1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "code_generator_arm_vixl.h"
18
19 #include "arch/arm/instruction_set_features_arm.h"
20 #include "art_method.h"
21 #include "code_generator_utils.h"
22 #include "common_arm.h"
23 #include "compiled_method.h"
24 #include "entrypoints/quick/quick_entrypoints.h"
25 #include "gc/accounting/card_table.h"
26 #include "intrinsics_arm_vixl.h"
27 #include "mirror/array-inl.h"
28 #include "mirror/class-inl.h"
29 #include "thread.h"
30 #include "utils/arm/assembler_arm_vixl.h"
31 #include "utils/arm/managed_register_arm.h"
32 #include "utils/assembler.h"
33 #include "utils/stack_checks.h"
34
35 namespace art {
36 namespace arm {
37
38 namespace vixl32 = vixl::aarch32;
39 using namespace vixl32; // NOLINT(build/namespaces)
40
41 using helpers::DRegisterFrom;
42 using helpers::DWARFReg;
43 using helpers::HighDRegisterFrom;
44 using helpers::HighRegisterFrom;
45 using helpers::InputDRegisterAt;
46 using helpers::InputOperandAt;
47 using helpers::InputRegister;
48 using helpers::InputRegisterAt;
49 using helpers::InputSRegisterAt;
50 using helpers::InputVRegister;
51 using helpers::InputVRegisterAt;
52 using helpers::Int32ConstantFrom;
53 using helpers::Int64ConstantFrom;
54 using helpers::LocationFrom;
55 using helpers::LowRegisterFrom;
56 using helpers::LowSRegisterFrom;
57 using helpers::OperandFrom;
58 using helpers::OutputRegister;
59 using helpers::OutputSRegister;
60 using helpers::OutputVRegister;
61 using helpers::RegisterFrom;
62 using helpers::SRegisterFrom;
63 using helpers::Uint64ConstantFrom;
64
65 using vixl::ExactAssemblyScope;
66 using vixl::CodeBufferCheckScope;
67
68 using RegisterList = vixl32::RegisterList;
69
ExpectedPairLayout(Location location)70 static bool ExpectedPairLayout(Location location) {
71 // We expected this for both core and fpu register pairs.
72 return ((location.low() & 1) == 0) && (location.low() + 1 == location.high());
73 }
74 // Use a local definition to prevent copying mistakes.
75 static constexpr size_t kArmWordSize = static_cast<size_t>(kArmPointerSize);
76 static constexpr size_t kArmBitsPerWord = kArmWordSize * kBitsPerByte;
77 static constexpr int kCurrentMethodStackOffset = 0;
78 static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;
79
80 #ifdef __
81 #error "ARM Codegen VIXL macro-assembler macro already defined."
82 #endif
83
84 // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
85 #define __ down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler()-> // NOLINT
86 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArmPointerSize, x).Int32Value()
87
88 // Marker that code is yet to be, and must, be implemented.
89 #define TODO_VIXL32(level) LOG(level) << __PRETTY_FUNCTION__ << " unimplemented "
90
91 // SaveLiveRegisters and RestoreLiveRegisters from SlowPathCodeARM operate on sets of S registers,
92 // for each live D registers they treat two corresponding S registers as live ones.
93 //
94 // Two following functions (SaveContiguousSRegisterList, RestoreContiguousSRegisterList) build
95 // from a list of contiguous S registers a list of contiguous D registers (processing first/last
96 // S registers corner cases) and save/restore this new list treating them as D registers.
97 // - decreasing code size
98 // - avoiding hazards on Cortex-A57, when a pair of S registers for an actual live D register is
99 // restored and then used in regular non SlowPath code as D register.
100 //
101 // For the following example (v means the S register is live):
102 // D names: | D0 | D1 | D2 | D4 | ...
103 // S names: | S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | ...
104 // Live? | | v | v | v | v | v | v | | ...
105 //
106 // S1 and S6 will be saved/restored independently; D registers list (D1, D2) will be processed
107 // as D registers.
108 //
109 // TODO(VIXL): All this code should be unnecessary once the VIXL AArch32 backend provides helpers
110 // for lists of floating-point registers.
SaveContiguousSRegisterList(size_t first,size_t last,CodeGenerator * codegen,size_t stack_offset)111 static size_t SaveContiguousSRegisterList(size_t first,
112 size_t last,
113 CodeGenerator* codegen,
114 size_t stack_offset) {
115 static_assert(kSRegSizeInBytes == kArmWordSize, "Broken assumption on reg/word sizes.");
116 static_assert(kDRegSizeInBytes == 2 * kArmWordSize, "Broken assumption on reg/word sizes.");
117 DCHECK_LE(first, last);
118 if ((first == last) && (first == 0)) {
119 __ Vstr(vixl32::SRegister(first), MemOperand(sp, stack_offset));
120 return stack_offset + kSRegSizeInBytes;
121 }
122 if (first % 2 == 1) {
123 __ Vstr(vixl32::SRegister(first++), MemOperand(sp, stack_offset));
124 stack_offset += kSRegSizeInBytes;
125 }
126
127 bool save_last = false;
128 if (last % 2 == 0) {
129 save_last = true;
130 --last;
131 }
132
133 if (first < last) {
134 vixl32::DRegister d_reg = vixl32::DRegister(first / 2);
135 DCHECK_EQ((last - first + 1) % 2, 0u);
136 size_t number_of_d_regs = (last - first + 1) / 2;
137
138 if (number_of_d_regs == 1) {
139 __ Vstr(d_reg, MemOperand(sp, stack_offset));
140 } else if (number_of_d_regs > 1) {
141 UseScratchRegisterScope temps(down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler());
142 vixl32::Register base = sp;
143 if (stack_offset != 0) {
144 base = temps.Acquire();
145 __ Add(base, sp, Operand::From(stack_offset));
146 }
147 __ Vstm(F64, base, NO_WRITE_BACK, DRegisterList(d_reg, number_of_d_regs));
148 }
149 stack_offset += number_of_d_regs * kDRegSizeInBytes;
150 }
151
152 if (save_last) {
153 __ Vstr(vixl32::SRegister(last + 1), MemOperand(sp, stack_offset));
154 stack_offset += kSRegSizeInBytes;
155 }
156
157 return stack_offset;
158 }
159
RestoreContiguousSRegisterList(size_t first,size_t last,CodeGenerator * codegen,size_t stack_offset)160 static size_t RestoreContiguousSRegisterList(size_t first,
161 size_t last,
162 CodeGenerator* codegen,
163 size_t stack_offset) {
164 static_assert(kSRegSizeInBytes == kArmWordSize, "Broken assumption on reg/word sizes.");
165 static_assert(kDRegSizeInBytes == 2 * kArmWordSize, "Broken assumption on reg/word sizes.");
166 DCHECK_LE(first, last);
167 if ((first == last) && (first == 0)) {
168 __ Vldr(vixl32::SRegister(first), MemOperand(sp, stack_offset));
169 return stack_offset + kSRegSizeInBytes;
170 }
171 if (first % 2 == 1) {
172 __ Vldr(vixl32::SRegister(first++), MemOperand(sp, stack_offset));
173 stack_offset += kSRegSizeInBytes;
174 }
175
176 bool restore_last = false;
177 if (last % 2 == 0) {
178 restore_last = true;
179 --last;
180 }
181
182 if (first < last) {
183 vixl32::DRegister d_reg = vixl32::DRegister(first / 2);
184 DCHECK_EQ((last - first + 1) % 2, 0u);
185 size_t number_of_d_regs = (last - first + 1) / 2;
186 if (number_of_d_regs == 1) {
187 __ Vldr(d_reg, MemOperand(sp, stack_offset));
188 } else if (number_of_d_regs > 1) {
189 UseScratchRegisterScope temps(down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler());
190 vixl32::Register base = sp;
191 if (stack_offset != 0) {
192 base = temps.Acquire();
193 __ Add(base, sp, Operand::From(stack_offset));
194 }
195 __ Vldm(F64, base, NO_WRITE_BACK, DRegisterList(d_reg, number_of_d_regs));
196 }
197 stack_offset += number_of_d_regs * kDRegSizeInBytes;
198 }
199
200 if (restore_last) {
201 __ Vldr(vixl32::SRegister(last + 1), MemOperand(sp, stack_offset));
202 stack_offset += kSRegSizeInBytes;
203 }
204
205 return stack_offset;
206 }
207
SaveLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)208 void SlowPathCodeARMVIXL::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
209 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
210 size_t orig_offset = stack_offset;
211
212 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true);
213 for (uint32_t i : LowToHighBits(core_spills)) {
214 // If the register holds an object, update the stack mask.
215 if (locations->RegisterContainsObject(i)) {
216 locations->SetStackBit(stack_offset / kVRegSize);
217 }
218 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
219 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
220 saved_core_stack_offsets_[i] = stack_offset;
221 stack_offset += kArmWordSize;
222 }
223
224 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
225 arm_codegen->GetAssembler()->StoreRegisterList(core_spills, orig_offset);
226
227 uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false);
228 orig_offset = stack_offset;
229 for (uint32_t i : LowToHighBits(fp_spills)) {
230 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
231 saved_fpu_stack_offsets_[i] = stack_offset;
232 stack_offset += kArmWordSize;
233 }
234
235 stack_offset = orig_offset;
236 while (fp_spills != 0u) {
237 uint32_t begin = CTZ(fp_spills);
238 uint32_t tmp = fp_spills + (1u << begin);
239 fp_spills &= tmp; // Clear the contiguous range of 1s.
240 uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp); // CTZ(0) is undefined.
241 stack_offset = SaveContiguousSRegisterList(begin, end - 1, codegen, stack_offset);
242 }
243 DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
244 }
245
RestoreLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)246 void SlowPathCodeARMVIXL::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
247 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
248 size_t orig_offset = stack_offset;
249
250 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true);
251 for (uint32_t i : LowToHighBits(core_spills)) {
252 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
253 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
254 stack_offset += kArmWordSize;
255 }
256
257 // TODO(VIXL): Check the coherency of stack_offset after this with a test.
258 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
259 arm_codegen->GetAssembler()->LoadRegisterList(core_spills, orig_offset);
260
261 uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false);
262 while (fp_spills != 0u) {
263 uint32_t begin = CTZ(fp_spills);
264 uint32_t tmp = fp_spills + (1u << begin);
265 fp_spills &= tmp; // Clear the contiguous range of 1s.
266 uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp); // CTZ(0) is undefined.
267 stack_offset = RestoreContiguousSRegisterList(begin, end - 1, codegen, stack_offset);
268 }
269 DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
270 }
271
272 class NullCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
273 public:
NullCheckSlowPathARMVIXL(HNullCheck * instruction)274 explicit NullCheckSlowPathARMVIXL(HNullCheck* instruction) : SlowPathCodeARMVIXL(instruction) {}
275
EmitNativeCode(CodeGenerator * codegen)276 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
277 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
278 __ Bind(GetEntryLabel());
279 if (instruction_->CanThrowIntoCatchBlock()) {
280 // Live registers will be restored in the catch block if caught.
281 SaveLiveRegisters(codegen, instruction_->GetLocations());
282 }
283 arm_codegen->InvokeRuntime(kQuickThrowNullPointer,
284 instruction_,
285 instruction_->GetDexPc(),
286 this);
287 CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
288 }
289
IsFatal() const290 bool IsFatal() const OVERRIDE { return true; }
291
GetDescription() const292 const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathARMVIXL"; }
293
294 private:
295 DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARMVIXL);
296 };
297
298 class DivZeroCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
299 public:
DivZeroCheckSlowPathARMVIXL(HDivZeroCheck * instruction)300 explicit DivZeroCheckSlowPathARMVIXL(HDivZeroCheck* instruction)
301 : SlowPathCodeARMVIXL(instruction) {}
302
EmitNativeCode(CodeGenerator * codegen)303 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
304 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
305 __ Bind(GetEntryLabel());
306 arm_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
307 CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
308 }
309
IsFatal() const310 bool IsFatal() const OVERRIDE { return true; }
311
GetDescription() const312 const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathARMVIXL"; }
313
314 private:
315 DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARMVIXL);
316 };
317
318 class SuspendCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
319 public:
SuspendCheckSlowPathARMVIXL(HSuspendCheck * instruction,HBasicBlock * successor)320 SuspendCheckSlowPathARMVIXL(HSuspendCheck* instruction, HBasicBlock* successor)
321 : SlowPathCodeARMVIXL(instruction), successor_(successor) {}
322
EmitNativeCode(CodeGenerator * codegen)323 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
324 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
325 __ Bind(GetEntryLabel());
326 arm_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
327 CheckEntrypointTypes<kQuickTestSuspend, void, void>();
328 if (successor_ == nullptr) {
329 __ B(GetReturnLabel());
330 } else {
331 __ B(arm_codegen->GetLabelOf(successor_));
332 }
333 }
334
GetReturnLabel()335 vixl32::Label* GetReturnLabel() {
336 DCHECK(successor_ == nullptr);
337 return &return_label_;
338 }
339
GetSuccessor() const340 HBasicBlock* GetSuccessor() const {
341 return successor_;
342 }
343
GetDescription() const344 const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathARMVIXL"; }
345
346 private:
347 // If not null, the block to branch to after the suspend check.
348 HBasicBlock* const successor_;
349
350 // If `successor_` is null, the label to branch to after the suspend check.
351 vixl32::Label return_label_;
352
353 DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARMVIXL);
354 };
355
356 class BoundsCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
357 public:
BoundsCheckSlowPathARMVIXL(HBoundsCheck * instruction)358 explicit BoundsCheckSlowPathARMVIXL(HBoundsCheck* instruction)
359 : SlowPathCodeARMVIXL(instruction) {}
360
EmitNativeCode(CodeGenerator * codegen)361 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
362 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
363 LocationSummary* locations = instruction_->GetLocations();
364
365 __ Bind(GetEntryLabel());
366 if (instruction_->CanThrowIntoCatchBlock()) {
367 // Live registers will be restored in the catch block if caught.
368 SaveLiveRegisters(codegen, instruction_->GetLocations());
369 }
370 // We're moving two locations to locations that could overlap, so we need a parallel
371 // move resolver.
372 InvokeRuntimeCallingConventionARMVIXL calling_convention;
373 codegen->EmitParallelMoves(
374 locations->InAt(0),
375 LocationFrom(calling_convention.GetRegisterAt(0)),
376 Primitive::kPrimInt,
377 locations->InAt(1),
378 LocationFrom(calling_convention.GetRegisterAt(1)),
379 Primitive::kPrimInt);
380 QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
381 ? kQuickThrowStringBounds
382 : kQuickThrowArrayBounds;
383 arm_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
384 CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
385 CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
386 }
387
IsFatal() const388 bool IsFatal() const OVERRIDE { return true; }
389
GetDescription() const390 const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathARMVIXL"; }
391
392 private:
393 DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARMVIXL);
394 };
395
396 class LoadClassSlowPathARMVIXL : public SlowPathCodeARMVIXL {
397 public:
LoadClassSlowPathARMVIXL(HLoadClass * cls,HInstruction * at,uint32_t dex_pc,bool do_clinit)398 LoadClassSlowPathARMVIXL(HLoadClass* cls, HInstruction* at, uint32_t dex_pc, bool do_clinit)
399 : SlowPathCodeARMVIXL(at), cls_(cls), dex_pc_(dex_pc), do_clinit_(do_clinit) {
400 DCHECK(at->IsLoadClass() || at->IsClinitCheck());
401 }
402
EmitNativeCode(CodeGenerator * codegen)403 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
404 LocationSummary* locations = instruction_->GetLocations();
405 Location out = locations->Out();
406 constexpr bool call_saves_everything_except_r0 = (!kUseReadBarrier || kUseBakerReadBarrier);
407
408 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
409 __ Bind(GetEntryLabel());
410 SaveLiveRegisters(codegen, locations);
411
412 InvokeRuntimeCallingConventionARMVIXL calling_convention;
413 // For HLoadClass/kBssEntry/kSaveEverything, make sure we preserve the address of the entry.
414 DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_);
415 bool is_load_class_bss_entry =
416 (cls_ == instruction_) && (cls_->GetLoadKind() == HLoadClass::LoadKind::kBssEntry);
417 vixl32::Register entry_address;
418 if (is_load_class_bss_entry && call_saves_everything_except_r0) {
419 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
420 // In the unlucky case that the `temp` is R0, we preserve the address in `out` across
421 // the kSaveEverything call.
422 bool temp_is_r0 = temp.Is(calling_convention.GetRegisterAt(0));
423 entry_address = temp_is_r0 ? RegisterFrom(out) : temp;
424 DCHECK(!entry_address.Is(calling_convention.GetRegisterAt(0)));
425 if (temp_is_r0) {
426 __ Mov(entry_address, temp);
427 }
428 }
429 dex::TypeIndex type_index = cls_->GetTypeIndex();
430 __ Mov(calling_convention.GetRegisterAt(0), type_index.index_);
431 QuickEntrypointEnum entrypoint = do_clinit_ ? kQuickInitializeStaticStorage
432 : kQuickInitializeType;
433 arm_codegen->InvokeRuntime(entrypoint, instruction_, dex_pc_, this);
434 if (do_clinit_) {
435 CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
436 } else {
437 CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
438 }
439
440 // For HLoadClass/kBssEntry, store the resolved Class to the BSS entry.
441 if (is_load_class_bss_entry) {
442 if (call_saves_everything_except_r0) {
443 // The class entry address was preserved in `entry_address` thanks to kSaveEverything.
444 __ Str(r0, MemOperand(entry_address));
445 } else {
446 // For non-Baker read barrier, we need to re-calculate the address of the string entry.
447 UseScratchRegisterScope temps(
448 down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler());
449 vixl32::Register temp = temps.Acquire();
450 CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
451 arm_codegen->NewTypeBssEntryPatch(cls_->GetDexFile(), type_index);
452 arm_codegen->EmitMovwMovtPlaceholder(labels, temp);
453 __ Str(r0, MemOperand(temp));
454 }
455 }
456 // Move the class to the desired location.
457 if (out.IsValid()) {
458 DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
459 arm_codegen->Move32(locations->Out(), LocationFrom(r0));
460 }
461 RestoreLiveRegisters(codegen, locations);
462 __ B(GetExitLabel());
463 }
464
GetDescription() const465 const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathARMVIXL"; }
466
467 private:
468 // The class this slow path will load.
469 HLoadClass* const cls_;
470
471 // The dex PC of `at_`.
472 const uint32_t dex_pc_;
473
474 // Whether to initialize the class.
475 const bool do_clinit_;
476
477 DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARMVIXL);
478 };
479
480 class LoadStringSlowPathARMVIXL : public SlowPathCodeARMVIXL {
481 public:
LoadStringSlowPathARMVIXL(HLoadString * instruction)482 explicit LoadStringSlowPathARMVIXL(HLoadString* instruction)
483 : SlowPathCodeARMVIXL(instruction) {}
484
EmitNativeCode(CodeGenerator * codegen)485 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
486 DCHECK(instruction_->IsLoadString());
487 DCHECK_EQ(instruction_->AsLoadString()->GetLoadKind(), HLoadString::LoadKind::kBssEntry);
488 LocationSummary* locations = instruction_->GetLocations();
489 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
490 HLoadString* load = instruction_->AsLoadString();
491 const dex::StringIndex string_index = load->GetStringIndex();
492 vixl32::Register out = OutputRegister(load);
493 constexpr bool call_saves_everything_except_r0 = (!kUseReadBarrier || kUseBakerReadBarrier);
494
495 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
496 __ Bind(GetEntryLabel());
497 SaveLiveRegisters(codegen, locations);
498
499 InvokeRuntimeCallingConventionARMVIXL calling_convention;
500 // In the unlucky case that the `temp` is R0, we preserve the address in `out` across
501 // the kSaveEverything call.
502 vixl32::Register entry_address;
503 if (call_saves_everything_except_r0) {
504 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
505 bool temp_is_r0 = (temp.Is(calling_convention.GetRegisterAt(0)));
506 entry_address = temp_is_r0 ? out : temp;
507 DCHECK(!entry_address.Is(calling_convention.GetRegisterAt(0)));
508 if (temp_is_r0) {
509 __ Mov(entry_address, temp);
510 }
511 }
512
513 __ Mov(calling_convention.GetRegisterAt(0), string_index.index_);
514 arm_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
515 CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
516
517 // Store the resolved String to the .bss entry.
518 if (call_saves_everything_except_r0) {
519 // The string entry address was preserved in `entry_address` thanks to kSaveEverything.
520 __ Str(r0, MemOperand(entry_address));
521 } else {
522 // For non-Baker read barrier, we need to re-calculate the address of the string entry.
523 UseScratchRegisterScope temps(
524 down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler());
525 vixl32::Register temp = temps.Acquire();
526 CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
527 arm_codegen->NewPcRelativeStringPatch(load->GetDexFile(), string_index);
528 arm_codegen->EmitMovwMovtPlaceholder(labels, temp);
529 __ Str(r0, MemOperand(temp));
530 }
531
532 arm_codegen->Move32(locations->Out(), LocationFrom(r0));
533 RestoreLiveRegisters(codegen, locations);
534
535 __ B(GetExitLabel());
536 }
537
GetDescription() const538 const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathARMVIXL"; }
539
540 private:
541 DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARMVIXL);
542 };
543
544 class TypeCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
545 public:
TypeCheckSlowPathARMVIXL(HInstruction * instruction,bool is_fatal)546 TypeCheckSlowPathARMVIXL(HInstruction* instruction, bool is_fatal)
547 : SlowPathCodeARMVIXL(instruction), is_fatal_(is_fatal) {}
548
EmitNativeCode(CodeGenerator * codegen)549 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
550 LocationSummary* locations = instruction_->GetLocations();
551 DCHECK(instruction_->IsCheckCast()
552 || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
553
554 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
555 __ Bind(GetEntryLabel());
556
557 if (!is_fatal_) {
558 SaveLiveRegisters(codegen, locations);
559 }
560
561 // We're moving two locations to locations that could overlap, so we need a parallel
562 // move resolver.
563 InvokeRuntimeCallingConventionARMVIXL calling_convention;
564
565 codegen->EmitParallelMoves(locations->InAt(0),
566 LocationFrom(calling_convention.GetRegisterAt(0)),
567 Primitive::kPrimNot,
568 locations->InAt(1),
569 LocationFrom(calling_convention.GetRegisterAt(1)),
570 Primitive::kPrimNot);
571 if (instruction_->IsInstanceOf()) {
572 arm_codegen->InvokeRuntime(kQuickInstanceofNonTrivial,
573 instruction_,
574 instruction_->GetDexPc(),
575 this);
576 CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>();
577 arm_codegen->Move32(locations->Out(), LocationFrom(r0));
578 } else {
579 DCHECK(instruction_->IsCheckCast());
580 arm_codegen->InvokeRuntime(kQuickCheckInstanceOf,
581 instruction_,
582 instruction_->GetDexPc(),
583 this);
584 CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
585 }
586
587 if (!is_fatal_) {
588 RestoreLiveRegisters(codegen, locations);
589 __ B(GetExitLabel());
590 }
591 }
592
GetDescription() const593 const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathARMVIXL"; }
594
IsFatal() const595 bool IsFatal() const OVERRIDE { return is_fatal_; }
596
597 private:
598 const bool is_fatal_;
599
600 DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARMVIXL);
601 };
602
603 class DeoptimizationSlowPathARMVIXL : public SlowPathCodeARMVIXL {
604 public:
DeoptimizationSlowPathARMVIXL(HDeoptimize * instruction)605 explicit DeoptimizationSlowPathARMVIXL(HDeoptimize* instruction)
606 : SlowPathCodeARMVIXL(instruction) {}
607
EmitNativeCode(CodeGenerator * codegen)608 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
609 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
610 __ Bind(GetEntryLabel());
611 LocationSummary* locations = instruction_->GetLocations();
612 SaveLiveRegisters(codegen, locations);
613 InvokeRuntimeCallingConventionARMVIXL calling_convention;
614 __ Mov(calling_convention.GetRegisterAt(0),
615 static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind()));
616
617 arm_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
618 CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>();
619 }
620
GetDescription() const621 const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathARMVIXL"; }
622
623 private:
624 DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARMVIXL);
625 };
626
627 class ArraySetSlowPathARMVIXL : public SlowPathCodeARMVIXL {
628 public:
ArraySetSlowPathARMVIXL(HInstruction * instruction)629 explicit ArraySetSlowPathARMVIXL(HInstruction* instruction) : SlowPathCodeARMVIXL(instruction) {}
630
EmitNativeCode(CodeGenerator * codegen)631 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
632 LocationSummary* locations = instruction_->GetLocations();
633 __ Bind(GetEntryLabel());
634 SaveLiveRegisters(codegen, locations);
635
636 InvokeRuntimeCallingConventionARMVIXL calling_convention;
637 HParallelMove parallel_move(codegen->GetGraph()->GetArena());
638 parallel_move.AddMove(
639 locations->InAt(0),
640 LocationFrom(calling_convention.GetRegisterAt(0)),
641 Primitive::kPrimNot,
642 nullptr);
643 parallel_move.AddMove(
644 locations->InAt(1),
645 LocationFrom(calling_convention.GetRegisterAt(1)),
646 Primitive::kPrimInt,
647 nullptr);
648 parallel_move.AddMove(
649 locations->InAt(2),
650 LocationFrom(calling_convention.GetRegisterAt(2)),
651 Primitive::kPrimNot,
652 nullptr);
653 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
654
655 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
656 arm_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
657 CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
658 RestoreLiveRegisters(codegen, locations);
659 __ B(GetExitLabel());
660 }
661
GetDescription() const662 const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathARMVIXL"; }
663
664 private:
665 DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARMVIXL);
666 };
667
668 // Abstract base class for read barrier slow paths marking a reference
669 // `ref`.
670 //
671 // Argument `entrypoint` must be a register location holding the read
672 // barrier marking runtime entry point to be invoked.
673 class ReadBarrierMarkSlowPathBaseARMVIXL : public SlowPathCodeARMVIXL {
674 protected:
ReadBarrierMarkSlowPathBaseARMVIXL(HInstruction * instruction,Location ref,Location entrypoint)675 ReadBarrierMarkSlowPathBaseARMVIXL(HInstruction* instruction, Location ref, Location entrypoint)
676 : SlowPathCodeARMVIXL(instruction), ref_(ref), entrypoint_(entrypoint) {
677 DCHECK(kEmitCompilerReadBarrier);
678 }
679
GetDescription() const680 const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathBaseARMVIXL"; }
681
682 // Generate assembly code calling the read barrier marking runtime
683 // entry point (ReadBarrierMarkRegX).
GenerateReadBarrierMarkRuntimeCall(CodeGenerator * codegen)684 void GenerateReadBarrierMarkRuntimeCall(CodeGenerator* codegen) {
685 vixl32::Register ref_reg = RegisterFrom(ref_);
686
687 // No need to save live registers; it's taken care of by the
688 // entrypoint. Also, there is no need to update the stack mask,
689 // as this runtime call will not trigger a garbage collection.
690 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
691 DCHECK(!ref_reg.Is(sp));
692 DCHECK(!ref_reg.Is(lr));
693 DCHECK(!ref_reg.Is(pc));
694 // IP is used internally by the ReadBarrierMarkRegX entry point
695 // as a temporary, it cannot be the entry point's input/output.
696 DCHECK(!ref_reg.Is(ip));
697 DCHECK(ref_reg.IsRegister()) << ref_reg;
698 // "Compact" slow path, saving two moves.
699 //
700 // Instead of using the standard runtime calling convention (input
701 // and output in R0):
702 //
703 // R0 <- ref
704 // R0 <- ReadBarrierMark(R0)
705 // ref <- R0
706 //
707 // we just use rX (the register containing `ref`) as input and output
708 // of a dedicated entrypoint:
709 //
710 // rX <- ReadBarrierMarkRegX(rX)
711 //
712 if (entrypoint_.IsValid()) {
713 arm_codegen->ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction_, this);
714 __ Blx(RegisterFrom(entrypoint_));
715 } else {
716 // Entrypoint is not already loaded, load from the thread.
717 int32_t entry_point_offset =
718 CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(ref_reg.GetCode());
719 // This runtime call does not require a stack map.
720 arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
721 }
722 }
723
724 // The location (register) of the marked object reference.
725 const Location ref_;
726
727 // The location of the entrypoint if already loaded.
728 const Location entrypoint_;
729
730 private:
731 DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathBaseARMVIXL);
732 };
733
734 // Slow path marking an object reference `ref` during a read
735 // barrier. The field `obj.field` in the object `obj` holding this
736 // reference does not get updated by this slow path after marking.
737 //
738 // This means that after the execution of this slow path, `ref` will
739 // always be up-to-date, but `obj.field` may not; i.e., after the
740 // flip, `ref` will be a to-space reference, but `obj.field` will
741 // probably still be a from-space reference (unless it gets updated by
742 // another thread, or if another thread installed another object
743 // reference (different from `ref`) in `obj.field`).
744 //
745 // If `entrypoint` is a valid location it is assumed to already be
746 // holding the entrypoint. The case where the entrypoint is passed in
747 // is when the decision to mark is based on whether the GC is marking.
748 class ReadBarrierMarkSlowPathARMVIXL : public ReadBarrierMarkSlowPathBaseARMVIXL {
749 public:
ReadBarrierMarkSlowPathARMVIXL(HInstruction * instruction,Location ref,Location entrypoint=Location::NoLocation ())750 ReadBarrierMarkSlowPathARMVIXL(HInstruction* instruction,
751 Location ref,
752 Location entrypoint = Location::NoLocation())
753 : ReadBarrierMarkSlowPathBaseARMVIXL(instruction, ref, entrypoint) {
754 DCHECK(kEmitCompilerReadBarrier);
755 }
756
GetDescription() const757 const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathARMVIXL"; }
758
EmitNativeCode(CodeGenerator * codegen)759 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
760 LocationSummary* locations = instruction_->GetLocations();
761 DCHECK(locations->CanCall());
762 DCHECK(ref_.IsRegister()) << ref_;
763 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_.reg())) << ref_.reg();
764 DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
765 << "Unexpected instruction in read barrier marking slow path: "
766 << instruction_->DebugName();
767
768 __ Bind(GetEntryLabel());
769 GenerateReadBarrierMarkRuntimeCall(codegen);
770 __ B(GetExitLabel());
771 }
772
773 private:
774 DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathARMVIXL);
775 };
776
777 // Slow path loading `obj`'s lock word, loading a reference from
778 // object `*(obj + offset + (index << scale_factor))` into `ref`, and
779 // marking `ref` if `obj` is gray according to the lock word (Baker
780 // read barrier). The field `obj.field` in the object `obj` holding
781 // this reference does not get updated by this slow path after marking
782 // (see LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARMVIXL
783 // below for that).
784 //
785 // This means that after the execution of this slow path, `ref` will
786 // always be up-to-date, but `obj.field` may not; i.e., after the
787 // flip, `ref` will be a to-space reference, but `obj.field` will
788 // probably still be a from-space reference (unless it gets updated by
789 // another thread, or if another thread installed another object
790 // reference (different from `ref`) in `obj.field`).
791 //
792 // Argument `entrypoint` must be a register location holding the read
793 // barrier marking runtime entry point to be invoked.
794 class LoadReferenceWithBakerReadBarrierSlowPathARMVIXL : public ReadBarrierMarkSlowPathBaseARMVIXL {
795 public:
LoadReferenceWithBakerReadBarrierSlowPathARMVIXL(HInstruction * instruction,Location ref,vixl32::Register obj,uint32_t offset,Location index,ScaleFactor scale_factor,bool needs_null_check,vixl32::Register temp,Location entrypoint)796 LoadReferenceWithBakerReadBarrierSlowPathARMVIXL(HInstruction* instruction,
797 Location ref,
798 vixl32::Register obj,
799 uint32_t offset,
800 Location index,
801 ScaleFactor scale_factor,
802 bool needs_null_check,
803 vixl32::Register temp,
804 Location entrypoint)
805 : ReadBarrierMarkSlowPathBaseARMVIXL(instruction, ref, entrypoint),
806 obj_(obj),
807 offset_(offset),
808 index_(index),
809 scale_factor_(scale_factor),
810 needs_null_check_(needs_null_check),
811 temp_(temp) {
812 DCHECK(kEmitCompilerReadBarrier);
813 DCHECK(kUseBakerReadBarrier);
814 }
815
GetDescription() const816 const char* GetDescription() const OVERRIDE {
817 return "LoadReferenceWithBakerReadBarrierSlowPathARMVIXL";
818 }
819
EmitNativeCode(CodeGenerator * codegen)820 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
821 LocationSummary* locations = instruction_->GetLocations();
822 vixl32::Register ref_reg = RegisterFrom(ref_);
823 DCHECK(locations->CanCall());
824 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg.GetCode())) << ref_reg;
825 DCHECK(instruction_->IsInstanceFieldGet() ||
826 instruction_->IsStaticFieldGet() ||
827 instruction_->IsArrayGet() ||
828 instruction_->IsArraySet() ||
829 instruction_->IsInstanceOf() ||
830 instruction_->IsCheckCast() ||
831 (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) ||
832 (instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified()))
833 << "Unexpected instruction in read barrier marking slow path: "
834 << instruction_->DebugName();
835 // The read barrier instrumentation of object ArrayGet
836 // instructions does not support the HIntermediateAddress
837 // instruction.
838 DCHECK(!(instruction_->IsArrayGet() &&
839 instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
840
841 // Temporary register `temp_`, used to store the lock word, must
842 // not be IP, as we may use it to emit the reference load (in the
843 // call to GenerateRawReferenceLoad below), and we need the lock
844 // word to still be in `temp_` after the reference load.
845 DCHECK(!temp_.Is(ip));
846
847 __ Bind(GetEntryLabel());
848
849 // When using MaybeGenerateReadBarrierSlow, the read barrier call is
850 // inserted after the original load. However, in fast path based
851 // Baker's read barriers, we need to perform the load of
852 // mirror::Object::monitor_ *before* the original reference load.
853 // This load-load ordering is required by the read barrier.
854 // The fast path/slow path (for Baker's algorithm) should look like:
855 //
856 // uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
857 // lfence; // Load fence or artificial data dependency to prevent load-load reordering
858 // HeapReference<mirror::Object> ref = *src; // Original reference load.
859 // bool is_gray = (rb_state == ReadBarrier::GrayState());
860 // if (is_gray) {
861 // ref = entrypoint(ref); // ref = ReadBarrier::Mark(ref); // Runtime entry point call.
862 // }
863 //
864 // Note: the original implementation in ReadBarrier::Barrier is
865 // slightly more complex as it performs additional checks that we do
866 // not do here for performance reasons.
867
868 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
869
870 // /* int32_t */ monitor = obj->monitor_
871 uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
872 arm_codegen->GetAssembler()->LoadFromOffset(kLoadWord, temp_, obj_, monitor_offset);
873 if (needs_null_check_) {
874 codegen->MaybeRecordImplicitNullCheck(instruction_);
875 }
876 // /* LockWord */ lock_word = LockWord(monitor)
877 static_assert(sizeof(LockWord) == sizeof(int32_t),
878 "art::LockWord and int32_t have different sizes.");
879
880 // Introduce a dependency on the lock_word including the rb_state,
881 // which shall prevent load-load reordering without using
882 // a memory barrier (which would be more expensive).
883 // `obj` is unchanged by this operation, but its value now depends
884 // on `temp`.
885 __ Add(obj_, obj_, Operand(temp_, ShiftType::LSR, 32));
886
887 // The actual reference load.
888 // A possible implicit null check has already been handled above.
889 arm_codegen->GenerateRawReferenceLoad(
890 instruction_, ref_, obj_, offset_, index_, scale_factor_, /* needs_null_check */ false);
891
892 // Mark the object `ref` when `obj` is gray.
893 //
894 // if (rb_state == ReadBarrier::GrayState())
895 // ref = ReadBarrier::Mark(ref);
896 //
897 // Given the numeric representation, it's enough to check the low bit of the
898 // rb_state. We do that by shifting the bit out of the lock word with LSRS
899 // which can be a 16-bit instruction unlike the TST immediate.
900 static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
901 static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
902 __ Lsrs(temp_, temp_, LockWord::kReadBarrierStateShift + 1);
903 __ B(cc, GetExitLabel()); // Carry flag is the last bit shifted out by LSRS.
904 GenerateReadBarrierMarkRuntimeCall(codegen);
905
906 __ B(GetExitLabel());
907 }
908
909 private:
910 // The register containing the object holding the marked object reference field.
911 vixl32::Register obj_;
912 // The offset, index and scale factor to access the reference in `obj_`.
913 uint32_t offset_;
914 Location index_;
915 ScaleFactor scale_factor_;
916 // Is a null check required?
917 bool needs_null_check_;
918 // A temporary register used to hold the lock word of `obj_`.
919 vixl32::Register temp_;
920
921 DISALLOW_COPY_AND_ASSIGN(LoadReferenceWithBakerReadBarrierSlowPathARMVIXL);
922 };
923
924 // Slow path loading `obj`'s lock word, loading a reference from
925 // object `*(obj + offset + (index << scale_factor))` into `ref`, and
926 // marking `ref` if `obj` is gray according to the lock word (Baker
927 // read barrier). If needed, this slow path also atomically updates
928 // the field `obj.field` in the object `obj` holding this reference
929 // after marking (contrary to
930 // LoadReferenceWithBakerReadBarrierSlowPathARMVIXL above, which never
931 // tries to update `obj.field`).
932 //
933 // This means that after the execution of this slow path, both `ref`
934 // and `obj.field` will be up-to-date; i.e., after the flip, both will
935 // hold the same to-space reference (unless another thread installed
936 // another object reference (different from `ref`) in `obj.field`).
937 //
938 //
939 // Argument `entrypoint` must be a register location holding the read
940 // barrier marking runtime entry point to be invoked.
941 class LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARMVIXL
942 : public ReadBarrierMarkSlowPathBaseARMVIXL {
943 public:
LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARMVIXL(HInstruction * instruction,Location ref,vixl32::Register obj,uint32_t offset,Location index,ScaleFactor scale_factor,bool needs_null_check,vixl32::Register temp1,vixl32::Register temp2,Location entrypoint)944 LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARMVIXL(HInstruction* instruction,
945 Location ref,
946 vixl32::Register obj,
947 uint32_t offset,
948 Location index,
949 ScaleFactor scale_factor,
950 bool needs_null_check,
951 vixl32::Register temp1,
952 vixl32::Register temp2,
953 Location entrypoint)
954 : ReadBarrierMarkSlowPathBaseARMVIXL(instruction, ref, entrypoint),
955 obj_(obj),
956 offset_(offset),
957 index_(index),
958 scale_factor_(scale_factor),
959 needs_null_check_(needs_null_check),
960 temp1_(temp1),
961 temp2_(temp2) {
962 DCHECK(kEmitCompilerReadBarrier);
963 DCHECK(kUseBakerReadBarrier);
964 }
965
GetDescription() const966 const char* GetDescription() const OVERRIDE {
967 return "LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARMVIXL";
968 }
969
EmitNativeCode(CodeGenerator * codegen)970 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
971 LocationSummary* locations = instruction_->GetLocations();
972 vixl32::Register ref_reg = RegisterFrom(ref_);
973 DCHECK(locations->CanCall());
974 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg.GetCode())) << ref_reg;
975 DCHECK_NE(ref_.reg(), LocationFrom(temp1_).reg());
976
977 // This slow path is only used by the UnsafeCASObject intrinsic at the moment.
978 DCHECK((instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
979 << "Unexpected instruction in read barrier marking and field updating slow path: "
980 << instruction_->DebugName();
981 DCHECK(instruction_->GetLocations()->Intrinsified());
982 DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kUnsafeCASObject);
983 DCHECK_EQ(offset_, 0u);
984 DCHECK_EQ(scale_factor_, ScaleFactor::TIMES_1);
985 Location field_offset = index_;
986 DCHECK(field_offset.IsRegisterPair()) << field_offset;
987
988 // Temporary register `temp1_`, used to store the lock word, must
989 // not be IP, as we may use it to emit the reference load (in the
990 // call to GenerateRawReferenceLoad below), and we need the lock
991 // word to still be in `temp1_` after the reference load.
992 DCHECK(!temp1_.Is(ip));
993
994 __ Bind(GetEntryLabel());
995
996 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
997
998 // /* int32_t */ monitor = obj->monitor_
999 uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
1000 arm_codegen->GetAssembler()->LoadFromOffset(kLoadWord, temp1_, obj_, monitor_offset);
1001 if (needs_null_check_) {
1002 codegen->MaybeRecordImplicitNullCheck(instruction_);
1003 }
1004 // /* LockWord */ lock_word = LockWord(monitor)
1005 static_assert(sizeof(LockWord) == sizeof(int32_t),
1006 "art::LockWord and int32_t have different sizes.");
1007
1008 // Introduce a dependency on the lock_word including the rb_state,
1009 // which shall prevent load-load reordering without using
1010 // a memory barrier (which would be more expensive).
1011 // `obj` is unchanged by this operation, but its value now depends
1012 // on `temp`.
1013 __ Add(obj_, obj_, Operand(temp1_, ShiftType::LSR, 32));
1014
1015 // The actual reference load.
1016 // A possible implicit null check has already been handled above.
1017 arm_codegen->GenerateRawReferenceLoad(
1018 instruction_, ref_, obj_, offset_, index_, scale_factor_, /* needs_null_check */ false);
1019
1020 // Mark the object `ref` when `obj` is gray.
1021 //
1022 // if (rb_state == ReadBarrier::GrayState())
1023 // ref = ReadBarrier::Mark(ref);
1024 //
1025 // Given the numeric representation, it's enough to check the low bit of the
1026 // rb_state. We do that by shifting the bit out of the lock word with LSRS
1027 // which can be a 16-bit instruction unlike the TST immediate.
1028 static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
1029 static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
1030 __ Lsrs(temp1_, temp1_, LockWord::kReadBarrierStateShift + 1);
1031 __ B(cc, GetExitLabel()); // Carry flag is the last bit shifted out by LSRS.
1032
1033 // Save the old value of the reference before marking it.
1034 // Note that we cannot use IP to save the old reference, as IP is
1035 // used internally by the ReadBarrierMarkRegX entry point, and we
1036 // need the old reference after the call to that entry point.
1037 DCHECK(!temp1_.Is(ip));
1038 __ Mov(temp1_, ref_reg);
1039
1040 GenerateReadBarrierMarkRuntimeCall(codegen);
1041
1042 // If the new reference is different from the old reference,
1043 // update the field in the holder (`*(obj_ + field_offset)`).
1044 //
1045 // Note that this field could also hold a different object, if
1046 // another thread had concurrently changed it. In that case, the
1047 // LDREX/SUBS/ITNE sequence of instructions in the compare-and-set
1048 // (CAS) operation below would abort the CAS, leaving the field
1049 // as-is.
1050 __ Cmp(temp1_, ref_reg);
1051 __ B(eq, GetExitLabel());
1052
1053 // Update the the holder's field atomically. This may fail if
1054 // mutator updates before us, but it's OK. This is achieved
1055 // using a strong compare-and-set (CAS) operation with relaxed
1056 // memory synchronization ordering, where the expected value is
1057 // the old reference and the desired value is the new reference.
1058
1059 UseScratchRegisterScope temps(arm_codegen->GetVIXLAssembler());
1060 // Convenience aliases.
1061 vixl32::Register base = obj_;
1062 // The UnsafeCASObject intrinsic uses a register pair as field
1063 // offset ("long offset"), of which only the low part contains
1064 // data.
1065 vixl32::Register offset = LowRegisterFrom(field_offset);
1066 vixl32::Register expected = temp1_;
1067 vixl32::Register value = ref_reg;
1068 vixl32::Register tmp_ptr = temps.Acquire(); // Pointer to actual memory.
1069 vixl32::Register tmp = temp2_; // Value in memory.
1070
1071 __ Add(tmp_ptr, base, offset);
1072
1073 if (kPoisonHeapReferences) {
1074 arm_codegen->GetAssembler()->PoisonHeapReference(expected);
1075 if (value.Is(expected)) {
1076 // Do not poison `value`, as it is the same register as
1077 // `expected`, which has just been poisoned.
1078 } else {
1079 arm_codegen->GetAssembler()->PoisonHeapReference(value);
1080 }
1081 }
1082
1083 // do {
1084 // tmp = [r_ptr] - expected;
1085 // } while (tmp == 0 && failure([r_ptr] <- r_new_value));
1086
1087 vixl32::Label loop_head, exit_loop;
1088 __ Bind(&loop_head);
1089
1090 __ Ldrex(tmp, MemOperand(tmp_ptr));
1091
1092 __ Subs(tmp, tmp, expected);
1093
1094 {
1095 ExactAssemblyScope aas(arm_codegen->GetVIXLAssembler(),
1096 2 * kMaxInstructionSizeInBytes,
1097 CodeBufferCheckScope::kMaximumSize);
1098
1099 __ it(ne);
1100 __ clrex(ne);
1101 }
1102
1103 __ B(ne, &exit_loop, /* far_target */ false);
1104
1105 __ Strex(tmp, value, MemOperand(tmp_ptr));
1106 __ Cmp(tmp, 1);
1107 __ B(eq, &loop_head, /* far_target */ false);
1108
1109 __ Bind(&exit_loop);
1110
1111 if (kPoisonHeapReferences) {
1112 arm_codegen->GetAssembler()->UnpoisonHeapReference(expected);
1113 if (value.Is(expected)) {
1114 // Do not unpoison `value`, as it is the same register as
1115 // `expected`, which has just been unpoisoned.
1116 } else {
1117 arm_codegen->GetAssembler()->UnpoisonHeapReference(value);
1118 }
1119 }
1120
1121 __ B(GetExitLabel());
1122 }
1123
1124 private:
1125 // The register containing the object holding the marked object reference field.
1126 const vixl32::Register obj_;
1127 // The offset, index and scale factor to access the reference in `obj_`.
1128 uint32_t offset_;
1129 Location index_;
1130 ScaleFactor scale_factor_;
1131 // Is a null check required?
1132 bool needs_null_check_;
1133 // A temporary register used to hold the lock word of `obj_`; and
1134 // also to hold the original reference value, when the reference is
1135 // marked.
1136 const vixl32::Register temp1_;
1137 // A temporary register used in the implementation of the CAS, to
1138 // update the object's reference field.
1139 const vixl32::Register temp2_;
1140
1141 DISALLOW_COPY_AND_ASSIGN(LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARMVIXL);
1142 };
1143
1144 // Slow path generating a read barrier for a heap reference.
1145 class ReadBarrierForHeapReferenceSlowPathARMVIXL : public SlowPathCodeARMVIXL {
1146 public:
ReadBarrierForHeapReferenceSlowPathARMVIXL(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)1147 ReadBarrierForHeapReferenceSlowPathARMVIXL(HInstruction* instruction,
1148 Location out,
1149 Location ref,
1150 Location obj,
1151 uint32_t offset,
1152 Location index)
1153 : SlowPathCodeARMVIXL(instruction),
1154 out_(out),
1155 ref_(ref),
1156 obj_(obj),
1157 offset_(offset),
1158 index_(index) {
1159 DCHECK(kEmitCompilerReadBarrier);
1160 // If `obj` is equal to `out` or `ref`, it means the initial object
1161 // has been overwritten by (or after) the heap object reference load
1162 // to be instrumented, e.g.:
1163 //
1164 // __ LoadFromOffset(kLoadWord, out, out, offset);
1165 // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
1166 //
1167 // In that case, we have lost the information about the original
1168 // object, and the emitted read barrier cannot work properly.
1169 DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
1170 DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
1171 }
1172
EmitNativeCode(CodeGenerator * codegen)1173 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
1174 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
1175 LocationSummary* locations = instruction_->GetLocations();
1176 vixl32::Register reg_out = RegisterFrom(out_);
1177 DCHECK(locations->CanCall());
1178 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out.GetCode()));
1179 DCHECK(instruction_->IsInstanceFieldGet() ||
1180 instruction_->IsStaticFieldGet() ||
1181 instruction_->IsArrayGet() ||
1182 instruction_->IsInstanceOf() ||
1183 instruction_->IsCheckCast() ||
1184 (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
1185 << "Unexpected instruction in read barrier for heap reference slow path: "
1186 << instruction_->DebugName();
1187 // The read barrier instrumentation of object ArrayGet
1188 // instructions does not support the HIntermediateAddress
1189 // instruction.
1190 DCHECK(!(instruction_->IsArrayGet() &&
1191 instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
1192
1193 __ Bind(GetEntryLabel());
1194 SaveLiveRegisters(codegen, locations);
1195
1196 // We may have to change the index's value, but as `index_` is a
1197 // constant member (like other "inputs" of this slow path),
1198 // introduce a copy of it, `index`.
