1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "SkOpAngle.h"
8 #include "SkOpSegment.h"
9 #include "SkPathOpsCurve.h"
10 #include "SkTSort.h"
11 
12 /* Angles are sorted counterclockwise. The smallest angle has a positive x and the smallest
13    positive y. The largest angle has a positive x and a zero y. */
14 
15 #if DEBUG_ANGLE
CompareResult(const char * func,SkString * bugOut,SkString * bugPart,int append,bool compare)16     static bool CompareResult(const char* func, SkString* bugOut, SkString* bugPart, int append,
17              bool compare) {
18         SkDebugf("%s %c %d\n", bugOut->c_str(), compare ? 'T' : 'F', append);
19         SkDebugf("%sPart %s\n", func, bugPart[0].c_str());
20         SkDebugf("%sPart %s\n", func, bugPart[1].c_str());
21         SkDebugf("%sPart %s\n", func, bugPart[2].c_str());
22         return compare;
23     }
24 
25     #define COMPARE_RESULT(append, compare) CompareResult(__FUNCTION__, &bugOut, bugPart, append, \
26             compare)
27 #else
28     #define COMPARE_RESULT(append, compare) compare
29 #endif
30 
31 /*             quarter angle values for sector
32 
33 31   x > 0, y == 0              horizontal line (to the right)
34 0    x > 0, y == epsilon        quad/cubic horizontal tangent eventually going +y
35 1    x > 0, y > 0, x > y        nearer horizontal angle
36 2                  x + e == y   quad/cubic 45 going horiz
37 3    x > 0, y > 0, x == y       45 angle
38 4                  x == y + e   quad/cubic 45 going vert
39 5    x > 0, y > 0, x < y        nearer vertical angle
40 6    x == epsilon, y > 0        quad/cubic vertical tangent eventually going +x
41 7    x == 0, y > 0              vertical line (to the top)
42 
43                                       8  7  6
44                                  9       |       5
45                               10         |          4
46                             11           |            3
47                           12  \          |           / 2
48                          13              |              1
49                         14               |               0
50                         15 --------------+------------- 31
51                         16               |              30
52                          17              |             29
53                           18  /          |          \ 28
54                             19           |           27
55                               20         |         26
56                                  21      |      25
57                                      22 23 24
58 */
59 
60 // return true if lh < this < rh
after(SkOpAngle * test)61 bool SkOpAngle::after(SkOpAngle* test) {
62     SkOpAngle* lh = test;
63     SkOpAngle* rh = lh->fNext;
64     SkASSERT(lh != rh);
65     fPart.fCurve = fOriginalCurvePart;
66     lh->fPart.fCurve = lh->fOriginalCurvePart;
67     lh->fPart.fCurve.offset(lh->segment()->verb(), fPart.fCurve[0] - lh->fPart.fCurve[0]);
68     rh->fPart.fCurve = rh->fOriginalCurvePart;
69     rh->fPart.fCurve.offset(rh->segment()->verb(), fPart.fCurve[0] - rh->fPart.fCurve[0]);
70 
71 #if DEBUG_ANGLE
72     SkString bugOut;
73     bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
74                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
75                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
76             lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd,
77             lh->fStart->t(), lh->fEnd->t(),
78             segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(),
79             rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd,
80             rh->fStart->t(), rh->fEnd->t());
81     SkString bugPart[3] = { lh->debugPart(), this->debugPart(), rh->debugPart() };
82 #endif
83     if (lh->fComputeSector && !lh->computeSector()) {
84         return COMPARE_RESULT(1, true);
85     }
86     if (fComputeSector && !this->computeSector()) {
87         return COMPARE_RESULT(2, true);
88     }
89     if (rh->fComputeSector && !rh->computeSector()) {
90         return COMPARE_RESULT(3, true);
91     }
92 #if DEBUG_ANGLE  // reset bugOut with computed sectors
93     bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
94                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
95                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
96             lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd,
97             lh->fStart->t(), lh->fEnd->t(),
98             segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(),
99             rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd,
100             rh->fStart->t(), rh->fEnd->t());
101 #endif
102     bool ltrOverlap = (lh->fSectorMask | rh->fSectorMask) & fSectorMask;
103     bool lrOverlap = lh->fSectorMask & rh->fSectorMask;
104     int lrOrder;  // set to -1 if either order works
105     if (!lrOverlap) {  // no lh/rh sector overlap
106         if (!ltrOverlap) {  // no lh/this/rh sector overlap
107             return COMPARE_RESULT(4,  (lh->fSectorEnd > rh->fSectorStart)
108                     ^ (fSectorStart > lh->fSectorEnd) ^ (fSectorStart > rh->fSectorStart));
109         }
110         int lrGap = (rh->fSectorStart - lh->fSectorStart + 32) & 0x1f;
111         /* A tiny change can move the start +/- 4. The order can only be determined if
112            lr gap is not 12 to 20 or -12 to -20.
