1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "GrTessellator.h"
9
10 #include "GrDefaultGeoProcFactory.h"
11 #include "GrPathUtils.h"
12
13 #include "SkArenaAlloc.h"
14 #include "SkGeometry.h"
15 #include "SkPath.h"
16
17 #include <stdio.h>
18
19 /*
20 * There are six stages to the basic algorithm:
21 *
22 * 1) Linearize the path contours into piecewise linear segments (path_to_contours()).
23 * 2) Build a mesh of edges connecting the vertices (build_edges()).
24 * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()).
25 * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplify()).
26 * 5) Tessellate the simplified mesh into monotone polygons (tessellate()).
27 * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_triangles()).
28 *
29 * For screenspace antialiasing, the algorithm is modified as follows:
30 *
31 * Run steps 1-5 above to produce polygons.
32 * 5b) Apply fill rules to extract boundary contours from the polygons (extract_boundaries()).
33 * 5c) Simplify boundaries to remove "pointy" vertices that cause inversions (simplify_boundary()).
34 * 5d) Displace edges by half a pixel inward and outward along their normals. Intersect to find
35 * new vertices, and set zero alpha on the exterior and one alpha on the interior. Build a new
36 * antialiased mesh from those vertices (stroke_boundary()).
37 * Run steps 3-6 above on the new mesh, and produce antialiased triangles.
38 *
39 * The vertex sorting in step (3) is a merge sort, since it plays well with the linked list
40 * of vertices (and the necessity of inserting new vertices on intersection).
41 *
42 * Stages (4) and (5) use an active edge list -- a list of all edges for which the
43 * sweep line has crossed the top vertex, but not the bottom vertex. It's sorted
44 * left-to-right based on the point where both edges are active (when both top vertices
45 * have been seen, so the "lower" top vertex of the two). If the top vertices are equal
46 * (shared), it's sorted based on the last point where both edges are active, so the
47 * "upper" bottom vertex.
48 *
49 * The most complex step is the simplification (4). It's based on the Bentley-Ottman
50 * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are
51 * not exact and may violate the mesh topology or active edge list ordering. We
52 * accommodate this by adjusting the topology of the mesh and AEL to match the intersection
53 * points. This occurs in three ways:
54 *
55 * A) Intersections may cause a shortened edge to no longer be ordered with respect to its
56 * neighbouring edges at the top or bottom vertex. This is handled by merging the
57 * edges (merge_collinear_edges()).
58 * B) Intersections may cause an edge to violate the left-to-right ordering of the
59 * active edge list. This is handled by splitting the neighbour edge on the
60 * intersected vertex (cleanup_active_edges()).
61 * C) Shortening an edge may cause an active edge to become inactive or an inactive edge
62 * to become active. This is handled by removing or inserting the edge in the active
63 * edge list (fix_active_state()).
64 *
65 * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and
66 * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it
67 * currently uses a linked list for the active edge list, rather than a 2-3 tree as the
68 * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also
69 * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N)
70 * insertions and removals was greater than the cost of infrequent O(N) lookups with the
71 * linked list implementation. With the latter, all removals are O(1), and most insertions
72 * are O(1), since we know the adjacent edge in the active edge list based on the topology.
73 * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less
74 * frequent. There may be other data structures worth investigating, however.
75 *
76 * Note that the orientation of the line sweep algorithms is determined by the aspect ratio of the
77 * path bounds. When the path is taller than it is wide, we sort vertices based on increasing Y
78 * coordinate, and secondarily by increasing X coordinate. When the path is wider than it is tall,
79 * we sort by increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so
80 * that the "left" and "right" orientation in the code remains correct (edges to the left are
81 * increasing in Y; edges to the right are decreasing in Y). That is, the setting rotates 90
82 * degrees counterclockwise, rather that transposing.
83 */
84
85 #define LOGGING_ENABLED 0
86
87 #if LOGGING_ENABLED
88 #define LOG printf
89 #else
90 #define LOG(...)
91 #endif
92
93 namespace {
94
95 const int kArenaChunkSize = 16 * 1024;
96
97 struct Vertex;
98 struct Edge;
99 struct Poly;
100
101 template <class T, T* T::*Prev, T* T::*Next>
list_insert(T * t,T * prev,T * next,T ** head,T ** tail)102 void list_insert(T* t, T* prev, T* next, T** head, T** tail) {
103 t->*Prev = prev;
104 t->*Next = next;
105 if (prev) {
106 prev->*Next = t;
107 } else if (head) {
108 *head = t;
109 }
110 if (next) {
111 next->*Prev = t;
112 } else if (tail) {
113 *tail = t;
114 }
115 }
116
117 template <class T, T* T::*Prev, T* T::*Next>
list_remove(T * t,T ** head,T ** tail)118 void list_remove(T* t, T** head, T** tail) {
119 if (t->*Prev) {
120 t->*Prev->*Next = t->*Next;
121 } else if (head) {
122 *head = t->*Next;
123 }
124 if (t->*Next) {
125 t->*Next->*Prev = t->*Prev;
126 } else if (tail) {
127 *tail = t->*Prev;
128 }
129 t->*Prev = t->*Next = nullptr;
130 }
131
132 /**
133 * Vertices are used in three ways: first, the path contours are converted into a
134 * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices
135 * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing
136 * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid
137 * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of
138 * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since
139 * an individual Vertex from the path mesh may belong to multiple
140 * MonotonePolys, so the original Vertices cannot be re-used.
141 */
142
143 struct Vertex {
Vertex__anonf5ef66760111::Vertex144 Vertex(const SkPoint& point, uint8_t alpha)
145 : fPoint(point), fPrev(nullptr), fNext(nullptr)
146 , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr)
147 , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr)
148 , fPartner(nullptr)
149 , fProcessed(false)
150 , fAlpha(alpha)
151 #if LOGGING_ENABLED
152 , fID (-1.0f)
153 #endif
154 {}
155 SkPoint fPoint; // Vertex position
156 Vertex* fPrev; // Linked list of contours, then Y-sorted vertices.
157 Vertex* fNext; // "
158 Edge* fFirstEdgeAbove; // Linked list of edges above this vertex.
159 Edge* fLastEdgeAbove; // "
160 Edge* fFirstEdgeBelow; // Linked list of edges below this vertex.
161 Edge* fLastEdgeBelow; // "
162 Vertex* fPartner; // Corresponding inner or outer vertex (for AA).
163 bool fProcessed; // Has this vertex been seen in simplify()?
164 uint8_t fAlpha;
165 #if LOGGING_ENABLED
166 float fID; // Identifier used for logging.
167 #endif
168 };
169
170 /***************************************************************************************/
171
172 struct AAParams {
173 bool fTweakAlpha;
174 GrColor fColor;
175 };
176
177 typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
178
sweep_lt_horiz(const SkPoint & a,const SkPoint & b)179 bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) {
180 return a.fX < b.fX || (a.fX == b.fX && a.fY > b.fY);
181 }
182
sweep_lt_vert(const SkPoint & a,const SkPoint & b)183 bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) {
184 return a.fY < b.fY || (a.fY == b.fY && a.fX < b.fX);
185 }
186
187 struct Comparator {
188 enum class Direction { kVertical, kHorizontal };
Comparator__anonf5ef66760111::Comparator189 Comparator(Direction direction) : fDirection(direction) {}
sweep_lt__anonf5ef66760111::Comparator190 bool sweep_lt(const SkPoint& a, const SkPoint& b) const {
191 return fDirection == Direction::kHorizontal ? sweep_lt_horiz(a, b) : sweep_lt_vert(a, b);
192 }
193 Direction fDirection;
194 };
195
emit_vertex(Vertex * v,const AAParams * aaParams,void * data)196 inline void* emit_vertex(Vertex* v, const AAParams* aaParams, void* data) {
197 if (!aaParams) {
198 SkPoint* d = static_cast<SkPoint*>(data);
199 *d++ = v->fPoint;
200 return d;
201 }
202 if (aaParams->fTweakAlpha) {
203 auto d = static_cast<GrDefaultGeoProcFactory::PositionColorAttr*>(data);
204 d->fPosition = v->fPoint;
205 d->fColor = SkAlphaMulQ(aaParams->fColor, SkAlpha255To256(v->fAlpha));
206 d++;
207 return d;
208 }
209 auto d = static_cast<GrDefaultGeoProcFactory::PositionColorCoverageAttr*>(data);
210 d->fPosition = v->fPoint;
211 d->fColor = aaParams->fColor;
212 d->fCoverage = GrNormalizeByteToFloat(v->fAlpha);
213 d++;
214 return d;
215 }
216
emit_triangle(Vertex * v0,Vertex * v1,Vertex * v2,const AAParams * aaParams,void * data)217 void* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, const AAParams* aaParams, void* data) {
218 LOG("emit_triangle (%g, %g) %d\n", v0->fPoint.fX, v0->fPoint.fY, v0->fAlpha);
219 LOG(" (%g, %g) %d\n", v1->fPoint.fX, v1->fPoint.fY, v1->fAlpha);
220 LOG(" (%g, %g) %d\n", v2->fPoint.fX, v2->fPoint.fY, v2->fAlpha);
221 #if TESSELLATOR_WIREFRAME
222 data = emit_vertex(v0, aaParams, data);
223 data = emit_vertex(v1, aaParams, data);
224 data = emit_vertex(v1, aaParams, data);
225 data = emit_vertex(v2, aaParams, data);
226 data = emit_vertex(v2, aaParams, data);
227 data = emit_vertex(v0, aaParams, data);
228 #else
229 data = emit_vertex(v0, aaParams, data);
230 data = emit_vertex(v1, aaParams, data);
231 data = emit_vertex(v2, aaParams, data);
232 #endif
233 return data;
234 }
235
236 struct VertexList {
VertexList__anonf5ef66760111::VertexList237 VertexList() : fHead(nullptr), fTail(nullptr) {}
VertexList__anonf5ef66760111::VertexList238 VertexList(Vertex* head, Vertex* tail) : fHead(head), fTail(tail) {}
239 Vertex* fHead;
240 Vertex* fTail;
insert__anonf5ef66760111::VertexList241 void insert(Vertex* v, Vertex* prev, Vertex* next) {
242 list_insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, prev, next, &fHead, &fTail);
243 }
append__anonf5ef66760111::VertexList244 void append(Vertex* v) {
245 insert(v, fTail, nullptr);
246 }
append__anonf5ef66760111::VertexList247 void append(const VertexList& list) {
248 if (!list.fHead) {
249 return;
250 }
251 if (fTail) {
252 fTail->fNext = list.fHead;
253 list.fHead->fPrev = fTail;
254 } else {
255 fHead = list.fHead;
256 }
257 fTail = list.fTail;
258 }
prepend__anonf5ef66760111::VertexList259 void prepend(Vertex* v) {
260 insert(v, nullptr, fHead);
261 }
remove__anonf5ef66760111::VertexList262 void remove(Vertex* v) {
263 list_remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, &fHead, &fTail);
264 }
close__anonf5ef66760111::VertexList265 void close() {
266 if (fHead && fTail) {
267 fTail->fNext = fHead;
268 fHead->fPrev = fTail;
269 }
270 }
271 };
272
273 // Round to nearest quarter-pixel. This is used for screenspace tessellation.
