1 /*
2 * Copyright (c) 2015-2016 The Khronos Group Inc.
3 * Copyright (c) 2015-2016 Valve Corporation
4 * Copyright (c) 2015-2016 LunarG, Inc.
5 *
6 * Licensed under the Apache License, Version 2.0 (the "License");
7 * you may not use this file except in compliance with the License.
8 * You may obtain a copy of the License at
9 *
10 * http://www.apache.org/licenses/LICENSE-2.0
11 *
12 * Unless required by applicable law or agreed to in writing, software
13 * distributed under the License is distributed on an "AS IS" BASIS,
14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 * See the License for the specific language governing permissions and
16 * limitations under the License.
17 *
18 * Relicensed from the WTFPL (http://www.wtfpl.net/faq/).
19 */
20
21 #ifndef LINMATH_H
22 #define LINMATH_H
23
24 #include <math.h>
25
26 // Converts degrees to radians.
27 #define degreesToRadians(angleDegrees) (angleDegrees * M_PI / 180.0)
28
29 // Converts radians to degrees.
30 #define radiansToDegrees(angleRadians) (angleRadians * 180.0 / M_PI)
31
32 typedef float vec3[3];
vec3_add(vec3 r,vec3 const a,vec3 const b)33 static inline void vec3_add(vec3 r, vec3 const a, vec3 const b) {
34 int i;
35 for (i = 0; i < 3; ++i)
36 r[i] = a[i] + b[i];
37 }
vec3_sub(vec3 r,vec3 const a,vec3 const b)38 static inline void vec3_sub(vec3 r, vec3 const a, vec3 const b) {
39 int i;
40 for (i = 0; i < 3; ++i)
41 r[i] = a[i] - b[i];
42 }
vec3_scale(vec3 r,vec3 const v,float const s)43 static inline void vec3_scale(vec3 r, vec3 const v, float const s) {
44 int i;
45 for (i = 0; i < 3; ++i)
46 r[i] = v[i] * s;
47 }
vec3_mul_inner(vec3 const a,vec3 const b)48 static inline float vec3_mul_inner(vec3 const a, vec3 const b) {
49 float p = 0.f;
50 int i;
51 for (i = 0; i < 3; ++i)
52 p += b[i] * a[i];
53 return p;
54 }
vec3_mul_cross(vec3 r,vec3 const a,vec3 const b)55 static inline void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b) {
56 r[0] = a[1] * b[2] - a[2] * b[1];
57 r[1] = a[2] * b[0] - a[0] * b[2];
58 r[2] = a[0] * b[1] - a[1] * b[0];
59 }
vec3_len(vec3 const v)60 static inline float vec3_len(vec3 const v) {
61 return sqrtf(vec3_mul_inner(v, v));
62 }
vec3_norm(vec3 r,vec3 const v)63 static inline void vec3_norm(vec3 r, vec3 const v) {
64 float k = 1.f / vec3_len(v);
65 vec3_scale(r, v, k);
66 }
vec3_reflect(vec3 r,vec3 const v,vec3 const n)67 static inline void vec3_reflect(vec3 r, vec3 const v, vec3 const n) {
68 float p = 2.f * vec3_mul_inner(v, n);
69 int i;
70 for (i = 0; i < 3; ++i)
71 r[i] = v[i] - p * n[i];
72 }
73
74 typedef float vec4[4];
vec4_add(vec4 r,vec4 const a,vec4 const b)75 static inline void vec4_add(vec4 r, vec4 const a, vec4 const b) {
76 int i;
77 for (i = 0; i < 4; ++i)
78 r[i] = a[i] + b[i];
79 }
vec4_sub(vec4 r,vec4 const a,vec4 const b)80 static inline void vec4_sub(vec4 r, vec4 const a, vec4 const b) {
81 int i;
82 for (i = 0; i < 4; ++i)
83 r[i] = a[i] - b[i];
84 }
