1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides a simple and efficient mechanism for performing general
11 // tree-based pattern matches on the LLVM IR.  The power of these routines is
12 // that it allows you to write concise patterns that are expressive and easy to
13 // understand.  The other major advantage of this is that it allows you to
14 // trivially capture/bind elements in the pattern to variables.  For example,
15 // you can do something like this:
16 //
17 //  Value *Exp = ...
18 //  Value *X, *Y;  ConstantInt *C1, *C2;      // (X & C1) | (Y & C2)
19 //  if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
20 //                      m_And(m_Value(Y), m_ConstantInt(C2))))) {
21 //    ... Pattern is matched and variables are bound ...
22 //  }
23 //
24 // This is primarily useful to things like the instruction combiner, but can
25 // also be useful for static analysis tools or code generators.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #ifndef LLVM_IR_PATTERNMATCH_H
30 #define LLVM_IR_PATTERNMATCH_H
31 
32 #include "llvm/IR/CallSite.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/Operator.h"
37 
38 namespace llvm {
39 namespace PatternMatch {
40 
match(Val * V,const Pattern & P)41 template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
42   return const_cast<Pattern &>(P).match(V);
43 }
44 
45 template <typename SubPattern_t> struct OneUse_match {
46   SubPattern_t SubPattern;
47 
OneUse_matchOneUse_match48   OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
49 
matchOneUse_match50   template <typename OpTy> bool match(OpTy *V) {
51     return V->hasOneUse() && SubPattern.match(V);
52   }
53 };
54 
m_OneUse(const T & SubPattern)55 template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
56   return SubPattern;
57 }
58 
59 template <typename Class> struct class_match {
matchclass_match60   template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
61 };
62 
63 /// \brief Match an arbitrary value and ignore it.
m_Value()64 inline class_match<Value> m_Value() { return class_match<Value>(); }
65 
66 /// \brief Match an arbitrary binary operation and ignore it.
m_BinOp()67 inline class_match<BinaryOperator> m_BinOp() {
68   return class_match<BinaryOperator>();
69 }
70 
71 /// \brief Matches any compare instruction and ignore it.
m_Cmp()72 inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
73 
74 /// \brief Match an arbitrary ConstantInt and ignore it.
m_ConstantInt()75 inline class_match<ConstantInt> m_ConstantInt() {
76   return class_match<ConstantInt>();
77 }
78 
79 /// \brief Match an arbitrary undef constant.
m_Undef()80 inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
81 
82 /// \brief Match an arbitrary Constant and ignore it.
m_Constant()83 inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
84 
85 /// Matching combinators
86 template <typename LTy, typename RTy> struct match_combine_or {
87   LTy L;
88   RTy R;
89 
match_combine_ormatch_combine_or90   match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
91 
matchmatch_combine_or92   template <typename ITy> bool match(ITy *V) {
93     if (L.match(V))
94       return true;
95     if (R.match(V))
96       return true;
97     return false;
98   }
99 };
100 
101 template <typename LTy, typename RTy> struct match_combine_and {
102   LTy L;
103   RTy R;
104 
match_combine_andmatch_combine_and105   match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
106 
matchmatch_combine_and107   template <typename ITy> bool match(ITy *V) {
108     if (L.match(V))
109       if (R.match(V))
110         return true;
111     return false;
112   }
113 };
114 
115 /// Combine two pattern matchers matching L || R
116 template <typename LTy, typename RTy>
m_CombineOr(const LTy & L,const RTy & R)117 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
118   return match_combine_or<LTy, RTy>(L, R);
119 }
120 
121 /// Combine two pattern matchers matching L && R
122 template <typename LTy, typename RTy>
m_CombineAnd(const LTy & L,const RTy & R)123 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
124   return match_combine_and<LTy, RTy>(L, R);
125 }
126 
127 struct match_zero {
matchmatch_zero128   template <typename ITy> bool match(ITy *V) {
129     if (const auto *C = dyn_cast<Constant>(V))
130       return C->isNullValue();
131     return false;
132   }
133 };
134 
135 /// \brief Match an arbitrary zero/null constant.  This includes
136 /// zero_initializer for vectors and ConstantPointerNull for pointers.
m_Zero()137 inline match_zero m_Zero() { return match_zero(); }
138 
139 struct match_neg_zero {
matchmatch_neg_zero140   template <typename ITy> bool match(ITy *V) {
141     if (const auto *C = dyn_cast<Constant>(V))
142       return C->isNegativeZeroValue();
143     return false;
144   }
145 };
146 
147 /// \brief Match an arbitrary zero/null constant.  This includes
148 /// zero_initializer for vectors and ConstantPointerNull for pointers. For
149 /// floating point constants, this will match negative zero but not positive
150 /// zero
m_NegZero()151 inline match_neg_zero m_NegZero() { return match_neg_zero(); }
152 
153 /// \brief - Match an arbitrary zero/null constant.  This includes
154 /// zero_initializer for vectors and ConstantPointerNull for pointers. For
155 /// floating point constants, this will match negative zero and positive zero
m_AnyZero()156 inline match_combine_or<match_zero, match_neg_zero> m_AnyZero() {
157   return m_CombineOr(m_Zero(), m_NegZero());
158 }
159 
160 struct apint_match {
161   const APInt *&Res;
apint_matchapint_match162   apint_match(const APInt *&R) : Res(R) {}
matchapint_match163   template <typename ITy> bool match(ITy *V) {
164     if (auto *CI = dyn_cast<ConstantInt>(V)) {
165       Res = &CI->getValue();
166       return true;
167     }
168     if (V->getType()->isVectorTy())
169       if (const auto *C = dyn_cast<Constant>(V))
170         if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
171           Res = &CI->getValue();
172           return true;
173         }
174     return false;
175   }
176 };
177 
178 /// \brief Match a ConstantInt or splatted ConstantVector, binding the
179 /// specified pointer to the contained APInt.
m_APInt(const APInt * & Res)180 inline apint_match m_APInt(const APInt *&Res) { return Res; }
181 
182 template <int64_t Val> struct constantint_match {
matchconstantint_match183   template <typename ITy> bool match(ITy *V) {
184     if (const auto *CI = dyn_cast<ConstantInt>(V)) {
185       const APInt &CIV = CI->getValue();
186       if (Val >= 0)
187         return CIV == static_cast<uint64_t>(Val);
188       // If Val is negative, and CI is shorter than it, truncate to the right
189       // number of bits.  If it is larger, then we have to sign extend.  Just
190       // compare their negated values.