274
round(SkPoint * p)275 inline void round(SkPoint* p) {
276 p->fX = SkScalarRoundToScalar(p->fX * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
277 p->fY = SkScalarRoundToScalar(p->fY * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
278 }
279
280 // A line equation in implicit form. fA * x + fB * y + fC = 0, for all points (x, y) on the line.
281 struct Line {
Line__anonf5ef66760111::Line282 Line(Vertex* p, Vertex* q) : Line(p->fPoint, q->fPoint) {}
Line__anonf5ef66760111::Line283 Line(const SkPoint& p, const SkPoint& q)
284 : fA(static_cast<double>(q.fY) - p.fY) // a = dY
285 , fB(static_cast<double>(p.fX) - q.fX) // b = -dX
286 , fC(static_cast<double>(p.fY) * q.fX - // c = cross(q, p)
287 static_cast<double>(p.fX) * q.fY) {}
dist__anonf5ef66760111::Line288 double dist(const SkPoint& p) const {
289 return fA * p.fX + fB * p.fY + fC;
290 }
magSq__anonf5ef66760111::Line291 double magSq() const {
292 return fA * fA + fB * fB;
293 }
294
295 // Compute the intersection of two (infinite) Lines.
intersect__anonf5ef66760111::Line296 bool intersect(const Line& other, SkPoint* point) {
297 double denom = fA * other.fB - fB * other.fA;
298 if (denom == 0.0) {
299 return false;
300 }
301 double scale = 1.0f / denom;
302 point->fX = SkDoubleToScalar((fB * other.fC - other.fB * fC) * scale);
303 point->fY = SkDoubleToScalar((other.fA * fC - fA * other.fC) * scale);
304 round(point);
305 return true;
306 }
307 double fA, fB, fC;
308 };
309
310 /**
311 * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and
312 * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf().
313 * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating
314 * point). For speed, that case is only tested by the callers that require it (e.g.,
315 * cleanup_active_edges()). Edges also handle checking for intersection with other edges.
316 * Currently, this converts the edges to the parametric form, in order to avoid doing a division
317 * until an intersection has been confirmed. This is slightly slower in the "found" case, but
318 * a lot faster in the "not found" case.
319 *
320 * The coefficients of the line equation stored in double precision to avoid catastrphic
321 * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is
322 * correct in float, since it's a polynomial of degree 2. The intersect() function, being
323 * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its
324 * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of
325 * this file).
326 */
327
328 struct Edge {
329 enum class Type { kInner, kOuter, kConnector };
Edge__anonf5ef66760111::Edge330 Edge(Vertex* top, Vertex* bottom, int winding, Type type)
331 : fWinding(winding)
332 , fTop(top)
333 , fBottom(bottom)
334 , fType(type)
335 , fLeft(nullptr)
336 , fRight(nullptr)
337 , fPrevEdgeAbove(nullptr)
338 , fNextEdgeAbove(nullptr)
339 , fPrevEdgeBelow(nullptr)
340 , fNextEdgeBelow(nullptr)
341 , fLeftPoly(nullptr)
342 , fRightPoly(nullptr)
343 , fLeftPolyPrev(nullptr)
344 , fLeftPolyNext(nullptr)
345 , fRightPolyPrev(nullptr)
346 , fRightPolyNext(nullptr)
347 , fUsedInLeftPoly(false)
348 , fUsedInRightPoly(false)
349 , fLine(top, bottom) {
350 }
351 int fWinding; // 1 == edge goes downward; -1 = edge goes upward.
352 Vertex* fTop; // The top vertex in vertex-sort-order (sweep_lt).
353 Vertex* fBottom; // The bottom vertex in vertex-sort-order.
354 Type fType;
355 Edge* fLeft; // The linked list of edges in the active edge list.
356 Edge* fRight; // "
357 Edge* fPrevEdgeAbove; // The linked list of edges in the bottom Vertex's "edges above".
358 Edge* fNextEdgeAbove; // "
359 Edge* fPrevEdgeBelow; // The linked list of edges in the top Vertex's "edges below".
360 Edge* fNextEdgeBelow; // "
361 Poly* fLeftPoly; // The Poly to the left of this edge, if any.
362 Poly* fRightPoly; // The Poly to the right of this edge, if any.
363 Edge* fLeftPolyPrev;
364 Edge* fLeftPolyNext;
365 Edge* fRightPolyPrev;
366 Edge* fRightPolyNext;
367 bool fUsedInLeftPoly;
368 bool fUsedInRightPoly;
369 Line fLine;
dist__anonf5ef66760111::Edge370 double dist(const SkPoint& p) const {
371 return fLine.dist(p);
372 }
isRightOf__anonf5ef66760111::Edge373 bool isRightOf(Vertex* v) const {
374 return fLine.dist(v->fPoint) < 0.0;
375 }
isLeftOf__anonf5ef66760111::Edge376 bool isLeftOf(Vertex* v) const {
377 return fLine.dist(v->fPoint) > 0.0;
378 }
recompute__anonf5ef66760111::Edge379 void recompute() {
380 fLine = Line(fTop, fBottom);
381 }
intersect__anonf5ef66760111::Edge382 bool intersect(const Edge& other, SkPoint* p, uint8_t* alpha = nullptr) {
383 LOG("intersecting %g -> %g with %g -> %g\n",
384 fTop->fID, fBottom->fID,
385 other.fTop->fID, other.fBottom->fID);
386 if (fTop == other.fTop || fBottom == other.fBottom) {
387 return false;
388 }
389 double denom = fLine.fA * other.fLine.fB - fLine.fB * other.fLine.fA;
390 if (denom == 0.0) {
391 return false;
392 }
393 double dx = static_cast<double>(other.fTop->fPoint.fX) - fTop->fPoint.fX;
394 double dy = static_cast<double>(other.fTop->fPoint.fY) - fTop->fPoint.fY;
395 double sNumer = dy * other.fLine.fB + dx * other.fLine.fA;
396 double tNumer = dy * fLine.fB + dx * fLine.fA;
397 // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
398 // This saves us doing the divide below unless absolutely necessary.
399 if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
400 : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
401 return false;
402 }
403 double s = sNumer / denom;
404 SkASSERT(s >= 0.0 && s <= 1.0);
405 p->fX = SkDoubleToScalar(fTop->fPoint.fX - s * fLine.fB);
406 p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fLine.fA);
407 if (alpha) {
408 if (fType == Type::kConnector) {
409 *alpha = (1.0 - s) * fTop->fAlpha + s * fBottom->fAlpha;
410 } else if (other.fType == Type::kConnector) {
411 double t = tNumer / denom;
412 *alpha = (1.0 - t) * other.fTop->fAlpha + t * other.fBottom->fAlpha;
413 } else if (fType == Type::kOuter && other.fType == Type::kOuter) {
414 *alpha = 0;
415 } else {
416 *alpha = 255;
417 }
418 }
419 return true;
420 }
421 };
422
423 struct EdgeList {
EdgeList__anonf5ef66760111::EdgeList424 EdgeList() : fHead(nullptr), fTail(nullptr) {}
425 Edge* fHead;
426 Edge* fTail;
insert__anonf5ef66760111::EdgeList427 void insert(Edge* edge, Edge* prev, Edge* next) {
428 list_insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &fHead, &fTail);
429 }
append__anonf5ef66760111::EdgeList430 void append(Edge* e) {
431 insert(e, fTail, nullptr);
432 }
remove__anonf5ef66760111::EdgeList433 void remove(Edge* edge) {
434 list_remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &fHead, &fTail);
435 }
removeAll__anonf5ef66760111::EdgeList436 void removeAll() {
437 while (fHead) {
438 this->remove(fHead);
439 }
440 }
close__anonf5ef66760111::EdgeList441 void close() {
442 if (fHead && fTail) {
443 fTail->fRight = fHead;
444 fHead->fLeft = fTail;
445 }
446 }
contains__anonf5ef66760111::EdgeList447 bool contains(Edge* edge) const {
448 return edge->fLeft || edge->fRight || fHead == edge;
449 }
450 };
451
452 /***************************************************************************************/
453
454 struct Poly {
Poly__anonf5ef66760111::Poly455 Poly(Vertex* v, int winding)
456 : fFirstVertex(v)
457 , fWinding(winding)
458 , fHead(nullptr)
459 , fTail(nullptr)
460 , fNext(nullptr)
461 , fPartner(nullptr)
462 , fCount(0)
463 {
464 #if LOGGING_ENABLED
465 static int gID = 0;
466 fID = gID++;
467 LOG("*** created Poly %d\n", fID);
468 #endif
469 }
470 typedef enum { kLeft_Side, kRight_Side } Side;
471 struct MonotonePoly {
MonotonePoly__anonf5ef66760111::Poly::MonotonePoly472 MonotonePoly(Edge* edge, Side side)
473 : fSide(side)
474 , fFirstEdge(nullptr)
475 , fLastEdge(nullptr)
476 , fPrev(nullptr)
477 , fNext(nullptr) {
478 this->addEdge(edge);
479 }
480 Side fSide;
481 Edge* fFirstEdge;
482 Edge* fLastEdge;
483 MonotonePoly* fPrev;
484 MonotonePoly* fNext;
addEdge__anonf5ef66760111::Poly::MonotonePoly485 void addEdge(Edge* edge) {
486 if (fSide == kRight_Side) {
487 SkASSERT(!edge->fUsedInRightPoly);
488 list_insert<Edge, &Edge::fRightPolyPrev, &Edge::fRightPolyNext>(
489 edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
490 edge->fUsedInRightPoly = true;
491 } else {
492 SkASSERT(!edge->fUsedInLeftPoly);
493 list_insert<Edge, &Edge::fLeftPolyPrev, &Edge::fLeftPolyNext>(
494 edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
495 edge->fUsedInLeftPoly = true;
496 }
497 }
498
emit__anonf5ef66760111::Poly::MonotonePoly499 void* emit(const AAParams* aaParams, void* data) {
500 Edge* e = fFirstEdge;
501 VertexList vertices;
502 vertices.append(e->fTop);
503 int count = 1;
504 while (e != nullptr) {
505 if (kRight_Side == fSide) {
506 vertices.append(e->fBottom);
507 e = e->fRightPolyNext;
508 } else {
509 vertices.prepend(e->fBottom);
510 e = e->fLeftPolyNext;
511 }
512 count++;
513 }
514 Vertex* first = vertices.fHead;
515 Vertex* v = first->fNext;
