   } else if (Constraint == "wc") { // individual CR bits.
11338     return C_RegisterClass;
11339   } else if (Constraint == "wa" || Constraint == "wd" ||
11340              Constraint == "wf" || Constraint == "ws") {
11341     return C_RegisterClass; // VSX registers.
11342   }
11343   return TargetLowering::getConstraintType(Constraint);
11344 }
11345 
11346 /// Examine constraint type and operand type and determine a weight value.
11347 /// This object must already have been set up with the operand type
11348 /// and the current alternative constraint selected.
11349 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const11350 PPCTargetLowering::getSingleConstraintMatchWeight(
11351     AsmOperandInfo &info, const char *constraint) const {
11352   ConstraintWeight weight = CW_Invalid;
11353   Value *CallOperandVal = info.CallOperandVal;
11354     // If we don't have a value, we can't do a match,
11355     // but allow it at the lowest weight.
11356   if (!CallOperandVal)
11357     return CW_Default;
11358   Type *type = CallOperandVal->getType();
11359 
11360   // Look at the constraint type.
11361   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
11362     return CW_Register; // an individual CR bit.
11363   else if ((StringRef(constraint) == "wa" ||
11364             StringRef(constraint) == "wd" ||
11365             StringRef(constraint) == "wf") &&
11366            type->isVectorTy())
11367     return CW_Register;
11368   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
11369     return CW_Register;
11370 
11371   switch (*constraint) {
11372   default:
11373     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
11374     break;
11375   case 'b':
11376     if (type->isIntegerTy())
11377       weight = CW_Register;
11378     break;
11379   case 'f':
11380     if (type->isFloatTy())
11381       weight = CW_Register;
11382     break;
11383   case 'd':
11384     if (type->isDoubleTy())
11385       weight = CW_Register;
11386     break;
11387   case 'v':
11388     if (type->isVectorTy())
11389       weight = CW_Register;
11390     break;
11391   case 'y':
11392     weight = CW_Register;
11393     break;
11394   case 'Z':
11395     weight = CW_Memory;
11396     break;
11397   }
11398   return weight;
11399 }
11400 
11401 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const11402 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11403                                                 StringRef Constraint,
11404                                                 MVT VT) const {
11405   if (Constraint.size() == 1) {
11406     // GCC RS6000 Constraint Letters
11407     switch (Constraint[0]) {
11408     case 'b':   // R1-R31
11409       if (VT == MVT::i64 && Subtarget.isPPC64())
11410         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
11411       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
11412     case 'r':   // R0-R31
11413       if (VT == MVT::i64 && Subtarget.isPPC64())
11414         return std::make_pair(0U, &PPC::G8RCRegClass);
11415       return std::make_pair(0U, &PPC::GPRCRegClass);
11416     // 'd' and 'f' constraints are both defined to be "the floating point
11417     // registers", where one is for 32-bit and the other for 64-bit. We don't
11418     // really care overly much here so just give them all the same reg classes.
11419     case 'd':
11420     case 'f':
11421       if (VT == MVT::f32 || VT == MVT::i32)
11422         return std::make_pair(0U, &PPC::F4RCRegClass);
11423       if (VT == MVT::f64 || VT == MVT::i64)
11424         return std::make_pair(0U, &PPC::F8RCRegClass);
11425       if (VT == MVT::v4f64 && Subtarget.hasQPX())
11426         return std::make_pair(0U, &PPC::QFRCRegClass);
11427       if (VT == MVT::v4f32 && Subtarget.hasQPX())
11428         return std::make_pair(0U, &PPC::QSRCRegClass);
11429       break;
11430     case 'v':
11431       if (VT == MVT::v4f64 && Subtarget.hasQPX())
11432         return std::make_pair(0U, &PPC::QFRCRegClass);
11433       if (VT == MVT::v4f32 && Subtarget.hasQPX())
11434         return std::make_pair(0U, &PPC::QSRCRegClass);
11435       if (Subtarget.hasAltivec())
11436         return std::make_pair(0U, &PPC::VRRCRegClass);
11437     case 'y':   // crrc
11438       return std::make_pair(0U, &PPC::CRRCRegClass);
11439     }
11440   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
11441     // An individual CR bit.