191       return -CIV == -Val;
192     }
193     return false;
194   }
195 };
196 
197 /// \brief Match a ConstantInt with a specific value.
m_ConstantInt()198 template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
199   return constantint_match<Val>();
200 }
201 
202 /// \brief This helper class is used to match scalar and vector constants that
203 /// satisfy a specified predicate.
204 template <typename Predicate> struct cst_pred_ty : public Predicate {
matchcst_pred_ty205   template <typename ITy> bool match(ITy *V) {
206     if (const auto *CI = dyn_cast<ConstantInt>(V))
207       return this->isValue(CI->getValue());
208     if (V->getType()->isVectorTy())
209       if (const auto *C = dyn_cast<Constant>(V))
210         if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
211           return this->isValue(CI->getValue());
212     return false;
213   }
214 };
215 
216 /// \brief This helper class is used to match scalar and vector constants that
217 /// satisfy a specified predicate, and bind them to an APInt.
218 template <typename Predicate> struct api_pred_ty : public Predicate {
219   const APInt *&Res;
api_pred_tyapi_pred_ty220   api_pred_ty(const APInt *&R) : Res(R) {}
matchapi_pred_ty221   template <typename ITy> bool match(ITy *V) {
222     if (const auto *CI = dyn_cast<ConstantInt>(V))
223       if (this->isValue(CI->getValue())) {
224         Res = &CI->getValue();
225         return true;
226       }
227     if (V->getType()->isVectorTy())
228       if (const auto *C = dyn_cast<Constant>(V))
229         if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
230           if (this->isValue(CI->getValue())) {
231             Res = &CI->getValue();
232             return true;
233           }
234 
235     return false;
236   }
237 };
238 
239 struct is_one {
isValueis_one240   bool isValue(const APInt &C) { return C == 1; }
241 };
242 
243 /// \brief Match an integer 1 or a vector with all elements equal to 1.
m_One()244 inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
m_One(const APInt * & V)245 inline api_pred_ty<is_one> m_One(const APInt *&V) { return V; }
246 
247 struct is_all_ones {
isValueis_all_ones248   bool isValue(const APInt &C) { return C.isAllOnesValue(); }
249 };
250 
251 /// \brief Match an integer or vector with all bits set to true.
m_AllOnes()252 inline cst_pred_ty<is_all_ones> m_AllOnes() {
253   return cst_pred_ty<is_all_ones>();
254 }
m_AllOnes(const APInt * & V)255 inline api_pred_ty<is_all_ones> m_AllOnes(const APInt *&V) { return V; }
256 
257 struct is_sign_bit {
isValueis_sign_bit258   bool isValue(const APInt &C) { return C.isSignBit(); }
259 };
260 
261 /// \brief Match an integer or vector with only the sign bit(s) set.
m_SignBit()262 inline cst_pred_ty<is_sign_bit> m_SignBit() {
263   return cst_pred_ty<is_sign_bit>();
264 }
m_SignBit(const APInt * & V)265 inline api_pred_ty<is_sign_bit> m_SignBit(const APInt *&V) { return V; }
266 
267 struct is_power2 {
isValueis_power2268   bool isValue(const APInt &C) { return C.isPowerOf2(); }
269 };
270 
271 /// \brief Match an integer or vector power of 2.
m_Power2()272 inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
m_Power2(const APInt * & V)273 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
274 
275 struct is_maxsignedvalue {
isValueis_maxsignedvalue276   bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
277 };
278 
m_MaxSignedValue()279 inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() { return cst_pred_ty<is_maxsignedvalue>(); }
m_MaxSignedValue(const APInt * & V)280 inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) { return V; }
281 
282 template <typename Class> struct bind_ty {
283   Class *&VR;
bind_tybind_ty284   bind_ty(Class *&V) : VR(V) {}
285 
matchbind_ty286   template <typename ITy> bool match(ITy *V) {
287     if (auto *CV = dyn_cast<Class>(V)) {
288       VR = CV;
289       return true;
290     }
291     return false;
292   }
293 };
294 
295 /// \brief Match a value, capturing it if we match.
m_Value(Value * & V)296 inline bind_ty<Value> m_Value(Value *&V) { return V; }
297 
298 /// \brief Match an instruction, capturing it if we match.
m_Instruction(Instruction * & I)299 inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
300 
301 /// \brief Match a binary operator, capturing it if we match.
m_BinOp(BinaryOperator * & I)302 inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
303 
304 /// \brief Match a ConstantInt, capturing the value if we match.
m_ConstantInt(ConstantInt * & CI)305 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
306 
307 /// \brief Match a Constant, capturing the value if we match.
m_Constant(Constant * & C)308 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
309 
310 /// \brief Match a ConstantFP, capturing the value if we match.
m_ConstantFP(ConstantFP * & C)311 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
312 
313 /// \brief Match a specified Value*.
314 struct specificval_ty {
315   const Value *Val;
specificval_tyspecificval_ty316   specificval_ty(const Value *V) : Val(V) {}
317 
matchspecificval_ty318   template <typename ITy> bool match(ITy *V) { return V == Val; }
319 };
320 
321 /// \brief Match if we have a specific specified value.
m_Specific(const Value * V)322 inline specificval_ty m_Specific(const Value *V) { return V; }
323 
324 /// \brief Match a specified floating point value or vector of all elements of
325 /// that value.