516 while (v != vertices.fTail) {
517 SkASSERT(v && v->fPrev && v->fNext);
518 Vertex* prev = v->fPrev;
519 Vertex* curr = v;
520 Vertex* next = v->fNext;
521 if (count == 3) {
522 return emit_triangle(prev, curr, next, aaParams, data);
523 }
524 double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
525 double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
526 double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
527 double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
528 if (ax * by - ay * bx >= 0.0) {
529 data = emit_triangle(prev, curr, next, aaParams, data);
530 v->fPrev->fNext = v->fNext;
531 v->fNext->fPrev = v->fPrev;
532 count--;
533 if (v->fPrev == first) {
534 v = v->fNext;
535 } else {
536 v = v->fPrev;
537 }
538 } else {
539 v = v->fNext;
540 }
541 }
542 return data;
543 }
544 };
addEdge__anonf5ef66760111::Poly545 Poly* addEdge(Edge* e, Side side, SkArenaAlloc& alloc) {
546 LOG("addEdge (%g -> %g) to poly %d, %s side\n",
547 e->fTop->fID, e->fBottom->fID, fID, side == kLeft_Side ? "left" : "right");
548 Poly* partner = fPartner;
549 Poly* poly = this;
550 if (side == kRight_Side) {
551 if (e->fUsedInRightPoly) {
552 return this;
553 }
554 } else {
555 if (e->fUsedInLeftPoly) {
556 return this;
557 }
558 }
559 if (partner) {
560 fPartner = partner->fPartner = nullptr;
561 }
562 if (!fTail) {
563 fHead = fTail = alloc.make<MonotonePoly>(e, side);
564 fCount += 2;
565 } else if (e->fBottom == fTail->fLastEdge->fBottom) {
566 return poly;
567 } else if (side == fTail->fSide) {
568 fTail->addEdge(e);
569 fCount++;
570 } else {
571 e = alloc.make<Edge>(fTail->fLastEdge->fBottom, e->fBottom, 1, Edge::Type::kInner);
572 fTail->addEdge(e);
573 fCount++;
574 if (partner) {
575 partner->addEdge(e, side, alloc);
576 poly = partner;
577 } else {
578 MonotonePoly* m = alloc.make<MonotonePoly>(e, side);
579 m->fPrev = fTail;
580 fTail->fNext = m;
581 fTail = m;
582 }
583 }
584 return poly;
585 }
emit__anonf5ef66760111::Poly586 void* emit(const AAParams* aaParams, void *data) {
587 if (fCount < 3) {
588 return data;
589 }
590 LOG("emit() %d, size %d\n", fID, fCount);
591 for (MonotonePoly* m = fHead; m != nullptr; m = m->fNext) {
592 data = m->emit(aaParams, data);
593 }
594 return data;
595 }
lastVertex__anonf5ef66760111::Poly596 Vertex* lastVertex() const { return fTail ? fTail->fLastEdge->fBottom : fFirstVertex; }
597 Vertex* fFirstVertex;
598 int fWinding;
599 MonotonePoly* fHead;
600 MonotonePoly* fTail;
601 Poly* fNext;
602 Poly* fPartner;
603 int fCount;
604 #if LOGGING_ENABLED
605 int fID;
606 #endif
607 };
608
609 /***************************************************************************************/
610
coincident(const SkPoint & a,const SkPoint & b)611 bool coincident(const SkPoint& a, const SkPoint& b) {
612 return a == b;
613 }
614
new_poly(Poly ** head,Vertex * v,int winding,SkArenaAlloc & alloc)615 Poly* new_poly(Poly** head, Vertex* v, int winding, SkArenaAlloc& alloc) {
616 Poly* poly = alloc.make<Poly>(v, winding);
617 poly->fNext = *head;
618 *head = poly;
619 return poly;
620 }
621
append_point_to_contour(const SkPoint & p,VertexList * contour,SkArenaAlloc & alloc)622 void append_point_to_contour(const SkPoint& p, VertexList* contour, SkArenaAlloc& alloc) {
623 Vertex* v = alloc.make<Vertex>(p, 255);
624 #if LOGGING_ENABLED
625 static float gID = 0.0f;
626 v->fID = gID++;
627 #endif
628 contour->append(v);
629 }
630
generate_quadratic_points(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,SkScalar tolSqd,VertexList * contour,int pointsLeft,SkArenaAlloc & alloc)631 void generate_quadratic_points(const SkPoint& p0,
632 const SkPoint& p1,
633 const SkPoint& p2,
634 SkScalar tolSqd,
635 VertexList* contour,
636 int pointsLeft,
637 SkArenaAlloc& alloc) {
638 SkScalar d = p1.distanceToLineSegmentBetweenSqd(p0, p2);
639 if (pointsLeft < 2 || d < tolSqd || !SkScalarIsFinite(d)) {
640 append_point_to_contour(p2, contour, alloc);
641 return;
642 }
643
644 const SkPoint q[] = {
645 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
646 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
647 };
648 const SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
649
650 pointsLeft >>= 1;
651 generate_quadratic_points(p0, q[0], r, tolSqd, contour, pointsLeft, alloc);
652 generate_quadratic_points(r, q[1], p2, tolSqd, contour, pointsLeft, alloc);
653 }
654
generate_cubic_points(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,const SkPoint & p3,SkScalar tolSqd,VertexList * contour,int pointsLeft,SkArenaAlloc & alloc)655 void generate_cubic_points(const SkPoint& p0,
656 const SkPoint& p1,
657 const SkPoint& p2,
658 const SkPoint& p3,
659 SkScalar tolSqd,
660 VertexList* contour,
661 int pointsLeft,
662 SkArenaAlloc& alloc) {
663 SkScalar d1 = p1.distanceToLineSegmentBetweenSqd(p0, p3);
664 SkScalar d2 = p2.distanceToLineSegmentBetweenSqd(p0, p3);
665 if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
666 !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
667 append_point_to_contour(p3, contour, alloc);
668 return;
669 }
670 const SkPoint q[] = {
671 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
672 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
673 { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
674 };
675 const SkPoint r[] = {
676 { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
677 { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
678 };
679 const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
680 pointsLeft >>= 1;
681 generate_cubic_points(p0, q[0], r[0], s, tolSqd, contour, pointsLeft, alloc);
682 generate_cubic_points(s, r[1], q[2], p3, tolSqd, contour, pointsLeft, alloc);
683 }
684
685 // Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
686
path_to_contours(const SkPath & path,SkScalar tolerance,const SkRect & clipBounds,VertexList * contours,SkArenaAlloc & alloc,bool * isLinear)687 void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
688 VertexList* contours, SkArenaAlloc& alloc, bool *isLinear) {
689 SkScalar toleranceSqd = tolerance * tolerance;
690
691 SkPoint pts[4];
692 *isLinear = true;
693 VertexList* contour = contours;
694 SkPath::Iter iter(path, false);
695 if (path.isInverseFillType()) {
696 SkPoint quad[4];
697 clipBounds.toQuad(quad);
698 for (int i = 3; i >= 0; i--) {
699 append_point_to_contour(quad[i], contours, alloc);
700 }
701 contour++;
702 }
703 SkAutoConicToQuads converter;
704 SkPath::Verb verb;
705 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
706 switch (verb) {
707 case SkPath::kConic_Verb: {
708 SkScalar weight = iter.conicWeight();
709 const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
710 for (int i = 0; i < converter.countQuads(); ++i) {
711 int pointsLeft = GrPathUtils::quadraticPointCount(quadPts, tolerance);
712 generate_quadratic_points(quadPts[0], quadPts[1], quadPts[2], toleranceSqd,
713 contour, pointsLeft, alloc);
714 quadPts += 2;
715 }
716 *isLinear = false;
717 break;
718 }
719 case SkPath::kMove_Verb:
720 if (contour->fHead) {
721 contour++;
722 }
723 append_point_to_contour(pts[0], contour, alloc);
724 break;
725 case SkPath::kLine_Verb: {
726 append_point_to_contour(pts[1], contour, alloc);
727 break;
728 }
729 case SkPath::kQuad_Verb: {
730 int pointsLeft = GrPathUtils::quadraticPointCount(pts, tolerance);
731 generate_quadratic_points(pts[0], pts[1], pts[2], toleranceSqd, contour,
732 pointsLeft, alloc);
733 *isLinear = false;
734 break;
735 }
736 case SkPath::kCubic_Verb: {
737 int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance);
738 generate_cubic_points(pts[0], pts[1], pts[2], pts[3], toleranceSqd, contour,
739 pointsLeft, alloc);
740 *isLinear = false;
741 break;
742 }
743 case SkPath::kClose_Verb:
744 case SkPath::kDone_Verb:
745 break;
746 }
747 }
748 }
749
apply_fill_type(SkPath::FillType fillType,int winding)750 inline bool apply_fill_type(SkPath::FillType fillType, int winding) {
751 switch (fillType) {
752 case SkPath::kWinding_FillType:
753 return winding != 0;
754 case SkPath::kEvenOdd_FillType:
755 return (winding & 1) != 0;
756 case SkPath::kInverseWinding_FillType:
757 return winding == 1;
758 case SkPath::kInverseEvenOdd_FillType:
759 return (winding & 1) == 1;
760 default:
761 SkASSERT(false);
762 return false;
763 }
764 }
765
apply_fill_type(SkPath::FillType fillType,Poly * poly)766 inline bool apply_fill_type(SkPath::FillType fillType, Poly* poly) {
767 return poly && apply_fill_type(fillType, poly->fWinding);
768 }
769
new_edge(Vertex * prev,Vertex * next,Edge::Type type,Comparator & c,SkArenaAlloc & alloc)770 Edge* new_edge(Vertex* prev, Vertex* next, Edge::Type type, Comparator& c, SkArenaAlloc& alloc) {
771 int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
772 Vertex* top = winding < 0 ? next : prev;
773 Vertex* bottom = winding < 0 ? prev : next;
774 return alloc.make<Edge>(top, bottom, winding, type);
775 }
776