1199 Location index = index_;
1200 if (index_.IsValid()) {
1201 // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
1202 if (instruction_->IsArrayGet()) {
1203 // Compute the actual memory offset and store it in `index`.
1204 vixl32::Register index_reg = RegisterFrom(index_);
1205 DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg.GetCode()));
1206 if (codegen->IsCoreCalleeSaveRegister(index_reg.GetCode())) {
1207 // We are about to change the value of `index_reg` (see the
1208 // calls to art::arm::Thumb2Assembler::Lsl and
1209 // art::arm::Thumb2Assembler::AddConstant below), but it has
1210 // not been saved by the previous call to
1211 // art::SlowPathCode::SaveLiveRegisters, as it is a
1212 // callee-save register --
1213 // art::SlowPathCode::SaveLiveRegisters does not consider
1214 // callee-save registers, as it has been designed with the
1215 // assumption that callee-save registers are supposed to be
1216 // handled by the called function. So, as a callee-save
1217 // register, `index_reg` _would_ eventually be saved onto
1218 // the stack, but it would be too late: we would have
1219 // changed its value earlier. Therefore, we manually save
1220 // it here into another freely available register,
1221 // `free_reg`, chosen of course among the caller-save
1222 // registers (as a callee-save `free_reg` register would
1223 // exhibit the same problem).
1224 //
1225 // Note we could have requested a temporary register from
1226 // the register allocator instead; but we prefer not to, as
1227 // this is a slow path, and we know we can find a
1228 // caller-save register that is available.
1229 vixl32::Register free_reg = FindAvailableCallerSaveRegister(codegen);
1230 __ Mov(free_reg, index_reg);
1231 index_reg = free_reg;
1232 index = LocationFrom(index_reg);
1233 } else {
1234 // The initial register stored in `index_` has already been
1235 // saved in the call to art::SlowPathCode::SaveLiveRegisters
1236 // (as it is not a callee-save register), so we can freely
1237 // use it.
1238 }
1239 // Shifting the index value contained in `index_reg` by the scale
1240 // factor (2) cannot overflow in practice, as the runtime is
1241 // unable to allocate object arrays with a size larger than
1242 // 2^26 - 1 (that is, 2^28 - 4 bytes).
1243 __ Lsl(index_reg, index_reg, TIMES_4);
1244 static_assert(
1245 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
1246 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
1247 __ Add(index_reg, index_reg, offset_);
1248 } else {
1249 // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile
1250 // intrinsics, `index_` is not shifted by a scale factor of 2
1251 // (as in the case of ArrayGet), as it is actually an offset
1252 // to an object field within an object.
1253 DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
1254 DCHECK(instruction_->GetLocations()->Intrinsified());
1255 DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
1256 (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
1257 << instruction_->AsInvoke()->GetIntrinsic();
1258 DCHECK_EQ(offset_, 0U);
1259 DCHECK(index_.IsRegisterPair());
1260 // UnsafeGet's offset location is a register pair, the low
1261 // part contains the correct offset.
1262 index = index_.ToLow();
1263 }
1264 }
1265
1266 // We're moving two or three locations to locations that could
1267 // overlap, so we need a parallel move resolver.
1268 InvokeRuntimeCallingConventionARMVIXL calling_convention;
1269 HParallelMove parallel_move(codegen->GetGraph()->GetArena());
1270 parallel_move.AddMove(ref_,
1271 LocationFrom(calling_convention.GetRegisterAt(0)),
1272 Primitive::kPrimNot,
1273 nullptr);
1274 parallel_move.AddMove(obj_,
1275 LocationFrom(calling_convention.GetRegisterAt(1)),
1276 Primitive::kPrimNot,
1277 nullptr);
1278 if (index.IsValid()) {
1279 parallel_move.AddMove(index,
1280 LocationFrom(calling_convention.GetRegisterAt(2)),
1281 Primitive::kPrimInt,
1282 nullptr);
1283 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
1284 } else {
1285 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
1286 __ Mov(calling_convention.GetRegisterAt(2), offset_);
1287 }
1288 arm_codegen->InvokeRuntime(kQuickReadBarrierSlow, instruction_, instruction_->GetDexPc(), this);
1289 CheckEntrypointTypes<
1290 kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
1291 arm_codegen->Move32(out_, LocationFrom(r0));
1292
1293 RestoreLiveRegisters(codegen, locations);
1294 __ B(GetExitLabel());
1295 }
1296
GetDescription() const1297 const char* GetDescription() const OVERRIDE {
1298 return "ReadBarrierForHeapReferenceSlowPathARMVIXL";
1299 }
1300
1301 private:
FindAvailableCallerSaveRegister(CodeGenerator * codegen)1302 vixl32::Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
1303 uint32_t ref = RegisterFrom(ref_).GetCode();
1304 uint32_t obj = RegisterFrom(obj_).GetCode();
1305 for (uint32_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
1306 if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
1307 return vixl32::Register(i);
1308 }
1309 }
1310 // We shall never fail to find a free caller-save register, as
1311 // there are more than two core caller-save registers on ARM
1312 // (meaning it is possible to find one which is different from
1313 // `ref` and `obj`).
1314 DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
1315 LOG(FATAL) << "Could not find a free caller-save register";
1316 UNREACHABLE();
1317 }
1318
1319 const Location out_;
1320 const Location ref_;
1321 const Location obj_;
1322 const uint32_t offset_;
1323 // An additional location containing an index to an array.
1324 // Only used for HArrayGet and the UnsafeGetObject &
1325 // UnsafeGetObjectVolatile intrinsics.
1326 const Location index_;
1327
1328 DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARMVIXL);
1329 };
1330
1331 // Slow path generating a read barrier for a GC root.
1332 class ReadBarrierForRootSlowPathARMVIXL : public SlowPathCodeARMVIXL {
1333 public:
ReadBarrierForRootSlowPathARMVIXL(HInstruction * instruction,Location out,Location root)1334 ReadBarrierForRootSlowPathARMVIXL(HInstruction* instruction, Location out, Location root)
1335 : SlowPathCodeARMVIXL(instruction), out_(out), root_(root) {
1336 DCHECK(kEmitCompilerReadBarrier);
1337 }
1338
EmitNativeCode(CodeGenerator * codegen)1339 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
1340 LocationSummary* locations = instruction_->GetLocations();
1341 vixl32::Register reg_out = RegisterFrom(out_);
1342 DCHECK(locations->CanCall());
1343 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out.GetCode()));
1344 DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
1345 << "Unexpected instruction in read barrier for GC root slow path: "
1346 << instruction_->DebugName();
1347
1348 __ Bind(GetEntryLabel());
1349 SaveLiveRegisters(codegen, locations);
1350
1351 InvokeRuntimeCallingConventionARMVIXL calling_convention;
1352 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
1353 arm_codegen->Move32(LocationFrom(calling_convention.GetRegisterAt(0)), root_);
1354 arm_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
1355 instruction_,
1356 instruction_->GetDexPc(),
1357 this);
1358 CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
1359 arm_codegen->Move32(out_, LocationFrom(r0));
1360
1361 RestoreLiveRegisters(codegen, locations);
1362 __ B(GetExitLabel());
1363 }
1364
GetDescription() const1365 const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathARMVIXL"; }
1366
1367 private:
1368 const Location out_;
1369 const Location root_;
1370
1371 DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARMVIXL);
1372 };
1373
ARMCondition(IfCondition cond)1374 inline vixl32::Condition ARMCondition(IfCondition cond) {
1375 switch (cond) {
1376 case kCondEQ: return eq;
1377 case kCondNE: return ne;
1378 case kCondLT: return lt;
1379 case kCondLE: return le;
1380 case kCondGT: return gt;
1381 case kCondGE: return ge;
1382 case kCondB: return lo;
1383 case kCondBE: return ls;
1384 case kCondA: return hi;
1385 case kCondAE: return hs;
1386 }
1387 LOG(FATAL) << "Unreachable";
1388 UNREACHABLE();
1389 }
1390
1391 // Maps signed condition to unsigned condition.
ARMUnsignedCondition(IfCondition cond)1392 inline vixl32::Condition ARMUnsignedCondition(IfCondition cond) {
1393 switch (cond) {
1394 case kCondEQ: return eq;
1395 case kCondNE: return ne;
1396 // Signed to unsigned.
1397 case kCondLT: return lo;
1398 case kCondLE: return ls;
1399 case kCondGT: return hi;
1400 case kCondGE: return hs;
1401 // Unsigned remain unchanged.
1402 case kCondB: return lo;
1403 case kCondBE: return ls;
1404 case kCondA: return hi;
1405 case kCondAE: return hs;
1406 }
1407 LOG(FATAL) << "Unreachable";
1408 UNREACHABLE();
1409 }
1410
ARMFPCondition(IfCondition cond,bool gt_bias)1411 inline vixl32::Condition ARMFPCondition(IfCondition cond, bool gt_bias) {
1412 // The ARM condition codes can express all the necessary branches, see the
1413 // "Meaning (floating-point)" column in the table A8-1 of the ARMv7 reference manual.
1414 // There is no dex instruction or HIR that would need the missing conditions
1415 // "equal or unordered" or "not equal".
1416 switch (cond) {
1417 case kCondEQ: return eq;
1418 case kCondNE: return ne /* unordered */;
1419 case kCondLT: return gt_bias ? cc : lt /* unordered */;
1420 case kCondLE: return gt_bias ? ls : le /* unordered */;
1421 case kCondGT: return gt_bias ? hi /* unordered */ : gt;
1422 case kCondGE: return gt_bias ? cs /* unordered */ : ge;
1423 default:
1424 LOG(FATAL) << "UNREACHABLE";
1425 UNREACHABLE();
1426 }
1427 }
1428
ShiftFromOpKind(HDataProcWithShifterOp::OpKind op_kind)1429 inline ShiftType ShiftFromOpKind(HDataProcWithShifterOp::OpKind op_kind) {
1430 switch (op_kind) {
1431 case HDataProcWithShifterOp::kASR: return ShiftType::ASR;
1432 case HDataProcWithShifterOp::kLSL: return ShiftType::LSL;
1433 case HDataProcWithShifterOp::kLSR: return ShiftType::LSR;
1434 default:
1435 LOG(FATAL) << "Unexpected op kind " << op_kind;
1436 UNREACHABLE();
1437 }
1438 }
1439
DumpCoreRegister(std::ostream & stream,int reg) const1440 void CodeGeneratorARMVIXL::DumpCoreRegister(std::ostream& stream, int reg) const {
1441 stream << vixl32::Register(reg);
1442 }
1443
DumpFloatingPointRegister(std::ostream & stream,int reg) const1444 void CodeGeneratorARMVIXL::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
1445 stream << vixl32::SRegister(reg);
1446 }
1447
ComputeSRegisterListMask(const SRegisterList & regs)1448 static uint32_t ComputeSRegisterListMask(const SRegisterList& regs) {
1449 uint32_t mask = 0;
1450 for (uint32_t i = regs.GetFirstSRegister().GetCode();
1451 i <= regs.GetLastSRegister().GetCode();
1452 ++i) {
1453 mask |= (1 << i);
1454 }
1455 return mask;
1456 }
1457
1458 // Saves the register in the stack. Returns the size taken on stack.
SaveCoreRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1459 size_t CodeGeneratorARMVIXL::SaveCoreRegister(size_t stack_index ATTRIBUTE_UNUSED,
1460 uint32_t reg_id ATTRIBUTE_UNUSED) {
1461 TODO_VIXL32(FATAL);
1462 return 0;
1463 }
1464
1465 // Restores the register from the stack. Returns the size taken on stack.
RestoreCoreRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1466 size_t CodeGeneratorARMVIXL::RestoreCoreRegister(size_t stack_index ATTRIBUTE_UNUSED,
1467 uint32_t reg_id ATTRIBUTE_UNUSED) {
1468 TODO_VIXL32(FATAL);
1469 return 0;
1470 }
1471
SaveFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1472 size_t CodeGeneratorARMVIXL::SaveFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,
1473 uint32_t reg_id ATTRIBUTE_UNUSED) {
1474 TODO_VIXL32(FATAL);
1475 return 0;
1476 }
1477
RestoreFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1478 size_t CodeGeneratorARMVIXL::RestoreFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,
1479 uint32_t reg_id ATTRIBUTE_UNUSED) {
1480 TODO_VIXL32(FATAL);
1481 return 0;
1482 }
1483
GenerateDataProcInstruction(HInstruction::InstructionKind kind,vixl32::Register out,vixl32::Register first,const Operand & second,CodeGeneratorARMVIXL * codegen)1484 static void GenerateDataProcInstruction(HInstruction::InstructionKind kind,
1485 vixl32::Register out,
1486 vixl32::Register first,
1487 const Operand& second,
1488 CodeGeneratorARMVIXL* codegen) {
1489 if (second.IsImmediate() && second.GetImmediate() == 0) {
1490 const Operand in = kind == HInstruction::kAnd
1491 ? Operand(0)
1492 : Operand(first);
1493
1494 __ Mov(out, in);
1495 } else {
1496 switch (kind) {
1497 case HInstruction::kAdd:
1498 __ Add(out, first, second);
1499 break;
1500 case HInstruction::kAnd:
1501 __ And(out, first, second);
1502 break;
1503 case HInstruction::kOr:
1504 __ Orr(out, first, second);
1505 break;
1506 case HInstruction::kSub:
1507 __ Sub(out, first, second);
1508 break;
1509 case HInstruction::kXor:
1510 __ Eor(out, first, second);
1511 break;
1512 default:
1513 LOG(FATAL) << "Unexpected instruction kind: " << kind;
1514 UNREACHABLE();
1515 }
1516 }
1517 }
1518
GenerateDataProc(HInstruction::InstructionKind kind,const Location & out,const Location & first,const Operand & second_lo,const Operand & second_hi,CodeGeneratorARMVIXL * codegen)1519 static void GenerateDataProc(HInstruction::InstructionKind kind,
1520 const Location& out,
1521 const Location& first,
1522 const Operand& second_lo,
1523 const Operand& second_hi,
1524 CodeGeneratorARMVIXL* codegen) {
1525 const vixl32::Register first_hi = HighRegisterFrom(first);
1526 const vixl32::Register first_lo = LowRegisterFrom(first);
1527 const vixl32::Register out_hi = HighRegisterFrom(out);
1528 const vixl32::Register out_lo = LowRegisterFrom(out);
1529
1530 if (kind == HInstruction::kAdd) {
1531 __ Adds(out_lo, first_lo, second_lo);
1532 __ Adc(out_hi, first_hi, second_hi);
1533 } else if (kind == HInstruction::kSub) {
1534 __ Subs(out_lo, first_lo, second_lo);
1535 __ Sbc(out_hi, first_hi, second_hi);
1536 } else {
1537 GenerateDataProcInstruction(kind, out_lo, first_lo, second_lo, codegen);
1538 GenerateDataProcInstruction(kind, out_hi, first_hi, second_hi, codegen);
1539 }
1540 }
1541
GetShifterOperand(vixl32::Register rm,ShiftType shift,uint32_t shift_imm)1542 static Operand GetShifterOperand(vixl32::Register rm, ShiftType shift, uint32_t shift_imm) {
1543 return shift_imm == 0 ? Operand(rm) : Operand(rm, shift, shift_imm);
1544 }
1545
GenerateLongDataProc(HDataProcWithShifterOp * instruction,CodeGeneratorARMVIXL * codegen)1546 static void GenerateLongDataProc(HDataProcWithShifterOp* instruction,
1547 CodeGeneratorARMVIXL* codegen) {
1548 DCHECK_EQ(instruction->GetType(), Primitive::kPrimLong);
1549 DCHECK(HDataProcWithShifterOp::IsShiftOp(instruction->GetOpKind()));
1550
1551 const LocationSummary* const locations = instruction->GetLocations();
1552 const uint32_t shift_value = instruction->GetShiftAmount();
1553 const HInstruction::InstructionKind kind = instruction->GetInstrKind();
1554 const Location first = locations->InAt(0);
1555 const Location second = locations->InAt(1);
1556 const Location out = locations->Out();
1557 const vixl32::Register first_hi = HighRegisterFrom(first);
1558 const vixl32::Register first_lo = LowRegisterFrom(first);
1559 const vixl32::Register out_hi = HighRegisterFrom(out);
1560 const vixl32::Register out_lo = LowRegisterFrom(out);
1561 const vixl32::Register second_hi = HighRegisterFrom(second);
1562 const vixl32::Register second_lo = LowRegisterFrom(second);
1563 const ShiftType shift = ShiftFromOpKind(instruction->GetOpKind());
1564
1565 if (shift_value >= 32) {
1566 if (shift == ShiftType::LSL) {
1567 GenerateDataProcInstruction(kind,
1568 out_hi,
1569 first_hi,
1570 Operand(second_lo, ShiftType::LSL, shift_value - 32),
1571 codegen);
1572 GenerateDataProcInstruction(kind, out_lo, first_lo, 0, codegen);
1573 } else if (shift == ShiftType::ASR) {
1574 GenerateDataProc(kind,
1575 out,
1576 first,
1577 GetShifterOperand(second_hi, ShiftType::ASR, shift_value - 32),
1578 Operand(second_hi, ShiftType::ASR, 31),
1579 codegen);
1580 } else {
1581 DCHECK_EQ(shift, ShiftType::LSR);
1582 GenerateDataProc(kind,
1583 out,
1584 first,
1585 GetShifterOperand(second_hi, ShiftType::LSR, shift_value - 32),
1586 0,
1587 codegen);
1588 }
1589 } else {
1590 DCHECK_GT(shift_value, 1U);
1591 DCHECK_LT(shift_value, 32U);
1592
1593 UseScratchRegisterScope temps(codegen->GetVIXLAssembler());
1594
1595 if (shift == ShiftType::LSL) {
1596 // We are not doing this for HInstruction::kAdd because the output will require
1597 // Location::kOutputOverlap; not applicable to other cases.
1598 if (kind == HInstruction::kOr || kind == HInstruction::kXor) {
1599 GenerateDataProcInstruction(kind,
1600 out_hi,
1601 first_hi,
1602 Operand(second_hi, ShiftType::LSL, shift_value),
1603 codegen);
1604 GenerateDataProcInstruction(kind,
1605 out_hi,
1606 out_hi,
1607 Operand(second_lo, ShiftType::LSR, 32 - shift_value),
1608 codegen);
1609 GenerateDataProcInstruction(kind,
1610 out_lo,
1611 first_lo,
1612 Operand(second_lo, ShiftType::LSL, shift_value),
1613 codegen);
1614 } else {
1615 const vixl32::Register temp = temps.Acquire();
1616
1617 __ Lsl(temp, second_hi, shift_value);
1618 __ Orr(temp, temp, Operand(second_lo, ShiftType::LSR, 32 - shift_value));
1619 GenerateDataProc(kind,
1620 out,
1621 first,
1622 Operand(second_lo, ShiftType::LSL, shift_value),
1623 temp,
1624 codegen);
1625 }
1626 } else {
1627 DCHECK(shift == ShiftType::ASR || shift == ShiftType::LSR);
1628
1629 // We are not doing this for HInstruction::kAdd because the output will require
1630 // Location::kOutputOverlap; not applicable to other cases.
1631 if (kind == HInstruction::kOr || kind == HInstruction::kXor) {
1632 GenerateDataProcInstruction(kind,
1633 out_lo,
1634 first_lo,
1635 Operand(second_lo, ShiftType::LSR, shift_value),
1636 codegen);
1637 GenerateDataProcInstruction(kind,
1638 out_lo,
1639 out_lo,
1640 Operand(second_hi, ShiftType::LSL, 32 - shift_value),
1641 codegen);
1642 GenerateDataProcInstruction(kind,
1643 out_hi,
1644 first_hi,
1645 Operand(second_hi, shift, shift_value),
1646 codegen);
1647 } else {
1648 const vixl32::Register temp = temps.Acquire();
1649
1650 __ Lsr(temp, second_lo, shift_value);
1651 __ Orr(temp, temp, Operand(second_hi, ShiftType::LSL, 32 - shift_value));
1652 GenerateDataProc(kind,
1653 out,
1654 first,
1655 temp,
1656 Operand(second_hi, shift, shift_value),
1657 codegen);
1658 }
1659 }
1660 }
1661 }
1662
GenerateVcmp(HInstruction * instruction,CodeGeneratorARMVIXL * codegen)1663 static void GenerateVcmp(HInstruction* instruction, CodeGeneratorARMVIXL* codegen) {
1664 const Location rhs_loc = instruction->GetLocations()->InAt(1);
1665 if (rhs_loc.IsConstant()) {
1666 // 0.0 is the only immediate that can be encoded directly in
1667 // a VCMP instruction.
1668 //
1669 // Both the JLS (section 15.20.1) and the JVMS (section 6.5)
1670 // specify that in a floating-point comparison, positive zero
1671 // and negative zero are considered equal, so we can use the
1672 // literal 0.0 for both cases here.
1673 //
1674 // Note however that some methods (Float.equal, Float.compare,
1675 // Float.compareTo, Double.equal, Double.compare,
1676 // Double.compareTo, Math.max, Math.min, StrictMath.max,
1677 // StrictMath.min) consider 0.0 to be (strictly) greater than
1678 // -0.0. So if we ever translate calls to these methods into a
1679 // HCompare instruction, we must handle the -0.0 case with
1680 // care here.
1681 DCHECK(rhs_loc.GetConstant()->IsArithmeticZero());
1682
1683 const Primitive::Type type = instruction->InputAt(0)->GetType();
1684
1685 if (type == Primitive::kPrimFloat) {
1686 __ Vcmp(F32, InputSRegisterAt(instruction, 0), 0.0);
1687 } else {
1688 DCHECK_EQ(type, Primitive::kPrimDouble);
1689 __ Vcmp(F64, InputDRegisterAt(instruction, 0), 0.0);
1690 }
1691 } else {
1692 __ Vcmp(InputVRegisterAt(instruction, 0), InputVRegisterAt(instruction, 1));
1693 }
1694 }
1695
GenerateLongTestConstant(HCondition * condition,bool invert,CodeGeneratorARMVIXL * codegen)1696 static std::pair<vixl32::Condition, vixl32::Condition> GenerateLongTestConstant(
1697 HCondition* condition,
1698 bool invert,
1699 CodeGeneratorARMVIXL* codegen) {
1700 DCHECK_EQ(condition->GetLeft()->GetType(), Primitive::kPrimLong);
1701
1702 const LocationSummary* const locations = condition->GetLocations();
1703 IfCondition cond = condition->GetCondition();
1704 IfCondition opposite = condition->GetOppositeCondition();
1705
1706 if (invert) {
1707 std::swap(cond, opposite);
1708 }
1709
1710 std::pair<vixl32::Condition, vixl32::Condition> ret(eq, ne);
1711 const Location left = locations->InAt(0);
1712 const Location right = locations->InAt(1);
1713
1714 DCHECK(right.IsConstant());
1715
1716 const vixl32::Register left_high = HighRegisterFrom(left);
1717 const vixl32::Register left_low = LowRegisterFrom(left);
1718 int64_t value = Int64ConstantFrom(right);
1719
1720 switch (cond) {
1721 case kCondEQ:
1722 case kCondNE:
1723 case kCondB:
1724 case kCondBE:
1725 case kCondA:
1726 case kCondAE: {
1727 __ Cmp(left_high, High32Bits(value));
1728
1729 // We use the scope because of the IT block that follows.
1730 ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1731 2 * vixl32::k16BitT32InstructionSizeInBytes,
1732 CodeBufferCheckScope::kExactSize);
1733
1734 __ it(eq);
1735 __ cmp(eq, left_low, Low32Bits(value));
1736 ret = std::make_pair(ARMUnsignedCondition(cond), ARMUnsignedCondition(opposite));
1737 break;
1738 }
1739 case kCondLE:
1740 case kCondGT:
1741 // Trivially true or false.
1742 if (value == std::numeric_limits<int64_t>::max()) {
1743 __ Cmp(left_low, left_low);
1744 ret = cond == kCondLE ? std::make_pair(eq, ne) : std::make_pair(ne, eq);
1745 break;
1746 }
1747
1748 if (cond == kCondLE) {
1749 DCHECK_EQ(opposite, kCondGT);
1750 cond = kCondLT;
1751 opposite = kCondGE;
1752 } else {
1753 DCHECK_EQ(cond, kCondGT);
1754 DCHECK_EQ(opposite, kCondLE);
1755 cond = kCondGE;
1756 opposite = kCondLT;
1757 }
1758
1759 value++;
1760 FALLTHROUGH_INTENDED;
1761 case kCondGE:
1762 case kCondLT: {
1763 UseScratchRegisterScope temps(codegen->GetVIXLAssembler());
1764
1765 __ Cmp(left_low, Low32Bits(value));
1766 __ Sbcs(temps.Acquire(), left_high, High32Bits(value));
1767 ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite));
1768 break;
1769 }
1770 default:
1771 LOG(FATAL) << "Unreachable";
1772 UNREACHABLE();
1773 }
1774
1775 return ret;
1776 }
1777
GenerateLongTest(HCondition * condition,bool invert,CodeGeneratorARMVIXL * codegen)1778 static std::pair<vixl32::Condition, vixl32::Condition> GenerateLongTest(
1779 HCondition* condition,
1780 bool invert,
1781 CodeGeneratorARMVIXL* codegen) {
1782 DCHECK_EQ(condition->GetLeft()->GetType(), Primitive::kPrimLong);
1783
1784 const LocationSummary* const locations = condition->GetLocations();
1785 IfCondition cond = condition->GetCondition();
1786 IfCondition opposite = condition->GetOppositeCondition();
1787
1788 if (invert) {
1789 std::swap(cond, opposite);
1790 }
1791
1792 std::pair<vixl32::Condition, vixl32::Condition> ret(eq, ne);
1793 Location left = locations->InAt(0);
1794 Location right = locations->InAt(1);
1795
1796 DCHECK(right.IsRegisterPair());
1797
1798 switch (cond) {
1799 case kCondEQ:
1800 case kCondNE:
1801 case kCondB:
1802 case kCondBE:
1803 case kCondA:
1804 case kCondAE: {
1805 __ Cmp(HighRegisterFrom(left), HighRegisterFrom(right));
1806
1807 // We use the scope because of the IT block that follows.
1808 ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1809 2 * vixl32::k16BitT32InstructionSizeInBytes,
1810 CodeBufferCheckScope::kExactSize);
1811
1812 __ it(eq);
1813 __ cmp(eq, LowRegisterFrom(left), LowRegisterFrom(right));
1814 ret = std::make_pair(ARMUnsignedCondition(cond), ARMUnsignedCondition(opposite));
1815 break;
1816 }
1817 case kCondLE:
1818 case kCondGT:
1819 if (cond == kCondLE) {
1820 DCHECK_EQ(opposite, kCondGT);
1821 cond = kCondGE;
1822 opposite = kCondLT;
1823 } else {
1824 DCHECK_EQ(cond, kCondGT);
1825 DCHECK_EQ(opposite, kCondLE);
1826 cond = kCondLT;
1827 opposite = kCondGE;
1828 }
1829
1830 std::swap(left, right);
1831 FALLTHROUGH_INTENDED;
1832 case kCondGE:
1833 case kCondLT: {
1834 UseScratchRegisterScope temps(codegen->GetVIXLAssembler());
1835
1836 __ Cmp(LowRegisterFrom(left), LowRegisterFrom(right));
1837 __ Sbcs(temps.Acquire(), HighRegisterFrom(left), HighRegisterFrom(right));
1838 ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite));
1839 break;
1840 }
1841 default:
1842 LOG(FATAL) << "Unreachable";
1843 UNREACHABLE();
1844 }
1845
1846 return ret;
1847 }
1848
GenerateTest(HCondition * condition,bool invert,CodeGeneratorARMVIXL * codegen)1849 static std::pair<vixl32::Condition, vixl32::Condition> GenerateTest(HCondition* condition,
1850 bool invert,
1851 CodeGeneratorARMVIXL* codegen) {
1852 const Primitive::Type type = condition->GetLeft()->GetType();
1853 IfCondition cond = condition->GetCondition();
1854 IfCondition opposite = condition->GetOppositeCondition();
1855 std::pair<vixl32::Condition, vixl32::Condition> ret(eq, ne);
1856
1857 if (invert) {
1858 std::swap(cond, opposite);
1859 }
1860
1861 if (type == Primitive::kPrimLong) {
1862 ret = condition->GetLocations()->InAt(1).IsConstant()
1863 ? GenerateLongTestConstant(condition, invert, codegen)
1864 : GenerateLongTest(condition, invert, codegen);
1865 } else if (Primitive::IsFloatingPointType(type)) {
1866 GenerateVcmp(condition, codegen);
1867 __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
1868 ret = std::make_pair(ARMFPCondition(cond, condition->IsGtBias()),
1869 ARMFPCondition(opposite, condition->IsGtBias()));
1870 } else {
1871 DCHECK(Primitive::IsIntegralType(type) || type == Primitive::kPrimNot) << type;
1872 __ Cmp(InputRegisterAt(condition, 0), InputOperandAt(condition, 1));
1873 ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite));
1874 }
1875
1876 return ret;
1877 }
1878
CanGenerateTest(HCondition * condition,ArmVIXLAssembler * assembler)1879 static bool CanGenerateTest(HCondition* condition, ArmVIXLAssembler* assembler) {
1880 if (condition->GetLeft()->GetType() == Primitive::kPrimLong) {
1881 const LocationSummary* const locations = condition->GetLocations();
1882 const IfCondition c = condition->GetCondition();
1883
1884 if (locations->InAt(1).IsConstant()) {
1885 const int64_t value = Int64ConstantFrom(locations->InAt(1));
1886
1887 if (c < kCondLT || c > kCondGE) {
1888 // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
1889 // we check that the least significant half of the first input to be compared
1890 // is in a low register (the other half is read outside an IT block), and
1891 // the constant fits in an 8-bit unsigned integer, so that a 16-bit CMP
1892 // encoding can be used.
1893 if (!LowRegisterFrom(locations->InAt(0)).IsLow() || !IsUint<8>(Low32Bits(value))) {
1894 return false;
1895 }
1896 // TODO(VIXL): The rest of the checks are there to keep the backend in sync with
1897 // the previous one, but are not strictly necessary.
1898 } else if (c == kCondLE || c == kCondGT) {
1899 if (value < std::numeric_limits<int64_t>::max() &&
1900 !assembler->ShifterOperandCanHold(SBC, High32Bits(value + 1), kCcSet)) {
1901 return false;
1902 }
1903 } else if (!assembler->ShifterOperandCanHold(SBC, High32Bits(value), kCcSet)) {
1904 return false;
1905 }
1906 }
1907 }
1908
1909 return true;
1910 }
1911
CanEncodeConstantAs8BitImmediate(HConstant * constant)1912 static bool CanEncodeConstantAs8BitImmediate(HConstant* constant) {
1913 const Primitive::Type type = constant->GetType();
1914 bool ret = false;
1915
1916 DCHECK(Primitive::IsIntegralType(type) || type == Primitive::kPrimNot) << type;
1917
1918 if (type == Primitive::kPrimLong) {
1919 const uint64_t value = Uint64ConstantFrom(constant);
1920
1921 ret = IsUint<8>(Low32Bits(value)) && IsUint<8>(High32Bits(value));
1922 } else {
1923 ret = IsUint<8>(Int32ConstantFrom(constant));
1924 }
1925
1926 return ret;
1927 }
1928
Arm8BitEncodableConstantOrRegister(HInstruction * constant)1929 static Location Arm8BitEncodableConstantOrRegister(HInstruction* constant) {
1930 DCHECK(!Primitive::IsFloatingPointType(constant->GetType()));
1931
1932 if (constant->IsConstant() && CanEncodeConstantAs8BitImmediate(constant->AsConstant())) {
1933 return Location::ConstantLocation(constant->AsConstant());
1934 }
1935
1936 return Location::RequiresRegister();
1937 }
1938
CanGenerateConditionalMove(const Location & out,const Location & src)1939 static bool CanGenerateConditionalMove(const Location& out, const Location& src) {
1940 // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
1941 // we check that we are not dealing with floating-point output (there is no
1942 // 16-bit VMOV encoding).
1943 if (!out.IsRegister() && !out.IsRegisterPair()) {
1944 return false;
1945 }
1946
1947 // For constants, we also check that the output is in one or two low registers,
1948 // and that the constants fit in an 8-bit unsigned integer, so that a 16-bit
1949 // MOV encoding can be used.
1950 if (src.IsConstant()) {
1951 if (!CanEncodeConstantAs8BitImmediate(src.GetConstant())) {
1952 return false;
1953 }
1954
1955 if (out.IsRegister()) {
1956 if (!RegisterFrom(out).IsLow()) {
1957 return false;
1958 }
1959 } else {
1960 DCHECK(out.IsRegisterPair());
1961
1962 if (!HighRegisterFrom(out).IsLow()) {
1963 return false;
1964 }
1965 }
1966 }
1967
1968 return true;
1969 }
1970
1971 #undef __
1972
GetFinalLabel(HInstruction * instruction,vixl32::Label * final_label)1973 vixl32::Label* CodeGeneratorARMVIXL::GetFinalLabel(HInstruction* instruction,
1974 vixl32::Label* final_label) {
1975 DCHECK(!instruction->IsControlFlow() && !instruction->IsSuspendCheck());
1976 DCHECK(!instruction->IsInvoke() || !instruction->GetLocations()->CanCall());
1977
1978 const HBasicBlock* const block = instruction->GetBlock();
1979 const HLoopInformation* const info = block->GetLoopInformation();
1980 HInstruction* const next = instruction->GetNext();
1981
1982 // Avoid a branch to a branch.
1983 if (next->IsGoto() && (info == nullptr ||
1984 !info->IsBackEdge(*block) ||
1985 !info->HasSuspendCheck())) {
1986 final_label = GetLabelOf(next->AsGoto()->GetSuccessor());
1987 }
1988
1989 return final_label;
1990 }
1991
CodeGeneratorARMVIXL(HGraph * graph,const ArmInstructionSetFeatures & isa_features,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)1992 CodeGeneratorARMVIXL::CodeGeneratorARMVIXL(HGraph* graph,
1993 const ArmInstructionSetFeatures& isa_features,
1994 const CompilerOptions& compiler_options,
1995 OptimizingCompilerStats* stats)
1996 : CodeGenerator(graph,
1997 kNumberOfCoreRegisters,
1998 kNumberOfSRegisters,
1999 kNumberOfRegisterPairs,
2000 kCoreCalleeSaves.GetList(),
2001 ComputeSRegisterListMask(kFpuCalleeSaves),
2002 compiler_options,
2003 stats),
2004 block_labels_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
2005 jump_tables_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
2006 location_builder_(graph, this),
2007 instruction_visitor_(graph, this),
2008 move_resolver_(graph->GetArena(), this),
2009 assembler_(graph->GetArena()),
2010 isa_features_(isa_features),
2011 uint32_literals_(std::less<uint32_t>(),
2012 graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
2013 pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
2014 boot_image_string_patches_(StringReferenceValueComparator(),
2015 graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
2016 pc_relative_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
2017 boot_image_type_patches_(TypeReferenceValueComparator(),
2018 graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
2019 pc_relative_type_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
2020 type_bss_entry_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
2021 jit_string_patches_(StringReferenceValueComparator(),
2022 graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
2023 jit_class_patches_(TypeReferenceValueComparator(),
2024 graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) {
2025 // Always save the LR register to mimic Quick.
2026 AddAllocatedRegister(Location::RegisterLocation(LR));
2027 // Give D30 and D31 as scratch register to VIXL. The register allocator only works on
2028 // S0-S31, which alias to D0-D15.
2029 GetVIXLAssembler()->GetScratchVRegisterList()->Combine(d31);
2030 GetVIXLAssembler()->GetScratchVRegisterList()->Combine(d30);
2031 }
2032
EmitTable(CodeGeneratorARMVIXL * codegen)2033 void JumpTableARMVIXL::EmitTable(CodeGeneratorARMVIXL* codegen) {
2034 uint32_t num_entries = switch_instr_->GetNumEntries();
2035 DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
2036
2037 // We are about to use the assembler to place literals directly. Make sure we have enough
2038 // underlying code buffer and we have generated a jump table of the right size, using
2039 // codegen->GetVIXLAssembler()->GetBuffer().Align();
2040 ExactAssemblyScope aas(codegen->GetVIXLAssembler(),
2041 num_entries * sizeof(int32_t),
2042 CodeBufferCheckScope::kMaximumSize);
2043 // TODO(VIXL): Check that using lower case bind is fine here.
2044 codegen->GetVIXLAssembler()->bind(&table_start_);
2045 for (uint32_t i = 0; i < num_entries; i++) {
2046 codegen->GetVIXLAssembler()->place(bb_addresses_[i].get());
2047 }
2048 }
2049
FixTable(CodeGeneratorARMVIXL * codegen)2050 void JumpTableARMVIXL::FixTable(CodeGeneratorARMVIXL* codegen) {
2051 uint32_t num_entries = switch_instr_->GetNumEntries();
2052 DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
2053
2054 const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors();
2055 for (uint32_t i = 0; i < num_entries; i++) {
2056 vixl32::Label* target_label = codegen->GetLabelOf(successors[i]);
2057 DCHECK(target_label->IsBound());
2058 int32_t jump_offset = target_label->GetLocation() - table_start_.GetLocation();
2059 // When doing BX to address we need to have lower bit set to 1 in T32.
2060 if (codegen->GetVIXLAssembler()->IsUsingT32()) {
2061 jump_offset++;
2062 }
2063 DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min());
2064 DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max());
2065
2066 bb_addresses_[i].get()->UpdateValue(jump_offset, codegen->GetVIXLAssembler()->GetBuffer());
2067 }
2068 }
2069
FixJumpTables()2070 void CodeGeneratorARMVIXL::FixJumpTables() {
2071 for (auto&& jump_table : jump_tables_) {
2072 jump_table->FixTable(this);
2073 }
2074 }
2075
2076 #define __ reinterpret_cast<ArmVIXLAssembler*>(GetAssembler())->GetVIXLAssembler()-> // NOLINT
2077
Finalize(CodeAllocator * allocator)2078 void CodeGeneratorARMVIXL::Finalize(CodeAllocator* allocator) {
2079 FixJumpTables();
2080 GetAssembler()->FinalizeCode();
2081 CodeGenerator::Finalize(allocator);
2082 }
2083
SetupBlockedRegisters() const2084 void CodeGeneratorARMVIXL::SetupBlockedRegisters() const {
2085 // Stack register, LR and PC are always reserved.
2086 blocked_core_registers_[SP] = true;
2087 blocked_core_registers_[LR] = true;
2088 blocked_core_registers_[PC] = true;
2089
2090 // Reserve thread register.
2091 blocked_core_registers_[TR] = true;
2092
2093 // Reserve temp register.
2094 blocked_core_registers_[IP] = true;
2095
2096 if (GetGraph()->IsDebuggable()) {
2097 // Stubs do not save callee-save floating point registers. If the graph
2098 // is debuggable, we need to deal with these registers differently. For
2099 // now, just block them.
2100 for (uint32_t i = kFpuCalleeSaves.GetFirstSRegister().GetCode();
2101 i <= kFpuCalleeSaves.GetLastSRegister().GetCode();
2102 ++i) {
2103 blocked_fpu_registers_[i] = true;
2104 }
2105 }
2106 }
2107
InstructionCodeGeneratorARMVIXL(HGraph * graph,CodeGeneratorARMVIXL * codegen)2108 InstructionCodeGeneratorARMVIXL::InstructionCodeGeneratorARMVIXL(HGraph* graph,
2109 CodeGeneratorARMVIXL* codegen)
2110 : InstructionCodeGenerator(graph, codegen),
2111 assembler_(codegen->GetAssembler()),
2112 codegen_(codegen) {}
2113
ComputeSpillMask()2114 void CodeGeneratorARMVIXL::ComputeSpillMask() {
2115 core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
2116 DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved";
2117 // There is no easy instruction to restore just the PC on thumb2. We spill and
2118 // restore another arbitrary register.
2119 core_spill_mask_ |= (1 << kCoreAlwaysSpillRegister.GetCode());
2120 fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
2121 // We use vpush and vpop for saving and restoring floating point registers, which take
2122 // a SRegister and the number of registers to save/restore after that SRegister. We
2123 // therefore update the `fpu_spill_mask_` to also contain those registers not allocated,
2124 // but in the range.
2125 if (fpu_spill_mask_ != 0) {
2126 uint32_t least_significant_bit = LeastSignificantBit(fpu_spill_mask_);
2127 uint32_t most_significant_bit = MostSignificantBit(fpu_spill_mask_);
2128 for (uint32_t i = least_significant_bit + 1 ; i < most_significant_bit; ++i) {
2129 fpu_spill_mask_ |= (1 << i);
2130 }
2131 }
2132 }
2133
GenerateFrameEntry()2134 void CodeGeneratorARMVIXL::GenerateFrameEntry() {
2135 bool skip_overflow_check =
2136 IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm);
2137 DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
2138 __ Bind(&frame_entry_label_);
2139
2140 if (HasEmptyFrame()) {
2141 return;
2142 }
2143
2144 if (!skip_overflow_check) {
2145 UseScratchRegisterScope temps(GetVIXLAssembler());
2146 vixl32::Register temp = temps.Acquire();
2147 __ Sub(temp, sp, Operand::From(GetStackOverflowReservedBytes(kArm)));
2148 // The load must immediately precede RecordPcInfo.
2149 ExactAssemblyScope aas(GetVIXLAssembler(),
2150 vixl32::kMaxInstructionSizeInBytes,
2151 CodeBufferCheckScope::kMaximumSize);
2152 __ ldr(temp, MemOperand(temp));
2153 RecordPcInfo(nullptr, 0);
2154 }
2155
2156 __ Push(RegisterList(core_spill_mask_));
2157 GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(core_spill_mask_));
2158 GetAssembler()->cfi().RelOffsetForMany(DWARFReg(kMethodRegister),
2159 0,
2160 core_spill_mask_,
2161 kArmWordSize);
2162 if (fpu_spill_mask_ != 0) {
2163 uint32_t first = LeastSignificantBit(fpu_spill_mask_);
2164
2165 // Check that list is contiguous.
2166 DCHECK_EQ(fpu_spill_mask_ >> CTZ(fpu_spill_mask_), ~0u >> (32 - POPCOUNT(fpu_spill_mask_)));
2167
2168 __ Vpush(SRegisterList(vixl32::SRegister(first), POPCOUNT(fpu_spill_mask_)));
2169 GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(fpu_spill_mask_));
2170 GetAssembler()->cfi().RelOffsetForMany(DWARFReg(s0), 0, fpu_spill_mask_, kArmWordSize);
2171 }
2172
2173 if (GetGraph()->HasShouldDeoptimizeFlag()) {
2174 UseScratchRegisterScope temps(GetVIXLAssembler());
2175 vixl32::Register temp = temps.Acquire();
2176 // Initialize should_deoptimize flag to 0.
2177 __ Mov(temp, 0);
2178 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, -kShouldDeoptimizeFlagSize);
2179 }
2180
2181 int adjust = GetFrameSize() - FrameEntrySpillSize();
2182 __ Sub(sp, sp, adjust);
2183 GetAssembler()->cfi().AdjustCFAOffset(adjust);
2184
2185 // Save the current method if we need it. Note that we do not
2186 // do this in HCurrentMethod, as the instruction might have been removed
2187 // in the SSA graph.
2188 if (RequiresCurrentMethod()) {
2189 GetAssembler()->StoreToOffset(kStoreWord, kMethodRegister, sp, 0);
2190 }
2191 }
2192
GenerateFrameExit()2193 void CodeGeneratorARMVIXL::GenerateFrameExit() {
2194 if (HasEmptyFrame()) {
2195 __ Bx(lr);
2196 return;
2197 }
2198 GetAssembler()->cfi().RememberState();
2199 int adjust = GetFrameSize() - FrameEntrySpillSize();
2200 __ Add(sp, sp, adjust);
2201 GetAssembler()->cfi().AdjustCFAOffset(-adjust);
2202 if (fpu_spill_mask_ != 0) {
2203 uint32_t first = LeastSignificantBit(fpu_spill_mask_);
2204
2205 // Check that list is contiguous.
2206 DCHECK_EQ(fpu_spill_mask_ >> CTZ(fpu_spill_mask_), ~0u >> (32 - POPCOUNT(fpu_spill_mask_)));
2207
2208 __ Vpop(SRegisterList(vixl32::SRegister(first), POPCOUNT(fpu_spill_mask_)));
2209 GetAssembler()->cfi().AdjustCFAOffset(
2210 -static_cast<int>(kArmWordSize) * POPCOUNT(fpu_spill_mask_));
2211 GetAssembler()->cfi().RestoreMany(DWARFReg(vixl32::SRegister(0)), fpu_spill_mask_);
2212 }
2213 // Pop LR into PC to return.
2214 DCHECK_NE(core_spill_mask_ & (1 << kLrCode), 0U);
2215 uint32_t pop_mask = (core_spill_mask_ & (~(1 << kLrCode))) | 1 << kPcCode;
2216 __ Pop(RegisterList(pop_mask));
2217 GetAssembler()->cfi().RestoreState();
2218 GetAssembler()->cfi().DefCFAOffset(GetFrameSize());
2219 }
2220
Bind(HBasicBlock * block)2221 void CodeGeneratorARMVIXL::Bind(HBasicBlock* block) {
2222 __ Bind(GetLabelOf(block));
2223 }
2224
GetNextLocation(Primitive::Type type)2225 Location InvokeDexCallingConventionVisitorARMVIXL::GetNextLocation(Primitive::Type type) {
2226 switch (type) {
2227 case Primitive::kPrimBoolean:
2228 case Primitive::kPrimByte:
2229 case Primitive::kPrimChar:
2230 case Primitive::kPrimShort:
2231 case Primitive::kPrimInt:
2232 case Primitive::kPrimNot: {
2233 uint32_t index = gp_index_++;
2234 uint32_t stack_index = stack_index_++;
2235 if (index < calling_convention.GetNumberOfRegisters()) {
2236 return LocationFrom(calling_convention.GetRegisterAt(index));
2237 } else {
2238 return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
2239 }
2240 }
2241
2242 case Primitive::kPrimLong: {
2243 uint32_t index = gp_index_;
2244 uint32_t stack_index = stack_index_;
2245 gp_index_ += 2;
2246 stack_index_ += 2;
2247 if (index + 1 < calling_convention.GetNumberOfRegisters()) {
2248 if (calling_convention.GetRegisterAt(index).Is(r1)) {
2249 // Skip R1, and use R2_R3 instead.