326 struct specific_fpval {
327   double Val;
specific_fpvalspecific_fpval328   specific_fpval(double V) : Val(V) {}
329 
matchspecific_fpval330   template <typename ITy> bool match(ITy *V) {
331     if (const auto *CFP = dyn_cast<ConstantFP>(V))
332       return CFP->isExactlyValue(Val);
333     if (V->getType()->isVectorTy())
334       if (const auto *C = dyn_cast<Constant>(V))
335         if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
336           return CFP->isExactlyValue(Val);
337     return false;
338   }
339 };
340 
341 /// \brief Match a specific floating point value or vector with all elements
342 /// equal to the value.
m_SpecificFP(double V)343 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
344 
345 /// \brief Match a float 1.0 or vector with all elements equal to 1.0.
m_FPOne()346 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
347 
348 struct bind_const_intval_ty {
349   uint64_t &VR;
bind_const_intval_tybind_const_intval_ty350   bind_const_intval_ty(uint64_t &V) : VR(V) {}
351 
matchbind_const_intval_ty352   template <typename ITy> bool match(ITy *V) {
353     if (const auto *CV = dyn_cast<ConstantInt>(V))
354       if (CV->getBitWidth() <= 64) {
355         VR = CV->getZExtValue();
356         return true;
357       }
358     return false;
359   }
360 };
361 
362 /// \brief Match a specified integer value or vector of all elements of that
363 // value.
364 struct specific_intval {
365   uint64_t Val;
specific_intvalspecific_intval366   specific_intval(uint64_t V) : Val(V) {}
367 
matchspecific_intval368   template <typename ITy> bool match(ITy *V) {
369     const auto *CI = dyn_cast<ConstantInt>(V);
370     if (!CI && V->getType()->isVectorTy())
371       if (const auto *C = dyn_cast<Constant>(V))
372         CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue());
373 
374     if (CI && CI->getBitWidth() <= 64)
375       return CI->getZExtValue() == Val;
376 
377     return false;
378   }
379 };
380 
381 /// \brief Match a specific integer value or vector with all elements equal to
382 /// the value.
m_SpecificInt(uint64_t V)383 inline specific_intval m_SpecificInt(uint64_t V) { return specific_intval(V); }
384 
385 /// \brief Match a ConstantInt and bind to its value.  This does not match
386 /// ConstantInts wider than 64-bits.
m_ConstantInt(uint64_t & V)387 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
388 
389 //===----------------------------------------------------------------------===//
390 // Matcher for any binary operator.
391 //
392 template <typename LHS_t, typename RHS_t> struct AnyBinaryOp_match {
393   LHS_t L;
394   RHS_t R;
395 
AnyBinaryOp_matchAnyBinaryOp_match396   AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
397 
matchAnyBinaryOp_match398   template <typename OpTy> bool match(OpTy *V) {
399     if (auto *I = dyn_cast<BinaryOperator>(V))
400       return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
401     return false;
402   }
403 };
404 
405 template <typename LHS, typename RHS>
m_BinOp(const LHS & L,const RHS & R)406 inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
407   return AnyBinaryOp_match<LHS, RHS>(L, R);
408 }
409 
410 //===----------------------------------------------------------------------===//
411 // Matchers for specific binary operators.
412 //
413 
414 template <typename LHS_t, typename RHS_t, unsigned Opcode>
415 struct BinaryOp_match {
416   LHS_t L;
417   RHS_t R;
418 
BinaryOp_matchBinaryOp_match419   BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
420 
matchBinaryOp_match421   template <typename OpTy> bool match(OpTy *V) {
422     if (V->getValueID() == Value::InstructionVal + Opcode) {
423       auto *I = cast<BinaryOperator>(V);
424       return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
425     }
426     if (auto *CE = dyn_cast<ConstantExpr>(V))
427       return CE->getOpcode() == Opcode && L.match(CE->getOperand(0)) &&
428              R.match(CE->getOperand(1));
429     return false;
430   }
431 };
432 
433 template <typename LHS, typename RHS>
m_Add(const LHS & L,const RHS & R)434 inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
435                                                         const RHS &R) {
436   return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
437 }
438 
439 template <typename LHS, typename RHS>
m_FAdd(const LHS & L,const RHS & R)440 inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
441                                                           const RHS &R) {
442   return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
443 }
444 
445 template <typename LHS, typename RHS>
m_Sub(const LHS & L,const RHS & R)446 inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
447                                                         const RHS &R) {
448   return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
449 }
450 
451 template <typename LHS, typename RHS>
m_FSub(const LHS & L,const RHS & R)452 inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
453                                                           const RHS &R) {
454   return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
455 }
456 
457 template <typename LHS, typename RHS>
m_Mul(const LHS & L,const RHS & R)458 inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
459                                                         const RHS &R) {
460   return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
461 }
462 
463 template <typename LHS, typename RHS>
m_FMul(const LHS & L,const RHS & R)464 inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
465                                                           const RHS &R) {
466   return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
467 }
468 
469 template <typename LHS, typename RHS>
m_UDiv(const LHS & L,const RHS & R)470 inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
471                                                           const RHS &R) {
472   return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
473 }
474 
475 template <typename LHS, typename RHS>
m_SDiv(const LHS & L,const RHS & R)476 inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
477                                                           const RHS &R) {
478   return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
479 }
480 
481 template <typename LHS, typename RHS>
m_FDiv(const LHS & L,const RHS & R)482 inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
483                                                           const RHS &R) {
484   return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
485 }
486 
487 template <typename LHS, typename RHS>
m_URem(const LHS & L,const RHS & R)488 inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
489                                                           const RHS &R) {
490   return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
491 }
492 
493 template <typename LHS, typename RHS>
m_SRem(const LHS & L,const RHS & R)494 inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
495                                                           const RHS &R) {
496   return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
497 }
498 
499 template <typename LHS, typename RHS>
m_FRem(const LHS & L,const RHS & R)500 inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
501                                                           const RHS &R) {
502   return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
503 }
504 
505 template <typename LHS, typename RHS>
m_And(const LHS & L,const RHS & R)506 inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
507                                                         const RHS &R) {
508   return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
509 }