remove_edge(Edge * edge,EdgeList * edges)777 void remove_edge(Edge* edge, EdgeList* edges) {
778 LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
779 SkASSERT(edges->contains(edge));
780 edges->remove(edge);
781 }
782
insert_edge(Edge * edge,Edge * prev,EdgeList * edges)783 void insert_edge(Edge* edge, Edge* prev, EdgeList* edges) {
784 LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
785 SkASSERT(!edges->contains(edge));
786 Edge* next = prev ? prev->fRight : edges->fHead;
787 edges->insert(edge, prev, next);
788 }
789
find_enclosing_edges(Vertex * v,EdgeList * edges,Edge ** left,Edge ** right)790 void find_enclosing_edges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) {
791 if (v->fFirstEdgeAbove && v->fLastEdgeAbove) {
792 *left = v->fFirstEdgeAbove->fLeft;
793 *right = v->fLastEdgeAbove->fRight;
794 return;
795 }
796 Edge* next = nullptr;
797 Edge* prev;
798 for (prev = edges->fTail; prev != nullptr; prev = prev->fLeft) {
799 if (prev->isLeftOf(v)) {
800 break;
801 }
802 next = prev;
803 }
804 *left = prev;
805 *right = next;
806 }
807
find_enclosing_edges(Edge * edge,EdgeList * edges,Comparator & c,Edge ** left,Edge ** right)808 void find_enclosing_edges(Edge* edge, EdgeList* edges, Comparator& c, Edge** left, Edge** right) {
809 Edge* prev = nullptr;
810 Edge* next;
811 for (next = edges->fHead; next != nullptr; next = next->fRight) {
812 if ((c.sweep_lt(next->fTop->fPoint, edge->fTop->fPoint) && next->isRightOf(edge->fTop)) ||
813 (c.sweep_lt(edge->fTop->fPoint, next->fTop->fPoint) && edge->isLeftOf(next->fTop)) ||
814 (c.sweep_lt(edge->fBottom->fPoint, next->fBottom->fPoint) &&
815 next->isRightOf(edge->fBottom)) ||
816 (c.sweep_lt(next->fBottom->fPoint, edge->fBottom->fPoint) &&
817 edge->isLeftOf(next->fBottom))) {
818 break;
819 }
820 prev = next;
821 }
822 *left = prev;
823 *right = next;
824 }
825
fix_active_state(Edge * edge,EdgeList * activeEdges,Comparator & c)826 void fix_active_state(Edge* edge, EdgeList* activeEdges, Comparator& c) {
827 if (!activeEdges) {
828 return;
829 }
830 if (activeEdges->contains(edge)) {
831 if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) {
832 remove_edge(edge, activeEdges);
833 }
834 } else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) {
835 Edge* left;
836 Edge* right;
837 find_enclosing_edges(edge, activeEdges, c, &left, &right);
838 insert_edge(edge, left, activeEdges);
839 }
840 }
841
insert_edge_above(Edge * edge,Vertex * v,Comparator & c)842 void insert_edge_above(Edge* edge, Vertex* v, Comparator& c) {
843 if (edge->fTop->fPoint == edge->fBottom->fPoint ||
844 c.sweep_lt(edge->fBottom->fPoint, edge->fTop->fPoint)) {
845 return;
846 }
847 LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
848 Edge* prev = nullptr;
849 Edge* next;
850 for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
851 if (next->isRightOf(edge->fTop)) {
852 break;
853 }
854 prev = next;
855 }
856 list_insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
857 edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
858 }
859
insert_edge_below(Edge * edge,Vertex * v,Comparator & c)860 void insert_edge_below(Edge* edge, Vertex* v, Comparator& c) {
861 if (edge->fTop->fPoint == edge->fBottom->fPoint ||
862 c.sweep_lt(edge->fBottom->fPoint, edge->fTop->fPoint)) {
863 return;
864 }
865 LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
866 Edge* prev = nullptr;
867 Edge* next;
868 for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
869 if (next->isRightOf(edge->fBottom)) {
870 break;
871 }
872 prev = next;
873 }
874 list_insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
875 edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
876 }
877
remove_edge_above(Edge * edge)878 void remove_edge_above(Edge* edge) {
879 LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
880 edge->fBottom->fID);
881 list_remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
882 edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
883 }
884
remove_edge_below(Edge * edge)885 void remove_edge_below(Edge* edge) {
886 LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
887 edge->fTop->fID);
888 list_remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
889 edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
890 }
891
disconnect(Edge * edge)892 void disconnect(Edge* edge)
893 {
894 remove_edge_above(edge);
895 remove_edge_below(edge);
896 }
897
erase_edge(Edge * edge,EdgeList * edges)898 void erase_edge(Edge* edge, EdgeList* edges) {
899 LOG("erasing edge (%g -> %g)\n", edge->fTop->fID, edge->fBottom->fID);
900 disconnect(edge);
901 if (edges && edges->contains(edge)) {
902 remove_edge(edge, edges);
903 }
904 }
905
906 void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c);
907
set_top(Edge * edge,Vertex * v,EdgeList * activeEdges,Comparator & c)908 void set_top(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
909 remove_edge_below(edge);
910 edge->fTop = v;
911 edge->recompute();
912 insert_edge_below(edge, v, c);
913 fix_active_state(edge, activeEdges, c);
914 merge_collinear_edges(edge, activeEdges, c);
915 }
916
set_bottom(Edge * edge,Vertex * v,EdgeList * activeEdges,Comparator & c)917 void set_bottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
918 remove_edge_above(edge);
919 edge->fBottom = v;
920 edge->recompute();
921 insert_edge_above(edge, v, c);
922 fix_active_state(edge, activeEdges, c);
923 merge_collinear_edges(edge, activeEdges, c);
924 }
925
merge_edges_above(Edge * edge,Edge * other,EdgeList * activeEdges,Comparator & c)926 void merge_edges_above(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
927 if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
928 LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
929 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
930 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
931 other->fWinding += edge->fWinding;
932 erase_edge(edge, activeEdges);
933 } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
934 other->fWinding += edge->fWinding;
935 set_bottom(edge, other->fTop, activeEdges, c);
936 } else {
937 edge->fWinding += other->fWinding;
938 set_bottom(other, edge->fTop, activeEdges, c);
939 }
940 }
941
merge_edges_below(Edge * edge,Edge * other,EdgeList * activeEdges,Comparator & c)942 void merge_edges_below(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
943 if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
944 LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
945 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
946 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
947 other->fWinding += edge->fWinding;
948 erase_edge(edge, activeEdges);
949 } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
950 edge->fWinding += other->fWinding;
951 set_top(other, edge->fBottom, activeEdges, c);
952 } else {
953 other->fWinding += edge->fWinding;
954 set_top(edge, other->fBottom, activeEdges, c);
955 }
956 }
957
merge_collinear_edges(Edge * edge,EdgeList * activeEdges,Comparator & c)958 void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c) {
959 if (edge->fPrevEdgeAbove && (edge->fTop == edge->fPrevEdgeAbove->fTop ||
960 !edge->fPrevEdgeAbove->isLeftOf(edge->fTop))) {
961 merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges, c);
962 } else if (edge->fNextEdgeAbove && (edge->fTop == edge->fNextEdgeAbove->fTop ||
963 !edge->isLeftOf(edge->fNextEdgeAbove->fTop))) {
964 merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges, c);
965 }
966 if (edge->fPrevEdgeBelow && (edge->fBottom == edge->fPrevEdgeBelow->fBottom ||
967 !edge->fPrevEdgeBelow->isLeftOf(edge->fBottom))) {
968 merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges, c);
969 } else if (edge->fNextEdgeBelow && (edge->fBottom == edge->fNextEdgeBelow->fBottom ||
970 !edge->isLeftOf(edge->fNextEdgeBelow->fBottom))) {
971 merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges, c);
972 }
973 }
974
975 void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkArenaAlloc& alloc);
976
cleanup_active_edges(Edge * edge,EdgeList * activeEdges,Comparator & c,SkArenaAlloc & alloc)977 void cleanup_active_edges(Edge* edge, EdgeList* activeEdges, Comparator& c, SkArenaAlloc& alloc) {
978 Vertex* top = edge->fTop;
979 Vertex* bottom = edge->fBottom;
980 if (edge->fLeft) {
981 Vertex* leftTop = edge->fLeft->fTop;
982 Vertex* leftBottom = edge->fLeft->fBottom;
983 if (c.sweep_lt(leftTop->fPoint, top->fPoint) && !edge->fLeft->isLeftOf(top)) {
984 split_edge(edge->fLeft, edge->fTop, activeEdges, c, alloc);
985 } else if (c.sweep_lt(top->fPoint, leftTop->fPoint) && !edge->isRightOf(leftTop)) {
986 split_edge(edge, leftTop, activeEdges, c, alloc);
987 } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) &&
988 !edge->fLeft->isLeftOf(bottom)) {
989 split_edge(edge->fLeft, bottom, activeEdges, c, alloc);
990 } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) {
991 split_edge(edge, leftBottom, activeEdges, c, alloc);
992 }