11442     return std::make_pair(0U, &PPC::CRBITRCRegClass);
11443   } else if ((Constraint == "wa" || Constraint == "wd" ||
11444              Constraint == "wf") && Subtarget.hasVSX()) {
11445     return std::make_pair(0U, &PPC::VSRCRegClass);
11446   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
11447     if (VT == MVT::f32 && Subtarget.hasP8Vector())
11448       return std::make_pair(0U, &PPC::VSSRCRegClass);
11449     else
11450       return std::make_pair(0U, &PPC::VSFRCRegClass);
11451   }
11452 
11453   std::pair<unsigned, const TargetRegisterClass *> R =
11454       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11455 
11456   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
11457   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
11458   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
11459   // register.
11460   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
11461   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
11462   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
11463       PPC::GPRCRegClass.contains(R.first))
11464     return std::make_pair(TRI->getMatchingSuperReg(R.first,
11465                             PPC::sub_32, &PPC::G8RCRegClass),
11466                           &PPC::G8RCRegClass);
11467 
11468   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
11469   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
11470     R.first = PPC::CR0;
11471     R.second = &PPC::CRRCRegClass;
11472   }
11473 
11474   return R;
11475 }
11476 
11477 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
11478 /// vector.  If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const11479 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11480                                                      std::string &Constraint,
11481                                                      std::vector<SDValue>&Ops,
11482                                                      SelectionDAG &DAG) const {
11483   SDValue Result;
11484 
11485   // Only support length 1 constraints.
11486   if (Constraint.length() > 1) return;
11487 
11488   char Letter = Constraint[0];
11489   switch (Letter) {
11490   default: break;
11491   case 'I':
11492   case 'J':
11493   case 'K':
11494   case 'L':
11495   case 'M':
11496   case 'N':
11497   case 'O':
11498   case 'P': {
11499     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
11500     if (!CST) return; // Must be an immediate to match.
11501     SDLoc dl(Op);
11502     int64_t Value = CST->getSExtValue();
11503     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
11504                          // numbers are printed as such.
11505     switch (Letter) {
11506     default: llvm_unreachable("Unknown constraint letter!");
11507     case 'I':  // "I" is a signed 16-bit constant.
11508       if (isInt<16>(Value))
11509         Result = DAG.getTargetConstant(Value, dl, TCVT);
11510       break;
11511     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
11512       if (isShiftedUInt<16, 16>(Value))
11513         Result = DAG.getTargetConstant(Value, dl, TCVT);
11514       break;
11515     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
11516       if (isShiftedInt<16, 16>(Value))
11517         Result = DAG.getTargetConstant(Value, dl, TCVT);
11518       break;
11519     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
11520       if (isUInt<16>(Value))
11521         Result = DAG.getTargetConstant(Value, dl, TCVT);
11522       break;
11523     case 'M':  // "M" is a constant that is greater than 31.
11524       if (Value > 31)
11525         Result = DAG.getTargetConstant(Value, dl, TCVT);
11526       break;
11527     case 'N':  // "N" is a positive constant that is an exact power of two.
11528       if (Value > 0 && isPowerOf2_64(Value))
11529         Result = DAG.getTargetConstant(Value, dl, TCVT);
11530       break;
11531     case 'O':  // "O" is the constant zero.
11532       if (Value == 0)
11533         Result = DAG.getTargetConstant(Value, dl, TCVT);
11534       break;
11535     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
11536       if (isInt<16>(-Value))
11537         Result = DAG.getTargetConstant(Value, dl, TCVT);
11538       break;
11539     }
11540     break;
11541   }
11542   }
11543 
11544   if (Result.getNode()) {
11545     Ops.push_back(Result);
11546     return;
11547   }
11548 
11549   // Handle standard constraint letters.
11550   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11551 }
11552 
11553 // isLegalAddressingMode - Return true if the addressing mode represented
11554 // by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const11555 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
11556                                               const AddrMode &AM, Type *Ty,
11557                                               unsigned AS) const {
11558   // PPC does not allow r+i addressing modes for vectors!
11559   if (Ty->isVectorTy() && AM.BaseOffs != 0)
11560     return false;
11561 
11562   // PPC allows a sign-extended 16-bit immediate field.
11563   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
11564     return false;
11565 
11566   // No global is ever allowed as a base.