510 
511 template <typename LHS, typename RHS>
m_Or(const LHS & L,const RHS & R)512 inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
513                                                       const RHS &R) {
514   return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
515 }
516 
517 template <typename LHS, typename RHS>
m_Xor(const LHS & L,const RHS & R)518 inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
519                                                         const RHS &R) {
520   return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
521 }
522 
523 template <typename LHS, typename RHS>
m_Shl(const LHS & L,const RHS & R)524 inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
525                                                         const RHS &R) {
526   return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
527 }
528 
529 template <typename LHS, typename RHS>
m_LShr(const LHS & L,const RHS & R)530 inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
531                                                           const RHS &R) {
532   return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
533 }
534 
535 template <typename LHS, typename RHS>
m_AShr(const LHS & L,const RHS & R)536 inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
537                                                           const RHS &R) {
538   return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
539 }
540 
541 template <typename LHS_t, typename RHS_t, unsigned Opcode,
542           unsigned WrapFlags = 0>
543 struct OverflowingBinaryOp_match {
544   LHS_t L;
545   RHS_t R;
546 
OverflowingBinaryOp_matchOverflowingBinaryOp_match547   OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
548       : L(LHS), R(RHS) {}
549 
matchOverflowingBinaryOp_match550   template <typename OpTy> bool match(OpTy *V) {
551     if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
552       if (Op->getOpcode() != Opcode)
553         return false;
554       if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
555           !Op->hasNoUnsignedWrap())
556         return false;
557       if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
558           !Op->hasNoSignedWrap())
559         return false;
560       return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
561     }
562     return false;
563   }
564 };
565 
566 template <typename LHS, typename RHS>
567 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
568                                  OverflowingBinaryOperator::NoSignedWrap>
m_NSWAdd(const LHS & L,const RHS & R)569 m_NSWAdd(const LHS &L, const RHS &R) {
570   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
571                                    OverflowingBinaryOperator::NoSignedWrap>(
572       L, R);
573 }
574 template <typename LHS, typename RHS>
575 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
576                                  OverflowingBinaryOperator::NoSignedWrap>
m_NSWSub(const LHS & L,const RHS & R)577 m_NSWSub(const LHS &L, const RHS &R) {
578   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
579                                    OverflowingBinaryOperator::NoSignedWrap>(
580       L, R);
581 }
582 template <typename LHS, typename RHS>
583 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
584                                  OverflowingBinaryOperator::NoSignedWrap>
m_NSWMul(const LHS & L,const RHS & R)585 m_NSWMul(const LHS &L, const RHS &R) {
586   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
587                                    OverflowingBinaryOperator::NoSignedWrap>(
588       L, R);
589 }
590 template <typename LHS, typename RHS>
591 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
592                                  OverflowingBinaryOperator::NoSignedWrap>
m_NSWShl(const LHS & L,const RHS & R)593 m_NSWShl(const LHS &L, const RHS &R) {
594   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
595                                    OverflowingBinaryOperator::NoSignedWrap>(
596       L, R);
597 }
598 
599 template <typename LHS, typename RHS>
600 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
601                                  OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWAdd(const LHS & L,const RHS & R)602 m_NUWAdd(const LHS &L, const RHS &R) {
603   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
604                                    OverflowingBinaryOperator::NoUnsignedWrap>(
605       L, R);
606 }
607 template <typename LHS, typename RHS>
608 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
609                                  OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWSub(const LHS & L,const RHS & R)610 m_NUWSub(const LHS &L, const RHS &R) {
611   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
612                                    OverflowingBinaryOperator::NoUnsignedWrap>(
613       L, R);
614 }
615 template <typename LHS, typename RHS>
616 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
617                                  OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWMul(const LHS & L,const RHS & R)618 m_NUWMul(const LHS &L, const RHS &R) {
619   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
620                                    OverflowingBinaryOperator::NoUnsignedWrap>(
621       L, R);
622 }
623 template <typename LHS, typename RHS>
624 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
625                                  OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWShl(const LHS & L,const RHS & R)626 m_NUWShl(const LHS &L, const RHS &R) {
627   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
628                                    OverflowingBinaryOperator::NoUnsignedWrap>(
629       L, R);
630 }
631 
632 //===----------------------------------------------------------------------===//
633 // Class that matches two different binary ops.
634 //
635 template <typename LHS_t, typename RHS_t, unsigned Opc1, unsigned Opc2>
636 struct BinOp2_match {
637   LHS_t L;
638   RHS_t R;
639 
BinOp2_matchBinOp2_match640   BinOp2_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
641 
matchBinOp2_match642   template <typename OpTy> bool match(OpTy *V) {
643     if (V->getValueID() == Value::InstructionVal + Opc1 ||
644         V->getValueID() == Value::InstructionVal + Opc2) {
645       auto *I = cast<BinaryOperator>(V);
646       return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
647     }
648     if (auto *CE = dyn_cast<ConstantExpr>(V))
649       return (CE->getOpcode() == Opc1 || CE->getOpcode() == Opc2) &&
650              L.match(CE->getOperand(0)) && R.match(CE->getOperand(1));
651     return false;
652   }
653 };
654 
655 /// \brief Matches LShr or AShr.
656 template <typename LHS, typename RHS>
657 inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>
m_Shr(const LHS & L,const RHS & R)658 m_Shr(const LHS &L, const RHS &R) {
659   return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>(L, R);
660 }
661 
662 /// \brief Matches LShr or Shl.
663 template <typename LHS, typename RHS>
664 inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>
m_LogicalShift(const LHS & L,const RHS & R)665 m_LogicalShift(const LHS &L, const RHS &R) {
666   return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>(L, R);
667 }
668 
669 /// \brief Matches UDiv and SDiv.
670 template <typename LHS, typename RHS>
671 inline BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>
m_IDiv(const LHS & L,const RHS & R)672 m_IDiv(const LHS &L, const RHS &R) {
673   return BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>(L, R);
674 }
675 
676 //===----------------------------------------------------------------------===//
677 // Class that matches exact binary ops.
