1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32
33 // The original source code covered by the above license above has been
34 // modified significantly by Google Inc.
35 // Copyright 2014 the V8 project authors. All rights reserved.
36
37 #include "src/ppc/assembler-ppc.h"
38
39 #if V8_TARGET_ARCH_PPC
40
41 #include "src/base/bits.h"
42 #include "src/base/cpu.h"
43 #include "src/macro-assembler.h"
44 #include "src/ppc/assembler-ppc-inl.h"
45
46 namespace v8 {
47 namespace internal {
48
49 // Get the CPU features enabled by the build.
CpuFeaturesImpliedByCompiler()50 static unsigned CpuFeaturesImpliedByCompiler() {
51 unsigned answer = 0;
52 return answer;
53 }
54
55
ProbeImpl(bool cross_compile)56 void CpuFeatures::ProbeImpl(bool cross_compile) {
57 supported_ |= CpuFeaturesImpliedByCompiler();
58 icache_line_size_ = 128;
59
60 // Only use statically determined features for cross compile (snapshot).
61 if (cross_compile) return;
62
63 // Detect whether frim instruction is supported (POWER5+)
64 // For now we will just check for processors we know do not
65 // support it
66 #ifndef USE_SIMULATOR
67 // Probe for additional features at runtime.
68 base::CPU cpu;
69 #if V8_TARGET_ARCH_PPC64
70 if (cpu.part() == base::CPU::PPC_POWER8) {
71 supported_ |= (1u << FPR_GPR_MOV);
72 }
73 #endif
74 if (cpu.part() == base::CPU::PPC_POWER6 ||
75 cpu.part() == base::CPU::PPC_POWER7 ||
76 cpu.part() == base::CPU::PPC_POWER8) {
77 supported_ |= (1u << LWSYNC);
78 }
79 if (cpu.part() == base::CPU::PPC_POWER7 ||
80 cpu.part() == base::CPU::PPC_POWER8) {
81 supported_ |= (1u << ISELECT);
82 }
83 #if V8_OS_LINUX
84 if (!(cpu.part() == base::CPU::PPC_G5 || cpu.part() == base::CPU::PPC_G4)) {
85 // Assume support
86 supported_ |= (1u << FPU);
87 }
88 if (cpu.icache_line_size() != base::CPU::UNKNOWN_CACHE_LINE_SIZE) {
89 icache_line_size_ = cpu.icache_line_size();
90 }
91 #elif V8_OS_AIX
92 // Assume support FP support and default cache line size
93 supported_ |= (1u << FPU);
94 #endif
95 #else // Simulator
96 supported_ |= (1u << FPU);
97 supported_ |= (1u << LWSYNC);
98 supported_ |= (1u << ISELECT);
99 #if V8_TARGET_ARCH_PPC64
100 supported_ |= (1u << FPR_GPR_MOV);
101 #endif
102 #endif
103 }
104
105
PrintTarget()106 void CpuFeatures::PrintTarget() {
107 const char* ppc_arch = NULL;
108
109 #if V8_TARGET_ARCH_PPC64
110 ppc_arch = "ppc64";
111 #else
112 ppc_arch = "ppc";
113 #endif
114
115 printf("target %s\n", ppc_arch);
116 }
117
118
PrintFeatures()119 void CpuFeatures::PrintFeatures() {
120 printf("FPU=%d\n", CpuFeatures::IsSupported(FPU));
121 }
122
123
ToRegister(int num)124 Register ToRegister(int num) {
125 DCHECK(num >= 0 && num < kNumRegisters);
126 const Register kRegisters[] = {r0, sp, r2, r3, r4, r5, r6, r7,
127 r8, r9, r10, r11, ip, r13, r14, r15,
128 r16, r17, r18, r19, r20, r21, r22, r23,
129 r24, r25, r26, r27, r28, r29, r30, fp};
130 return kRegisters[num];
131 }
132
133
134 // -----------------------------------------------------------------------------
135 // Implementation of RelocInfo
136
137 const int RelocInfo::kApplyMask = 1 << RelocInfo::INTERNAL_REFERENCE |
138 1 << RelocInfo::INTERNAL_REFERENCE_ENCODED;
139
140
IsCodedSpecially()141 bool RelocInfo::IsCodedSpecially() {
142 // The deserializer needs to know whether a pointer is specially
143 // coded. Being specially coded on PPC means that it is a lis/ori
144 // instruction sequence or is a constant pool entry, and these are
145 // always the case inside code objects.
146 return true;
147 }
148
149
IsInConstantPool()150 bool RelocInfo::IsInConstantPool() {
151 if (FLAG_enable_embedded_constant_pool) {
152 Address constant_pool = host_->constant_pool();
153 return (constant_pool && Assembler::IsConstantPoolLoadStart(pc_));
154 }
155 return false;
156 }
157
wasm_memory_reference()158 Address RelocInfo::wasm_memory_reference() {
159 DCHECK(IsWasmMemoryReference(rmode_));
160 return Assembler::target_address_at(pc_, host_);
161 }
162
wasm_memory_size_reference()163 uint32_t RelocInfo::wasm_memory_size_reference() {
164 DCHECK(IsWasmMemorySizeReference(rmode_));
165 return static_cast<uint32_t>(
166 reinterpret_cast<intptr_t>(Assembler::target_address_at(pc_, host_)));
167 }
168
wasm_global_reference()169 Address RelocInfo::wasm_global_reference() {
170 DCHECK(IsWasmGlobalReference(rmode_));
171 return Assembler::target_address_at(pc_, host_);
172 }
173
174
unchecked_update_wasm_memory_reference(Address address,ICacheFlushMode flush_mode)175 void RelocInfo::unchecked_update_wasm_memory_reference(
176 Address address, ICacheFlushMode flush_mode) {
177 Assembler::set_target_address_at(isolate_, pc_, host_, address, flush_mode);
178 }
179
unchecked_update_wasm_memory_size(uint32_t size,ICacheFlushMode flush_mode)180 void RelocInfo::unchecked_update_wasm_memory_size(uint32_t size,
181 ICacheFlushMode flush_mode) {
182 Assembler::set_target_address_at(isolate_, pc_, host_,
183 reinterpret_cast<Address>(size), flush_mode);
184 }
185
186 // -----------------------------------------------------------------------------
187 // Implementation of Operand and MemOperand
188 // See assembler-ppc-inl.h for inlined constructors
189
Operand(Handle<Object> handle)190 Operand::Operand(Handle<Object> handle) {
191 AllowDeferredHandleDereference using_raw_address;
192 rm_ = no_reg;
193 // Verify all Objects referred by code are NOT in new space.
194 Object* obj = *handle;
195 if (obj->IsHeapObject()) {
196 imm_ = reinterpret_cast<intptr_t>(handle.location());
197 rmode_ = RelocInfo::EMBEDDED_OBJECT;
198 } else {
199 // no relocation needed
200 imm_ = reinterpret_cast<intptr_t>(obj);
201 rmode_ = kRelocInfo_NONEPTR;
202 }
203 }
204
205
MemOperand(Register rn,int32_t offset)206 MemOperand::MemOperand(Register rn, int32_t offset) {
207 ra_ = rn;
208 rb_ = no_reg;
209 offset_ = offset;
210 }
211
212
MemOperand(Register ra,Register rb)213 MemOperand::MemOperand(Register ra, Register rb) {
214 ra_ = ra;
215 rb_ = rb;
216 offset_ = 0;
217 }
218
219
220 // -----------------------------------------------------------------------------
221 // Specific instructions, constants, and masks.
222
Assembler(Isolate * isolate,void * buffer,int buffer_size)223 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
224 : AssemblerBase(isolate, buffer, buffer_size),
225 recorded_ast_id_(TypeFeedbackId::None()),
226 constant_pool_builder_(kLoadPtrMaxReachBits, kLoadDoubleMaxReachBits) {
227 reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
228
229 no_trampoline_pool_before_ = 0;
230 trampoline_pool_blocked_nesting_ = 0;
231 constant_pool_entry_sharing_blocked_nesting_ = 0;
232 next_trampoline_check_ = kMaxInt;
233 internal_trampoline_exception_ = false;
234 last_bound_pos_ = 0;
235 optimizable_cmpi_pos_ = -1;
236 trampoline_emitted_ = FLAG_force_long_branches;
237 tracked_branch_count_ = 0;
238 ClearRecordedAstId();
239 relocations_.reserve(128);
240 }
241
242
GetCode(CodeDesc * desc)243 void Assembler::GetCode(CodeDesc* desc) {
244 // Emit constant pool if necessary.
245 int constant_pool_offset = EmitConstantPool();
246
247 EmitRelocations();
248
249 // Set up code descriptor.
250 desc->buffer = buffer_;
251 desc->buffer_size = buffer_size_;
252 desc->instr_size = pc_offset();
253 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
254 desc->constant_pool_size =
255 (constant_pool_offset ? desc->instr_size - constant_pool_offset : 0);
256 desc->origin = this;
257 desc->unwinding_info_size = 0;
258 desc->unwinding_info = nullptr;
259 }
260
261
Align(int m)262 void Assembler::Align(int m) {
263 DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
264 DCHECK((pc_offset() & (kInstrSize - 1)) == 0);
265 while ((pc_offset() & (m - 1)) != 0) {
266 nop();
267 }
268 }
269
270
CodeTargetAlign()271 void Assembler::CodeTargetAlign() { Align(8); }
272
273
GetCondition(Instr instr)274 Condition Assembler::GetCondition(Instr instr) {
275 switch (instr & kCondMask) {
276 case BT:
277 return eq;
278 case BF:
279 return ne;
280 default:
281 UNIMPLEMENTED();
282 }
283 return al;
284 }
285
286
IsLis(Instr instr)287 bool Assembler::IsLis(Instr instr) {
288 return ((instr & kOpcodeMask) == ADDIS) && GetRA(instr).is(r0);
289 }
290
291
IsLi(Instr instr)292 bool Assembler::IsLi(Instr instr) {
293 return ((instr & kOpcodeMask) == ADDI) && GetRA(instr).is(r0);
294 }
295
296
IsAddic(Instr instr)297 bool Assembler::IsAddic(Instr instr) { return (instr & kOpcodeMask) == ADDIC; }
298
299
IsOri(Instr instr)300 bool Assembler::IsOri(Instr instr) { return (instr & kOpcodeMask) == ORI; }
301
302
IsBranch(Instr instr)303 bool Assembler::IsBranch(Instr instr) { return ((instr & kOpcodeMask) == BCX); }
304
305
GetRA(Instr instr)306 Register Assembler::GetRA(Instr instr) {
307 Register reg;
308 reg.reg_code = Instruction::RAValue(instr);
309 return reg;
310 }
311
312
GetRB(Instr instr)313 Register Assembler::GetRB(Instr instr) {
314 Register reg;
315 reg.reg_code = Instruction::RBValue(instr);
316 return reg;
317 }
318
319
320 #if V8_TARGET_ARCH_PPC64
321 // This code assumes a FIXED_SEQUENCE for 64bit loads (lis/ori)
Is64BitLoadIntoR12(Instr instr1,Instr instr2,Instr instr3,Instr instr4,Instr instr5)322 bool Assembler::Is64BitLoadIntoR12(Instr instr1, Instr instr2, Instr instr3,
323 Instr instr4, Instr instr5) {
324 // Check the instructions are indeed a five part load (into r12)
325 // 3d800000 lis r12, 0
326 // 618c0000 ori r12, r12, 0
327 // 798c07c6 rldicr r12, r12, 32, 31
328 // 658c00c3 oris r12, r12, 195
329 // 618ccd40 ori r12, r12, 52544
330 return (((instr1 >> 16) == 0x3d80) && ((instr2 >> 16) == 0x618c) &&
331 (instr3 == 0x798c07c6) && ((instr4 >> 16) == 0x658c) &&
332 ((instr5 >> 16) == 0x618c));
333 }
334 #else
335 // This code assumes a FIXED_SEQUENCE for 32bit loads (lis/ori)
Is32BitLoadIntoR12(Instr instr1,Instr instr2)336 bool Assembler::Is32BitLoadIntoR12(Instr instr1, Instr instr2) {
337 // Check the instruction is indeed a two part load (into r12)
338 // 3d802553 lis r12, 9555
339 // 618c5000 ori r12, r12, 20480
340 return (((instr1 >> 16) == 0x3d80) && ((instr2 >> 16) == 0x618c));
341 }
342 #endif
343
344
IsCmpRegister(Instr instr)345 bool Assembler::IsCmpRegister(Instr instr) {
346 return (((instr & kOpcodeMask) == EXT2) &&
347 ((instr & kExt2OpcodeMask) == CMP));
348 }
349
350
IsRlwinm(Instr instr)351 bool Assembler::IsRlwinm(Instr instr) {
352 return ((instr & kOpcodeMask) == RLWINMX);
353 }
354
355
IsAndi(Instr instr)356 bool Assembler::IsAndi(Instr instr) { return ((instr & kOpcodeMask) == ANDIx); }
357
358
359 #if V8_TARGET_ARCH_PPC64
IsRldicl(Instr instr)360 bool Assembler::IsRldicl(Instr instr) {
361 return (((instr & kOpcodeMask) == EXT5) &&
362 ((instr & kExt5OpcodeMask) == RLDICL));
363 }
364 #endif
365
366
IsCmpImmediate(Instr instr)367 bool Assembler::IsCmpImmediate(Instr instr) {
368 return ((instr & kOpcodeMask) == CMPI);
369 }
370
371
IsCrSet(Instr instr)372 bool Assembler::IsCrSet(Instr instr) {
373 return (((instr & kOpcodeMask) == EXT1) &&
374 ((instr & kExt1OpcodeMask) == CREQV));
375 }
376
377
GetCmpImmediateRegister(Instr instr)378 Register Assembler::GetCmpImmediateRegister(Instr instr) {
379 DCHECK(IsCmpImmediate(instr));
380 return GetRA(instr);
381 }
382
383
GetCmpImmediateRawImmediate(Instr instr)384 int Assembler::GetCmpImmediateRawImmediate(Instr instr) {
385 DCHECK(IsCmpImmediate(instr));
386 return instr & kOff16Mask;
387 }
388
389
390 // Labels refer to positions in the (to be) generated code.