993 }
994 if (edge->fRight) {
995 Vertex* rightTop = edge->fRight->fTop;
996 Vertex* rightBottom = edge->fRight->fBottom;
997 if (c.sweep_lt(rightTop->fPoint, top->fPoint) && !edge->fRight->isRightOf(top)) {
998 split_edge(edge->fRight, top, activeEdges, c, alloc);
999 } else if (c.sweep_lt(top->fPoint, rightTop->fPoint) && !edge->isLeftOf(rightTop)) {
1000 split_edge(edge, rightTop, activeEdges, c, alloc);
1001 } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
1002 !edge->fRight->isRightOf(bottom)) {
1003 split_edge(edge->fRight, bottom, activeEdges, c, alloc);
1004 } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
1005 !edge->isLeftOf(rightBottom)) {
1006 split_edge(edge, rightBottom, activeEdges, c, alloc);
1007 }
1008 }
1009 }
1010
split_edge(Edge * edge,Vertex * v,EdgeList * activeEdges,Comparator & c,SkArenaAlloc & alloc)1011 void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkArenaAlloc& alloc) {
1012 LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
1013 edge->fTop->fID, edge->fBottom->fID,
1014 v->fID, v->fPoint.fX, v->fPoint.fY);
1015 if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) {
1016 set_top(edge, v, activeEdges, c);
1017 } else if (c.sweep_lt(edge->fBottom->fPoint, v->fPoint)) {
1018 set_bottom(edge, v, activeEdges, c);
1019 } else {
1020 Edge* newEdge = alloc.make<Edge>(v, edge->fBottom, edge->fWinding, edge->fType);
1021 insert_edge_below(newEdge, v, c);
1022 insert_edge_above(newEdge, edge->fBottom, c);
1023 set_bottom(edge, v, activeEdges, c);
1024 cleanup_active_edges(edge, activeEdges, c, alloc);
1025 fix_active_state(newEdge, activeEdges, c);
1026 merge_collinear_edges(newEdge, activeEdges, c);
1027 }
1028 }
1029
connect(Vertex * prev,Vertex * next,Edge::Type type,Comparator & c,SkArenaAlloc & alloc,int winding_scale=1)1030 Edge* connect(Vertex* prev, Vertex* next, Edge::Type type, Comparator& c, SkArenaAlloc& alloc,
1031 int winding_scale = 1) {
1032 Edge* edge = new_edge(prev, next, type, c, alloc);
1033 insert_edge_below(edge, edge->fTop, c);
1034 insert_edge_above(edge, edge->fBottom, c);
1035 edge->fWinding *= winding_scale;
1036 merge_collinear_edges(edge, nullptr, c);
1037 return edge;
1038 }
1039
merge_vertices(Vertex * src,Vertex * dst,VertexList * mesh,Comparator & c,SkArenaAlloc & alloc)1040 void merge_vertices(Vertex* src, Vertex* dst, VertexList* mesh, Comparator& c,
1041 SkArenaAlloc& alloc) {
1042 LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY,
1043 src->fID, dst->fID);
1044 dst->fAlpha = SkTMax(src->fAlpha, dst->fAlpha);
1045 if (src->fPartner) {
1046 src->fPartner->fPartner = dst;
1047 }
1048 for (Edge* edge = src->fFirstEdgeAbove; edge;) {
1049 Edge* next = edge->fNextEdgeAbove;
1050 set_bottom(edge, dst, nullptr, c);
1051 edge = next;
1052 }
1053 for (Edge* edge = src->fFirstEdgeBelow; edge;) {
1054 Edge* next = edge->fNextEdgeBelow;
1055 set_top(edge, dst, nullptr, c);
1056 edge = next;
1057 }
1058 mesh->remove(src);
1059 }
1060
max_edge_alpha(Edge * a,Edge * b)1061 uint8_t max_edge_alpha(Edge* a, Edge* b) {
1062 if (a->fType == Edge::Type::kInner || b->fType == Edge::Type::kInner) {
1063 return 255;
1064 } else if (a->fType == Edge::Type::kOuter && b->fType == Edge::Type::kOuter) {
1065 return 0;
1066 } else {
1067 return SkTMax(SkTMax(a->fTop->fAlpha, a->fBottom->fAlpha),
1068 SkTMax(b->fTop->fAlpha, b->fBottom->fAlpha));
1069 }
1070 }
1071
check_for_intersection(Edge * edge,Edge * other,EdgeList * activeEdges,Comparator & c,SkArenaAlloc & alloc)1072 Vertex* check_for_intersection(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c,
1073 SkArenaAlloc& alloc) {
1074 if (!edge || !other) {
1075 return nullptr;
1076 }
1077 SkPoint p;
1078 uint8_t alpha;
1079 if (edge->intersect(*other, &p, &alpha)) {
1080 Vertex* v;
1081 LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
1082 if (p == edge->fTop->fPoint || c.sweep_lt(p, edge->fTop->fPoint)) {
1083 split_edge(other, edge->fTop, activeEdges, c, alloc);
1084 v = edge->fTop;
1085 } else if (p == edge->fBottom->fPoint || c.sweep_lt(edge->fBottom->fPoint, p)) {
1086 split_edge(other, edge->fBottom, activeEdges, c, alloc);
1087 v = edge->fBottom;
1088 } else if (p == other->fTop->fPoint || c.sweep_lt(p, other->fTop->fPoint)) {
1089 split_edge(edge, other->fTop, activeEdges, c, alloc);
1090 v = other->fTop;
1091 } else if (p == other->fBottom->fPoint || c.sweep_lt(other->fBottom->fPoint, p)) {
1092 split_edge(edge, other->fBottom, activeEdges, c, alloc);
1093 v = other->fBottom;
1094 } else {
1095 Vertex* nextV = edge->fTop;
1096 while (c.sweep_lt(p, nextV->fPoint)) {
1097 nextV = nextV->fPrev;
1098 }
1099 while (c.sweep_lt(nextV->fPoint, p)) {
1100 nextV = nextV->fNext;
1101 }
1102 Vertex* prevV = nextV->fPrev;
1103 if (coincident(prevV->fPoint, p)) {
1104 v = prevV;
1105 } else if (coincident(nextV->fPoint, p)) {
1106 v = nextV;
1107 } else {
1108 v = alloc.make<Vertex>(p, alpha);
1109 LOG("inserting between %g (%g, %g) and %g (%g, %g)\n",
1110 prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY,
1111 nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY);
1112 #if LOGGING_ENABLED
1113 v->fID = (nextV->fID + prevV->fID) * 0.5f;
1114 #endif
1115 v->fPrev = prevV;
1116 v->fNext = nextV;
1117 prevV->fNext = v;
1118 nextV->fPrev = v;
1119 }
1120 split_edge(edge, v, activeEdges, c, alloc);
1121 split_edge(other, v, activeEdges, c, alloc);
1122 }
1123 v->fAlpha = SkTMax(v->fAlpha, alpha);
1124 return v;
1125 }
1126 return nullptr;
1127 }
1128
sanitize_contours(VertexList * contours,int contourCnt,bool approximate)1129 void sanitize_contours(VertexList* contours, int contourCnt, bool approximate) {
1130 for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) {
1131 SkASSERT(contour->fHead);
1132 Vertex* prev = contour->fTail;
1133 if (approximate) {
1134 round(&prev->fPoint);
1135 }
1136 for (Vertex* v = contour->fHead; v;) {
1137 if (approximate) {
1138 round(&v->fPoint);
1139 }
1140 Vertex* next = v->fNext;
1141 if (coincident(prev->fPoint, v->fPoint)) {
1142 LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
1143 contour->remove(v);
1144 }
1145 prev = v;
1146 v = next;
1147 }
1148 }
1149 }
1150
merge_coincident_vertices(VertexList * mesh,Comparator & c,SkArenaAlloc & alloc)1151 void merge_coincident_vertices(VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
1152 if (!mesh->fHead) {
1153 return;
1154 }
1155 for (Vertex* v = mesh->fHead->fNext; v != nullptr; v = v->fNext) {
1156 if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) {
1157 v->fPoint = v->fPrev->fPoint;
1158 }
1159 if (coincident(v->fPrev->fPoint, v->fPoint)) {
1160 merge_vertices(v->fPrev, v, mesh, c, alloc);
1161 }
1162 }
1163 }
1164
1165 // Stage 2: convert the contours to a mesh of edges connecting the vertices.
1166
build_edges(VertexList * contours,int contourCnt,VertexList * mesh,Comparator & c,SkArenaAlloc & alloc)1167 void build_edges(VertexList* contours, int contourCnt, VertexList* mesh, Comparator& c,
1168 SkArenaAlloc& alloc) {
1169 for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) {
1170 Vertex* prev = contour->fTail;
1171 for (Vertex* v = contour->fHead; v;) {
1172 Vertex* next = v->fNext;
1173 connect(prev, v, Edge::Type::kInner, c, alloc);
1174 mesh->append(v);
1175 prev = v;
1176 v = next;
1177 }
1178 }
1179 }
1180
connect_partners(VertexList * outerVertices,Comparator & c,SkArenaAlloc & alloc)1181 void connect_partners(VertexList* outerVertices, Comparator& c, SkArenaAlloc& alloc) {
1182 for (Vertex* outer = outerVertices->fHead; outer; outer = outer->fNext) {
1183 if (Vertex* inner = outer->fPartner) {
1184 // Connector edges get zero winding, since they're only structural (i.e., to ensure
1185 // no 0-0-0 alpha triangles are produced), and shouldn't affect the poly winding number.
1186 connect(outer, inner, Edge::Type::kConnector, c, alloc, 0);
1187 inner->fPartner = outer->fPartner = nullptr;
1188 }
1189 }
1190 }
1191
1192 template <CompareFunc sweep_lt>
sorted_merge(VertexList * front,VertexList * back,VertexList * result)1193 void sorted_merge(VertexList* front, VertexList* back, VertexList* result) {
1194 Vertex* a = front->fHead;
1195 Vertex* b = back->fHead;
1196 while (a && b) {
1197 if (sweep_lt(a->fPoint, b->fPoint)) {
1198 front->remove(a);
1199 result->append(a);
1200 a = front->fHead;
1201 } else {
1202 back->remove(b);
1203 result->append(b);
1204 b = back->fHead;
1205 }
1206 }
1207 result->append(*front);
1208 result->append(*back);
1209 }
1210
sorted_merge(VertexList * front,VertexList * back,VertexList * result,Comparator & c)1211 void sorted_merge(VertexList* front, VertexList* back, VertexList* result, Comparator& c) {
1212 if (c.fDirection == Comparator::Direction::kHorizontal) {
1213 sorted_merge<sweep_lt_horiz>(front, back, result);
1214 } else {
1215 sorted_merge<sweep_lt_vert>(front, back, result);
1216 }
1217 }
1218
1219 // Stage 3: sort the vertices by increasing sweep direction.