113                -31 ..-21      1
114                -20 ..-12     -1
115                -11 .. -1      0
116                  0          shouldn't get here
117                 11 ..  1      1
118                 12 .. 20     -1
119                 21 .. 31      0
120          */
121         lrOrder = lrGap > 20 ? 0 : lrGap > 11 ? -1 : 1;
122     } else {
123         lrOrder = (int) lh->orderable(rh);
124         if (!ltrOverlap) {
125             return COMPARE_RESULT(5, !lrOrder);
126         }
127     }
128     int ltOrder;
129     SkASSERT((lh->fSectorMask & fSectorMask) || (rh->fSectorMask & fSectorMask));
130     if (lh->fSectorMask & fSectorMask) {
131         ltOrder = (int) lh->orderable(this);
132     } else {
133         int ltGap = (fSectorStart - lh->fSectorStart + 32) & 0x1f;
134         ltOrder = ltGap > 20 ? 0 : ltGap > 11 ? -1 : 1;
135     }
136     int trOrder;
137     if (rh->fSectorMask & fSectorMask) {
138         trOrder = (int) orderable(rh);
139     } else {
140         int trGap = (rh->fSectorStart - fSectorStart + 32) & 0x1f;
141         trOrder = trGap > 20 ? 0 : trGap > 11 ? -1 : 1;
142     }
143     this->alignmentSameSide(lh, &ltOrder);
144     this->alignmentSameSide(rh, &trOrder);
145     if (lrOrder >= 0 && ltOrder >= 0 && trOrder >= 0) {
146         return COMPARE_RESULT(7, lrOrder ? (ltOrder & trOrder) : (ltOrder | trOrder));
147     }
148     SkASSERT(lrOrder >= 0 || ltOrder >= 0 || trOrder >= 0);
149 // There's not enough information to sort. Get the pairs of angles in opposite planes.
150 // If an order is < 0, the pair is already in an opposite plane. Check the remaining pairs.
151     // FIXME : once all variants are understood, rewrite this more simply
152     if (ltOrder == 0 && lrOrder == 0) {
153         SkASSERT(trOrder < 0);
154         // FIXME : once this is verified to work, remove one opposite angle call
155         SkDEBUGCODE(bool lrOpposite = lh->oppositePlanes(rh));
156         bool ltOpposite = lh->oppositePlanes(this);
157         SkOPASSERT(lrOpposite != ltOpposite);
158         return COMPARE_RESULT(8, ltOpposite);
159     } else if (ltOrder == 1 && trOrder == 0) {
160         SkASSERT(lrOrder < 0);
161         bool trOpposite = oppositePlanes(rh);
162         return COMPARE_RESULT(9, trOpposite);
163     } else if (lrOrder == 1 && trOrder == 1) {
164         SkASSERT(ltOrder < 0);
165 //        SkDEBUGCODE(bool trOpposite = oppositePlanes(rh));
166         bool lrOpposite = lh->oppositePlanes(rh);
167 //        SkASSERT(lrOpposite != trOpposite);
168         return COMPARE_RESULT(10, lrOpposite);
169     }
170     if (lrOrder < 0) {
171         if (ltOrder < 0) {
172             return COMPARE_RESULT(11, trOrder);
173         }
174         return COMPARE_RESULT(12, ltOrder);
175     }
176     return COMPARE_RESULT(13, !lrOrder);
177 }
178 
179 // given a line, see if the opposite curve's convex hull is all on one side
180 // returns -1=not on one side    0=this CW of test   1=this CCW of test
allOnOneSide(const SkOpAngle * test)181 int SkOpAngle::allOnOneSide(const SkOpAngle* test) {
182     SkASSERT(!fPart.isCurve());
183     SkASSERT(test->fPart.isCurve());
184     SkDPoint origin = fPart.fCurve[0];
185     SkDVector line = fPart.fCurve[1] - origin;
186     double crosses[3];
187     SkPath::Verb testVerb = test->segment()->verb();
188     int iMax = SkPathOpsVerbToPoints(testVerb);
189 //    SkASSERT(origin == test.fCurveHalf[0]);
190     const SkDCurve& testCurve = test->fPart.fCurve;
191     for (int index = 1; index <= iMax; ++index) {
192         double xy1 = line.fX * (testCurve[index].fY - origin.fY);
193         double xy2 = line.fY * (testCurve[index].fX - origin.fX);
194         crosses[index - 1] = AlmostBequalUlps(xy1, xy2) ? 0 : xy1 - xy2;
195     }
196     if (crosses[0] * crosses[1] < 0) {
197         return -1;
198     }
199     if (SkPath::kCubic_Verb == testVerb) {
200         if (crosses[0] * crosses[2] < 0 || crosses[1] * crosses[2] < 0) {
201             return -1;
202         }
203     }
204     if (crosses[0]) {
205         return crosses[0] < 0;
206     }
207     if (crosses[1]) {
208         return crosses[1] < 0;
209     }
210     if (SkPath::kCubic_Verb == testVerb && crosses[2]) {
211         return crosses[2] < 0;
212     }
213     fUnorderable = true;
214     return -1;
215 }
216 
217 // To sort the angles, all curves are translated to have the same starting point.
218 // If the curve's control point in its original position is on one side of a compared line,
219 // and translated is on the opposite side, reverse the previously computed order.