11567   if (AM.BaseGV)
11568     return false;
11569 
11570   // PPC only support r+r,
11571   switch (AM.Scale) {
11572   case 0:  // "r+i" or just "i", depending on HasBaseReg.
11573     break;
11574   case 1:
11575     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
11576       return false;
11577     // Otherwise we have r+r or r+i.
11578     break;
11579   case 2:
11580     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
11581       return false;
11582     // Allow 2*r as r+r.
11583     break;
11584   default:
11585     // No other scales are supported.
11586     return false;
11587   }
11588 
11589   return true;
11590 }
11591 
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const11592 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
11593                                            SelectionDAG &DAG) const {
11594   MachineFunction &MF = DAG.getMachineFunction();
11595   MachineFrameInfo *MFI = MF.getFrameInfo();
11596   MFI->setReturnAddressIsTaken(true);
11597 
11598   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
11599     return SDValue();
11600 
11601   SDLoc dl(Op);
11602   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11603 
11604   // Make sure the function does not optimize away the store of the RA to
11605   // the stack.
11606   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
11607   FuncInfo->setLRStoreRequired();
11608   bool isPPC64 = Subtarget.isPPC64();
11609   auto PtrVT = getPointerTy(MF.getDataLayout());
11610 
11611   if (Depth > 0) {
11612     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
11613     SDValue Offset =
11614         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
11615                         isPPC64 ? MVT::i64 : MVT::i32);
11616     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
11617                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
11618                        MachinePointerInfo(), false, false, false, 0);
11619   }
11620 
11621   // Just load the return address off the stack.
11622   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
11623   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
11624                      MachinePointerInfo(), false, false, false, 0);
11625 }
11626 
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const11627 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
11628                                           SelectionDAG &DAG) const {
11629   SDLoc dl(Op);
11630   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11631 
11632   MachineFunction &MF = DAG.getMachineFunction();
11633   MachineFrameInfo *MFI = MF.getFrameInfo();
11634   MFI->setFrameAddressIsTaken(true);
11635 
11636   EVT PtrVT = getPointerTy(MF.getDataLayout());
11637   bool isPPC64 = PtrVT == MVT::i64;
11638 
11639   // Naked functions never have a frame pointer, and so we use r1. For all
11640   // other functions, this decision must be delayed until during PEI.
11641   unsigned FrameReg;
11642   if (MF.getFunction()->hasFnAttribute(Attribute::Naked))
11643     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
11644   else
11645     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
11646 
11647   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
11648                                          PtrVT);
11649   while (Depth--)
11650     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
11651                             FrameAddr, MachinePointerInfo(), false, false,
11652                             false, 0);
11653   return FrameAddr;
11654 }
11655 
11656 // FIXME? Maybe this could be a TableGen attribute on some registers and
11657 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,EVT VT,SelectionDAG & DAG) const11658 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
11659                                               SelectionDAG &DAG) const {
11660   bool isPPC64 = Subtarget.isPPC64();
11661   bool isDarwinABI = Subtarget.isDarwinABI();
11662 
11663   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
11664       (!isPPC64 && VT != MVT::i32))
11665     report_fatal_error("Invalid register global variable type");
11666 
11667   bool is64Bit = isPPC64 && VT == MVT::i64;
11668   unsigned Reg = StringSwitch<unsigned>(RegName)
11669                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
11670                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
11671                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
11672                                   (is64Bit ? PPC::X13 : PPC::R13))
11673                    .Default(0);
11674 
11675   if (Reg)
11676     return Reg;
11677   report_fatal_error("Invalid register name global variable");
11678 }
11679 
11680 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const11681 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
11682   // The PowerPC target isn't yet aware of offsets.