1220
1221 template <CompareFunc sweep_lt>
merge_sort(VertexList * vertices)1222 void merge_sort(VertexList* vertices) {
1223 Vertex* slow = vertices->fHead;
1224 if (!slow) {
1225 return;
1226 }
1227 Vertex* fast = slow->fNext;
1228 if (!fast) {
1229 return;
1230 }
1231 do {
1232 fast = fast->fNext;
1233 if (fast) {
1234 fast = fast->fNext;
1235 slow = slow->fNext;
1236 }
1237 } while (fast);
1238 VertexList front(vertices->fHead, slow);
1239 VertexList back(slow->fNext, vertices->fTail);
1240 front.fTail->fNext = back.fHead->fPrev = nullptr;
1241
1242 merge_sort<sweep_lt>(&front);
1243 merge_sort<sweep_lt>(&back);
1244
1245 vertices->fHead = vertices->fTail = nullptr;
1246 sorted_merge<sweep_lt>(&front, &back, vertices);
1247 }
1248
1249 // Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
1250
simplify(const VertexList & vertices,Comparator & c,SkArenaAlloc & alloc)1251 void simplify(const VertexList& vertices, Comparator& c, SkArenaAlloc& alloc) {
1252 LOG("simplifying complex polygons\n");
1253 EdgeList activeEdges;
1254 for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) {
1255 if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1256 continue;
1257 }
1258 #if LOGGING_ENABLED
1259 LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1260 #endif
1261 Edge* leftEnclosingEdge;
1262 Edge* rightEnclosingEdge;
1263 bool restartChecks;
1264 do {
1265 restartChecks = false;
1266 find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1267 if (v->fFirstEdgeBelow) {
1268 for (Edge* edge = v->fFirstEdgeBelow; edge; edge = edge->fNextEdgeBelow) {
1269 if (check_for_intersection(edge, leftEnclosingEdge, &activeEdges, c, alloc)) {
1270 restartChecks = true;
1271 break;
1272 }
1273 if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, c, alloc)) {
1274 restartChecks = true;
1275 break;
1276 }
1277 }
1278 } else {
1279 if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge,
1280 &activeEdges, c, alloc)) {
1281 if (c.sweep_lt(pv->fPoint, v->fPoint)) {
1282 v = pv;
1283 }
1284 restartChecks = true;
1285 }
1286
1287 }
1288 } while (restartChecks);
1289 if (v->fAlpha == 0) {
1290 if ((leftEnclosingEdge && leftEnclosingEdge->fWinding < 0) &&
1291 (rightEnclosingEdge && rightEnclosingEdge->fWinding > 0)) {
1292 v->fAlpha = max_edge_alpha(leftEnclosingEdge, rightEnclosingEdge);
1293 }
1294 }
1295 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1296 remove_edge(e, &activeEdges);
1297 }
1298 Edge* leftEdge = leftEnclosingEdge;
1299 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1300 insert_edge(e, leftEdge, &activeEdges);
1301 leftEdge = e;
1302 }
1303 v->fProcessed = true;
1304 }
1305 }
1306
1307 // This is a stripped-down version of simplify() (the Bentley-Ottmann algorithm) that
1308 // early-returns true on the first found intersection, false if none.
is_complex(const VertexList & vertices)1309 bool is_complex(const VertexList& vertices) {
1310 LOG("testing polygon complexity\n");
1311 EdgeList activeEdges;
1312 for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) {
1313 if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1314 continue;
1315 }
1316 Edge* leftEnclosingEdge;
1317 Edge* rightEnclosingEdge;
1318 find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1319 SkPoint dummy;
1320 if (v->fFirstEdgeBelow) {
1321 for (Edge* edge = v->fFirstEdgeBelow; edge; edge = edge->fNextEdgeBelow) {
1322 if (edge && leftEnclosingEdge && edge->intersect(*leftEnclosingEdge, &dummy)) {
1323 activeEdges.removeAll();
1324 return true;
1325 }
1326 if (edge && rightEnclosingEdge && edge->intersect(*rightEnclosingEdge, &dummy)) {
1327 activeEdges.removeAll();
1328 return true;
1329 }
1330 }
1331 } else if (leftEnclosingEdge && rightEnclosingEdge &&
1332 leftEnclosingEdge->intersect(*rightEnclosingEdge, &dummy)) {
1333 activeEdges.removeAll();
1334 return true;
1335 }
1336 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1337 remove_edge(e, &activeEdges);
1338 }
1339 Edge* leftEdge = leftEnclosingEdge;
1340 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1341 insert_edge(e, leftEdge, &activeEdges);
1342 leftEdge = e;
1343 }
1344 }
1345 activeEdges.removeAll();
1346 return false;
1347 }
1348
1349 // Stage 5: Tessellate the simplified mesh into monotone polygons.
1350
tessellate(const VertexList & vertices,SkArenaAlloc & alloc)1351 Poly* tessellate(const VertexList& vertices, SkArenaAlloc& alloc) {
1352 LOG("tessellating simple polygons\n");
1353 EdgeList activeEdges;
1354 Poly* polys = nullptr;
1355 for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) {
1356 if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1357 continue;
1358 }
1359 #if LOGGING_ENABLED
1360 LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1361 #endif
1362 Edge* leftEnclosingEdge;
1363 Edge* rightEnclosingEdge;
1364 find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1365 Poly* leftPoly;
1366 Poly* rightPoly;
1367 if (v->fFirstEdgeAbove) {
1368 leftPoly = v->fFirstEdgeAbove->fLeftPoly;
1369 rightPoly = v->fLastEdgeAbove->fRightPoly;
1370 } else {
1371 leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr;
1372 rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr;
1373 }
1374 #if LOGGING_ENABLED
1375 LOG("edges above:\n");
1376 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1377 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1378 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1379 }
1380 LOG("edges below:\n");
1381 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1382 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1383 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1384 }
1385 #endif
1386 if (v->fFirstEdgeAbove) {
1387 if (leftPoly) {
1388 leftPoly = leftPoly->addEdge(v->fFirstEdgeAbove, Poly::kRight_Side, alloc);
1389 }
1390 if (rightPoly) {
1391 rightPoly = rightPoly->addEdge(v->fLastEdgeAbove, Poly::kLeft_Side, alloc);
1392 }
1393 for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
1394 Edge* rightEdge = e->fNextEdgeAbove;
1395 SkASSERT(rightEdge->isRightOf(e->fTop));
1396 remove_edge(e, &activeEdges);
1397 if (e->fRightPoly) {
1398 e->fRightPoly->addEdge(e, Poly::kLeft_Side, alloc);
1399 }
1400 if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != e->fRightPoly) {
1401 rightEdge->fLeftPoly->addEdge(e, Poly::kRight_Side, alloc);
1402 }
1403 }
1404 remove_edge(v->fLastEdgeAbove, &activeEdges);
1405 if (!v->fFirstEdgeBelow) {
1406 if (leftPoly && rightPoly && leftPoly != rightPoly) {
1407 SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr);
1408 rightPoly->fPartner = leftPoly;
1409 leftPoly->fPartner = rightPoly;
1410 }
1411 }
1412 }
1413 if (v->fFirstEdgeBelow) {
1414 if (!v->fFirstEdgeAbove) {
1415 if (leftPoly && rightPoly) {
1416 if (leftPoly == rightPoly) {
1417 if (leftPoly->fTail && leftPoly->fTail->fSide == Poly::kLeft_Side) {
1418 leftPoly = new_poly(&polys, leftPoly->lastVertex(),
1419 leftPoly->fWinding, alloc);
1420 leftEnclosingEdge->fRightPoly = leftPoly;
1421 } else {
1422 rightPoly = new_poly(&polys, rightPoly->lastVertex(),
1423 rightPoly->fWinding, alloc);
1424 rightEnclosingEdge->fLeftPoly = rightPoly;
1425 }
1426 }
1427 Edge* join = alloc.make<Edge>(leftPoly->lastVertex(), v, 1, Edge::Type::kInner);
1428 leftPoly = leftPoly->addEdge(join, Poly::kRight_Side, alloc);
1429 rightPoly = rightPoly->addEdge(join, Poly::kLeft_Side, alloc);
1430 }
1431 }
1432 Edge* leftEdge = v->fFirstEdgeBelow;
1433 leftEdge->fLeftPoly = leftPoly;
1434 insert_edge(leftEdge, leftEnclosingEdge, &activeEdges);
1435 for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
1436 rightEdge = rightEdge->fNextEdgeBelow) {
1437 insert_edge(rightEdge, leftEdge, &activeEdges);
1438 int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
1439 winding += leftEdge->fWinding;
1440 if (winding != 0) {
1441 Poly* poly = new_poly(&polys, v, winding, alloc);
1442 leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
1443 }
1444 leftEdge = rightEdge;
1445 }
1446 v->fLastEdgeBelow->fRightPoly = rightPoly;
1447 }
1448 #if LOGGING_ENABLED
1449 LOG("\nactive edges:\n");
1450 for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) {
1451 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1452 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1453 }
1454 #endif
1455 }
1456 return polys;
1457 }
1458
remove_non_boundary_edges(const VertexList & mesh,SkPath::FillType fillType,SkArenaAlloc & alloc)1459 void remove_non_boundary_edges(const VertexList& mesh, SkPath::FillType fillType,
1460 SkArenaAlloc& alloc) {
1461 LOG("removing non-boundary edges\n");
1462 EdgeList activeEdges;
1463 for (Vertex* v = mesh.fHead; v != nullptr; v = v->fNext) {
1464 if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1465 continue;
1466 }
1467 Edge* leftEnclosingEdge;
1468 Edge* rightEnclosingEdge;
1469 find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1470 bool prevFilled = leftEnclosingEdge &&
1471 apply_fill_type(fillType, leftEnclosingEdge->fWinding);
1472 for (Edge* e = v->fFirstEdgeAbove; e;) {
1473 Edge* next = e->fNextEdgeAbove;
1474 remove_edge(e, &activeEdges);
1475 bool filled = apply_fill_type(fillType, e->fWinding);
1476 if (filled == prevFilled) {
1477 disconnect(e);
1478 }
1479 prevFilled = filled;
1480 e = next;
1481 }
1482 Edge* prev = leftEnclosingEdge;
1483 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1484 if (prev) {
1485 e->fWinding += prev->fWinding;
1486 }
1487 insert_edge(e, prev, &activeEdges);
1488 prev = e;
1489 }
1490 }
1491 }
1492
1493 // Note: this is the normal to the edge, but not necessarily unit length.
get_edge_normal(const Edge * e,SkVector * normal)1494 void get_edge_normal(const Edge* e, SkVector* normal) {
1495 normal->set(SkDoubleToScalar(e->fLine.fA) * e->fWinding,
1496 SkDoubleToScalar(e->fLine.fB) * e->fWinding);
1497 }
1498
1499 // Stage 5c: detect and remove "pointy" vertices whose edge normals point in opposite directions
1500 // and whose adjacent vertices are less than a quarter pixel from an edge. These are guaranteed to
1501 // invert on stroking.