391 // There are bound, linked, and unused labels.
392 //
393 // Bound labels refer to known positions in the already
394 // generated code. pos() is the position the label refers to.
395 //
396 // Linked labels refer to unknown positions in the code
397 // to be generated; pos() is the position of the last
398 // instruction using the label.
399
400
401 // The link chain is terminated by a negative code position (must be aligned)
402 const int kEndOfChain = -4;
403
404
405 // Dummy opcodes for unbound label mov instructions or jump table entries.
406 enum {
407 kUnboundMovLabelOffsetOpcode = 0 << 26,
408 kUnboundAddLabelOffsetOpcode = 1 << 26,
409 kUnboundMovLabelAddrOpcode = 2 << 26,
410 kUnboundJumpTableEntryOpcode = 3 << 26
411 };
412
413
target_at(int pos)414 int Assembler::target_at(int pos) {
415 Instr instr = instr_at(pos);
416 // check which type of branch this is 16 or 26 bit offset
417 int opcode = instr & kOpcodeMask;
418 int link;
419 switch (opcode) {
420 case BX:
421 link = SIGN_EXT_IMM26(instr & kImm26Mask);
422 link &= ~(kAAMask | kLKMask); // discard AA|LK bits if present
423 break;
424 case BCX:
425 link = SIGN_EXT_IMM16((instr & kImm16Mask));
426 link &= ~(kAAMask | kLKMask); // discard AA|LK bits if present
427 break;
428 case kUnboundMovLabelOffsetOpcode:
429 case kUnboundAddLabelOffsetOpcode:
430 case kUnboundMovLabelAddrOpcode:
431 case kUnboundJumpTableEntryOpcode:
432 link = SIGN_EXT_IMM26(instr & kImm26Mask);
433 link <<= 2;
434 break;
435 default:
436 DCHECK(false);
437 return -1;
438 }
439
440 if (link == 0) return kEndOfChain;
441 return pos + link;
442 }
443
444
target_at_put(int pos,int target_pos,bool * is_branch)445 void Assembler::target_at_put(int pos, int target_pos, bool* is_branch) {
446 Instr instr = instr_at(pos);
447 int opcode = instr & kOpcodeMask;
448
449 if (is_branch != nullptr) {
450 *is_branch = (opcode == BX || opcode == BCX);
451 }
452
453 switch (opcode) {
454 case BX: {
455 int imm26 = target_pos - pos;
456 CHECK(is_int26(imm26) && (imm26 & (kAAMask | kLKMask)) == 0);
457 if (imm26 == kInstrSize && !(instr & kLKMask)) {
458 // Branch to next instr without link.
459 instr = ORI; // nop: ori, 0,0,0
460 } else {
461 instr &= ((~kImm26Mask) | kAAMask | kLKMask);
462 instr |= (imm26 & kImm26Mask);
463 }
464 instr_at_put(pos, instr);
465 break;
466 }
467 case BCX: {
468 int imm16 = target_pos - pos;
469 CHECK(is_int16(imm16) && (imm16 & (kAAMask | kLKMask)) == 0);
470 if (imm16 == kInstrSize && !(instr & kLKMask)) {
471 // Branch to next instr without link.
472 instr = ORI; // nop: ori, 0,0,0
473 } else {
474 instr &= ((~kImm16Mask) | kAAMask | kLKMask);
475 instr |= (imm16 & kImm16Mask);
476 }
477 instr_at_put(pos, instr);
478 break;
479 }
480 case kUnboundMovLabelOffsetOpcode: {
481 // Load the position of the label relative to the generated code object
482 // pointer in a register.
483 Register dst = Register::from_code(instr_at(pos + kInstrSize));
484 int32_t offset = target_pos + (Code::kHeaderSize - kHeapObjectTag);
485 CodePatcher patcher(isolate(), reinterpret_cast<byte*>(buffer_ + pos), 2,
486 CodePatcher::DONT_FLUSH);
487 patcher.masm()->bitwise_mov32(dst, offset);
488 break;
489 }
490 case kUnboundAddLabelOffsetOpcode: {
491 // dst = base + position + immediate
492 Instr operands = instr_at(pos + kInstrSize);
493 Register dst = Register::from_code((operands >> 21) & 0x1f);
494 Register base = Register::from_code((operands >> 16) & 0x1f);
495 int32_t offset = target_pos + SIGN_EXT_IMM16(operands & kImm16Mask);
496 CodePatcher patcher(isolate(), reinterpret_cast<byte*>(buffer_ + pos), 2,
497 CodePatcher::DONT_FLUSH);
498 patcher.masm()->bitwise_add32(dst, base, offset);
499 break;
500 }
501 case kUnboundMovLabelAddrOpcode: {
502 // Load the address of the label in a register.
503 Register dst = Register::from_code(instr_at(pos + kInstrSize));
504 CodePatcher patcher(isolate(), reinterpret_cast<byte*>(buffer_ + pos),
505 kMovInstructionsNoConstantPool,
506 CodePatcher::DONT_FLUSH);
507 // Keep internal references relative until EmitRelocations.
508 patcher.masm()->bitwise_mov(dst, target_pos);
509 break;
510 }
511 case kUnboundJumpTableEntryOpcode: {
512 CodePatcher patcher(isolate(), reinterpret_cast<byte*>(buffer_ + pos),
513 kPointerSize / kInstrSize, CodePatcher::DONT_FLUSH);
514 // Keep internal references relative until EmitRelocations.
515 patcher.masm()->dp(target_pos);
516 break;
517 }
518 default:
519 DCHECK(false);
520 break;
521 }
522 }
523
524
max_reach_from(int pos)525 int Assembler::max_reach_from(int pos) {
526 Instr instr = instr_at(pos);
527 int opcode = instr & kOpcodeMask;
528
529 // check which type of branch this is 16 or 26 bit offset
530 switch (opcode) {
531 case BX:
532 return 26;
533 case BCX:
534 return 16;
535 case kUnboundMovLabelOffsetOpcode:
536 case kUnboundAddLabelOffsetOpcode:
537 case kUnboundMovLabelAddrOpcode:
538 case kUnboundJumpTableEntryOpcode:
539 return 0; // no limit on reach
540 }
541
542 DCHECK(false);
543 return 0;
544 }
545
546
bind_to(Label * L,int pos)547 void Assembler::bind_to(Label* L, int pos) {
548 DCHECK(0 <= pos && pos <= pc_offset()); // must have a valid binding position
549 int32_t trampoline_pos = kInvalidSlotPos;
550 bool is_branch = false;
551 while (L->is_linked()) {
552 int fixup_pos = L->pos();
553 int32_t offset = pos - fixup_pos;
554 int maxReach = max_reach_from(fixup_pos);
555 next(L); // call next before overwriting link with target at fixup_pos
556 if (maxReach && is_intn(offset, maxReach) == false) {
557 if (trampoline_pos == kInvalidSlotPos) {
558 trampoline_pos = get_trampoline_entry();
559 CHECK(trampoline_pos != kInvalidSlotPos);
560 target_at_put(trampoline_pos, pos);
561 }
562 target_at_put(fixup_pos, trampoline_pos);
563 } else {
564 target_at_put(fixup_pos, pos, &is_branch);
565 }
566 }
567 L->bind_to(pos);
568
569 if (!trampoline_emitted_ && is_branch) {
570 UntrackBranch();
571 }
572
573 // Keep track of the last bound label so we don't eliminate any instructions
574 // before a bound label.
575 if (pos > last_bound_pos_) last_bound_pos_ = pos;
576 }
577
578
bind(Label * L)579 void Assembler::bind(Label* L) {
580 DCHECK(!L->is_bound()); // label can only be bound once
581 bind_to(L, pc_offset());
582 }
583
584
next(Label * L)585 void Assembler::next(Label* L) {
586 DCHECK(L->is_linked());
587 int link = target_at(L->pos());
588 if (link == kEndOfChain) {
589 L->Unuse();
590 } else {
591 DCHECK(link >= 0);
592 L->link_to(link);
593 }
594 }
595
596
is_near(Label * L,Condition cond)597 bool Assembler::is_near(Label* L, Condition cond) {
598 DCHECK(L->is_bound());
599 if (L->is_bound() == false) return false;
600
601 int maxReach = ((cond == al) ? 26 : 16);
602 int offset = L->pos() - pc_offset();
603
604 return is_intn(offset, maxReach);
605 }
606
607
a_form(Instr instr,DoubleRegister frt,DoubleRegister fra,DoubleRegister frb,RCBit r)608 void Assembler::a_form(Instr instr, DoubleRegister frt, DoubleRegister fra,
609 DoubleRegister frb, RCBit r) {
610 emit(instr | frt.code() * B21 | fra.code() * B16 | frb.code() * B11 | r);
611 }
612
613
d_form(Instr instr,Register rt,Register ra,const intptr_t val,bool signed_disp)614 void Assembler::d_form(Instr instr, Register rt, Register ra,
615 const intptr_t val, bool signed_disp) {
616 if (signed_disp) {
617 if (!is_int16(val)) {
618 PrintF("val = %" V8PRIdPTR ", 0x%" V8PRIxPTR "\n", val, val);
619 }
620 CHECK(is_int16(val));
621 } else {
622 if (!is_uint16(val)) {
623 PrintF("val = %" V8PRIdPTR ", 0x%" V8PRIxPTR
624 ", is_unsigned_imm16(val)=%d, kImm16Mask=0x%x\n",
625 val, val, is_uint16(val), kImm16Mask);
626 }
627 CHECK(is_uint16(val));
628 }
629 emit(instr | rt.code() * B21 | ra.code() * B16 | (kImm16Mask & val));
630 }
631
632
x_form(Instr instr,Register ra,Register rs,Register rb,RCBit r)633 void Assembler::x_form(Instr instr, Register ra, Register rs, Register rb,
634 RCBit r) {
635 emit(instr | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | r);
636 }
637
638
xo_form(Instr instr,Register rt,Register ra,Register rb,OEBit o,RCBit r)639 void Assembler::xo_form(Instr instr, Register rt, Register ra, Register rb,
640 OEBit o, RCBit r) {
641 emit(instr | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 | o | r);
642 }
643
644
md_form(Instr instr,Register ra,Register rs,int shift,int maskbit,RCBit r)645 void Assembler::md_form(Instr instr, Register ra, Register rs, int shift,
646 int maskbit, RCBit r) {
647 int sh0_4 = shift & 0x1f;
648 int sh5 = (shift >> 5) & 0x1;
649 int m0_4 = maskbit & 0x1f;
650 int m5 = (maskbit >> 5) & 0x1;
651
652 emit(instr | rs.code() * B21 | ra.code() * B16 | sh0_4 * B11 | m0_4 * B6 |
653 m5 * B5 | sh5 * B1 | r);
654 }
655
656
mds_form(Instr instr,Register ra,Register rs,Register rb,int maskbit,RCBit r)657 void Assembler::mds_form(Instr instr, Register ra, Register rs, Register rb,
658 int maskbit, RCBit r) {
659 int m0_4 = maskbit & 0x1f;
660 int m5 = (maskbit >> 5) & 0x1;
661
662 emit(instr | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | m0_4 * B6 |
663 m5 * B5 | r);
664 }
665
666
667 // Returns the next free trampoline entry.
get_trampoline_entry()668 int32_t Assembler::get_trampoline_entry() {
669 int32_t trampoline_entry = kInvalidSlotPos;
670
671 if (!internal_trampoline_exception_) {
672 trampoline_entry = trampoline_.take_slot();
673
674 if (kInvalidSlotPos == trampoline_entry) {
675 internal_trampoline_exception_ = true;
676 }
677 }
678 return trampoline_entry;
679 }
680
681
link(Label * L)682 int Assembler::link(Label* L) {
683 int position;
684 if (L->is_bound()) {
685 position = L->pos();
686 } else {
687 if (L->is_linked()) {
688 position = L->pos(); // L's link
689 } else {
690 // was: target_pos = kEndOfChain;
691 // However, using self to mark the first reference
692 // should avoid most instances of branch offset overflow. See
693 // target_at() for where this is converted back to kEndOfChain.