vec4_scale(vec4 r,vec4 v,float s)85 static inline void vec4_scale(vec4 r, vec4 v, float s) {
86 int i;
87 for (i = 0; i < 4; ++i)
88 r[i] = v[i] * s;
89 }
vec4_mul_inner(vec4 a,vec4 b)90 static inline float vec4_mul_inner(vec4 a, vec4 b) {
91 float p = 0.f;
92 int i;
93 for (i = 0; i < 4; ++i)
94 p += b[i] * a[i];
95 return p;
96 }
vec4_mul_cross(vec4 r,vec4 a,vec4 b)97 static inline void vec4_mul_cross(vec4 r, vec4 a, vec4 b) {
98 r[0] = a[1] * b[2] - a[2] * b[1];
99 r[1] = a[2] * b[0] - a[0] * b[2];
100 r[2] = a[0] * b[1] - a[1] * b[0];
101 r[3] = 1.f;
102 }
vec4_len(vec4 v)103 static inline float vec4_len(vec4 v) { return sqrtf(vec4_mul_inner(v, v)); }
vec4_norm(vec4 r,vec4 v)104 static inline void vec4_norm(vec4 r, vec4 v) {
105 float k = 1.f / vec4_len(v);
106 vec4_scale(r, v, k);
107 }
vec4_reflect(vec4 r,vec4 v,vec4 n)108 static inline void vec4_reflect(vec4 r, vec4 v, vec4 n) {
109 float p = 2.f * vec4_mul_inner(v, n);
110 int i;
111 for (i = 0; i < 4; ++i)
112 r[i] = v[i] - p * n[i];
113 }
114
115 typedef vec4 mat4x4[4];
mat4x4_identity(mat4x4 M)116 static inline void mat4x4_identity(mat4x4 M) {
117 int i, j;
118 for (i = 0; i < 4; ++i)
119 for (j = 0; j < 4; ++j)
120 M[i][j] = i == j ? 1.f : 0.f;
121 }
mat4x4_dup(mat4x4 M,mat4x4 N)122 static inline void mat4x4_dup(mat4x4 M, mat4x4 N) {
123 int i, j;
124 for (i = 0; i < 4; ++i)
125 for (j = 0; j < 4; ++j)
126 M[i][j] = N[i][j];
127 }
mat4x4_row(vec4 r,mat4x4 M,int i)128 static inline void mat4x4_row(vec4 r, mat4x4 M, int i) {
129 int k;
130 for (k = 0; k < 4; ++k)
131 r[k] = M[k][i];
132 }
mat4x4_col(vec4 r,mat4x4 M,int i)133 static inline void mat4x4_col(vec4 r, mat4x4 M, int i) {
134 int k;
135 for (k = 0; k < 4; ++k)
136 r[k] = M[i][k];
137 }
mat4x4_transpose(mat4x4 M,mat4x4 N)138 static inline void mat4x4_transpose(mat4x4 M, mat4x4 N) {
139 int i, j;
140 for (j = 0; j < 4; ++j)
141 for (i = 0; i < 4; ++i)
142 M[i][j] = N[j][i];
143 }
mat4x4_add(mat4x4 M,mat4x4 a,mat4x4 b)144 static inline void mat4x4_add(mat4x4 M, mat4x4 a, mat4x4 b) {
145 int i;
146 for (i = 0; i < 4; ++i)
147 vec4_add(M[i], a[i], b[i]);
148 }
mat4x4_sub(mat4x4 M,mat4x4 a,mat4x4 b)149 static inline void mat4x4_sub(mat4x4 M, mat4x4 a, mat4x4 b) {
150 int i;
151 for (i = 0; i < 4; ++i)
152 vec4_sub(M[i], a[i], b[i]);
153 }
mat4x4_scale(mat4x4 M,mat4x4 a,float k)154 static inline void mat4x4_scale(mat4x4 M, mat4x4 a, float k) {
155 int i;
156 for (i = 0; i < 4; ++i)
157 vec4_scale(M[i], a[i], k);
158 }
mat4x4_scale_aniso(mat4x4 M,mat4x4 a,float x,float y,float z)159 static inline void mat4x4_scale_aniso(mat4x4 M, mat4x4 a, float x, float y,
160 float z) {
161 int i;
162 vec4_scale(M[0], a[0], x);
163 vec4_scale(M[1], a[1], y);
164 vec4_scale(M[2], a[2], z);
165 for (i = 0; i < 4; ++i) {
166 M[3][i] = a[3][i];
167 }
168 }
mat4x4_mul(mat4x4 M,mat4x4 a,mat4x4 b)169 static inline void mat4x4_mul(mat4x4 M, mat4x4 a, mat4x4 b) {
170 int k, r, c;