2250 gp_index_++;
2251 index++;
2252 }
2253 }
2254 if (index + 1 < calling_convention.GetNumberOfRegisters()) {
2255 DCHECK_EQ(calling_convention.GetRegisterAt(index).GetCode() + 1,
2256 calling_convention.GetRegisterAt(index + 1).GetCode());
2257
2258 return LocationFrom(calling_convention.GetRegisterAt(index),
2259 calling_convention.GetRegisterAt(index + 1));
2260 } else {
2261 return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
2262 }
2263 }
2264
2265 case Primitive::kPrimFloat: {
2266 uint32_t stack_index = stack_index_++;
2267 if (float_index_ % 2 == 0) {
2268 float_index_ = std::max(double_index_, float_index_);
2269 }
2270 if (float_index_ < calling_convention.GetNumberOfFpuRegisters()) {
2271 return LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++));
2272 } else {
2273 return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
2274 }
2275 }
2276
2277 case Primitive::kPrimDouble: {
2278 double_index_ = std::max(double_index_, RoundUp(float_index_, 2));
2279 uint32_t stack_index = stack_index_;
2280 stack_index_ += 2;
2281 if (double_index_ + 1 < calling_convention.GetNumberOfFpuRegisters()) {
2282 uint32_t index = double_index_;
2283 double_index_ += 2;
2284 Location result = LocationFrom(
2285 calling_convention.GetFpuRegisterAt(index),
2286 calling_convention.GetFpuRegisterAt(index + 1));
2287 DCHECK(ExpectedPairLayout(result));
2288 return result;
2289 } else {
2290 return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
2291 }
2292 }
2293
2294 case Primitive::kPrimVoid:
2295 LOG(FATAL) << "Unexpected parameter type " << type;
2296 break;
2297 }
2298 return Location::NoLocation();
2299 }
2300
GetReturnLocation(Primitive::Type type) const2301 Location InvokeDexCallingConventionVisitorARMVIXL::GetReturnLocation(Primitive::Type type) const {
2302 switch (type) {
2303 case Primitive::kPrimBoolean:
2304 case Primitive::kPrimByte:
2305 case Primitive::kPrimChar:
2306 case Primitive::kPrimShort:
2307 case Primitive::kPrimInt:
2308 case Primitive::kPrimNot: {
2309 return LocationFrom(r0);
2310 }
2311
2312 case Primitive::kPrimFloat: {
2313 return LocationFrom(s0);
2314 }
2315
2316 case Primitive::kPrimLong: {
2317 return LocationFrom(r0, r1);
2318 }
2319
2320 case Primitive::kPrimDouble: {
2321 return LocationFrom(s0, s1);
2322 }
2323
2324 case Primitive::kPrimVoid:
2325 return Location::NoLocation();
2326 }
2327
2328 UNREACHABLE();
2329 }
2330
GetMethodLocation() const2331 Location InvokeDexCallingConventionVisitorARMVIXL::GetMethodLocation() const {
2332 return LocationFrom(kMethodRegister);
2333 }
2334
Move32(Location destination,Location source)2335 void CodeGeneratorARMVIXL::Move32(Location destination, Location source) {
2336 if (source.Equals(destination)) {
2337 return;
2338 }
2339 if (destination.IsRegister()) {
2340 if (source.IsRegister()) {
2341 __ Mov(RegisterFrom(destination), RegisterFrom(source));
2342 } else if (source.IsFpuRegister()) {
2343 __ Vmov(RegisterFrom(destination), SRegisterFrom(source));
2344 } else {
2345 GetAssembler()->LoadFromOffset(kLoadWord,
2346 RegisterFrom(destination),
2347 sp,
2348 source.GetStackIndex());
2349 }
2350 } else if (destination.IsFpuRegister()) {
2351 if (source.IsRegister()) {
2352 __ Vmov(SRegisterFrom(destination), RegisterFrom(source));
2353 } else if (source.IsFpuRegister()) {
2354 __ Vmov(SRegisterFrom(destination), SRegisterFrom(source));
2355 } else {
2356 GetAssembler()->LoadSFromOffset(SRegisterFrom(destination), sp, source.GetStackIndex());
2357 }
2358 } else {
2359 DCHECK(destination.IsStackSlot()) << destination;
2360 if (source.IsRegister()) {
2361 GetAssembler()->StoreToOffset(kStoreWord,
2362 RegisterFrom(source),
2363 sp,
2364 destination.GetStackIndex());
2365 } else if (source.IsFpuRegister()) {
2366 GetAssembler()->StoreSToOffset(SRegisterFrom(source), sp, destination.GetStackIndex());
2367 } else {
2368 DCHECK(source.IsStackSlot()) << source;
2369 UseScratchRegisterScope temps(GetVIXLAssembler());
2370 vixl32::Register temp = temps.Acquire();
2371 GetAssembler()->LoadFromOffset(kLoadWord, temp, sp, source.GetStackIndex());
2372 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
2373 }
2374 }
2375 }
2376
MoveConstant(Location location,int32_t value)2377 void CodeGeneratorARMVIXL::MoveConstant(Location location, int32_t value) {
2378 DCHECK(location.IsRegister());
2379 __ Mov(RegisterFrom(location), value);
2380 }
2381
MoveLocation(Location dst,Location src,Primitive::Type dst_type)2382 void CodeGeneratorARMVIXL::MoveLocation(Location dst, Location src, Primitive::Type dst_type) {
2383 // TODO(VIXL): Maybe refactor to have the 'move' implementation here and use it in
2384 // `ParallelMoveResolverARMVIXL::EmitMove`, as is done in the `arm64` backend.
2385 HParallelMove move(GetGraph()->GetArena());
2386 move.AddMove(src, dst, dst_type, nullptr);
2387 GetMoveResolver()->EmitNativeCode(&move);
2388 }
2389
AddLocationAsTemp(Location location,LocationSummary * locations)2390 void CodeGeneratorARMVIXL::AddLocationAsTemp(Location location, LocationSummary* locations) {
2391 if (location.IsRegister()) {
2392 locations->AddTemp(location);
2393 } else if (location.IsRegisterPair()) {
2394 locations->AddTemp(LocationFrom(LowRegisterFrom(location)));
2395 locations->AddTemp(LocationFrom(HighRegisterFrom(location)));
2396 } else {
2397 UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
2398 }
2399 }
2400
InvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)2401 void CodeGeneratorARMVIXL::InvokeRuntime(QuickEntrypointEnum entrypoint,
2402 HInstruction* instruction,
2403 uint32_t dex_pc,
2404 SlowPathCode* slow_path) {
2405 ValidateInvokeRuntime(entrypoint, instruction, slow_path);
2406 __ Ldr(lr, MemOperand(tr, GetThreadOffset<kArmPointerSize>(entrypoint).Int32Value()));
2407 // Ensure the pc position is recorded immediately after the `blx` instruction.
2408 // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
2409 ExactAssemblyScope aas(GetVIXLAssembler(),
2410 vixl32::k16BitT32InstructionSizeInBytes,
2411 CodeBufferCheckScope::kExactSize);
2412 __ blx(lr);
2413 if (EntrypointRequiresStackMap(entrypoint)) {
2414 RecordPcInfo(instruction, dex_pc, slow_path);
2415 }
2416 }
2417
InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,HInstruction * instruction,SlowPathCode * slow_path)2418 void CodeGeneratorARMVIXL::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
2419 HInstruction* instruction,
2420 SlowPathCode* slow_path) {
2421 ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
2422 __ Ldr(lr, MemOperand(tr, entry_point_offset));
2423 __ Blx(lr);
2424 }
2425
HandleGoto(HInstruction * got,HBasicBlock * successor)2426 void InstructionCodeGeneratorARMVIXL::HandleGoto(HInstruction* got, HBasicBlock* successor) {
2427 DCHECK(!successor->IsExitBlock());
2428 HBasicBlock* block = got->GetBlock();
2429 HInstruction* previous = got->GetPrevious();
2430 HLoopInformation* info = block->GetLoopInformation();
2431
2432 if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
2433 codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck());
2434 GenerateSuspendCheck(info->GetSuspendCheck(), successor);
2435 return;
2436 }
2437 if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
2438 GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
2439 }
2440 if (!codegen_->GoesToNextBlock(block, successor)) {
2441 __ B(codegen_->GetLabelOf(successor));
2442 }
2443 }
2444
VisitGoto(HGoto * got)2445 void LocationsBuilderARMVIXL::VisitGoto(HGoto* got) {
2446 got->SetLocations(nullptr);
2447 }
2448
VisitGoto(HGoto * got)2449 void InstructionCodeGeneratorARMVIXL::VisitGoto(HGoto* got) {
2450 HandleGoto(got, got->GetSuccessor());
2451 }
2452
VisitTryBoundary(HTryBoundary * try_boundary)2453 void LocationsBuilderARMVIXL::VisitTryBoundary(HTryBoundary* try_boundary) {
2454 try_boundary->SetLocations(nullptr);
2455 }
2456
VisitTryBoundary(HTryBoundary * try_boundary)2457 void InstructionCodeGeneratorARMVIXL::VisitTryBoundary(HTryBoundary* try_boundary) {
2458 HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
2459 if (!successor->IsExitBlock()) {
2460 HandleGoto(try_boundary, successor);
2461 }
2462 }
2463
VisitExit(HExit * exit)2464 void LocationsBuilderARMVIXL::VisitExit(HExit* exit) {
2465 exit->SetLocations(nullptr);
2466 }
2467
VisitExit(HExit * exit ATTRIBUTE_UNUSED)2468 void InstructionCodeGeneratorARMVIXL::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
2469 }
2470
GenerateLongComparesAndJumps(HCondition * cond,vixl32::Label * true_label,vixl32::Label * false_label)2471 void InstructionCodeGeneratorARMVIXL::GenerateLongComparesAndJumps(HCondition* cond,
2472 vixl32::Label* true_label,
2473 vixl32::Label* false_label) {
2474 LocationSummary* locations = cond->GetLocations();
2475 Location left = locations->InAt(0);
2476 Location right = locations->InAt(1);
2477 IfCondition if_cond = cond->GetCondition();
2478
2479 vixl32::Register left_high = HighRegisterFrom(left);
2480 vixl32::Register left_low = LowRegisterFrom(left);
2481 IfCondition true_high_cond = if_cond;
2482 IfCondition false_high_cond = cond->GetOppositeCondition();
2483 vixl32::Condition final_condition = ARMUnsignedCondition(if_cond); // unsigned on lower part
2484
2485 // Set the conditions for the test, remembering that == needs to be
2486 // decided using the low words.
2487 switch (if_cond) {
2488 case kCondEQ:
2489 case kCondNE:
2490 // Nothing to do.
2491 break;
2492 case kCondLT:
2493 false_high_cond = kCondGT;
2494 break;
2495 case kCondLE:
2496 true_high_cond = kCondLT;
2497 break;
2498 case kCondGT:
2499 false_high_cond = kCondLT;
2500 break;
2501 case kCondGE:
2502 true_high_cond = kCondGT;
2503 break;
2504 case kCondB:
2505 false_high_cond = kCondA;
2506 break;
2507 case kCondBE:
2508 true_high_cond = kCondB;
2509 break;
2510 case kCondA:
2511 false_high_cond = kCondB;
2512 break;
2513 case kCondAE:
2514 true_high_cond = kCondA;
2515 break;
2516 }
2517 if (right.IsConstant()) {
2518 int64_t value = Int64ConstantFrom(right);
2519 int32_t val_low = Low32Bits(value);
2520 int32_t val_high = High32Bits(value);
2521
2522 __ Cmp(left_high, val_high);
2523 if (if_cond == kCondNE) {
2524 __ B(ARMCondition(true_high_cond), true_label);
2525 } else if (if_cond == kCondEQ) {
2526 __ B(ARMCondition(false_high_cond), false_label);
2527 } else {
2528 __ B(ARMCondition(true_high_cond), true_label);
2529 __ B(ARMCondition(false_high_cond), false_label);
2530 }
2531 // Must be equal high, so compare the lows.
2532 __ Cmp(left_low, val_low);
2533 } else {
2534 vixl32::Register right_high = HighRegisterFrom(right);
2535 vixl32::Register right_low = LowRegisterFrom(right);
2536
2537 __ Cmp(left_high, right_high);
2538 if (if_cond == kCondNE) {
2539 __ B(ARMCondition(true_high_cond), true_label);
2540 } else if (if_cond == kCondEQ) {
2541 __ B(ARMCondition(false_high_cond), false_label);
2542 } else {
2543 __ B(ARMCondition(true_high_cond), true_label);
2544 __ B(ARMCondition(false_high_cond), false_label);
2545 }
2546 // Must be equal high, so compare the lows.
2547 __ Cmp(left_low, right_low);
2548 }
2549 // The last comparison might be unsigned.
2550 // TODO: optimize cases where this is always true/false
2551 __ B(final_condition, true_label);
2552 }
2553
GenerateCompareTestAndBranch(HCondition * condition,vixl32::Label * true_target_in,vixl32::Label * false_target_in)2554 void InstructionCodeGeneratorARMVIXL::GenerateCompareTestAndBranch(HCondition* condition,
2555 vixl32::Label* true_target_in,
2556 vixl32::Label* false_target_in) {
2557 if (CanGenerateTest(condition, codegen_->GetAssembler())) {
2558 vixl32::Label* non_fallthrough_target;
2559 bool invert;
2560 bool emit_both_branches;
2561
2562 if (true_target_in == nullptr) {
2563 // The true target is fallthrough.
2564 DCHECK(false_target_in != nullptr);
2565 non_fallthrough_target = false_target_in;
2566 invert = true;
2567 emit_both_branches = false;
2568 } else {
2569 non_fallthrough_target = true_target_in;
2570 invert = false;
2571 // Either the false target is fallthrough, or there is no fallthrough
2572 // and both branches must be emitted.
2573 emit_both_branches = (false_target_in != nullptr);
2574 }
2575
2576 const auto cond = GenerateTest(condition, invert, codegen_);
2577
2578 __ B(cond.first, non_fallthrough_target);
2579
2580 if (emit_both_branches) {
2581 // No target falls through, we need to branch.
2582 __ B(false_target_in);
2583 }
2584
2585 return;
2586 }
2587
2588 // Generated branching requires both targets to be explicit. If either of the
2589 // targets is nullptr (fallthrough) use and bind `fallthrough` instead.
2590 vixl32::Label fallthrough;
2591 vixl32::Label* true_target = (true_target_in == nullptr) ? &fallthrough : true_target_in;
2592 vixl32::Label* false_target = (false_target_in == nullptr) ? &fallthrough : false_target_in;
2593
2594 DCHECK_EQ(condition->InputAt(0)->GetType(), Primitive::kPrimLong);
2595 GenerateLongComparesAndJumps(condition, true_target, false_target);
2596
2597 if (false_target != &fallthrough) {
2598 __ B(false_target);
2599 }
2600
2601 if (fallthrough.IsReferenced()) {
2602 __ Bind(&fallthrough);
2603 }
2604 }
2605
GenerateTestAndBranch(HInstruction * instruction,size_t condition_input_index,vixl32::Label * true_target,vixl32::Label * false_target,bool far_target)2606 void InstructionCodeGeneratorARMVIXL::GenerateTestAndBranch(HInstruction* instruction,
2607 size_t condition_input_index,
2608 vixl32::Label* true_target,
2609 vixl32::Label* false_target,
2610 bool far_target) {
2611 HInstruction* cond = instruction->InputAt(condition_input_index);
2612
2613 if (true_target == nullptr && false_target == nullptr) {
2614 // Nothing to do. The code always falls through.
2615 return;
2616 } else if (cond->IsIntConstant()) {
2617 // Constant condition, statically compared against "true" (integer value 1).
2618 if (cond->AsIntConstant()->IsTrue()) {
2619 if (true_target != nullptr) {
2620 __ B(true_target);
2621 }
2622 } else {
2623 DCHECK(cond->AsIntConstant()->IsFalse()) << Int32ConstantFrom(cond);
2624 if (false_target != nullptr) {
2625 __ B(false_target);
2626 }
2627 }
2628 return;
2629 }
2630
2631 // The following code generates these patterns:
2632 // (1) true_target == nullptr && false_target != nullptr
2633 // - opposite condition true => branch to false_target
2634 // (2) true_target != nullptr && false_target == nullptr
2635 // - condition true => branch to true_target
2636 // (3) true_target != nullptr && false_target != nullptr
2637 // - condition true => branch to true_target
2638 // - branch to false_target
2639 if (IsBooleanValueOrMaterializedCondition(cond)) {
2640 // Condition has been materialized, compare the output to 0.
2641 if (kIsDebugBuild) {
2642 Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
2643 DCHECK(cond_val.IsRegister());
2644 }
2645 if (true_target == nullptr) {
2646 __ CompareAndBranchIfZero(InputRegisterAt(instruction, condition_input_index),
2647 false_target,
2648 far_target);
2649 } else {
2650 __ CompareAndBranchIfNonZero(InputRegisterAt(instruction, condition_input_index),
2651 true_target,
2652 far_target);
2653 }
2654 } else {
2655 // Condition has not been materialized. Use its inputs as the comparison and
2656 // its condition as the branch condition.
2657 HCondition* condition = cond->AsCondition();
2658
2659 // If this is a long or FP comparison that has been folded into
2660 // the HCondition, generate the comparison directly.
2661 Primitive::Type type = condition->InputAt(0)->GetType();
2662 if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) {
2663 GenerateCompareTestAndBranch(condition, true_target, false_target);
2664 return;
2665 }
2666
2667 vixl32::Label* non_fallthrough_target;
2668 vixl32::Condition arm_cond = vixl32::Condition::None();
2669 const vixl32::Register left = InputRegisterAt(cond, 0);
2670 const Operand right = InputOperandAt(cond, 1);
2671
2672 if (true_target == nullptr) {
2673 arm_cond = ARMCondition(condition->GetOppositeCondition());
2674 non_fallthrough_target = false_target;
2675 } else {
2676 arm_cond = ARMCondition(condition->GetCondition());
2677 non_fallthrough_target = true_target;
2678 }
2679
2680 if (right.IsImmediate() && right.GetImmediate() == 0 && (arm_cond.Is(ne) || arm_cond.Is(eq))) {
2681 if (arm_cond.Is(eq)) {
2682 __ CompareAndBranchIfZero(left, non_fallthrough_target);
2683 } else {
2684 DCHECK(arm_cond.Is(ne));
2685 __ CompareAndBranchIfNonZero(left, non_fallthrough_target);
2686 }
2687 } else {
2688 __ Cmp(left, right);
2689 __ B(arm_cond, non_fallthrough_target);
2690 }
2691 }
2692
2693 // If neither branch falls through (case 3), the conditional branch to `true_target`
2694 // was already emitted (case 2) and we need to emit a jump to `false_target`.
2695 if (true_target != nullptr && false_target != nullptr) {
2696 __ B(false_target);
2697 }
2698 }
2699
VisitIf(HIf * if_instr)2700 void LocationsBuilderARMVIXL::VisitIf(HIf* if_instr) {
2701 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
2702 if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
2703 locations->SetInAt(0, Location::RequiresRegister());
2704 }
2705 }
2706
VisitIf(HIf * if_instr)2707 void InstructionCodeGeneratorARMVIXL::VisitIf(HIf* if_instr) {
2708 HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
2709 HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
2710 vixl32::Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
2711 nullptr : codegen_->GetLabelOf(true_successor);
2712 vixl32::Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
2713 nullptr : codegen_->GetLabelOf(false_successor);
2714 GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
2715 }
2716
VisitDeoptimize(HDeoptimize * deoptimize)2717 void LocationsBuilderARMVIXL::VisitDeoptimize(HDeoptimize* deoptimize) {
2718 LocationSummary* locations = new (GetGraph()->GetArena())
2719 LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
2720 InvokeRuntimeCallingConventionARMVIXL calling_convention;
2721 RegisterSet caller_saves = RegisterSet::Empty();
2722 caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0)));
2723 locations->SetCustomSlowPathCallerSaves(caller_saves);
2724 if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
2725 locations->SetInAt(0, Location::RequiresRegister());
2726 }
2727 }
2728
VisitDeoptimize(HDeoptimize * deoptimize)2729 void InstructionCodeGeneratorARMVIXL::VisitDeoptimize(HDeoptimize* deoptimize) {
2730 SlowPathCodeARMVIXL* slow_path =
2731 deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARMVIXL>(deoptimize);
2732 GenerateTestAndBranch(deoptimize,
2733 /* condition_input_index */ 0,
2734 slow_path->GetEntryLabel(),
2735 /* false_target */ nullptr);
2736 }
2737
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)2738 void LocationsBuilderARMVIXL::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
2739 LocationSummary* locations = new (GetGraph()->GetArena())
2740 LocationSummary(flag, LocationSummary::kNoCall);
2741 locations->SetOut(Location::RequiresRegister());
2742 }
2743
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)2744 void InstructionCodeGeneratorARMVIXL::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
2745 GetAssembler()->LoadFromOffset(kLoadWord,
2746 OutputRegister(flag),
2747 sp,
2748 codegen_->GetStackOffsetOfShouldDeoptimizeFlag());
2749 }
2750
VisitSelect(HSelect * select)2751 void LocationsBuilderARMVIXL::VisitSelect(HSelect* select) {
2752 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select);
2753 const bool is_floating_point = Primitive::IsFloatingPointType(select->GetType());
2754
2755 if (is_floating_point) {
2756 locations->SetInAt(0, Location::RequiresFpuRegister());
2757 locations->SetInAt(1, Location::FpuRegisterOrConstant(select->GetTrueValue()));
2758 } else {
2759 locations->SetInAt(0, Location::RequiresRegister());
2760 locations->SetInAt(1, Arm8BitEncodableConstantOrRegister(select->GetTrueValue()));
2761 }
2762
2763 if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
2764 locations->SetInAt(2, Location::RegisterOrConstant(select->GetCondition()));
2765 // The code generator handles overlap with the values, but not with the condition.
2766 locations->SetOut(Location::SameAsFirstInput());
2767 } else if (is_floating_point) {
2768 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2769 } else {
2770 if (!locations->InAt(1).IsConstant()) {
2771 locations->SetInAt(0, Arm8BitEncodableConstantOrRegister(select->GetFalseValue()));
2772 }
2773
2774 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2775 }
2776 }
2777
VisitSelect(HSelect * select)2778 void InstructionCodeGeneratorARMVIXL::VisitSelect(HSelect* select) {
2779 HInstruction* const condition = select->GetCondition();
2780 const LocationSummary* const locations = select->GetLocations();
2781 const Primitive::Type type = select->GetType();
2782 const Location first = locations->InAt(0);
2783 const Location out = locations->Out();
2784 const Location second = locations->InAt(1);
2785 Location src;
2786
2787 if (condition->IsIntConstant()) {
2788 if (condition->AsIntConstant()->IsFalse()) {
2789 src = first;
2790 } else {
2791 src = second;
2792 }
2793
2794 codegen_->MoveLocation(out, src, type);
2795 return;
2796 }
2797
2798 if (!Primitive::IsFloatingPointType(type) &&
2799 (IsBooleanValueOrMaterializedCondition(condition) ||
2800 CanGenerateTest(condition->AsCondition(), codegen_->GetAssembler()))) {
2801 bool invert = false;
2802
2803 if (out.Equals(second)) {
2804 src = first;
2805 invert = true;
2806 } else if (out.Equals(first)) {
2807 src = second;
2808 } else if (second.IsConstant()) {
2809 DCHECK(CanEncodeConstantAs8BitImmediate(second.GetConstant()));
2810 src = second;
2811 } else if (first.IsConstant()) {
2812 DCHECK(CanEncodeConstantAs8BitImmediate(first.GetConstant()));
2813 src = first;
2814 invert = true;
2815 } else {
2816 src = second;
2817 }
2818
2819 if (CanGenerateConditionalMove(out, src)) {
2820 if (!out.Equals(first) && !out.Equals(second)) {
2821 codegen_->MoveLocation(out, src.Equals(first) ? second : first, type);
2822 }
2823
2824 std::pair<vixl32::Condition, vixl32::Condition> cond(eq, ne);
2825
2826 if (IsBooleanValueOrMaterializedCondition(condition)) {
2827 __ Cmp(InputRegisterAt(select, 2), 0);
2828 cond = invert ? std::make_pair(eq, ne) : std::make_pair(ne, eq);
2829 } else {
2830 cond = GenerateTest(condition->AsCondition(), invert, codegen_);
2831 }
2832
2833 const size_t instr_count = out.IsRegisterPair() ? 4 : 2;
2834 // We use the scope because of the IT block that follows.
2835 ExactAssemblyScope guard(GetVIXLAssembler(),
2836 instr_count * vixl32::k16BitT32InstructionSizeInBytes,
2837 CodeBufferCheckScope::kExactSize);
2838
2839 if (out.IsRegister()) {
2840 __ it(cond.first);
2841 __ mov(cond.first, RegisterFrom(out), OperandFrom(src, type));
2842 } else {
2843 DCHECK(out.IsRegisterPair());
2844
2845 Operand operand_high(0);
2846 Operand operand_low(0);
2847
2848 if (src.IsConstant()) {
2849 const int64_t value = Int64ConstantFrom(src);
2850
2851 operand_high = High32Bits(value);
2852 operand_low = Low32Bits(value);
2853 } else {
2854 DCHECK(src.IsRegisterPair());
2855 operand_high = HighRegisterFrom(src);
2856 operand_low = LowRegisterFrom(src);
2857 }
2858
2859 __ it(cond.first);
2860 __ mov(cond.first, LowRegisterFrom(out), operand_low);
2861 __ it(cond.first);
2862 __ mov(cond.first, HighRegisterFrom(out), operand_high);
2863 }
2864
2865 return;
2866 }
2867 }
2868
2869 vixl32::Label* false_target = nullptr;
2870 vixl32::Label* true_target = nullptr;
2871 vixl32::Label select_end;
2872 vixl32::Label* const target = codegen_->GetFinalLabel(select, &select_end);
2873
2874 if (out.Equals(second)) {
2875 true_target = target;
2876 src = first;
2877 } else {
2878 false_target = target;
2879 src = second;
2880
2881 if (!out.Equals(first)) {
2882 codegen_->MoveLocation(out, first, type);
2883 }
2884 }
2885
2886 GenerateTestAndBranch(select, 2, true_target, false_target, /* far_target */ false);
2887 codegen_->MoveLocation(out, src, type);
2888
2889 if (select_end.IsReferenced()) {
2890 __ Bind(&select_end);
2891 }
2892 }
2893
VisitNativeDebugInfo(HNativeDebugInfo * info)2894 void LocationsBuilderARMVIXL::VisitNativeDebugInfo(HNativeDebugInfo* info) {
2895 new (GetGraph()->GetArena()) LocationSummary(info);
2896 }
2897
VisitNativeDebugInfo(HNativeDebugInfo *)2898 void InstructionCodeGeneratorARMVIXL::VisitNativeDebugInfo(HNativeDebugInfo*) {
2899 // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
2900 }
2901
GenerateNop()2902 void CodeGeneratorARMVIXL::GenerateNop() {
2903 __ Nop();
2904 }
2905
HandleCondition(HCondition * cond)2906 void LocationsBuilderARMVIXL::HandleCondition(HCondition* cond) {
2907 LocationSummary* locations =
2908 new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall);
2909 // Handle the long/FP comparisons made in instruction simplification.
2910 switch (cond->InputAt(0)->GetType()) {
2911 case Primitive::kPrimLong:
2912 locations->SetInAt(0, Location::RequiresRegister());
2913 locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1)));
2914 if (!cond->IsEmittedAtUseSite()) {
2915 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2916 }
2917 break;
2918
2919 case Primitive::kPrimFloat:
2920 case Primitive::kPrimDouble:
2921 locations->SetInAt(0, Location::RequiresFpuRegister());
2922 locations->SetInAt(1, ArithmeticZeroOrFpuRegister(cond->InputAt(1)));
2923 if (!cond->IsEmittedAtUseSite()) {
2924 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2925 }
2926 break;
2927
2928 default:
2929 locations->SetInAt(0, Location::RequiresRegister());
2930 locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1)));
2931 if (!cond->IsEmittedAtUseSite()) {
2932 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2933 }
2934 }
2935 }
2936
HandleCondition(HCondition * cond)2937 void InstructionCodeGeneratorARMVIXL::HandleCondition(HCondition* cond) {
2938 if (cond->IsEmittedAtUseSite()) {
2939 return;
2940 }
2941
2942 const vixl32::Register out = OutputRegister(cond);
2943
2944 if (out.IsLow() && CanGenerateTest(cond, codegen_->GetAssembler())) {
2945 const auto condition = GenerateTest(cond, false, codegen_);
2946 // We use the scope because of the IT block that follows.
2947 ExactAssemblyScope guard(GetVIXLAssembler(),
2948 4 * vixl32::k16BitT32InstructionSizeInBytes,
2949 CodeBufferCheckScope::kExactSize);
2950
2951 __ it(condition.first);
2952 __ mov(condition.first, out, 1);
2953 __ it(condition.second);
2954 __ mov(condition.second, out, 0);
2955 return;
2956 }
2957
2958 // Convert the jumps into the result.
2959 vixl32::Label done_label;
2960 vixl32::Label* const final_label = codegen_->GetFinalLabel(cond, &done_label);
2961
2962 if (cond->InputAt(0)->GetType() == Primitive::kPrimLong) {
2963 vixl32::Label true_label, false_label;
2964
2965 GenerateLongComparesAndJumps(cond, &true_label, &false_label);
2966
2967 // False case: result = 0.
2968 __ Bind(&false_label);
2969 __ Mov(out, 0);
2970 __ B(final_label);
2971
2972 // True case: result = 1.
2973 __ Bind(&true_label);
2974 __ Mov(out, 1);
2975 } else {
2976 DCHECK(CanGenerateTest(cond, codegen_->GetAssembler()));
2977
2978 const auto condition = GenerateTest(cond, false, codegen_);
2979
2980 __ Mov(LeaveFlags, out, 0);
2981 __ B(condition.second, final_label, /* far_target */ false);
2982 __ Mov(out, 1);
2983 }
2984
2985 if (done_label.IsReferenced()) {
2986 __ Bind(&done_label);
2987 }
2988 }
2989
VisitEqual(HEqual * comp)2990 void LocationsBuilderARMVIXL::VisitEqual(HEqual* comp) {
2991 HandleCondition(comp);
2992 }
2993
VisitEqual(HEqual * comp)2994 void InstructionCodeGeneratorARMVIXL::VisitEqual(HEqual* comp) {
2995 HandleCondition(comp);
2996 }
2997
VisitNotEqual(HNotEqual * comp)2998 void LocationsBuilderARMVIXL::VisitNotEqual(HNotEqual* comp) {
2999 HandleCondition(comp);
3000 }
3001
VisitNotEqual(HNotEqual * comp)3002 void InstructionCodeGeneratorARMVIXL::VisitNotEqual(HNotEqual* comp) {
3003 HandleCondition(comp);
3004 }
3005
VisitLessThan(HLessThan * comp)3006 void LocationsBuilderARMVIXL::VisitLessThan(HLessThan* comp) {
3007 HandleCondition(comp);
3008 }
3009
VisitLessThan(HLessThan * comp)3010 void InstructionCodeGeneratorARMVIXL::VisitLessThan(HLessThan* comp) {
3011 HandleCondition(comp);
3012 }
3013
VisitLessThanOrEqual(HLessThanOrEqual * comp)3014 void LocationsBuilderARMVIXL::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
3015 HandleCondition(comp);
3016 }
3017
VisitLessThanOrEqual(HLessThanOrEqual * comp)3018 void InstructionCodeGeneratorARMVIXL::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
3019 HandleCondition(comp);
3020 }
3021
VisitGreaterThan(HGreaterThan * comp)3022 void LocationsBuilderARMVIXL::VisitGreaterThan(HGreaterThan* comp) {
3023 HandleCondition(comp);
3024 }
3025
VisitGreaterThan(HGreaterThan * comp)3026 void InstructionCodeGeneratorARMVIXL::VisitGreaterThan(HGreaterThan* comp) {
3027 HandleCondition(comp);
3028 }
3029
VisitGreaterThanOrEqual(HGreaterThanOrEqual * comp)3030 void LocationsBuilderARMVIXL::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
3031 HandleCondition(comp);
3032 }
3033
VisitGreaterThanOrEqual(HGreaterThanOrEqual * comp)3034 void InstructionCodeGeneratorARMVIXL::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
3035 HandleCondition(comp);
3036 }
3037
VisitBelow(HBelow * comp)3038 void LocationsBuilderARMVIXL::VisitBelow(HBelow* comp) {
3039 HandleCondition(comp);
3040 }
3041
VisitBelow(HBelow * comp)3042 void InstructionCodeGeneratorARMVIXL::VisitBelow(HBelow* comp) {
3043 HandleCondition(comp);
3044 }
3045
VisitBelowOrEqual(HBelowOrEqual * comp)3046 void LocationsBuilderARMVIXL::VisitBelowOrEqual(HBelowOrEqual* comp) {
3047 HandleCondition(comp);
3048 }
3049
VisitBelowOrEqual(HBelowOrEqual * comp)3050 void InstructionCodeGeneratorARMVIXL::VisitBelowOrEqual(HBelowOrEqual* comp) {
3051 HandleCondition(comp);
3052 }
3053
VisitAbove(HAbove * comp)3054 void LocationsBuilderARMVIXL::VisitAbove(HAbove* comp) {
3055 HandleCondition(comp);
3056 }
3057
VisitAbove(HAbove * comp)3058 void InstructionCodeGeneratorARMVIXL::VisitAbove(HAbove* comp) {
3059 HandleCondition(comp);
3060 }
3061
VisitAboveOrEqual(HAboveOrEqual * comp)3062 void LocationsBuilderARMVIXL::VisitAboveOrEqual(HAboveOrEqual* comp) {
3063 HandleCondition(comp);
3064 }
3065
VisitAboveOrEqual(HAboveOrEqual * comp)3066 void InstructionCodeGeneratorARMVIXL::VisitAboveOrEqual(HAboveOrEqual* comp) {
3067 HandleCondition(comp);
3068 }
3069
VisitIntConstant(HIntConstant * constant)3070 void LocationsBuilderARMVIXL::VisitIntConstant(HIntConstant* constant) {
3071 LocationSummary* locations =
3072 new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
3073 locations->SetOut(Location::ConstantLocation(constant));
3074 }
3075
VisitIntConstant(HIntConstant * constant ATTRIBUTE_UNUSED)3076 void InstructionCodeGeneratorARMVIXL::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
3077 // Will be generated at use site.
3078 }
3079
VisitNullConstant(HNullConstant * constant)3080 void LocationsBuilderARMVIXL::VisitNullConstant(HNullConstant* constant) {
3081 LocationSummary* locations =
3082 new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
3083 locations->SetOut(Location::ConstantLocation(constant));
3084 }
3085
VisitNullConstant(HNullConstant * constant ATTRIBUTE_UNUSED)3086 void InstructionCodeGeneratorARMVIXL::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
3087 // Will be generated at use site.
3088 }
3089
VisitLongConstant(HLongConstant * constant)3090 void LocationsBuilderARMVIXL::VisitLongConstant(HLongConstant* constant) {
3091 LocationSummary* locations =
3092 new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
3093 locations->SetOut(Location::ConstantLocation(constant));
3094 }
3095
VisitLongConstant(HLongConstant * constant ATTRIBUTE_UNUSED)3096 void InstructionCodeGeneratorARMVIXL::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
3097 // Will be generated at use site.
3098 }
3099
VisitFloatConstant(HFloatConstant * constant)3100 void LocationsBuilderARMVIXL::VisitFloatConstant(HFloatConstant* constant) {
3101 LocationSummary* locations =
3102 new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
3103 locations->SetOut(Location::ConstantLocation(constant));
3104 }
3105
VisitFloatConstant(HFloatConstant * constant ATTRIBUTE_UNUSED)3106 void InstructionCodeGeneratorARMVIXL::VisitFloatConstant(
3107 HFloatConstant* constant ATTRIBUTE_UNUSED) {
3108 // Will be generated at use site.
3109 }
3110
VisitDoubleConstant(HDoubleConstant * constant)3111 void LocationsBuilderARMVIXL::VisitDoubleConstant(HDoubleConstant* constant) {
3112 LocationSummary* locations =
3113 new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
3114 locations->SetOut(Location::ConstantLocation(constant));
3115 }
3116
VisitDoubleConstant(HDoubleConstant * constant ATTRIBUTE_UNUSED)3117 void InstructionCodeGeneratorARMVIXL::VisitDoubleConstant(
3118 HDoubleConstant* constant ATTRIBUTE_UNUSED) {
3119 // Will be generated at use site.
3120 }
3121
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)3122 void LocationsBuilderARMVIXL::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
3123 memory_barrier->SetLocations(nullptr);
3124 }
3125
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)3126 void InstructionCodeGeneratorARMVIXL::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
3127 codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
3128 }
3129
VisitReturnVoid(HReturnVoid * ret)3130 void LocationsBuilderARMVIXL::VisitReturnVoid(HReturnVoid* ret) {
3131 ret->SetLocations(nullptr);
3132 }
3133
VisitReturnVoid(HReturnVoid * ret ATTRIBUTE_UNUSED)3134 void InstructionCodeGeneratorARMVIXL::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
3135 codegen_->GenerateFrameExit();
3136 }
3137
VisitReturn(HReturn * ret)3138 void LocationsBuilderARMVIXL::VisitReturn(HReturn* ret) {
3139 LocationSummary* locations =
3140 new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall);
3141 locations->SetInAt(0, parameter_visitor_.GetReturnLocation(ret->InputAt(0)->GetType()));
3142 }
3143
VisitReturn(HReturn * ret ATTRIBUTE_UNUSED)3144 void InstructionCodeGeneratorARMVIXL::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) {
3145 codegen_->GenerateFrameExit();
3146 }
3147
VisitInvokeUnresolved(HInvokeUnresolved * invoke)3148 void LocationsBuilderARMVIXL::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
3149 // The trampoline uses the same calling convention as dex calling conventions,
3150 // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
3151 // the method_idx.
3152 HandleInvoke(invoke);
3153 }
3154
VisitInvokeUnresolved(HInvokeUnresolved * invoke)3155 void InstructionCodeGeneratorARMVIXL::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
3156 codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
3157 }
3158
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)3159 void LocationsBuilderARMVIXL::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
3160 // Explicit clinit checks triggered by static invokes must have been pruned by
3161 // art::PrepareForRegisterAllocation.
3162 DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
3163
3164 IntrinsicLocationsBuilderARMVIXL intrinsic(codegen_);
3165 if (intrinsic.TryDispatch(invoke)) {
3166 if (invoke->GetLocations()->CanCall() && invoke->HasPcRelativeDexCache()) {
3167 invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any());
3168 }
3169 return;
3170 }
3171
3172 HandleInvoke(invoke);
3173
3174 // For PC-relative dex cache the invoke has an extra input, the PC-relative address base.
3175 if (invoke->HasPcRelativeDexCache()) {
3176 invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister());
3177 }
3178 }
3179
TryGenerateIntrinsicCode(HInvoke * invoke,CodeGeneratorARMVIXL * codegen)3180 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARMVIXL* codegen) {
3181 if (invoke->GetLocations()->Intrinsified()) {
3182 IntrinsicCodeGeneratorARMVIXL intrinsic(codegen);
3183 intrinsic.Dispatch(invoke);
3184 return true;
3185 }
3186 return false;
3187 }
3188
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)3189 void InstructionCodeGeneratorARMVIXL::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
3190 // Explicit clinit checks triggered by static invokes must have been pruned by
3191 // art::PrepareForRegisterAllocation.
3192 DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
3193
3194 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
3195 return;
3196 }
3197
3198 LocationSummary* locations = invoke->GetLocations();
3199 codegen_->GenerateStaticOrDirectCall(
3200 invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
3201 codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
3202 }
3203
HandleInvoke(HInvoke * invoke)3204 void LocationsBuilderARMVIXL::HandleInvoke(HInvoke* invoke) {
3205 InvokeDexCallingConventionVisitorARMVIXL calling_convention_visitor;
3206 CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
3207 }
3208
VisitInvokeVirtual(HInvokeVirtual * invoke)3209 void LocationsBuilderARMVIXL::VisitInvokeVirtual(HInvokeVirtual* invoke) {
3210 IntrinsicLocationsBuilderARMVIXL intrinsic(codegen_);
3211 if (intrinsic.TryDispatch(invoke)) {
3212 return;
3213 }
3214
3215 HandleInvoke(invoke);
3216 }
3217
VisitInvokeVirtual(HInvokeVirtual * invoke)3218 void InstructionCodeGeneratorARMVIXL::VisitInvokeVirtual(HInvokeVirtual* invoke) {
3219 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
3220 return;
3221 }
3222
3223 codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
3224 codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
3225 DCHECK(!codegen_->IsLeafMethod());
3226 }
3227
VisitInvokeInterface(HInvokeInterface * invoke)3228 void LocationsBuilderARMVIXL::VisitInvokeInterface(HInvokeInterface* invoke) {
3229 HandleInvoke(invoke);
3230 // Add the hidden argument.
3231 invoke->GetLocations()->AddTemp(LocationFrom(r12));
3232 }
3233
VisitInvokeInterface(HInvokeInterface * invoke)3234 void InstructionCodeGeneratorARMVIXL::VisitInvokeInterface(HInvokeInterface* invoke) {
3235 // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
3236 LocationSummary* locations = invoke->GetLocations();
3237 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
3238 vixl32::Register hidden_reg = RegisterFrom(locations->GetTemp(1));
3239 Location receiver = locations->InAt(0);
3240 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
3241
3242 DCHECK(!receiver.IsStackSlot());
3243
3244 // Ensure the pc position is recorded immediately after the `ldr` instruction.
3245 {
3246 ExactAssemblyScope aas(GetVIXLAssembler(),
3247 vixl32::kMaxInstructionSizeInBytes,
3248 CodeBufferCheckScope::kMaximumSize);
3249 // /* HeapReference<Class> */ temp = receiver->klass_
3250 __ ldr(temp, MemOperand(RegisterFrom(receiver), class_offset));
3251 codegen_->MaybeRecordImplicitNullCheck(invoke);
3252 }
3253 // Instead of simply (possibly) unpoisoning `temp` here, we should
3254 // emit a read barrier for the previous class reference load.
3255 // However this is not required in practice, as this is an
3256 // intermediate/temporary reference and because the current
3257 // concurrent copying collector keeps the from-space memory
3258 // intact/accessible until the end of the marking phase (the
3259 // concurrent copying collector may not in the future).
3260 GetAssembler()->MaybeUnpoisonHeapReference(temp);
3261 GetAssembler()->LoadFromOffset(kLoadWord,
3262 temp,
3263 temp,
3264 mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value());
3265 uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
3266 invoke->GetImtIndex(), kArmPointerSize));
3267 // temp = temp->GetImtEntryAt(method_offset);
3268 GetAssembler()->LoadFromOffset(kLoadWord, temp, temp, method_offset);
3269 uint32_t entry_point =
3270 ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value();
3271 // LR = temp->GetEntryPoint();
3272 GetAssembler()->LoadFromOffset(kLoadWord, lr, temp, entry_point);
3273
3274 // Set the hidden (in r12) argument. It is done here, right before a BLX to prevent other
3275 // instruction from clobbering it as they might use r12 as a scratch register.
3276 DCHECK(hidden_reg.Is(r12));
3277
3278 {
3279 // The VIXL macro assembler may clobber any of the scratch registers that are available to it,
3280 // so it checks if the application is using them (by passing them to the macro assembler
3281 // methods). The following application of UseScratchRegisterScope corrects VIXL's notion of
3282 // what is available, and is the opposite of the standard usage: Instead of requesting a
3283 // temporary location, it imposes an external constraint (i.e. a specific register is reserved
3284 // for the hidden argument). Note that this works even if VIXL needs a scratch register itself
3285 // (to materialize the constant), since the destination register becomes available for such use
3286 // internally for the duration of the macro instruction.
3287 UseScratchRegisterScope temps(GetVIXLAssembler());
3288 temps.Exclude(hidden_reg);
3289 __ Mov(hidden_reg, invoke->GetDexMethodIndex());
3290 }
3291 {
3292 // Ensure the pc position is recorded immediately after the `blx` instruction.
3293 // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
3294 ExactAssemblyScope aas(GetVIXLAssembler(),
3295 vixl32::k16BitT32InstructionSizeInBytes,
3296 CodeBufferCheckScope::kExactSize);
3297 // LR();
3298 __ blx(lr);
3299 codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
3300 DCHECK(!codegen_->IsLeafMethod());
3301 }
3302 }
3303
VisitInvokePolymorphic(HInvokePolymorphic * invoke)3304 void LocationsBuilderARMVIXL::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
3305 HandleInvoke(invoke);
3306 }
3307
VisitInvokePolymorphic(HInvokePolymorphic * invoke)3308 void InstructionCodeGeneratorARMVIXL::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
3309 codegen_->GenerateInvokePolymorphicCall(invoke);
3310 }
3311
VisitNeg(HNeg * neg)3312 void LocationsBuilderARMVIXL::VisitNeg(HNeg* neg) {
3313 LocationSummary* locations =
3314 new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
3315 switch (neg->GetResultType()) {
3316 case Primitive::kPrimInt: {
3317 locations->SetInAt(0, Location::RequiresRegister());
3318 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3319 break;
3320 }
3321 case Primitive::kPrimLong: {
3322 locations->SetInAt(0, Location::RequiresRegister());
3323 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3324 break;
3325 }
3326
3327 case Primitive::kPrimFloat:
3328 case Primitive::kPrimDouble:
3329 locations->SetInAt(0, Location::RequiresFpuRegister());
3330 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3331 break;
3332
3333 default:
3334 LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
3335 }
3336 }
3337
VisitNeg(HNeg * neg)3338 void InstructionCodeGeneratorARMVIXL::VisitNeg(HNeg* neg) {
3339 LocationSummary* locations = neg->GetLocations();
3340 Location out = locations->Out();
3341 Location in = locations->InAt(0);
3342 switch (neg->GetResultType()) {
3343 case Primitive::kPrimInt:
3344 __ Rsb(OutputRegister(neg), InputRegisterAt(neg, 0), 0);
3345 break;
3346
3347 case Primitive::kPrimLong:
3348 // out.lo = 0 - in.lo (and update the carry/borrow (C) flag)
3349 __ Rsbs(LowRegisterFrom(out), LowRegisterFrom(in), 0);
3350 // We cannot emit an RSC (Reverse Subtract with Carry)
3351 // instruction here, as it does not exist in the Thumb-2
3352 // instruction set. We use the following approach
3353 // using SBC and SUB instead.
3354 //
3355 // out.hi = -C
3356 __ Sbc(HighRegisterFrom(out), HighRegisterFrom(out), HighRegisterFrom(out));
3357 // out.hi = out.hi - in.hi
3358 __ Sub(HighRegisterFrom(out), HighRegisterFrom(out), HighRegisterFrom(in));
3359 break;
3360
3361 case Primitive::kPrimFloat:
3362 case Primitive::kPrimDouble:
3363 __ Vneg(OutputVRegister(neg), InputVRegister(neg));
3364 break;
3365
3366 default:
3367 LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
3368 }
3369 }
3370
VisitTypeConversion(HTypeConversion * conversion)3371 void LocationsBuilderARMVIXL::VisitTypeConversion(HTypeConversion* conversion) {
3372 Primitive::Type result_type = conversion->GetResultType();
3373 Primitive::Type input_type = conversion->GetInputType();
3374 DCHECK_NE(result_type, input_type);
3375
3376 // The float-to-long, double-to-long and long-to-float type conversions
3377 // rely on a call to the runtime.
3378 LocationSummary::CallKind call_kind =
3379 (((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble)
3380 && result_type == Primitive::kPrimLong)
3381 || (input_type == Primitive::kPrimLong && result_type == Primitive::kPrimFloat))
3382 ? LocationSummary::kCallOnMainOnly
3383 : LocationSummary::kNoCall;
3384 LocationSummary* locations =
3385 new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind);
3386
3387 // The Java language does not allow treating boolean as an integral type but
3388 // our bit representation makes it safe.
3389
3390 switch (result_type) {
3391 case Primitive::kPrimByte:
3392 switch (input_type) {
3393 case Primitive::kPrimLong:
3394 // Type conversion from long to byte is a result of code transformations.
3395 case Primitive::kPrimBoolean:
3396 // Boolean input is a result of code transformations.
3397 case Primitive::kPrimShort:
3398 case Primitive::kPrimInt:
3399 case Primitive::kPrimChar:
3400 // Processing a Dex `int-to-byte' instruction.
3401 locations->SetInAt(0, Location::RequiresRegister());
3402 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3403 break;
3404
3405 default:
3406 LOG(FATAL) << "Unexpected type conversion from " << input_type
3407 << " to " << result_type;
3408 }
3409 break;
3410
3411 case Primitive::kPrimShort:
3412 switch (input_type) {
3413 case Primitive::kPrimLong:
3414 // Type conversion from long to short is a result of code transformations.
3415 case Primitive::kPrimBoolean:
3416 // Boolean input is a result of code transformations.
3417 case Primitive::kPrimByte:
3418 case Primitive::kPrimInt:
3419 case Primitive::kPrimChar:
3420 // Processing a Dex `int-to-short' instruction.
3421 locations->SetInAt(0, Location::RequiresRegister());
3422 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3423 break;
3424
3425 default:
3426 LOG(FATAL) << "Unexpected type conversion from " << input_type
3427 << " to " << result_type;
3428 }
3429 break;
3430
3431 case Primitive::kPrimInt:
3432 switch (input_type) {
3433 case Primitive::kPrimLong:
3434 // Processing a Dex `long-to-int' instruction.
3435 locations->SetInAt(0, Location::Any());
3436 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3437 break;
3438
3439 case Primitive::kPrimFloat:
3440 // Processing a Dex `float-to-int' instruction.
3441 locations->SetInAt(0, Location::RequiresFpuRegister());
3442 locations->SetOut(Location::RequiresRegister());
3443 locations->AddTemp(Location::RequiresFpuRegister());
3444 break;
3445
3446 case Primitive::kPrimDouble:
3447 // Processing a Dex `double-to-int' instruction.
3448 locations->SetInAt(0, Location::RequiresFpuRegister());
3449 locations->SetOut(Location::RequiresRegister());
3450 locations->AddTemp(Location::RequiresFpuRegister());
3451 break;
3452
3453 default:
3454 LOG(FATAL) << "Unexpected type conversion from " << input_type
3455 << " to " << result_type;
3456 }
3457 break;
3458
3459 case Primitive::kPrimLong:
3460 switch (input_type) {
3461 case Primitive::kPrimBoolean:
3462 // Boolean input is a result of code transformations.
3463 case Primitive::kPrimByte:
3464 case Primitive::kPrimShort:
3465 case Primitive::kPrimInt:
3466 case Primitive::kPrimChar:
3467 // Processing a Dex `int-to-long' instruction.