678 //
679 template <typename SubPattern_t> struct Exact_match {
680   SubPattern_t SubPattern;
681 
Exact_matchExact_match682   Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
683 
matchExact_match684   template <typename OpTy> bool match(OpTy *V) {
685     if (PossiblyExactOperator *PEO = dyn_cast<PossiblyExactOperator>(V))
686       return PEO->isExact() && SubPattern.match(V);
687     return false;
688   }
689 };
690 
m_Exact(const T & SubPattern)691 template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
692   return SubPattern;
693 }
694 
695 //===----------------------------------------------------------------------===//
696 // Matchers for CmpInst classes
697 //
698 
699 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy>
700 struct CmpClass_match {
701   PredicateTy &Predicate;
702   LHS_t L;
703   RHS_t R;
704 
CmpClass_matchCmpClass_match705   CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
706       : Predicate(Pred), L(LHS), R(RHS) {}
707 
matchCmpClass_match708   template <typename OpTy> bool match(OpTy *V) {
709     if (Class *I = dyn_cast<Class>(V))
710       if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
711         Predicate = I->getPredicate();
712         return true;
713       }
714     return false;
715   }
716 };
717 
718 template <typename LHS, typename RHS>
719 inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
m_Cmp(CmpInst::Predicate & Pred,const LHS & L,const RHS & R)720 m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
721   return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
722 }
723 
724 template <typename LHS, typename RHS>
725 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
m_ICmp(ICmpInst::Predicate & Pred,const LHS & L,const RHS & R)726 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
727   return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
728 }
729 
730 template <typename LHS, typename RHS>
731 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
m_FCmp(FCmpInst::Predicate & Pred,const LHS & L,const RHS & R)732 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
733   return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
734 }
735 
736 //===----------------------------------------------------------------------===//
737 // Matchers for SelectInst classes
738 //
739 
740 template <typename Cond_t, typename LHS_t, typename RHS_t>
741 struct SelectClass_match {
742   Cond_t C;
743   LHS_t L;
744   RHS_t R;
745 
SelectClass_matchSelectClass_match746   SelectClass_match(const Cond_t &Cond, const LHS_t &LHS, const RHS_t &RHS)
747       : C(Cond), L(LHS), R(RHS) {}
748 
matchSelectClass_match749   template <typename OpTy> bool match(OpTy *V) {
750     if (auto *I = dyn_cast<SelectInst>(V))
751       return C.match(I->getOperand(0)) && L.match(I->getOperand(1)) &&
752              R.match(I->getOperand(2));
753     return false;
754   }
755 };
756 
757 template <typename Cond, typename LHS, typename RHS>
m_Select(const Cond & C,const LHS & L,const RHS & R)758 inline SelectClass_match<Cond, LHS, RHS> m_Select(const Cond &C, const LHS &L,
759                                                   const RHS &R) {
760   return SelectClass_match<Cond, LHS, RHS>(C, L, R);
761 }
762 
763 /// \brief This matches a select of two constants, e.g.:
764 /// m_SelectCst<-1, 0>(m_Value(V))
765 template <int64_t L, int64_t R, typename Cond>
766 inline SelectClass_match<Cond, constantint_match<L>, constantint_match<R>>
m_SelectCst(const Cond & C)767 m_SelectCst(const Cond &C) {
768   return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
769 }
770 
771 //===----------------------------------------------------------------------===//
772 // Matchers for CastInst classes
773 //
774 
775 template <typename Op_t, unsigned Opcode> struct CastClass_match {
776   Op_t Op;
777 
CastClass_matchCastClass_match778   CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
779 
matchCastClass_match780   template <typename OpTy> bool match(OpTy *V) {
781     if (auto *O = dyn_cast<Operator>(V))
782       return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
783     return false;
784   }
785 };
786 
787 /// \brief Matches BitCast.
788 template <typename OpTy>
m_BitCast(const OpTy & Op)789 inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
790   return CastClass_match<OpTy, Instruction::BitCast>(Op);
791 }
792 
793 /// \brief Matches PtrToInt.
794 template <typename OpTy>
m_PtrToInt(const OpTy & Op)795 inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
796   return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
797 }
798 
799 /// \brief Matches Trunc.
800 template <typename OpTy>
m_Trunc(const OpTy & Op)801 inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
802   return CastClass_match<OpTy, Instruction::Trunc>(Op);
803 }
804 
805 /// \brief Matches SExt.
806 template <typename OpTy>
m_SExt(const OpTy & Op)807 inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
808   return CastClass_match<OpTy, Instruction::SExt>(Op);
809 }
810 
811 /// \brief Matches ZExt.
812 template <typename OpTy>
m_ZExt(const OpTy & Op)813 inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
814   return CastClass_match<OpTy, Instruction::ZExt>(Op);
815 }
816 
817 /// \brief Matches UIToFP.
818 template <typename OpTy>
m_UIToFP(const OpTy & Op)819 inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
820   return CastClass_match<OpTy, Instruction::UIToFP>(Op);
821 }
822 
823 /// \brief Matches SIToFP.
824 template <typename OpTy>
m_SIToFP(const OpTy & Op)825 inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
826   return CastClass_match<OpTy, Instruction::SIToFP>(Op);
827 }
828 
829 //===----------------------------------------------------------------------===//
830 // Matchers for unary operators
831 //
832 
833 template <typename LHS_t> struct not_match {
834   LHS_t L;
835 
not_matchnot_match836   not_match(const LHS_t &LHS) : L(LHS) {}
837 
matchnot_match838   template <typename OpTy> bool match(OpTy *V) {
839     if (auto *O = dyn_cast<Operator>(V))
840       if (O->getOpcode() == Instruction::Xor)
841         return matchIfNot(O->getOperand(0), O->getOperand(1));
842     return false;
843   }
844 
845 private:
matchIfNotnot_match846   bool matchIfNot(Value *LHS, Value *RHS) {
847     return (isa<ConstantInt>(RHS) || isa<ConstantDataVector>(RHS) ||
848             // FIXME: Remove CV.
