1 // Copyright 2015 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/runtime/runtime-utils.h"
6
7 #include <iomanip>
8
9 #include "src/arguments.h"
10 #include "src/frames-inl.h"
11 #include "src/interpreter/bytecode-array-iterator.h"
12 #include "src/interpreter/bytecode-decoder.h"
13 #include "src/interpreter/bytecode-flags.h"
14 #include "src/interpreter/bytecode-register.h"
15 #include "src/interpreter/bytecodes.h"
16 #include "src/isolate-inl.h"
17 #include "src/ostreams.h"
18
19 namespace v8 {
20 namespace internal {
21
RUNTIME_FUNCTION(Runtime_InterpreterNewClosure)22 RUNTIME_FUNCTION(Runtime_InterpreterNewClosure) {
23 HandleScope scope(isolate);
24 DCHECK_EQ(2, args.length());
25 CONVERT_ARG_HANDLE_CHECKED(SharedFunctionInfo, shared, 0);
26 CONVERT_SMI_ARG_CHECKED(pretenured_flag, 1);
27 Handle<Context> context(isolate->context(), isolate);
28 return *isolate->factory()->NewFunctionFromSharedFunctionInfo(
29 shared, context, static_cast<PretenureFlag>(pretenured_flag));
30 }
31
32 namespace {
33
AdvanceToOffsetForTracing(interpreter::BytecodeArrayIterator & bytecode_iterator,int offset)34 void AdvanceToOffsetForTracing(
35 interpreter::BytecodeArrayIterator& bytecode_iterator, int offset) {
36 while (bytecode_iterator.current_offset() +
37 bytecode_iterator.current_bytecode_size() <=
38 offset) {
39 bytecode_iterator.Advance();
40 }
41 DCHECK(bytecode_iterator.current_offset() == offset ||
42 ((bytecode_iterator.current_offset() + 1) == offset &&
43 bytecode_iterator.current_operand_scale() >
44 interpreter::OperandScale::kSingle));
45 }
46
PrintRegisters(std::ostream & os,bool is_input,interpreter::BytecodeArrayIterator & bytecode_iterator,Handle<Object> accumulator)47 void PrintRegisters(std::ostream& os, bool is_input,
48 interpreter::BytecodeArrayIterator& bytecode_iterator,
49 Handle<Object> accumulator) {
50 static const char kAccumulator[] = "accumulator";
51 static const int kRegFieldWidth = static_cast<int>(sizeof(kAccumulator) - 1);
52 static const char* kInputColourCode = "\033[0;36m";
53 static const char* kOutputColourCode = "\033[0;35m";
54 static const char* kNormalColourCode = "\033[0;m";
55 const char* kArrowDirection = is_input ? " -> " : " <- ";
56 if (FLAG_log_colour) {
57 os << (is_input ? kInputColourCode : kOutputColourCode);
58 }
59
60 interpreter::Bytecode bytecode = bytecode_iterator.current_bytecode();
61
62 // Print accumulator.
63 if ((is_input && interpreter::Bytecodes::ReadsAccumulator(bytecode)) ||
64 (!is_input && interpreter::Bytecodes::WritesAccumulator(bytecode))) {
65 os << " [ " << kAccumulator << kArrowDirection;
66 accumulator->ShortPrint();
67 os << " ]" << std::endl;
68 }
69
70 // Print the registers.
71 JavaScriptFrameIterator frame_iterator(
72 bytecode_iterator.bytecode_array()->GetIsolate());
73 InterpretedFrame* frame =
74 reinterpret_cast<InterpretedFrame*>(frame_iterator.frame());
75 int operand_count = interpreter::Bytecodes::NumberOfOperands(bytecode);
76 for (int operand_index = 0; operand_index < operand_count; operand_index++) {
77 interpreter::OperandType operand_type =
78 interpreter::Bytecodes::GetOperandType(bytecode, operand_index);
79 bool should_print =
80 is_input
81 ? interpreter::Bytecodes::IsRegisterInputOperandType(operand_type)
82 : interpreter::Bytecodes::IsRegisterOutputOperandType(operand_type);
83 if (should_print) {
84 interpreter::Register first_reg =
85 bytecode_iterator.GetRegisterOperand(operand_index);
86 int range = bytecode_iterator.GetRegisterOperandRange(operand_index);
87 for (int reg_index = first_reg.index();
88 reg_index < first_reg.index() + range; reg_index++) {
89 Object* reg_object = frame->ReadInterpreterRegister(reg_index);
90 os << " [ " << std::setw(kRegFieldWidth)
91 << interpreter::Register(reg_index).ToString(
92 bytecode_iterator.bytecode_array()->parameter_count())
93 << kArrowDirection;
94 reg_object->ShortPrint(os);
95 os << " ]" << std::endl;
96 }
97 }
98 }
99 if (FLAG_log_colour) {
100 os << kNormalColourCode;
101 }
102 }
103
104 } // namespace
105
RUNTIME_FUNCTION(Runtime_InterpreterTraceBytecodeEntry)106 RUNTIME_FUNCTION(Runtime_InterpreterTraceBytecodeEntry) {
107 SealHandleScope shs(isolate);
108 DCHECK_EQ(3, args.length());
109 CONVERT_ARG_HANDLE_CHECKED(BytecodeArray, bytecode_array, 0);
110 CONVERT_SMI_ARG_CHECKED(bytecode_offset, 1);
111 CONVERT_ARG_HANDLE_CHECKED(Object, accumulator, 2);
112 OFStream os(stdout);
113
114 int offset = bytecode_offset - BytecodeArray::kHeaderSize + kHeapObjectTag;
115 interpreter::BytecodeArrayIterator bytecode_iterator(bytecode_array);
116 AdvanceToOffsetForTracing(bytecode_iterator, offset);
117 if (offset == bytecode_iterator.current_offset()) {
118 // Print bytecode.