694 position = pc_offset();
695 }
696 L->link_to(pc_offset());
697 }
698
699 return position;
700 }
701
702
703 // Branch instructions.
704
705
bclr(BOfield bo,int condition_bit,LKBit lk)706 void Assembler::bclr(BOfield bo, int condition_bit, LKBit lk) {
707 emit(EXT1 | bo | condition_bit * B16 | BCLRX | lk);
708 }
709
710
bcctr(BOfield bo,int condition_bit,LKBit lk)711 void Assembler::bcctr(BOfield bo, int condition_bit, LKBit lk) {
712 emit(EXT1 | bo | condition_bit * B16 | BCCTRX | lk);
713 }
714
715
716 // Pseudo op - branch to link register
blr()717 void Assembler::blr() { bclr(BA, 0, LeaveLK); }
718
719
720 // Pseudo op - branch to count register -- used for "jump"
bctr()721 void Assembler::bctr() { bcctr(BA, 0, LeaveLK); }
722
723
bctrl()724 void Assembler::bctrl() { bcctr(BA, 0, SetLK); }
725
726
bc(int branch_offset,BOfield bo,int condition_bit,LKBit lk)727 void Assembler::bc(int branch_offset, BOfield bo, int condition_bit, LKBit lk) {
728 int imm16 = branch_offset;
729 CHECK(is_int16(imm16) && (imm16 & (kAAMask | kLKMask)) == 0);
730 emit(BCX | bo | condition_bit * B16 | (imm16 & kImm16Mask) | lk);
731 }
732
733
b(int branch_offset,LKBit lk)734 void Assembler::b(int branch_offset, LKBit lk) {
735 int imm26 = branch_offset;
736 CHECK(is_int26(imm26) && (imm26 & (kAAMask | kLKMask)) == 0);
737 emit(BX | (imm26 & kImm26Mask) | lk);
738 }
739
740
xori(Register dst,Register src,const Operand & imm)741 void Assembler::xori(Register dst, Register src, const Operand& imm) {
742 d_form(XORI, src, dst, imm.imm_, false);
743 }
744
745
xoris(Register ra,Register rs,const Operand & imm)746 void Assembler::xoris(Register ra, Register rs, const Operand& imm) {
747 d_form(XORIS, rs, ra, imm.imm_, false);
748 }
749
750
xor_(Register dst,Register src1,Register src2,RCBit rc)751 void Assembler::xor_(Register dst, Register src1, Register src2, RCBit rc) {
752 x_form(EXT2 | XORX, dst, src1, src2, rc);
753 }
754
755
cntlzw_(Register ra,Register rs,RCBit rc)756 void Assembler::cntlzw_(Register ra, Register rs, RCBit rc) {
757 x_form(EXT2 | CNTLZWX, ra, rs, r0, rc);
758 }
759
760
popcntw(Register ra,Register rs)761 void Assembler::popcntw(Register ra, Register rs) {
762 emit(EXT2 | POPCNTW | rs.code() * B21 | ra.code() * B16);
763 }
764
765
and_(Register ra,Register rs,Register rb,RCBit rc)766 void Assembler::and_(Register ra, Register rs, Register rb, RCBit rc) {
767 x_form(EXT2 | ANDX, ra, rs, rb, rc);
768 }
769
770
rlwinm(Register ra,Register rs,int sh,int mb,int me,RCBit rc)771 void Assembler::rlwinm(Register ra, Register rs, int sh, int mb, int me,
772 RCBit rc) {
773 sh &= 0x1f;
774 mb &= 0x1f;
775 me &= 0x1f;
776 emit(RLWINMX | rs.code() * B21 | ra.code() * B16 | sh * B11 | mb * B6 |
777 me << 1 | rc);
778 }
779
780
rlwnm(Register ra,Register rs,Register rb,int mb,int me,RCBit rc)781 void Assembler::rlwnm(Register ra, Register rs, Register rb, int mb, int me,
782 RCBit rc) {
783 mb &= 0x1f;
784 me &= 0x1f;
785 emit(RLWNMX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | mb * B6 |
786 me << 1 | rc);
787 }
788
789
rlwimi(Register ra,Register rs,int sh,int mb,int me,RCBit rc)790 void Assembler::rlwimi(Register ra, Register rs, int sh, int mb, int me,
791 RCBit rc) {
792 sh &= 0x1f;
793 mb &= 0x1f;
794 me &= 0x1f;
795 emit(RLWIMIX | rs.code() * B21 | ra.code() * B16 | sh * B11 | mb * B6 |
796 me << 1 | rc);
797 }
798
799
slwi(Register dst,Register src,const Operand & val,RCBit rc)800 void Assembler::slwi(Register dst, Register src, const Operand& val, RCBit rc) {
801 DCHECK((32 > val.imm_) && (val.imm_ >= 0));
802 rlwinm(dst, src, val.imm_, 0, 31 - val.imm_, rc);
803 }
804
805
srwi(Register dst,Register src,const Operand & val,RCBit rc)806 void Assembler::srwi(Register dst, Register src, const Operand& val, RCBit rc) {
807 DCHECK((32 > val.imm_) && (val.imm_ >= 0));
808 rlwinm(dst, src, 32 - val.imm_, val.imm_, 31, rc);
809 }
810
811
clrrwi(Register dst,Register src,const Operand & val,RCBit rc)812 void Assembler::clrrwi(Register dst, Register src, const Operand& val,
813 RCBit rc) {
814 DCHECK((32 > val.imm_) && (val.imm_ >= 0));
815 rlwinm(dst, src, 0, 0, 31 - val.imm_, rc);
816 }
817
818
clrlwi(Register dst,Register src,const Operand & val,RCBit rc)819 void Assembler::clrlwi(Register dst, Register src, const Operand& val,
820 RCBit rc) {
821 DCHECK((32 > val.imm_) && (val.imm_ >= 0));
822 rlwinm(dst, src, 0, val.imm_, 31, rc);
823 }
824
825
srawi(Register ra,Register rs,int sh,RCBit r)826 void Assembler::srawi(Register ra, Register rs, int sh, RCBit r) {
827 emit(EXT2 | SRAWIX | rs.code() * B21 | ra.code() * B16 | sh * B11 | r);
828 }
829
830
srw(Register dst,Register src1,Register src2,RCBit r)831 void Assembler::srw(Register dst, Register src1, Register src2, RCBit r) {
832 x_form(EXT2 | SRWX, dst, src1, src2, r);
833 }
834
835
slw(Register dst,Register src1,Register src2,RCBit r)836 void Assembler::slw(Register dst, Register src1, Register src2, RCBit r) {
837 x_form(EXT2 | SLWX, dst, src1, src2, r);
838 }
839
840
sraw(Register ra,Register rs,Register rb,RCBit r)841 void Assembler::sraw(Register ra, Register rs, Register rb, RCBit r) {
842 x_form(EXT2 | SRAW, ra, rs, rb, r);
843 }
844
845
rotlw(Register ra,Register rs,Register rb,RCBit r)846 void Assembler::rotlw(Register ra, Register rs, Register rb, RCBit r) {
847 rlwnm(ra, rs, rb, 0, 31, r);
848 }
849
850
rotlwi(Register ra,Register rs,int sh,RCBit r)851 void Assembler::rotlwi(Register ra, Register rs, int sh, RCBit r) {
852 rlwinm(ra, rs, sh, 0, 31, r);
853 }
854
855
rotrwi(Register ra,Register rs,int sh,RCBit r)856 void Assembler::rotrwi(Register ra, Register rs, int sh, RCBit r) {
857 rlwinm(ra, rs, 32 - sh, 0, 31, r);
858 }
859
860
subi(Register dst,Register src,const Operand & imm)861 void Assembler::subi(Register dst, Register src, const Operand& imm) {
862 addi(dst, src, Operand(-(imm.imm_)));
863 }
864
addc(Register dst,Register src1,Register src2,OEBit o,RCBit r)865 void Assembler::addc(Register dst, Register src1, Register src2, OEBit o,
866 RCBit r) {
867 xo_form(EXT2 | ADDCX, dst, src1, src2, o, r);
868 }
869
adde(Register dst,Register src1,Register src2,OEBit o,RCBit r)870 void Assembler::adde(Register dst, Register src1, Register src2, OEBit o,
871 RCBit r) {
872 xo_form(EXT2 | ADDEX, dst, src1, src2, o, r);
873 }
874
addze(Register dst,Register src1,OEBit o,RCBit r)875 void Assembler::addze(Register dst, Register src1, OEBit o, RCBit r) {
876 // a special xo_form
877 emit(EXT2 | ADDZEX | dst.code() * B21 | src1.code() * B16 | o | r);
878 }
879
880
sub(Register dst,Register src1,Register src2,OEBit o,RCBit r)881 void Assembler::sub(Register dst, Register src1, Register src2, OEBit o,
882 RCBit r) {
883 xo_form(EXT2 | SUBFX, dst, src2, src1, o, r);
884 }
885
subc(Register dst,Register src1,Register src2,OEBit o,RCBit r)886 void Assembler::subc(Register dst, Register src1, Register src2, OEBit o,
887 RCBit r) {
888 xo_form(EXT2 | SUBFCX, dst, src2, src1, o, r);
889 }
890
sube(Register dst,Register src1,Register src2,OEBit o,RCBit r)891 void Assembler::sube(Register dst, Register src1, Register src2, OEBit o,
892 RCBit r) {
893 xo_form(EXT2 | SUBFEX, dst, src2, src1, o, r);
894 }
895
subfic(Register dst,Register src,const Operand & imm)896 void Assembler::subfic(Register dst, Register src, const Operand& imm) {
897 d_form(SUBFIC, dst, src, imm.imm_, true);
898 }
899
900
add(Register dst,Register src1,Register src2,OEBit o,RCBit r)901 void Assembler::add(Register dst, Register src1, Register src2, OEBit o,
902 RCBit r) {
903 xo_form(EXT2 | ADDX, dst, src1, src2, o, r);
904 }
905
906
907 // Multiply low word
mullw(Register dst,Register src1,Register src2,OEBit o,RCBit r)908 void Assembler::mullw(Register dst, Register src1, Register src2, OEBit o,
909 RCBit r) {
910 xo_form(EXT2 | MULLW, dst, src1, src2, o, r);
911 }
912
913
914 // Multiply hi word
mulhw(Register dst,Register src1,Register src2,RCBit r)915 void Assembler::mulhw(Register dst, Register src1, Register src2, RCBit r) {
916 xo_form(EXT2 | MULHWX, dst, src1, src2, LeaveOE, r);
917 }
918
919
920 // Multiply hi word unsigned
mulhwu(Register dst,Register src1,Register src2,RCBit r)921 void Assembler::mulhwu(Register dst, Register src1, Register src2, RCBit r) {
922 xo_form(EXT2 | MULHWUX, dst, src1, src2, LeaveOE, r);
923 }
924
925
926 // Divide word
divw(Register dst,Register src1,Register src2,OEBit o,RCBit r)927 void Assembler::divw(Register dst, Register src1, Register src2, OEBit o,
928 RCBit r) {
929 xo_form(EXT2 | DIVW, dst, src1, src2, o, r);
930 }
931
932
933 // Divide word unsigned
divwu(Register dst,Register src1,Register src2,OEBit o,RCBit r)934 void Assembler::divwu(Register dst, Register src1, Register src2, OEBit o,
935 RCBit r) {
936 xo_form(EXT2 | DIVWU, dst, src1, src2, o, r);
937 }
938
939
addi(Register dst,Register src,const Operand & imm)940 void Assembler::addi(Register dst, Register src, const Operand& imm) {
941 DCHECK(!src.is(r0)); // use li instead to show intent
942 d_form(ADDI, dst, src, imm.imm_, true);
943 }
944
945
addis(Register dst,Register src,const Operand & imm)946 void Assembler::addis(Register dst, Register src, const Operand& imm) {
947 DCHECK(!src.is(r0)); // use lis instead to show intent
948 d_form(ADDIS, dst, src, imm.imm_, true);
949 }
950
951
addic(Register dst,Register src,const Operand & imm)952 void Assembler::addic(Register dst, Register src, const Operand& imm) {
953 d_form(ADDIC, dst, src, imm.imm_, true);
954 }
955
956
andi(Register ra,Register rs,const Operand & imm)957 void Assembler::andi(Register ra, Register rs, const Operand& imm) {
958 d_form(ANDIx, rs, ra, imm.imm_, false);
959 }
960
961
andis(Register ra,Register rs,const Operand & imm)962 void Assembler::andis(Register ra, Register rs, const Operand& imm) {
963 d_form(ANDISx, rs, ra, imm.imm_, false);
964 }
965
966
nor(Register dst,Register src1,Register src2,RCBit r)967 void Assembler::nor(Register dst, Register src1, Register src2, RCBit r) {
968 x_form(EXT2 | NORX, dst, src1, src2, r);