alignmentSameSide(const SkOpAngle * test,int * order) const220 void SkOpAngle::alignmentSameSide(const SkOpAngle* test, int* order) const {
221     if (*order < 0) {
222         return;
223     }
224     if (fPart.isCurve()) {
225         // This should support all curve types, but only bug that requires this has lines
226         // Turning on for curves causes existing tests to fail
227         return;
228     }
229     if (test->fPart.isCurve()) {
230         return;
231     }
232     const SkDPoint& xOrigin = test->fPart.fCurve.fLine[0];
233     const SkDPoint& oOrigin = test->fOriginalCurvePart.fLine[0];
234     if (xOrigin == oOrigin) {
235         return;
236     }
237     int iMax = SkPathOpsVerbToPoints(this->segment()->verb());
238     SkDVector xLine = test->fPart.fCurve.fLine[1] - xOrigin;
239     SkDVector oLine = test->fOriginalCurvePart.fLine[1] - oOrigin;
240     for (int index = 1; index <= iMax; ++index) {
241         const SkDPoint& testPt = fPart.fCurve[index];
242         double xCross = oLine.crossCheck(testPt - xOrigin);
243         double oCross = xLine.crossCheck(testPt - oOrigin);
244         if (oCross * xCross < 0) {
245             *order ^= 1;
246             break;
247         }
248     }
249 }
250 
checkCrossesZero() const251 bool SkOpAngle::checkCrossesZero() const {
252     int start = SkTMin(fSectorStart, fSectorEnd);
253     int end = SkTMax(fSectorStart, fSectorEnd);
254     bool crossesZero = end - start > 16;
255     return crossesZero;
256 }
257 
checkParallel(SkOpAngle * rh)258 bool SkOpAngle::checkParallel(SkOpAngle* rh) {
259     SkDVector scratch[2];
260     const SkDVector* sweep, * tweep;
261     if (this->fPart.isOrdered()) {
262         sweep = this->fPart.fSweep;
263     } else {
264         scratch[0] = this->fPart.fCurve[1] - this->fPart.fCurve[0];
265         sweep = &scratch[0];
266     }
267     if (rh->fPart.isOrdered()) {
268         tweep = rh->fPart.fSweep;
269     } else {
270         scratch[1] = rh->fPart.fCurve[1] - rh->fPart.fCurve[0];
271         tweep = &scratch[1];
272     }
273     double s0xt0 = sweep->crossCheck(*tweep);
274     if (tangentsDiverge(rh, s0xt0)) {
275         return s0xt0 < 0;
276     }
277     // compute the perpendicular to the endpoints and see where it intersects the opposite curve
278     // if the intersections within the t range, do a cross check on those
279     bool inside;
280     if (!fEnd->contains(rh->fEnd)) {
281         if (this->endToSide(rh, &inside)) {
282             return inside;
283         }
284         if (rh->endToSide(this, &inside)) {
285             return !inside;
286         }
287     }
288     if (this->midToSide(rh, &inside)) {
289         return inside;
290     }
291     if (rh->midToSide(this, &inside)) {
292         return !inside;
293     }
294     // compute the cross check from the mid T values (last resort)
295     SkDVector m0 = segment()->dPtAtT(this->midT()) - this->fPart.fCurve[0];
296     SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fPart.fCurve[0];
297     double m0xm1 = m0.crossCheck(m1);
298     if (m0xm1 == 0) {
299         this->fUnorderable = true;
300         rh->fUnorderable = true;
301         return true;
302     }
303     return m0xm1 < 0;
304 }
305 
306 // the original angle is too short to get meaningful sector information
307 // lengthen it until it is long enough to be meaningful or leave it unset if lengthening it
308 // would cause it to intersect one of the adjacent angles
computeSector()309 bool SkOpAngle::computeSector() {
310     if (fComputedSector) {
311         return !fUnorderable;
312     }
313     fComputedSector = true;
314     bool stepUp = fStart->t() < fEnd->t();
315     SkOpSpanBase* checkEnd = fEnd;
316     if (checkEnd->final() && stepUp) {
317         fUnorderable = true;
318         return false;
319     }
320     do {
321 // advance end
322         const SkOpSegment* other = checkEnd->segment();
323         const SkOpSpanBase* oSpan = other->head();
324         do {
325             if (oSpan->segment() != segment()) {
326                 continue;
327             }
328             if (oSpan == checkEnd) {
329                 continue;
330             }
331             if (!approximately_equal(oSpan->t(), checkEnd->t())) {
332                 continue;
333             }
334             goto recomputeSector;
335         } while (!oSpan->final() && (oSpan = oSpan->upCast()->next()));
336         checkEnd = stepUp ? !checkEnd->final()
337                 ? checkEnd->upCast()->next() : nullptr
338                 : checkEnd->prev();
339     } while (checkEnd);
340 recomputeSector:
341     SkOpSpanBase* computedEnd = stepUp ? checkEnd ? checkEnd->prev() : fEnd->segment()->head()
342             : checkEnd ? checkEnd->upCast()->next() : fEnd->segment()->tail();
343     if (checkEnd == fEnd || computedEnd == fEnd || computedEnd == fStart) {
344         fUnorderable = true;
345         return false;
346     }
347     if (stepUp != (fStart->t() < computedEnd->t())) {
348         fUnorderable = true;
349         return false;
350     }
351     SkOpSpanBase* saveEnd = fEnd;
352     fComputedEnd = fEnd = computedEnd;
353     setSpans();
354     setSector();
355     fEnd = saveEnd;
356     return !fUnorderable;
357 }
358 
convexHullOverlaps(const SkOpAngle * rh)359 int SkOpAngle::convexHullOverlaps(const SkOpAngle* rh) {
360     const SkDVector* sweep = this->fPart.fSweep;