171 for (c = 0; c < 4; ++c)
172 for (r = 0; r < 4; ++r) {
173 M[c][r] = 0.f;
174 for (k = 0; k < 4; ++k)
175 M[c][r] += a[k][r] * b[c][k];
176 }
177 }
mat4x4_mul_vec4(vec4 r,mat4x4 M,vec4 v)178 static inline void mat4x4_mul_vec4(vec4 r, mat4x4 M, vec4 v) {
179 int i, j;
180 for (j = 0; j < 4; ++j) {
181 r[j] = 0.f;
182 for (i = 0; i < 4; ++i)
183 r[j] += M[i][j] * v[i];
184 }
185 }
mat4x4_translate(mat4x4 T,float x,float y,float z)186 static inline void mat4x4_translate(mat4x4 T, float x, float y, float z) {
187 mat4x4_identity(T);
188 T[3][0] = x;
189 T[3][1] = y;
190 T[3][2] = z;
191 }
mat4x4_translate_in_place(mat4x4 M,float x,float y,float z)192 static inline void mat4x4_translate_in_place(mat4x4 M, float x, float y,
193 float z) {
194 vec4 t = {x, y, z, 0};
195 vec4 r;
196 int i;
197 for (i = 0; i < 4; ++i) {
198 mat4x4_row(r, M, i);
199 M[3][i] += vec4_mul_inner(r, t);
200 }
201 }
mat4x4_from_vec3_mul_outer(mat4x4 M,vec3 a,vec3 b)202 static inline void mat4x4_from_vec3_mul_outer(mat4x4 M, vec3 a, vec3 b) {
203 int i, j;
204 for (i = 0; i < 4; ++i)
205 for (j = 0; j < 4; ++j)
206 M[i][j] = i < 3 && j < 3 ? a[i] * b[j] : 0.f;
207 }
mat4x4_rotate(mat4x4 R,mat4x4 M,float x,float y,float z,float angle)208 static inline void mat4x4_rotate(mat4x4 R, mat4x4 M, float x, float y, float z,
209 float angle) {
210 float s = sinf(angle);
211 float c = cosf(angle);
212 vec3 u = {x, y, z};
213
214 if (vec3_len(u) > 1e-4) {
215 vec3_norm(u, u);
216 mat4x4 T;
217 mat4x4_from_vec3_mul_outer(T, u, u);
218
219 mat4x4 S = {{0, u[2], -u[1], 0},
220 {-u[2], 0, u[0], 0},
221 {u[1], -u[0], 0, 0},
222 {0, 0, 0, 0}};
223 mat4x4_scale(S, S, s);
224
225 mat4x4 C;
226 mat4x4_identity(C);
227 mat4x4_sub(C, C, T);
228
229 mat4x4_scale(C, C, c);
230
231 mat4x4_add(T, T, C);
232 mat4x4_add(T, T, S);
233
234 T[3][3] = 1.;
235 mat4x4_mul(R, M, T);
236 } else {
237 mat4x4_dup(R, M);
238 }
239 }
mat4x4_rotate_X(mat4x4 Q,mat4x4 M,float angle)240 static inline void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, float angle) {
241 float s = sinf(angle);
242 float c = cosf(angle);
243 mat4x4 R = {{1.f, 0.f, 0.f, 0.f},
244 {0.f, c, s, 0.f},
245 {0.f, -s, c, 0.f},
246 {0.f, 0.f, 0.f, 1.f}};
247 mat4x4_mul(Q, M, R);
248 }
mat4x4_rotate_Y(mat4x4 Q,mat4x4 M,float angle)249 static inline void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, float angle) {
250 float s = sinf(angle);
251 float c = cosf(angle);
252 mat4x4 R = {{c, 0.f, s, 0.f},
253 {0.f, 1.f, 0.f, 0.f},
254 {-s, 0.f, c, 0.f},
255 {0.f, 0.f, 0.f, 1.f}};
256 mat4x4_mul(Q, M, R);
257 }
mat4x4_rotate_Z(mat4x4 Q,mat4x4 M,float angle)258 static inline void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, float angle) {
259 float s = sinf(angle);
260 float c = cosf(angle);
261 mat4x4 R = {{c, s, 0.f, 0.f},
262 {-s, c, 0.f, 0.f},
263 {0.f, 0.f, 1.f, 0.f},
264 {0.f, 0.f, 0.f, 1.f}};
265 mat4x4_mul(Q, M, R);
266 }