969 }
970
971
notx(Register dst,Register src,RCBit r)972 void Assembler::notx(Register dst, Register src, RCBit r) {
973 x_form(EXT2 | NORX, dst, src, src, r);
974 }
975
976
ori(Register ra,Register rs,const Operand & imm)977 void Assembler::ori(Register ra, Register rs, const Operand& imm) {
978 d_form(ORI, rs, ra, imm.imm_, false);
979 }
980
981
oris(Register dst,Register src,const Operand & imm)982 void Assembler::oris(Register dst, Register src, const Operand& imm) {
983 d_form(ORIS, src, dst, imm.imm_, false);
984 }
985
986
orx(Register dst,Register src1,Register src2,RCBit rc)987 void Assembler::orx(Register dst, Register src1, Register src2, RCBit rc) {
988 x_form(EXT2 | ORX, dst, src1, src2, rc);
989 }
990
991
orc(Register dst,Register src1,Register src2,RCBit rc)992 void Assembler::orc(Register dst, Register src1, Register src2, RCBit rc) {
993 x_form(EXT2 | ORC, dst, src1, src2, rc);
994 }
995
996
cmpi(Register src1,const Operand & src2,CRegister cr)997 void Assembler::cmpi(Register src1, const Operand& src2, CRegister cr) {
998 intptr_t imm16 = src2.imm_;
999 #if V8_TARGET_ARCH_PPC64
1000 int L = 1;
1001 #else
1002 int L = 0;
1003 #endif
1004 DCHECK(is_int16(imm16));
1005 DCHECK(cr.code() >= 0 && cr.code() <= 7);
1006 imm16 &= kImm16Mask;
1007 emit(CMPI | cr.code() * B23 | L * B21 | src1.code() * B16 | imm16);
1008 }
1009
1010
cmpli(Register src1,const Operand & src2,CRegister cr)1011 void Assembler::cmpli(Register src1, const Operand& src2, CRegister cr) {
1012 uintptr_t uimm16 = src2.imm_;
1013 #if V8_TARGET_ARCH_PPC64
1014 int L = 1;
1015 #else
1016 int L = 0;
1017 #endif
1018 DCHECK(is_uint16(uimm16));
1019 DCHECK(cr.code() >= 0 && cr.code() <= 7);
1020 uimm16 &= kImm16Mask;
1021 emit(CMPLI | cr.code() * B23 | L * B21 | src1.code() * B16 | uimm16);
1022 }
1023
1024
cmp(Register src1,Register src2,CRegister cr)1025 void Assembler::cmp(Register src1, Register src2, CRegister cr) {
1026 #if V8_TARGET_ARCH_PPC64
1027 int L = 1;
1028 #else
1029 int L = 0;
1030 #endif
1031 DCHECK(cr.code() >= 0 && cr.code() <= 7);
1032 emit(EXT2 | CMP | cr.code() * B23 | L * B21 | src1.code() * B16 |
1033 src2.code() * B11);
1034 }
1035
1036
cmpl(Register src1,Register src2,CRegister cr)1037 void Assembler::cmpl(Register src1, Register src2, CRegister cr) {
1038 #if V8_TARGET_ARCH_PPC64
1039 int L = 1;
1040 #else
1041 int L = 0;
1042 #endif
1043 DCHECK(cr.code() >= 0 && cr.code() <= 7);
1044 emit(EXT2 | CMPL | cr.code() * B23 | L * B21 | src1.code() * B16 |
1045 src2.code() * B11);
1046 }
1047
1048
cmpwi(Register src1,const Operand & src2,CRegister cr)1049 void Assembler::cmpwi(Register src1, const Operand& src2, CRegister cr) {
1050 intptr_t imm16 = src2.imm_;
1051 int L = 0;
1052 int pos = pc_offset();
1053 DCHECK(is_int16(imm16));
1054 DCHECK(cr.code() >= 0 && cr.code() <= 7);
1055 imm16 &= kImm16Mask;
1056
1057 // For cmpwi against 0, save postition and cr for later examination
1058 // of potential optimization.
1059 if (imm16 == 0 && pos > 0 && last_bound_pos_ != pos) {
1060 optimizable_cmpi_pos_ = pos;
1061 cmpi_cr_ = cr;
1062 }
1063 emit(CMPI | cr.code() * B23 | L * B21 | src1.code() * B16 | imm16);
1064 }
1065
1066
cmplwi(Register src1,const Operand & src2,CRegister cr)1067 void Assembler::cmplwi(Register src1, const Operand& src2, CRegister cr) {
1068 uintptr_t uimm16 = src2.imm_;
1069 int L = 0;
1070 DCHECK(is_uint16(uimm16));
1071 DCHECK(cr.code() >= 0 && cr.code() <= 7);
1072 uimm16 &= kImm16Mask;
1073 emit(CMPLI | cr.code() * B23 | L * B21 | src1.code() * B16 | uimm16);
1074 }
1075
1076
cmpw(Register src1,Register src2,CRegister cr)1077 void Assembler::cmpw(Register src1, Register src2, CRegister cr) {
1078 int L = 0;
1079 DCHECK(cr.code() >= 0 && cr.code() <= 7);
1080 emit(EXT2 | CMP | cr.code() * B23 | L * B21 | src1.code() * B16 |
1081 src2.code() * B11);
1082 }
1083
1084
cmplw(Register src1,Register src2,CRegister cr)1085 void Assembler::cmplw(Register src1, Register src2, CRegister cr) {
1086 int L = 0;
1087 DCHECK(cr.code() >= 0 && cr.code() <= 7);
1088 emit(EXT2 | CMPL | cr.code() * B23 | L * B21 | src1.code() * B16 |
1089 src2.code() * B11);
1090 }
1091
1092
isel(Register rt,Register ra,Register rb,int cb)1093 void Assembler::isel(Register rt, Register ra, Register rb, int cb) {
1094 emit(EXT2 | ISEL | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1095 cb * B6);
1096 }
1097
1098
1099 // Pseudo op - load immediate
li(Register dst,const Operand & imm)1100 void Assembler::li(Register dst, const Operand& imm) {
1101 d_form(ADDI, dst, r0, imm.imm_, true);
1102 }
1103
1104
lis(Register dst,const Operand & imm)1105 void Assembler::lis(Register dst, const Operand& imm) {
1106 d_form(ADDIS, dst, r0, imm.imm_, true);
1107 }
1108
1109
1110 // Pseudo op - move register
mr(Register dst,Register src)1111 void Assembler::mr(Register dst, Register src) {
1112 // actually or(dst, src, src)
1113 orx(dst, src, src);
1114 }
1115
1116
lbz(Register dst,const MemOperand & src)1117 void Assembler::lbz(Register dst, const MemOperand& src) {
1118 DCHECK(!src.ra_.is(r0));
1119 d_form(LBZ, dst, src.ra(), src.offset(), true);
1120 }
1121
1122
lbzx(Register rt,const MemOperand & src)1123 void Assembler::lbzx(Register rt, const MemOperand& src) {
1124 Register ra = src.ra();
1125 Register rb = src.rb();
1126 DCHECK(!ra.is(r0));
1127 emit(EXT2 | LBZX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1128 LeaveRC);
1129 }
1130
1131
lbzux(Register rt,const MemOperand & src)1132 void Assembler::lbzux(Register rt, const MemOperand& src) {
1133 Register ra = src.ra();
1134 Register rb = src.rb();
1135 DCHECK(!ra.is(r0));
1136 emit(EXT2 | LBZUX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1137 LeaveRC);
1138 }
1139
1140
lhz(Register dst,const MemOperand & src)1141 void Assembler::lhz(Register dst, const MemOperand& src) {
1142 DCHECK(!src.ra_.is(r0));
1143 d_form(LHZ, dst, src.ra(), src.offset(), true);
1144 }
1145
1146
lhzx(Register rt,const MemOperand & src)1147 void Assembler::lhzx(Register rt, const MemOperand& src) {
1148 Register ra = src.ra();
1149 Register rb = src.rb();
1150 DCHECK(!ra.is(r0));
1151 emit(EXT2 | LHZX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1152 LeaveRC);
1153 }
1154
1155
lhzux(Register rt,const MemOperand & src)1156 void Assembler::lhzux(Register rt, const MemOperand& src) {
1157 Register ra = src.ra();
1158 Register rb = src.rb();
1159 DCHECK(!ra.is(r0));
1160 emit(EXT2 | LHZUX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1161 LeaveRC);
1162 }
1163
1164
lhax(Register rt,const MemOperand & src)1165 void Assembler::lhax(Register rt, const MemOperand& src) {
1166 Register ra = src.ra();
1167 Register rb = src.rb();
1168 DCHECK(!ra.is(r0));
1169 emit(EXT2 | LHAX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11);
1170 }
1171
1172
lwz(Register dst,const MemOperand & src)1173 void Assembler::lwz(Register dst, const MemOperand& src) {
1174 DCHECK(!src.ra_.is(r0));
1175 d_form(LWZ, dst, src.ra(), src.offset(), true);
1176 }
1177
1178
lwzu(Register dst,const MemOperand & src)1179 void Assembler::lwzu(Register dst, const MemOperand& src) {
1180 DCHECK(!src.ra_.is(r0));
1181 d_form(LWZU, dst, src.ra(), src.offset(), true);
1182 }
1183
1184
lwzx(Register rt,const MemOperand & src)1185 void Assembler::lwzx(Register rt, const MemOperand& src) {
1186 Register ra = src.ra();
1187 Register rb = src.rb();
1188 DCHECK(!ra.is(r0));
1189 emit(EXT2 | LWZX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1190 LeaveRC);
1191 }
1192
1193
lwzux(Register rt,const MemOperand & src)1194 void Assembler::lwzux(Register rt, const MemOperand& src) {
1195 Register ra = src.ra();
1196 Register rb = src.rb();
1197 DCHECK(!ra.is(r0));
1198 emit(EXT2 | LWZUX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1199 LeaveRC);
1200 }
1201
1202
lha(Register dst,const MemOperand & src)1203 void Assembler::lha(Register dst, const MemOperand& src) {
1204 DCHECK(!src.ra_.is(r0));
1205 d_form(LHA, dst, src.ra(), src.offset(), true);
1206 }
1207
1208
lwa(Register dst,const MemOperand & src)1209 void Assembler::lwa(Register dst, const MemOperand& src) {
1210 #if V8_TARGET_ARCH_PPC64
1211 int offset = src.offset();
1212 DCHECK(!src.ra_.is(r0));
1213 CHECK(!(offset & 3) && is_int16(offset));
1214 offset = kImm16Mask & offset;
1215 emit(LD | dst.code() * B21 | src.ra().code() * B16 | offset | 2);
1216 #else
1217 lwz(dst, src);
1218 #endif
1219 }
1220
1221
lwax(Register rt,const MemOperand & src)1222 void Assembler::lwax(Register rt, const MemOperand& src) {
1223 #if V8_TARGET_ARCH_PPC64
1224 Register ra = src.ra();
1225 Register rb = src.rb();
1226 DCHECK(!ra.is(r0));
1227 emit(EXT2 | LWAX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11);
1228 #else
1229 lwzx(rt, src);
1230 #endif
1231 }
1232
1233
ldbrx(Register dst,const MemOperand & src)1234 void Assembler::ldbrx(Register dst, const MemOperand& src) {
1235 x_form(EXT2 | LDBRX, src.ra(), dst, src.rb(), LeaveRC);
1236 }
1237
1238
lwbrx(Register dst,const MemOperand & src)1239 void Assembler::lwbrx(Register dst, const MemOperand& src) {
1240 x_form(EXT2 | LWBRX, src.ra(), dst, src.rb(), LeaveRC);
1241 }
1242
1243
lhbrx(Register dst,const MemOperand & src)1244 void Assembler::lhbrx(Register dst, const MemOperand& src) {
1245 x_form(EXT2 | LHBRX, src.ra(), dst, src.rb(), LeaveRC);
1246 }
1247
1248
stb(Register dst,const MemOperand & src)1249 void Assembler::stb(Register dst, const MemOperand& src) {
1250 DCHECK(!src.ra_.is(r0));
1251 d_form(STB, dst, src.ra(), src.offset(), true);
1252 }
1253
1254
stbx(Register rs,const MemOperand & src)1255 void Assembler::stbx(Register rs, const MemOperand& src) {
1256 Register ra = src.ra();
1257 Register rb = src.rb();
1258 DCHECK(!ra.is(r0));
1259 emit(EXT2 | STBX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1260 LeaveRC);
1261 }
1262
1263
stbux(Register rs,const MemOperand & src)1264 void Assembler::stbux(Register rs, const MemOperand& src) {
1265 Register ra = src.ra();
1266 Register rb = src.rb();
1267 DCHECK(!ra.is(r0));