361     const SkDVector* tweep = rh->fPart.fSweep;
362     double s0xs1 = sweep[0].crossCheck(sweep[1]);
363     double s0xt0 = sweep[0].crossCheck(tweep[0]);
364     double s1xt0 = sweep[1].crossCheck(tweep[0]);
365     bool tBetweenS = s0xs1 > 0 ? s0xt0 > 0 && s1xt0 < 0 : s0xt0 < 0 && s1xt0 > 0;
366     double s0xt1 = sweep[0].crossCheck(tweep[1]);
367     double s1xt1 = sweep[1].crossCheck(tweep[1]);
368     tBetweenS |= s0xs1 > 0 ? s0xt1 > 0 && s1xt1 < 0 : s0xt1 < 0 && s1xt1 > 0;
369     double t0xt1 = tweep[0].crossCheck(tweep[1]);
370     if (tBetweenS) {
371         return -1;
372     }
373     if ((s0xt0 == 0 && s1xt1 == 0) || (s1xt0 == 0 && s0xt1 == 0)) {  // s0 to s1 equals t0 to t1
374         return -1;
375     }
376     bool sBetweenT = t0xt1 > 0 ? s0xt0 < 0 && s0xt1 > 0 : s0xt0 > 0 && s0xt1 < 0;
377     sBetweenT |= t0xt1 > 0 ? s1xt0 < 0 && s1xt1 > 0 : s1xt0 > 0 && s1xt1 < 0;
378     if (sBetweenT) {
379         return -1;
380     }
381     // if all of the sweeps are in the same half plane, then the order of any pair is enough
382     if (s0xt0 >= 0 && s0xt1 >= 0 && s1xt0 >= 0 && s1xt1 >= 0) {
383         return 0;
384     }
385     if (s0xt0 <= 0 && s0xt1 <= 0 && s1xt0 <= 0 && s1xt1 <= 0) {
386         return 1;
387     }
388     // if the outside sweeps are greater than 180 degress:
389         // first assume the inital tangents are the ordering
390         // if the midpoint direction matches the inital order, that is enough
391     SkDVector m0 = this->segment()->dPtAtT(this->midT()) - this->fPart.fCurve[0];
392     SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fPart.fCurve[0];
393     double m0xm1 = m0.crossCheck(m1);
394     if (s0xt0 > 0 && m0xm1 > 0) {
395         return 0;
396     }
397     if (s0xt0 < 0 && m0xm1 < 0) {
398         return 1;
399     }
400     if (tangentsDiverge(rh, s0xt0)) {
401         return s0xt0 < 0;
402     }
403     return m0xm1 < 0;
404 }
405 
406 // OPTIMIZATION: longest can all be either lazily computed here or precomputed in setup
distEndRatio(double dist) const407 double SkOpAngle::distEndRatio(double dist) const {
408     double longest = 0;
409     const SkOpSegment& segment = *this->segment();
410     int ptCount = SkPathOpsVerbToPoints(segment.verb());
411     const SkPoint* pts = segment.pts();
412     for (int idx1 = 0; idx1 <= ptCount - 1; ++idx1) {
413         for (int idx2 = idx1 + 1; idx2 <= ptCount; ++idx2) {
414             if (idx1 == idx2) {
415                 continue;
416             }
417             SkDVector v;
418             v.set(pts[idx2] - pts[idx1]);
419             double lenSq = v.lengthSquared();
420             longest = SkTMax(longest, lenSq);
421         }
422     }
423     return sqrt(longest) / dist;
424 }
425 
endsIntersect(SkOpAngle * rh)426 bool SkOpAngle::endsIntersect(SkOpAngle* rh) {
427     SkPath::Verb lVerb = this->segment()->verb();
428     SkPath::Verb rVerb = rh->segment()->verb();
429     int lPts = SkPathOpsVerbToPoints(lVerb);
430     int rPts = SkPathOpsVerbToPoints(rVerb);
431     SkDLine rays[] = {{{this->fPart.fCurve[0], rh->fPart.fCurve[rPts]}},
432             {{this->fPart.fCurve[0], this->fPart.fCurve[lPts]}}};
433     if (this->fEnd->contains(rh->fEnd)) {
434         return checkParallel(rh);
435     }
436     double smallTs[2] = {-1, -1};
437     bool limited[2] = {false, false};
438     for (int index = 0; index < 2; ++index) {
439         SkPath::Verb cVerb = index ? rVerb : lVerb;
440         // if the curve is a line, then the line and the ray intersect only at their crossing
441         if (cVerb == SkPath::kLine_Verb) {
442             continue;
443         }
444         const SkOpSegment& segment = index ? *rh->segment() : *this->segment();
445         SkIntersections i;
446         (*CurveIntersectRay[cVerb])(segment.pts(), segment.weight(), rays[index], &i);
447         double tStart = index ? rh->fStart->t() : this->fStart->t();
448         double tEnd = index ? rh->fComputedEnd->t() : this->fComputedEnd->t();
449         bool testAscends = tStart < (index ? rh->fComputedEnd->t() : this->fComputedEnd->t());
450         double t = testAscends ? 0 : 1;
451         for (int idx2 = 0; idx2 < i.used(); ++idx2) {
452             double testT = i[0][idx2];
453             if (!approximately_between_orderable(tStart, testT, tEnd)) {
454                 continue;
455             }
456             if (approximately_equal_orderable(tStart, testT)) {
457                 continue;
458             }
459             smallTs[index] = t = testAscends ? SkTMax(t, testT) : SkTMin(t, testT);
460             limited[index] = approximately_equal_orderable(t, tEnd);
461         }
462     }
463     bool sRayLonger = false;
464     SkDVector sCept = {0, 0};
465     double sCeptT = -1;
466     int sIndex = -1;
467     bool useIntersect = false;
468     for (int index = 0; index < 2; ++index) {
469         if (smallTs[index] < 0) {
470             continue;
471         }
472         const SkOpSegment& segment = index ? *rh->segment() : *this->segment();
473         const SkDPoint& dPt = segment.dPtAtT(smallTs[index]);
474         SkDVector cept = dPt - rays[index][0];
475         // If this point is on the curve, it should have been detected earlier by ordinary
476         // curve intersection. This may be hard to determine in general, but for lines,
477         // the point could be close to or equal to its end, but shouldn't be near the start.