mat4x4_invert(mat4x4 T,mat4x4 M)267 static inline void mat4x4_invert(mat4x4 T, mat4x4 M) {
268 float s[6];
269 float c[6];
270 s[0] = M[0][0] * M[1][1] - M[1][0] * M[0][1];
271 s[1] = M[0][0] * M[1][2] - M[1][0] * M[0][2];
272 s[2] = M[0][0] * M[1][3] - M[1][0] * M[0][3];
273 s[3] = M[0][1] * M[1][2] - M[1][1] * M[0][2];
274 s[4] = M[0][1] * M[1][3] - M[1][1] * M[0][3];
275 s[5] = M[0][2] * M[1][3] - M[1][2] * M[0][3];
276
277 c[0] = M[2][0] * M[3][1] - M[3][0] * M[2][1];
278 c[1] = M[2][0] * M[3][2] - M[3][0] * M[2][2];
279 c[2] = M[2][0] * M[3][3] - M[3][0] * M[2][3];
280 c[3] = M[2][1] * M[3][2] - M[3][1] * M[2][2];
281 c[4] = M[2][1] * M[3][3] - M[3][1] * M[2][3];
282 c[5] = M[2][2] * M[3][3] - M[3][2] * M[2][3];
283
284 /* Assumes it is invertible */
285 float idet = 1.0f / (s[0] * c[5] - s[1] * c[4] + s[2] * c[3] + s[3] * c[2] -
286 s[4] * c[1] + s[5] * c[0]);
287
288 T[0][0] = (M[1][1] * c[5] - M[1][2] * c[4] + M[1][3] * c[3]) * idet;
289 T[0][1] = (-M[0][1] * c[5] + M[0][2] * c[4] - M[0][3] * c[3]) * idet;
290 T[0][2] = (M[3][1] * s[5] - M[3][2] * s[4] + M[3][3] * s[3]) * idet;
291 T[0][3] = (-M[2][1] * s[5] + M[2][2] * s[4] - M[2][3] * s[3]) * idet;
292
293 T[1][0] = (-M[1][0] * c[5] + M[1][2] * c[2] - M[1][3] * c[1]) * idet;
294 T[1][1] = (M[0][0] * c[5] - M[0][2] * c[2] + M[0][3] * c[1]) * idet;
295 T[1][2] = (-M[3][0] * s[5] + M[3][2] * s[2] - M[3][3] * s[1]) * idet;
296 T[1][3] = (M[2][0] * s[5] - M[2][2] * s[2] + M[2][3] * s[1]) * idet;
297
298 T[2][0] = (M[1][0] * c[4] - M[1][1] * c[2] + M[1][3] * c[0]) * idet;
299 T[2][1] = (-M[0][0] * c[4] + M[0][1] * c[2] - M[0][3] * c[0]) * idet;
300 T[2][2] = (M[3][0] * s[4] - M[3][1] * s[2] + M[3][3] * s[0]) * idet;
301 T[2][3] = (-M[2][0] * s[4] + M[2][1] * s[2] - M[2][3] * s[0]) * idet;
302
303 T[3][0] = (-M[1][0] * c[3] + M[1][1] * c[1] - M[1][2] * c[0]) * idet;
304 T[3][1] = (M[0][0] * c[3] - M[0][1] * c[1] + M[0][2] * c[0]) * idet;
305 T[3][2] = (-M[3][0] * s[3] + M[3][1] * s[1] - M[3][2] * s[0]) * idet;
306 T[3][3] = (M[2][0] * s[3] - M[2][1] * s[1] + M[2][2] * s[0]) * idet;
307 }
mat4x4_orthonormalize(mat4x4 R,mat4x4 M)308 static inline void mat4x4_orthonormalize(mat4x4 R, mat4x4 M) {
309 mat4x4_dup(R, M);
310 float s = 1.;
311 vec3 h;
312
313 vec3_norm(R[2], R[2]);
314
315 s = vec3_mul_inner(R[1], R[2]);
316 vec3_scale(h, R[2], s);
317 vec3_sub(R[1], R[1], h);
318 vec3_norm(R[2], R[2]);
319
320 s = vec3_mul_inner(R[1], R[2]);
321 vec3_scale(h, R[2], s);
322 vec3_sub(R[1], R[1], h);
323 vec3_norm(R[1], R[1]);
324
325 s = vec3_mul_inner(R[0], R[1]);
326 vec3_scale(h, R[1], s);
327 vec3_sub(R[0], R[0], h);
328 vec3_norm(R[0], R[0]);
329 }
330
mat4x4_frustum(mat4x4 M,float l,float r,float b,float t,float n,float f)331 static inline void mat4x4_frustum(mat4x4 M, float l, float r, float b, float t,
332 float n, float f) {
333 M[0][0] = 2.f * n / (r - l);
334 M[0][1] = M[0][2] = M[0][3] = 0.f;
335
336 M[1][1] = 2.f * n / (t - b);
337 M[1][0] = M[1][2] = M[1][3] = 0.f;