3468 locations->SetInAt(0, Location::RequiresRegister());
3469 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3470 break;
3471
3472 case Primitive::kPrimFloat: {
3473 // Processing a Dex `float-to-long' instruction.
3474 InvokeRuntimeCallingConventionARMVIXL calling_convention;
3475 locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
3476 locations->SetOut(LocationFrom(r0, r1));
3477 break;
3478 }
3479
3480 case Primitive::kPrimDouble: {
3481 // Processing a Dex `double-to-long' instruction.
3482 InvokeRuntimeCallingConventionARMVIXL calling_convention;
3483 locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0),
3484 calling_convention.GetFpuRegisterAt(1)));
3485 locations->SetOut(LocationFrom(r0, r1));
3486 break;
3487 }
3488
3489 default:
3490 LOG(FATAL) << "Unexpected type conversion from " << input_type
3491 << " to " << result_type;
3492 }
3493 break;
3494
3495 case Primitive::kPrimChar:
3496 switch (input_type) {
3497 case Primitive::kPrimLong:
3498 // Type conversion from long to char is a result of code transformations.
3499 case Primitive::kPrimBoolean:
3500 // Boolean input is a result of code transformations.
3501 case Primitive::kPrimByte:
3502 case Primitive::kPrimShort:
3503 case Primitive::kPrimInt:
3504 // Processing a Dex `int-to-char' instruction.
3505 locations->SetInAt(0, Location::RequiresRegister());
3506 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3507 break;
3508
3509 default:
3510 LOG(FATAL) << "Unexpected type conversion from " << input_type
3511 << " to " << result_type;
3512 }
3513 break;
3514
3515 case Primitive::kPrimFloat:
3516 switch (input_type) {
3517 case Primitive::kPrimBoolean:
3518 // Boolean input is a result of code transformations.
3519 case Primitive::kPrimByte:
3520 case Primitive::kPrimShort:
3521 case Primitive::kPrimInt:
3522 case Primitive::kPrimChar:
3523 // Processing a Dex `int-to-float' instruction.
3524 locations->SetInAt(0, Location::RequiresRegister());
3525 locations->SetOut(Location::RequiresFpuRegister());
3526 break;
3527
3528 case Primitive::kPrimLong: {
3529 // Processing a Dex `long-to-float' instruction.
3530 InvokeRuntimeCallingConventionARMVIXL calling_convention;
3531 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0),
3532 calling_convention.GetRegisterAt(1)));
3533 locations->SetOut(LocationFrom(calling_convention.GetFpuRegisterAt(0)));
3534 break;
3535 }
3536
3537 case Primitive::kPrimDouble:
3538 // Processing a Dex `double-to-float' instruction.
3539 locations->SetInAt(0, Location::RequiresFpuRegister());
3540 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3541 break;
3542
3543 default:
3544 LOG(FATAL) << "Unexpected type conversion from " << input_type
3545 << " to " << result_type;
3546 };
3547 break;
3548
3549 case Primitive::kPrimDouble:
3550 switch (input_type) {
3551 case Primitive::kPrimBoolean:
3552 // Boolean input is a result of code transformations.
3553 case Primitive::kPrimByte:
3554 case Primitive::kPrimShort:
3555 case Primitive::kPrimInt:
3556 case Primitive::kPrimChar:
3557 // Processing a Dex `int-to-double' instruction.
3558 locations->SetInAt(0, Location::RequiresRegister());
3559 locations->SetOut(Location::RequiresFpuRegister());
3560 break;
3561
3562 case Primitive::kPrimLong:
3563 // Processing a Dex `long-to-double' instruction.
3564 locations->SetInAt(0, Location::RequiresRegister());
3565 locations->SetOut(Location::RequiresFpuRegister());
3566 locations->AddTemp(Location::RequiresFpuRegister());
3567 locations->AddTemp(Location::RequiresFpuRegister());
3568 break;
3569
3570 case Primitive::kPrimFloat:
3571 // Processing a Dex `float-to-double' instruction.
3572 locations->SetInAt(0, Location::RequiresFpuRegister());
3573 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3574 break;
3575
3576 default:
3577 LOG(FATAL) << "Unexpected type conversion from " << input_type
3578 << " to " << result_type;
3579 };
3580 break;
3581
3582 default:
3583 LOG(FATAL) << "Unexpected type conversion from " << input_type
3584 << " to " << result_type;
3585 }
3586 }
3587
VisitTypeConversion(HTypeConversion * conversion)3588 void InstructionCodeGeneratorARMVIXL::VisitTypeConversion(HTypeConversion* conversion) {
3589 LocationSummary* locations = conversion->GetLocations();
3590 Location out = locations->Out();
3591 Location in = locations->InAt(0);
3592 Primitive::Type result_type = conversion->GetResultType();
3593 Primitive::Type input_type = conversion->GetInputType();
3594 DCHECK_NE(result_type, input_type);
3595 switch (result_type) {
3596 case Primitive::kPrimByte:
3597 switch (input_type) {
3598 case Primitive::kPrimLong:
3599 // Type conversion from long to byte is a result of code transformations.
3600 __ Sbfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 8);
3601 break;
3602 case Primitive::kPrimBoolean:
3603 // Boolean input is a result of code transformations.
3604 case Primitive::kPrimShort:
3605 case Primitive::kPrimInt:
3606 case Primitive::kPrimChar:
3607 // Processing a Dex `int-to-byte' instruction.
3608 __ Sbfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 8);
3609 break;
3610
3611 default:
3612 LOG(FATAL) << "Unexpected type conversion from " << input_type
3613 << " to " << result_type;
3614 }
3615 break;
3616
3617 case Primitive::kPrimShort:
3618 switch (input_type) {
3619 case Primitive::kPrimLong:
3620 // Type conversion from long to short is a result of code transformations.
3621 __ Sbfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 16);
3622 break;
3623 case Primitive::kPrimBoolean:
3624 // Boolean input is a result of code transformations.
3625 case Primitive::kPrimByte:
3626 case Primitive::kPrimInt:
3627 case Primitive::kPrimChar:
3628 // Processing a Dex `int-to-short' instruction.
3629 __ Sbfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 16);
3630 break;
3631
3632 default:
3633 LOG(FATAL) << "Unexpected type conversion from " << input_type
3634 << " to " << result_type;
3635 }
3636 break;
3637
3638 case Primitive::kPrimInt:
3639 switch (input_type) {
3640 case Primitive::kPrimLong:
3641 // Processing a Dex `long-to-int' instruction.
3642 DCHECK(out.IsRegister());
3643 if (in.IsRegisterPair()) {
3644 __ Mov(OutputRegister(conversion), LowRegisterFrom(in));
3645 } else if (in.IsDoubleStackSlot()) {
3646 GetAssembler()->LoadFromOffset(kLoadWord,
3647 OutputRegister(conversion),
3648 sp,
3649 in.GetStackIndex());
3650 } else {
3651 DCHECK(in.IsConstant());
3652 DCHECK(in.GetConstant()->IsLongConstant());
3653 int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
3654 __ Mov(OutputRegister(conversion), static_cast<int32_t>(value));
3655 }
3656 break;
3657
3658 case Primitive::kPrimFloat: {
3659 // Processing a Dex `float-to-int' instruction.
3660 vixl32::SRegister temp = LowSRegisterFrom(locations->GetTemp(0));
3661 __ Vcvt(S32, F32, temp, InputSRegisterAt(conversion, 0));
3662 __ Vmov(OutputRegister(conversion), temp);
3663 break;
3664 }
3665
3666 case Primitive::kPrimDouble: {
3667 // Processing a Dex `double-to-int' instruction.
3668 vixl32::SRegister temp_s = LowSRegisterFrom(locations->GetTemp(0));
3669 __ Vcvt(S32, F64, temp_s, DRegisterFrom(in));
3670 __ Vmov(OutputRegister(conversion), temp_s);
3671 break;
3672 }
3673
3674 default:
3675 LOG(FATAL) << "Unexpected type conversion from " << input_type
3676 << " to " << result_type;
3677 }
3678 break;
3679
3680 case Primitive::kPrimLong:
3681 switch (input_type) {
3682 case Primitive::kPrimBoolean:
3683 // Boolean input is a result of code transformations.
3684 case Primitive::kPrimByte:
3685 case Primitive::kPrimShort:
3686 case Primitive::kPrimInt:
3687 case Primitive::kPrimChar:
3688 // Processing a Dex `int-to-long' instruction.
3689 DCHECK(out.IsRegisterPair());
3690 DCHECK(in.IsRegister());
3691 __ Mov(LowRegisterFrom(out), InputRegisterAt(conversion, 0));
3692 // Sign extension.
3693 __ Asr(HighRegisterFrom(out), LowRegisterFrom(out), 31);
3694 break;
3695
3696 case Primitive::kPrimFloat:
3697 // Processing a Dex `float-to-long' instruction.
3698 codegen_->InvokeRuntime(kQuickF2l, conversion, conversion->GetDexPc());
3699 CheckEntrypointTypes<kQuickF2l, int64_t, float>();
3700 break;
3701
3702 case Primitive::kPrimDouble:
3703 // Processing a Dex `double-to-long' instruction.
3704 codegen_->InvokeRuntime(kQuickD2l, conversion, conversion->GetDexPc());
3705 CheckEntrypointTypes<kQuickD2l, int64_t, double>();
3706 break;
3707
3708 default:
3709 LOG(FATAL) << "Unexpected type conversion from " << input_type
3710 << " to " << result_type;
3711 }
3712 break;
3713
3714 case Primitive::kPrimChar:
3715 switch (input_type) {
3716 case Primitive::kPrimLong:
3717 // Type conversion from long to char is a result of code transformations.
3718 __ Ubfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 16);
3719 break;
3720 case Primitive::kPrimBoolean:
3721 // Boolean input is a result of code transformations.
3722 case Primitive::kPrimByte:
3723 case Primitive::kPrimShort:
3724 case Primitive::kPrimInt:
3725 // Processing a Dex `int-to-char' instruction.
3726 __ Ubfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 16);
3727 break;
3728
3729 default:
3730 LOG(FATAL) << "Unexpected type conversion from " << input_type
3731 << " to " << result_type;
3732 }
3733 break;
3734
3735 case Primitive::kPrimFloat:
3736 switch (input_type) {
3737 case Primitive::kPrimBoolean:
3738 // Boolean input is a result of code transformations.
3739 case Primitive::kPrimByte:
3740 case Primitive::kPrimShort:
3741 case Primitive::kPrimInt:
3742 case Primitive::kPrimChar: {
3743 // Processing a Dex `int-to-float' instruction.
3744 __ Vmov(OutputSRegister(conversion), InputRegisterAt(conversion, 0));
3745 __ Vcvt(F32, S32, OutputSRegister(conversion), OutputSRegister(conversion));
3746 break;
3747 }
3748
3749 case Primitive::kPrimLong:
3750 // Processing a Dex `long-to-float' instruction.
3751 codegen_->InvokeRuntime(kQuickL2f, conversion, conversion->GetDexPc());
3752 CheckEntrypointTypes<kQuickL2f, float, int64_t>();
3753 break;
3754
3755 case Primitive::kPrimDouble:
3756 // Processing a Dex `double-to-float' instruction.
3757 __ Vcvt(F32, F64, OutputSRegister(conversion), DRegisterFrom(in));
3758 break;
3759
3760 default:
3761 LOG(FATAL) << "Unexpected type conversion from " << input_type
3762 << " to " << result_type;
3763 };
3764 break;
3765
3766 case Primitive::kPrimDouble:
3767 switch (input_type) {
3768 case Primitive::kPrimBoolean:
3769 // Boolean input is a result of code transformations.
3770 case Primitive::kPrimByte:
3771 case Primitive::kPrimShort:
3772 case Primitive::kPrimInt:
3773 case Primitive::kPrimChar: {
3774 // Processing a Dex `int-to-double' instruction.
3775 __ Vmov(LowSRegisterFrom(out), InputRegisterAt(conversion, 0));
3776 __ Vcvt(F64, S32, DRegisterFrom(out), LowSRegisterFrom(out));
3777 break;
3778 }
3779
3780 case Primitive::kPrimLong: {
3781 // Processing a Dex `long-to-double' instruction.
3782 vixl32::Register low = LowRegisterFrom(in);
3783 vixl32::Register high = HighRegisterFrom(in);
3784 vixl32::SRegister out_s = LowSRegisterFrom(out);
3785 vixl32::DRegister out_d = DRegisterFrom(out);
3786 vixl32::SRegister temp_s = LowSRegisterFrom(locations->GetTemp(0));
3787 vixl32::DRegister temp_d = DRegisterFrom(locations->GetTemp(0));
3788 vixl32::DRegister constant_d = DRegisterFrom(locations->GetTemp(1));
3789
3790 // temp_d = int-to-double(high)
3791 __ Vmov(temp_s, high);
3792 __ Vcvt(F64, S32, temp_d, temp_s);
3793 // constant_d = k2Pow32EncodingForDouble
3794 __ Vmov(constant_d, bit_cast<double, int64_t>(k2Pow32EncodingForDouble));
3795 // out_d = unsigned-to-double(low)
3796 __ Vmov(out_s, low);
3797 __ Vcvt(F64, U32, out_d, out_s);
3798 // out_d += temp_d * constant_d
3799 __ Vmla(F64, out_d, temp_d, constant_d);
3800 break;
3801 }
3802
3803 case Primitive::kPrimFloat:
3804 // Processing a Dex `float-to-double' instruction.
3805 __ Vcvt(F64, F32, DRegisterFrom(out), InputSRegisterAt(conversion, 0));
3806 break;
3807
3808 default:
3809 LOG(FATAL) << "Unexpected type conversion from " << input_type
3810 << " to " << result_type;
3811 };
3812 break;
3813
3814 default:
3815 LOG(FATAL) << "Unexpected type conversion from " << input_type
3816 << " to " << result_type;
3817 }
3818 }
3819
VisitAdd(HAdd * add)3820 void LocationsBuilderARMVIXL::VisitAdd(HAdd* add) {
3821 LocationSummary* locations =
3822 new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall);
3823 switch (add->GetResultType()) {
3824 case Primitive::kPrimInt: {
3825 locations->SetInAt(0, Location::RequiresRegister());
3826 locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1)));
3827 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3828 break;
3829 }
3830
3831 case Primitive::kPrimLong: {
3832 locations->SetInAt(0, Location::RequiresRegister());
3833 locations->SetInAt(1, ArmEncodableConstantOrRegister(add->InputAt(1), ADD));
3834 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3835 break;
3836 }
3837
3838 case Primitive::kPrimFloat:
3839 case Primitive::kPrimDouble: {
3840 locations->SetInAt(0, Location::RequiresFpuRegister());
3841 locations->SetInAt(1, Location::RequiresFpuRegister());
3842 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3843 break;
3844 }
3845
3846 default:
3847 LOG(FATAL) << "Unexpected add type " << add->GetResultType();
3848 }
3849 }
3850
VisitAdd(HAdd * add)3851 void InstructionCodeGeneratorARMVIXL::VisitAdd(HAdd* add) {
3852 LocationSummary* locations = add->GetLocations();
3853 Location out = locations->Out();
3854 Location first = locations->InAt(0);
3855 Location second = locations->InAt(1);
3856
3857 switch (add->GetResultType()) {
3858 case Primitive::kPrimInt: {
3859 __ Add(OutputRegister(add), InputRegisterAt(add, 0), InputOperandAt(add, 1));
3860 }
3861 break;
3862
3863 case Primitive::kPrimLong: {
3864 if (second.IsConstant()) {
3865 uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
3866 GenerateAddLongConst(out, first, value);
3867 } else {
3868 DCHECK(second.IsRegisterPair());
3869 __ Adds(LowRegisterFrom(out), LowRegisterFrom(first), LowRegisterFrom(second));
3870 __ Adc(HighRegisterFrom(out), HighRegisterFrom(first), HighRegisterFrom(second));
3871 }
3872 break;
3873 }
3874
3875 case Primitive::kPrimFloat:
3876 case Primitive::kPrimDouble:
3877 __ Vadd(OutputVRegister(add), InputVRegisterAt(add, 0), InputVRegisterAt(add, 1));
3878 break;
3879
3880 default:
3881 LOG(FATAL) << "Unexpected add type " << add->GetResultType();
3882 }
3883 }
3884
VisitSub(HSub * sub)3885 void LocationsBuilderARMVIXL::VisitSub(HSub* sub) {
3886 LocationSummary* locations =
3887 new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall);
3888 switch (sub->GetResultType()) {
3889 case Primitive::kPrimInt: {
3890 locations->SetInAt(0, Location::RequiresRegister());
3891 locations->SetInAt(1, Location::RegisterOrConstant(sub->InputAt(1)));
3892 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3893 break;
3894 }
3895
3896 case Primitive::kPrimLong: {
3897 locations->SetInAt(0, Location::RequiresRegister());
3898 locations->SetInAt(1, ArmEncodableConstantOrRegister(sub->InputAt(1), SUB));
3899 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3900 break;
3901 }
3902 case Primitive::kPrimFloat:
3903 case Primitive::kPrimDouble: {
3904 locations->SetInAt(0, Location::RequiresFpuRegister());
3905 locations->SetInAt(1, Location::RequiresFpuRegister());
3906 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3907 break;
3908 }
3909 default:
3910 LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
3911 }
3912 }
3913
VisitSub(HSub * sub)3914 void InstructionCodeGeneratorARMVIXL::VisitSub(HSub* sub) {
3915 LocationSummary* locations = sub->GetLocations();
3916 Location out = locations->Out();
3917 Location first = locations->InAt(0);
3918 Location second = locations->InAt(1);
3919 switch (sub->GetResultType()) {
3920 case Primitive::kPrimInt: {
3921 __ Sub(OutputRegister(sub), InputRegisterAt(sub, 0), InputOperandAt(sub, 1));
3922 break;
3923 }
3924
3925 case Primitive::kPrimLong: {
3926 if (second.IsConstant()) {
3927 uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
3928 GenerateAddLongConst(out, first, -value);
3929 } else {
3930 DCHECK(second.IsRegisterPair());
3931 __ Subs(LowRegisterFrom(out), LowRegisterFrom(first), LowRegisterFrom(second));
3932 __ Sbc(HighRegisterFrom(out), HighRegisterFrom(first), HighRegisterFrom(second));
3933 }
3934 break;
3935 }
3936
3937 case Primitive::kPrimFloat:
3938 case Primitive::kPrimDouble:
3939 __ Vsub(OutputVRegister(sub), InputVRegisterAt(sub, 0), InputVRegisterAt(sub, 1));
3940 break;
3941
3942 default:
3943 LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
3944 }
3945 }
3946
VisitMul(HMul * mul)3947 void LocationsBuilderARMVIXL::VisitMul(HMul* mul) {
3948 LocationSummary* locations =
3949 new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
3950 switch (mul->GetResultType()) {
3951 case Primitive::kPrimInt:
3952 case Primitive::kPrimLong: {
3953 locations->SetInAt(0, Location::RequiresRegister());
3954 locations->SetInAt(1, Location::RequiresRegister());
3955 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3956 break;
3957 }
3958
3959 case Primitive::kPrimFloat:
3960 case Primitive::kPrimDouble: {
3961 locations->SetInAt(0, Location::RequiresFpuRegister());
3962 locations->SetInAt(1, Location::RequiresFpuRegister());
3963 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3964 break;
3965 }
3966
3967 default:
3968 LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
3969 }
3970 }
3971
VisitMul(HMul * mul)3972 void InstructionCodeGeneratorARMVIXL::VisitMul(HMul* mul) {
3973 LocationSummary* locations = mul->GetLocations();
3974 Location out = locations->Out();
3975 Location first = locations->InAt(0);
3976 Location second = locations->InAt(1);
3977 switch (mul->GetResultType()) {
3978 case Primitive::kPrimInt: {
3979 __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1));
3980 break;
3981 }
3982 case Primitive::kPrimLong: {
3983 vixl32::Register out_hi = HighRegisterFrom(out);
3984 vixl32::Register out_lo = LowRegisterFrom(out);
3985 vixl32::Register in1_hi = HighRegisterFrom(first);
3986 vixl32::Register in1_lo = LowRegisterFrom(first);
3987 vixl32::Register in2_hi = HighRegisterFrom(second);
3988 vixl32::Register in2_lo = LowRegisterFrom(second);
3989
3990 // Extra checks to protect caused by the existence of R1_R2.
3991 // The algorithm is wrong if out.hi is either in1.lo or in2.lo:
3992 // (e.g. in1=r0_r1, in2=r2_r3 and out=r1_r2);
3993 DCHECK(!out_hi.Is(in1_lo));
3994 DCHECK(!out_hi.Is(in2_lo));
3995
3996 // input: in1 - 64 bits, in2 - 64 bits
3997 // output: out
3998 // formula: out.hi : out.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo
3999 // parts: out.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32]
4000 // parts: out.lo = (in1.lo * in2.lo)[31:0]
4001
4002 UseScratchRegisterScope temps(GetVIXLAssembler());
4003 vixl32::Register temp = temps.Acquire();
4004 // temp <- in1.lo * in2.hi
4005 __ Mul(temp, in1_lo, in2_hi);
4006 // out.hi <- in1.lo * in2.hi + in1.hi * in2.lo
4007 __ Mla(out_hi, in1_hi, in2_lo, temp);
4008 // out.lo <- (in1.lo * in2.lo)[31:0];
4009 __ Umull(out_lo, temp, in1_lo, in2_lo);
4010 // out.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
4011 __ Add(out_hi, out_hi, temp);
4012 break;
4013 }
4014
4015 case Primitive::kPrimFloat:
4016 case Primitive::kPrimDouble:
4017 __ Vmul(OutputVRegister(mul), InputVRegisterAt(mul, 0), InputVRegisterAt(mul, 1));
4018 break;
4019
4020 default:
4021 LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
4022 }
4023 }
4024
DivRemOneOrMinusOne(HBinaryOperation * instruction)4025 void InstructionCodeGeneratorARMVIXL::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
4026 DCHECK(instruction->IsDiv() || instruction->IsRem());
4027 DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
4028
4029 Location second = instruction->GetLocations()->InAt(1);
4030 DCHECK(second.IsConstant());
4031
4032 vixl32::Register out = OutputRegister(instruction);
4033 vixl32::Register dividend = InputRegisterAt(instruction, 0);
4034 int32_t imm = Int32ConstantFrom(second);
4035 DCHECK(imm == 1 || imm == -1);
4036
4037 if (instruction->IsRem()) {
4038 __ Mov(out, 0);
4039 } else {
4040 if (imm == 1) {
4041 __ Mov(out, dividend);
4042 } else {
4043 __ Rsb(out, dividend, 0);
4044 }
4045 }
4046 }
4047
DivRemByPowerOfTwo(HBinaryOperation * instruction)4048 void InstructionCodeGeneratorARMVIXL::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
4049 DCHECK(instruction->IsDiv() || instruction->IsRem());
4050 DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
4051
4052 LocationSummary* locations = instruction->GetLocations();
4053 Location second = locations->InAt(1);
4054 DCHECK(second.IsConstant());
4055
4056 vixl32::Register out = OutputRegister(instruction);
4057 vixl32::Register dividend = InputRegisterAt(instruction, 0);
4058 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
4059 int32_t imm = Int32ConstantFrom(second);
4060 uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
4061 int ctz_imm = CTZ(abs_imm);
4062
4063 if (ctz_imm == 1) {
4064 __ Lsr(temp, dividend, 32 - ctz_imm);
4065 } else {
4066 __ Asr(temp, dividend, 31);
4067 __ Lsr(temp, temp, 32 - ctz_imm);
4068 }
4069 __ Add(out, temp, dividend);
4070
4071 if (instruction->IsDiv()) {
4072 __ Asr(out, out, ctz_imm);
4073 if (imm < 0) {
4074 __ Rsb(out, out, 0);
4075 }
4076 } else {
4077 __ Ubfx(out, out, 0, ctz_imm);
4078 __ Sub(out, out, temp);
4079 }
4080 }
4081
GenerateDivRemWithAnyConstant(HBinaryOperation * instruction)4082 void InstructionCodeGeneratorARMVIXL::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
4083 DCHECK(instruction->IsDiv() || instruction->IsRem());
4084 DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
4085
4086 LocationSummary* locations = instruction->GetLocations();
4087 Location second = locations->InAt(1);
4088 DCHECK(second.IsConstant());
4089
4090 vixl32::Register out = OutputRegister(instruction);
4091 vixl32::Register dividend = InputRegisterAt(instruction, 0);
4092 vixl32::Register temp1 = RegisterFrom(locations->GetTemp(0));
4093 vixl32::Register temp2 = RegisterFrom(locations->GetTemp(1));
4094 int32_t imm = Int32ConstantFrom(second);
4095
4096 int64_t magic;
4097 int shift;
4098 CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift);
4099
4100 // TODO(VIXL): Change the static cast to Operand::From() after VIXL is fixed.
4101 __ Mov(temp1, static_cast<int32_t>(magic));
4102 __ Smull(temp2, temp1, dividend, temp1);
4103
4104 if (imm > 0 && magic < 0) {
4105 __ Add(temp1, temp1, dividend);
4106 } else if (imm < 0 && magic > 0) {
4107 __ Sub(temp1, temp1, dividend);
4108 }
4109
4110 if (shift != 0) {
4111 __ Asr(temp1, temp1, shift);
4112 }
4113
4114 if (instruction->IsDiv()) {
4115 __ Sub(out, temp1, Operand(temp1, vixl32::Shift(ASR), 31));
4116 } else {
4117 __ Sub(temp1, temp1, Operand(temp1, vixl32::Shift(ASR), 31));
4118 // TODO: Strength reduction for mls.
4119 __ Mov(temp2, imm);
4120 __ Mls(out, temp1, temp2, dividend);
4121 }
4122 }
4123
GenerateDivRemConstantIntegral(HBinaryOperation * instruction)4124 void InstructionCodeGeneratorARMVIXL::GenerateDivRemConstantIntegral(
4125 HBinaryOperation* instruction) {
4126 DCHECK(instruction->IsDiv() || instruction->IsRem());
4127 DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
4128
4129 Location second = instruction->GetLocations()->InAt(1);
4130 DCHECK(second.IsConstant());
4131
4132 int32_t imm = Int32ConstantFrom(second);
4133 if (imm == 0) {
4134 // Do not generate anything. DivZeroCheck would prevent any code to be executed.
4135 } else if (imm == 1 || imm == -1) {
4136 DivRemOneOrMinusOne(instruction);
4137 } else if (IsPowerOfTwo(AbsOrMin(imm))) {
4138 DivRemByPowerOfTwo(instruction);
4139 } else {
4140 DCHECK(imm <= -2 || imm >= 2);
4141 GenerateDivRemWithAnyConstant(instruction);
4142 }
4143 }
4144
VisitDiv(HDiv * div)4145 void LocationsBuilderARMVIXL::VisitDiv(HDiv* div) {
4146 LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
4147 if (div->GetResultType() == Primitive::kPrimLong) {
4148 // pLdiv runtime call.
4149 call_kind = LocationSummary::kCallOnMainOnly;
4150 } else if (div->GetResultType() == Primitive::kPrimInt && div->InputAt(1)->IsConstant()) {
4151 // sdiv will be replaced by other instruction sequence.
4152 } else if (div->GetResultType() == Primitive::kPrimInt &&
4153 !codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4154 // pIdivmod runtime call.
4155 call_kind = LocationSummary::kCallOnMainOnly;
4156 }
4157
4158 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind);
4159
4160 switch (div->GetResultType()) {
4161 case Primitive::kPrimInt: {
4162 if (div->InputAt(1)->IsConstant()) {
4163 locations->SetInAt(0, Location::RequiresRegister());
4164 locations->SetInAt(1, Location::ConstantLocation(div->InputAt(1)->AsConstant()));
4165 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4166 int32_t value = Int32ConstantFrom(div->InputAt(1));
4167 if (value == 1 || value == 0 || value == -1) {
4168 // No temp register required.
4169 } else {
4170 locations->AddTemp(Location::RequiresRegister());
4171 if (!IsPowerOfTwo(AbsOrMin(value))) {
4172 locations->AddTemp(Location::RequiresRegister());
4173 }
4174 }
4175 } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4176 locations->SetInAt(0, Location::RequiresRegister());
4177 locations->SetInAt(1, Location::RequiresRegister());
4178 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4179 } else {
4180 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4181 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
4182 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
4183 // Note: divmod will compute both the quotient and the remainder as the pair R0 and R1, but
4184 // we only need the former.
4185 locations->SetOut(LocationFrom(r0));
4186 }
4187 break;
4188 }
4189 case Primitive::kPrimLong: {
4190 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4191 locations->SetInAt(0, LocationFrom(
4192 calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
4193 locations->SetInAt(1, LocationFrom(
4194 calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
4195 locations->SetOut(LocationFrom(r0, r1));
4196 break;
4197 }
4198 case Primitive::kPrimFloat:
4199 case Primitive::kPrimDouble: {
4200 locations->SetInAt(0, Location::RequiresFpuRegister());
4201 locations->SetInAt(1, Location::RequiresFpuRegister());
4202 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4203 break;
4204 }
4205
4206 default:
4207 LOG(FATAL) << "Unexpected div type " << div->GetResultType();
4208 }
4209 }
4210
VisitDiv(HDiv * div)4211 void InstructionCodeGeneratorARMVIXL::VisitDiv(HDiv* div) {
4212 Location lhs = div->GetLocations()->InAt(0);
4213 Location rhs = div->GetLocations()->InAt(1);
4214
4215 switch (div->GetResultType()) {
4216 case Primitive::kPrimInt: {
4217 if (rhs.IsConstant()) {
4218 GenerateDivRemConstantIntegral(div);
4219 } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4220 __ Sdiv(OutputRegister(div), InputRegisterAt(div, 0), InputRegisterAt(div, 1));
4221 } else {
4222 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4223 DCHECK(calling_convention.GetRegisterAt(0).Is(RegisterFrom(lhs)));
4224 DCHECK(calling_convention.GetRegisterAt(1).Is(RegisterFrom(rhs)));
4225 DCHECK(r0.Is(OutputRegister(div)));
4226
4227 codegen_->InvokeRuntime(kQuickIdivmod, div, div->GetDexPc());
4228 CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>();
4229 }
4230 break;
4231 }
4232
4233 case Primitive::kPrimLong: {
4234 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4235 DCHECK(calling_convention.GetRegisterAt(0).Is(LowRegisterFrom(lhs)));
4236 DCHECK(calling_convention.GetRegisterAt(1).Is(HighRegisterFrom(lhs)));
4237 DCHECK(calling_convention.GetRegisterAt(2).Is(LowRegisterFrom(rhs)));
4238 DCHECK(calling_convention.GetRegisterAt(3).Is(HighRegisterFrom(rhs)));
4239 DCHECK(LowRegisterFrom(div->GetLocations()->Out()).Is(r0));
4240 DCHECK(HighRegisterFrom(div->GetLocations()->Out()).Is(r1));
4241
4242 codegen_->InvokeRuntime(kQuickLdiv, div, div->GetDexPc());
4243 CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
4244 break;
4245 }
4246
4247 case Primitive::kPrimFloat:
4248 case Primitive::kPrimDouble:
4249 __ Vdiv(OutputVRegister(div), InputVRegisterAt(div, 0), InputVRegisterAt(div, 1));
4250 break;
4251
4252 default:
4253 LOG(FATAL) << "Unexpected div type " << div->GetResultType();
4254 }
4255 }
4256
VisitRem(HRem * rem)4257 void LocationsBuilderARMVIXL::VisitRem(HRem* rem) {
4258 Primitive::Type type = rem->GetResultType();
4259
4260 // Most remainders are implemented in the runtime.
4261 LocationSummary::CallKind call_kind = LocationSummary::kCallOnMainOnly;
4262 if (rem->GetResultType() == Primitive::kPrimInt && rem->InputAt(1)->IsConstant()) {
4263 // sdiv will be replaced by other instruction sequence.
4264 call_kind = LocationSummary::kNoCall;
4265 } else if ((rem->GetResultType() == Primitive::kPrimInt)
4266 && codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4267 // Have hardware divide instruction for int, do it with three instructions.
4268 call_kind = LocationSummary::kNoCall;
4269 }
4270
4271 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
4272
4273 switch (type) {
4274 case Primitive::kPrimInt: {
4275 if (rem->InputAt(1)->IsConstant()) {
4276 locations->SetInAt(0, Location::RequiresRegister());
4277 locations->SetInAt(1, Location::ConstantLocation(rem->InputAt(1)->AsConstant()));
4278 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4279 int32_t value = Int32ConstantFrom(rem->InputAt(1));
4280 if (value == 1 || value == 0 || value == -1) {
4281 // No temp register required.
4282 } else {
4283 locations->AddTemp(Location::RequiresRegister());
4284 if (!IsPowerOfTwo(AbsOrMin(value))) {
4285 locations->AddTemp(Location::RequiresRegister());
4286 }
4287 }
4288 } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4289 locations->SetInAt(0, Location::RequiresRegister());
4290 locations->SetInAt(1, Location::RequiresRegister());
4291 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4292 locations->AddTemp(Location::RequiresRegister());
4293 } else {
4294 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4295 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
4296 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
4297 // Note: divmod will compute both the quotient and the remainder as the pair R0 and R1, but
4298 // we only need the latter.
4299 locations->SetOut(LocationFrom(r1));
4300 }
4301 break;
4302 }
4303 case Primitive::kPrimLong: {
4304 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4305 locations->SetInAt(0, LocationFrom(
4306 calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
4307 locations->SetInAt(1, LocationFrom(
4308 calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
4309 // The runtime helper puts the output in R2,R3.
4310 locations->SetOut(LocationFrom(r2, r3));
4311 break;
4312 }
4313 case Primitive::kPrimFloat: {
4314 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4315 locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
4316 locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1)));
4317 locations->SetOut(LocationFrom(s0));
4318 break;
4319 }
4320
4321 case Primitive::kPrimDouble: {
4322 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4323 locations->SetInAt(0, LocationFrom(
4324 calling_convention.GetFpuRegisterAt(0), calling_convention.GetFpuRegisterAt(1)));
4325 locations->SetInAt(1, LocationFrom(
4326 calling_convention.GetFpuRegisterAt(2), calling_convention.GetFpuRegisterAt(3)));
4327 locations->SetOut(LocationFrom(s0, s1));
4328 break;
4329 }
4330
4331 default:
4332 LOG(FATAL) << "Unexpected rem type " << type;
4333 }
4334 }
4335
VisitRem(HRem * rem)4336 void InstructionCodeGeneratorARMVIXL::VisitRem(HRem* rem) {
4337 LocationSummary* locations = rem->GetLocations();
4338 Location second = locations->InAt(1);
4339
4340 Primitive::Type type = rem->GetResultType();
4341 switch (type) {
4342 case Primitive::kPrimInt: {
4343 vixl32::Register reg1 = InputRegisterAt(rem, 0);
4344 vixl32::Register out_reg = OutputRegister(rem);
4345 if (second.IsConstant()) {
4346 GenerateDivRemConstantIntegral(rem);
4347 } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4348 vixl32::Register reg2 = RegisterFrom(second);
4349 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
4350
4351 // temp = reg1 / reg2 (integer division)
4352 // dest = reg1 - temp * reg2
4353 __ Sdiv(temp, reg1, reg2);
4354 __ Mls(out_reg, temp, reg2, reg1);
4355 } else {
4356 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4357 DCHECK(reg1.Is(calling_convention.GetRegisterAt(0)));
4358 DCHECK(RegisterFrom(second).Is(calling_convention.GetRegisterAt(1)));
4359 DCHECK(out_reg.Is(r1));
4360
4361 codegen_->InvokeRuntime(kQuickIdivmod, rem, rem->GetDexPc());
4362 CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>();
4363 }
4364 break;
4365 }
4366
4367 case Primitive::kPrimLong: {
4368 codegen_->InvokeRuntime(kQuickLmod, rem, rem->GetDexPc());
4369 CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
4370 break;
4371 }
4372
4373 case Primitive::kPrimFloat: {
4374 codegen_->InvokeRuntime(kQuickFmodf, rem, rem->GetDexPc());
4375 CheckEntrypointTypes<kQuickFmodf, float, float, float>();
4376 break;
4377 }
4378
4379 case Primitive::kPrimDouble: {
4380 codegen_->InvokeRuntime(kQuickFmod, rem, rem->GetDexPc());
4381 CheckEntrypointTypes<kQuickFmod, double, double, double>();
4382 break;
4383 }
4384
4385 default:
4386 LOG(FATAL) << "Unexpected rem type " << type;
4387 }
4388 }
4389
4390
VisitDivZeroCheck(HDivZeroCheck * instruction)4391 void LocationsBuilderARMVIXL::VisitDivZeroCheck(HDivZeroCheck* instruction) {
4392 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
4393 locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
4394 }
4395
VisitDivZeroCheck(HDivZeroCheck * instruction)4396 void InstructionCodeGeneratorARMVIXL::VisitDivZeroCheck(HDivZeroCheck* instruction) {
4397 DivZeroCheckSlowPathARMVIXL* slow_path =
4398 new (GetGraph()->GetArena()) DivZeroCheckSlowPathARMVIXL(instruction);
4399 codegen_->AddSlowPath(slow_path);
4400
4401 LocationSummary* locations = instruction->GetLocations();
4402 Location value = locations->InAt(0);
4403
4404 switch (instruction->GetType()) {
4405 case Primitive::kPrimBoolean:
4406 case Primitive::kPrimByte:
4407 case Primitive::kPrimChar:
4408 case Primitive::kPrimShort:
4409 case Primitive::kPrimInt: {
4410 if (value.IsRegister()) {
4411 __ CompareAndBranchIfZero(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
4412 } else {
4413 DCHECK(value.IsConstant()) << value;
4414 if (Int32ConstantFrom(value) == 0) {
4415 __ B(slow_path->GetEntryLabel());
4416 }
4417 }
4418 break;
4419 }
4420 case Primitive::kPrimLong: {
4421 if (value.IsRegisterPair()) {
4422 UseScratchRegisterScope temps(GetVIXLAssembler());
4423 vixl32::Register temp = temps.Acquire();
4424 __ Orrs(temp, LowRegisterFrom(value), HighRegisterFrom(value));
4425 __ B(eq, slow_path->GetEntryLabel());
4426 } else {
4427 DCHECK(value.IsConstant()) << value;
4428 if (Int64ConstantFrom(value) == 0) {
4429 __ B(slow_path->GetEntryLabel());
4430 }
4431 }
4432 break;
4433 }
4434 default:
4435 LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType();
4436 }
4437 }
4438
HandleIntegerRotate(HRor * ror)4439 void InstructionCodeGeneratorARMVIXL::HandleIntegerRotate(HRor* ror) {
4440 LocationSummary* locations = ror->GetLocations();
4441 vixl32::Register in = InputRegisterAt(ror, 0);
4442 Location rhs = locations->InAt(1);
4443 vixl32::Register out = OutputRegister(ror);
4444
4445 if (rhs.IsConstant()) {
4446 // Arm32 and Thumb2 assemblers require a rotation on the interval [1,31],
4447 // so map all rotations to a +ve. equivalent in that range.
4448 // (e.g. left *or* right by -2 bits == 30 bits in the same direction.)
4449 uint32_t rot = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()) & 0x1F;
4450 if (rot) {
4451 // Rotate, mapping left rotations to right equivalents if necessary.
4452 // (e.g. left by 2 bits == right by 30.)
4453 __ Ror(out, in, rot);
4454 } else if (!out.Is(in)) {
4455 __ Mov(out, in);
4456 }
4457 } else {
4458 __ Ror(out, in, RegisterFrom(rhs));
4459 }
4460 }
4461
4462 // Gain some speed by mapping all Long rotates onto equivalent pairs of Integer
4463 // rotates by swapping input regs (effectively rotating by the first 32-bits of
4464 // a larger rotation) or flipping direction (thus treating larger right/left
4465 // rotations as sub-word sized rotations in the other direction) as appropriate.
HandleLongRotate(HRor * ror)4466 void InstructionCodeGeneratorARMVIXL::HandleLongRotate(HRor* ror) {
4467 LocationSummary* locations = ror->GetLocations();
4468 vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0));
4469 vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0));
4470 Location rhs = locations->InAt(1);
4471 vixl32::Register out_reg_lo = LowRegisterFrom(locations->Out());
4472 vixl32::Register out_reg_hi = HighRegisterFrom(locations->Out());
4473
4474 if (rhs.IsConstant()) {
4475 uint64_t rot = CodeGenerator::GetInt64ValueOf(rhs.GetConstant());
4476 // Map all rotations to +ve. equivalents on the interval [0,63].
4477 rot &= kMaxLongShiftDistance;
4478 // For rotates over a word in size, 'pre-rotate' by 32-bits to keep rotate
4479 // logic below to a simple pair of binary orr.
4480 // (e.g. 34 bits == in_reg swap + 2 bits right.)
4481 if (rot >= kArmBitsPerWord) {
4482 rot -= kArmBitsPerWord;
4483 std::swap(in_reg_hi, in_reg_lo);
4484 }
4485 // Rotate, or mov to out for zero or word size rotations.
4486 if (rot != 0u) {
4487 __ Lsr(out_reg_hi, in_reg_hi, Operand::From(rot));
4488 __ Orr(out_reg_hi, out_reg_hi, Operand(in_reg_lo, ShiftType::LSL, kArmBitsPerWord - rot));
4489 __ Lsr(out_reg_lo, in_reg_lo, Operand::From(rot));
4490 __ Orr(out_reg_lo, out_reg_lo, Operand(in_reg_hi, ShiftType::LSL, kArmBitsPerWord - rot));
4491 } else {
4492 __ Mov(out_reg_lo, in_reg_lo);
4493 __ Mov(out_reg_hi, in_reg_hi);
4494 }
4495 } else {
4496 vixl32::Register shift_right = RegisterFrom(locations->GetTemp(0));
4497 vixl32::Register shift_left = RegisterFrom(locations->GetTemp(1));
4498 vixl32::Label end;
4499 vixl32::Label shift_by_32_plus_shift_right;
4500 vixl32::Label* final_label = codegen_->GetFinalLabel(ror, &end);
4501
4502 __ And(shift_right, RegisterFrom(rhs), 0x1F);
4503 __ Lsrs(shift_left, RegisterFrom(rhs), 6);
4504 __ Rsb(LeaveFlags, shift_left, shift_right, Operand::From(kArmBitsPerWord));
4505 __ B(cc, &shift_by_32_plus_shift_right, /* far_target */ false);
4506
4507 // out_reg_hi = (reg_hi << shift_left) | (reg_lo >> shift_right).
4508 // out_reg_lo = (reg_lo << shift_left) | (reg_hi >> shift_right).
4509 __ Lsl(out_reg_hi, in_reg_hi, shift_left);
4510 __ Lsr(out_reg_lo, in_reg_lo, shift_right);
4511 __ Add(out_reg_hi, out_reg_hi, out_reg_lo);
4512 __ Lsl(out_reg_lo, in_reg_lo, shift_left);
4513 __ Lsr(shift_left, in_reg_hi, shift_right);
4514 __ Add(out_reg_lo, out_reg_lo, shift_left);
4515 __ B(final_label);
4516
4517 __ Bind(&shift_by_32_plus_shift_right); // Shift by 32+shift_right.
4518 // out_reg_hi = (reg_hi >> shift_right) | (reg_lo << shift_left).
4519 // out_reg_lo = (reg_lo >> shift_right) | (reg_hi << shift_left).
4520 __ Lsr(out_reg_hi, in_reg_hi, shift_right);
4521 __ Lsl(out_reg_lo, in_reg_lo, shift_left);
4522 __ Add(out_reg_hi, out_reg_hi, out_reg_lo);
4523 __ Lsr(out_reg_lo, in_reg_lo, shift_right);
4524 __ Lsl(shift_right, in_reg_hi, shift_left);
4525 __ Add(out_reg_lo, out_reg_lo, shift_right);
4526
4527 if (end.IsReferenced()) {
4528 __ Bind(&end);
4529 }
4530 }
4531 }
4532
VisitRor(HRor * ror)4533 void LocationsBuilderARMVIXL::VisitRor(HRor* ror) {
4534 LocationSummary* locations =
4535 new (GetGraph()->GetArena()) LocationSummary(ror, LocationSummary::kNoCall);
4536 switch (ror->GetResultType()) {
4537 case Primitive::kPrimInt: {
4538 locations->SetInAt(0, Location::RequiresRegister());
4539 locations->SetInAt(1, Location::RegisterOrConstant(ror->InputAt(1)));
4540 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4541 break;
4542 }
4543 case Primitive::kPrimLong: {
4544 locations->SetInAt(0, Location::RequiresRegister());
4545 if (ror->InputAt(1)->IsConstant()) {
4546 locations->SetInAt(1, Location::ConstantLocation(ror->InputAt(1)->AsConstant()));
4547 } else {
4548 locations->SetInAt(1, Location::RequiresRegister());
4549 locations->AddTemp(Location::RequiresRegister());
4550 locations->AddTemp(Location::RequiresRegister());
4551 }
4552 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
4553 break;
4554 }
4555 default:
4556 LOG(FATAL) << "Unexpected operation type " << ror->GetResultType();
4557 }
4558 }
4559
VisitRor(HRor * ror)4560 void InstructionCodeGeneratorARMVIXL::VisitRor(HRor* ror) {
4561 Primitive::Type type = ror->GetResultType();
4562 switch (type) {
4563 case Primitive::kPrimInt: {
4564 HandleIntegerRotate(ror);
4565 break;
4566 }
4567 case Primitive::kPrimLong: {
4568 HandleLongRotate(ror);
4569 break;
4570 }
4571 default:
4572 LOG(FATAL) << "Unexpected operation type " << type;
4573 UNREACHABLE();
4574 }
4575 }
4576
HandleShift(HBinaryOperation * op)4577 void LocationsBuilderARMVIXL::HandleShift(HBinaryOperation* op) {
4578 DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
4579
4580 LocationSummary* locations =
4581 new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall);
4582
4583 switch (op->GetResultType()) {
4584 case Primitive::kPrimInt: {
4585 locations->SetInAt(0, Location::RequiresRegister());
4586 if (op->InputAt(1)->IsConstant()) {
4587 locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant()));
4588 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4589 } else {
4590 locations->SetInAt(1, Location::RequiresRegister());
4591 // Make the output overlap, as it will be used to hold the masked
4592 // second input.
4593 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
4594 }
4595 break;
4596 }
4597 case Primitive::kPrimLong: {
4598 locations->SetInAt(0, Location::RequiresRegister());
4599 if (op->InputAt(1)->IsConstant()) {
4600 locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant()));
4601 // For simplicity, use kOutputOverlap even though we only require that low registers
4602 // don't clash with high registers which the register allocator currently guarantees.
4603 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
4604 } else {
4605 locations->SetInAt(1, Location::RequiresRegister());
4606 locations->AddTemp(Location::RequiresRegister());
4607 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
4608 }
4609 break;
4610 }
4611 default:
4612 LOG(FATAL) << "Unexpected operation type " << op->GetResultType();
4613 }
4614 }
4615
HandleShift(HBinaryOperation * op)4616 void InstructionCodeGeneratorARMVIXL::HandleShift(HBinaryOperation* op) {
4617 DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
4618
4619 LocationSummary* locations = op->GetLocations();
4620 Location out = locations->Out();
4621 Location first = locations->InAt(0);
4622 Location second = locations->InAt(1);
4623
4624 Primitive::Type type = op->GetResultType();
4625 switch (type) {
4626 case Primitive::kPrimInt: {
4627 vixl32::Register out_reg = OutputRegister(op);
4628 vixl32::Register first_reg = InputRegisterAt(op, 0);
4629 if (second.IsRegister()) {
4630 vixl32::Register second_reg = RegisterFrom(second);
4631 // ARM doesn't mask the shift count so we need to do it ourselves.
4632 __ And(out_reg, second_reg, kMaxIntShiftDistance);
4633 if (op->IsShl()) {
4634 __ Lsl(out_reg, first_reg, out_reg);
4635 } else if (op->IsShr()) {
4636 __ Asr(out_reg, first_reg, out_reg);
4637 } else {
4638 __ Lsr(out_reg, first_reg, out_reg);
4639 }
4640 } else {
4641 int32_t cst = Int32ConstantFrom(second);
4642 uint32_t shift_value = cst & kMaxIntShiftDistance;
4643 if (shift_value == 0) { // ARM does not support shifting with 0 immediate.