478         if ((index ? lPts : rPts) == 1) {
479             SkDVector total = rays[index][1] - rays[index][0];
480             if (cept.lengthSquared() * 2 < total.lengthSquared()) {
481                 continue;
482             }
483         }
484         SkDVector end = rays[index][1] - rays[index][0];
485         if (cept.fX * end.fX < 0 || cept.fY * end.fY < 0) {
486             continue;
487         }
488         double rayDist = cept.length();
489         double endDist = end.length();
490         bool rayLonger = rayDist > endDist;
491         if (limited[0] && limited[1] && rayLonger) {
492             useIntersect = true;
493             sRayLonger = rayLonger;
494             sCept = cept;
495             sCeptT = smallTs[index];
496             sIndex = index;
497             break;
498         }
499         double delta = fabs(rayDist - endDist);
500         double minX, minY, maxX, maxY;
501         minX = minY = SK_ScalarInfinity;
502         maxX = maxY = -SK_ScalarInfinity;
503         const SkDCurve& curve = index ? rh->fPart.fCurve : this->fPart.fCurve;
504         int ptCount = index ? rPts : lPts;
505         for (int idx2 = 0; idx2 <= ptCount; ++idx2) {
506             minX = SkTMin(minX, curve[idx2].fX);
507             minY = SkTMin(minY, curve[idx2].fY);
508             maxX = SkTMax(maxX, curve[idx2].fX);
509             maxY = SkTMax(maxY, curve[idx2].fY);
510         }
511         double maxWidth = SkTMax(maxX - minX, maxY - minY);
512         delta /= maxWidth;
513         if (delta > 1e-3 && (useIntersect ^= true)) {  // FIXME: move this magic number
514             sRayLonger = rayLonger;
515             sCept = cept;
516             sCeptT = smallTs[index];
517             sIndex = index;
518         }
519     }
520     if (useIntersect) {
521         const SkDCurve& curve = sIndex ? rh->fPart.fCurve : this->fPart.fCurve;
522         const SkOpSegment& segment = sIndex ? *rh->segment() : *this->segment();
523         double tStart = sIndex ? rh->fStart->t() : fStart->t();
524         SkDVector mid = segment.dPtAtT(tStart + (sCeptT - tStart) / 2) - curve[0];
525         double septDir = mid.crossCheck(sCept);
526         if (!septDir) {
527             return checkParallel(rh);
528         }
529         return sRayLonger ^ (sIndex == 0) ^ (septDir < 0);
530     } else {
531         return checkParallel(rh);
532     }
533 }
534 
endToSide(const SkOpAngle * rh,bool * inside) const535 bool SkOpAngle::endToSide(const SkOpAngle* rh, bool* inside) const {
536     const SkOpSegment* segment = this->segment();
537     SkPath::Verb verb = segment->verb();
538     SkDLine rayEnd;
539     rayEnd[0].set(this->fEnd->pt());
540     rayEnd[1] = rayEnd[0];
541     SkDVector slopeAtEnd = (*CurveDSlopeAtT[verb])(segment->pts(), segment->weight(),
542             this->fEnd->t());
543     rayEnd[1].fX += slopeAtEnd.fY;
544     rayEnd[1].fY -= slopeAtEnd.fX;
545     SkIntersections iEnd;
546     const SkOpSegment* oppSegment = rh->segment();
547     SkPath::Verb oppVerb = oppSegment->verb();
548     (*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayEnd, &iEnd);
549     double endDist;
550     int closestEnd = iEnd.closestTo(rh->fStart->t(), rh->fEnd->t(), rayEnd[0], &endDist);
551     if (closestEnd < 0) {
552         return false;
553     }
554     if (!endDist) {
555         return false;
556     }
557     SkDPoint start;
558     start.set(this->fStart->pt());
559     // OPTIMIZATION: multiple times in the code we find the max scalar
560     double minX, minY, maxX, maxY;
561     minX = minY = SK_ScalarInfinity;
562     maxX = maxY = -SK_ScalarInfinity;
563     const SkDCurve& curve = rh->fPart.fCurve;
564     int oppPts = SkPathOpsVerbToPoints(oppVerb);
565     for (int idx2 = 0; idx2 <= oppPts; ++idx2) {
566         minX = SkTMin(minX, curve[idx2].fX);
567         minY = SkTMin(minY, curve[idx2].fY);
568         maxX = SkTMax(maxX, curve[idx2].fX);
569         maxY = SkTMax(maxY, curve[idx2].fY);
570     }
571     double maxWidth = SkTMax(maxX - minX, maxY - minY);
572     endDist /= maxWidth;
573     if (endDist < 5e-12) {  // empirically found
574         return false;
575     }
576     const SkDPoint* endPt = &rayEnd[0];
577     SkDPoint oppPt = iEnd.pt(closestEnd);
578     SkDVector vLeft = *endPt - start;
579     SkDVector vRight = oppPt - start;
580     double dir = vLeft.crossNoNormalCheck(vRight);
581     if (!dir) {
582         return false;
583     }
584     *inside = dir < 0;
585     return true;
586 }
587 
588 /*      y<0 y==0 y>0  x<0 x==0 x>0 xy<0 xy==0 xy>0
589     0    x                      x               x
590     1    x                      x          x
591     2    x                      x    x
592     3    x                  x        x
593     4    x             x             x
594     5    x             x                   x
595     6    x             x                        x
596     7         x        x                        x
597     8             x    x                        x
598     9             x    x                   x
599     10            x    x             x
600     11            x         x        x
601     12            x             x    x
602     13            x             x          x
603     14            x             x               x
604     15        x                 x               x
605 */
findSector(SkPath::Verb verb,double x,double y) const606 int SkOpAngle::findSector(SkPath::Verb verb, double x, double y) const {
607     double absX = fabs(x);
608     double absY = fabs(y);
609     double xy = SkPath::kLine_Verb == verb || !AlmostEqualUlps(absX, absY) ? absX - absY : 0;
610     // If there are four quadrants and eight octants, and since the Latin for sixteen is sedecim,
611     // one could coin the term sedecimant for a space divided into 16 sections.