338
339 M[2][0] = (r + l) / (r - l);
340 M[2][1] = (t + b) / (t - b);
341 M[2][2] = -(f + n) / (f - n);
342 M[2][3] = -1.f;
343
344 M[3][2] = -2.f * (f * n) / (f - n);
345 M[3][0] = M[3][1] = M[3][3] = 0.f;
346 }
mat4x4_ortho(mat4x4 M,float l,float r,float b,float t,float n,float f)347 static inline void mat4x4_ortho(mat4x4 M, float l, float r, float b, float t,
348 float n, float f) {
349 M[0][0] = 2.f / (r - l);
350 M[0][1] = M[0][2] = M[0][3] = 0.f;
351
352 M[1][1] = 2.f / (t - b);
353 M[1][0] = M[1][2] = M[1][3] = 0.f;
354
355 M[2][2] = -2.f / (f - n);
356 M[2][0] = M[2][1] = M[2][3] = 0.f;
357
358 M[3][0] = -(r + l) / (r - l);
359 M[3][1] = -(t + b) / (t - b);
360 M[3][2] = -(f + n) / (f - n);
361 M[3][3] = 1.f;
362 }
mat4x4_perspective(mat4x4 m,float y_fov,float aspect,float n,float f)363 static inline void mat4x4_perspective(mat4x4 m, float y_fov, float aspect,
364 float n, float f) {
365 /* NOTE: Degrees are an unhandy unit to work with.
366 * linmath.h uses radians for everything! */
367 float const a = (float)(1.f / tan(y_fov / 2.f));
368
369 m[0][0] = a / aspect;
370 m[0][1] = 0.f;
371 m[0][2] = 0.f;
372 m[0][3] = 0.f;
373
374 m[1][0] = 0.f;
375 m[1][1] = a;
376 m[1][2] = 0.f;
377 m[1][3] = 0.f;
378
379 m[2][0] = 0.f;
380 m[2][1] = 0.f;
381 m[2][2] = -((f + n) / (f - n));
382 m[2][3] = -1.f;
383
384 m[3][0] = 0.f;
385 m[3][1] = 0.f;
386 m[3][2] = -((2.f * f * n) / (f - n));
387 m[3][3] = 0.f;
388 }
mat4x4_look_at(mat4x4 m,vec3 eye,vec3 center,vec3 up)389 static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up) {
390 /* Adapted from Android's OpenGL Matrix.java. */
391 /* See the OpenGL GLUT documentation for gluLookAt for a description */
392 /* of the algorithm. We implement it in a straightforward way: */
393
394 /* TODO: The negation of of can be spared by swapping the order of
395 * operands in the following cross products in the right way. */
396 vec3 f;
397 vec3_sub(f, center, eye);
398 vec3_norm(f, f);
399
400 vec3 s;
401 vec3_mul_cross(s, f, up);
402 vec3_norm(s, s);
403
404 vec3 t;
405 vec3_mul_cross(t, s, f);
406
407 m[0][0] = s[0];
408 m[0][1] = t[0];
409 m[0][2] = -f[0];
410 m[0][3] = 0.f;
411
412 m[1][0] = s[1];
413 m[1][1] = t[1];
414 m[1][2] = -f[1];
415 m[1][3] = 0.f;
416
417 m[2][0] = s[2];
418 m[2][1] = t[2];
419 m[2][2] = -f[2];
420 m[2][3] = 0.f;
421
422 m[3][0] = 0.f;
423 m[3][1] = 0.f;
424 m[3][2] = 0.f;
425 m[3][3] = 1.f;
426
427 mat4x4_translate_in_place(m, -eye[0], -eye[1], -eye[2]);
428 }
429
430 typedef float quat[4];
quat_identity(quat q)431 static inline void quat_identity(quat q) {
432 q[0] = q[1] = q[2] = 0.f;
433 q[3] = 1.f;
434 }
quat_add(quat r,quat a,quat b)435 static inline void quat_add(quat r, quat a, quat b) {
436 int i;
437 for (i = 0; i < 4; ++i)
438 r[i] = a[i] + b[i];
439 }
quat_sub(quat r,quat a,quat b)440 static inline void quat_sub(quat r, quat a, quat b) {
441 int i;
442 for (i = 0; i < 4; ++i)