4644 __ Mov(out_reg, first_reg);
4645 } else if (op->IsShl()) {
4646 __ Lsl(out_reg, first_reg, shift_value);
4647 } else if (op->IsShr()) {
4648 __ Asr(out_reg, first_reg, shift_value);
4649 } else {
4650 __ Lsr(out_reg, first_reg, shift_value);
4651 }
4652 }
4653 break;
4654 }
4655 case Primitive::kPrimLong: {
4656 vixl32::Register o_h = HighRegisterFrom(out);
4657 vixl32::Register o_l = LowRegisterFrom(out);
4658
4659 vixl32::Register high = HighRegisterFrom(first);
4660 vixl32::Register low = LowRegisterFrom(first);
4661
4662 if (second.IsRegister()) {
4663 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
4664
4665 vixl32::Register second_reg = RegisterFrom(second);
4666
4667 if (op->IsShl()) {
4668 __ And(o_l, second_reg, kMaxLongShiftDistance);
4669 // Shift the high part
4670 __ Lsl(o_h, high, o_l);
4671 // Shift the low part and `or` what overflew on the high part
4672 __ Rsb(temp, o_l, Operand::From(kArmBitsPerWord));
4673 __ Lsr(temp, low, temp);
4674 __ Orr(o_h, o_h, temp);
4675 // If the shift is > 32 bits, override the high part
4676 __ Subs(temp, o_l, Operand::From(kArmBitsPerWord));
4677 {
4678 ExactAssemblyScope guard(GetVIXLAssembler(),
4679 2 * vixl32::kMaxInstructionSizeInBytes,
4680 CodeBufferCheckScope::kMaximumSize);
4681 __ it(pl);
4682 __ lsl(pl, o_h, low, temp);
4683 }
4684 // Shift the low part
4685 __ Lsl(o_l, low, o_l);
4686 } else if (op->IsShr()) {
4687 __ And(o_h, second_reg, kMaxLongShiftDistance);
4688 // Shift the low part
4689 __ Lsr(o_l, low, o_h);
4690 // Shift the high part and `or` what underflew on the low part
4691 __ Rsb(temp, o_h, Operand::From(kArmBitsPerWord));
4692 __ Lsl(temp, high, temp);
4693 __ Orr(o_l, o_l, temp);
4694 // If the shift is > 32 bits, override the low part
4695 __ Subs(temp, o_h, Operand::From(kArmBitsPerWord));
4696 {
4697 ExactAssemblyScope guard(GetVIXLAssembler(),
4698 2 * vixl32::kMaxInstructionSizeInBytes,
4699 CodeBufferCheckScope::kMaximumSize);
4700 __ it(pl);
4701 __ asr(pl, o_l, high, temp);
4702 }
4703 // Shift the high part
4704 __ Asr(o_h, high, o_h);
4705 } else {
4706 __ And(o_h, second_reg, kMaxLongShiftDistance);
4707 // same as Shr except we use `Lsr`s and not `Asr`s
4708 __ Lsr(o_l, low, o_h);
4709 __ Rsb(temp, o_h, Operand::From(kArmBitsPerWord));
4710 __ Lsl(temp, high, temp);
4711 __ Orr(o_l, o_l, temp);
4712 __ Subs(temp, o_h, Operand::From(kArmBitsPerWord));
4713 {
4714 ExactAssemblyScope guard(GetVIXLAssembler(),
4715 2 * vixl32::kMaxInstructionSizeInBytes,
4716 CodeBufferCheckScope::kMaximumSize);
4717 __ it(pl);
4718 __ lsr(pl, o_l, high, temp);
4719 }
4720 __ Lsr(o_h, high, o_h);
4721 }
4722 } else {
4723 // Register allocator doesn't create partial overlap.
4724 DCHECK(!o_l.Is(high));
4725 DCHECK(!o_h.Is(low));
4726 int32_t cst = Int32ConstantFrom(second);
4727 uint32_t shift_value = cst & kMaxLongShiftDistance;
4728 if (shift_value > 32) {
4729 if (op->IsShl()) {
4730 __ Lsl(o_h, low, shift_value - 32);
4731 __ Mov(o_l, 0);
4732 } else if (op->IsShr()) {
4733 __ Asr(o_l, high, shift_value - 32);
4734 __ Asr(o_h, high, 31);
4735 } else {
4736 __ Lsr(o_l, high, shift_value - 32);
4737 __ Mov(o_h, 0);
4738 }
4739 } else if (shift_value == 32) {
4740 if (op->IsShl()) {
4741 __ Mov(o_h, low);
4742 __ Mov(o_l, 0);
4743 } else if (op->IsShr()) {
4744 __ Mov(o_l, high);
4745 __ Asr(o_h, high, 31);
4746 } else {
4747 __ Mov(o_l, high);
4748 __ Mov(o_h, 0);
4749 }
4750 } else if (shift_value == 1) {
4751 if (op->IsShl()) {
4752 __ Lsls(o_l, low, 1);
4753 __ Adc(o_h, high, high);
4754 } else if (op->IsShr()) {
4755 __ Asrs(o_h, high, 1);
4756 __ Rrx(o_l, low);
4757 } else {
4758 __ Lsrs(o_h, high, 1);
4759 __ Rrx(o_l, low);
4760 }
4761 } else {
4762 DCHECK(2 <= shift_value && shift_value < 32) << shift_value;
4763 if (op->IsShl()) {
4764 __ Lsl(o_h, high, shift_value);
4765 __ Orr(o_h, o_h, Operand(low, ShiftType::LSR, 32 - shift_value));
4766 __ Lsl(o_l, low, shift_value);
4767 } else if (op->IsShr()) {
4768 __ Lsr(o_l, low, shift_value);
4769 __ Orr(o_l, o_l, Operand(high, ShiftType::LSL, 32 - shift_value));
4770 __ Asr(o_h, high, shift_value);
4771 } else {
4772 __ Lsr(o_l, low, shift_value);
4773 __ Orr(o_l, o_l, Operand(high, ShiftType::LSL, 32 - shift_value));
4774 __ Lsr(o_h, high, shift_value);
4775 }
4776 }
4777 }
4778 break;
4779 }
4780 default:
4781 LOG(FATAL) << "Unexpected operation type " << type;
4782 UNREACHABLE();
4783 }
4784 }
4785
VisitShl(HShl * shl)4786 void LocationsBuilderARMVIXL::VisitShl(HShl* shl) {
4787 HandleShift(shl);
4788 }
4789
VisitShl(HShl * shl)4790 void InstructionCodeGeneratorARMVIXL::VisitShl(HShl* shl) {
4791 HandleShift(shl);
4792 }
4793
VisitShr(HShr * shr)4794 void LocationsBuilderARMVIXL::VisitShr(HShr* shr) {
4795 HandleShift(shr);
4796 }
4797
VisitShr(HShr * shr)4798 void InstructionCodeGeneratorARMVIXL::VisitShr(HShr* shr) {
4799 HandleShift(shr);
4800 }
4801
VisitUShr(HUShr * ushr)4802 void LocationsBuilderARMVIXL::VisitUShr(HUShr* ushr) {
4803 HandleShift(ushr);
4804 }
4805
VisitUShr(HUShr * ushr)4806 void InstructionCodeGeneratorARMVIXL::VisitUShr(HUShr* ushr) {
4807 HandleShift(ushr);
4808 }
4809
VisitNewInstance(HNewInstance * instruction)4810 void LocationsBuilderARMVIXL::VisitNewInstance(HNewInstance* instruction) {
4811 LocationSummary* locations =
4812 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
4813 if (instruction->IsStringAlloc()) {
4814 locations->AddTemp(LocationFrom(kMethodRegister));
4815 } else {
4816 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4817 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
4818 }
4819 locations->SetOut(LocationFrom(r0));
4820 }
4821
VisitNewInstance(HNewInstance * instruction)4822 void InstructionCodeGeneratorARMVIXL::VisitNewInstance(HNewInstance* instruction) {
4823 // Note: if heap poisoning is enabled, the entry point takes cares
4824 // of poisoning the reference.
4825 if (instruction->IsStringAlloc()) {
4826 // String is allocated through StringFactory. Call NewEmptyString entry point.
4827 vixl32::Register temp = RegisterFrom(instruction->GetLocations()->GetTemp(0));
4828 MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize);
4829 GetAssembler()->LoadFromOffset(kLoadWord, temp, tr, QUICK_ENTRY_POINT(pNewEmptyString));
4830 GetAssembler()->LoadFromOffset(kLoadWord, lr, temp, code_offset.Int32Value());
4831 // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
4832 ExactAssemblyScope aas(GetVIXLAssembler(),
4833 vixl32::k16BitT32InstructionSizeInBytes,
4834 CodeBufferCheckScope::kExactSize);
4835 __ blx(lr);
4836 codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
4837 } else {
4838 codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
4839 CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
4840 }
4841 }
4842
VisitNewArray(HNewArray * instruction)4843 void LocationsBuilderARMVIXL::VisitNewArray(HNewArray* instruction) {
4844 LocationSummary* locations =
4845 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
4846 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4847 locations->SetOut(LocationFrom(r0));
4848 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
4849 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
4850 }
4851
VisitNewArray(HNewArray * instruction)4852 void InstructionCodeGeneratorARMVIXL::VisitNewArray(HNewArray* instruction) {
4853 // Note: if heap poisoning is enabled, the entry point takes cares
4854 // of poisoning the reference.
4855 QuickEntrypointEnum entrypoint =
4856 CodeGenerator::GetArrayAllocationEntrypoint(instruction->GetLoadClass()->GetClass());
4857 codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc());
4858 CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>();
4859 DCHECK(!codegen_->IsLeafMethod());
4860 }
4861
VisitParameterValue(HParameterValue * instruction)4862 void LocationsBuilderARMVIXL::VisitParameterValue(HParameterValue* instruction) {
4863 LocationSummary* locations =
4864 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4865 Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
4866 if (location.IsStackSlot()) {
4867 location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
4868 } else if (location.IsDoubleStackSlot()) {
4869 location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
4870 }
4871 locations->SetOut(location);
4872 }
4873
VisitParameterValue(HParameterValue * instruction ATTRIBUTE_UNUSED)4874 void InstructionCodeGeneratorARMVIXL::VisitParameterValue(
4875 HParameterValue* instruction ATTRIBUTE_UNUSED) {
4876 // Nothing to do, the parameter is already at its location.
4877 }
4878
VisitCurrentMethod(HCurrentMethod * instruction)4879 void LocationsBuilderARMVIXL::VisitCurrentMethod(HCurrentMethod* instruction) {
4880 LocationSummary* locations =
4881 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4882 locations->SetOut(LocationFrom(kMethodRegister));
4883 }
4884
VisitCurrentMethod(HCurrentMethod * instruction ATTRIBUTE_UNUSED)4885 void InstructionCodeGeneratorARMVIXL::VisitCurrentMethod(
4886 HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
4887 // Nothing to do, the method is already at its location.
4888 }
4889
VisitNot(HNot * not_)4890 void LocationsBuilderARMVIXL::VisitNot(HNot* not_) {
4891 LocationSummary* locations =
4892 new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall);
4893 locations->SetInAt(0, Location::RequiresRegister());
4894 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4895 }
4896
VisitNot(HNot * not_)4897 void InstructionCodeGeneratorARMVIXL::VisitNot(HNot* not_) {
4898 LocationSummary* locations = not_->GetLocations();
4899 Location out = locations->Out();
4900 Location in = locations->InAt(0);
4901 switch (not_->GetResultType()) {
4902 case Primitive::kPrimInt:
4903 __ Mvn(OutputRegister(not_), InputRegisterAt(not_, 0));
4904 break;
4905
4906 case Primitive::kPrimLong:
4907 __ Mvn(LowRegisterFrom(out), LowRegisterFrom(in));
4908 __ Mvn(HighRegisterFrom(out), HighRegisterFrom(in));
4909 break;
4910
4911 default:
4912 LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType();
4913 }
4914 }
4915
VisitBooleanNot(HBooleanNot * bool_not)4916 void LocationsBuilderARMVIXL::VisitBooleanNot(HBooleanNot* bool_not) {
4917 LocationSummary* locations =
4918 new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall);
4919 locations->SetInAt(0, Location::RequiresRegister());
4920 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4921 }
4922
VisitBooleanNot(HBooleanNot * bool_not)4923 void InstructionCodeGeneratorARMVIXL::VisitBooleanNot(HBooleanNot* bool_not) {
4924 __ Eor(OutputRegister(bool_not), InputRegister(bool_not), 1);
4925 }
4926
VisitCompare(HCompare * compare)4927 void LocationsBuilderARMVIXL::VisitCompare(HCompare* compare) {
4928 LocationSummary* locations =
4929 new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
4930 switch (compare->InputAt(0)->GetType()) {
4931 case Primitive::kPrimBoolean:
4932 case Primitive::kPrimByte:
4933 case Primitive::kPrimShort:
4934 case Primitive::kPrimChar:
4935 case Primitive::kPrimInt:
4936 case Primitive::kPrimLong: {
4937 locations->SetInAt(0, Location::RequiresRegister());
4938 locations->SetInAt(1, Location::RequiresRegister());
4939 // Output overlaps because it is written before doing the low comparison.
4940 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
4941 break;
4942 }
4943 case Primitive::kPrimFloat:
4944 case Primitive::kPrimDouble: {
4945 locations->SetInAt(0, Location::RequiresFpuRegister());
4946 locations->SetInAt(1, ArithmeticZeroOrFpuRegister(compare->InputAt(1)));
4947 locations->SetOut(Location::RequiresRegister());
4948 break;
4949 }
4950 default:
4951 LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
4952 }
4953 }
4954
VisitCompare(HCompare * compare)4955 void InstructionCodeGeneratorARMVIXL::VisitCompare(HCompare* compare) {
4956 LocationSummary* locations = compare->GetLocations();
4957 vixl32::Register out = OutputRegister(compare);
4958 Location left = locations->InAt(0);
4959 Location right = locations->InAt(1);
4960
4961 vixl32::Label less, greater, done;
4962 vixl32::Label* final_label = codegen_->GetFinalLabel(compare, &done);
4963 Primitive::Type type = compare->InputAt(0)->GetType();
4964 vixl32::Condition less_cond = vixl32::Condition(kNone);
4965 switch (type) {
4966 case Primitive::kPrimBoolean:
4967 case Primitive::kPrimByte:
4968 case Primitive::kPrimShort:
4969 case Primitive::kPrimChar:
4970 case Primitive::kPrimInt: {
4971 // Emit move to `out` before the `Cmp`, as `Mov` might affect the status flags.
4972 __ Mov(out, 0);
4973 __ Cmp(RegisterFrom(left), RegisterFrom(right)); // Signed compare.
4974 less_cond = lt;
4975 break;
4976 }
4977 case Primitive::kPrimLong: {
4978 __ Cmp(HighRegisterFrom(left), HighRegisterFrom(right)); // Signed compare.
4979 __ B(lt, &less, /* far_target */ false);
4980 __ B(gt, &greater, /* far_target */ false);
4981 // Emit move to `out` before the last `Cmp`, as `Mov` might affect the status flags.
4982 __ Mov(out, 0);
4983 __ Cmp(LowRegisterFrom(left), LowRegisterFrom(right)); // Unsigned compare.
4984 less_cond = lo;
4985 break;
4986 }
4987 case Primitive::kPrimFloat:
4988 case Primitive::kPrimDouble: {
4989 __ Mov(out, 0);
4990 GenerateVcmp(compare, codegen_);
4991 // To branch on the FP compare result we transfer FPSCR to APSR (encoded as PC in VMRS).
4992 __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
4993 less_cond = ARMFPCondition(kCondLT, compare->IsGtBias());
4994 break;
4995 }
4996 default:
4997 LOG(FATAL) << "Unexpected compare type " << type;
4998 UNREACHABLE();
4999 }
5000
5001 __ B(eq, final_label, /* far_target */ false);
5002 __ B(less_cond, &less, /* far_target */ false);
5003
5004 __ Bind(&greater);
5005 __ Mov(out, 1);
5006 __ B(final_label);
5007
5008 __ Bind(&less);
5009 __ Mov(out, -1);
5010
5011 if (done.IsReferenced()) {
5012 __ Bind(&done);
5013 }
5014 }
5015
VisitPhi(HPhi * instruction)5016 void LocationsBuilderARMVIXL::VisitPhi(HPhi* instruction) {
5017 LocationSummary* locations =
5018 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
5019 for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
5020 locations->SetInAt(i, Location::Any());
5021 }
5022 locations->SetOut(Location::Any());
5023 }
5024
VisitPhi(HPhi * instruction ATTRIBUTE_UNUSED)5025 void InstructionCodeGeneratorARMVIXL::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
5026 LOG(FATAL) << "Unreachable";
5027 }
5028
GenerateMemoryBarrier(MemBarrierKind kind)5029 void CodeGeneratorARMVIXL::GenerateMemoryBarrier(MemBarrierKind kind) {
5030 // TODO (ported from quick): revisit ARM barrier kinds.
5031 DmbOptions flavor = DmbOptions::ISH; // Quiet C++ warnings.
5032 switch (kind) {
5033 case MemBarrierKind::kAnyStore:
5034 case MemBarrierKind::kLoadAny:
5035 case MemBarrierKind::kAnyAny: {
5036 flavor = DmbOptions::ISH;
5037 break;
5038 }
5039 case MemBarrierKind::kStoreStore: {
5040 flavor = DmbOptions::ISHST;
5041 break;
5042 }
5043 default:
5044 LOG(FATAL) << "Unexpected memory barrier " << kind;
5045 }
5046 __ Dmb(flavor);
5047 }
5048
GenerateWideAtomicLoad(vixl32::Register addr,uint32_t offset,vixl32::Register out_lo,vixl32::Register out_hi)5049 void InstructionCodeGeneratorARMVIXL::GenerateWideAtomicLoad(vixl32::Register addr,
5050 uint32_t offset,
5051 vixl32::Register out_lo,
5052 vixl32::Register out_hi) {
5053 UseScratchRegisterScope temps(GetVIXLAssembler());
5054 if (offset != 0) {
5055 vixl32::Register temp = temps.Acquire();
5056 __ Add(temp, addr, offset);
5057 addr = temp;
5058 }
5059 __ Ldrexd(out_lo, out_hi, MemOperand(addr));
5060 }
5061
GenerateWideAtomicStore(vixl32::Register addr,uint32_t offset,vixl32::Register value_lo,vixl32::Register value_hi,vixl32::Register temp1,vixl32::Register temp2,HInstruction * instruction)5062 void InstructionCodeGeneratorARMVIXL::GenerateWideAtomicStore(vixl32::Register addr,
5063 uint32_t offset,
5064 vixl32::Register value_lo,
5065 vixl32::Register value_hi,
5066 vixl32::Register temp1,
5067 vixl32::Register temp2,
5068 HInstruction* instruction) {
5069 UseScratchRegisterScope temps(GetVIXLAssembler());
5070 vixl32::Label fail;
5071 if (offset != 0) {
5072 vixl32::Register temp = temps.Acquire();
5073 __ Add(temp, addr, offset);
5074 addr = temp;
5075 }
5076 __ Bind(&fail);
5077 {
5078 // Ensure the pc position is recorded immediately after the `ldrexd` instruction.
5079 ExactAssemblyScope aas(GetVIXLAssembler(),
5080 vixl32::kMaxInstructionSizeInBytes,
5081 CodeBufferCheckScope::kMaximumSize);
5082 // We need a load followed by store. (The address used in a STREX instruction must
5083 // be the same as the address in the most recently executed LDREX instruction.)
5084 __ ldrexd(temp1, temp2, MemOperand(addr));
5085 codegen_->MaybeRecordImplicitNullCheck(instruction);
5086 }
5087 __ Strexd(temp1, value_lo, value_hi, MemOperand(addr));
5088 __ CompareAndBranchIfNonZero(temp1, &fail);
5089 }
5090
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info)5091 void LocationsBuilderARMVIXL::HandleFieldSet(
5092 HInstruction* instruction, const FieldInfo& field_info) {
5093 DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
5094
5095 LocationSummary* locations =
5096 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
5097 locations->SetInAt(0, Location::RequiresRegister());
5098
5099 Primitive::Type field_type = field_info.GetFieldType();
5100 if (Primitive::IsFloatingPointType(field_type)) {
5101 locations->SetInAt(1, Location::RequiresFpuRegister());
5102 } else {
5103 locations->SetInAt(1, Location::RequiresRegister());
5104 }
5105
5106 bool is_wide = field_type == Primitive::kPrimLong || field_type == Primitive::kPrimDouble;
5107 bool generate_volatile = field_info.IsVolatile()
5108 && is_wide
5109 && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
5110 bool needs_write_barrier =
5111 CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
5112 // Temporary registers for the write barrier.
5113 // TODO: consider renaming StoreNeedsWriteBarrier to StoreNeedsGCMark.
5114 if (needs_write_barrier) {
5115 locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too.
5116 locations->AddTemp(Location::RequiresRegister());
5117 } else if (generate_volatile) {
5118 // ARM encoding have some additional constraints for ldrexd/strexd:
5119 // - registers need to be consecutive
5120 // - the first register should be even but not R14.
5121 // We don't test for ARM yet, and the assertion makes sure that we
5122 // revisit this if we ever enable ARM encoding.
5123 DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
5124
5125 locations->AddTemp(Location::RequiresRegister());
5126 locations->AddTemp(Location::RequiresRegister());
5127 if (field_type == Primitive::kPrimDouble) {
5128 // For doubles we need two more registers to copy the value.
5129 locations->AddTemp(LocationFrom(r2));
5130 locations->AddTemp(LocationFrom(r3));
5131 }
5132 }
5133 }
5134
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info,bool value_can_be_null)5135 void InstructionCodeGeneratorARMVIXL::HandleFieldSet(HInstruction* instruction,
5136 const FieldInfo& field_info,
5137 bool value_can_be_null) {
5138 DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
5139
5140 LocationSummary* locations = instruction->GetLocations();
5141 vixl32::Register base = InputRegisterAt(instruction, 0);
5142 Location value = locations->InAt(1);
5143
5144 bool is_volatile = field_info.IsVolatile();
5145 bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
5146 Primitive::Type field_type = field_info.GetFieldType();
5147 uint32_t offset = field_info.GetFieldOffset().Uint32Value();
5148 bool needs_write_barrier =
5149 CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
5150
5151 if (is_volatile) {
5152 codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
5153 }
5154
5155 switch (field_type) {
5156 case Primitive::kPrimBoolean:
5157 case Primitive::kPrimByte: {
5158 GetAssembler()->StoreToOffset(kStoreByte, RegisterFrom(value), base, offset);
5159 break;
5160 }
5161
5162 case Primitive::kPrimShort:
5163 case Primitive::kPrimChar: {
5164 GetAssembler()->StoreToOffset(kStoreHalfword, RegisterFrom(value), base, offset);
5165 break;
5166 }
5167
5168 case Primitive::kPrimInt:
5169 case Primitive::kPrimNot: {
5170 if (kPoisonHeapReferences && needs_write_barrier) {
5171 // Note that in the case where `value` is a null reference,
5172 // we do not enter this block, as a null reference does not
5173 // need poisoning.
5174 DCHECK_EQ(field_type, Primitive::kPrimNot);
5175 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
5176 __ Mov(temp, RegisterFrom(value));
5177 GetAssembler()->PoisonHeapReference(temp);
5178 GetAssembler()->StoreToOffset(kStoreWord, temp, base, offset);
5179 } else {
5180 GetAssembler()->StoreToOffset(kStoreWord, RegisterFrom(value), base, offset);
5181 }
5182 break;
5183 }
5184
5185 case Primitive::kPrimLong: {
5186 if (is_volatile && !atomic_ldrd_strd) {
5187 GenerateWideAtomicStore(base,
5188 offset,
5189 LowRegisterFrom(value),
5190 HighRegisterFrom(value),
5191 RegisterFrom(locations->GetTemp(0)),
5192 RegisterFrom(locations->GetTemp(1)),
5193 instruction);
5194 } else {
5195 GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(value), base, offset);
5196 codegen_->MaybeRecordImplicitNullCheck(instruction);
5197 }
5198 break;
5199 }
5200
5201 case Primitive::kPrimFloat: {
5202 GetAssembler()->StoreSToOffset(SRegisterFrom(value), base, offset);
5203 break;
5204 }
5205
5206 case Primitive::kPrimDouble: {
5207 vixl32::DRegister value_reg = DRegisterFrom(value);
5208 if (is_volatile && !atomic_ldrd_strd) {
5209 vixl32::Register value_reg_lo = RegisterFrom(locations->GetTemp(0));
5210 vixl32::Register value_reg_hi = RegisterFrom(locations->GetTemp(1));
5211
5212 __ Vmov(value_reg_lo, value_reg_hi, value_reg);
5213
5214 GenerateWideAtomicStore(base,
5215 offset,
5216 value_reg_lo,
5217 value_reg_hi,
5218 RegisterFrom(locations->GetTemp(2)),
5219 RegisterFrom(locations->GetTemp(3)),
5220 instruction);
5221 } else {
5222 GetAssembler()->StoreDToOffset(value_reg, base, offset);
5223 codegen_->MaybeRecordImplicitNullCheck(instruction);
5224 }
5225 break;
5226 }
5227
5228 case Primitive::kPrimVoid:
5229 LOG(FATAL) << "Unreachable type " << field_type;
5230 UNREACHABLE();
5231 }
5232
5233 // Longs and doubles are handled in the switch.
5234 if (field_type != Primitive::kPrimLong && field_type != Primitive::kPrimDouble) {
5235 // TODO(VIXL): Here and for other calls to `MaybeRecordImplicitNullCheck` in this method, we
5236 // should use a scope and the assembler to emit the store instruction to guarantee that we
5237 // record the pc at the correct position. But the `Assembler` does not automatically handle
5238 // unencodable offsets. Practically, everything is fine because the helper and VIXL, at the time
5239 // of writing, do generate the store instruction last.
5240 codegen_->MaybeRecordImplicitNullCheck(instruction);
5241 }
5242
5243 if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
5244 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
5245 vixl32::Register card = RegisterFrom(locations->GetTemp(1));
5246 codegen_->MarkGCCard(temp, card, base, RegisterFrom(value), value_can_be_null);
5247 }
5248
5249 if (is_volatile) {
5250 codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
5251 }
5252 }
5253
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)5254 void LocationsBuilderARMVIXL::HandleFieldGet(HInstruction* instruction,
5255 const FieldInfo& field_info) {
5256 DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
5257
5258 bool object_field_get_with_read_barrier =
5259 kEmitCompilerReadBarrier && (field_info.GetFieldType() == Primitive::kPrimNot);
5260 LocationSummary* locations =
5261 new (GetGraph()->GetArena()) LocationSummary(instruction,
5262 object_field_get_with_read_barrier ?
5263 LocationSummary::kCallOnSlowPath :
5264 LocationSummary::kNoCall);
5265 if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
5266 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
5267 }
5268 locations->SetInAt(0, Location::RequiresRegister());
5269
5270 bool volatile_for_double = field_info.IsVolatile()
5271 && (field_info.GetFieldType() == Primitive::kPrimDouble)
5272 && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
5273 // The output overlaps in case of volatile long: we don't want the
5274 // code generated by GenerateWideAtomicLoad to overwrite the
5275 // object's location. Likewise, in the case of an object field get
5276 // with read barriers enabled, we do not want the load to overwrite
5277 // the object's location, as we need it to emit the read barrier.
5278 bool overlap = (field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong)) ||
5279 object_field_get_with_read_barrier;
5280
5281 if (Primitive::IsFloatingPointType(instruction->GetType())) {
5282 locations->SetOut(Location::RequiresFpuRegister());
5283 } else {
5284 locations->SetOut(Location::RequiresRegister(),
5285 (overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap));
5286 }
5287 if (volatile_for_double) {
5288 // ARM encoding have some additional constraints for ldrexd/strexd:
5289 // - registers need to be consecutive
5290 // - the first register should be even but not R14.
5291 // We don't test for ARM yet, and the assertion makes sure that we
5292 // revisit this if we ever enable ARM encoding.
5293 DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
5294 locations->AddTemp(Location::RequiresRegister());
5295 locations->AddTemp(Location::RequiresRegister());
5296 } else if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
5297 // We need a temporary register for the read barrier marking slow
5298 // path in CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier.
5299 locations->AddTemp(Location::RequiresRegister());
5300 }
5301 }
5302
ArithmeticZeroOrFpuRegister(HInstruction * input)5303 Location LocationsBuilderARMVIXL::ArithmeticZeroOrFpuRegister(HInstruction* input) {
5304 DCHECK(Primitive::IsFloatingPointType(input->GetType())) << input->GetType();
5305 if ((input->IsFloatConstant() && (input->AsFloatConstant()->IsArithmeticZero())) ||
5306 (input->IsDoubleConstant() && (input->AsDoubleConstant()->IsArithmeticZero()))) {
5307 return Location::ConstantLocation(input->AsConstant());
5308 } else {
5309 return Location::RequiresFpuRegister();
5310 }
5311 }
5312
ArmEncodableConstantOrRegister(HInstruction * constant,Opcode opcode)5313 Location LocationsBuilderARMVIXL::ArmEncodableConstantOrRegister(HInstruction* constant,
5314 Opcode opcode) {
5315 DCHECK(!Primitive::IsFloatingPointType(constant->GetType()));
5316 if (constant->IsConstant() &&
5317 CanEncodeConstantAsImmediate(constant->AsConstant(), opcode)) {
5318 return Location::ConstantLocation(constant->AsConstant());
5319 }
5320 return Location::RequiresRegister();
5321 }
5322
CanEncodeConstantAsImmediate(HConstant * input_cst,Opcode opcode)5323 bool LocationsBuilderARMVIXL::CanEncodeConstantAsImmediate(HConstant* input_cst,
5324 Opcode opcode) {
5325 uint64_t value = static_cast<uint64_t>(Int64FromConstant(input_cst));
5326 if (Primitive::Is64BitType(input_cst->GetType())) {
5327 Opcode high_opcode = opcode;
5328 SetCc low_set_cc = kCcDontCare;
5329 switch (opcode) {
5330 case SUB:
5331 // Flip the operation to an ADD.
5332 value = -value;
5333 opcode = ADD;
5334 FALLTHROUGH_INTENDED;
5335 case ADD:
5336 if (Low32Bits(value) == 0u) {
5337 return CanEncodeConstantAsImmediate(High32Bits(value), opcode, kCcDontCare);
5338 }
5339 high_opcode = ADC;
5340 low_set_cc = kCcSet;
5341 break;
5342 default:
5343 break;
5344 }
5345 return CanEncodeConstantAsImmediate(Low32Bits(value), opcode, low_set_cc) &&
5346 CanEncodeConstantAsImmediate(High32Bits(value), high_opcode, kCcDontCare);
5347 } else {
5348 return CanEncodeConstantAsImmediate(Low32Bits(value), opcode);
5349 }
5350 }
5351
5352 // TODO(VIXL): Replace art::arm::SetCc` with `vixl32::FlagsUpdate after flags set optimization
5353 // enabled.
CanEncodeConstantAsImmediate(uint32_t value,Opcode opcode,SetCc set_cc)5354 bool LocationsBuilderARMVIXL::CanEncodeConstantAsImmediate(uint32_t value,
5355 Opcode opcode,
5356 SetCc set_cc) {
5357 ArmVIXLAssembler* assembler = codegen_->GetAssembler();
5358 if (assembler->ShifterOperandCanHold(opcode, value, set_cc)) {
5359 return true;
5360 }
5361 Opcode neg_opcode = kNoOperand;
5362 uint32_t neg_value = 0;
5363 switch (opcode) {
5364 case AND: neg_opcode = BIC; neg_value = ~value; break;
5365 case ORR: neg_opcode = ORN; neg_value = ~value; break;
5366 case ADD: neg_opcode = SUB; neg_value = -value; break;
5367 case ADC: neg_opcode = SBC; neg_value = ~value; break;
5368 case SUB: neg_opcode = ADD; neg_value = -value; break;
5369 case SBC: neg_opcode = ADC; neg_value = ~value; break;
5370 case MOV: neg_opcode = MVN; neg_value = ~value; break;
5371 default:
5372 return false;
5373 }
5374
5375 if (assembler->ShifterOperandCanHold(neg_opcode, neg_value, set_cc)) {
5376 return true;
5377 }
5378
5379 return opcode == AND && IsPowerOfTwo(value + 1);
5380 }
5381
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)5382 void InstructionCodeGeneratorARMVIXL::HandleFieldGet(HInstruction* instruction,
5383 const FieldInfo& field_info) {
5384 DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
5385
5386 LocationSummary* locations = instruction->GetLocations();
5387 vixl32::Register base = InputRegisterAt(instruction, 0);
5388 Location out = locations->Out();
5389 bool is_volatile = field_info.IsVolatile();
5390 bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
5391 Primitive::Type field_type = field_info.GetFieldType();
5392 uint32_t offset = field_info.GetFieldOffset().Uint32Value();
5393
5394 switch (field_type) {
5395 case Primitive::kPrimBoolean:
5396 GetAssembler()->LoadFromOffset(kLoadUnsignedByte, RegisterFrom(out), base, offset);
5397 break;
5398
5399 case Primitive::kPrimByte:
5400 GetAssembler()->LoadFromOffset(kLoadSignedByte, RegisterFrom(out), base, offset);
5401 break;
5402
5403 case Primitive::kPrimShort:
5404 GetAssembler()->LoadFromOffset(kLoadSignedHalfword, RegisterFrom(out), base, offset);
5405 break;
5406
5407 case Primitive::kPrimChar:
5408 GetAssembler()->LoadFromOffset(kLoadUnsignedHalfword, RegisterFrom(out), base, offset);
5409 break;
5410
5411 case Primitive::kPrimInt:
5412 GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(out), base, offset);
5413 break;
5414
5415 case Primitive::kPrimNot: {
5416 // /* HeapReference<Object> */ out = *(base + offset)
5417 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
5418 Location temp_loc = locations->GetTemp(0);
5419 // Note that a potential implicit null check is handled in this
5420 // CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier call.
5421 codegen_->GenerateFieldLoadWithBakerReadBarrier(
5422 instruction, out, base, offset, temp_loc, /* needs_null_check */ true);
5423 if (is_volatile) {
5424 codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
5425 }
5426 } else {
5427 GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(out), base, offset);
5428 codegen_->MaybeRecordImplicitNullCheck(instruction);
5429 if (is_volatile) {
5430 codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
5431 }
5432 // If read barriers are enabled, emit read barriers other than
5433 // Baker's using a slow path (and also unpoison the loaded
5434 // reference, if heap poisoning is enabled).
5435 codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, locations->InAt(0), offset);
5436 }
5437 break;
5438 }
5439
5440 case Primitive::kPrimLong:
5441 if (is_volatile && !atomic_ldrd_strd) {
5442 GenerateWideAtomicLoad(base, offset, LowRegisterFrom(out), HighRegisterFrom(out));
5443 } else {
5444 GetAssembler()->LoadFromOffset(kLoadWordPair, LowRegisterFrom(out), base, offset);
5445 }
5446 break;
5447
5448 case Primitive::kPrimFloat:
5449 GetAssembler()->LoadSFromOffset(SRegisterFrom(out), base, offset);
5450 break;
5451
5452 case Primitive::kPrimDouble: {
5453 vixl32::DRegister out_dreg = DRegisterFrom(out);
5454 if (is_volatile && !atomic_ldrd_strd) {
5455 vixl32::Register lo = RegisterFrom(locations->GetTemp(0));
5456 vixl32::Register hi = RegisterFrom(locations->GetTemp(1));
5457 GenerateWideAtomicLoad(base, offset, lo, hi);
5458 // TODO(VIXL): Do we need to be immediately after the ldrexd instruction? If so we need a
5459 // scope.
5460 codegen_->MaybeRecordImplicitNullCheck(instruction);
5461 __ Vmov(out_dreg, lo, hi);
5462 } else {
5463 GetAssembler()->LoadDFromOffset(out_dreg, base, offset);
5464 codegen_->MaybeRecordImplicitNullCheck(instruction);
5465 }
5466 break;
5467 }
5468
5469 case Primitive::kPrimVoid:
5470 LOG(FATAL) << "Unreachable type " << field_type;
5471 UNREACHABLE();
5472 }
5473
5474 if (field_type == Primitive::kPrimNot || field_type == Primitive::kPrimDouble) {
5475 // Potential implicit null checks, in the case of reference or
5476 // double fields, are handled in the previous switch statement.
5477 } else {
5478 // Address cases other than reference and double that may require an implicit null check.
5479 // TODO(VIXL): Here and for other calls to `MaybeRecordImplicitNullCheck` in this method, we
5480 // should use a scope and the assembler to emit the load instruction to guarantee that we
5481 // record the pc at the correct position. But the `Assembler` does not automatically handle
5482 // unencodable offsets. Practically, everything is fine because the helper and VIXL, at the time
5483 // of writing, do generate the store instruction last.
5484 codegen_->MaybeRecordImplicitNullCheck(instruction);
5485 }
5486
5487 if (is_volatile) {
5488 if (field_type == Primitive::kPrimNot) {
5489 // Memory barriers, in the case of references, are also handled
5490 // in the previous switch statement.
5491 } else {
5492 codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
5493 }
5494 }
5495 }
5496
VisitInstanceFieldSet(HInstanceFieldSet * instruction)5497 void LocationsBuilderARMVIXL::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
5498 HandleFieldSet(instruction, instruction->GetFieldInfo());
5499 }
5500
VisitInstanceFieldSet(HInstanceFieldSet * instruction)5501 void InstructionCodeGeneratorARMVIXL::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
5502 HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
5503 }
5504
VisitInstanceFieldGet(HInstanceFieldGet * instruction)5505 void LocationsBuilderARMVIXL::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
5506 HandleFieldGet(instruction, instruction->GetFieldInfo());
5507 }
5508
VisitInstanceFieldGet(HInstanceFieldGet * instruction)5509 void InstructionCodeGeneratorARMVIXL::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
5510 HandleFieldGet(instruction, instruction->GetFieldInfo());
5511 }
5512
VisitStaticFieldGet(HStaticFieldGet * instruction)5513 void LocationsBuilderARMVIXL::VisitStaticFieldGet(HStaticFieldGet* instruction) {
5514 HandleFieldGet(instruction, instruction->GetFieldInfo());
5515 }
5516
VisitStaticFieldGet(HStaticFieldGet * instruction)5517 void InstructionCodeGeneratorARMVIXL::VisitStaticFieldGet(HStaticFieldGet* instruction) {
5518 HandleFieldGet(instruction, instruction->GetFieldInfo());
5519 }
5520
VisitStaticFieldSet(HStaticFieldSet * instruction)5521 void LocationsBuilderARMVIXL::VisitStaticFieldSet(HStaticFieldSet* instruction) {
5522 HandleFieldSet(instruction, instruction->GetFieldInfo());
5523 }
5524
VisitStaticFieldSet(HStaticFieldSet * instruction)5525 void InstructionCodeGeneratorARMVIXL::VisitStaticFieldSet(HStaticFieldSet* instruction) {
5526 HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
5527 }
5528
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)5529 void LocationsBuilderARMVIXL::VisitUnresolvedInstanceFieldGet(
5530 HUnresolvedInstanceFieldGet* instruction) {
5531 FieldAccessCallingConventionARMVIXL calling_convention;
5532 codegen_->CreateUnresolvedFieldLocationSummary(
5533 instruction, instruction->GetFieldType(), calling_convention);
5534 }
5535
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)5536 void InstructionCodeGeneratorARMVIXL::VisitUnresolvedInstanceFieldGet(
5537 HUnresolvedInstanceFieldGet* instruction) {
5538 FieldAccessCallingConventionARMVIXL calling_convention;
5539 codegen_->GenerateUnresolvedFieldAccess(instruction,
5540 instruction->GetFieldType(),
5541 instruction->GetFieldIndex(),
5542 instruction->GetDexPc(),
5543 calling_convention);
5544 }
5545
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)5546 void LocationsBuilderARMVIXL::VisitUnresolvedInstanceFieldSet(
5547 HUnresolvedInstanceFieldSet* instruction) {
5548 FieldAccessCallingConventionARMVIXL calling_convention;
5549 codegen_->CreateUnresolvedFieldLocationSummary(
5550 instruction, instruction->GetFieldType(), calling_convention);
5551 }
5552
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)5553 void InstructionCodeGeneratorARMVIXL::VisitUnresolvedInstanceFieldSet(
5554 HUnresolvedInstanceFieldSet* instruction) {
5555 FieldAccessCallingConventionARMVIXL calling_convention;
5556 codegen_->GenerateUnresolvedFieldAccess(instruction,
5557 instruction->GetFieldType(),
5558 instruction->GetFieldIndex(),
5559 instruction->GetDexPc(),
5560 calling_convention);
5561 }
5562
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)5563 void LocationsBuilderARMVIXL::VisitUnresolvedStaticFieldGet(
5564 HUnresolvedStaticFieldGet* instruction) {
5565 FieldAccessCallingConventionARMVIXL calling_convention;
5566 codegen_->CreateUnresolvedFieldLocationSummary(
5567 instruction, instruction->GetFieldType(), calling_convention);
5568 }
5569
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)5570 void InstructionCodeGeneratorARMVIXL::VisitUnresolvedStaticFieldGet(
5571 HUnresolvedStaticFieldGet* instruction) {
5572 FieldAccessCallingConventionARMVIXL calling_convention;
5573 codegen_->GenerateUnresolvedFieldAccess(instruction,
5574 instruction->GetFieldType(),
5575 instruction->GetFieldIndex(),
5576 instruction->GetDexPc(),
5577 calling_convention);
5578 }
5579
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)5580 void LocationsBuilderARMVIXL::VisitUnresolvedStaticFieldSet(
5581 HUnresolvedStaticFieldSet* instruction) {
5582 FieldAccessCallingConventionARMVIXL calling_convention;
5583 codegen_->CreateUnresolvedFieldLocationSummary(
5584 instruction, instruction->GetFieldType(), calling_convention);
5585 }
5586
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)5587 void InstructionCodeGeneratorARMVIXL::VisitUnresolvedStaticFieldSet(
5588 HUnresolvedStaticFieldSet* instruction) {
5589 FieldAccessCallingConventionARMVIXL calling_convention;
5590 codegen_->GenerateUnresolvedFieldAccess(instruction,
5591 instruction->GetFieldType(),
5592 instruction->GetFieldIndex(),
5593 instruction->GetDexPc(),
5594 calling_convention);
5595 }
5596
VisitNullCheck(HNullCheck * instruction)5597 void LocationsBuilderARMVIXL::VisitNullCheck(HNullCheck* instruction) {
5598 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
5599 locations->SetInAt(0, Location::RequiresRegister());
5600 }
5601
GenerateImplicitNullCheck(HNullCheck * instruction)5602 void CodeGeneratorARMVIXL::GenerateImplicitNullCheck(HNullCheck* instruction) {
5603 if (CanMoveNullCheckToUser(instruction)) {
5604 return;
5605 }
5606
5607 UseScratchRegisterScope temps(GetVIXLAssembler());
5608 // Ensure the pc position is recorded immediately after the `ldr` instruction.
5609 ExactAssemblyScope aas(GetVIXLAssembler(),
5610 vixl32::kMaxInstructionSizeInBytes,
5611 CodeBufferCheckScope::kMaximumSize);
5612 __ ldr(temps.Acquire(), MemOperand(InputRegisterAt(instruction, 0)));
5613 RecordPcInfo(instruction, instruction->GetDexPc());
5614 }
5615
GenerateExplicitNullCheck(HNullCheck * instruction)5616 void CodeGeneratorARMVIXL::GenerateExplicitNullCheck(HNullCheck* instruction) {
5617 NullCheckSlowPathARMVIXL* slow_path =
5618 new (GetGraph()->GetArena()) NullCheckSlowPathARMVIXL(instruction);
5619 AddSlowPath(slow_path);
5620 __ CompareAndBranchIfZero(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
5621 }
5622
VisitNullCheck(HNullCheck * instruction)5623 void InstructionCodeGeneratorARMVIXL::VisitNullCheck(HNullCheck* instruction) {
5624 codegen_->GenerateNullCheck(instruction);
5625 }
5626
GetLoadOperandType(Primitive::Type type)5627 static LoadOperandType GetLoadOperandType(Primitive::Type type) {
5628 switch (type) {
5629 case Primitive::kPrimNot:
5630 return kLoadWord;
5631 case Primitive::kPrimBoolean:
5632 return kLoadUnsignedByte;
5633 case Primitive::kPrimByte:
5634 return kLoadSignedByte;
5635 case Primitive::kPrimChar:
5636 return kLoadUnsignedHalfword;
5637 case Primitive::kPrimShort:
5638 return kLoadSignedHalfword;
5639 case Primitive::kPrimInt:
5640 return kLoadWord;
5641 case Primitive::kPrimLong:
5642 return kLoadWordPair;
5643 case Primitive::kPrimFloat:
5644 return kLoadSWord;
5645 case Primitive::kPrimDouble:
5646 return kLoadDWord;
5647 default:
5648 LOG(FATAL) << "Unreachable type " << type;
5649 UNREACHABLE();
5650 }
5651 }
5652
GetStoreOperandType(Primitive::Type type)5653 static StoreOperandType GetStoreOperandType(Primitive::Type type) {
5654 switch (type) {
5655 case Primitive::kPrimNot:
5656 return kStoreWord;
5657 case Primitive::kPrimBoolean:
5658 case Primitive::kPrimByte:
5659 return kStoreByte;
5660 case Primitive::kPrimChar:
5661 case Primitive::kPrimShort:
5662 return kStoreHalfword;
5663 case Primitive::kPrimInt:
5664 return kStoreWord;
5665 case Primitive::kPrimLong:
5666 return kStoreWordPair;
5667 case Primitive::kPrimFloat:
5668 return kStoreSWord;
5669 case Primitive::kPrimDouble:
5670 return kStoreDWord;
5671 default:
5672 LOG(FATAL) << "Unreachable type " << type;
5673 UNREACHABLE();
5674 }
5675 }
5676
LoadFromShiftedRegOffset(Primitive::Type type,Location out_loc,vixl32::Register base,vixl32::Register reg_index,vixl32::Condition cond)5677 void CodeGeneratorARMVIXL::LoadFromShiftedRegOffset(Primitive::Type type,
5678 Location out_loc,
5679 vixl32::Register base,
5680 vixl32::Register reg_index,
5681 vixl32::Condition cond) {
5682 uint32_t shift_count = Primitive::ComponentSizeShift(type);
5683 MemOperand mem_address(base, reg_index, vixl32::LSL, shift_count);
5684
5685 switch (type) {
5686 case Primitive::kPrimByte:
5687 __ Ldrsb(cond, RegisterFrom(out_loc), mem_address);
5688 break;
5689 case Primitive::kPrimBoolean:
5690 __ Ldrb(cond, RegisterFrom(out_loc), mem_address);
5691 break;
5692 case Primitive::kPrimShort:
5693 __ Ldrsh(cond, RegisterFrom(out_loc), mem_address);
5694 break;
5695 case Primitive::kPrimChar:
5696 __ Ldrh(cond, RegisterFrom(out_loc), mem_address);
5697 break;
5698 case Primitive::kPrimNot:
5699 case Primitive::kPrimInt:
5700 __ Ldr(cond, RegisterFrom(out_loc), mem_address);
5701 break;
5702 // T32 doesn't support LoadFromShiftedRegOffset mem address mode for these types.
5703 case Primitive::kPrimLong:
5704 case Primitive::kPrimFloat:
5705 case Primitive::kPrimDouble:
5706 default:
5707 LOG(FATAL) << "Unreachable type " << type;
5708 UNREACHABLE();
5709 }
5710 }
5711
StoreToShiftedRegOffset(Primitive::Type type,Location loc,vixl32::Register base,vixl32::Register reg_index,vixl32::Condition cond)5712 void CodeGeneratorARMVIXL::StoreToShiftedRegOffset(Primitive::Type type,
5713 Location loc,
5714 vixl32::Register base,
5715 vixl32::Register reg_index,
5716 vixl32::Condition cond) {
5717 uint32_t shift_count = Primitive::ComponentSizeShift(type);
5718 MemOperand mem_address(base, reg_index, vixl32::LSL, shift_count);
5719
5720 switch (type) {
5721 case Primitive::kPrimByte:
5722 case Primitive::kPrimBoolean:
5723 __ Strb(cond, RegisterFrom(loc), mem_address);
5724 break;
5725 case Primitive::kPrimShort:
5726 case Primitive::kPrimChar:
5727 __ Strh(cond, RegisterFrom(loc), mem_address);
5728 break;
5729 case Primitive::kPrimNot:
5730 case Primitive::kPrimInt:
5731 __ Str(cond, RegisterFrom(loc), mem_address);
5732 break;
5733 // T32 doesn't support StoreToShiftedRegOffset mem address mode for these types.