1268 emit(EXT2 | STBUX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1269 LeaveRC);
1270 }
1271
1272
sth(Register dst,const MemOperand & src)1273 void Assembler::sth(Register dst, const MemOperand& src) {
1274 DCHECK(!src.ra_.is(r0));
1275 d_form(STH, dst, src.ra(), src.offset(), true);
1276 }
1277
1278
sthx(Register rs,const MemOperand & src)1279 void Assembler::sthx(Register rs, const MemOperand& src) {
1280 Register ra = src.ra();
1281 Register rb = src.rb();
1282 DCHECK(!ra.is(r0));
1283 emit(EXT2 | STHX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1284 LeaveRC);
1285 }
1286
1287
sthux(Register rs,const MemOperand & src)1288 void Assembler::sthux(Register rs, const MemOperand& src) {
1289 Register ra = src.ra();
1290 Register rb = src.rb();
1291 DCHECK(!ra.is(r0));
1292 emit(EXT2 | STHUX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1293 LeaveRC);
1294 }
1295
1296
stw(Register dst,const MemOperand & src)1297 void Assembler::stw(Register dst, const MemOperand& src) {
1298 DCHECK(!src.ra_.is(r0));
1299 d_form(STW, dst, src.ra(), src.offset(), true);
1300 }
1301
1302
stwu(Register dst,const MemOperand & src)1303 void Assembler::stwu(Register dst, const MemOperand& src) {
1304 DCHECK(!src.ra_.is(r0));
1305 d_form(STWU, dst, src.ra(), src.offset(), true);
1306 }
1307
1308
stwx(Register rs,const MemOperand & src)1309 void Assembler::stwx(Register rs, const MemOperand& src) {
1310 Register ra = src.ra();
1311 Register rb = src.rb();
1312 DCHECK(!ra.is(r0));
1313 emit(EXT2 | STWX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1314 LeaveRC);
1315 }
1316
1317
stwux(Register rs,const MemOperand & src)1318 void Assembler::stwux(Register rs, const MemOperand& src) {
1319 Register ra = src.ra();
1320 Register rb = src.rb();
1321 DCHECK(!ra.is(r0));
1322 emit(EXT2 | STWUX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1323 LeaveRC);
1324 }
1325
1326
extsb(Register rs,Register ra,RCBit rc)1327 void Assembler::extsb(Register rs, Register ra, RCBit rc) {
1328 emit(EXT2 | EXTSB | ra.code() * B21 | rs.code() * B16 | rc);
1329 }
1330
1331
extsh(Register rs,Register ra,RCBit rc)1332 void Assembler::extsh(Register rs, Register ra, RCBit rc) {
1333 emit(EXT2 | EXTSH | ra.code() * B21 | rs.code() * B16 | rc);
1334 }
1335
1336
extsw(Register rs,Register ra,RCBit rc)1337 void Assembler::extsw(Register rs, Register ra, RCBit rc) {
1338 #if V8_TARGET_ARCH_PPC64
1339 emit(EXT2 | EXTSW | ra.code() * B21 | rs.code() * B16 | rc);
1340 #else
1341 // nop on 32-bit
1342 DCHECK(rs.is(ra) && rc == LeaveRC);
1343 #endif
1344 }
1345
1346
neg(Register rt,Register ra,OEBit o,RCBit r)1347 void Assembler::neg(Register rt, Register ra, OEBit o, RCBit r) {
1348 emit(EXT2 | NEGX | rt.code() * B21 | ra.code() * B16 | o | r);
1349 }
1350
1351
andc(Register dst,Register src1,Register src2,RCBit rc)1352 void Assembler::andc(Register dst, Register src1, Register src2, RCBit rc) {
1353 x_form(EXT2 | ANDCX, dst, src1, src2, rc);
1354 }
1355
1356
1357 #if V8_TARGET_ARCH_PPC64
1358 // 64bit specific instructions
ld(Register rd,const MemOperand & src)1359 void Assembler::ld(Register rd, const MemOperand& src) {
1360 int offset = src.offset();
1361 DCHECK(!src.ra_.is(r0));
1362 CHECK(!(offset & 3) && is_int16(offset));
1363 offset = kImm16Mask & offset;
1364 emit(LD | rd.code() * B21 | src.ra().code() * B16 | offset);
1365 }
1366
1367
ldx(Register rd,const MemOperand & src)1368 void Assembler::ldx(Register rd, const MemOperand& src) {
1369 Register ra = src.ra();
1370 Register rb = src.rb();
1371 DCHECK(!ra.is(r0));
1372 emit(EXT2 | LDX | rd.code() * B21 | ra.code() * B16 | rb.code() * B11);
1373 }
1374
1375
ldu(Register rd,const MemOperand & src)1376 void Assembler::ldu(Register rd, const MemOperand& src) {
1377 int offset = src.offset();
1378 DCHECK(!src.ra_.is(r0));
1379 CHECK(!(offset & 3) && is_int16(offset));
1380 offset = kImm16Mask & offset;
1381 emit(LD | rd.code() * B21 | src.ra().code() * B16 | offset | 1);
1382 }
1383
1384
ldux(Register rd,const MemOperand & src)1385 void Assembler::ldux(Register rd, const MemOperand& src) {
1386 Register ra = src.ra();
1387 Register rb = src.rb();
1388 DCHECK(!ra.is(r0));
1389 emit(EXT2 | LDUX | rd.code() * B21 | ra.code() * B16 | rb.code() * B11);
1390 }
1391
1392
std(Register rs,const MemOperand & src)1393 void Assembler::std(Register rs, const MemOperand& src) {
1394 int offset = src.offset();
1395 DCHECK(!src.ra_.is(r0));
1396 CHECK(!(offset & 3) && is_int16(offset));
1397 offset = kImm16Mask & offset;
1398 emit(STD | rs.code() * B21 | src.ra().code() * B16 | offset);
1399 }
1400
1401
stdx(Register rs,const MemOperand & src)1402 void Assembler::stdx(Register rs, const MemOperand& src) {
1403 Register ra = src.ra();
1404 Register rb = src.rb();
1405 DCHECK(!ra.is(r0));
1406 emit(EXT2 | STDX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11);
1407 }
1408
1409
stdu(Register rs,const MemOperand & src)1410 void Assembler::stdu(Register rs, const MemOperand& src) {
1411 int offset = src.offset();
1412 DCHECK(!src.ra_.is(r0));
1413 CHECK(!(offset & 3) && is_int16(offset));
1414 offset = kImm16Mask & offset;
1415 emit(STD | rs.code() * B21 | src.ra().code() * B16 | offset | 1);
1416 }
1417
1418
stdux(Register rs,const MemOperand & src)1419 void Assembler::stdux(Register rs, const MemOperand& src) {
1420 Register ra = src.ra();
1421 Register rb = src.rb();
1422 DCHECK(!ra.is(r0));
1423 emit(EXT2 | STDUX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11);
1424 }
1425
1426
rldic(Register ra,Register rs,int sh,int mb,RCBit r)1427 void Assembler::rldic(Register ra, Register rs, int sh, int mb, RCBit r) {
1428 md_form(EXT5 | RLDIC, ra, rs, sh, mb, r);
1429 }
1430
1431
rldicl(Register ra,Register rs,int sh,int mb,RCBit r)1432 void Assembler::rldicl(Register ra, Register rs, int sh, int mb, RCBit r) {
1433 md_form(EXT5 | RLDICL, ra, rs, sh, mb, r);
1434 }
1435
1436
rldcl(Register ra,Register rs,Register rb,int mb,RCBit r)1437 void Assembler::rldcl(Register ra, Register rs, Register rb, int mb, RCBit r) {
1438 mds_form(EXT5 | RLDCL, ra, rs, rb, mb, r);
1439 }
1440
1441
rldicr(Register ra,Register rs,int sh,int me,RCBit r)1442 void Assembler::rldicr(Register ra, Register rs, int sh, int me, RCBit r) {
1443 md_form(EXT5 | RLDICR, ra, rs, sh, me, r);
1444 }
1445
1446
sldi(Register dst,Register src,const Operand & val,RCBit rc)1447 void Assembler::sldi(Register dst, Register src, const Operand& val, RCBit rc) {
1448 DCHECK((64 > val.imm_) && (val.imm_ >= 0));
1449 rldicr(dst, src, val.imm_, 63 - val.imm_, rc);
1450 }
1451
1452
srdi(Register dst,Register src,const Operand & val,RCBit rc)1453 void Assembler::srdi(Register dst, Register src, const Operand& val, RCBit rc) {
1454 DCHECK((64 > val.imm_) && (val.imm_ >= 0));
1455 rldicl(dst, src, 64 - val.imm_, val.imm_, rc);
1456 }
1457
1458
clrrdi(Register dst,Register src,const Operand & val,RCBit rc)1459 void Assembler::clrrdi(Register dst, Register src, const Operand& val,
1460 RCBit rc) {
1461 DCHECK((64 > val.imm_) && (val.imm_ >= 0));
1462 rldicr(dst, src, 0, 63 - val.imm_, rc);
1463 }
1464
1465
clrldi(Register dst,Register src,const Operand & val,RCBit rc)1466 void Assembler::clrldi(Register dst, Register src, const Operand& val,
1467 RCBit rc) {
1468 DCHECK((64 > val.imm_) && (val.imm_ >= 0));
1469 rldicl(dst, src, 0, val.imm_, rc);
1470 }
1471
1472
rldimi(Register ra,Register rs,int sh,int mb,RCBit r)1473 void Assembler::rldimi(Register ra, Register rs, int sh, int mb, RCBit r) {
1474 md_form(EXT5 | RLDIMI, ra, rs, sh, mb, r);
1475 }
1476
1477
sradi(Register ra,Register rs,int sh,RCBit r)1478 void Assembler::sradi(Register ra, Register rs, int sh, RCBit r) {
1479 int sh0_4 = sh & 0x1f;
1480 int sh5 = (sh >> 5) & 0x1;
1481
1482 emit(EXT2 | SRADIX | rs.code() * B21 | ra.code() * B16 | sh0_4 * B11 |
1483 sh5 * B1 | r);
1484 }
1485
1486
srd(Register dst,Register src1,Register src2,RCBit r)1487 void Assembler::srd(Register dst, Register src1, Register src2, RCBit r) {
1488 x_form(EXT2 | SRDX, dst, src1, src2, r);
1489 }
1490
1491
sld(Register dst,Register src1,Register src2,RCBit r)1492 void Assembler::sld(Register dst, Register src1, Register src2, RCBit r) {
1493 x_form(EXT2 | SLDX, dst, src1, src2, r);
1494 }
1495
1496
srad(Register ra,Register rs,Register rb,RCBit r)1497 void Assembler::srad(Register ra, Register rs, Register rb, RCBit r) {
1498 x_form(EXT2 | SRAD, ra, rs, rb, r);
1499 }
1500
1501
rotld(Register ra,Register rs,Register rb,RCBit r)1502 void Assembler::rotld(Register ra, Register rs, Register rb, RCBit r) {
1503 rldcl(ra, rs, rb, 0, r);
1504 }
1505
1506
rotldi(Register ra,Register rs,int sh,RCBit r)1507 void Assembler::rotldi(Register ra, Register rs, int sh, RCBit r) {
1508 rldicl(ra, rs, sh, 0, r);
1509 }
1510
1511
rotrdi(Register ra,Register rs,int sh,RCBit r)1512 void Assembler::rotrdi(Register ra, Register rs, int sh, RCBit r) {
1513 rldicl(ra, rs, 64 - sh, 0, r);
1514 }
1515
1516
cntlzd_(Register ra,Register rs,RCBit rc)1517 void Assembler::cntlzd_(Register ra, Register rs, RCBit rc) {
1518 x_form(EXT2 | CNTLZDX, ra, rs, r0, rc);
1519 }
1520
1521
popcntd(Register ra,Register rs)1522 void Assembler::popcntd(Register ra, Register rs) {
1523 emit(EXT2 | POPCNTD | rs.code() * B21 | ra.code() * B16);
1524 }
1525
1526
mulld(Register dst,Register src1,Register src2,OEBit o,RCBit r)1527 void Assembler::mulld(Register dst, Register src1, Register src2, OEBit o,
1528 RCBit r) {
1529 xo_form(EXT2 | MULLD, dst, src1, src2, o, r);
1530 }
1531
1532
divd(Register dst,Register src1,Register src2,OEBit o,RCBit r)1533 void Assembler::divd(Register dst, Register src1, Register src2, OEBit o,
1534 RCBit r) {
1535 xo_form(EXT2 | DIVD, dst, src1, src2, o, r);
1536 }
1537
1538
divdu(Register dst,Register src1,Register src2,OEBit o,RCBit r)1539 void Assembler::divdu(Register dst, Register src1, Register src2, OEBit o,
1540 RCBit r) {
1541 xo_form(EXT2 | DIVDU, dst, src1, src2, o, r);
1542 }
1543 #endif
1544
1545
1546 // Function descriptor for AIX.