1502
simplify_boundary(EdgeList * boundary,Comparator & c,SkArenaAlloc & alloc)1503 void simplify_boundary(EdgeList* boundary, Comparator& c, SkArenaAlloc& alloc) {
1504 Edge* prevEdge = boundary->fTail;
1505 SkVector prevNormal;
1506 get_edge_normal(prevEdge, &prevNormal);
1507 for (Edge* e = boundary->fHead; e != nullptr;) {
1508 Vertex* prev = prevEdge->fWinding == 1 ? prevEdge->fTop : prevEdge->fBottom;
1509 Vertex* next = e->fWinding == 1 ? e->fBottom : e->fTop;
1510 double dist = e->dist(prev->fPoint);
1511 SkVector normal;
1512 get_edge_normal(e, &normal);
1513 double denom = 0.0625f * e->fLine.magSq();
1514 if (prevNormal.dot(normal) < 0.0 && (dist * dist) <= denom) {
1515 Edge* join = new_edge(prev, next, Edge::Type::kInner, c, alloc);
1516 insert_edge(join, e, boundary);
1517 remove_edge(prevEdge, boundary);
1518 remove_edge(e, boundary);
1519 if (join->fLeft && join->fRight) {
1520 prevEdge = join->fLeft;
1521 e = join;
1522 } else {
1523 prevEdge = boundary->fTail;
1524 e = boundary->fHead; // join->fLeft ? join->fLeft : join;
1525 }
1526 get_edge_normal(prevEdge, &prevNormal);
1527 } else {
1528 prevEdge = e;
1529 prevNormal = normal;
1530 e = e->fRight;
1531 }
1532 }
1533 }
1534
fix_inversions(Vertex * prev,Vertex * next,Edge * prevBisector,Edge * nextBisector,Edge * prevEdge,Comparator & c)1535 void fix_inversions(Vertex* prev, Vertex* next, Edge* prevBisector, Edge* nextBisector,
1536 Edge* prevEdge, Comparator& c) {
1537 if (!prev || !next) {
1538 return;
1539 }
1540 int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
1541 SkPoint p;
1542 uint8_t alpha;
1543 if (winding != prevEdge->fWinding && prevBisector->intersect(*nextBisector, &p, &alpha)) {
1544 prev->fPoint = next->fPoint = p;
1545 prev->fAlpha = next->fAlpha = alpha;
1546 }
1547 }
1548
1549 // Stage 5d: Displace edges by half a pixel inward and outward along their normals. Intersect to
1550 // find new vertices, and set zero alpha on the exterior and one alpha on the interior. Build a
1551 // new antialiased mesh from those vertices.
1552
stroke_boundary(EdgeList * boundary,VertexList * innerMesh,VertexList * outerMesh,Comparator & c,SkArenaAlloc & alloc)1553 void stroke_boundary(EdgeList* boundary, VertexList* innerMesh, VertexList* outerMesh,
1554 Comparator& c, SkArenaAlloc& alloc) {
1555 // A boundary with fewer than 3 edges is degenerate.
1556 if (!boundary->fHead || !boundary->fHead->fRight || !boundary->fHead->fRight->fRight) {
1557 return;
1558 }
1559 Edge* prevEdge = boundary->fTail;
1560 float radius = 0.5f;
1561 double offset = radius * sqrt(prevEdge->fLine.magSq()) * prevEdge->fWinding;
1562 Line prevInner(prevEdge->fLine);
1563 prevInner.fC -= offset;
1564 Line prevOuter(prevEdge->fLine);
1565 prevOuter.fC += offset;
1566 VertexList innerVertices;
1567 VertexList outerVertices;
1568 Edge* prevBisector = nullptr;
1569 for (Edge* e = boundary->fHead; e != nullptr; e = e->fRight) {
1570 double offset = radius * sqrt(e->fLine.magSq()) * e->fWinding;
1571 Line inner(e->fLine);
1572 inner.fC -= offset;
1573 Line outer(e->fLine);
1574 outer.fC += offset;
1575 SkPoint innerPoint, outerPoint;
1576 if (prevInner.intersect(inner, &innerPoint) &&
1577 prevOuter.intersect(outer, &outerPoint)) {
1578 Vertex* innerVertex = alloc.make<Vertex>(innerPoint, 255);
1579 Vertex* outerVertex = alloc.make<Vertex>(outerPoint, 0);
1580 Edge* bisector = new_edge(outerVertex, innerVertex, Edge::Type::kConnector, c, alloc);
1581 fix_inversions(innerVertices.fTail, innerVertex, prevBisector, bisector, prevEdge, c);
1582 fix_inversions(outerVertices.fTail, outerVertex, prevBisector, bisector, prevEdge, c);
1583 innerVertex->fPartner = outerVertex;
1584 outerVertex->fPartner = innerVertex;
1585 innerVertices.append(innerVertex);
1586 outerVertices.append(outerVertex);
1587 prevBisector = bisector;
1588 }
1589 prevInner = inner;
1590 prevOuter = outer;
1591 prevEdge = e;
1592 }
1593
1594 Vertex* innerVertex = innerVertices.fHead;
1595 Vertex* outerVertex = outerVertices.fHead;
1596 if (!innerVertex || !outerVertex) {
1597 return;
1598 }
1599 Edge* bisector = new_edge(outerVertices.fHead, innerVertices.fHead, Edge::Type::kConnector, c,
1600 alloc);
1601 fix_inversions(innerVertices.fTail, innerVertices.fHead, prevBisector, bisector, prevEdge, c);
1602 fix_inversions(outerVertices.fTail, outerVertices.fHead, prevBisector, bisector, prevEdge, c);
1603 Vertex* prevInnerVertex = innerVertices.fTail;
1604 Vertex* prevOuterVertex = outerVertices.fTail;
1605 while (innerVertex && outerVertex) {
1606 // Connect vertices into a quad mesh. Outer edges get default (1) winding.
1607 // Inner edges get -2 winding. This ensures that the interior is always filled
1608 // (-1 winding number for normal cases, 3 for thin features where the interior inverts).
1609 connect(prevOuterVertex, outerVertex, Edge::Type::kOuter, c, alloc);
1610 connect(prevInnerVertex, innerVertex, Edge::Type::kInner, c, alloc, -2);
1611 prevInnerVertex = innerVertex;
1612 prevOuterVertex = outerVertex;
1613 innerVertex = innerVertex->fNext;
1614 outerVertex = outerVertex->fNext;
1615 }
1616 innerMesh->append(innerVertices);
1617 outerMesh->append(outerVertices);
1618 }
1619
extract_boundary(EdgeList * boundary,Edge * e,SkPath::FillType fillType,SkArenaAlloc & alloc)1620 void extract_boundary(EdgeList* boundary, Edge* e, SkPath::FillType fillType, SkArenaAlloc& alloc) {
1621 bool down = apply_fill_type(fillType, e->fWinding);
1622 while (e) {
1623 e->fWinding = down ? 1 : -1;
1624 Edge* next;
1625 boundary->append(e);
1626 if (down) {
1627 // Find outgoing edge, in clockwise order.
1628 if ((next = e->fNextEdgeAbove)) {
1629 down = false;
1630 } else if ((next = e->fBottom->fLastEdgeBelow)) {
1631 down = true;
1632 } else if ((next = e->fPrevEdgeAbove)) {
1633 down = false;
1634 }
1635 } else {
1636 // Find outgoing edge, in counter-clockwise order.
1637 if ((next = e->fPrevEdgeBelow)) {
1638 down = true;
1639 } else if ((next = e->fTop->fFirstEdgeAbove)) {
1640 down = false;
1641 } else if ((next = e->fNextEdgeBelow)) {
1642 down = true;
1643 }
1644 }
1645 disconnect(e);
1646 e = next;
1647 }
1648 }
1649
1650 // Stage 5b: Extract boundaries from mesh, simplify and stroke them into a new mesh.
1651
extract_boundaries(const VertexList & inMesh,VertexList * innerVertices,VertexList * outerVertices,SkPath::FillType fillType,Comparator & c,SkArenaAlloc & alloc)1652 void extract_boundaries(const VertexList& inMesh, VertexList* innerVertices,
1653 VertexList* outerVertices, SkPath::FillType fillType,
1654 Comparator& c, SkArenaAlloc& alloc) {
1655 remove_non_boundary_edges(inMesh, fillType, alloc);
1656 for (Vertex* v = inMesh.fHead; v; v = v->fNext) {
1657 while (v->fFirstEdgeBelow) {
1658 EdgeList boundary;
1659 extract_boundary(&boundary, v->fFirstEdgeBelow, fillType, alloc);
1660 simplify_boundary(&boundary, c, alloc);
1661 stroke_boundary(&boundary, innerVertices, outerVertices, c, alloc);
1662 }
1663 }
1664 }
1665
1666 // This is a driver function that calls stages 2-5 in turn.
1667
contours_to_mesh(VertexList * contours,int contourCnt,bool antialias,VertexList * mesh,Comparator & c,SkArenaAlloc & alloc)1668 void contours_to_mesh(VertexList* contours, int contourCnt, bool antialias,
1669 VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
1670 #if LOGGING_ENABLED
1671 for (int i = 0; i < contourCnt; ++i) {
1672 Vertex* v = contours[i].fHead;
1673 SkASSERT(v);
1674 LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1675 for (v = v->fNext; v; v = v->fNext) {
1676 LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1677 }
1678 }
1679 #endif
1680 sanitize_contours(contours, contourCnt, antialias);
1681 build_edges(contours, contourCnt, mesh, c, alloc);
1682 }
1683
sort_mesh(VertexList * vertices,Comparator & c,SkArenaAlloc & alloc)1684 void sort_mesh(VertexList* vertices, Comparator& c, SkArenaAlloc& alloc) {
1685 if (!vertices || !vertices->fHead) {
1686 return;
1687 }
1688
1689 // Sort vertices in Y (secondarily in X).