5734 case Primitive::kPrimLong:
5735 case Primitive::kPrimFloat:
5736 case Primitive::kPrimDouble:
5737 default:
5738 LOG(FATAL) << "Unreachable type " << type;
5739 UNREACHABLE();
5740 }
5741 }
5742
VisitArrayGet(HArrayGet * instruction)5743 void LocationsBuilderARMVIXL::VisitArrayGet(HArrayGet* instruction) {
5744 bool object_array_get_with_read_barrier =
5745 kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
5746 LocationSummary* locations =
5747 new (GetGraph()->GetArena()) LocationSummary(instruction,
5748 object_array_get_with_read_barrier ?
5749 LocationSummary::kCallOnSlowPath :
5750 LocationSummary::kNoCall);
5751 if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
5752 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
5753 }
5754 locations->SetInAt(0, Location::RequiresRegister());
5755 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
5756 if (Primitive::IsFloatingPointType(instruction->GetType())) {
5757 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
5758 } else {
5759 // The output overlaps in the case of an object array get with
5760 // read barriers enabled: we do not want the move to overwrite the
5761 // array's location, as we need it to emit the read barrier.
5762 locations->SetOut(
5763 Location::RequiresRegister(),
5764 object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
5765 }
5766 // We need a temporary register for the read barrier marking slow
5767 // path in CodeGeneratorARMVIXL::GenerateArrayLoadWithBakerReadBarrier.
5768 // Also need for String compression feature.
5769 if ((object_array_get_with_read_barrier && kUseBakerReadBarrier)
5770 || (mirror::kUseStringCompression && instruction->IsStringCharAt())) {
5771 locations->AddTemp(Location::RequiresRegister());
5772 }
5773 }
5774
VisitArrayGet(HArrayGet * instruction)5775 void InstructionCodeGeneratorARMVIXL::VisitArrayGet(HArrayGet* instruction) {
5776 LocationSummary* locations = instruction->GetLocations();
5777 Location obj_loc = locations->InAt(0);
5778 vixl32::Register obj = InputRegisterAt(instruction, 0);
5779 Location index = locations->InAt(1);
5780 Location out_loc = locations->Out();
5781 uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction);
5782 Primitive::Type type = instruction->GetType();
5783 const bool maybe_compressed_char_at = mirror::kUseStringCompression &&
5784 instruction->IsStringCharAt();
5785 HInstruction* array_instr = instruction->GetArray();
5786 bool has_intermediate_address = array_instr->IsIntermediateAddress();
5787
5788 switch (type) {
5789 case Primitive::kPrimBoolean:
5790 case Primitive::kPrimByte:
5791 case Primitive::kPrimShort:
5792 case Primitive::kPrimChar:
5793 case Primitive::kPrimInt: {
5794 vixl32::Register length;
5795 if (maybe_compressed_char_at) {
5796 length = RegisterFrom(locations->GetTemp(0));
5797 uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
5798 GetAssembler()->LoadFromOffset(kLoadWord, length, obj, count_offset);
5799 codegen_->MaybeRecordImplicitNullCheck(instruction);
5800 }
5801 if (index.IsConstant()) {
5802 int32_t const_index = Int32ConstantFrom(index);
5803 if (maybe_compressed_char_at) {
5804 vixl32::Label uncompressed_load, done;
5805 vixl32::Label* final_label = codegen_->GetFinalLabel(instruction, &done);
5806 __ Lsrs(length, length, 1u); // LSRS has a 16-bit encoding, TST (immediate) does not.
5807 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
5808 "Expecting 0=compressed, 1=uncompressed");
5809 __ B(cs, &uncompressed_load, /* far_target */ false);
5810 GetAssembler()->LoadFromOffset(kLoadUnsignedByte,
5811 RegisterFrom(out_loc),
5812 obj,
5813 data_offset + const_index);
5814 __ B(final_label);
5815 __ Bind(&uncompressed_load);
5816 GetAssembler()->LoadFromOffset(GetLoadOperandType(Primitive::kPrimChar),
5817 RegisterFrom(out_loc),
5818 obj,
5819 data_offset + (const_index << 1));
5820 if (done.IsReferenced()) {
5821 __ Bind(&done);
5822 }
5823 } else {
5824 uint32_t full_offset = data_offset + (const_index << Primitive::ComponentSizeShift(type));
5825
5826 LoadOperandType load_type = GetLoadOperandType(type);
5827 GetAssembler()->LoadFromOffset(load_type, RegisterFrom(out_loc), obj, full_offset);
5828 }
5829 } else {
5830 UseScratchRegisterScope temps(GetVIXLAssembler());
5831 vixl32::Register temp = temps.Acquire();
5832
5833 if (has_intermediate_address) {
5834 // We do not need to compute the intermediate address from the array: the
5835 // input instruction has done it already. See the comment in
5836 // `TryExtractArrayAccessAddress()`.
5837 if (kIsDebugBuild) {
5838 HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
5839 DCHECK_EQ(Uint64ConstantFrom(tmp->GetOffset()), data_offset);
5840 }
5841 temp = obj;
5842 } else {
5843 __ Add(temp, obj, data_offset);
5844 }
5845 if (maybe_compressed_char_at) {
5846 vixl32::Label uncompressed_load, done;
5847 vixl32::Label* final_label = codegen_->GetFinalLabel(instruction, &done);
5848 __ Lsrs(length, length, 1u); // LSRS has a 16-bit encoding, TST (immediate) does not.
5849 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
5850 "Expecting 0=compressed, 1=uncompressed");
5851 __ B(cs, &uncompressed_load, /* far_target */ false);
5852 __ Ldrb(RegisterFrom(out_loc), MemOperand(temp, RegisterFrom(index), vixl32::LSL, 0));
5853 __ B(final_label);
5854 __ Bind(&uncompressed_load);
5855 __ Ldrh(RegisterFrom(out_loc), MemOperand(temp, RegisterFrom(index), vixl32::LSL, 1));
5856 if (done.IsReferenced()) {
5857 __ Bind(&done);
5858 }
5859 } else {
5860 codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, RegisterFrom(index));
5861 }
5862 }
5863 break;
5864 }
5865
5866 case Primitive::kPrimNot: {
5867 // The read barrier instrumentation of object ArrayGet
5868 // instructions does not support the HIntermediateAddress
5869 // instruction.
5870 DCHECK(!(has_intermediate_address && kEmitCompilerReadBarrier));
5871
5872 static_assert(
5873 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
5874 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
5875 // /* HeapReference<Object> */ out =
5876 // *(obj + data_offset + index * sizeof(HeapReference<Object>))
5877 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
5878 Location temp = locations->GetTemp(0);
5879 // Note that a potential implicit null check is handled in this
5880 // CodeGeneratorARMVIXL::GenerateArrayLoadWithBakerReadBarrier call.
5881 codegen_->GenerateArrayLoadWithBakerReadBarrier(
5882 instruction, out_loc, obj, data_offset, index, temp, /* needs_null_check */ true);
5883 } else {
5884 vixl32::Register out = OutputRegister(instruction);
5885 if (index.IsConstant()) {
5886 size_t offset =
5887 (Int32ConstantFrom(index) << TIMES_4) + data_offset;
5888 GetAssembler()->LoadFromOffset(kLoadWord, out, obj, offset);
5889 // TODO(VIXL): Here and for other calls to `MaybeRecordImplicitNullCheck` in this method,
5890 // we should use a scope and the assembler to emit the load instruction to guarantee that
5891 // we record the pc at the correct position. But the `Assembler` does not automatically
5892 // handle unencodable offsets. Practically, everything is fine because the helper and
5893 // VIXL, at the time of writing, do generate the store instruction last.
5894 codegen_->MaybeRecordImplicitNullCheck(instruction);
5895 // If read barriers are enabled, emit read barriers other than
5896 // Baker's using a slow path (and also unpoison the loaded
5897 // reference, if heap poisoning is enabled).
5898 codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset);
5899 } else {
5900 UseScratchRegisterScope temps(GetVIXLAssembler());
5901 vixl32::Register temp = temps.Acquire();
5902
5903 if (has_intermediate_address) {
5904 // We do not need to compute the intermediate address from the array: the
5905 // input instruction has done it already. See the comment in
5906 // `TryExtractArrayAccessAddress()`.
5907 if (kIsDebugBuild) {
5908 HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
5909 DCHECK_EQ(Uint64ConstantFrom(tmp->GetOffset()), data_offset);
5910 }
5911 temp = obj;
5912 } else {
5913 __ Add(temp, obj, data_offset);
5914 }
5915 codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, RegisterFrom(index));
5916 temps.Close();
5917 // TODO(VIXL): Use a scope to ensure that we record the pc position immediately after the
5918 // load instruction. Practically, everything is fine because the helper and VIXL, at the
5919 // time of writing, do generate the store instruction last.
5920 codegen_->MaybeRecordImplicitNullCheck(instruction);
5921 // If read barriers are enabled, emit read barriers other than
5922 // Baker's using a slow path (and also unpoison the loaded
5923 // reference, if heap poisoning is enabled).
5924 codegen_->MaybeGenerateReadBarrierSlow(
5925 instruction, out_loc, out_loc, obj_loc, data_offset, index);
5926 }
5927 }
5928 break;
5929 }
5930
5931 case Primitive::kPrimLong: {
5932 if (index.IsConstant()) {
5933 size_t offset =
5934 (Int32ConstantFrom(index) << TIMES_8) + data_offset;
5935 GetAssembler()->LoadFromOffset(kLoadWordPair, LowRegisterFrom(out_loc), obj, offset);
5936 } else {
5937 UseScratchRegisterScope temps(GetVIXLAssembler());
5938 vixl32::Register temp = temps.Acquire();
5939 __ Add(temp, obj, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8));
5940 GetAssembler()->LoadFromOffset(kLoadWordPair, LowRegisterFrom(out_loc), temp, data_offset);
5941 }
5942 break;
5943 }
5944
5945 case Primitive::kPrimFloat: {
5946 vixl32::SRegister out = SRegisterFrom(out_loc);
5947 if (index.IsConstant()) {
5948 size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset;
5949 GetAssembler()->LoadSFromOffset(out, obj, offset);
5950 } else {
5951 UseScratchRegisterScope temps(GetVIXLAssembler());
5952 vixl32::Register temp = temps.Acquire();
5953 __ Add(temp, obj, Operand(RegisterFrom(index), vixl32::LSL, TIMES_4));
5954 GetAssembler()->LoadSFromOffset(out, temp, data_offset);
5955 }
5956 break;
5957 }
5958
5959 case Primitive::kPrimDouble: {
5960 if (index.IsConstant()) {
5961 size_t offset = (Int32ConstantFrom(index) << TIMES_8) + data_offset;
5962 GetAssembler()->LoadDFromOffset(DRegisterFrom(out_loc), obj, offset);
5963 } else {
5964 UseScratchRegisterScope temps(GetVIXLAssembler());
5965 vixl32::Register temp = temps.Acquire();
5966 __ Add(temp, obj, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8));
5967 GetAssembler()->LoadDFromOffset(DRegisterFrom(out_loc), temp, data_offset);
5968 }
5969 break;
5970 }
5971
5972 case Primitive::kPrimVoid:
5973 LOG(FATAL) << "Unreachable type " << type;
5974 UNREACHABLE();
5975 }
5976
5977 if (type == Primitive::kPrimNot) {
5978 // Potential implicit null checks, in the case of reference
5979 // arrays, are handled in the previous switch statement.
5980 } else if (!maybe_compressed_char_at) {
5981 // TODO(VIXL): Use a scope to ensure we record the pc info immediately after
5982 // the preceding load instruction.
5983 codegen_->MaybeRecordImplicitNullCheck(instruction);
5984 }
5985 }
5986
VisitArraySet(HArraySet * instruction)5987 void LocationsBuilderARMVIXL::VisitArraySet(HArraySet* instruction) {
5988 Primitive::Type value_type = instruction->GetComponentType();
5989
5990 bool needs_write_barrier =
5991 CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
5992 bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
5993
5994 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
5995 instruction,
5996 may_need_runtime_call_for_type_check ?
5997 LocationSummary::kCallOnSlowPath :
5998 LocationSummary::kNoCall);
5999
6000 locations->SetInAt(0, Location::RequiresRegister());
6001 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
6002 if (Primitive::IsFloatingPointType(value_type)) {
6003 locations->SetInAt(2, Location::RequiresFpuRegister());
6004 } else {
6005 locations->SetInAt(2, Location::RequiresRegister());
6006 }
6007 if (needs_write_barrier) {
6008 // Temporary registers for the write barrier.
6009 locations->AddTemp(Location::RequiresRegister()); // Possibly used for ref. poisoning too.
6010 locations->AddTemp(Location::RequiresRegister());
6011 }
6012 }
6013
VisitArraySet(HArraySet * instruction)6014 void InstructionCodeGeneratorARMVIXL::VisitArraySet(HArraySet* instruction) {
6015 LocationSummary* locations = instruction->GetLocations();
6016 vixl32::Register array = InputRegisterAt(instruction, 0);
6017 Location index = locations->InAt(1);
6018 Primitive::Type value_type = instruction->GetComponentType();
6019 bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
6020 bool needs_write_barrier =
6021 CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
6022 uint32_t data_offset =
6023 mirror::Array::DataOffset(Primitive::ComponentSize(value_type)).Uint32Value();
6024 Location value_loc = locations->InAt(2);
6025 HInstruction* array_instr = instruction->GetArray();
6026 bool has_intermediate_address = array_instr->IsIntermediateAddress();
6027
6028 switch (value_type) {
6029 case Primitive::kPrimBoolean:
6030 case Primitive::kPrimByte:
6031 case Primitive::kPrimShort:
6032 case Primitive::kPrimChar:
6033 case Primitive::kPrimInt: {
6034 if (index.IsConstant()) {
6035 int32_t const_index = Int32ConstantFrom(index);
6036 uint32_t full_offset =
6037 data_offset + (const_index << Primitive::ComponentSizeShift(value_type));
6038 StoreOperandType store_type = GetStoreOperandType(value_type);
6039 GetAssembler()->StoreToOffset(store_type, RegisterFrom(value_loc), array, full_offset);
6040 } else {
6041 UseScratchRegisterScope temps(GetVIXLAssembler());
6042 vixl32::Register temp = temps.Acquire();
6043
6044 if (has_intermediate_address) {
6045 // We do not need to compute the intermediate address from the array: the
6046 // input instruction has done it already. See the comment in
6047 // `TryExtractArrayAccessAddress()`.
6048 if (kIsDebugBuild) {
6049 HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
6050 DCHECK_EQ(Uint64ConstantFrom(tmp->GetOffset()), data_offset);
6051 }
6052 temp = array;
6053 } else {
6054 __ Add(temp, array, data_offset);
6055 }
6056 codegen_->StoreToShiftedRegOffset(value_type, value_loc, temp, RegisterFrom(index));
6057 }
6058 break;
6059 }
6060
6061 case Primitive::kPrimNot: {
6062 vixl32::Register value = RegisterFrom(value_loc);
6063 // TryExtractArrayAccessAddress optimization is never applied for non-primitive ArraySet.
6064 // See the comment in instruction_simplifier_shared.cc.
6065 DCHECK(!has_intermediate_address);
6066
6067 if (instruction->InputAt(2)->IsNullConstant()) {
6068 // Just setting null.
6069 if (index.IsConstant()) {
6070 size_t offset =
6071 (Int32ConstantFrom(index) << TIMES_4) + data_offset;
6072 GetAssembler()->StoreToOffset(kStoreWord, value, array, offset);
6073 } else {
6074 DCHECK(index.IsRegister()) << index;
6075 UseScratchRegisterScope temps(GetVIXLAssembler());
6076 vixl32::Register temp = temps.Acquire();
6077 __ Add(temp, array, data_offset);
6078 codegen_->StoreToShiftedRegOffset(value_type, value_loc, temp, RegisterFrom(index));
6079 }
6080 // TODO(VIXL): Use a scope to ensure we record the pc info immediately after the preceding
6081 // store instruction.
6082 codegen_->MaybeRecordImplicitNullCheck(instruction);
6083 DCHECK(!needs_write_barrier);
6084 DCHECK(!may_need_runtime_call_for_type_check);
6085 break;
6086 }
6087
6088 DCHECK(needs_write_barrier);
6089 Location temp1_loc = locations->GetTemp(0);
6090 vixl32::Register temp1 = RegisterFrom(temp1_loc);
6091 Location temp2_loc = locations->GetTemp(1);
6092 vixl32::Register temp2 = RegisterFrom(temp2_loc);
6093 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
6094 uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
6095 uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
6096 vixl32::Label done;
6097 vixl32::Label* final_label = codegen_->GetFinalLabel(instruction, &done);
6098 SlowPathCodeARMVIXL* slow_path = nullptr;
6099
6100 if (may_need_runtime_call_for_type_check) {
6101 slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathARMVIXL(instruction);
6102 codegen_->AddSlowPath(slow_path);
6103 if (instruction->GetValueCanBeNull()) {
6104 vixl32::Label non_zero;
6105 __ CompareAndBranchIfNonZero(value, &non_zero);
6106 if (index.IsConstant()) {
6107 size_t offset =
6108 (Int32ConstantFrom(index) << TIMES_4) + data_offset;
6109 GetAssembler()->StoreToOffset(kStoreWord, value, array, offset);
6110 } else {
6111 DCHECK(index.IsRegister()) << index;
6112 UseScratchRegisterScope temps(GetVIXLAssembler());
6113 vixl32::Register temp = temps.Acquire();
6114 __ Add(temp, array, data_offset);
6115 codegen_->StoreToShiftedRegOffset(value_type, value_loc, temp, RegisterFrom(index));
6116 }
6117 // TODO(VIXL): Use a scope to ensure we record the pc info immediately after the preceding
6118 // store instruction.
6119 codegen_->MaybeRecordImplicitNullCheck(instruction);
6120 __ B(final_label);
6121 __ Bind(&non_zero);
6122 }
6123
6124 // Note that when read barriers are enabled, the type checks
6125 // are performed without read barriers. This is fine, even in
6126 // the case where a class object is in the from-space after
6127 // the flip, as a comparison involving such a type would not
6128 // produce a false positive; it may of course produce a false
6129 // negative, in which case we would take the ArraySet slow
6130 // path.
6131
6132 {
6133 // Ensure we record the pc position immediately after the `ldr` instruction.
6134 ExactAssemblyScope aas(GetVIXLAssembler(),
6135 vixl32::kMaxInstructionSizeInBytes,
6136 CodeBufferCheckScope::kMaximumSize);
6137 // /* HeapReference<Class> */ temp1 = array->klass_
6138 __ ldr(temp1, MemOperand(array, class_offset));
6139 codegen_->MaybeRecordImplicitNullCheck(instruction);
6140 }
6141 GetAssembler()->MaybeUnpoisonHeapReference(temp1);
6142
6143 // /* HeapReference<Class> */ temp1 = temp1->component_type_
6144 GetAssembler()->LoadFromOffset(kLoadWord, temp1, temp1, component_offset);
6145 // /* HeapReference<Class> */ temp2 = value->klass_
6146 GetAssembler()->LoadFromOffset(kLoadWord, temp2, value, class_offset);
6147 // If heap poisoning is enabled, no need to unpoison `temp1`
6148 // nor `temp2`, as we are comparing two poisoned references.
6149 __ Cmp(temp1, temp2);
6150
6151 if (instruction->StaticTypeOfArrayIsObjectArray()) {
6152 vixl32::Label do_put;
6153 __ B(eq, &do_put, /* far_target */ false);
6154 // If heap poisoning is enabled, the `temp1` reference has
6155 // not been unpoisoned yet; unpoison it now.
6156 GetAssembler()->MaybeUnpoisonHeapReference(temp1);
6157
6158 // /* HeapReference<Class> */ temp1 = temp1->super_class_
6159 GetAssembler()->LoadFromOffset(kLoadWord, temp1, temp1, super_offset);
6160 // If heap poisoning is enabled, no need to unpoison
6161 // `temp1`, as we are comparing against null below.
6162 __ CompareAndBranchIfNonZero(temp1, slow_path->GetEntryLabel());
6163 __ Bind(&do_put);
6164 } else {
6165 __ B(ne, slow_path->GetEntryLabel());
6166 }
6167 }
6168
6169 vixl32::Register source = value;
6170 if (kPoisonHeapReferences) {
6171 // Note that in the case where `value` is a null reference,
6172 // we do not enter this block, as a null reference does not
6173 // need poisoning.
6174 DCHECK_EQ(value_type, Primitive::kPrimNot);
6175 __ Mov(temp1, value);
6176 GetAssembler()->PoisonHeapReference(temp1);
6177 source = temp1;
6178 }
6179
6180 if (index.IsConstant()) {
6181 size_t offset =
6182 (Int32ConstantFrom(index) << TIMES_4) + data_offset;
6183 GetAssembler()->StoreToOffset(kStoreWord, source, array, offset);
6184 } else {
6185 DCHECK(index.IsRegister()) << index;
6186
6187 UseScratchRegisterScope temps(GetVIXLAssembler());
6188 vixl32::Register temp = temps.Acquire();
6189 __ Add(temp, array, data_offset);
6190 codegen_->StoreToShiftedRegOffset(value_type,
6191 LocationFrom(source),
6192 temp,
6193 RegisterFrom(index));
6194 }
6195
6196 if (!may_need_runtime_call_for_type_check) {
6197 // TODO(VIXL): Ensure we record the pc position immediately after the preceding store
6198 // instruction.
6199 codegen_->MaybeRecordImplicitNullCheck(instruction);
6200 }
6201
6202 codegen_->MarkGCCard(temp1, temp2, array, value, instruction->GetValueCanBeNull());
6203
6204 if (done.IsReferenced()) {
6205 __ Bind(&done);
6206 }
6207
6208 if (slow_path != nullptr) {
6209 __ Bind(slow_path->GetExitLabel());
6210 }
6211
6212 break;
6213 }
6214
6215 case Primitive::kPrimLong: {
6216 Location value = locations->InAt(2);
6217 if (index.IsConstant()) {
6218 size_t offset =
6219 (Int32ConstantFrom(index) << TIMES_8) + data_offset;
6220 GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(value), array, offset);
6221 } else {
6222 UseScratchRegisterScope temps(GetVIXLAssembler());
6223 vixl32::Register temp = temps.Acquire();
6224 __ Add(temp, array, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8));
6225 GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(value), temp, data_offset);
6226 }
6227 break;
6228 }
6229
6230 case Primitive::kPrimFloat: {
6231 Location value = locations->InAt(2);
6232 DCHECK(value.IsFpuRegister());
6233 if (index.IsConstant()) {
6234 size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset;
6235 GetAssembler()->StoreSToOffset(SRegisterFrom(value), array, offset);
6236 } else {
6237 UseScratchRegisterScope temps(GetVIXLAssembler());
6238 vixl32::Register temp = temps.Acquire();
6239 __ Add(temp, array, Operand(RegisterFrom(index), vixl32::LSL, TIMES_4));
6240 GetAssembler()->StoreSToOffset(SRegisterFrom(value), temp, data_offset);
6241 }
6242 break;
6243 }
6244
6245 case Primitive::kPrimDouble: {
6246 Location value = locations->InAt(2);
6247 DCHECK(value.IsFpuRegisterPair());
6248 if (index.IsConstant()) {
6249 size_t offset = (Int32ConstantFrom(index) << TIMES_8) + data_offset;
6250 GetAssembler()->StoreDToOffset(DRegisterFrom(value), array, offset);
6251 } else {
6252 UseScratchRegisterScope temps(GetVIXLAssembler());
6253 vixl32::Register temp = temps.Acquire();
6254 __ Add(temp, array, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8));
6255 GetAssembler()->StoreDToOffset(DRegisterFrom(value), temp, data_offset);
6256 }
6257 break;
6258 }
6259
6260 case Primitive::kPrimVoid:
6261 LOG(FATAL) << "Unreachable type " << value_type;
6262 UNREACHABLE();
6263 }
6264
6265 // Objects are handled in the switch.
6266 if (value_type != Primitive::kPrimNot) {
6267 // TODO(VIXL): Ensure we record the pc position immediately after the preceding store
6268 // instruction.
6269 codegen_->MaybeRecordImplicitNullCheck(instruction);
6270 }
6271 }
6272
VisitArrayLength(HArrayLength * instruction)6273 void LocationsBuilderARMVIXL::VisitArrayLength(HArrayLength* instruction) {
6274 LocationSummary* locations =
6275 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
6276 locations->SetInAt(0, Location::RequiresRegister());
6277 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6278 }
6279
VisitArrayLength(HArrayLength * instruction)6280 void InstructionCodeGeneratorARMVIXL::VisitArrayLength(HArrayLength* instruction) {
6281 uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
6282 vixl32::Register obj = InputRegisterAt(instruction, 0);
6283 vixl32::Register out = OutputRegister(instruction);
6284 {
6285 ExactAssemblyScope aas(GetVIXLAssembler(),
6286 vixl32::kMaxInstructionSizeInBytes,
6287 CodeBufferCheckScope::kMaximumSize);
6288 __ ldr(out, MemOperand(obj, offset));
6289 codegen_->MaybeRecordImplicitNullCheck(instruction);
6290 }
6291 // Mask out compression flag from String's array length.
6292 if (mirror::kUseStringCompression && instruction->IsStringLength()) {
6293 __ Lsr(out, out, 1u);
6294 }
6295 }
6296
VisitIntermediateAddress(HIntermediateAddress * instruction)6297 void LocationsBuilderARMVIXL::VisitIntermediateAddress(HIntermediateAddress* instruction) {
6298 LocationSummary* locations =
6299 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
6300
6301 locations->SetInAt(0, Location::RequiresRegister());
6302 locations->SetInAt(1, Location::RegisterOrConstant(instruction->GetOffset()));
6303 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6304 }
6305
VisitIntermediateAddress(HIntermediateAddress * instruction)6306 void InstructionCodeGeneratorARMVIXL::VisitIntermediateAddress(HIntermediateAddress* instruction) {
6307 vixl32::Register out = OutputRegister(instruction);
6308 vixl32::Register first = InputRegisterAt(instruction, 0);
6309 Location second = instruction->GetLocations()->InAt(1);
6310
6311 if (second.IsRegister()) {
6312 __ Add(out, first, RegisterFrom(second));
6313 } else {
6314 __ Add(out, first, Int32ConstantFrom(second));
6315 }
6316 }
6317
VisitBoundsCheck(HBoundsCheck * instruction)6318 void LocationsBuilderARMVIXL::VisitBoundsCheck(HBoundsCheck* instruction) {
6319 RegisterSet caller_saves = RegisterSet::Empty();
6320 InvokeRuntimeCallingConventionARMVIXL calling_convention;
6321 caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0)));
6322 caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(1)));
6323 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
6324
6325 HInstruction* index = instruction->InputAt(0);
6326 HInstruction* length = instruction->InputAt(1);
6327 // If both index and length are constants we can statically check the bounds. But if at least one
6328 // of them is not encodable ArmEncodableConstantOrRegister will create
6329 // Location::RequiresRegister() which is not desired to happen. Instead we create constant
6330 // locations.
6331 bool both_const = index->IsConstant() && length->IsConstant();
6332 locations->SetInAt(0, both_const
6333 ? Location::ConstantLocation(index->AsConstant())
6334 : ArmEncodableConstantOrRegister(index, CMP));
6335 locations->SetInAt(1, both_const
6336 ? Location::ConstantLocation(length->AsConstant())
6337 : ArmEncodableConstantOrRegister(length, CMP));
6338 }
6339
VisitBoundsCheck(HBoundsCheck * instruction)6340 void InstructionCodeGeneratorARMVIXL::VisitBoundsCheck(HBoundsCheck* instruction) {
6341 LocationSummary* locations = instruction->GetLocations();
6342 Location index_loc = locations->InAt(0);
6343 Location length_loc = locations->InAt(1);
6344
6345 if (length_loc.IsConstant()) {
6346 int32_t length = Int32ConstantFrom(length_loc);
6347 if (index_loc.IsConstant()) {
6348 // BCE will remove the bounds check if we are guaranteed to pass.
6349 int32_t index = Int32ConstantFrom(index_loc);
6350 if (index < 0 || index >= length) {
6351 SlowPathCodeARMVIXL* slow_path =
6352 new (GetGraph()->GetArena()) BoundsCheckSlowPathARMVIXL(instruction);
6353 codegen_->AddSlowPath(slow_path);
6354 __ B(slow_path->GetEntryLabel());
6355 } else {
6356 // Some optimization after BCE may have generated this, and we should not
6357 // generate a bounds check if it is a valid range.
6358 }
6359 return;
6360 }
6361
6362 SlowPathCodeARMVIXL* slow_path =
6363 new (GetGraph()->GetArena()) BoundsCheckSlowPathARMVIXL(instruction);
6364 __ Cmp(RegisterFrom(index_loc), length);
6365 codegen_->AddSlowPath(slow_path);
6366 __ B(hs, slow_path->GetEntryLabel());
6367 } else {
6368 SlowPathCodeARMVIXL* slow_path =
6369 new (GetGraph()->GetArena()) BoundsCheckSlowPathARMVIXL(instruction);
6370 __ Cmp(RegisterFrom(length_loc), InputOperandAt(instruction, 0));
6371 codegen_->AddSlowPath(slow_path);
6372 __ B(ls, slow_path->GetEntryLabel());
6373 }
6374 }
6375
MarkGCCard(vixl32::Register temp,vixl32::Register card,vixl32::Register object,vixl32::Register value,bool can_be_null)6376 void CodeGeneratorARMVIXL::MarkGCCard(vixl32::Register temp,
6377 vixl32::Register card,
6378 vixl32::Register object,
6379 vixl32::Register value,
6380 bool can_be_null) {
6381 vixl32::Label is_null;
6382 if (can_be_null) {
6383 __ CompareAndBranchIfZero(value, &is_null);
6384 }
6385 GetAssembler()->LoadFromOffset(
6386 kLoadWord, card, tr, Thread::CardTableOffset<kArmPointerSize>().Int32Value());
6387 __ Lsr(temp, object, Operand::From(gc::accounting::CardTable::kCardShift));
6388 __ Strb(card, MemOperand(card, temp));
6389 if (can_be_null) {
6390 __ Bind(&is_null);
6391 }
6392 }
6393
VisitParallelMove(HParallelMove * instruction ATTRIBUTE_UNUSED)6394 void LocationsBuilderARMVIXL::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
6395 LOG(FATAL) << "Unreachable";
6396 }
6397
VisitParallelMove(HParallelMove * instruction)6398 void InstructionCodeGeneratorARMVIXL::VisitParallelMove(HParallelMove* instruction) {
6399 codegen_->GetMoveResolver()->EmitNativeCode(instruction);
6400 }
6401
VisitSuspendCheck(HSuspendCheck * instruction)6402 void LocationsBuilderARMVIXL::VisitSuspendCheck(HSuspendCheck* instruction) {
6403 LocationSummary* locations =
6404 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
6405 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
6406 }
6407
VisitSuspendCheck(HSuspendCheck * instruction)6408 void InstructionCodeGeneratorARMVIXL::VisitSuspendCheck(HSuspendCheck* instruction) {
6409 HBasicBlock* block = instruction->GetBlock();
6410 if (block->GetLoopInformation() != nullptr) {
6411 DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
6412 // The back edge will generate the suspend check.
6413 return;
6414 }
6415 if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
6416 // The goto will generate the suspend check.
6417 return;
6418 }
6419 GenerateSuspendCheck(instruction, nullptr);
6420 }
6421
GenerateSuspendCheck(HSuspendCheck * instruction,HBasicBlock * successor)6422 void InstructionCodeGeneratorARMVIXL::GenerateSuspendCheck(HSuspendCheck* instruction,
6423 HBasicBlock* successor) {
6424 SuspendCheckSlowPathARMVIXL* slow_path =
6425 down_cast<SuspendCheckSlowPathARMVIXL*>(instruction->GetSlowPath());
6426 if (slow_path == nullptr) {
6427 slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathARMVIXL(instruction, successor);
6428 instruction->SetSlowPath(slow_path);
6429 codegen_->AddSlowPath(slow_path);
6430 if (successor != nullptr) {
6431 DCHECK(successor->IsLoopHeader());
6432 codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction);
6433 }
6434 } else {
6435 DCHECK_EQ(slow_path->GetSuccessor(), successor);
6436 }
6437
6438 UseScratchRegisterScope temps(GetVIXLAssembler());
6439 vixl32::Register temp = temps.Acquire();
6440 GetAssembler()->LoadFromOffset(
6441 kLoadUnsignedHalfword, temp, tr, Thread::ThreadFlagsOffset<kArmPointerSize>().Int32Value());
6442 if (successor == nullptr) {
6443 __ CompareAndBranchIfNonZero(temp, slow_path->GetEntryLabel());
6444 __ Bind(slow_path->GetReturnLabel());
6445 } else {
6446 __ CompareAndBranchIfZero(temp, codegen_->GetLabelOf(successor));
6447 __ B(slow_path->GetEntryLabel());
6448 }
6449 }
6450
GetAssembler() const6451 ArmVIXLAssembler* ParallelMoveResolverARMVIXL::GetAssembler() const {
6452 return codegen_->GetAssembler();
6453 }
6454
EmitMove(size_t index)6455 void ParallelMoveResolverARMVIXL::EmitMove(size_t index) {
6456 UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
6457 MoveOperands* move = moves_[index];
6458 Location source = move->GetSource();
6459 Location destination = move->GetDestination();
6460
6461 if (source.IsRegister()) {
6462 if (destination.IsRegister()) {
6463 __ Mov(RegisterFrom(destination), RegisterFrom(source));
6464 } else if (destination.IsFpuRegister()) {
6465 __ Vmov(SRegisterFrom(destination), RegisterFrom(source));
6466 } else {
6467 DCHECK(destination.IsStackSlot());
6468 GetAssembler()->StoreToOffset(kStoreWord,
6469 RegisterFrom(source),
6470 sp,
6471 destination.GetStackIndex());
6472 }
6473 } else if (source.IsStackSlot()) {
6474 if (destination.IsRegister()) {
6475 GetAssembler()->LoadFromOffset(kLoadWord,
6476 RegisterFrom(destination),
6477 sp,
6478 source.GetStackIndex());
6479 } else if (destination.IsFpuRegister()) {
6480 GetAssembler()->LoadSFromOffset(SRegisterFrom(destination), sp, source.GetStackIndex());
6481 } else {
6482 DCHECK(destination.IsStackSlot());
6483 vixl32::Register temp = temps.Acquire();
6484 GetAssembler()->LoadFromOffset(kLoadWord, temp, sp, source.GetStackIndex());
6485 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
6486 }
6487 } else if (source.IsFpuRegister()) {
6488 if (destination.IsRegister()) {
6489 __ Vmov(RegisterFrom(destination), SRegisterFrom(source));
6490 } else if (destination.IsFpuRegister()) {
6491 __ Vmov(SRegisterFrom(destination), SRegisterFrom(source));
6492 } else {
6493 DCHECK(destination.IsStackSlot());
6494 GetAssembler()->StoreSToOffset(SRegisterFrom(source), sp, destination.GetStackIndex());
6495 }
6496 } else if (source.IsDoubleStackSlot()) {
6497 if (destination.IsDoubleStackSlot()) {
6498 vixl32::DRegister temp = temps.AcquireD();
6499 GetAssembler()->LoadDFromOffset(temp, sp, source.GetStackIndex());
6500 GetAssembler()->StoreDToOffset(temp, sp, destination.GetStackIndex());
6501 } else if (destination.IsRegisterPair()) {
6502 DCHECK(ExpectedPairLayout(destination));
6503 GetAssembler()->LoadFromOffset(
6504 kLoadWordPair, LowRegisterFrom(destination), sp, source.GetStackIndex());
6505 } else {
6506 DCHECK(destination.IsFpuRegisterPair()) << destination;
6507 GetAssembler()->LoadDFromOffset(DRegisterFrom(destination), sp, source.GetStackIndex());
6508 }
6509 } else if (source.IsRegisterPair()) {
6510 if (destination.IsRegisterPair()) {
6511 __ Mov(LowRegisterFrom(destination), LowRegisterFrom(source));
6512 __ Mov(HighRegisterFrom(destination), HighRegisterFrom(source));
6513 } else if (destination.IsFpuRegisterPair()) {
6514 __ Vmov(DRegisterFrom(destination), LowRegisterFrom(source), HighRegisterFrom(source));
6515 } else {
6516 DCHECK(destination.IsDoubleStackSlot()) << destination;
6517 DCHECK(ExpectedPairLayout(source));
6518 GetAssembler()->StoreToOffset(kStoreWordPair,
6519 LowRegisterFrom(source),
6520 sp,
6521 destination.GetStackIndex());
6522 }
6523 } else if (source.IsFpuRegisterPair()) {
6524 if (destination.IsRegisterPair()) {
6525 __ Vmov(LowRegisterFrom(destination), HighRegisterFrom(destination), DRegisterFrom(source));
6526 } else if (destination.IsFpuRegisterPair()) {
6527 __ Vmov(DRegisterFrom(destination), DRegisterFrom(source));
6528 } else {
6529 DCHECK(destination.IsDoubleStackSlot()) << destination;
6530 GetAssembler()->StoreDToOffset(DRegisterFrom(source), sp, destination.GetStackIndex());
6531 }
6532 } else {
6533 DCHECK(source.IsConstant()) << source;
6534 HConstant* constant = source.GetConstant();
6535 if (constant->IsIntConstant() || constant->IsNullConstant()) {
6536 int32_t value = CodeGenerator::GetInt32ValueOf(constant);
6537 if (destination.IsRegister()) {
6538 __ Mov(RegisterFrom(destination), value);
6539 } else {
6540 DCHECK(destination.IsStackSlot());
6541 vixl32::Register temp = temps.Acquire();
6542 __ Mov(temp, value);
6543 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
6544 }
6545 } else if (constant->IsLongConstant()) {
6546 int64_t value = Int64ConstantFrom(source);
6547 if (destination.IsRegisterPair()) {
6548 __ Mov(LowRegisterFrom(destination), Low32Bits(value));
6549 __ Mov(HighRegisterFrom(destination), High32Bits(value));
6550 } else {
6551 DCHECK(destination.IsDoubleStackSlot()) << destination;
6552 vixl32::Register temp = temps.Acquire();
6553 __ Mov(temp, Low32Bits(value));
6554 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
6555 __ Mov(temp, High32Bits(value));
6556 GetAssembler()->StoreToOffset(kStoreWord,
6557 temp,
6558 sp,
6559 destination.GetHighStackIndex(kArmWordSize));
6560 }
6561 } else if (constant->IsDoubleConstant()) {
6562 double value = constant->AsDoubleConstant()->GetValue();
6563 if (destination.IsFpuRegisterPair()) {
6564 __ Vmov(DRegisterFrom(destination), value);
6565 } else {
6566 DCHECK(destination.IsDoubleStackSlot()) << destination;
6567 uint64_t int_value = bit_cast<uint64_t, double>(value);
6568 vixl32::Register temp = temps.Acquire();
6569 __ Mov(temp, Low32Bits(int_value));
6570 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
6571 __ Mov(temp, High32Bits(int_value));
6572 GetAssembler()->StoreToOffset(kStoreWord,
6573 temp,
6574 sp,
6575 destination.GetHighStackIndex(kArmWordSize));
6576 }
6577 } else {
6578 DCHECK(constant->IsFloatConstant()) << constant->DebugName();
6579 float value = constant->AsFloatConstant()->GetValue();
6580 if (destination.IsFpuRegister()) {
6581 __ Vmov(SRegisterFrom(destination), value);
6582 } else {
6583 DCHECK(destination.IsStackSlot());
6584 vixl32::Register temp = temps.Acquire();
6585 __ Mov(temp, bit_cast<int32_t, float>(value));
6586 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
6587 }
6588 }
6589 }
6590 }
6591
Exchange(vixl32::Register reg,int mem)6592 void ParallelMoveResolverARMVIXL::Exchange(vixl32::Register reg, int mem) {
6593 UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
6594 vixl32::Register temp = temps.Acquire();
6595 __ Mov(temp, reg);
6596 GetAssembler()->LoadFromOffset(kLoadWord, reg, sp, mem);
6597 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, mem);
6598 }
6599
Exchange(int mem1,int mem2)6600 void ParallelMoveResolverARMVIXL::Exchange(int mem1, int mem2) {
6601 // TODO(VIXL32): Double check the performance of this implementation.
6602 UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
6603 vixl32::Register temp1 = temps.Acquire();
6604 ScratchRegisterScope ensure_scratch(
6605 this, temp1.GetCode(), r0.GetCode(), codegen_->GetNumberOfCoreRegisters());
6606 vixl32::Register temp2(ensure_scratch.GetRegister());
6607
6608 int stack_offset = ensure_scratch.IsSpilled() ? kArmWordSize : 0;
6609 GetAssembler()->LoadFromOffset(kLoadWord, temp1, sp, mem1 + stack_offset);
6610 GetAssembler()->LoadFromOffset(kLoadWord, temp2, sp, mem2 + stack_offset);
6611 GetAssembler()->StoreToOffset(kStoreWord, temp1, sp, mem2 + stack_offset);
6612 GetAssembler()->StoreToOffset(kStoreWord, temp2, sp, mem1 + stack_offset);
6613 }
6614
EmitSwap(size_t index)6615 void ParallelMoveResolverARMVIXL::EmitSwap(size_t index) {
6616 MoveOperands* move = moves_[index];
6617 Location source = move->GetSource();
6618 Location destination = move->GetDestination();
6619 UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
6620
6621 if (source.IsRegister() && destination.IsRegister()) {
6622 vixl32::Register temp = temps.Acquire();
6623 DCHECK(!RegisterFrom(source).Is(temp));
6624 DCHECK(!RegisterFrom(destination).Is(temp));
6625 __ Mov(temp, RegisterFrom(destination));
6626 __ Mov(RegisterFrom(destination), RegisterFrom(source));
6627 __ Mov(RegisterFrom(source), temp);
6628 } else if (source.IsRegister() && destination.IsStackSlot()) {
6629 Exchange(RegisterFrom(source), destination.GetStackIndex());
6630 } else if (source.IsStackSlot() && destination.IsRegister()) {
6631 Exchange(RegisterFrom(destination), source.GetStackIndex());
6632 } else if (source.IsStackSlot() && destination.IsStackSlot()) {
6633 Exchange(source.GetStackIndex(), destination.GetStackIndex());
6634 } else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
6635 vixl32::Register temp = temps.Acquire();
6636 __ Vmov(temp, SRegisterFrom(source));
6637 __ Vmov(SRegisterFrom(source), SRegisterFrom(destination));
6638 __ Vmov(SRegisterFrom(destination), temp);
6639 } else if (source.IsRegisterPair() && destination.IsRegisterPair()) {
6640 vixl32::DRegister temp = temps.AcquireD();
6641 __ Vmov(temp, LowRegisterFrom(source), HighRegisterFrom(source));
6642 __ Mov(LowRegisterFrom(source), LowRegisterFrom(destination));
6643 __ Mov(HighRegisterFrom(source), HighRegisterFrom(destination));
6644 __ Vmov(LowRegisterFrom(destination), HighRegisterFrom(destination), temp);
6645 } else if (source.IsRegisterPair() || destination.IsRegisterPair()) {
6646 vixl32::Register low_reg = LowRegisterFrom(source.IsRegisterPair() ? source : destination);
6647 int mem = source.IsRegisterPair() ? destination.GetStackIndex() : source.GetStackIndex();
6648 DCHECK(ExpectedPairLayout(source.IsRegisterPair() ? source : destination));
6649 vixl32::DRegister temp = temps.AcquireD();
6650 __ Vmov(temp, low_reg, vixl32::Register(low_reg.GetCode() + 1));
6651 GetAssembler()->LoadFromOffset(kLoadWordPair, low_reg, sp, mem);
6652 GetAssembler()->StoreDToOffset(temp, sp, mem);
6653 } else if (source.IsFpuRegisterPair() && destination.IsFpuRegisterPair()) {
6654 vixl32::DRegister first = DRegisterFrom(source);
6655 vixl32::DRegister second = DRegisterFrom(destination);
6656 vixl32::DRegister temp = temps.AcquireD();
6657 __ Vmov(temp, first);
6658 __ Vmov(first, second);
6659 __ Vmov(second, temp);
6660 } else if (source.IsFpuRegisterPair() || destination.IsFpuRegisterPair()) {
6661 vixl32::DRegister reg = source.IsFpuRegisterPair()
6662 ? DRegisterFrom(source)
6663 : DRegisterFrom(destination);
6664 int mem = source.IsFpuRegisterPair()
6665 ? destination.GetStackIndex()
6666 : source.GetStackIndex();
6667 vixl32::DRegister temp = temps.AcquireD();
6668 __ Vmov(temp, reg);
6669 GetAssembler()->LoadDFromOffset(reg, sp, mem);
6670 GetAssembler()->StoreDToOffset(temp, sp, mem);
6671 } else if (source.IsFpuRegister() || destination.IsFpuRegister()) {
6672 vixl32::SRegister reg = source.IsFpuRegister()
6673 ? SRegisterFrom(source)
6674 : SRegisterFrom(destination);
6675 int mem = source.IsFpuRegister()
6676 ? destination.GetStackIndex()
6677 : source.GetStackIndex();
6678 vixl32::Register temp = temps.Acquire();
6679 __ Vmov(temp, reg);
6680 GetAssembler()->LoadSFromOffset(reg, sp, mem);
6681 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, mem);
6682 } else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) {
6683 vixl32::DRegister temp1 = temps.AcquireD();
6684 vixl32::DRegister temp2 = temps.AcquireD();
6685 __ Vldr(temp1, MemOperand(sp, source.GetStackIndex()));
6686 __ Vldr(temp2, MemOperand(sp, destination.GetStackIndex()));
6687 __ Vstr(temp1, MemOperand(sp, destination.GetStackIndex()));
6688 __ Vstr(temp2, MemOperand(sp, source.GetStackIndex()));
6689 } else {
6690 LOG(FATAL) << "Unimplemented" << source << " <-> " << destination;
6691 }
6692 }
6693
SpillScratch(int reg)6694 void ParallelMoveResolverARMVIXL::SpillScratch(int reg) {
6695 __ Push(vixl32::Register(reg));
6696 }
6697
RestoreScratch(int reg)6698 void ParallelMoveResolverARMVIXL::RestoreScratch(int reg) {
6699 __ Pop(vixl32::Register(reg));
6700 }
6701
GetSupportedLoadClassKind(HLoadClass::LoadKind desired_class_load_kind)6702 HLoadClass::LoadKind CodeGeneratorARMVIXL::GetSupportedLoadClassKind(
6703 HLoadClass::LoadKind desired_class_load_kind) {
6704 switch (desired_class_load_kind) {
6705 case HLoadClass::LoadKind::kInvalid:
6706 LOG(FATAL) << "UNREACHABLE";
6707 UNREACHABLE();
6708 case HLoadClass::LoadKind::kReferrersClass:
6709 break;
6710 case HLoadClass::LoadKind::kBootImageLinkTimeAddress:
6711 DCHECK(!GetCompilerOptions().GetCompilePic());
6712 break;
6713 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
6714 DCHECK(GetCompilerOptions().GetCompilePic());
6715 break;
6716 case HLoadClass::LoadKind::kBootImageAddress:
6717 break;
6718 case HLoadClass::LoadKind::kBssEntry:
6719 DCHECK(!Runtime::Current()->UseJitCompilation());
6720 break;
6721 case HLoadClass::LoadKind::kJitTableAddress:
6722 DCHECK(Runtime::Current()->UseJitCompilation());
6723 break;
6724 case HLoadClass::LoadKind::kDexCacheViaMethod:
6725 break;
6726 }
6727 return desired_class_load_kind;
6728 }
6729
VisitLoadClass(HLoadClass * cls)6730 void LocationsBuilderARMVIXL::VisitLoadClass(HLoadClass* cls) {
6731 HLoadClass::LoadKind load_kind = cls->GetLoadKind();
6732 if (load_kind == HLoadClass::LoadKind::kDexCacheViaMethod) {
6733 InvokeRuntimeCallingConventionARMVIXL calling_convention;
6734 CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(
6735 cls,
6736 LocationFrom(calling_convention.GetRegisterAt(0)),
6737 LocationFrom(r0));
6738 DCHECK(calling_convention.GetRegisterAt(0).Is(r0));
6739 return;
6740 }
6741 DCHECK(!cls->NeedsAccessCheck());
6742
6743 const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage();
6744 LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
6745 ? LocationSummary::kCallOnSlowPath
6746 : LocationSummary::kNoCall;
6747 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cls, call_kind);
6748 if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) {
6749 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
6750 }
6751
6752 if (load_kind == HLoadClass::LoadKind::kReferrersClass) {
6753 locations->SetInAt(0, Location::RequiresRegister());
6754 }
6755 locations->SetOut(Location::RequiresRegister());
6756 if (load_kind == HLoadClass::LoadKind::kBssEntry) {
6757 if (!kUseReadBarrier || kUseBakerReadBarrier) {
6758 // Rely on the type resolution or initialization and marking to save everything we need.