11683   return false;
11684 }
11685 
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,unsigned Intrinsic) const11686 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
11687                                            const CallInst &I,
11688                                            unsigned Intrinsic) const {
11689 
11690   switch (Intrinsic) {
11691   case Intrinsic::ppc_qpx_qvlfd:
11692   case Intrinsic::ppc_qpx_qvlfs:
11693   case Intrinsic::ppc_qpx_qvlfcd:
11694   case Intrinsic::ppc_qpx_qvlfcs:
11695   case Intrinsic::ppc_qpx_qvlfiwa:
11696   case Intrinsic::ppc_qpx_qvlfiwz:
11697   case Intrinsic::ppc_altivec_lvx:
11698   case Intrinsic::ppc_altivec_lvxl:
11699   case Intrinsic::ppc_altivec_lvebx:
11700   case Intrinsic::ppc_altivec_lvehx:
11701   case Intrinsic::ppc_altivec_lvewx:
11702   case Intrinsic::ppc_vsx_lxvd2x:
11703   case Intrinsic::ppc_vsx_lxvw4x: {
11704     EVT VT;
11705     switch (Intrinsic) {
11706     case Intrinsic::ppc_altivec_lvebx:
11707       VT = MVT::i8;
11708       break;
11709     case Intrinsic::ppc_altivec_lvehx:
11710       VT = MVT::i16;
11711       break;
11712     case Intrinsic::ppc_altivec_lvewx:
11713       VT = MVT::i32;
11714       break;
11715     case Intrinsic::ppc_vsx_lxvd2x:
11716       VT = MVT::v2f64;
11717       break;
11718     case Intrinsic::ppc_qpx_qvlfd:
11719       VT = MVT::v4f64;
11720       break;
11721     case Intrinsic::ppc_qpx_qvlfs:
11722       VT = MVT::v4f32;
11723       break;
11724     case Intrinsic::ppc_qpx_qvlfcd:
11725       VT = MVT::v2f64;
11726       break;
11727     case Intrinsic::ppc_qpx_qvlfcs:
11728       VT = MVT::v2f32;
11729       break;
11730     default:
11731       VT = MVT::v4i32;
11732       break;
11733     }
11734 
11735     Info.opc = ISD::INTRINSIC_W_CHAIN;
11736     Info.memVT = VT;
11737     Info.ptrVal = I.getArgOperand(0);
11738     Info.offset = -VT.getStoreSize()+1;
11739     Info.size = 2*VT.getStoreSize()-1;
11740     Info.align = 1;
11741     Info.vol = false;
11742     Info.readMem = true;
11743     Info.writeMem = false;
11744     return true;
11745   }
11746   case Intrinsic::ppc_qpx_qvlfda:
11747   case Intrinsic::ppc_qpx_qvlfsa:
11748   case Intrinsic::ppc_qpx_qvlfcda:
11749   case Intrinsic::ppc_qpx_qvlfcsa:
11750   case Intrinsic::ppc_qpx_qvlfiwaa:
11751   case Intrinsic::ppc_qpx_qvlfiwza: {
11752     EVT VT;
11753     switch (Intrinsic) {
11754     case Intrinsic::ppc_qpx_qvlfda:
11755       VT = MVT::v4f64;
11756       break;
11757     case Intrinsic::ppc_qpx_qvlfsa:
11758       VT = MVT::v4f32;
11759       break;
11760     case Intrinsic::ppc_qpx_qvlfcda:
11761       VT = MVT::v2f64;
11762       break;
11763     case Intrinsic::ppc_qpx_qvlfcsa:
11764       VT = MVT::v2f32;
11765       break;
11766     default:
11767       VT = MVT::v4i32;
11768       break;
11769     }
11770 
11771     Info.opc = ISD::INTRINSIC_W_CHAIN;
11772     Info.memVT = VT;
11773     Info.ptrVal = I.getArgOperand(0);
11774     Info.offset = 0;
11775     Info.size = VT.getStoreSize();
11776     Info.align = 1;
11777     Info.vol = false;
11778     Info.readMem = true;
11779     Info.writeMem = false;
11780     return true;
11781   }
11782   case Intrinsic::ppc_qpx_qvstfd:
11783   case Intrinsic::ppc_qpx_qvstfs:
11784   case Intrinsic::ppc_qpx_qvstfcd:
11785   case Intrinsic::ppc_qpx_qvstfcs:
11786   case Intrinsic::ppc_qpx_qvstfiw:
11787   case Intrinsic::ppc_altivec_stvx:
11788   case Intrinsic::ppc_altivec_stvxl:
11789   case Intrinsic::ppc_altivec_stvebx:
11790   case Intrinsic::ppc_altivec_stvehx:
11791   case Intrinsic::ppc_altivec_stvewx:
11792   case Intrinsic::ppc_vsx_stxvd2x:
11793   case Intrinsic::ppc_vsx_stxvw4x: {
11794     EVT VT;
11795     switch (Intrinsic) {
11796     case Intrinsic::ppc_altivec_stvebx:
11797       VT = MVT::i8;
11798       break;
11799     case Intrinsic::ppc_altivec_stvehx:
11800       VT = MVT::i16;
11801       break;
11802     case Intrinsic::ppc_altivec_stvewx:
11803       VT = MVT::i32;
11804       break;
11805     case Intrinsic::ppc_vsx_stxvd2x:
11806       VT = MVT::v2f64;
11807       break;
11808     case Intrinsic::ppc_qpx_qvstfd:
11809       VT = MVT::v4f64;
11810       break;
11811     case Intrinsic::ppc_qpx_qvstfs:
11812       VT = MVT::v4f32;
11813       break;
11814     case Intrinsic::ppc_qpx_qvstfcd:
11815       VT = MVT::v2f64;
11816       break;
11817     case Intrinsic::ppc_qpx_qvstfcs:
11818       VT = MVT::v2f32;
11819       break;
11820     default:
11821       VT = MVT::v4i32;
11822       break;
11823     }
11824 
11825     Info.opc = ISD::INTRINSIC_VOID;
11826     Info.memVT = VT;
11827     Info.ptrVal = I.getArgOperand(1);
11828     Info.offset = -VT.getStoreSize()+1;
11829     Info.size = 2*VT.getStoreSize()-1;
11830     Info.align = 1;
11831     Info.vol = false;
11832     Info.readMem = false;
11833     Info.writeMem = true;
11834     return true;
11835   }
11836   case Intrinsic::ppc_qpx_qvstfda:
11837   case Intrinsic::ppc_qpx_qvstfsa:
11838   case Intrinsic::ppc_qpx_qvstfcda:
11839   case Intrinsic::ppc_qpx_qvstfcsa:
11840   case Intrinsic::ppc_qpx_qvstfiwa: {
11841     EVT VT;
11842     switch (Intrinsic) {
11843     case Intrinsic::ppc_qpx_qvstfda:
11844       VT = MVT::v4f64;
11845       break;
11846     case Intrinsic::ppc_qpx_qvstfsa:
11847       VT = MVT::v4f32;
11848       break;
11849     case Intrinsic::ppc_qpx_qvstfcda:
11850       VT = MVT::v2f64;
11851       break;
11852     case Intrinsic::ppc_qpx_qvstfcsa:
11853       VT = MVT::v2f32;
11854       break;
11855     default:
11856       VT = MVT::v4i32;
11857       break;
11858     }
11859 
11860     Info.opc = ISD::INTRINSIC_VOID;
11861     Info.memVT = VT;
11862     Info.ptrVal = I.getArgOperand(1);
11863     Info.offset = 0;
11864     Info.size = VT.getStoreSize();
11865     Info.align = 1;
11866     Info.vol = false;
11867     Info.readMem = false;
11868     Info.writeMem = true;
11869     return true;
11870   }
11871   default:
11872     break;
11873   }
11874 
11875   return false;
11876 }
11877 
11878 /// getOptimalMemOpType - Returns the target specific optimal type for load
11879 /// and store operations as a result of memset, memcpy, and memmove
11880 /// lowering. If DstAlign is zero that means it's safe to destination
11881 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
11882 /// means there isn't a need to check it against alignment requirement,
11883 /// probably because the source does not need to be loaded. If 'IsMemset' is
11884 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
11885 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
11886 /// source is constant so it does not need to be loaded.
11887 /// It returns EVT::Other if the type should be determined using generic
11888 /// target-independent logic.
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,MachineFunction & MF) const11889 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
11890                                            unsigned DstAlign, unsigned SrcAlign,
11891                                            bool IsMemset, bool ZeroMemset,
11892                                            bool MemcpyStrSrc,
11893                                            MachineFunction &MF) const {
11894   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
11895     const Function *F = MF.getFunction();
11896     // When expanding a memset, require at least two QPX instructions to cover
11897     // the cost of loading the value to be stored from the constant pool.
11898     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
11899        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
11900         !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
11901       return MVT::v4f64;
11902     }
11903 
11904     // We should use Altivec/VSX loads and stores when available. For unaligned
11905     // addresses, unaligned VSX loads are only fast starting with the P8.