1547 // Code address skips the function descriptor "header".
1548 // TOC and static chain are ignored and set to 0.
function_descriptor()1549 void Assembler::function_descriptor() {
1550 if (ABI_USES_FUNCTION_DESCRIPTORS) {
1551 Label instructions;
1552 DCHECK(pc_offset() == 0);
1553 emit_label_addr(&instructions);
1554 dp(0);
1555 dp(0);
1556 bind(&instructions);
1557 }
1558 }
1559
1560
instructions_required_for_mov(Register dst,const Operand & src) const1561 int Assembler::instructions_required_for_mov(Register dst,
1562 const Operand& src) const {
1563 bool canOptimize =
1564 !(src.must_output_reloc_info(this) || is_trampoline_pool_blocked());
1565 if (use_constant_pool_for_mov(dst, src, canOptimize)) {
1566 if (ConstantPoolAccessIsInOverflow()) {
1567 return kMovInstructionsConstantPool + 1;
1568 }
1569 return kMovInstructionsConstantPool;
1570 }
1571 DCHECK(!canOptimize);
1572 return kMovInstructionsNoConstantPool;
1573 }
1574
1575
use_constant_pool_for_mov(Register dst,const Operand & src,bool canOptimize) const1576 bool Assembler::use_constant_pool_for_mov(Register dst, const Operand& src,
1577 bool canOptimize) const {
1578 if (!FLAG_enable_embedded_constant_pool || !is_constant_pool_available()) {
1579 // If there is no constant pool available, we must use a mov
1580 // immediate sequence.
1581 return false;
1582 }
1583
1584 intptr_t value = src.immediate();
1585 #if V8_TARGET_ARCH_PPC64
1586 bool allowOverflow = !((canOptimize && is_int32(value)) || dst.is(r0));
1587 #else
1588 bool allowOverflow = !(canOptimize || dst.is(r0));
1589 #endif
1590 if (canOptimize && is_int16(value)) {
1591 // Prefer a single-instruction load-immediate.
1592 return false;
1593 }
1594 if (!allowOverflow && ConstantPoolAccessIsInOverflow()) {
1595 // Prefer non-relocatable two-instruction bitwise-mov32 over
1596 // overflow sequence.
1597 return false;
1598 }
1599
1600 return true;
1601 }
1602
1603
EnsureSpaceFor(int space_needed)1604 void Assembler::EnsureSpaceFor(int space_needed) {
1605 if (buffer_space() <= (kGap + space_needed)) {
1606 GrowBuffer(space_needed);
1607 }
1608 }
1609
1610
must_output_reloc_info(const Assembler * assembler) const1611 bool Operand::must_output_reloc_info(const Assembler* assembler) const {
1612 if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) {
1613 if (assembler != NULL && assembler->predictable_code_size()) return true;
1614 return assembler->serializer_enabled();
1615 } else if (RelocInfo::IsNone(rmode_)) {
1616 return false;
1617 }
1618 return true;
1619 }
1620
1621
1622 // Primarily used for loading constants
1623 // This should really move to be in macro-assembler as it
1624 // is really a pseudo instruction
1625 // Some usages of this intend for a FIXED_SEQUENCE to be used
1626 // Todo - break this dependency so we can optimize mov() in general
1627 // and only use the generic version when we require a fixed sequence
mov(Register dst,const Operand & src)1628 void Assembler::mov(Register dst, const Operand& src) {
1629 intptr_t value = src.immediate();
1630 bool relocatable = src.must_output_reloc_info(this);
1631 bool canOptimize;
1632
1633 canOptimize =
1634 !(relocatable || (is_trampoline_pool_blocked() && !is_int16(value)));
1635
1636 if (use_constant_pool_for_mov(dst, src, canOptimize)) {
1637 DCHECK(is_constant_pool_available());
1638 if (relocatable) {
1639 RecordRelocInfo(src.rmode_);
1640 }
1641 ConstantPoolEntry::Access access = ConstantPoolAddEntry(src.rmode_, value);
1642 #if V8_TARGET_ARCH_PPC64
1643 if (access == ConstantPoolEntry::OVERFLOWED) {
1644 addis(dst, kConstantPoolRegister, Operand::Zero());
1645 ld(dst, MemOperand(dst, 0));
1646 } else {
1647 ld(dst, MemOperand(kConstantPoolRegister, 0));
1648 }
1649 #else
1650 if (access == ConstantPoolEntry::OVERFLOWED) {
1651 addis(dst, kConstantPoolRegister, Operand::Zero());
1652 lwz(dst, MemOperand(dst, 0));
1653 } else {
1654 lwz(dst, MemOperand(kConstantPoolRegister, 0));
1655 }
1656 #endif
1657 return;
1658 }
1659
1660 if (canOptimize) {
1661 if (is_int16(value)) {
1662 li(dst, Operand(value));
1663 } else {
1664 uint16_t u16;
1665 #if V8_TARGET_ARCH_PPC64
1666 if (is_int32(value)) {
1667 #endif
1668 lis(dst, Operand(value >> 16));
1669 #if V8_TARGET_ARCH_PPC64
1670 } else {
1671 if (is_int48(value)) {
1672 li(dst, Operand(value >> 32));
1673 } else {
1674 lis(dst, Operand(value >> 48));
1675 u16 = ((value >> 32) & 0xffff);
1676 if (u16) {
1677 ori(dst, dst, Operand(u16));
1678 }
1679 }
1680 sldi(dst, dst, Operand(32));
1681 u16 = ((value >> 16) & 0xffff);
1682 if (u16) {
1683 oris(dst, dst, Operand(u16));
1684 }
1685 }
1686 #endif
1687 u16 = (value & 0xffff);
1688 if (u16) {
1689 ori(dst, dst, Operand(u16));
1690 }
1691 }
1692 return;
1693 }
1694
1695 DCHECK(!canOptimize);
1696 if (relocatable) {
1697 RecordRelocInfo(src.rmode_);
1698 }
1699 bitwise_mov(dst, value);
1700 }
1701
1702
bitwise_mov(Register dst,intptr_t value)1703 void Assembler::bitwise_mov(Register dst, intptr_t value) {
1704 BlockTrampolinePoolScope block_trampoline_pool(this);
1705 #if V8_TARGET_ARCH_PPC64
1706 int32_t hi_32 = static_cast<int32_t>(value >> 32);
1707 int32_t lo_32 = static_cast<int32_t>(value);
1708 int hi_word = static_cast<int>(hi_32 >> 16);
1709 int lo_word = static_cast<int>(hi_32 & 0xffff);
1710 lis(dst, Operand(SIGN_EXT_IMM16(hi_word)));
1711 ori(dst, dst, Operand(lo_word));
1712 sldi(dst, dst, Operand(32));
1713 hi_word = static_cast<int>(((lo_32 >> 16) & 0xffff));
1714 lo_word = static_cast<int>(lo_32 & 0xffff);
1715 oris(dst, dst, Operand(hi_word));
1716 ori(dst, dst, Operand(lo_word));
1717 #else
1718 int hi_word = static_cast<int>(value >> 16);
1719 int lo_word = static_cast<int>(value & 0xffff);
1720 lis(dst, Operand(SIGN_EXT_IMM16(hi_word)));
1721 ori(dst, dst, Operand(lo_word));
1722 #endif
1723 }
1724
1725
bitwise_mov32(Register dst,int32_t value)1726 void Assembler::bitwise_mov32(Register dst, int32_t value) {
1727 BlockTrampolinePoolScope block_trampoline_pool(this);
1728 int hi_word = static_cast<int>(value >> 16);
1729 int lo_word = static_cast<int>(value & 0xffff);
1730 lis(dst, Operand(SIGN_EXT_IMM16(hi_word)));
1731 ori(dst, dst, Operand(lo_word));
1732 }
1733
1734
bitwise_add32(Register dst,Register src,int32_t value)1735 void Assembler::bitwise_add32(Register dst, Register src, int32_t value) {
1736 BlockTrampolinePoolScope block_trampoline_pool(this);
1737 if (is_int16(value)) {
1738 addi(dst, src, Operand(value));
1739 nop();
1740 } else {
1741 int hi_word = static_cast<int>(value >> 16);
1742 int lo_word = static_cast<int>(value & 0xffff);
1743 if (lo_word & 0x8000) hi_word++;
1744 addis(dst, src, Operand(SIGN_EXT_IMM16(hi_word)));
1745 addic(dst, dst, Operand(SIGN_EXT_IMM16(lo_word)));
1746 }
1747 }
1748
1749
mov_label_offset(Register dst,Label * label)1750 void Assembler::mov_label_offset(Register dst, Label* label) {
1751 int position = link(label);
1752 if (label->is_bound()) {
1753 // Load the position of the label relative to the generated code object.
1754 mov(dst, Operand(position + Code::kHeaderSize - kHeapObjectTag));
1755 } else {
1756 // Encode internal reference to unbound label. We use a dummy opcode
1757 // such that it won't collide with any opcode that might appear in the
1758 // label's chain. Encode the destination register in the 2nd instruction.
1759 int link = position - pc_offset();
1760 DCHECK_EQ(0, link & 3);
1761 link >>= 2;
1762 DCHECK(is_int26(link));
1763
1764 // When the label is bound, these instructions will be patched
1765 // with a 2 instruction mov sequence that will load the
1766 // destination register with the position of the label from the
1767 // beginning of the code.
1768 //
1769 // target_at extracts the link and target_at_put patches the instructions.
1770 BlockTrampolinePoolScope block_trampoline_pool(this);
1771 emit(kUnboundMovLabelOffsetOpcode | (link & kImm26Mask));
1772 emit(dst.code());
1773 }
1774 }
1775
1776
add_label_offset(Register dst,Register base,Label * label,int delta)1777 void Assembler::add_label_offset(Register dst, Register base, Label* label,
1778 int delta) {
1779 int position = link(label);
1780 if (label->is_bound()) {
1781 // dst = base + position + delta
1782 position += delta;
1783 bitwise_add32(dst, base, position);
1784 } else {
1785 // Encode internal reference to unbound label. We use a dummy opcode
1786 // such that it won't collide with any opcode that might appear in the
1787 // label's chain. Encode the operands in the 2nd instruction.