849             isa<ConstantVector>(RHS)) &&
850            cast<Constant>(RHS)->isAllOnesValue() && L.match(LHS);
851   }
852 };
853 
m_Not(const LHS & L)854 template <typename LHS> inline not_match<LHS> m_Not(const LHS &L) { return L; }
855 
856 template <typename LHS_t> struct neg_match {
857   LHS_t L;
858 
neg_matchneg_match859   neg_match(const LHS_t &LHS) : L(LHS) {}
860 
matchneg_match861   template <typename OpTy> bool match(OpTy *V) {
862     if (auto *O = dyn_cast<Operator>(V))
863       if (O->getOpcode() == Instruction::Sub)
864         return matchIfNeg(O->getOperand(0), O->getOperand(1));
865     return false;
866   }
867 
868 private:
matchIfNegneg_match869   bool matchIfNeg(Value *LHS, Value *RHS) {
870     return ((isa<ConstantInt>(LHS) && cast<ConstantInt>(LHS)->isZero()) ||
871             isa<ConstantAggregateZero>(LHS)) &&
872            L.match(RHS);
873   }
874 };
875 
876 /// \brief Match an integer negate.
m_Neg(const LHS & L)877 template <typename LHS> inline neg_match<LHS> m_Neg(const LHS &L) { return L; }
878 
879 template <typename LHS_t> struct fneg_match {
880   LHS_t L;
881 
fneg_matchfneg_match882   fneg_match(const LHS_t &LHS) : L(LHS) {}
883 
matchfneg_match884   template <typename OpTy> bool match(OpTy *V) {
885     if (auto *O = dyn_cast<Operator>(V))
886       if (O->getOpcode() == Instruction::FSub)
887         return matchIfFNeg(O->getOperand(0), O->getOperand(1));
888     return false;
889   }
890 
891 private:
matchIfFNegfneg_match892   bool matchIfFNeg(Value *LHS, Value *RHS) {
893     if (const auto *C = dyn_cast<ConstantFP>(LHS))
894       return C->isNegativeZeroValue() && L.match(RHS);
895     return false;
896   }
897 };
898 
899 /// \brief Match a floating point negate.
m_FNeg(const LHS & L)900 template <typename LHS> inline fneg_match<LHS> m_FNeg(const LHS &L) {
901   return L;
902 }
903 
904 //===----------------------------------------------------------------------===//
905 // Matchers for control flow.
906 //
907 
908 struct br_match {
909   BasicBlock *&Succ;
br_matchbr_match910   br_match(BasicBlock *&Succ) : Succ(Succ) {}
911 
matchbr_match912   template <typename OpTy> bool match(OpTy *V) {
913     if (auto *BI = dyn_cast<BranchInst>(V))
914       if (BI->isUnconditional()) {
915         Succ = BI->getSuccessor(0);
916         return true;
917       }
918     return false;
919   }
920 };
921 
m_UnconditionalBr(BasicBlock * & Succ)922 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
923 
924 template <typename Cond_t> struct brc_match {
925   Cond_t Cond;
926   BasicBlock *&T, *&F;
brc_matchbrc_match927   brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
928       : Cond(C), T(t), F(f) {}
929 
matchbrc_match930   template <typename OpTy> bool match(OpTy *V) {
931     if (auto *BI = dyn_cast<BranchInst>(V))
932       if (BI->isConditional() && Cond.match(BI->getCondition())) {
933         T = BI->getSuccessor(0);
934         F = BI->getSuccessor(1);
935         return true;
936       }
937     return false;
938   }
939 };
940 
941 template <typename Cond_t>
m_Br(const Cond_t & C,BasicBlock * & T,BasicBlock * & F)942 inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
943   return brc_match<Cond_t>(C, T, F);
944 }
945 
946 //===----------------------------------------------------------------------===//
947 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
948 //
949 
950 template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t>
951 struct MaxMin_match {
952   LHS_t L;
953   RHS_t R;
954 
MaxMin_matchMaxMin_match955   MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
956 
matchMaxMin_match957   template <typename OpTy> bool match(OpTy *V) {
958     // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
959     auto *SI = dyn_cast<SelectInst>(V);
960     if (!SI)
961       return false;
962     auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
963     if (!Cmp)
964       return false;
965     // At this point we have a select conditioned on a comparison.  Check that
966     // it is the values returned by the select that are being compared.
967     Value *TrueVal = SI->getTrueValue();
968     Value *FalseVal = SI->getFalseValue();
969     Value *LHS = Cmp->getOperand(0);
970     Value *RHS = Cmp->getOperand(1);
971     if ((TrueVal != LHS || FalseVal != RHS) &&
972         (TrueVal != RHS || FalseVal != LHS))
973       return false;
974     typename CmpInst_t::Predicate Pred =
975         LHS == TrueVal ? Cmp->getPredicate() : Cmp->getSwappedPredicate();
976     // Does "(x pred y) ? x : y" represent the desired max/min operation?
977     if (!Pred_t::match(Pred))
978       return false;
979     // It does!  Bind the operands.
980     return L.match(LHS) && R.match(RHS);
981   }
982 };
983 
984 /// \brief Helper class for identifying signed max predicates.
985 struct smax_pred_ty {
matchsmax_pred_ty986   static bool match(ICmpInst::Predicate Pred) {
987     return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
988   }
989 };
990 
991 /// \brief Helper class for identifying signed min predicates.
992 struct smin_pred_ty {
matchsmin_pred_ty993   static bool match(ICmpInst::Predicate Pred) {
994     return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
995   }
996 };
997 
998 /// \brief Helper class for identifying unsigned max predicates.
999 struct umax_pred_ty {
matchumax_pred_ty1000   static bool match(ICmpInst::Predicate Pred) {
1001     return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1002   }
1003 };
1004 
1005 /// \brief Helper class for identifying unsigned min predicates.
1006 struct umin_pred_ty {
matchumin_pred_ty1007   static bool match(ICmpInst::Predicate Pred) {
1008     return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1009   }
1010 };
1011 
1012 /// \brief Helper class for identifying ordered max predicates.