612    // http://english.stackexchange.com/questions/133688/word-for-something-partitioned-into-16-parts
613     static const int sedecimant[3][3][3] = {
614     //       y<0           y==0           y>0
615     //   x<0 x==0 x>0  x<0 x==0 x>0  x<0 x==0 x>0
616         {{ 4,  3,  2}, { 7, -1, 15}, {10, 11, 12}},  // abs(x) <  abs(y)
617         {{ 5, -1,  1}, {-1, -1, -1}, { 9, -1, 13}},  // abs(x) == abs(y)
618         {{ 6,  3,  0}, { 7, -1, 15}, { 8, 11, 14}},  // abs(x) >  abs(y)
619     };
620     int sector = sedecimant[(xy >= 0) + (xy > 0)][(y >= 0) + (y > 0)][(x >= 0) + (x > 0)] * 2 + 1;
621 //    SkASSERT(SkPath::kLine_Verb == verb || sector >= 0);
622     return sector;
623 }
624 
globalState() const625 SkOpGlobalState* SkOpAngle::globalState() const {
626     return this->segment()->globalState();
627 }
628 
629 
630 // OPTIMIZE: if this loops to only one other angle, after first compare fails, insert on other side
631 // OPTIMIZE: return where insertion succeeded. Then, start next insertion on opposite side
insert(SkOpAngle * angle)632 bool SkOpAngle::insert(SkOpAngle* angle) {
633     if (angle->fNext) {
634         if (loopCount() >= angle->loopCount()) {
635             if (!merge(angle)) {
636                 return true;
637             }
638         } else if (fNext) {
639             if (!angle->merge(this)) {
640                 return true;
641             }
642         } else {
643             angle->insert(this);
644         }
645         return true;
646     }
647     bool singleton = nullptr == fNext;
648     if (singleton) {
649         fNext = this;
650     }
651     SkOpAngle* next = fNext;
652     if (next->fNext == this) {
653         if (singleton || angle->after(this)) {
654             this->fNext = angle;
655             angle->fNext = next;
656         } else {
657             next->fNext = angle;
658             angle->fNext = this;
659         }
660         debugValidateNext();
661         return true;
662     }
663     SkOpAngle* last = this;
664     bool flipAmbiguity = false;
665     do {
666         SkASSERT(last->fNext == next);
667         if (angle->after(last) ^ (angle->tangentsAmbiguous() & flipAmbiguity)) {
668             last->fNext = angle;
669             angle->fNext = next;
670             debugValidateNext();
671             return true;
672         }
673         last = next;
674         if (last == this) {
675             FAIL_IF(flipAmbiguity);
676             // We're in a loop. If a sort was ambiguous, flip it to end the loop.
677             flipAmbiguity = true;
678         }
679         next = next->fNext;
680     } while (true);
681     return true;
682 }
683 
lastMarked() const684 SkOpSpanBase* SkOpAngle::lastMarked() const {
685     if (fLastMarked) {
686         if (fLastMarked->chased()) {
687             return nullptr;
688         }
689         fLastMarked->setChased(true);
690     }
691     return fLastMarked;
692 }
693 
loopContains(const SkOpAngle * angle) const694 bool SkOpAngle::loopContains(const SkOpAngle* angle) const {
695     if (!fNext) {
696         return false;
697     }
698     const SkOpAngle* first = this;
699     const SkOpAngle* loop = this;
700     const SkOpSegment* tSegment = angle->fStart->segment();
701     double tStart = angle->fStart->t();
702     double tEnd = angle->fEnd->t();
703     do {
704         const SkOpSegment* lSegment = loop->fStart->segment();
705         if (lSegment != tSegment) {
706             continue;
707         }
708         double lStart = loop->fStart->t();
709         if (lStart != tEnd) {
710             continue;
711         }
712         double lEnd = loop->fEnd->t();
713         if (lEnd == tStart) {
714             return true;
715         }
716     } while ((loop = loop->fNext) != first);
717     return false;
718 }
719 
loopCount() const720 int SkOpAngle::loopCount() const {
721     int count = 0;
722     const SkOpAngle* first = this;
723     const SkOpAngle* next = this;
724     do {
725         next = next->fNext;
726         ++count;
727     } while (next && next != first);
728     return count;
729 }
730 
merge(SkOpAngle * angle)731 bool SkOpAngle::merge(SkOpAngle* angle) {
732     SkASSERT(fNext);
733     SkASSERT(angle->fNext);
734     SkOpAngle* working = angle;
735     do {
736         if (this == working) {
737             return false;
738         }
739         working = working->fNext;
740     } while (working != angle);
741     do {
742         SkOpAngle* next = working->fNext;
743         working->fNext = nullptr;
744         insert(working);
745         working = next;
746     } while (working != angle);
747     // it's likely that a pair of the angles are unorderable
748     debugValidateNext();
749     return true;
750 }
751 
midT() const752 double SkOpAngle::midT() const {
753     return (fStart->t() + fEnd->t()) / 2;
754 }
755 
midToSide(const SkOpAngle * rh,bool * inside) const756 bool SkOpAngle::midToSide(const SkOpAngle* rh, bool* inside) const {
757     const SkOpSegment* segment = this->segment();
758     SkPath::Verb verb = segment->verb();
759     const SkPoint& startPt = this->fStart->pt();
760     const SkPoint& endPt = this->fEnd->pt();
761     SkDPoint dStartPt;
762     dStartPt.set(startPt);
763     SkDLine rayMid;
764     rayMid[0].fX = (startPt.fX + endPt.fX) / 2;
765     rayMid[0].fY = (startPt.fY + endPt.fY) / 2;
766     rayMid[1].fX = rayMid[0].fX + (endPt.fY - startPt.fY);
767     rayMid[1].fY = rayMid[0].fY - (endPt.fX - startPt.fX);
768     SkIntersections iMid;
769     (*CurveIntersectRay[verb])(segment->pts(), segment->weight(), rayMid, &iMid);
770     int iOutside = iMid.mostOutside(this->fStart->t(), this->fEnd->t(), dStartPt);
771     if (iOutside < 0) {