119 const uint8_t* base_address = bytecode_array->GetFirstBytecodeAddress();
120 const uint8_t* bytecode_address = base_address + offset;
121 os << " -> " << static_cast<const void*>(bytecode_address) << " @ "
122 << std::setw(4) << offset << " : ";
123 interpreter::BytecodeDecoder::Decode(os, bytecode_address,
124 bytecode_array->parameter_count());
125 os << std::endl;
126 // Print all input registers and accumulator.
127 PrintRegisters(os, true, bytecode_iterator, accumulator);
128
129 os << std::flush;
130 }
131 return isolate->heap()->undefined_value();
132 }
133
RUNTIME_FUNCTION(Runtime_InterpreterTraceBytecodeExit)134 RUNTIME_FUNCTION(Runtime_InterpreterTraceBytecodeExit) {
135 SealHandleScope shs(isolate);
136 DCHECK_EQ(3, args.length());
137 CONVERT_ARG_HANDLE_CHECKED(BytecodeArray, bytecode_array, 0);
138 CONVERT_SMI_ARG_CHECKED(bytecode_offset, 1);
139 CONVERT_ARG_HANDLE_CHECKED(Object, accumulator, 2);
140
141 int offset = bytecode_offset - BytecodeArray::kHeaderSize + kHeapObjectTag;
142 interpreter::BytecodeArrayIterator bytecode_iterator(bytecode_array);
143 AdvanceToOffsetForTracing(bytecode_iterator, offset);
144 // The offset comparison here ensures registers only printed when the
145 // (potentially) widened bytecode has completed. The iterator reports
146 // the offset as the offset of the prefix bytecode.
147 if (bytecode_iterator.current_operand_scale() ==
148 interpreter::OperandScale::kSingle ||
149 offset > bytecode_iterator.current_offset()) {
150 OFStream os(stdout);
151 // Print all output registers and accumulator.
152 PrintRegisters(os, false, bytecode_iterator, accumulator);
153 os << std::flush;
154 }
155 return isolate->heap()->undefined_value();
156 }
157
RUNTIME_FUNCTION(Runtime_InterpreterClearPendingMessage)158 RUNTIME_FUNCTION(Runtime_InterpreterClearPendingMessage) {
159 SealHandleScope shs(isolate);
160 DCHECK_EQ(0, args.length());
161 Object* message = isolate->thread_local_top()->pending_message_obj_;
162 isolate->clear_pending_message();
163 return message;
164 }
165
RUNTIME_FUNCTION(Runtime_InterpreterSetPendingMessage)166 RUNTIME_FUNCTION(Runtime_InterpreterSetPendingMessage) {
167 SealHandleScope shs(isolate);
168 DCHECK_EQ(1, args.length());
169 CONVERT_ARG_HANDLE_CHECKED(Object, message, 0);
170 isolate->thread_local_top()->pending_message_obj_ = *message;
171 return isolate->heap()->undefined_value();
172 }
173
RUNTIME_FUNCTION(Runtime_InterpreterAdvanceBytecodeOffset)174 RUNTIME_FUNCTION(Runtime_InterpreterAdvanceBytecodeOffset) {
175 SealHandleScope shs(isolate);
176 DCHECK_EQ(2, args.length());
177 CONVERT_ARG_HANDLE_CHECKED(BytecodeArray, bytecode_array, 0);
178 CONVERT_SMI_ARG_CHECKED(bytecode_offset, 1);
179 interpreter::BytecodeArrayIterator it(bytecode_array);
180 int offset = bytecode_offset - BytecodeArray::kHeaderSize + kHeapObjectTag;
181 while (it.current_offset() < offset) it.Advance();
182 DCHECK_EQ(offset, it.current_offset());
183 it.Advance(); // Advance by one bytecode.
184 offset = it.current_offset() + BytecodeArray::kHeaderSize - kHeapObjectTag;
185 return Smi::FromInt(offset);
186 }
187
188 } // namespace internal
189 } // namespace v8
190