443 r[i] = a[i] - b[i];
444 }
quat_mul(quat r,quat p,quat q)445 static inline void quat_mul(quat r, quat p, quat q) {
446 vec3 w;
447 vec3_mul_cross(r, p, q);
448 vec3_scale(w, p, q[3]);
449 vec3_add(r, r, w);
450 vec3_scale(w, q, p[3]);
451 vec3_add(r, r, w);
452 r[3] = p[3] * q[3] - vec3_mul_inner(p, q);
453 }
quat_scale(quat r,quat v,float s)454 static inline void quat_scale(quat r, quat v, float s) {
455 int i;
456 for (i = 0; i < 4; ++i)
457 r[i] = v[i] * s;
458 }
quat_inner_product(quat a,quat b)459 static inline float quat_inner_product(quat a, quat b) {
460 float p = 0.f;
461 int i;
462 for (i = 0; i < 4; ++i)
463 p += b[i] * a[i];
464 return p;
465 }
quat_conj(quat r,quat q)466 static inline void quat_conj(quat r, quat q) {
467 int i;
468 for (i = 0; i < 3; ++i)
469 r[i] = -q[i];
470 r[3] = q[3];
471 }
472 #define quat_norm vec4_norm
quat_mul_vec3(vec3 r,quat q,vec3 v)473 static inline void quat_mul_vec3(vec3 r, quat q, vec3 v) {
474 quat v_ = {v[0], v[1], v[2], 0.f};
475
476 quat_conj(r, q);
477 quat_norm(r, r);
478 quat_mul(r, v_, r);
479 quat_mul(r, q, r);
480 }
mat4x4_from_quat(mat4x4 M,quat q)481 static inline void mat4x4_from_quat(mat4x4 M, quat q) {
482 float a = q[3];
483 float b = q[0];
484 float c = q[1];
485 float d = q[2];
486 float a2 = a * a;
487 float b2 = b * b;
488 float c2 = c * c;
489 float d2 = d * d;
490
491 M[0][0] = a2 + b2 - c2 - d2;
492 M[0][1] = 2.f * (b * c + a * d);
493 M[0][2] = 2.f * (b * d - a * c);
494 M[0][3] = 0.f;
495
496 M[1][0] = 2 * (b * c - a * d);
497 M[1][1] = a2 - b2 + c2 - d2;
498 M[1][2] = 2.f * (c * d + a * b);
499 M[1][3] = 0.f;
500
501 M[2][0] = 2.f * (b * d + a * c);
502 M[2][1] = 2.f * (c * d - a * b);
503 M[2][2] = a2 - b2 - c2 + d2;
504 M[2][3] = 0.f;
505
506 M[3][0] = M[3][1] = M[3][2] = 0.f;
507 M[3][3] = 1.f;
508 }
509
mat4x4o_mul_quat(mat4x4 R,mat4x4 M,quat q)510 static inline void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q) {
511 /* XXX: The way this is written only works for othogonal matrices. */
512 /* TODO: Take care of non-orthogonal case. */
513 quat_mul_vec3(R[0], q, M[0]);
514 quat_mul_vec3(R[1], q, M[1]);
515 quat_mul_vec3(R[2], q, M[2]);
516
517 R[3][0] = R[3][1] = R[3][2] = 0.f;
518 R[3][3] = 1.f;
519 }
quat_from_mat4x4(quat q,mat4x4 M)520 static inline void quat_from_mat4x4(quat q, mat4x4 M) {
521 float r = 0.f;
522 int i;
523
524 int perm[] = {0, 1, 2, 0, 1};
525 int *p = perm;
526
527 for (i = 0; i < 3; i++) {
528 float m = M[i][i];
529 if (m < r)
530 continue;
531 m = r;
532 p = &perm[i];
533 }
534
535 r = sqrtf(1.f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]]);
536
537 if (r < 1e-6) {
538 q[0] = 1.f;
539 q[1] = q[2] = q[3] = 0.f;
540 return;
541 }
542
543 q[0] = r / 2.f;
544 q[1] = (M[p[0]][p[1]] - M[p[1]][p[0]]) / (2.f * r);
545 q[2] = (M[p[2]][p[0]] - M[p[0]][p[2]]) / (2.f * r);
546 q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]]) / (2.f * r);
547 }
548
549 #endif
550