11906     if (Subtarget.hasAltivec() && Size >= 16 &&
11907         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
11908          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
11909       return MVT::v4i32;
11910   }
11911 
11912   if (Subtarget.isPPC64()) {
11913     return MVT::i64;
11914   }
11915 
11916   return MVT::i32;
11917 }
11918 
11919 /// \brief Returns true if it is beneficial to convert a load of a constant
11920 /// to just the constant itself.
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const11921 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
11922                                                           Type *Ty) const {
11923   assert(Ty->isIntegerTy());
11924 
11925   unsigned BitSize = Ty->getPrimitiveSizeInBits();
11926   return !(BitSize == 0 || BitSize > 64);
11927 }
11928 
isTruncateFree(Type * Ty1,Type * Ty2) const11929 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11930   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11931     return false;
11932   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11933   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11934   return NumBits1 == 64 && NumBits2 == 32;
11935 }
11936 
isTruncateFree(EVT VT1,EVT VT2) const11937 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11938   if (!VT1.isInteger() || !VT2.isInteger())
11939     return false;
11940   unsigned NumBits1 = VT1.getSizeInBits();
11941   unsigned NumBits2 = VT2.getSizeInBits();
11942   return NumBits1 == 64 && NumBits2 == 32;
11943 }
11944 
isZExtFree(SDValue Val,EVT VT2) const11945 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
11946   // Generally speaking, zexts are not free, but they are free when they can be
11947   // folded with other operations.
11948   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
11949     EVT MemVT = LD->getMemoryVT();
11950     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
11951          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
11952         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
11953          LD->getExtensionType() == ISD::ZEXTLOAD))
11954       return true;
11955   }
11956 
11957   // FIXME: Add other cases...
11958   //  - 32-bit shifts with a zext to i64
11959   //  - zext after ctlz, bswap, etc.
11960   //  - zext after and by a constant mask
11961 
11962   return TargetLowering::isZExtFree(Val, VT2);
11963 }
11964 
isFPExtFree(EVT VT) const11965 bool PPCTargetLowering::isFPExtFree(EVT VT) const {
11966   assert(VT.isFloatingPoint());
11967   return true;
11968 }
11969 
isLegalICmpImmediate(int64_t Imm) const11970 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
11971   return isInt<16>(Imm) || isUInt<16>(Imm);
11972 }
11973 
isLegalAddImmediate(int64_t Imm) const11974 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
11975   return isInt<16>(Imm) || isUInt<16>(Imm);
11976 }
11977 
allowsMisalignedMemoryAccesses(EVT VT,unsigned,unsigned,bool * Fast) const11978 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
11979                                                        unsigned,
11980                                                        unsigned,
11981                                                        bool *Fast) const {
11982   if (DisablePPCUnaligned)
11983     return false;
11984 
11985   // PowerPC supports unaligned memory access for simple non-vector types.
11986   // Although accessing unaligned addresses is not as efficient as accessing
11987   // aligned addresses, it is generally more efficient than manual expansion,
11988   // and generally only traps for software emulation when crossing page
11989   // boundaries.
11990 
11991   if (!VT.isSimple())
11992     return false;
11993 
11994   if (VT.getSimpleVT().isVector()) {
11995     if (Subtarget.hasVSX()) {
11996       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
11997           VT != MVT::v4f32 && VT != MVT::v4i32)
11998         return false;
11999     } else {
12000       return false;
12001     }
12002   }
12003 
12004   if (VT == MVT::ppcf128)
12005     return false;
12006 
12007   if (Fast)
12008     *Fast = true;
12009 
12010   return true;
12011 }
12012 
isFMAFasterThanFMulAndFAdd(EVT VT) const12013 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
12014   VT = VT.getScalarType();
12015 
12016   if (!VT.isSimple())
12017     return false;
12018 
12019   switch (VT.getSimpleVT().SimpleTy) {
12020   case MVT::f32:
12021   case MVT::f64:
12022     return true;
12023   default:
12024     break;
12025   }
12026 
12027   return false;
12028 }
12029 
12030 const MCPhysReg *
getScratchRegisters(CallingConv::ID) const12031 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
12032   // LR is a callee-save register, but we must treat it as clobbered by any call
12033   // site. Hence we include LR in the scratch registers, which are in turn added
12034   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
12035   // to CTR, which is used by any indirect call.