772         return false;
773     }
774     const SkOpSegment* oppSegment = rh->segment();
775     SkPath::Verb oppVerb = oppSegment->verb();
776     SkIntersections oppMid;
777     (*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayMid, &oppMid);
778     int oppOutside = oppMid.mostOutside(rh->fStart->t(), rh->fEnd->t(), dStartPt);
779     if (oppOutside < 0) {
780         return false;
781     }
782     SkDVector iSide = iMid.pt(iOutside) - dStartPt;
783     SkDVector oppSide = oppMid.pt(oppOutside) - dStartPt;
784     double dir = iSide.crossCheck(oppSide);
785     if (!dir) {
786         return false;
787     }
788     *inside = dir < 0;
789     return true;
790 }
791 
oppositePlanes(const SkOpAngle * rh) const792 bool SkOpAngle::oppositePlanes(const SkOpAngle* rh) const {
793     int startSpan = SkTAbs(rh->fSectorStart - fSectorStart);
794     return startSpan >= 8;
795 }
796 
orderable(SkOpAngle * rh)797 bool SkOpAngle::orderable(SkOpAngle* rh) {
798     int result;
799     if (!fPart.isCurve()) {
800         if (!rh->fPart.isCurve()) {
801             double leftX = fTangentHalf.dx();
802             double leftY = fTangentHalf.dy();
803             double rightX = rh->fTangentHalf.dx();
804             double rightY = rh->fTangentHalf.dy();
805             double x_ry = leftX * rightY;
806             double rx_y = rightX * leftY;
807             if (x_ry == rx_y) {
808                 if (leftX * rightX < 0 || leftY * rightY < 0) {
809                     return true;  // exactly 180 degrees apart
810                 }
811                 goto unorderable;
812             }
813             SkASSERT(x_ry != rx_y); // indicates an undetected coincidence -- worth finding earlier
814             return x_ry < rx_y;
815         }
816         if ((result = this->allOnOneSide(rh)) >= 0) {
817             return result;
818         }
819         if (fUnorderable || approximately_zero(rh->fSide)) {
820             goto unorderable;
821         }
822     } else if (!rh->fPart.isCurve()) {
823         if ((result = rh->allOnOneSide(this)) >= 0) {
824             return !result;
825         }
826         if (rh->fUnorderable || approximately_zero(fSide)) {
827             goto unorderable;
828         }
829     } else if ((result = this->convexHullOverlaps(rh)) >= 0) {
830         return result;
831     }
832     return this->endsIntersect(rh);
833 unorderable:
834     fUnorderable = true;
835     rh->fUnorderable = true;
836     return true;
837 }
838 
839 // OPTIMIZE: if this shows up in a profile, add a previous pointer
840 // as is, this should be rarely called
previous() const841 SkOpAngle* SkOpAngle::previous() const {
842     SkOpAngle* last = fNext;
843     do {
844         SkOpAngle* next = last->fNext;
845         if (next == this) {
846             return last;
847         }
848         last = next;
849     } while (true);
850 }
851 
segment() const852 SkOpSegment* SkOpAngle::segment() const {
853     return fStart->segment();
854 }
855 
set(SkOpSpanBase * start,SkOpSpanBase * end)856 void SkOpAngle::set(SkOpSpanBase* start, SkOpSpanBase* end) {
857     fStart = start;
858     fComputedEnd = fEnd = end;
859     SkASSERT(start != end);
860     fNext = nullptr;
861     fComputeSector = fComputedSector = fCheckCoincidence = fTangentsAmbiguous = false;
862     setSpans();
863     setSector();
864     SkDEBUGCODE(fID = start ? start->globalState()->nextAngleID() : -1);
865 }
866 
setSpans()867 void SkOpAngle::setSpans() {
868     fUnorderable = false;
869     fLastMarked = nullptr;
870     if (!fStart) {
871         fUnorderable = true;
872         return;
873     }
874     const SkOpSegment* segment = fStart->segment();
875     const SkPoint* pts = segment->pts();
876     SkDEBUGCODE(fPart.fCurve.fVerb = SkPath::kCubic_Verb);  // required for SkDCurve debug check
877     SkDEBUGCODE(fPart.fCurve[2].fX = fPart.fCurve[2].fY = fPart.fCurve[3].fX = fPart.fCurve[3].fY
878             = SK_ScalarNaN);   //  make the non-line part uninitialized
879     SkDEBUGCODE(fPart.fCurve.fVerb = segment->verb());  //  set the curve type for real
880     segment->subDivide(fStart, fEnd, &fPart.fCurve);  //  set at least the line part if not more
881     fOriginalCurvePart = fPart.fCurve;
882     const SkPath::Verb verb = segment->verb();
883     fPart.setCurveHullSweep(verb);
884     if (SkPath::kLine_Verb != verb && !fPart.isCurve()) {
885         SkDLine lineHalf;
886         fPart.fCurve[1] = fPart.fCurve[SkPathOpsVerbToPoints(verb)];
887         fOriginalCurvePart[1] = fPart.fCurve[1];
888         lineHalf[0].set(fPart.fCurve[0].asSkPoint());
889         lineHalf[1].set(fPart.fCurve[1].asSkPoint());
890         fTangentHalf.lineEndPoints(lineHalf);
891         fSide = 0;
892     }
893     switch (verb) {
894     case SkPath::kLine_Verb: {
895         SkASSERT(fStart != fEnd);
896         const SkPoint& cP1 = pts[fStart->t() < fEnd->t()];
897         SkDLine lineHalf;
898         lineHalf[0].set(fStart->pt());
899         lineHalf[1].set(cP1);
900         fTangentHalf.lineEndPoints(lineHalf);
901         fSide = 0;
902         } return;
903     case SkPath::kQuad_Verb:
904     case SkPath::kConic_Verb: {
905         SkLineParameters tangentPart;
906         (void) tangentPart.quadEndPoints(fPart.fCurve.fQuad);
907         fSide = -tangentPart.pointDistance(fPart.fCurve[2]);  // not normalized -- compare sign only
908         } break;
909     case SkPath::kCubic_Verb: {
910         SkLineParameters tangentPart;
911         (void) tangentPart.cubicPart(fPart.fCurve.fCubic);
912         fSide = -tangentPart.pointDistance(fPart.fCurve[3]);
913         double testTs[4];
914         // OPTIMIZATION: keep inflections precomputed with cubic segment?