1690 if (c.fDirection == Comparator::Direction::kHorizontal) {
1691 merge_sort<sweep_lt_horiz>(vertices);
1692 } else {
1693 merge_sort<sweep_lt_vert>(vertices);
1694 }
1695 #if LOGGING_ENABLED
1696 for (Vertex* v = vertices->fHead; v != nullptr; v = v->fNext) {
1697 static float gID = 0.0f;
1698 v->fID = gID++;
1699 }
1700 #endif
1701 }
1702
contours_to_polys(VertexList * contours,int contourCnt,SkPath::FillType fillType,const SkRect & pathBounds,bool antialias,VertexList * outerMesh,SkArenaAlloc & alloc)1703 Poly* contours_to_polys(VertexList* contours, int contourCnt, SkPath::FillType fillType,
1704 const SkRect& pathBounds, bool antialias, VertexList* outerMesh,
1705 SkArenaAlloc& alloc) {
1706 Comparator c(pathBounds.width() > pathBounds.height() ? Comparator::Direction::kHorizontal
1707 : Comparator::Direction::kVertical);
1708 VertexList mesh;
1709 contours_to_mesh(contours, contourCnt, antialias, &mesh, c, alloc);
1710 sort_mesh(&mesh, c, alloc);
1711 merge_coincident_vertices(&mesh, c, alloc);
1712 simplify(mesh, c, alloc);
1713 if (antialias) {
1714 VertexList innerMesh;
1715 extract_boundaries(mesh, &innerMesh, outerMesh, fillType, c, alloc);
1716 sort_mesh(&innerMesh, c, alloc);
1717 sort_mesh(outerMesh, c, alloc);
1718 if (is_complex(innerMesh) || is_complex(*outerMesh)) {
1719 LOG("found complex mesh; taking slow path\n");
1720 VertexList aaMesh;
1721 connect_partners(outerMesh, c, alloc);
1722 sorted_merge(&innerMesh, outerMesh, &aaMesh, c);
1723 merge_coincident_vertices(&aaMesh, c, alloc);
1724 simplify(aaMesh, c, alloc);
1725 outerMesh->fHead = outerMesh->fTail = nullptr;
1726 return tessellate(aaMesh, alloc);
1727 } else {
1728 LOG("no complex polygons; taking fast path\n");
1729 merge_coincident_vertices(&innerMesh, c, alloc);
1730 return tessellate(innerMesh, alloc);
1731 }
1732 } else {
1733 return tessellate(mesh, alloc);
1734 }
1735 }
1736
1737 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
polys_to_triangles(Poly * polys,SkPath::FillType fillType,const AAParams * aaParams,void * data)1738 void* polys_to_triangles(Poly* polys, SkPath::FillType fillType, const AAParams* aaParams,
1739 void* data) {
1740 for (Poly* poly = polys; poly; poly = poly->fNext) {
1741 if (apply_fill_type(fillType, poly)) {
1742 data = poly->emit(aaParams, data);
1743 }
1744 }
1745 return data;
1746 }
1747
path_to_polys(const SkPath & path,SkScalar tolerance,const SkRect & clipBounds,int contourCnt,SkArenaAlloc & alloc,bool antialias,bool * isLinear,VertexList * outerMesh)1748 Poly* path_to_polys(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
1749 int contourCnt, SkArenaAlloc& alloc, bool antialias, bool* isLinear,
1750 VertexList* outerMesh) {
1751 SkPath::FillType fillType = path.getFillType();
1752 if (SkPath::IsInverseFillType(fillType)) {
1753 contourCnt++;
1754 }
1755 std::unique_ptr<VertexList[]> contours(new VertexList[contourCnt]);
1756
1757 path_to_contours(path, tolerance, clipBounds, contours.get(), alloc, isLinear);
1758 return contours_to_polys(contours.get(), contourCnt, path.getFillType(), path.getBounds(),
1759 antialias, outerMesh, alloc);
1760 }
1761
get_contour_count(const SkPath & path,SkScalar tolerance)1762 int get_contour_count(const SkPath& path, SkScalar tolerance) {
1763 int contourCnt;
1764 int maxPts = GrPathUtils::worstCasePointCount(path, &contourCnt, tolerance);
1765 if (maxPts <= 0) {
1766 return 0;
1767 }
1768 if (maxPts > ((int)SK_MaxU16 + 1)) {
1769 SkDebugf("Path not rendered, too many verts (%d)\n", maxPts);
1770 return 0;
1771 }
1772 return contourCnt;
1773 }
1774
count_points(Poly * polys,SkPath::FillType fillType)1775 int count_points(Poly* polys, SkPath::FillType fillType) {
1776 int count = 0;
1777 for (Poly* poly = polys; poly; poly = poly->fNext) {
1778 if (apply_fill_type(fillType, poly) && poly->fCount >= 3) {
1779 count += (poly->fCount - 2) * (TESSELLATOR_WIREFRAME ? 6 : 3);
1780 }
1781 }
1782 return count;
1783 }
1784
count_outer_mesh_points(const VertexList & outerMesh)1785 int count_outer_mesh_points(const VertexList& outerMesh) {
1786 int count = 0;
1787 for (Vertex* v = outerMesh.fHead; v; v = v->fNext) {
1788 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1789 count += TESSELLATOR_WIREFRAME ? 12 : 6;
1790 }
1791 }
1792 return count;
1793 }
1794
outer_mesh_to_triangles(const VertexList & outerMesh,const AAParams * aaParams,void * data)1795 void* outer_mesh_to_triangles(const VertexList& outerMesh, const AAParams* aaParams, void* data) {
1796 for (Vertex* v = outerMesh.fHead; v; v = v->fNext) {
1797 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1798 Vertex* v0 = e->fTop;
1799 Vertex* v1 = e->fBottom;
1800 Vertex* v2 = e->fBottom->fPartner;
1801 Vertex* v3 = e->fTop->fPartner;
1802 data = emit_triangle(v0, v1, v2, aaParams, data);
1803 data = emit_triangle(v0, v2, v3, aaParams, data);
1804 }
1805 }
1806 return data;
1807 }
1808
1809 } // namespace
1810
1811 namespace GrTessellator {
1812
1813 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
1814
PathToTriangles(const SkPath & path,SkScalar tolerance,const SkRect & clipBounds,VertexAllocator * vertexAllocator,bool antialias,const GrColor & color,bool canTweakAlphaForCoverage,bool * isLinear)1815 int PathToTriangles(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
1816 VertexAllocator* vertexAllocator, bool antialias, const GrColor& color,
1817 bool canTweakAlphaForCoverage, bool* isLinear) {
1818 int contourCnt = get_contour_count(path, tolerance);
1819 if (contourCnt <= 0) {
1820 *isLinear = true;
1821 return 0;
1822 }
1823 SkArenaAlloc alloc(kArenaChunkSize);
1824 VertexList outerMesh;
1825 Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, antialias,
1826 isLinear, &outerMesh);
1827 SkPath::FillType fillType = antialias ? SkPath::kWinding_FillType : path.getFillType();
1828 int count = count_points(polys, fillType);
1829 if (0 == count) {
1830 return 0;
1831 }
1832 if (antialias) {
1833 count += count_outer_mesh_points(outerMesh);
1834 }
1835
1836 void* verts = vertexAllocator->lock(count);
1837 if (!verts) {
1838 SkDebugf("Could not allocate vertices\n");
1839 return 0;
1840 }
1841
1842 LOG("emitting %d verts\n", count);
1843 AAParams aaParams;
1844 aaParams.fTweakAlpha = canTweakAlphaForCoverage;
1845 aaParams.fColor = color;
1846
1847 void* end = polys_to_triangles(polys, fillType, antialias ? &aaParams : nullptr, verts);
1848 end = outer_mesh_to_triangles(outerMesh, &aaParams, end);
1849 int actualCount = static_cast<int>((static_cast<uint8_t*>(end) - static_cast<uint8_t*>(verts))
1850 / vertexAllocator->stride());
1851 SkASSERT(actualCount <= count);
1852 vertexAllocator->unlock(actualCount);
1853 return actualCount;
1854 }
1855
PathToVertices(const SkPath & path,SkScalar tolerance,const SkRect & clipBounds,GrTessellator::WindingVertex ** verts)1856 int PathToVertices(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
1857 GrTessellator::WindingVertex** verts) {
1858 int contourCnt = get_contour_count(path, tolerance);
1859 if (contourCnt <= 0) {
1860 return 0;
1861 }
1862 SkArenaAlloc alloc(kArenaChunkSize);
1863 bool isLinear;
1864 Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, false, &isLinear,
1865 nullptr);
1866 SkPath::FillType fillType = path.getFillType();
1867 int count = count_points(polys, fillType);
1868 if (0 == count) {
1869 *verts = nullptr;
1870 return 0;
1871 }
1872
1873 *verts = new GrTessellator::WindingVertex[count];
1874 GrTessellator::WindingVertex* vertsEnd = *verts;
1875 SkPoint* points = new SkPoint[count];
1876 SkPoint* pointsEnd = points;
1877 for (Poly* poly = polys; poly; poly = poly->fNext) {
1878 if (apply_fill_type(fillType, poly)) {
1879 SkPoint* start = pointsEnd;
1880 pointsEnd = static_cast<SkPoint*>(poly->emit(nullptr, pointsEnd));
1881 while (start != pointsEnd) {
1882 vertsEnd->fPos = *start;
1883 vertsEnd->fWinding = poly->fWinding;
1884 ++start;
1885 ++vertsEnd;
1886 }
1887 }
1888 }
1889 int actualCount = static_cast<int>(vertsEnd - *verts);
1890 SkASSERT(actualCount <= count);
1891 SkASSERT(pointsEnd - points == actualCount);
1892 delete[] points;
1893 return actualCount;
1894 }
1895
1896 } // namespace
1897