1788 int link = position - pc_offset();
1789 DCHECK_EQ(0, link & 3);
1790 link >>= 2;
1791 DCHECK(is_int26(link));
1792 DCHECK(is_int16(delta));
1793
1794 BlockTrampolinePoolScope block_trampoline_pool(this);
1795 emit(kUnboundAddLabelOffsetOpcode | (link & kImm26Mask));
1796 emit(dst.code() * B21 | base.code() * B16 | (delta & kImm16Mask));
1797 }
1798 }
1799
1800
mov_label_addr(Register dst,Label * label)1801 void Assembler::mov_label_addr(Register dst, Label* label) {
1802 CheckBuffer();
1803 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE_ENCODED);
1804 int position = link(label);
1805 if (label->is_bound()) {
1806 // Keep internal references relative until EmitRelocations.
1807 bitwise_mov(dst, position);
1808 } else {
1809 // Encode internal reference to unbound label. We use a dummy opcode
1810 // such that it won't collide with any opcode that might appear in the
1811 // label's chain. Encode the destination register in the 2nd instruction.
1812 int link = position - pc_offset();
1813 DCHECK_EQ(0, link & 3);
1814 link >>= 2;
1815 DCHECK(is_int26(link));
1816
1817 // When the label is bound, these instructions will be patched
1818 // with a multi-instruction mov sequence that will load the
1819 // destination register with the address of the label.
1820 //
1821 // target_at extracts the link and target_at_put patches the instructions.
1822 BlockTrampolinePoolScope block_trampoline_pool(this);
1823 emit(kUnboundMovLabelAddrOpcode | (link & kImm26Mask));
1824 emit(dst.code());
1825 DCHECK(kMovInstructionsNoConstantPool >= 2);
1826 for (int i = 0; i < kMovInstructionsNoConstantPool - 2; i++) nop();
1827 }
1828 }
1829
1830
emit_label_addr(Label * label)1831 void Assembler::emit_label_addr(Label* label) {
1832 CheckBuffer();
1833 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
1834 int position = link(label);
1835 if (label->is_bound()) {
1836 // Keep internal references relative until EmitRelocations.
1837 dp(position);
1838 } else {
1839 // Encode internal reference to unbound label. We use a dummy opcode
1840 // such that it won't collide with any opcode that might appear in the
1841 // label's chain.
1842 int link = position - pc_offset();
1843 DCHECK_EQ(0, link & 3);
1844 link >>= 2;
1845 DCHECK(is_int26(link));
1846
1847 // When the label is bound, the instruction(s) will be patched
1848 // as a jump table entry containing the label address. target_at extracts
1849 // the link and target_at_put patches the instruction(s).
1850 BlockTrampolinePoolScope block_trampoline_pool(this);
1851 emit(kUnboundJumpTableEntryOpcode | (link & kImm26Mask));
1852 #if V8_TARGET_ARCH_PPC64
1853 nop();
1854 #endif
1855 }
1856 }
1857
1858
1859 // Special register instructions
crxor(int bt,int ba,int bb)1860 void Assembler::crxor(int bt, int ba, int bb) {
1861 emit(EXT1 | CRXOR | bt * B21 | ba * B16 | bb * B11);
1862 }
1863
1864
creqv(int bt,int ba,int bb)1865 void Assembler::creqv(int bt, int ba, int bb) {
1866 emit(EXT1 | CREQV | bt * B21 | ba * B16 | bb * B11);
1867 }
1868
1869
mflr(Register dst)1870 void Assembler::mflr(Register dst) {
1871 emit(EXT2 | MFSPR | dst.code() * B21 | 256 << 11); // Ignore RC bit
1872 }
1873
1874
mtlr(Register src)1875 void Assembler::mtlr(Register src) {
1876 emit(EXT2 | MTSPR | src.code() * B21 | 256 << 11); // Ignore RC bit
1877 }
1878
1879
mtctr(Register src)1880 void Assembler::mtctr(Register src) {
1881 emit(EXT2 | MTSPR | src.code() * B21 | 288 << 11); // Ignore RC bit
1882 }
1883
1884
mtxer(Register src)1885 void Assembler::mtxer(Register src) {
1886 emit(EXT2 | MTSPR | src.code() * B21 | 32 << 11);
1887 }
1888
1889
mcrfs(CRegister cr,FPSCRBit bit)1890 void Assembler::mcrfs(CRegister cr, FPSCRBit bit) {
1891 DCHECK(static_cast<int>(bit) < 32);
1892 int bf = cr.code();
1893 int bfa = bit / CRWIDTH;
1894 emit(EXT4 | MCRFS | bf * B23 | bfa * B18);
1895 }
1896
1897
mfcr(Register dst)1898 void Assembler::mfcr(Register dst) { emit(EXT2 | MFCR | dst.code() * B21); }
1899
1900
1901 #if V8_TARGET_ARCH_PPC64
mffprd(Register dst,DoubleRegister src)1902 void Assembler::mffprd(Register dst, DoubleRegister src) {
1903 emit(EXT2 | MFVSRD | src.code() * B21 | dst.code() * B16);
1904 }
1905
1906
mffprwz(Register dst,DoubleRegister src)1907 void Assembler::mffprwz(Register dst, DoubleRegister src) {
1908 emit(EXT2 | MFVSRWZ | src.code() * B21 | dst.code() * B16);
1909 }
1910
1911
mtfprd(DoubleRegister dst,Register src)1912 void Assembler::mtfprd(DoubleRegister dst, Register src) {
1913 emit(EXT2 | MTVSRD | dst.code() * B21 | src.code() * B16);
1914 }
1915
1916
mtfprwz(DoubleRegister dst,Register src)1917 void Assembler::mtfprwz(DoubleRegister dst, Register src) {
1918 emit(EXT2 | MTVSRWZ | dst.code() * B21 | src.code() * B16);
1919 }
1920
1921
mtfprwa(DoubleRegister dst,Register src)1922 void Assembler::mtfprwa(DoubleRegister dst, Register src) {
1923 emit(EXT2 | MTVSRWA | dst.code() * B21 | src.code() * B16);
1924 }
1925 #endif
1926
1927
1928 // Exception-generating instructions and debugging support.
1929 // Stops with a non-negative code less than kNumOfWatchedStops support
1930 // enabling/disabling and a counter feature. See simulator-ppc.h .
stop(const char * msg,Condition cond,int32_t code,CRegister cr)1931 void Assembler::stop(const char* msg, Condition cond, int32_t code,
1932 CRegister cr) {
1933 if (cond != al) {
1934 Label skip;
1935 b(NegateCondition(cond), &skip, cr);
1936 bkpt(0);
1937 bind(&skip);
1938 } else {
1939 bkpt(0);
1940 }
1941 }
1942
1943
bkpt(uint32_t imm16)1944 void Assembler::bkpt(uint32_t imm16) { emit(0x7d821008); }
1945
1946
dcbf(Register ra,Register rb)1947 void Assembler::dcbf(Register ra, Register rb) {
1948 emit(EXT2 | DCBF | ra.code() * B16 | rb.code() * B11);
1949 }
1950
1951
sync()1952 void Assembler::sync() { emit(EXT2 | SYNC); }
1953
1954
lwsync()1955 void Assembler::lwsync() { emit(EXT2 | SYNC | 1 * B21); }
1956
1957
icbi(Register ra,Register rb)1958 void Assembler::icbi(Register ra, Register rb) {
1959 emit(EXT2 | ICBI | ra.code() * B16 | rb.code() * B11);
1960 }
1961
1962
isync()1963 void Assembler::isync() { emit(EXT1 | ISYNC); }
1964
1965
1966 // Floating point support
1967
lfd(const DoubleRegister frt,const MemOperand & src)1968 void Assembler::lfd(const DoubleRegister frt, const MemOperand& src) {
1969 int offset = src.offset();
1970 Register ra = src.ra();
1971 DCHECK(!ra.is(r0));
1972 CHECK(is_int16(offset));
1973 int imm16 = offset & kImm16Mask;
1974 // could be x_form instruction with some casting magic
1975 emit(LFD | frt.code() * B21 | ra.code() * B16 | imm16);
1976 }
1977
1978
lfdu(const DoubleRegister frt,const MemOperand & src)1979 void Assembler::lfdu(const DoubleRegister frt, const MemOperand& src) {
1980 int offset = src.offset();
1981 Register ra = src.ra();
1982 DCHECK(!ra.is(r0));
1983 CHECK(is_int16(offset));
1984 int imm16 = offset & kImm16Mask;
1985 // could be x_form instruction with some casting magic
1986 emit(LFDU | frt.code() * B21 | ra.code() * B16 | imm16);
1987 }
1988
1989
lfdx(const DoubleRegister frt,const MemOperand & src)1990 void Assembler::lfdx(const DoubleRegister frt, const MemOperand& src) {
1991 Register ra = src.ra();
1992 Register rb = src.rb();
1993 DCHECK(!ra.is(r0));
1994 emit(EXT2 | LFDX | frt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1995 LeaveRC);
1996 }
1997
1998
lfdux(const DoubleRegister frt,const MemOperand & src)1999 void Assembler::lfdux(const DoubleRegister frt, const MemOperand& src) {
2000 Register ra = src.ra();
2001 Register rb = src.rb();
2002 DCHECK(!ra.is(r0));
2003 emit(EXT2 | LFDUX | frt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
2004 LeaveRC);
2005 }
2006
2007
lfs(const DoubleRegister frt,const MemOperand & src)2008 void Assembler::lfs(const DoubleRegister frt, const MemOperand& src) {
2009 int offset = src.offset();
2010 Register ra = src.ra();
2011 CHECK(is_int16(offset));
2012 DCHECK(!ra.is(r0));
2013 int imm16 = offset & kImm16Mask;
2014 // could be x_form instruction with some casting magic
2015 emit(LFS | frt.code() * B21 | ra.code() * B16 | imm16);
2016 }
2017
2018
lfsu(const DoubleRegister frt,const MemOperand & src)2019 void Assembler::lfsu(const DoubleRegister frt, const MemOperand& src) {
2020 int offset = src.offset();
2021 Register ra = src.ra();
2022 CHECK(is_int16(offset));
2023 DCHECK(!ra.is(r0));
2024 int imm16 = offset & kImm16Mask;
2025 // could be x_form instruction with some casting magic
2026 emit(LFSU | frt.code() * B21 | ra.code() * B16 | imm16);
2027 }
2028
2029
lfsx(const DoubleRegister frt,const MemOperand & src)2030 void Assembler::lfsx(const DoubleRegister frt, const MemOperand& src) {
2031 Register ra = src.ra();
2032 Register rb = src.rb();
2033 DCHECK(!ra.is(r0));
2034 emit(EXT2 | LFSX | frt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
2035 LeaveRC);
2036 }
2037
2038
lfsux(const DoubleRegister frt,const MemOperand & src)2039 void Assembler::lfsux(const DoubleRegister frt, const MemOperand& src) {
2040 Register ra = src.ra();
2041 Register rb = src.rb();
2042 DCHECK(!ra.is(r0));
2043 emit(EXT2 | LFSUX | frt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
2044 LeaveRC);
2045 }
2046
2047
stfd(const DoubleRegister frs,const MemOperand & src)2048 void Assembler::stfd(const DoubleRegister frs, const MemOperand& src) {
2049 int offset = src.offset();
2050 Register ra = src.ra();
2051 CHECK(is_int16(offset));
2052 DCHECK(!ra.is(r0));
2053 int imm16 = offset & kImm16Mask;
2054 // could be x_form instruction with some casting magic
2055 emit(STFD | frs.code() * B21 | ra.code() * B16 | imm16);
2056 }
2057
2058
stfdu(const DoubleRegister frs,const MemOperand & src)2059 void Assembler::stfdu(const DoubleRegister frs, const MemOperand& src) {
2060 int offset = src.offset();
2061 Register ra = src.ra();
2062 CHECK(is_int16(offset));
2063 DCHECK(!ra.is(r0));
2064 int imm16 = offset & kImm16Mask;
2065 // could be x_form instruction with some casting magic
2066 emit(STFDU | frs.code() * B21 | ra.code() * B16 | imm16);
2067 }
2068
2069
stfdx(const DoubleRegister frs,const MemOperand & src)2070 void Assembler::stfdx(const DoubleRegister frs, const MemOperand& src) {