915         int testCount = SkDCubic::FindInflections(pts, testTs);
916         double startT = fStart->t();
917         double endT = fEnd->t();
918         double limitT = endT;
919         int index;
920         for (index = 0; index < testCount; ++index) {
921             if (!::between(startT, testTs[index], limitT)) {
922                 testTs[index] = -1;
923             }
924         }
925         testTs[testCount++] = startT;
926         testTs[testCount++] = endT;
927         SkTQSort<double>(testTs, &testTs[testCount - 1]);
928         double bestSide = 0;
929         int testCases = (testCount << 1) - 1;
930         index = 0;
931         while (testTs[index] < 0) {
932             ++index;
933         }
934         index <<= 1;
935         for (; index < testCases; ++index) {
936             int testIndex = index >> 1;
937             double testT = testTs[testIndex];
938             if (index & 1) {
939                 testT = (testT + testTs[testIndex + 1]) / 2;
940             }
941             // OPTIMIZE: could avoid call for t == startT, endT
942             SkDPoint pt = dcubic_xy_at_t(pts, segment->weight(), testT);
943             SkLineParameters tangentPart;
944             tangentPart.cubicEndPoints(fPart.fCurve.fCubic);
945             double testSide = tangentPart.pointDistance(pt);
946             if (fabs(bestSide) < fabs(testSide)) {
947                 bestSide = testSide;
948             }
949         }
950         fSide = -bestSide;  // compare sign only
951         } break;
952     default:
953         SkASSERT(0);
954     }
955 }
956 
setSector()957 void SkOpAngle::setSector() {
958     if (!fStart) {
959         fUnorderable = true;
960         return;
961     }
962     const SkOpSegment* segment = fStart->segment();
963     SkPath::Verb verb = segment->verb();
964     fSectorStart = this->findSector(verb, fPart.fSweep[0].fX, fPart.fSweep[0].fY);
965     if (fSectorStart < 0) {
966         goto deferTilLater;
967     }
968     if (!fPart.isCurve()) {  // if it's a line or line-like, note that both sectors are the same
969         SkASSERT(fSectorStart >= 0);
970         fSectorEnd = fSectorStart;
971         fSectorMask = 1 << fSectorStart;
972         return;
973     }
974     SkASSERT(SkPath::kLine_Verb != verb);
975     fSectorEnd = this->findSector(verb, fPart.fSweep[1].fX, fPart.fSweep[1].fY);
976     if (fSectorEnd < 0) {
977 deferTilLater:
978         fSectorStart = fSectorEnd = -1;
979         fSectorMask = 0;
980         fComputeSector = true;  // can't determine sector until segment length can be found
981         return;
982     }
983     if (fSectorEnd == fSectorStart
984             && (fSectorStart & 3) != 3) { // if the sector has no span, it can't be an exact angle
985         fSectorMask = 1 << fSectorStart;
986         return;
987     }
988     bool crossesZero = this->checkCrossesZero();
989     int start = SkTMin(fSectorStart, fSectorEnd);
990     bool curveBendsCCW = (fSectorStart == start) ^ crossesZero;
991     // bump the start and end of the sector span if they are on exact compass points
992     if ((fSectorStart & 3) == 3) {
993         fSectorStart = (fSectorStart + (curveBendsCCW ? 1 : 31)) & 0x1f;
994     }
995     if ((fSectorEnd & 3) == 3) {
996         fSectorEnd = (fSectorEnd + (curveBendsCCW ? 31 : 1)) & 0x1f;
997     }
998     crossesZero = this->checkCrossesZero();
999     start = SkTMin(fSectorStart, fSectorEnd);
1000     int end = SkTMax(fSectorStart, fSectorEnd);
1001     if (!crossesZero) {
1002         fSectorMask = (unsigned) -1 >> (31 - end + start) << start;
1003     } else {
1004         fSectorMask = (unsigned) -1 >> (31 - start) | ((unsigned) -1 << end);
1005     }
1006 }
1007 
starter()1008 SkOpSpan* SkOpAngle::starter() {
1009     return fStart->starter(fEnd);
1010 }
1011 
tangentsDiverge(const SkOpAngle * rh,double s0xt0)1012 bool SkOpAngle::tangentsDiverge(const SkOpAngle* rh, double s0xt0) {
1013     if (s0xt0 == 0) {
1014         return false;
1015     }
1016     // if the ctrl tangents are not nearly parallel, use them
1017     // solve for opposite direction displacement scale factor == m
1018     // initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x
1019     // displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1]
1020     // straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x)
1021     //                       v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x)
1022     // - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x
1023     // m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y)
1024     // m = v1.cross(v2) / v1.dot(v2)
1025     const SkDVector* sweep = fPart.fSweep;
1026     const SkDVector* tweep = rh->fPart.fSweep;
1027     double s0dt0 = sweep[0].dot(tweep[0]);
1028     if (!s0dt0) {
1029         return true;
1030     }
1031     SkASSERT(s0dt0 != 0);
1032     double m = s0xt0 / s0dt0;
1033     double sDist = sweep[0].length() * m;
1034     double tDist = tweep[0].length() * m;
1035     bool useS = fabs(sDist) < fabs(tDist);
1036     double mFactor = fabs(useS ? this->distEndRatio(sDist) : rh->distEndRatio(tDist));
1037     fTangentsAmbiguous = mFactor >= 50 && mFactor < 200;
1038     return mFactor < 50;   // empirically found limit
1039 }
1040