6759 // Note that IP may be clobbered by saving/restoring the live register (only one thanks
6760 // to the custom calling convention) or by marking, so we request a different temp.
6761 locations->AddTemp(Location::RequiresRegister());
6762 RegisterSet caller_saves = RegisterSet::Empty();
6763 InvokeRuntimeCallingConventionARMVIXL calling_convention;
6764 caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0)));
6765 // TODO: Add GetReturnLocation() to the calling convention so that we can DCHECK()
6766 // that the the kPrimNot result register is the same as the first argument register.
6767 locations->SetCustomSlowPathCallerSaves(caller_saves);
6768 } else {
6769 // For non-Baker read barrier we have a temp-clobbering call.
6770 }
6771 }
6772 }
6773
6774 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
6775 // move.
VisitLoadClass(HLoadClass * cls)6776 void InstructionCodeGeneratorARMVIXL::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS {
6777 HLoadClass::LoadKind load_kind = cls->GetLoadKind();
6778 if (load_kind == HLoadClass::LoadKind::kDexCacheViaMethod) {
6779 codegen_->GenerateLoadClassRuntimeCall(cls);
6780 return;
6781 }
6782 DCHECK(!cls->NeedsAccessCheck());
6783
6784 LocationSummary* locations = cls->GetLocations();
6785 Location out_loc = locations->Out();
6786 vixl32::Register out = OutputRegister(cls);
6787
6788 const ReadBarrierOption read_barrier_option = cls->IsInBootImage()
6789 ? kWithoutReadBarrier
6790 : kCompilerReadBarrierOption;
6791 bool generate_null_check = false;
6792 switch (load_kind) {
6793 case HLoadClass::LoadKind::kReferrersClass: {
6794 DCHECK(!cls->CanCallRuntime());
6795 DCHECK(!cls->MustGenerateClinitCheck());
6796 // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
6797 vixl32::Register current_method = InputRegisterAt(cls, 0);
6798 GenerateGcRootFieldLoad(cls,
6799 out_loc,
6800 current_method,
6801 ArtMethod::DeclaringClassOffset().Int32Value(),
6802 read_barrier_option);
6803 break;
6804 }
6805 case HLoadClass::LoadKind::kBootImageLinkTimeAddress: {
6806 DCHECK(codegen_->GetCompilerOptions().IsBootImage());
6807 DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
6808 __ Ldr(out, codegen_->DeduplicateBootImageTypeLiteral(cls->GetDexFile(),
6809 cls->GetTypeIndex()));
6810 break;
6811 }
6812 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
6813 DCHECK(codegen_->GetCompilerOptions().IsBootImage());
6814 DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
6815 CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
6816 codegen_->NewPcRelativeTypePatch(cls->GetDexFile(), cls->GetTypeIndex());
6817 codegen_->EmitMovwMovtPlaceholder(labels, out);
6818 break;
6819 }
6820 case HLoadClass::LoadKind::kBootImageAddress: {
6821 DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
6822 uint32_t address = dchecked_integral_cast<uint32_t>(
6823 reinterpret_cast<uintptr_t>(cls->GetClass().Get()));
6824 DCHECK_NE(address, 0u);
6825 __ Ldr(out, codegen_->DeduplicateBootImageAddressLiteral(address));
6826 break;
6827 }
6828 case HLoadClass::LoadKind::kBssEntry: {
6829 vixl32::Register temp = (!kUseReadBarrier || kUseBakerReadBarrier)
6830 ? RegisterFrom(locations->GetTemp(0))
6831 : out;
6832 CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
6833 codegen_->NewTypeBssEntryPatch(cls->GetDexFile(), cls->GetTypeIndex());
6834 codegen_->EmitMovwMovtPlaceholder(labels, temp);
6835 GenerateGcRootFieldLoad(cls, out_loc, temp, /* offset */ 0, read_barrier_option);
6836 generate_null_check = true;
6837 break;
6838 }
6839 case HLoadClass::LoadKind::kJitTableAddress: {
6840 __ Ldr(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(),
6841 cls->GetTypeIndex(),
6842 cls->GetClass()));
6843 // /* GcRoot<mirror::Class> */ out = *out
6844 GenerateGcRootFieldLoad(cls, out_loc, out, /* offset */ 0, read_barrier_option);
6845 break;
6846 }
6847 case HLoadClass::LoadKind::kDexCacheViaMethod:
6848 case HLoadClass::LoadKind::kInvalid:
6849 LOG(FATAL) << "UNREACHABLE";
6850 UNREACHABLE();
6851 }
6852
6853 if (generate_null_check || cls->MustGenerateClinitCheck()) {
6854 DCHECK(cls->CanCallRuntime());
6855 LoadClassSlowPathARMVIXL* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARMVIXL(
6856 cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
6857 codegen_->AddSlowPath(slow_path);
6858 if (generate_null_check) {
6859 __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel());
6860 }
6861 if (cls->MustGenerateClinitCheck()) {
6862 GenerateClassInitializationCheck(slow_path, out);
6863 } else {
6864 __ Bind(slow_path->GetExitLabel());
6865 }
6866 }
6867 }
6868
VisitClinitCheck(HClinitCheck * check)6869 void LocationsBuilderARMVIXL::VisitClinitCheck(HClinitCheck* check) {
6870 LocationSummary* locations =
6871 new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
6872 locations->SetInAt(0, Location::RequiresRegister());
6873 if (check->HasUses()) {
6874 locations->SetOut(Location::SameAsFirstInput());
6875 }
6876 }
6877
VisitClinitCheck(HClinitCheck * check)6878 void InstructionCodeGeneratorARMVIXL::VisitClinitCheck(HClinitCheck* check) {
6879 // We assume the class is not null.
6880 LoadClassSlowPathARMVIXL* slow_path =
6881 new (GetGraph()->GetArena()) LoadClassSlowPathARMVIXL(check->GetLoadClass(),
6882 check,
6883 check->GetDexPc(),
6884 /* do_clinit */ true);
6885 codegen_->AddSlowPath(slow_path);
6886 GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0));
6887 }
6888
GenerateClassInitializationCheck(LoadClassSlowPathARMVIXL * slow_path,vixl32::Register class_reg)6889 void InstructionCodeGeneratorARMVIXL::GenerateClassInitializationCheck(
6890 LoadClassSlowPathARMVIXL* slow_path, vixl32::Register class_reg) {
6891 UseScratchRegisterScope temps(GetVIXLAssembler());
6892 vixl32::Register temp = temps.Acquire();
6893 GetAssembler()->LoadFromOffset(kLoadWord,
6894 temp,
6895 class_reg,
6896 mirror::Class::StatusOffset().Int32Value());
6897 __ Cmp(temp, mirror::Class::kStatusInitialized);
6898 __ B(lt, slow_path->GetEntryLabel());
6899 // Even if the initialized flag is set, we may be in a situation where caches are not synced
6900 // properly. Therefore, we do a memory fence.
6901 __ Dmb(ISH);
6902 __ Bind(slow_path->GetExitLabel());
6903 }
6904
GetSupportedLoadStringKind(HLoadString::LoadKind desired_string_load_kind)6905 HLoadString::LoadKind CodeGeneratorARMVIXL::GetSupportedLoadStringKind(
6906 HLoadString::LoadKind desired_string_load_kind) {
6907 switch (desired_string_load_kind) {
6908 case HLoadString::LoadKind::kBootImageLinkTimeAddress:
6909 DCHECK(!GetCompilerOptions().GetCompilePic());
6910 break;
6911 case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
6912 DCHECK(GetCompilerOptions().GetCompilePic());
6913 break;
6914 case HLoadString::LoadKind::kBootImageAddress:
6915 break;
6916 case HLoadString::LoadKind::kBssEntry:
6917 DCHECK(!Runtime::Current()->UseJitCompilation());
6918 break;
6919 case HLoadString::LoadKind::kJitTableAddress:
6920 DCHECK(Runtime::Current()->UseJitCompilation());
6921 break;
6922 case HLoadString::LoadKind::kDexCacheViaMethod:
6923 break;
6924 }
6925 return desired_string_load_kind;
6926 }
6927
VisitLoadString(HLoadString * load)6928 void LocationsBuilderARMVIXL::VisitLoadString(HLoadString* load) {
6929 LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load);
6930 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind);
6931 HLoadString::LoadKind load_kind = load->GetLoadKind();
6932 if (load_kind == HLoadString::LoadKind::kDexCacheViaMethod) {
6933 locations->SetOut(LocationFrom(r0));
6934 } else {
6935 locations->SetOut(Location::RequiresRegister());
6936 if (load_kind == HLoadString::LoadKind::kBssEntry) {
6937 if (!kUseReadBarrier || kUseBakerReadBarrier) {
6938 // Rely on the pResolveString and marking to save everything we need, including temps.
6939 // Note that IP may be clobbered by saving/restoring the live register (only one thanks
6940 // to the custom calling convention) or by marking, so we request a different temp.
6941 locations->AddTemp(Location::RequiresRegister());
6942 RegisterSet caller_saves = RegisterSet::Empty();
6943 InvokeRuntimeCallingConventionARMVIXL calling_convention;
6944 caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0)));
6945 // TODO: Add GetReturnLocation() to the calling convention so that we can DCHECK()
6946 // that the the kPrimNot result register is the same as the first argument register.
6947 locations->SetCustomSlowPathCallerSaves(caller_saves);
6948 } else {
6949 // For non-Baker read barrier we have a temp-clobbering call.
6950 }
6951 }
6952 }
6953 }
6954
6955 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
6956 // move.
VisitLoadString(HLoadString * load)6957 void InstructionCodeGeneratorARMVIXL::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS {
6958 LocationSummary* locations = load->GetLocations();
6959 Location out_loc = locations->Out();
6960 vixl32::Register out = OutputRegister(load);
6961 HLoadString::LoadKind load_kind = load->GetLoadKind();
6962
6963 switch (load_kind) {
6964 case HLoadString::LoadKind::kBootImageLinkTimeAddress: {
6965 __ Ldr(out, codegen_->DeduplicateBootImageStringLiteral(load->GetDexFile(),
6966 load->GetStringIndex()));
6967 return; // No dex cache slow path.
6968 }
6969 case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
6970 DCHECK(codegen_->GetCompilerOptions().IsBootImage());
6971 CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
6972 codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex());
6973 codegen_->EmitMovwMovtPlaceholder(labels, out);
6974 return; // No dex cache slow path.
6975 }
6976 case HLoadString::LoadKind::kBootImageAddress: {
6977 uint32_t address = dchecked_integral_cast<uint32_t>(
6978 reinterpret_cast<uintptr_t>(load->GetString().Get()));
6979 DCHECK_NE(address, 0u);
6980 __ Ldr(out, codegen_->DeduplicateBootImageAddressLiteral(address));
6981 return; // No dex cache slow path.
6982 }
6983 case HLoadString::LoadKind::kBssEntry: {
6984 DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
6985 vixl32::Register temp = (!kUseReadBarrier || kUseBakerReadBarrier)
6986 ? RegisterFrom(locations->GetTemp(0))
6987 : out;
6988 CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
6989 codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex());
6990 codegen_->EmitMovwMovtPlaceholder(labels, temp);
6991 GenerateGcRootFieldLoad(load, out_loc, temp, /* offset */ 0, kCompilerReadBarrierOption);
6992 LoadStringSlowPathARMVIXL* slow_path =
6993 new (GetGraph()->GetArena()) LoadStringSlowPathARMVIXL(load);
6994 codegen_->AddSlowPath(slow_path);
6995 __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel());
6996 __ Bind(slow_path->GetExitLabel());
6997 return;
6998 }
6999 case HLoadString::LoadKind::kJitTableAddress: {
7000 __ Ldr(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(),
7001 load->GetStringIndex(),
7002 load->GetString()));
7003 // /* GcRoot<mirror::String> */ out = *out
7004 GenerateGcRootFieldLoad(load, out_loc, out, /* offset */ 0, kCompilerReadBarrierOption);
7005 return;
7006 }
7007 default:
7008 break;
7009 }
7010
7011 // TODO: Re-add the compiler code to do string dex cache lookup again.
7012 DCHECK_EQ(load->GetLoadKind(), HLoadString::LoadKind::kDexCacheViaMethod);
7013 InvokeRuntimeCallingConventionARMVIXL calling_convention;
7014 __ Mov(calling_convention.GetRegisterAt(0), load->GetStringIndex().index_);
7015 codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc());
7016 CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
7017 }
7018
GetExceptionTlsOffset()7019 static int32_t GetExceptionTlsOffset() {
7020 return Thread::ExceptionOffset<kArmPointerSize>().Int32Value();
7021 }
7022
VisitLoadException(HLoadException * load)7023 void LocationsBuilderARMVIXL::VisitLoadException(HLoadException* load) {
7024 LocationSummary* locations =
7025 new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
7026 locations->SetOut(Location::RequiresRegister());
7027 }
7028
VisitLoadException(HLoadException * load)7029 void InstructionCodeGeneratorARMVIXL::VisitLoadException(HLoadException* load) {
7030 vixl32::Register out = OutputRegister(load);
7031 GetAssembler()->LoadFromOffset(kLoadWord, out, tr, GetExceptionTlsOffset());
7032 }
7033
7034
VisitClearException(HClearException * clear)7035 void LocationsBuilderARMVIXL::VisitClearException(HClearException* clear) {
7036 new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall);
7037 }
7038
VisitClearException(HClearException * clear ATTRIBUTE_UNUSED)7039 void InstructionCodeGeneratorARMVIXL::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
7040 UseScratchRegisterScope temps(GetVIXLAssembler());
7041 vixl32::Register temp = temps.Acquire();
7042 __ Mov(temp, 0);
7043 GetAssembler()->StoreToOffset(kStoreWord, temp, tr, GetExceptionTlsOffset());
7044 }
7045
VisitThrow(HThrow * instruction)7046 void LocationsBuilderARMVIXL::VisitThrow(HThrow* instruction) {
7047 LocationSummary* locations =
7048 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
7049 InvokeRuntimeCallingConventionARMVIXL calling_convention;
7050 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
7051 }
7052
VisitThrow(HThrow * instruction)7053 void InstructionCodeGeneratorARMVIXL::VisitThrow(HThrow* instruction) {
7054 codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
7055 CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
7056 }
7057
7058 // Temp is used for read barrier.
NumberOfInstanceOfTemps(TypeCheckKind type_check_kind)7059 static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) {
7060 if (kEmitCompilerReadBarrier &&
7061 (kUseBakerReadBarrier ||
7062 type_check_kind == TypeCheckKind::kAbstractClassCheck ||
7063 type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
7064 type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
7065 return 1;
7066 }
7067 return 0;
7068 }
7069
7070 // Interface case has 3 temps, one for holding the number of interfaces, one for the current
7071 // interface pointer, one for loading the current interface.
7072 // The other checks have one temp for loading the object's class.
NumberOfCheckCastTemps(TypeCheckKind type_check_kind)7073 static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) {
7074 if (type_check_kind == TypeCheckKind::kInterfaceCheck) {
7075 return 3;
7076 }
7077 return 1 + NumberOfInstanceOfTemps(type_check_kind);
7078 }
7079
VisitInstanceOf(HInstanceOf * instruction)7080 void LocationsBuilderARMVIXL::VisitInstanceOf(HInstanceOf* instruction) {
7081 LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
7082 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
7083 bool baker_read_barrier_slow_path = false;
7084 switch (type_check_kind) {
7085 case TypeCheckKind::kExactCheck:
7086 case TypeCheckKind::kAbstractClassCheck:
7087 case TypeCheckKind::kClassHierarchyCheck:
7088 case TypeCheckKind::kArrayObjectCheck:
7089 call_kind =
7090 kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
7091 baker_read_barrier_slow_path = kUseBakerReadBarrier;
7092 break;
7093 case TypeCheckKind::kArrayCheck:
7094 case TypeCheckKind::kUnresolvedCheck:
7095 case TypeCheckKind::kInterfaceCheck:
7096 call_kind = LocationSummary::kCallOnSlowPath;
7097 break;
7098 }
7099
7100 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
7101 if (baker_read_barrier_slow_path) {
7102 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
7103 }
7104 locations->SetInAt(0, Location::RequiresRegister());
7105 locations->SetInAt(1, Location::RequiresRegister());
7106 // The "out" register is used as a temporary, so it overlaps with the inputs.
7107 // Note that TypeCheckSlowPathARM uses this register too.
7108 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
7109 locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind));
7110 }
7111
VisitInstanceOf(HInstanceOf * instruction)7112 void InstructionCodeGeneratorARMVIXL::VisitInstanceOf(HInstanceOf* instruction) {
7113 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
7114 LocationSummary* locations = instruction->GetLocations();
7115 Location obj_loc = locations->InAt(0);
7116 vixl32::Register obj = InputRegisterAt(instruction, 0);
7117 vixl32::Register cls = InputRegisterAt(instruction, 1);
7118 Location out_loc = locations->Out();
7119 vixl32::Register out = OutputRegister(instruction);
7120 const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind);
7121 DCHECK_LE(num_temps, 1u);
7122 Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
7123 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
7124 uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
7125 uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
7126 uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
7127 vixl32::Label done;
7128 vixl32::Label* const final_label = codegen_->GetFinalLabel(instruction, &done);
7129 SlowPathCodeARMVIXL* slow_path = nullptr;
7130
7131 // Return 0 if `obj` is null.
7132 // avoid null check if we know obj is not null.
7133 if (instruction->MustDoNullCheck()) {
7134 DCHECK(!out.Is(obj));
7135 __ Mov(out, 0);
7136 __ CompareAndBranchIfZero(obj, final_label, /* far_target */ false);
7137 }
7138
7139 switch (type_check_kind) {
7140 case TypeCheckKind::kExactCheck: {
7141 // /* HeapReference<Class> */ out = obj->klass_
7142 GenerateReferenceLoadTwoRegisters(instruction,
7143 out_loc,
7144 obj_loc,
7145 class_offset,
7146 maybe_temp_loc,
7147 kCompilerReadBarrierOption);
7148 // Classes must be equal for the instanceof to succeed.
7149 __ Cmp(out, cls);
7150 // We speculatively set the result to false without changing the condition
7151 // flags, which allows us to avoid some branching later.
7152 __ Mov(LeaveFlags, out, 0);
7153
7154 // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
7155 // we check that the output is in a low register, so that a 16-bit MOV
7156 // encoding can be used.
7157 if (out.IsLow()) {
7158 // We use the scope because of the IT block that follows.
7159 ExactAssemblyScope guard(GetVIXLAssembler(),
7160 2 * vixl32::k16BitT32InstructionSizeInBytes,
7161 CodeBufferCheckScope::kExactSize);
7162
7163 __ it(eq);
7164 __ mov(eq, out, 1);
7165 } else {
7166 __ B(ne, final_label, /* far_target */ false);
7167 __ Mov(out, 1);
7168 }
7169
7170 break;
7171 }
7172
7173 case TypeCheckKind::kAbstractClassCheck: {
7174 // /* HeapReference<Class> */ out = obj->klass_
7175 GenerateReferenceLoadTwoRegisters(instruction,
7176 out_loc,
7177 obj_loc,
7178 class_offset,
7179 maybe_temp_loc,
7180 kCompilerReadBarrierOption);
7181 // If the class is abstract, we eagerly fetch the super class of the
7182 // object to avoid doing a comparison we know will fail.
7183 vixl32::Label loop;
7184 __ Bind(&loop);
7185 // /* HeapReference<Class> */ out = out->super_class_
7186 GenerateReferenceLoadOneRegister(instruction,
7187 out_loc,
7188 super_offset,
7189 maybe_temp_loc,
7190 kCompilerReadBarrierOption);
7191 // If `out` is null, we use it for the result, and jump to the final label.
7192 __ CompareAndBranchIfZero(out, final_label, /* far_target */ false);
7193 __ Cmp(out, cls);
7194 __ B(ne, &loop, /* far_target */ false);
7195 __ Mov(out, 1);
7196 break;
7197 }
7198
7199 case TypeCheckKind::kClassHierarchyCheck: {
7200 // /* HeapReference<Class> */ out = obj->klass_
7201 GenerateReferenceLoadTwoRegisters(instruction,
7202 out_loc,
7203 obj_loc,
7204 class_offset,
7205 maybe_temp_loc,
7206 kCompilerReadBarrierOption);
7207 // Walk over the class hierarchy to find a match.
7208 vixl32::Label loop, success;
7209 __ Bind(&loop);
7210 __ Cmp(out, cls);
7211 __ B(eq, &success, /* far_target */ false);
7212 // /* HeapReference<Class> */ out = out->super_class_
7213 GenerateReferenceLoadOneRegister(instruction,
7214 out_loc,
7215 super_offset,
7216 maybe_temp_loc,
7217 kCompilerReadBarrierOption);
7218 // This is essentially a null check, but it sets the condition flags to the
7219 // proper value for the code that follows the loop, i.e. not `eq`.
7220 __ Cmp(out, 1);
7221 __ B(hs, &loop, /* far_target */ false);
7222
7223 // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
7224 // we check that the output is in a low register, so that a 16-bit MOV
7225 // encoding can be used.
7226 if (out.IsLow()) {
7227 // If `out` is null, we use it for the result, and the condition flags
7228 // have already been set to `ne`, so the IT block that comes afterwards
7229 // (and which handles the successful case) turns into a NOP (instead of
7230 // overwriting `out`).
7231 __ Bind(&success);
7232
7233 // We use the scope because of the IT block that follows.
7234 ExactAssemblyScope guard(GetVIXLAssembler(),
7235 2 * vixl32::k16BitT32InstructionSizeInBytes,
7236 CodeBufferCheckScope::kExactSize);
7237
7238 // There is only one branch to the `success` label (which is bound to this
7239 // IT block), and it has the same condition, `eq`, so in that case the MOV
7240 // is executed.
7241 __ it(eq);
7242 __ mov(eq, out, 1);
7243 } else {
7244 // If `out` is null, we use it for the result, and jump to the final label.
7245 __ B(final_label);
7246 __ Bind(&success);
7247 __ Mov(out, 1);
7248 }
7249
7250 break;
7251 }
7252
7253 case TypeCheckKind::kArrayObjectCheck: {
7254 // /* HeapReference<Class> */ out = obj->klass_
7255 GenerateReferenceLoadTwoRegisters(instruction,
7256 out_loc,
7257 obj_loc,
7258 class_offset,
7259 maybe_temp_loc,
7260 kCompilerReadBarrierOption);
7261 // Do an exact check.
7262 vixl32::Label exact_check;
7263 __ Cmp(out, cls);
7264 __ B(eq, &exact_check, /* far_target */ false);
7265 // Otherwise, we need to check that the object's class is a non-primitive array.
7266 // /* HeapReference<Class> */ out = out->component_type_
7267 GenerateReferenceLoadOneRegister(instruction,
7268 out_loc,
7269 component_offset,
7270 maybe_temp_loc,
7271 kCompilerReadBarrierOption);
7272 // If `out` is null, we use it for the result, and jump to the final label.
7273 __ CompareAndBranchIfZero(out, final_label, /* far_target */ false);
7274 GetAssembler()->LoadFromOffset(kLoadUnsignedHalfword, out, out, primitive_offset);
7275 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
7276 __ Cmp(out, 0);
7277 // We speculatively set the result to false without changing the condition
7278 // flags, which allows us to avoid some branching later.
7279 __ Mov(LeaveFlags, out, 0);
7280
7281 // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
7282 // we check that the output is in a low register, so that a 16-bit MOV
7283 // encoding can be used.
7284 if (out.IsLow()) {
7285 __ Bind(&exact_check);
7286
7287 // We use the scope because of the IT block that follows.
7288 ExactAssemblyScope guard(GetVIXLAssembler(),
7289 2 * vixl32::k16BitT32InstructionSizeInBytes,
7290 CodeBufferCheckScope::kExactSize);
7291
7292 __ it(eq);
7293 __ mov(eq, out, 1);
7294 } else {
7295 __ B(ne, final_label, /* far_target */ false);
7296 __ Bind(&exact_check);
7297 __ Mov(out, 1);
7298 }
7299
7300 break;
7301 }
7302
7303 case TypeCheckKind::kArrayCheck: {
7304 // No read barrier since the slow path will retry upon failure.
7305 // /* HeapReference<Class> */ out = obj->klass_
7306 GenerateReferenceLoadTwoRegisters(instruction,
7307 out_loc,
7308 obj_loc,
7309 class_offset,
7310 maybe_temp_loc,
7311 kWithoutReadBarrier);
7312 __ Cmp(out, cls);
7313 DCHECK(locations->OnlyCallsOnSlowPath());
7314 slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARMVIXL(instruction,
7315 /* is_fatal */ false);
7316 codegen_->AddSlowPath(slow_path);
7317 __ B(ne, slow_path->GetEntryLabel());
7318 __ Mov(out, 1);
7319 break;
7320 }
7321
7322 case TypeCheckKind::kUnresolvedCheck:
7323 case TypeCheckKind::kInterfaceCheck: {
7324 // Note that we indeed only call on slow path, but we always go
7325 // into the slow path for the unresolved and interface check
7326 // cases.
7327 //
7328 // We cannot directly call the InstanceofNonTrivial runtime
7329 // entry point without resorting to a type checking slow path
7330 // here (i.e. by calling InvokeRuntime directly), as it would
7331 // require to assign fixed registers for the inputs of this
7332 // HInstanceOf instruction (following the runtime calling
7333 // convention), which might be cluttered by the potential first
7334 // read barrier emission at the beginning of this method.
7335 //
7336 // TODO: Introduce a new runtime entry point taking the object
7337 // to test (instead of its class) as argument, and let it deal
7338 // with the read barrier issues. This will let us refactor this
7339 // case of the `switch` code as it was previously (with a direct
7340 // call to the runtime not using a type checking slow path).
7341 // This should also be beneficial for the other cases above.
7342 DCHECK(locations->OnlyCallsOnSlowPath());
7343 slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARMVIXL(instruction,
7344 /* is_fatal */ false);
7345 codegen_->AddSlowPath(slow_path);
7346 __ B(slow_path->GetEntryLabel());
7347 break;
7348 }
7349 }
7350
7351 if (done.IsReferenced()) {
7352 __ Bind(&done);
7353 }
7354
7355 if (slow_path != nullptr) {
7356 __ Bind(slow_path->GetExitLabel());
7357 }
7358 }
7359
VisitCheckCast(HCheckCast * instruction)7360 void LocationsBuilderARMVIXL::VisitCheckCast(HCheckCast* instruction) {
7361 LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
7362 bool throws_into_catch = instruction->CanThrowIntoCatchBlock();
7363
7364 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
7365 switch (type_check_kind) {
7366 case TypeCheckKind::kExactCheck:
7367 case TypeCheckKind::kAbstractClassCheck:
7368 case TypeCheckKind::kClassHierarchyCheck:
7369 case TypeCheckKind::kArrayObjectCheck:
7370 call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ?
7371 LocationSummary::kCallOnSlowPath :
7372 LocationSummary::kNoCall; // In fact, call on a fatal (non-returning) slow path.
7373 break;
7374 case TypeCheckKind::kArrayCheck:
7375 case TypeCheckKind::kUnresolvedCheck:
7376 case TypeCheckKind::kInterfaceCheck:
7377 call_kind = LocationSummary::kCallOnSlowPath;
7378 break;
7379 }
7380
7381 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
7382 locations->SetInAt(0, Location::RequiresRegister());
7383 locations->SetInAt(1, Location::RequiresRegister());
7384 locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind));
7385 }
7386
VisitCheckCast(HCheckCast * instruction)7387 void InstructionCodeGeneratorARMVIXL::VisitCheckCast(HCheckCast* instruction) {
7388 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
7389 LocationSummary* locations = instruction->GetLocations();
7390 Location obj_loc = locations->InAt(0);
7391 vixl32::Register obj = InputRegisterAt(instruction, 0);
7392 vixl32::Register cls = InputRegisterAt(instruction, 1);
7393 Location temp_loc = locations->GetTemp(0);
7394 vixl32::Register temp = RegisterFrom(temp_loc);
7395 const size_t num_temps = NumberOfCheckCastTemps(type_check_kind);
7396 DCHECK_LE(num_temps, 3u);
7397 Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
7398 Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation();
7399 const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
7400 const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
7401 const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
7402 const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
7403 const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
7404 const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
7405 const uint32_t object_array_data_offset =
7406 mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
7407
7408 // Always false for read barriers since we may need to go to the entrypoint for non-fatal cases
7409 // from false negatives. The false negatives may come from avoiding read barriers below. Avoiding
7410 // read barriers is done for performance and code size reasons.
7411 bool is_type_check_slow_path_fatal = false;
7412 if (!kEmitCompilerReadBarrier) {
7413 is_type_check_slow_path_fatal =
7414 (type_check_kind == TypeCheckKind::kExactCheck ||
7415 type_check_kind == TypeCheckKind::kAbstractClassCheck ||
7416 type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
7417 type_check_kind == TypeCheckKind::kArrayObjectCheck) &&
7418 !instruction->CanThrowIntoCatchBlock();
7419 }
7420 SlowPathCodeARMVIXL* type_check_slow_path =
7421 new (GetGraph()->GetArena()) TypeCheckSlowPathARMVIXL(instruction,
7422 is_type_check_slow_path_fatal);
7423 codegen_->AddSlowPath(type_check_slow_path);
7424
7425 vixl32::Label done;
7426 vixl32::Label* final_label = codegen_->GetFinalLabel(instruction, &done);
7427 // Avoid null check if we know obj is not null.
7428 if (instruction->MustDoNullCheck()) {
7429 __ CompareAndBranchIfZero(obj, final_label, /* far_target */ false);
7430 }
7431
7432 switch (type_check_kind) {
7433 case TypeCheckKind::kExactCheck:
7434 case TypeCheckKind::kArrayCheck: {
7435 // /* HeapReference<Class> */ temp = obj->klass_
7436 GenerateReferenceLoadTwoRegisters(instruction,
7437 temp_loc,
7438 obj_loc,
7439 class_offset,
7440 maybe_temp2_loc,
7441 kWithoutReadBarrier);
7442
7443 __ Cmp(temp, cls);
7444 // Jump to slow path for throwing the exception or doing a
7445 // more involved array check.
7446 __ B(ne, type_check_slow_path->GetEntryLabel());
7447 break;
7448 }
7449
7450 case TypeCheckKind::kAbstractClassCheck: {
7451 // /* HeapReference<Class> */ temp = obj->klass_
7452 GenerateReferenceLoadTwoRegisters(instruction,
7453 temp_loc,
7454 obj_loc,
7455 class_offset,
7456 maybe_temp2_loc,
7457 kWithoutReadBarrier);
7458
7459 // If the class is abstract, we eagerly fetch the super class of the
7460 // object to avoid doing a comparison we know will fail.
7461 vixl32::Label loop;
7462 __ Bind(&loop);
7463 // /* HeapReference<Class> */ temp = temp->super_class_
7464 GenerateReferenceLoadOneRegister(instruction,
7465 temp_loc,
7466 super_offset,
7467 maybe_temp2_loc,
7468 kWithoutReadBarrier);
7469
7470 // If the class reference currently in `temp` is null, jump to the slow path to throw the
7471 // exception.
7472 __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
7473
7474 // Otherwise, compare the classes.
7475 __ Cmp(temp, cls);
7476 __ B(ne, &loop, /* far_target */ false);
7477 break;
7478 }
7479
7480 case TypeCheckKind::kClassHierarchyCheck: {
7481 // /* HeapReference<Class> */ temp = obj->klass_
7482 GenerateReferenceLoadTwoRegisters(instruction,
7483 temp_loc,
7484 obj_loc,
7485 class_offset,
7486 maybe_temp2_loc,
7487 kWithoutReadBarrier);
7488
7489 // Walk over the class hierarchy to find a match.
7490 vixl32::Label loop;
7491 __ Bind(&loop);
7492 __ Cmp(temp, cls);
7493 __ B(eq, final_label, /* far_target */ false);
7494
7495 // /* HeapReference<Class> */ temp = temp->super_class_
7496 GenerateReferenceLoadOneRegister(instruction,
7497 temp_loc,
7498 super_offset,
7499 maybe_temp2_loc,
7500 kWithoutReadBarrier);
7501
7502 // If the class reference currently in `temp` is null, jump to the slow path to throw the
7503 // exception.
7504 __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
7505 // Otherwise, jump to the beginning of the loop.
7506 __ B(&loop);
7507 break;
7508 }
7509
7510 case TypeCheckKind::kArrayObjectCheck: {
7511 // /* HeapReference<Class> */ temp = obj->klass_
7512 GenerateReferenceLoadTwoRegisters(instruction,
7513 temp_loc,
7514 obj_loc,
7515 class_offset,
7516 maybe_temp2_loc,
7517 kWithoutReadBarrier);
7518
7519 // Do an exact check.
7520 __ Cmp(temp, cls);
7521 __ B(eq, final_label, /* far_target */ false);
7522
7523 // Otherwise, we need to check that the object's class is a non-primitive array.
7524 // /* HeapReference<Class> */ temp = temp->component_type_
7525 GenerateReferenceLoadOneRegister(instruction,
7526 temp_loc,
7527 component_offset,
7528 maybe_temp2_loc,
7529 kWithoutReadBarrier);
7530 // If the component type is null, jump to the slow path to throw the exception.
7531 __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
7532 // Otherwise,the object is indeed an array, jump to label `check_non_primitive_component_type`
7533 // to further check that this component type is not a primitive type.
7534 GetAssembler()->LoadFromOffset(kLoadUnsignedHalfword, temp, temp, primitive_offset);
7535 static_assert(Primitive::kPrimNot == 0, "Expected 0 for art::Primitive::kPrimNot");
7536 __ CompareAndBranchIfNonZero(temp, type_check_slow_path->GetEntryLabel());
7537 break;
7538 }
7539
7540 case TypeCheckKind::kUnresolvedCheck:
7541 // We always go into the type check slow path for the unresolved check case.
7542 // We cannot directly call the CheckCast runtime entry point
7543 // without resorting to a type checking slow path here (i.e. by
7544 // calling InvokeRuntime directly), as it would require to
7545 // assign fixed registers for the inputs of this HInstanceOf
7546 // instruction (following the runtime calling convention), which
7547 // might be cluttered by the potential first read barrier
7548 // emission at the beginning of this method.
7549
7550 __ B(type_check_slow_path->GetEntryLabel());
7551 break;
7552
7553 case TypeCheckKind::kInterfaceCheck: {
7554 // Avoid read barriers to improve performance of the fast path. We can not get false
7555 // positives by doing this.
7556 // /* HeapReference<Class> */ temp = obj->klass_
7557 GenerateReferenceLoadTwoRegisters(instruction,
7558 temp_loc,
7559 obj_loc,
7560 class_offset,
7561 maybe_temp2_loc,
7562 kWithoutReadBarrier);
7563
7564 // /* HeapReference<Class> */ temp = temp->iftable_
7565 GenerateReferenceLoadTwoRegisters(instruction,
7566 temp_loc,
7567 temp_loc,
7568 iftable_offset,
7569 maybe_temp2_loc,
7570 kWithoutReadBarrier);
7571 // Iftable is never null.
7572 __ Ldr(RegisterFrom(maybe_temp2_loc), MemOperand(temp, array_length_offset));
7573 // Loop through the iftable and check if any class matches.
7574 vixl32::Label start_loop;
7575 __ Bind(&start_loop);
7576 __ CompareAndBranchIfZero(RegisterFrom(maybe_temp2_loc),
7577 type_check_slow_path->GetEntryLabel());
7578 __ Ldr(RegisterFrom(maybe_temp3_loc), MemOperand(temp, object_array_data_offset));
7579 GetAssembler()->MaybeUnpoisonHeapReference(RegisterFrom(maybe_temp3_loc));
7580 // Go to next interface.
7581 __ Add(temp, temp, Operand::From(2 * kHeapReferenceSize));
7582 __ Sub(RegisterFrom(maybe_temp2_loc), RegisterFrom(maybe_temp2_loc), 2);
7583 // Compare the classes and continue the loop if they do not match.
7584 __ Cmp(cls, RegisterFrom(maybe_temp3_loc));
7585 __ B(ne, &start_loop, /* far_target */ false);
7586 break;
7587 }
7588 }
7589 if (done.IsReferenced()) {
7590 __ Bind(&done);
7591 }
7592
7593 __ Bind(type_check_slow_path->GetExitLabel());
7594 }
7595
VisitMonitorOperation(HMonitorOperation * instruction)7596 void LocationsBuilderARMVIXL::VisitMonitorOperation(HMonitorOperation* instruction) {
7597 LocationSummary* locations =
7598 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
7599 InvokeRuntimeCallingConventionARMVIXL calling_convention;
7600 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
7601 }
7602
VisitMonitorOperation(HMonitorOperation * instruction)7603 void InstructionCodeGeneratorARMVIXL::VisitMonitorOperation(HMonitorOperation* instruction) {
7604 codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject,
7605 instruction,
7606 instruction->GetDexPc());
7607 if (instruction->IsEnter()) {
7608 CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
7609 } else {
7610 CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
7611 }
7612 }
7613
VisitAnd(HAnd * instruction)7614 void LocationsBuilderARMVIXL::VisitAnd(HAnd* instruction) {
7615 HandleBitwiseOperation(instruction, AND);
7616 }
7617
VisitOr(HOr * instruction)7618 void LocationsBuilderARMVIXL::VisitOr(HOr* instruction) {
7619 HandleBitwiseOperation(instruction, ORR);
7620 }
7621
VisitXor(HXor * instruction)7622 void LocationsBuilderARMVIXL::VisitXor(HXor* instruction) {
7623 HandleBitwiseOperation(instruction, EOR);
7624 }
7625
HandleBitwiseOperation(HBinaryOperation * instruction,Opcode opcode)7626 void LocationsBuilderARMVIXL::HandleBitwiseOperation(HBinaryOperation* instruction, Opcode opcode) {
7627 LocationSummary* locations =
7628 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
7629 DCHECK(instruction->GetResultType() == Primitive::kPrimInt
7630 || instruction->GetResultType() == Primitive::kPrimLong);
7631 // Note: GVN reorders commutative operations to have the constant on the right hand side.
7632 locations->SetInAt(0, Location::RequiresRegister());
7633 locations->SetInAt(1, ArmEncodableConstantOrRegister(instruction->InputAt(1), opcode));
7634 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
7635 }
7636
VisitAnd(HAnd * instruction)7637 void InstructionCodeGeneratorARMVIXL::VisitAnd(HAnd* instruction) {
7638 HandleBitwiseOperation(instruction);
7639 }
7640
VisitOr(HOr * instruction)7641 void InstructionCodeGeneratorARMVIXL::VisitOr(HOr* instruction) {
7642 HandleBitwiseOperation(instruction);
7643 }
7644
VisitXor(HXor * instruction)7645 void InstructionCodeGeneratorARMVIXL::VisitXor(HXor* instruction) {
7646 HandleBitwiseOperation(instruction);
7647 }
7648
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instruction)7649 void LocationsBuilderARMVIXL::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
7650 LocationSummary* locations =
7651 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
7652 DCHECK(instruction->GetResultType() == Primitive::kPrimInt
7653 || instruction->GetResultType() == Primitive::kPrimLong);
7654
7655 locations->SetInAt(0, Location::RequiresRegister());
7656 locations->SetInAt(1, Location::RequiresRegister());
7657 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
7658 }
7659
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instruction)7660 void InstructionCodeGeneratorARMVIXL::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
7661 LocationSummary* locations = instruction->GetLocations();
7662 Location first = locations->InAt(0);
7663 Location second = locations->InAt(1);
7664 Location out = locations->Out();
7665
7666 if (instruction->GetResultType() == Primitive::kPrimInt) {
7667 vixl32::Register first_reg = RegisterFrom(first);
7668 vixl32::Register second_reg = RegisterFrom(second);
7669 vixl32::Register out_reg = RegisterFrom(out);
7670
7671 switch (instruction->GetOpKind()) {
7672 case HInstruction::kAnd:
7673 __ Bic(out_reg, first_reg, second_reg);
7674 break;
7675 case HInstruction::kOr:
7676 __ Orn(out_reg, first_reg, second_reg);
7677 break;
7678 // There is no EON on arm.
7679 case HInstruction::kXor:
7680 default:
7681 LOG(FATAL) << "Unexpected instruction " << instruction->DebugName();
7682 UNREACHABLE();
7683 }
7684 return;
7685
7686 } else {
7687 DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
7688 vixl32::Register first_low = LowRegisterFrom(first);
7689 vixl32::Register first_high = HighRegisterFrom(first);
7690 vixl32::Register second_low = LowRegisterFrom(second);
7691 vixl32::Register second_high = HighRegisterFrom(second);
7692 vixl32::Register out_low = LowRegisterFrom(out);
7693 vixl32::Register out_high = HighRegisterFrom(out);
7694
7695 switch (instruction->GetOpKind()) {
7696 case HInstruction::kAnd:
7697 __ Bic(out_low, first_low, second_low);
7698 __ Bic(out_high, first_high, second_high);
7699 break;
7700 case HInstruction::kOr:
7701 __ Orn(out_low, first_low, second_low);
7702 __ Orn(out_high, first_high, second_high);
7703 break;
7704 // There is no EON on arm.
7705 case HInstruction::kXor:
7706 default:
7707 LOG(FATAL) << "Unexpected instruction " << instruction->DebugName();
7708 UNREACHABLE();
7709 }
7710 }
7711 }
7712
VisitDataProcWithShifterOp(HDataProcWithShifterOp * instruction)7713 void LocationsBuilderARMVIXL::VisitDataProcWithShifterOp(
7714 HDataProcWithShifterOp* instruction) {
7715 DCHECK(instruction->GetType() == Primitive::kPrimInt ||
7716 instruction->GetType() == Primitive::kPrimLong);
7717 LocationSummary* locations =
7718 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
7719 const bool overlap = instruction->GetType() == Primitive::kPrimLong &&
7720 HDataProcWithShifterOp::IsExtensionOp(instruction->GetOpKind());
7721
7722 locations->SetInAt(0, Location::RequiresRegister());
7723 locations->SetInAt(1, Location::RequiresRegister());
7724 locations->SetOut(Location::RequiresRegister(),
7725 overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap);
7726 }
7727
VisitDataProcWithShifterOp(HDataProcWithShifterOp * instruction)7728 void InstructionCodeGeneratorARMVIXL::VisitDataProcWithShifterOp(
7729 HDataProcWithShifterOp* instruction) {
7730 const LocationSummary* const locations = instruction->GetLocations();
7731 const HInstruction::InstructionKind kind = instruction->GetInstrKind();
7732 const HDataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind();
7733
7734 if (instruction->GetType() == Primitive::kPrimInt) {
7735 DCHECK(!HDataProcWithShifterOp::IsExtensionOp(op_kind));
7736
7737 const vixl32::Register second = instruction->InputAt(1)->GetType() == Primitive::kPrimLong
7738 ? LowRegisterFrom(locations->InAt(1))
7739 : InputRegisterAt(instruction, 1);
7740
7741 GenerateDataProcInstruction(kind,
7742 OutputRegister(instruction),
7743 InputRegisterAt(instruction, 0),
7744 Operand(second,
7745 ShiftFromOpKind(op_kind),
7746 instruction->GetShiftAmount()),
7747 codegen_);
7748 } else {
7749 DCHECK_EQ(instruction->GetType(), Primitive::kPrimLong);
7750
7751 if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) {
7752 const vixl32::Register second = InputRegisterAt(instruction, 1);
7753
7754 DCHECK(!LowRegisterFrom(locations->Out()).Is(second));
7755 GenerateDataProc(kind,
7756 locations->Out(),
7757 locations->InAt(0),
7758 second,
7759 Operand(second, ShiftType::ASR, 31),
7760 codegen_);
7761 } else {
7762 GenerateLongDataProc(instruction, codegen_);
7763 }
7764 }
7765 }
7766
7767 // TODO(VIXL): Remove optimizations in the helper when they are implemented in vixl.
GenerateAndConst(vixl32::Register out,vixl32::Register first,uint32_t value)7768 void InstructionCodeGeneratorARMVIXL::GenerateAndConst(vixl32::Register out,
7769 vixl32::Register first,
7770 uint32_t value) {
7771 // Optimize special cases for individual halfs of `and-long` (`and` is simplified earlier).
7772 if (value == 0xffffffffu) {
7773 if (!out.Is(first)) {
7774 __ Mov(out, first);
7775 }
7776 return;
7777 }
7778 if (value == 0u) {
7779 __ Mov(out, 0);
7780 return;
7781 }
7782 if (GetAssembler()->ShifterOperandCanHold(AND, value)) {
7783 __ And(out, first, value);
7784 } else if (GetAssembler()->ShifterOperandCanHold(BIC, ~value)) {
7785 __ Bic(out, first, ~value);
7786 } else {
7787 DCHECK(IsPowerOfTwo(value + 1));
7788 __ Ubfx(out, first, 0, WhichPowerOf2(value + 1));
7789 }
7790 }
7791
7792 // TODO(VIXL): Remove optimizations in the helper when they are implemented in vixl.
GenerateOrrConst(vixl32::Register out,vixl32::Register first,uint32_t value)7793 void InstructionCodeGeneratorARMVIXL::GenerateOrrConst(vixl32::Register out,
7794 vixl32::Register first,
7795 uint32_t value) {
7796 // Optimize special cases for individual halfs of `or-long` (`or` is simplified earlier).
7797 if (value == 0u) {
7798 if (!out.Is(first)) {
7799 __ Mov(out, first);
7800 }
7801 return;
7802 }
7803 if (value == 0xffffffffu) {
7804 __ Mvn(out, 0);
7805 return;
7806 }
7807 if (GetAssembler()->ShifterOperandCanHold(ORR, value)) {
7808 __ Orr(out, first, value);
7809 } else {
7810 DCHECK(GetAssembler()->ShifterOperandCanHold(ORN, ~value));
7811 __ Orn(out, first, ~value);
7812 }
7813 }
7814
7815 // TODO(VIXL): Remove optimizations in the helper when they are implemented in vixl.
GenerateEorConst(vixl32::Register out,vixl32::Register first,uint32_t value)7816 void InstructionCodeGeneratorARMVIXL::GenerateEorConst(vixl32::Register out,
7817 vixl32::Register first,
7818 uint32_t value) {
7819 // Optimize special case for individual halfs of `xor-long` (`xor` is simplified earlier).