1013 struct ofmax_pred_ty {
matchofmax_pred_ty1014   static bool match(FCmpInst::Predicate Pred) {
1015     return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1016   }
1017 };
1018 
1019 /// \brief Helper class for identifying ordered min predicates.
1020 struct ofmin_pred_ty {
matchofmin_pred_ty1021   static bool match(FCmpInst::Predicate Pred) {
1022     return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1023   }
1024 };
1025 
1026 /// \brief Helper class for identifying unordered max predicates.
1027 struct ufmax_pred_ty {
matchufmax_pred_ty1028   static bool match(FCmpInst::Predicate Pred) {
1029     return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1030   }
1031 };
1032 
1033 /// \brief Helper class for identifying unordered min predicates.
1034 struct ufmin_pred_ty {
matchufmin_pred_ty1035   static bool match(FCmpInst::Predicate Pred) {
1036     return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1037   }
1038 };
1039 
1040 template <typename LHS, typename RHS>
m_SMax(const LHS & L,const RHS & R)1041 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1042                                                              const RHS &R) {
1043   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1044 }
1045 
1046 template <typename LHS, typename RHS>
m_SMin(const LHS & L,const RHS & R)1047 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1048                                                              const RHS &R) {
1049   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1050 }
1051 
1052 template <typename LHS, typename RHS>
m_UMax(const LHS & L,const RHS & R)1053 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1054                                                              const RHS &R) {
1055   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1056 }
1057 
1058 template <typename LHS, typename RHS>
m_UMin(const LHS & L,const RHS & R)1059 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1060                                                              const RHS &R) {
1061   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1062 }
1063 
1064 /// \brief Match an 'ordered' floating point maximum function.
1065 /// Floating point has one special value 'NaN'. Therefore, there is no total
1066 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1067 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1068 /// semantics. In the presence of 'NaN' we have to preserve the original
1069 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1070 ///
1071 ///                         max(L, R)  iff L and R are not NaN
1072 ///  m_OrdFMax(L, R) =      R          iff L or R are NaN
1073 template <typename LHS, typename RHS>
m_OrdFMax(const LHS & L,const RHS & R)1074 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1075                                                                  const RHS &R) {
1076   return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1077 }
1078 
1079 /// \brief Match an 'ordered' floating point minimum function.
1080 /// Floating point has one special value 'NaN'. Therefore, there is no total
1081 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1082 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1083 /// semantics. In the presence of 'NaN' we have to preserve the original
1084 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1085 ///
1086 ///                         max(L, R)  iff L and R are not NaN
1087 ///  m_OrdFMin(L, R) =      R          iff L or R are NaN
1088 template <typename LHS, typename RHS>
m_OrdFMin(const LHS & L,const RHS & R)1089 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1090                                                                  const RHS &R) {
1091   return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1092 }
1093 
1094 /// \brief Match an 'unordered' floating point maximum function.
1095 /// Floating point has one special value 'NaN'. Therefore, there is no total
1096 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1097 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1098 /// semantics. In the presence of 'NaN' we have to preserve the original
1099 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1100 ///
1101 ///                         max(L, R)  iff L and R are not NaN
1102 ///  m_UnordFMin(L, R) =    L          iff L or R are NaN
1103 template <typename LHS, typename RHS>
1104 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
m_UnordFMax(const LHS & L,const RHS & R)1105 m_UnordFMax(const LHS &L, const RHS &R) {
1106   return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1107 }
1108 
1109 //===----------------------------------------------------------------------===//
1110 // Matchers for overflow check patterns: e.g. (a + b) u< a
1111 //
1112 
1113 template <typename LHS_t, typename RHS_t, typename Sum_t>
1114 struct UAddWithOverflow_match {
1115   LHS_t L;
1116   RHS_t R;
1117   Sum_t S;
1118 
UAddWithOverflow_matchUAddWithOverflow_match1119   UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1120       : L(L), R(R), S(S) {}
1121 
matchUAddWithOverflow_match1122   template <typename OpTy> bool match(OpTy *V) {
1123     Value *ICmpLHS, *ICmpRHS;
1124     ICmpInst::Predicate Pred;
1125     if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1126       return false;
1127 
1128     Value *AddLHS, *AddRHS;
1129     auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1130 
1131     // (a + b) u< a, (a + b) u< b
1132     if (Pred == ICmpInst::ICMP_ULT)
1133       if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1134         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1135 
1136     // a >u (a + b), b >u (a + b)
1137     if (Pred == ICmpInst::ICMP_UGT)
1138       if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1139         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1140 
1141     return false;
1142   }
1143 };
1144 
1145 /// \brief Match an icmp instruction checking for unsigned overflow on addition.
1146 ///
1147 /// S is matched to the addition whose result is being checked for overflow, and
1148 /// L and R are matched to the LHS and RHS of S.
1149 template <typename LHS_t, typename RHS_t, typename Sum_t>
1150 UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
m_UAddWithOverflow(const LHS_t & L,const RHS_t & R,const Sum_t & S)1151 m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
1152   return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
1153 }
1154 
1155 /// \brief Match an 'unordered' floating point minimum function.
1156 /// Floating point has one special value 'NaN'. Therefore, there is no total
1157 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1158 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1159 /// semantics. In the presence of 'NaN' we have to preserve the original
1160 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1161 ///
1162 ///                          max(L, R)  iff L and R are not NaN
1163 ///  m_UnordFMin(L, R) =     L          iff L or R are NaN
1164 template <typename LHS, typename RHS>
1165 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
m_UnordFMin(const LHS & L,const RHS & R)1166 m_UnordFMin(const LHS &L, const RHS &R) {
1167   return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1168 }
1169 
1170 template <typename Opnd_t> struct Argument_match {
1171   unsigned OpI;
1172   Opnd_t Val;
Argument_matchArgument_match1173   Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
1174 
matchArgument_match1175   template <typename OpTy> bool match(OpTy *V) {
1176     CallSite CS(V);
1177     return CS.isCall() && Val.match(CS.getArgument(OpI));
1178   }
1179 };
1180 
1181 /// \brief Match an argument.