12036   static const MCPhysReg ScratchRegs[] = {
12037     PPC::X12, PPC::LR8, PPC::CTR8, 0
12038   };
12039 
12040   return ScratchRegs;
12041 }
12042 
getExceptionPointerRegister(const Constant * PersonalityFn) const12043 unsigned PPCTargetLowering::getExceptionPointerRegister(
12044     const Constant *PersonalityFn) const {
12045   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
12046 }
12047 
getExceptionSelectorRegister(const Constant * PersonalityFn) const12048 unsigned PPCTargetLowering::getExceptionSelectorRegister(
12049     const Constant *PersonalityFn) const {
12050   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
12051 }
12052 
12053 bool
shouldExpandBuildVectorWithShuffles(EVT VT,unsigned DefinedValues) const12054 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
12055                      EVT VT , unsigned DefinedValues) const {
12056   if (VT == MVT::v2i64)
12057     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
12058 
12059   if (Subtarget.hasVSX() || Subtarget.hasQPX())
12060     return true;
12061 
12062   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
12063 }
12064 
getSchedulingPreference(SDNode * N) const12065 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
12066   if (DisableILPPref || Subtarget.enableMachineScheduler())
12067     return TargetLowering::getSchedulingPreference(N);
12068 
12069   return Sched::ILP;
12070 }
12071 
12072 // Create a fast isel object.
12073 FastISel *
createFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo) const12074 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
12075                                   const TargetLibraryInfo *LibInfo) const {
12076   return PPC::createFastISel(FuncInfo, LibInfo);
12077 }
12078 
initializeSplitCSR(MachineBasicBlock * Entry) const12079 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
12080   if (Subtarget.isDarwinABI()) return;
12081   if (!Subtarget.isPPC64()) return;
12082 
12083   // Update IsSplitCSR in PPCFunctionInfo
12084   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
12085   PFI->setIsSplitCSR(true);
12086 }
12087 
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits) const12088 void PPCTargetLowering::insertCopiesSplitCSR(
12089   MachineBasicBlock *Entry,
12090   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
12091   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
12092   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
12093   if (!IStart)
12094     return;
12095 
12096   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
12097   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
12098   MachineBasicBlock::iterator MBBI = Entry->begin();
12099   for (const MCPhysReg *I = IStart; *I; ++I) {
12100     const TargetRegisterClass *RC = nullptr;
12101     if (PPC::G8RCRegClass.contains(*I))
12102       RC = &PPC::G8RCRegClass;
12103     else if (PPC::F8RCRegClass.contains(*I))
12104       RC = &PPC::F8RCRegClass;
12105     else if (PPC::CRRCRegClass.contains(*I))
12106       RC = &PPC::CRRCRegClass;
12107     else if (PPC::VRRCRegClass.contains(*I))
12108       RC = &PPC::VRRCRegClass;
12109     else
12110       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
12111 
12112     unsigned NewVR = MRI->createVirtualRegister(RC);
12113     // Create copy from CSR to a virtual register.
12114     // FIXME: this currently does not emit CFI pseudo-instructions, it works
12115     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
12116     // nounwind. If we want to generalize this later, we may need to emit
12117     // CFI pseudo-instructions.
12118     assert(Entry->getParent()->getFunction()->hasFnAttribute(
12119              Attribute::NoUnwind) &&
12120            "Function should be nounwind in insertCopiesSplitCSR!");
12121     Entry->addLiveIn(*I);
12122     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
12123       .addReg(*I);
12124 
12125     // Insert the copy-back instructions right before the terminator
12126     for (auto *Exit : Exits)
12127       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
12128               TII->get(TargetOpcode::COPY), *I)
12129         .addReg(NewVR);
12130   }
12131 }
12132 
12133 // Override to enable LOAD_STACK_GUARD lowering on Linux.
useLoadStackGuardNode() const12134 bool PPCTargetLowering::useLoadStackGuardNode() const {
12135   if (!Subtarget.isTargetLinux())
12136     return TargetLowering::useLoadStackGuardNode();
12137   return true;
12138 }
12139 
12140 // Override to disable global variable loading on Linux.
insertSSPDeclarations(Module & M) const12141 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
12142   if (!Subtarget.isTargetLinux())
12143     return TargetLowering::insertSSPDeclarations(M);
12144 }
12145