7820 if (value == 0u) {
7821 if (!out.Is(first)) {
7822 __ Mov(out, first);
7823 }
7824 return;
7825 }
7826 __ Eor(out, first, value);
7827 }
7828
GenerateAddLongConst(Location out,Location first,uint64_t value)7829 void InstructionCodeGeneratorARMVIXL::GenerateAddLongConst(Location out,
7830 Location first,
7831 uint64_t value) {
7832 vixl32::Register out_low = LowRegisterFrom(out);
7833 vixl32::Register out_high = HighRegisterFrom(out);
7834 vixl32::Register first_low = LowRegisterFrom(first);
7835 vixl32::Register first_high = HighRegisterFrom(first);
7836 uint32_t value_low = Low32Bits(value);
7837 uint32_t value_high = High32Bits(value);
7838 if (value_low == 0u) {
7839 if (!out_low.Is(first_low)) {
7840 __ Mov(out_low, first_low);
7841 }
7842 __ Add(out_high, first_high, value_high);
7843 return;
7844 }
7845 __ Adds(out_low, first_low, value_low);
7846 if (GetAssembler()->ShifterOperandCanHold(ADC, value_high, kCcDontCare)) {
7847 __ Adc(out_high, first_high, value_high);
7848 } else if (GetAssembler()->ShifterOperandCanHold(SBC, ~value_high, kCcDontCare)) {
7849 __ Sbc(out_high, first_high, ~value_high);
7850 } else {
7851 LOG(FATAL) << "Unexpected constant " << value_high;
7852 UNREACHABLE();
7853 }
7854 }
7855
HandleBitwiseOperation(HBinaryOperation * instruction)7856 void InstructionCodeGeneratorARMVIXL::HandleBitwiseOperation(HBinaryOperation* instruction) {
7857 LocationSummary* locations = instruction->GetLocations();
7858 Location first = locations->InAt(0);
7859 Location second = locations->InAt(1);
7860 Location out = locations->Out();
7861
7862 if (second.IsConstant()) {
7863 uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
7864 uint32_t value_low = Low32Bits(value);
7865 if (instruction->GetResultType() == Primitive::kPrimInt) {
7866 vixl32::Register first_reg = InputRegisterAt(instruction, 0);
7867 vixl32::Register out_reg = OutputRegister(instruction);
7868 if (instruction->IsAnd()) {
7869 GenerateAndConst(out_reg, first_reg, value_low);
7870 } else if (instruction->IsOr()) {
7871 GenerateOrrConst(out_reg, first_reg, value_low);
7872 } else {
7873 DCHECK(instruction->IsXor());
7874 GenerateEorConst(out_reg, first_reg, value_low);
7875 }
7876 } else {
7877 DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
7878 uint32_t value_high = High32Bits(value);
7879 vixl32::Register first_low = LowRegisterFrom(first);
7880 vixl32::Register first_high = HighRegisterFrom(first);
7881 vixl32::Register out_low = LowRegisterFrom(out);
7882 vixl32::Register out_high = HighRegisterFrom(out);
7883 if (instruction->IsAnd()) {
7884 GenerateAndConst(out_low, first_low, value_low);
7885 GenerateAndConst(out_high, first_high, value_high);
7886 } else if (instruction->IsOr()) {
7887 GenerateOrrConst(out_low, first_low, value_low);
7888 GenerateOrrConst(out_high, first_high, value_high);
7889 } else {
7890 DCHECK(instruction->IsXor());
7891 GenerateEorConst(out_low, first_low, value_low);
7892 GenerateEorConst(out_high, first_high, value_high);
7893 }
7894 }
7895 return;
7896 }
7897
7898 if (instruction->GetResultType() == Primitive::kPrimInt) {
7899 vixl32::Register first_reg = InputRegisterAt(instruction, 0);
7900 vixl32::Register second_reg = InputRegisterAt(instruction, 1);
7901 vixl32::Register out_reg = OutputRegister(instruction);
7902 if (instruction->IsAnd()) {
7903 __ And(out_reg, first_reg, second_reg);
7904 } else if (instruction->IsOr()) {
7905 __ Orr(out_reg, first_reg, second_reg);
7906 } else {
7907 DCHECK(instruction->IsXor());
7908 __ Eor(out_reg, first_reg, second_reg);
7909 }
7910 } else {
7911 DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
7912 vixl32::Register first_low = LowRegisterFrom(first);
7913 vixl32::Register first_high = HighRegisterFrom(first);
7914 vixl32::Register second_low = LowRegisterFrom(second);
7915 vixl32::Register second_high = HighRegisterFrom(second);
7916 vixl32::Register out_low = LowRegisterFrom(out);
7917 vixl32::Register out_high = HighRegisterFrom(out);
7918 if (instruction->IsAnd()) {
7919 __ And(out_low, first_low, second_low);
7920 __ And(out_high, first_high, second_high);
7921 } else if (instruction->IsOr()) {
7922 __ Orr(out_low, first_low, second_low);
7923 __ Orr(out_high, first_high, second_high);
7924 } else {
7925 DCHECK(instruction->IsXor());
7926 __ Eor(out_low, first_low, second_low);
7927 __ Eor(out_high, first_high, second_high);
7928 }
7929 }
7930 }
7931
GenerateReferenceLoadOneRegister(HInstruction * instruction,Location out,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)7932 void InstructionCodeGeneratorARMVIXL::GenerateReferenceLoadOneRegister(
7933 HInstruction* instruction,
7934 Location out,
7935 uint32_t offset,
7936 Location maybe_temp,
7937 ReadBarrierOption read_barrier_option) {
7938 vixl32::Register out_reg = RegisterFrom(out);
7939 if (read_barrier_option == kWithReadBarrier) {
7940 CHECK(kEmitCompilerReadBarrier);
7941 DCHECK(maybe_temp.IsRegister()) << maybe_temp;
7942 if (kUseBakerReadBarrier) {
7943 // Load with fast path based Baker's read barrier.
7944 // /* HeapReference<Object> */ out = *(out + offset)
7945 codegen_->GenerateFieldLoadWithBakerReadBarrier(
7946 instruction, out, out_reg, offset, maybe_temp, /* needs_null_check */ false);
7947 } else {
7948 // Load with slow path based read barrier.
7949 // Save the value of `out` into `maybe_temp` before overwriting it
7950 // in the following move operation, as we will need it for the
7951 // read barrier below.
7952 __ Mov(RegisterFrom(maybe_temp), out_reg);
7953 // /* HeapReference<Object> */ out = *(out + offset)
7954 GetAssembler()->LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
7955 codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
7956 }
7957 } else {
7958 // Plain load with no read barrier.
7959 // /* HeapReference<Object> */ out = *(out + offset)
7960 GetAssembler()->LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
7961 GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
7962 }
7963 }
7964
GenerateReferenceLoadTwoRegisters(HInstruction * instruction,Location out,Location obj,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)7965 void InstructionCodeGeneratorARMVIXL::GenerateReferenceLoadTwoRegisters(
7966 HInstruction* instruction,
7967 Location out,
7968 Location obj,
7969 uint32_t offset,
7970 Location maybe_temp,
7971 ReadBarrierOption read_barrier_option) {
7972 vixl32::Register out_reg = RegisterFrom(out);
7973 vixl32::Register obj_reg = RegisterFrom(obj);
7974 if (read_barrier_option == kWithReadBarrier) {
7975 CHECK(kEmitCompilerReadBarrier);
7976 if (kUseBakerReadBarrier) {
7977 DCHECK(maybe_temp.IsRegister()) << maybe_temp;
7978 // Load with fast path based Baker's read barrier.
7979 // /* HeapReference<Object> */ out = *(obj + offset)
7980 codegen_->GenerateFieldLoadWithBakerReadBarrier(
7981 instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check */ false);
7982 } else {
7983 // Load with slow path based read barrier.
7984 // /* HeapReference<Object> */ out = *(obj + offset)
7985 GetAssembler()->LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
7986 codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
7987 }
7988 } else {
7989 // Plain load with no read barrier.
7990 // /* HeapReference<Object> */ out = *(obj + offset)
7991 GetAssembler()->LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
7992 GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
7993 }
7994 }
7995
GenerateGcRootFieldLoad(HInstruction * instruction,Location root,vixl32::Register obj,uint32_t offset,ReadBarrierOption read_barrier_option)7996 void InstructionCodeGeneratorARMVIXL::GenerateGcRootFieldLoad(
7997 HInstruction* instruction,
7998 Location root,
7999 vixl32::Register obj,
8000 uint32_t offset,
8001 ReadBarrierOption read_barrier_option) {
8002 vixl32::Register root_reg = RegisterFrom(root);
8003 if (read_barrier_option == kWithReadBarrier) {
8004 DCHECK(kEmitCompilerReadBarrier);
8005 if (kUseBakerReadBarrier) {
8006 // Fast path implementation of art::ReadBarrier::BarrierForRoot when
8007 // Baker's read barrier are used.
8008 //
8009 // Note that we do not actually check the value of
8010 // `GetIsGcMarking()` to decide whether to mark the loaded GC
8011 // root or not. Instead, we load into `temp` the read barrier
8012 // mark entry point corresponding to register `root`. If `temp`
8013 // is null, it means that `GetIsGcMarking()` is false, and vice
8014 // versa.
8015 //
8016 // temp = Thread::Current()->pReadBarrierMarkReg ## root.reg()
8017 // GcRoot<mirror::Object> root = *(obj+offset); // Original reference load.
8018 // if (temp != nullptr) { // <=> Thread::Current()->GetIsGcMarking()
8019 // // Slow path.
8020 // root = temp(root); // root = ReadBarrier::Mark(root); // Runtime entry point call.
8021 // }
8022
8023 // Slow path marking the GC root `root`. The entrypoint will already be loaded in `temp`.
8024 Location temp = LocationFrom(lr);
8025 SlowPathCodeARMVIXL* slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARMVIXL(
8026 instruction, root, /* entrypoint */ temp);
8027 codegen_->AddSlowPath(slow_path);
8028
8029 // temp = Thread::Current()->pReadBarrierMarkReg ## root.reg()
8030 const int32_t entry_point_offset =
8031 CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(root.reg());
8032 // Loading the entrypoint does not require a load acquire since it is only changed when
8033 // threads are suspended or running a checkpoint.
8034 GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(temp), tr, entry_point_offset);
8035
8036 // /* GcRoot<mirror::Object> */ root = *(obj + offset)
8037 GetAssembler()->LoadFromOffset(kLoadWord, root_reg, obj, offset);
8038 static_assert(
8039 sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
8040 "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
8041 "have different sizes.");
8042 static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
8043 "art::mirror::CompressedReference<mirror::Object> and int32_t "
8044 "have different sizes.");
8045
8046 // The entrypoint is null when the GC is not marking, this prevents one load compared to
8047 // checking GetIsGcMarking.
8048 __ CompareAndBranchIfNonZero(RegisterFrom(temp), slow_path->GetEntryLabel());
8049 __ Bind(slow_path->GetExitLabel());
8050 } else {
8051 // GC root loaded through a slow path for read barriers other
8052 // than Baker's.
8053 // /* GcRoot<mirror::Object>* */ root = obj + offset
8054 __ Add(root_reg, obj, offset);
8055 // /* mirror::Object* */ root = root->Read()
8056 codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
8057 }
8058 } else {
8059 // Plain GC root load with no read barrier.
8060 // /* GcRoot<mirror::Object> */ root = *(obj + offset)
8061 GetAssembler()->LoadFromOffset(kLoadWord, root_reg, obj, offset);
8062 // Note that GC roots are not affected by heap poisoning, thus we
8063 // do not have to unpoison `root_reg` here.
8064 }
8065 }
8066
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,vixl32::Register obj,uint32_t offset,Location temp,bool needs_null_check)8067 void CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
8068 Location ref,
8069 vixl32::Register obj,
8070 uint32_t offset,
8071 Location temp,
8072 bool needs_null_check) {
8073 DCHECK(kEmitCompilerReadBarrier);
8074 DCHECK(kUseBakerReadBarrier);
8075
8076 // /* HeapReference<Object> */ ref = *(obj + offset)
8077 Location no_index = Location::NoLocation();
8078 ScaleFactor no_scale_factor = TIMES_1;
8079 GenerateReferenceLoadWithBakerReadBarrier(
8080 instruction, ref, obj, offset, no_index, no_scale_factor, temp, needs_null_check);
8081 }
8082
GenerateArrayLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,vixl32::Register obj,uint32_t data_offset,Location index,Location temp,bool needs_null_check)8083 void CodeGeneratorARMVIXL::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
8084 Location ref,
8085 vixl32::Register obj,
8086 uint32_t data_offset,
8087 Location index,
8088 Location temp,
8089 bool needs_null_check) {
8090 DCHECK(kEmitCompilerReadBarrier);
8091 DCHECK(kUseBakerReadBarrier);
8092
8093 static_assert(
8094 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
8095 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
8096 // /* HeapReference<Object> */ ref =
8097 // *(obj + data_offset + index * sizeof(HeapReference<Object>))
8098 ScaleFactor scale_factor = TIMES_4;
8099 GenerateReferenceLoadWithBakerReadBarrier(
8100 instruction, ref, obj, data_offset, index, scale_factor, temp, needs_null_check);
8101 }
8102
GenerateReferenceLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,vixl32::Register obj,uint32_t offset,Location index,ScaleFactor scale_factor,Location temp,bool needs_null_check,bool always_update_field,vixl32::Register * temp2)8103 void CodeGeneratorARMVIXL::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
8104 Location ref,
8105 vixl32::Register obj,
8106 uint32_t offset,
8107 Location index,
8108 ScaleFactor scale_factor,
8109 Location temp,
8110 bool needs_null_check,
8111 bool always_update_field,
8112 vixl32::Register* temp2) {
8113 DCHECK(kEmitCompilerReadBarrier);
8114 DCHECK(kUseBakerReadBarrier);
8115
8116 // Query `art::Thread::Current()->GetIsGcMarking()` to decide
8117 // whether we need to enter the slow path to mark the reference.
8118 // Then, in the slow path, check the gray bit in the lock word of
8119 // the reference's holder (`obj`) to decide whether to mark `ref` or
8120 // not.
8121 //
8122 // Note that we do not actually check the value of `GetIsGcMarking()`;
8123 // instead, we load into `temp3` the read barrier mark entry point
8124 // corresponding to register `ref`. If `temp3` is null, it means
8125 // that `GetIsGcMarking()` is false, and vice versa.
8126 //
8127 // temp3 = Thread::Current()->pReadBarrierMarkReg ## root.reg()
8128 // if (temp3 != nullptr) { // <=> Thread::Current()->GetIsGcMarking()
8129 // // Slow path.
8130 // uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
8131 // lfence; // Load fence or artificial data dependency to prevent load-load reordering
8132 // HeapReference<mirror::Object> ref = *src; // Original reference load.
8133 // bool is_gray = (rb_state == ReadBarrier::GrayState());
8134 // if (is_gray) {
8135 // ref = temp3(ref); // ref = ReadBarrier::Mark(ref); // Runtime entry point call.
8136 // }
8137 // } else {
8138 // HeapReference<mirror::Object> ref = *src; // Original reference load.
8139 // }
8140
8141 vixl32::Register temp_reg = RegisterFrom(temp);
8142
8143 // Slow path marking the object `ref` when the GC is marking. The
8144 // entrypoint will already be loaded in `temp3`.
8145 Location temp3 = LocationFrom(lr);
8146 SlowPathCodeARMVIXL* slow_path;
8147 if (always_update_field) {
8148 DCHECK(temp2 != nullptr);
8149 // LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARMVIXL
8150 // only supports address of the form `obj + field_offset`, where
8151 // `obj` is a register and `field_offset` is a register pair (of
8152 // which only the lower half is used). Thus `offset` and
8153 // `scale_factor` above are expected to be null in this code path.
8154 DCHECK_EQ(offset, 0u);
8155 DCHECK_EQ(scale_factor, ScaleFactor::TIMES_1);
8156 Location field_offset = index;
8157 slow_path =
8158 new (GetGraph()->GetArena()) LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARMVIXL(
8159 instruction,
8160 ref,
8161 obj,
8162 offset,
8163 /* index */ field_offset,
8164 scale_factor,
8165 needs_null_check,
8166 temp_reg,
8167 *temp2,
8168 /* entrypoint */ temp3);
8169 } else {
8170 slow_path = new (GetGraph()->GetArena()) LoadReferenceWithBakerReadBarrierSlowPathARMVIXL(
8171 instruction,
8172 ref,
8173 obj,
8174 offset,
8175 index,
8176 scale_factor,
8177 needs_null_check,
8178 temp_reg,
8179 /* entrypoint */ temp3);
8180 }
8181 AddSlowPath(slow_path);
8182
8183 // temp3 = Thread::Current()->pReadBarrierMarkReg ## ref.reg()
8184 const int32_t entry_point_offset =
8185 CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(ref.reg());
8186 // Loading the entrypoint does not require a load acquire since it is only changed when
8187 // threads are suspended or running a checkpoint.
8188 GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(temp3), tr, entry_point_offset);
8189 // The entrypoint is null when the GC is not marking, this prevents one load compared to
8190 // checking GetIsGcMarking.
8191 __ CompareAndBranchIfNonZero(RegisterFrom(temp3), slow_path->GetEntryLabel());
8192 // Fast path: just load the reference.
8193 GenerateRawReferenceLoad(instruction, ref, obj, offset, index, scale_factor, needs_null_check);
8194 __ Bind(slow_path->GetExitLabel());
8195 }
8196
GenerateRawReferenceLoad(HInstruction * instruction,Location ref,vixl::aarch32::Register obj,uint32_t offset,Location index,ScaleFactor scale_factor,bool needs_null_check)8197 void CodeGeneratorARMVIXL::GenerateRawReferenceLoad(HInstruction* instruction,
8198 Location ref,
8199 vixl::aarch32::Register obj,
8200 uint32_t offset,
8201 Location index,
8202 ScaleFactor scale_factor,
8203 bool needs_null_check) {
8204 Primitive::Type type = Primitive::kPrimNot;
8205 vixl32::Register ref_reg = RegisterFrom(ref, type);
8206
8207 // If needed, vixl::EmissionCheckScope guards are used to ensure
8208 // that no pools are emitted between the load (macro) instruction
8209 // and MaybeRecordImplicitNullCheck.
8210
8211 if (index.IsValid()) {
8212 // Load types involving an "index": ArrayGet,
8213 // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject
8214 // intrinsics.
8215 // /* HeapReference<mirror::Object> */ ref = *(obj + offset + (index << scale_factor))
8216 if (index.IsConstant()) {
8217 size_t computed_offset =
8218 (Int32ConstantFrom(index) << scale_factor) + offset;
8219 vixl::EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
8220 GetAssembler()->LoadFromOffset(kLoadWord, ref_reg, obj, computed_offset);
8221 if (needs_null_check) {
8222 MaybeRecordImplicitNullCheck(instruction);
8223 }
8224 } else {
8225 // Handle the special case of the
8226 // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject
8227 // intrinsics, which use a register pair as index ("long
8228 // offset"), of which only the low part contains data.
8229 vixl32::Register index_reg = index.IsRegisterPair()
8230 ? LowRegisterFrom(index)
8231 : RegisterFrom(index);
8232 UseScratchRegisterScope temps(GetVIXLAssembler());
8233 vixl32::Register temp = temps.Acquire();
8234 __ Add(temp, obj, Operand(index_reg, ShiftType::LSL, scale_factor));
8235 {
8236 vixl::EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
8237 GetAssembler()->LoadFromOffset(kLoadWord, ref_reg, temp, offset);
8238 if (needs_null_check) {
8239 MaybeRecordImplicitNullCheck(instruction);
8240 }
8241 }
8242 }
8243 } else {
8244 // /* HeapReference<mirror::Object> */ ref = *(obj + offset)
8245 vixl::EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
8246 GetAssembler()->LoadFromOffset(kLoadWord, ref_reg, obj, offset);
8247 if (needs_null_check) {
8248 MaybeRecordImplicitNullCheck(instruction);
8249 }
8250 }
8251
8252 // Object* ref = ref_addr->AsMirrorPtr()
8253 GetAssembler()->MaybeUnpoisonHeapReference(ref_reg);
8254 }
8255
GenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)8256 void CodeGeneratorARMVIXL::GenerateReadBarrierSlow(HInstruction* instruction,
8257 Location out,
8258 Location ref,
8259 Location obj,
8260 uint32_t offset,
8261 Location index) {
8262 DCHECK(kEmitCompilerReadBarrier);
8263
8264 // Insert a slow path based read barrier *after* the reference load.
8265 //
8266 // If heap poisoning is enabled, the unpoisoning of the loaded
8267 // reference will be carried out by the runtime within the slow
8268 // path.
8269 //
8270 // Note that `ref` currently does not get unpoisoned (when heap
8271 // poisoning is enabled), which is alright as the `ref` argument is
8272 // not used by the artReadBarrierSlow entry point.
8273 //
8274 // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
8275 SlowPathCodeARMVIXL* slow_path = new (GetGraph()->GetArena())
8276 ReadBarrierForHeapReferenceSlowPathARMVIXL(instruction, out, ref, obj, offset, index);
8277 AddSlowPath(slow_path);
8278
8279 __ B(slow_path->GetEntryLabel());
8280 __ Bind(slow_path->GetExitLabel());
8281 }
8282
MaybeGenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)8283 void CodeGeneratorARMVIXL::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
8284 Location out,
8285 Location ref,
8286 Location obj,
8287 uint32_t offset,
8288 Location index) {
8289 if (kEmitCompilerReadBarrier) {
8290 // Baker's read barriers shall be handled by the fast path
8291 // (CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier).
8292 DCHECK(!kUseBakerReadBarrier);
8293 // If heap poisoning is enabled, unpoisoning will be taken care of
8294 // by the runtime within the slow path.
8295 GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
8296 } else if (kPoisonHeapReferences) {
8297 GetAssembler()->UnpoisonHeapReference(RegisterFrom(out));
8298 }
8299 }
8300
GenerateReadBarrierForRootSlow(HInstruction * instruction,Location out,Location root)8301 void CodeGeneratorARMVIXL::GenerateReadBarrierForRootSlow(HInstruction* instruction,
8302 Location out,
8303 Location root) {
8304 DCHECK(kEmitCompilerReadBarrier);
8305
8306 // Insert a slow path based read barrier *after* the GC root load.
8307 //
8308 // Note that GC roots are not affected by heap poisoning, so we do
8309 // not need to do anything special for this here.
8310 SlowPathCodeARMVIXL* slow_path =
8311 new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathARMVIXL(instruction, out, root);
8312 AddSlowPath(slow_path);
8313
8314 __ B(slow_path->GetEntryLabel());
8315 __ Bind(slow_path->GetExitLabel());
8316 }
8317
8318 // Check if the desired_dispatch_info is supported. If it is, return it,
8319 // otherwise return a fall-back info that should be used instead.
GetSupportedInvokeStaticOrDirectDispatch(const HInvokeStaticOrDirect::DispatchInfo & desired_dispatch_info,HInvokeStaticOrDirect * invoke ATTRIBUTE_UNUSED)8320 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARMVIXL::GetSupportedInvokeStaticOrDirectDispatch(
8321 const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
8322 HInvokeStaticOrDirect* invoke ATTRIBUTE_UNUSED) {
8323 return desired_dispatch_info;
8324 }
8325
GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect * invoke,vixl32::Register temp)8326 vixl32::Register CodeGeneratorARMVIXL::GetInvokeStaticOrDirectExtraParameter(
8327 HInvokeStaticOrDirect* invoke, vixl32::Register temp) {
8328 DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u);
8329 Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
8330 if (!invoke->GetLocations()->Intrinsified()) {
8331 return RegisterFrom(location);
8332 }
8333 // For intrinsics we allow any location, so it may be on the stack.
8334 if (!location.IsRegister()) {
8335 GetAssembler()->LoadFromOffset(kLoadWord, temp, sp, location.GetStackIndex());
8336 return temp;
8337 }
8338 // For register locations, check if the register was saved. If so, get it from the stack.
8339 // Note: There is a chance that the register was saved but not overwritten, so we could
8340 // save one load. However, since this is just an intrinsic slow path we prefer this
8341 // simple and more robust approach rather that trying to determine if that's the case.
8342 SlowPathCode* slow_path = GetCurrentSlowPath();
8343 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(RegisterFrom(location).GetCode())) {
8344 int stack_offset = slow_path->GetStackOffsetOfCoreRegister(RegisterFrom(location).GetCode());
8345 GetAssembler()->LoadFromOffset(kLoadWord, temp, sp, stack_offset);
8346 return temp;
8347 }
8348 return RegisterFrom(location);
8349 }
8350
GenerateCalleeMethodStaticOrDirectCall(HInvokeStaticOrDirect * invoke,Location temp)8351 Location CodeGeneratorARMVIXL::GenerateCalleeMethodStaticOrDirectCall(
8352 HInvokeStaticOrDirect* invoke, Location temp) {
8353 Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp.
8354 switch (invoke->GetMethodLoadKind()) {
8355 case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: {
8356 uint32_t offset =
8357 GetThreadOffset<kArmPointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
8358 // temp = thread->string_init_entrypoint
8359 GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(temp), tr, offset);
8360 break;
8361 }
8362 case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
8363 callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
8364 break;
8365 case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
8366 __ Mov(RegisterFrom(temp), Operand::From(invoke->GetMethodAddress()));
8367 break;
8368 case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: {
8369 HArmDexCacheArraysBase* base =
8370 invoke->InputAt(invoke->GetSpecialInputIndex())->AsArmDexCacheArraysBase();
8371 vixl32::Register base_reg = GetInvokeStaticOrDirectExtraParameter(invoke, RegisterFrom(temp));
8372 int32_t offset = invoke->GetDexCacheArrayOffset() - base->GetElementOffset();
8373 GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(temp), base_reg, offset);
8374 break;
8375 }
8376 case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: {
8377 Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
8378 vixl32::Register method_reg;
8379 vixl32::Register reg = RegisterFrom(temp);
8380 if (current_method.IsRegister()) {
8381 method_reg = RegisterFrom(current_method);
8382 } else {
8383 DCHECK(invoke->GetLocations()->Intrinsified());
8384 DCHECK(!current_method.IsValid());
8385 method_reg = reg;
8386 GetAssembler()->LoadFromOffset(kLoadWord, reg, sp, kCurrentMethodStackOffset);
8387 }
8388 // /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_;
8389 GetAssembler()->LoadFromOffset(
8390 kLoadWord,
8391 reg,
8392 method_reg,
8393 ArtMethod::DexCacheResolvedMethodsOffset(kArmPointerSize).Int32Value());
8394 // temp = temp[index_in_cache];
8395 // Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file.
8396 uint32_t index_in_cache = invoke->GetDexMethodIndex();
8397 GetAssembler()->LoadFromOffset(
8398 kLoadWord, reg, reg, CodeGenerator::GetCachePointerOffset(index_in_cache));
8399 break;
8400 }
8401 }
8402 return callee_method;
8403 }
8404
GenerateStaticOrDirectCall(HInvokeStaticOrDirect * invoke,Location temp)8405 void CodeGeneratorARMVIXL::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke,
8406 Location temp) {
8407 Location callee_method = GenerateCalleeMethodStaticOrDirectCall(invoke, temp);
8408
8409 switch (invoke->GetCodePtrLocation()) {
8410 case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
8411 __ Bl(GetFrameEntryLabel());
8412 break;
8413 case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
8414 // LR = callee_method->entry_point_from_quick_compiled_code_
8415 GetAssembler()->LoadFromOffset(
8416 kLoadWord,
8417 lr,
8418 RegisterFrom(callee_method),
8419 ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value());
8420 {
8421 // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
8422 ExactAssemblyScope aas(GetVIXLAssembler(),
8423 vixl32::k16BitT32InstructionSizeInBytes,
8424 CodeBufferCheckScope::kExactSize);
8425 // LR()
8426 __ blx(lr);
8427 }
8428 break;
8429 }
8430
8431 DCHECK(!IsLeafMethod());
8432 }
8433
GenerateVirtualCall(HInvokeVirtual * invoke,Location temp_location)8434 void CodeGeneratorARMVIXL::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_location) {
8435 vixl32::Register temp = RegisterFrom(temp_location);
8436 uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
8437 invoke->GetVTableIndex(), kArmPointerSize).Uint32Value();
8438
8439 // Use the calling convention instead of the location of the receiver, as
8440 // intrinsics may have put the receiver in a different register. In the intrinsics
8441 // slow path, the arguments have been moved to the right place, so here we are
8442 // guaranteed that the receiver is the first register of the calling convention.
8443 InvokeDexCallingConventionARMVIXL calling_convention;
8444 vixl32::Register receiver = calling_convention.GetRegisterAt(0);
8445 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
8446 {
8447 // Make sure the pc is recorded immediately after the `ldr` instruction.
8448 ExactAssemblyScope aas(GetVIXLAssembler(),
8449 vixl32::kMaxInstructionSizeInBytes,
8450 CodeBufferCheckScope::kMaximumSize);
8451 // /* HeapReference<Class> */ temp = receiver->klass_
8452 __ ldr(temp, MemOperand(receiver, class_offset));
8453 MaybeRecordImplicitNullCheck(invoke);
8454 }
8455 // Instead of simply (possibly) unpoisoning `temp` here, we should
8456 // emit a read barrier for the previous class reference load.
8457 // However this is not required in practice, as this is an
8458 // intermediate/temporary reference and because the current
8459 // concurrent copying collector keeps the from-space memory
8460 // intact/accessible until the end of the marking phase (the
8461 // concurrent copying collector may not in the future).
8462 GetAssembler()->MaybeUnpoisonHeapReference(temp);
8463
8464 // temp = temp->GetMethodAt(method_offset);
8465 uint32_t entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(
8466 kArmPointerSize).Int32Value();
8467 GetAssembler()->LoadFromOffset(kLoadWord, temp, temp, method_offset);
8468 // LR = temp->GetEntryPoint();
8469 GetAssembler()->LoadFromOffset(kLoadWord, lr, temp, entry_point);
8470 // LR();
8471 // This `blx` *must* be the *last* instruction generated by this stub, so that calls to
8472 // `RecordPcInfo()` immediately following record the correct pc. Use a scope to help guarantee
8473 // that.
8474 // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
8475 ExactAssemblyScope aas(GetVIXLAssembler(),
8476 vixl32::k16BitT32InstructionSizeInBytes,
8477 CodeBufferCheckScope::kExactSize);
8478 __ blx(lr);
8479 }
8480
NewPcRelativeStringPatch(const DexFile & dex_file,dex::StringIndex string_index)8481 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewPcRelativeStringPatch(
8482 const DexFile& dex_file, dex::StringIndex string_index) {
8483 return NewPcRelativePatch(dex_file, string_index.index_, &pc_relative_string_patches_);
8484 }
8485
NewPcRelativeTypePatch(const DexFile & dex_file,dex::TypeIndex type_index)8486 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewPcRelativeTypePatch(
8487 const DexFile& dex_file, dex::TypeIndex type_index) {
8488 return NewPcRelativePatch(dex_file, type_index.index_, &pc_relative_type_patches_);
8489 }
8490
NewTypeBssEntryPatch(const DexFile & dex_file,dex::TypeIndex type_index)8491 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewTypeBssEntryPatch(
8492 const DexFile& dex_file, dex::TypeIndex type_index) {
8493 return NewPcRelativePatch(dex_file, type_index.index_, &type_bss_entry_patches_);
8494 }
8495
NewPcRelativeDexCacheArrayPatch(const DexFile & dex_file,uint32_t element_offset)8496 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewPcRelativeDexCacheArrayPatch(
8497 const DexFile& dex_file, uint32_t element_offset) {
8498 return NewPcRelativePatch(dex_file, element_offset, &pc_relative_dex_cache_patches_);
8499 }
8500
NewPcRelativePatch(const DexFile & dex_file,uint32_t offset_or_index,ArenaDeque<PcRelativePatchInfo> * patches)8501 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewPcRelativePatch(
8502 const DexFile& dex_file, uint32_t offset_or_index, ArenaDeque<PcRelativePatchInfo>* patches) {
8503 patches->emplace_back(dex_file, offset_or_index);
8504 return &patches->back();
8505 }
8506
DeduplicateBootImageStringLiteral(const DexFile & dex_file,dex::StringIndex string_index)8507 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateBootImageStringLiteral(
8508 const DexFile& dex_file,
8509 dex::StringIndex string_index) {
8510 return boot_image_string_patches_.GetOrCreate(
8511 StringReference(&dex_file, string_index),
8512 [this]() {
8513 return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* placeholder */ 0u);
8514 });
8515 }
8516
DeduplicateBootImageTypeLiteral(const DexFile & dex_file,dex::TypeIndex type_index)8517 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateBootImageTypeLiteral(
8518 const DexFile& dex_file,
8519 dex::TypeIndex type_index) {
8520 return boot_image_type_patches_.GetOrCreate(
8521 TypeReference(&dex_file, type_index),
8522 [this]() {
8523 return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* placeholder */ 0u);
8524 });
8525 }
8526
DeduplicateBootImageAddressLiteral(uint32_t address)8527 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateBootImageAddressLiteral(uint32_t address) {
8528 return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address), &uint32_literals_);
8529 }
8530
DeduplicateDexCacheAddressLiteral(uint32_t address)8531 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateDexCacheAddressLiteral(uint32_t address) {
8532 return DeduplicateUint32Literal(address, &uint32_literals_);
8533 }
8534
DeduplicateJitStringLiteral(const DexFile & dex_file,dex::StringIndex string_index,Handle<mirror::String> handle)8535 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateJitStringLiteral(
8536 const DexFile& dex_file,
8537 dex::StringIndex string_index,
8538 Handle<mirror::String> handle) {
8539 jit_string_roots_.Overwrite(StringReference(&dex_file, string_index),
8540 reinterpret_cast64<uint64_t>(handle.GetReference()));
8541 return jit_string_patches_.GetOrCreate(
8542 StringReference(&dex_file, string_index),
8543 [this]() {
8544 return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* placeholder */ 0u);
8545 });
8546 }
8547
DeduplicateJitClassLiteral(const DexFile & dex_file,dex::TypeIndex type_index,Handle<mirror::Class> handle)8548 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateJitClassLiteral(const DexFile& dex_file,
8549 dex::TypeIndex type_index,
8550 Handle<mirror::Class> handle) {
8551 jit_class_roots_.Overwrite(TypeReference(&dex_file, type_index),
8552 reinterpret_cast64<uint64_t>(handle.GetReference()));
8553 return jit_class_patches_.GetOrCreate(
8554 TypeReference(&dex_file, type_index),
8555 [this]() {
8556 return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* placeholder */ 0u);
8557 });
8558 }
8559
8560 template <LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
EmitPcRelativeLinkerPatches(const ArenaDeque<PcRelativePatchInfo> & infos,ArenaVector<LinkerPatch> * linker_patches)8561 inline void CodeGeneratorARMVIXL::EmitPcRelativeLinkerPatches(
8562 const ArenaDeque<PcRelativePatchInfo>& infos,
8563 ArenaVector<LinkerPatch>* linker_patches) {
8564 for (const PcRelativePatchInfo& info : infos) {
8565 const DexFile& dex_file = info.target_dex_file;
8566 size_t offset_or_index = info.offset_or_index;
8567 DCHECK(info.add_pc_label.IsBound());
8568 uint32_t add_pc_offset = dchecked_integral_cast<uint32_t>(info.add_pc_label.GetLocation());
8569 // Add MOVW patch.
8570 DCHECK(info.movw_label.IsBound());
8571 uint32_t movw_offset = dchecked_integral_cast<uint32_t>(info.movw_label.GetLocation());
8572 linker_patches->push_back(Factory(movw_offset, &dex_file, add_pc_offset, offset_or_index));
8573 // Add MOVT patch.
8574 DCHECK(info.movt_label.IsBound());
8575 uint32_t movt_offset = dchecked_integral_cast<uint32_t>(info.movt_label.GetLocation());
8576 linker_patches->push_back(Factory(movt_offset, &dex_file, add_pc_offset, offset_or_index));
8577 }
8578 }
8579
EmitLinkerPatches(ArenaVector<LinkerPatch> * linker_patches)8580 void CodeGeneratorARMVIXL::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) {
8581 DCHECK(linker_patches->empty());
8582 size_t size =
8583 /* MOVW+MOVT for each entry */ 2u * pc_relative_dex_cache_patches_.size() +
8584 boot_image_string_patches_.size() +
8585 /* MOVW+MOVT for each entry */ 2u * pc_relative_string_patches_.size() +
8586 boot_image_type_patches_.size() +
8587 /* MOVW+MOVT for each entry */ 2u * pc_relative_type_patches_.size() +
8588 /* MOVW+MOVT for each entry */ 2u * type_bss_entry_patches_.size();
8589 linker_patches->reserve(size);
8590 EmitPcRelativeLinkerPatches<LinkerPatch::DexCacheArrayPatch>(pc_relative_dex_cache_patches_,
8591 linker_patches);
8592 for (const auto& entry : boot_image_string_patches_) {
8593 const StringReference& target_string = entry.first;
8594 VIXLUInt32Literal* literal = entry.second;
8595 DCHECK(literal->IsBound());
8596 uint32_t literal_offset = literal->GetLocation();
8597 linker_patches->push_back(LinkerPatch::StringPatch(literal_offset,
8598 target_string.dex_file,
8599 target_string.string_index.index_));
8600 }
8601 if (!GetCompilerOptions().IsBootImage()) {
8602 DCHECK(pc_relative_type_patches_.empty());
8603 EmitPcRelativeLinkerPatches<LinkerPatch::StringBssEntryPatch>(pc_relative_string_patches_,
8604 linker_patches);
8605 } else {
8606 EmitPcRelativeLinkerPatches<LinkerPatch::RelativeTypePatch>(pc_relative_type_patches_,
8607 linker_patches);
8608 EmitPcRelativeLinkerPatches<LinkerPatch::RelativeStringPatch>(pc_relative_string_patches_,
8609 linker_patches);
8610 }
8611 EmitPcRelativeLinkerPatches<LinkerPatch::TypeBssEntryPatch>(type_bss_entry_patches_,
8612 linker_patches);
8613 for (const auto& entry : boot_image_type_patches_) {
8614 const TypeReference& target_type = entry.first;
8615 VIXLUInt32Literal* literal = entry.second;
8616 DCHECK(literal->IsBound());
8617 uint32_t literal_offset = literal->GetLocation();
8618 linker_patches->push_back(LinkerPatch::TypePatch(literal_offset,
8619 target_type.dex_file,
8620 target_type.type_index.index_));
8621 }
8622 DCHECK_EQ(size, linker_patches->size());
8623 }
8624
DeduplicateUint32Literal(uint32_t value,Uint32ToLiteralMap * map)8625 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateUint32Literal(
8626 uint32_t value,
8627 Uint32ToLiteralMap* map) {
8628 return map->GetOrCreate(
8629 value,
8630 [this, value]() {
8631 return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* placeholder */ value);
8632 });
8633 }
8634
DeduplicateMethodLiteral(MethodReference target_method,MethodToLiteralMap * map)8635 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateMethodLiteral(
8636 MethodReference target_method,
8637 MethodToLiteralMap* map) {
8638 return map->GetOrCreate(
8639 target_method,
8640 [this]() {
8641 return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* placeholder */ 0u);
8642 });
8643 }
8644
VisitMultiplyAccumulate(HMultiplyAccumulate * instr)8645 void LocationsBuilderARMVIXL::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
8646 LocationSummary* locations =
8647 new (GetGraph()->GetArena()) LocationSummary(instr, LocationSummary::kNoCall);
8648 locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex,
8649 Location::RequiresRegister());
8650 locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
8651 locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
8652 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
8653 }
8654
VisitMultiplyAccumulate(HMultiplyAccumulate * instr)8655 void InstructionCodeGeneratorARMVIXL::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
8656 vixl32::Register res = OutputRegister(instr);
8657 vixl32::Register accumulator =
8658 InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
8659 vixl32::Register mul_left =
8660 InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex);
8661 vixl32::Register mul_right =
8662 InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex);
8663
8664 if (instr->GetOpKind() == HInstruction::kAdd) {
8665 __ Mla(res, mul_left, mul_right, accumulator);
8666 } else {
8667 __ Mls(res, mul_left, mul_right, accumulator);
8668 }
8669 }
8670
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)8671 void LocationsBuilderARMVIXL::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
8672 // Nothing to do, this should be removed during prepare for register allocator.
8673 LOG(FATAL) << "Unreachable";
8674 }
8675
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)8676 void InstructionCodeGeneratorARMVIXL::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
8677 // Nothing to do, this should be removed during prepare for register allocator.
8678 LOG(FATAL) << "Unreachable";
8679 }
8680
8681 // Simple implementation of packed switch - generate cascaded compare/jumps.
VisitPackedSwitch(HPackedSwitch * switch_instr)8682 void LocationsBuilderARMVIXL::VisitPackedSwitch(HPackedSwitch* switch_instr) {
8683 LocationSummary* locations =
8684 new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
8685 locations->SetInAt(0, Location::RequiresRegister());
8686 if (switch_instr->GetNumEntries() > kPackedSwitchCompareJumpThreshold &&
8687 codegen_->GetAssembler()->GetVIXLAssembler()->IsUsingT32()) {
8688 locations->AddTemp(Location::RequiresRegister()); // We need a temp for the table base.
8689 if (switch_instr->GetStartValue() != 0) {
8690 locations->AddTemp(Location::RequiresRegister()); // We need a temp for the bias.
8691 }
8692 }
8693 }
8694
8695 // TODO(VIXL): Investigate and reach the parity with old arm codegen.
VisitPackedSwitch(HPackedSwitch * switch_instr)8696 void InstructionCodeGeneratorARMVIXL::VisitPackedSwitch(HPackedSwitch* switch_instr) {
8697 int32_t lower_bound = switch_instr->GetStartValue();
8698 uint32_t num_entries = switch_instr->GetNumEntries();
8699 LocationSummary* locations = switch_instr->GetLocations();
8700 vixl32::Register value_reg = InputRegisterAt(switch_instr, 0);
8701 HBasicBlock* default_block = switch_instr->GetDefaultBlock();
8702
8703 if (num_entries <= kPackedSwitchCompareJumpThreshold ||
8704 !codegen_->GetAssembler()->GetVIXLAssembler()->IsUsingT32()) {
8705 // Create a series of compare/jumps.
8706 UseScratchRegisterScope temps(GetVIXLAssembler());
8707 vixl32::Register temp_reg = temps.Acquire();
8708 // Note: It is fine for the below AddConstantSetFlags() using IP register to temporarily store
8709 // the immediate, because IP is used as the destination register. For the other
8710 // AddConstantSetFlags() and GenerateCompareWithImmediate(), the immediate values are constant,
8711 // and they can be encoded in the instruction without making use of IP register.
8712 __ Adds(temp_reg, value_reg, -lower_bound);
8713
8714 const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
8715 // Jump to successors[0] if value == lower_bound.
8716 __ B(eq, codegen_->GetLabelOf(successors[0]));
8717 int32_t last_index = 0;
8718 for (; num_entries - last_index > 2; last_index += 2) {
8719 __ Adds(temp_reg, temp_reg, -2);
8720 // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
8721 __ B(lo, codegen_->GetLabelOf(successors[last_index + 1]));
8722 // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
8723 __ B(eq, codegen_->GetLabelOf(successors[last_index + 2]));
8724 }
8725 if (num_entries - last_index == 2) {
8726 // The last missing case_value.
8727 __ Cmp(temp_reg, 1);
8728 __ B(eq, codegen_->GetLabelOf(successors[last_index + 1]));
8729 }
8730
8731 // And the default for any other value.
8732 if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
8733 __ B(codegen_->GetLabelOf(default_block));
8734 }
8735 } else {
8736 // Create a table lookup.
8737 vixl32::Register table_base = RegisterFrom(locations->GetTemp(0));
8738
8739 JumpTableARMVIXL* jump_table = codegen_->CreateJumpTable(switch_instr);
8740
8741 // Remove the bias.
8742 vixl32::Register key_reg;
8743 if (lower_bound != 0) {
8744 key_reg = RegisterFrom(locations->GetTemp(1));
8745 __ Sub(key_reg, value_reg, lower_bound);
8746 } else {
8747 key_reg = value_reg;
8748 }
8749
8750 // Check whether the value is in the table, jump to default block if not.
8751 __ Cmp(key_reg, num_entries - 1);
8752 __ B(hi, codegen_->GetLabelOf(default_block));
8753
8754 UseScratchRegisterScope temps(GetVIXLAssembler());
8755 vixl32::Register jump_offset = temps.Acquire();
8756
8757 // Load jump offset from the table.
8758 {
8759 const size_t jump_size = switch_instr->GetNumEntries() * sizeof(int32_t);
8760 ExactAssemblyScope aas(GetVIXLAssembler(),
8761 (vixl32::kMaxInstructionSizeInBytes * 4) + jump_size,
8762 CodeBufferCheckScope::kMaximumSize);
8763 __ adr(table_base, jump_table->GetTableStartLabel());
8764 __ ldr(jump_offset, MemOperand(table_base, key_reg, vixl32::LSL, 2));
8765
8766 // Jump to target block by branching to table_base(pc related) + offset.
8767 vixl32::Register target_address = table_base;
8768 __ add(target_address, table_base, jump_offset);
8769 __ bx(target_address);
8770
8771 jump_table->EmitTable(codegen_);
8772 }
8773 }
8774 }
VisitArmDexCacheArraysBase(HArmDexCacheArraysBase * base)8775 void LocationsBuilderARMVIXL::VisitArmDexCacheArraysBase(HArmDexCacheArraysBase* base) {
8776 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(base);
8777 locations->SetOut(Location::RequiresRegister());
8778 }
8779
VisitArmDexCacheArraysBase(HArmDexCacheArraysBase * base)8780 void InstructionCodeGeneratorARMVIXL::VisitArmDexCacheArraysBase(HArmDexCacheArraysBase* base) {
8781 vixl32::Register base_reg = OutputRegister(base);
8782 CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
8783 codegen_->NewPcRelativeDexCacheArrayPatch(base->GetDexFile(), base->GetElementOffset());
8784 codegen_->EmitMovwMovtPlaceholder(labels, base_reg);
8785 }
8786
8787 // Copy the result of a call into the given target.
MoveFromReturnRegister(Location trg,Primitive::Type type)8788 void CodeGeneratorARMVIXL::MoveFromReturnRegister(Location trg, Primitive::Type type) {
8789 if (!trg.IsValid()) {
8790 DCHECK_EQ(type, Primitive::kPrimVoid);
8791 return;
8792 }
8793
8794 DCHECK_NE(type, Primitive::kPrimVoid);
8795
8796 Location return_loc = InvokeDexCallingConventionVisitorARMVIXL().GetReturnLocation(type);
8797 if (return_loc.Equals(trg)) {
8798 return;
8799 }
8800
8801 // TODO: Consider pairs in the parallel move resolver, then this could be nicely merged
8802 // with the last branch.
8803 if (type == Primitive::kPrimLong) {
8804 TODO_VIXL32(FATAL);
8805 } else if (type == Primitive::kPrimDouble) {
8806 TODO_VIXL32(FATAL);
8807 } else {
8808 // Let the parallel move resolver take care of all of this.
8809 HParallelMove parallel_move(GetGraph()->GetArena());
8810 parallel_move.AddMove(return_loc, trg, type, nullptr);
8811 GetMoveResolver()->EmitNativeCode(¶llel_move);
8812 }
8813 }
8814
VisitClassTableGet(HClassTableGet * instruction)8815 void LocationsBuilderARMVIXL::VisitClassTableGet(HClassTableGet* instruction) {
8816 LocationSummary* locations =
8817 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
8818 locations->SetInAt(0, Location::RequiresRegister());
8819 locations->SetOut(Location::RequiresRegister());
8820 }
8821
VisitClassTableGet(HClassTableGet * instruction)8822 void InstructionCodeGeneratorARMVIXL::VisitClassTableGet(HClassTableGet* instruction) {
8823 if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
8824 uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
8825 instruction->GetIndex(), kArmPointerSize).SizeValue();
8826 GetAssembler()->LoadFromOffset(kLoadWord,
8827 OutputRegister(instruction),
8828 InputRegisterAt(instruction, 0),
8829 method_offset);
8830 } else {
8831 uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
8832 instruction->GetIndex(), kArmPointerSize));
8833 GetAssembler()->LoadFromOffset(kLoadWord,
8834 OutputRegister(instruction),
8835 InputRegisterAt(instruction, 0),
8836 mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value());
8837 GetAssembler()->LoadFromOffset(kLoadWord,
8838 OutputRegister(instruction),
8839 OutputRegister(instruction),
8840 method_offset);
8841 }
8842 }
8843
PatchJitRootUse(uint8_t * code,const uint8_t * roots_data,VIXLUInt32Literal * literal,uint64_t index_in_table)8844 static void PatchJitRootUse(uint8_t* code,
8845 const uint8_t* roots_data,
8846 VIXLUInt32Literal* literal,
8847 uint64_t index_in_table) {
8848 DCHECK(literal->IsBound());
8849 uint32_t literal_offset = literal->GetLocation();
8850 uintptr_t address =
8851 reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>);
8852 uint8_t* data = code + literal_offset;
8853 reinterpret_cast<uint32_t*>(data)[0] = dchecked_integral_cast<uint32_t>(address);
8854 }
8855
EmitJitRootPatches(uint8_t * code,const uint8_t * roots_data)8856 void CodeGeneratorARMVIXL::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
8857 for (const auto& entry : jit_string_patches_) {
8858 const auto& it = jit_string_roots_.find(entry.first);
8859 DCHECK(it != jit_string_roots_.end());
8860 PatchJitRootUse(code, roots_data, entry.second, it->second);
8861 }
8862 for (const auto& entry : jit_class_patches_) {
8863 const auto& it = jit_class_roots_.find(entry.first);
8864 DCHECK(it != jit_class_roots_.end());
8865 PatchJitRootUse(code, roots_data, entry.second, it->second);
8866 }
8867 }
8868
EmitMovwMovtPlaceholder(CodeGeneratorARMVIXL::PcRelativePatchInfo * labels,vixl32::Register out)8869 void CodeGeneratorARMVIXL::EmitMovwMovtPlaceholder(
8870 CodeGeneratorARMVIXL::PcRelativePatchInfo* labels,
8871 vixl32::Register out) {
8872 ExactAssemblyScope aas(GetVIXLAssembler(),
8873 3 * vixl32::kMaxInstructionSizeInBytes,
8874 CodeBufferCheckScope::kMaximumSize);
8875 // TODO(VIXL): Think about using mov instead of movw.
8876 __ bind(&labels->movw_label);
8877 __ movw(out, /* placeholder */ 0u);
8878 __ bind(&labels->movt_label);
8879 __ movt(out, /* placeholder */ 0u);
8880 __ bind(&labels->add_pc_label);
8881 __ add(out, out, pc);
8882 }
8883
8884 #undef __
8885 #undef QUICK_ENTRY_POINT
8886 #undef TODO_VIXL32
8887
8888 } // namespace arm
8889 } // namespace art
8890