1182 template <unsigned OpI, typename Opnd_t>
m_Argument(const Opnd_t & Op)1183 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
1184   return Argument_match<Opnd_t>(OpI, Op);
1185 }
1186 
1187 /// \brief Intrinsic matchers.
1188 struct IntrinsicID_match {
1189   unsigned ID;
IntrinsicID_matchIntrinsicID_match1190   IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
1191 
matchIntrinsicID_match1192   template <typename OpTy> bool match(OpTy *V) {
1193     if (const auto *CI = dyn_cast<CallInst>(V))
1194       if (const auto *F = CI->getCalledFunction())
1195         return F->getIntrinsicID() == ID;
1196     return false;
1197   }
1198 };
1199 
1200 /// Intrinsic matches are combinations of ID matchers, and argument
1201 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
1202 /// them with lower arity matchers. Here's some convenient typedefs for up to
1203 /// several arguments, and more can be added as needed
1204 template <typename T0 = void, typename T1 = void, typename T2 = void,
1205           typename T3 = void, typename T4 = void, typename T5 = void,
1206           typename T6 = void, typename T7 = void, typename T8 = void,
1207           typename T9 = void, typename T10 = void>
1208 struct m_Intrinsic_Ty;
1209 template <typename T0> struct m_Intrinsic_Ty<T0> {
1210   typedef match_combine_and<IntrinsicID_match, Argument_match<T0>> Ty;
1211 };
1212 template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
1213   typedef match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>
1214       Ty;
1215 };
1216 template <typename T0, typename T1, typename T2>
1217 struct m_Intrinsic_Ty<T0, T1, T2> {
1218   typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
1219                             Argument_match<T2>> Ty;
1220 };
1221 template <typename T0, typename T1, typename T2, typename T3>
1222 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
1223   typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
1224                             Argument_match<T3>> Ty;
1225 };
1226 
1227 /// \brief Match intrinsic calls like this:
1228 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
1229 template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
1230   return IntrinsicID_match(IntrID);
1231 }
1232 
1233 template <Intrinsic::ID IntrID, typename T0>
1234 inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
1235   return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
1236 }
1237 
1238 template <Intrinsic::ID IntrID, typename T0, typename T1>
1239 inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
1240                                                        const T1 &Op1) {
1241   return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
1242 }
1243 
1244 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
1245 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
1246 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
1247   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
1248 }
1249 
1250 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
1251           typename T3>
1252 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
1253 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
1254   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
1255 }
1256 
1257 // Helper intrinsic matching specializations.
1258 template <typename Opnd0>
1259 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
1260   return m_Intrinsic<Intrinsic::bswap>(Op0);
1261 }
1262 
1263 template <typename Opnd0, typename Opnd1>
1264 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
1265                                                         const Opnd1 &Op1) {
1266   return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
1267 }
1268 
1269 template <typename Opnd0, typename Opnd1>
1270 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
1271                                                         const Opnd1 &Op1) {
1272   return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
1273 }
1274 
1275 template <typename Opnd_t> struct Signum_match {
1276   Opnd_t Val;
1277   Signum_match(const Opnd_t &V) : Val(V) {}
1278 
1279   template <typename OpTy> bool match(OpTy *V) {
1280     unsigned TypeSize = V->getType()->getScalarSizeInBits();
1281     if (TypeSize == 0)
1282       return false;
1283 
1284     unsigned ShiftWidth = TypeSize - 1;
1285     Value *OpL = nullptr, *OpR = nullptr;
1286 
1287     // This is the representation of signum we match:
1288     //
1289     //  signum(x) == (x >> 63) | (-x >>u 63)
1290     //
1291     // An i1 value is its own signum, so it's correct to match
1292     //
1293     //  signum(x) == (x >> 0)  | (-x >>u 0)
1294     //
1295     // for i1 values.
1296 
1297     auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
1298     auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
1299     auto Signum = m_Or(LHS, RHS);
1300 
1301     return Signum.match(V) && OpL == OpR && Val.match(OpL);
1302   }
1303 };
1304 
1305 /// \brief Matches a signum pattern.
1306 ///
1307 /// signum(x) =
1308 ///      x >  0  ->  1
1309 ///      x == 0  ->  0
1310 ///      x <  0  -> -1
1311 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
1312   return Signum_match<Val_t>(V);
1313 }
1314 
1315 //===----------------------------------------------------------------------===//
1316 // Matchers for two-operands operators with the operators in either order
1317 //
1318 
1319 /// \brief Matches an ICmp with a predicate over LHS and RHS in either order.
1320 /// Does not swap the predicate.
1321 template<typename LHS, typename RHS>
1322 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
1323                         CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
1324 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1325   return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
1326 }
1327 
1328 /// \brief Matches an And with LHS and RHS in either order.
1329 template<typename LHS, typename RHS>
1330 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
1331                         BinaryOp_match<RHS, LHS, Instruction::And>>
1332 m_c_And(const LHS &L, const RHS &R) {
1333   return m_CombineOr(m_And(L, R), m_And(R, L));
1334 }
1335 
1336 /// \brief Matches an Or with LHS and RHS in either order.
1337 template<typename LHS, typename RHS>
1338 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
1339                         BinaryOp_match<RHS, LHS, Instruction::Or>>
1340 m_c_Or(const LHS &L, const RHS &R) {
1341   return m_CombineOr(m_Or(L, R), m_Or(R, L));
1342 }
1343 
1344 /// \brief Matches an Xor with LHS and RHS in either order.
1345 template<typename LHS, typename RHS>
1346 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
1347                         BinaryOp_match<RHS, LHS, Instruction::Xor>>
1348 m_c_Xor(const LHS &L, const RHS &R) {
1349   return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
1350 }
1351 
1352 } // end namespace PatternMatch
1353 } // end namespace llvm
1354 
1355 #endif
1356