2071 Register ra = src.ra();
2072 Register rb = src.rb();
2073 DCHECK(!ra.is(r0));
2074 emit(EXT2 | STFDX | frs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
2075 LeaveRC);
2076 }
2077
2078
stfdux(const DoubleRegister frs,const MemOperand & src)2079 void Assembler::stfdux(const DoubleRegister frs, const MemOperand& src) {
2080 Register ra = src.ra();
2081 Register rb = src.rb();
2082 DCHECK(!ra.is(r0));
2083 emit(EXT2 | STFDUX | frs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
2084 LeaveRC);
2085 }
2086
2087
stfs(const DoubleRegister frs,const MemOperand & src)2088 void Assembler::stfs(const DoubleRegister frs, const MemOperand& src) {
2089 int offset = src.offset();
2090 Register ra = src.ra();
2091 CHECK(is_int16(offset));
2092 DCHECK(!ra.is(r0));
2093 int imm16 = offset & kImm16Mask;
2094 // could be x_form instruction with some casting magic
2095 emit(STFS | frs.code() * B21 | ra.code() * B16 | imm16);
2096 }
2097
2098
stfsu(const DoubleRegister frs,const MemOperand & src)2099 void Assembler::stfsu(const DoubleRegister frs, const MemOperand& src) {
2100 int offset = src.offset();
2101 Register ra = src.ra();
2102 CHECK(is_int16(offset));
2103 DCHECK(!ra.is(r0));
2104 int imm16 = offset & kImm16Mask;
2105 // could be x_form instruction with some casting magic
2106 emit(STFSU | frs.code() * B21 | ra.code() * B16 | imm16);
2107 }
2108
2109
stfsx(const DoubleRegister frs,const MemOperand & src)2110 void Assembler::stfsx(const DoubleRegister frs, const MemOperand& src) {
2111 Register ra = src.ra();
2112 Register rb = src.rb();
2113 DCHECK(!ra.is(r0));
2114 emit(EXT2 | STFSX | frs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
2115 LeaveRC);
2116 }
2117
2118
stfsux(const DoubleRegister frs,const MemOperand & src)2119 void Assembler::stfsux(const DoubleRegister frs, const MemOperand& src) {
2120 Register ra = src.ra();
2121 Register rb = src.rb();
2122 DCHECK(!ra.is(r0));
2123 emit(EXT2 | STFSUX | frs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
2124 LeaveRC);
2125 }
2126
2127
fsub(const DoubleRegister frt,const DoubleRegister fra,const DoubleRegister frb,RCBit rc)2128 void Assembler::fsub(const DoubleRegister frt, const DoubleRegister fra,
2129 const DoubleRegister frb, RCBit rc) {
2130 a_form(EXT4 | FSUB, frt, fra, frb, rc);
2131 }
2132
2133
fadd(const DoubleRegister frt,const DoubleRegister fra,const DoubleRegister frb,RCBit rc)2134 void Assembler::fadd(const DoubleRegister frt, const DoubleRegister fra,
2135 const DoubleRegister frb, RCBit rc) {
2136 a_form(EXT4 | FADD, frt, fra, frb, rc);
2137 }
2138
2139
fmul(const DoubleRegister frt,const DoubleRegister fra,const DoubleRegister frc,RCBit rc)2140 void Assembler::fmul(const DoubleRegister frt, const DoubleRegister fra,
2141 const DoubleRegister frc, RCBit rc) {
2142 emit(EXT4 | FMUL | frt.code() * B21 | fra.code() * B16 | frc.code() * B6 |
2143 rc);
2144 }
2145
2146
fdiv(const DoubleRegister frt,const DoubleRegister fra,const DoubleRegister frb,RCBit rc)2147 void Assembler::fdiv(const DoubleRegister frt, const DoubleRegister fra,
2148 const DoubleRegister frb, RCBit rc) {
2149 a_form(EXT4 | FDIV, frt, fra, frb, rc);
2150 }
2151
2152
fcmpu(const DoubleRegister fra,const DoubleRegister frb,CRegister cr)2153 void Assembler::fcmpu(const DoubleRegister fra, const DoubleRegister frb,
2154 CRegister cr) {
2155 DCHECK(cr.code() >= 0 && cr.code() <= 7);
2156 emit(EXT4 | FCMPU | cr.code() * B23 | fra.code() * B16 | frb.code() * B11);
2157 }
2158
2159
fmr(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2160 void Assembler::fmr(const DoubleRegister frt, const DoubleRegister frb,
2161 RCBit rc) {
2162 emit(EXT4 | FMR | frt.code() * B21 | frb.code() * B11 | rc);
2163 }
2164
2165
fctiwz(const DoubleRegister frt,const DoubleRegister frb)2166 void Assembler::fctiwz(const DoubleRegister frt, const DoubleRegister frb) {
2167 emit(EXT4 | FCTIWZ | frt.code() * B21 | frb.code() * B11);
2168 }
2169
2170
fctiw(const DoubleRegister frt,const DoubleRegister frb)2171 void Assembler::fctiw(const DoubleRegister frt, const DoubleRegister frb) {
2172 emit(EXT4 | FCTIW | frt.code() * B21 | frb.code() * B11);
2173 }
2174
2175
frin(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2176 void Assembler::frin(const DoubleRegister frt, const DoubleRegister frb,
2177 RCBit rc) {
2178 emit(EXT4 | FRIN | frt.code() * B21 | frb.code() * B11 | rc);
2179 }
2180
2181
friz(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2182 void Assembler::friz(const DoubleRegister frt, const DoubleRegister frb,
2183 RCBit rc) {
2184 emit(EXT4 | FRIZ | frt.code() * B21 | frb.code() * B11 | rc);
2185 }
2186
2187
frip(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2188 void Assembler::frip(const DoubleRegister frt, const DoubleRegister frb,
2189 RCBit rc) {
2190 emit(EXT4 | FRIP | frt.code() * B21 | frb.code() * B11 | rc);
2191 }
2192
2193
frim(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2194 void Assembler::frim(const DoubleRegister frt, const DoubleRegister frb,
2195 RCBit rc) {
2196 emit(EXT4 | FRIM | frt.code() * B21 | frb.code() * B11 | rc);
2197 }
2198
2199
frsp(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2200 void Assembler::frsp(const DoubleRegister frt, const DoubleRegister frb,
2201 RCBit rc) {
2202 emit(EXT4 | FRSP | frt.code() * B21 | frb.code() * B11 | rc);
2203 }
2204
2205
fcfid(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2206 void Assembler::fcfid(const DoubleRegister frt, const DoubleRegister frb,
2207 RCBit rc) {
2208 emit(EXT4 | FCFID | frt.code() * B21 | frb.code() * B11 | rc);
2209 }
2210
2211
fcfidu(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2212 void Assembler::fcfidu(const DoubleRegister frt, const DoubleRegister frb,
2213 RCBit rc) {
2214 emit(EXT4 | FCFIDU | frt.code() * B21 | frb.code() * B11 | rc);
2215 }
2216
2217
fcfidus(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2218 void Assembler::fcfidus(const DoubleRegister frt, const DoubleRegister frb,
2219 RCBit rc) {
2220 emit(EXT3 | FCFIDU | frt.code() * B21 | frb.code() * B11 | rc);
2221 }
2222
2223
fcfids(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2224 void Assembler::fcfids(const DoubleRegister frt, const DoubleRegister frb,
2225 RCBit rc) {
2226 emit(EXT3 | FCFID | frt.code() * B21 | frb.code() * B11 | rc);
2227 }
2228
2229
fctid(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2230 void Assembler::fctid(const DoubleRegister frt, const DoubleRegister frb,
2231 RCBit rc) {
2232 emit(EXT4 | FCTID | frt.code() * B21 | frb.code() * B11 | rc);
2233 }
2234
2235
fctidz(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2236 void Assembler::fctidz(const DoubleRegister frt, const DoubleRegister frb,
2237 RCBit rc) {
2238 emit(EXT4 | FCTIDZ | frt.code() * B21 | frb.code() * B11 | rc);
2239 }
2240
2241
fctidu(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2242 void Assembler::fctidu(const DoubleRegister frt, const DoubleRegister frb,
2243 RCBit rc) {
2244 emit(EXT4 | FCTIDU | frt.code() * B21 | frb.code() * B11 | rc);
2245 }
2246
2247
fctiduz(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2248 void Assembler::fctiduz(const DoubleRegister frt, const DoubleRegister frb,
2249 RCBit rc) {
2250 emit(EXT4 | FCTIDUZ | frt.code() * B21 | frb.code() * B11 | rc);
2251 }
2252
2253
fsel(const DoubleRegister frt,const DoubleRegister fra,const DoubleRegister frc,const DoubleRegister frb,RCBit rc)2254 void Assembler::fsel(const DoubleRegister frt, const DoubleRegister fra,
2255 const DoubleRegister frc, const DoubleRegister frb,
2256 RCBit rc) {
2257 emit(EXT4 | FSEL | frt.code() * B21 | fra.code() * B16 | frb.code() * B11 |
2258 frc.code() * B6 | rc);
2259 }
2260
2261
fneg(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2262 void Assembler::fneg(const DoubleRegister frt, const DoubleRegister frb,
2263 RCBit rc) {
2264 emit(EXT4 | FNEG | frt.code() * B21 | frb.code() * B11 | rc);
2265 }
2266
2267
mtfsb0(FPSCRBit bit,RCBit rc)2268 void Assembler::mtfsb0(FPSCRBit bit, RCBit rc) {
2269 DCHECK(static_cast<int>(bit) < 32);
2270 int bt = bit;
2271 emit(EXT4 | MTFSB0 | bt * B21 | rc);
2272 }
2273
2274
mtfsb1(FPSCRBit bit,RCBit rc)2275 void Assembler::mtfsb1(FPSCRBit bit, RCBit rc) {
2276 DCHECK(static_cast<int>(bit) < 32);
2277 int bt = bit;
2278 emit(EXT4 | MTFSB1 | bt * B21 | rc);
2279 }
2280
2281
mtfsfi(int bf,int immediate,RCBit rc)2282 void Assembler::mtfsfi(int bf, int immediate, RCBit rc) {
2283 emit(EXT4 | MTFSFI | bf * B23 | immediate * B12 | rc);
2284 }
2285
2286
mffs(const DoubleRegister frt,RCBit rc)2287 void Assembler::mffs(const DoubleRegister frt, RCBit rc) {
2288 emit(EXT4 | MFFS | frt.code() * B21 | rc);
2289 }
2290
2291
mtfsf(const DoubleRegister frb,bool L,int FLM,bool W,RCBit rc)2292 void Assembler::mtfsf(const DoubleRegister frb, bool L, int FLM, bool W,
2293 RCBit rc) {
2294 emit(EXT4 | MTFSF | frb.code() * B11 | W * B16 | FLM * B17 | L * B25 | rc);
2295 }
2296
2297
fsqrt(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2298 void Assembler::fsqrt(const DoubleRegister frt, const DoubleRegister frb,
2299 RCBit rc) {
2300 emit(EXT4 | FSQRT | frt.code() * B21 | frb.code() * B11 | rc);
2301 }
2302
2303
fabs(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2304 void Assembler::fabs(const DoubleRegister frt, const DoubleRegister frb,
2305 RCBit rc) {
2306 emit(EXT4 | FABS | frt.code() * B21 | frb.code() * B11 | rc);
2307 }
2308
2309
fmadd(const DoubleRegister frt,const DoubleRegister fra,const DoubleRegister frc,const DoubleRegister frb,RCBit rc)2310 void Assembler::fmadd(const DoubleRegister frt, const DoubleRegister fra,
2311 const DoubleRegister frc, const DoubleRegister frb,
2312 RCBit rc) {
2313 emit(EXT4 | FMADD | frt.code() * B21 | fra.code() * B16 | frb.code() * B11 |
2314 frc.code() * B6 | rc);
2315 }
2316
2317
fmsub(const DoubleRegister frt,const DoubleRegister fra,const DoubleRegister frc,const DoubleRegister frb,RCBit rc)2318 void Assembler::fmsub(const DoubleRegister frt, const DoubleRegister fra,
2319 const DoubleRegister frc, const DoubleRegister frb,
2320 RCBit rc) {
2321 emit(EXT4 | FMSUB | frt.code() * B21 | fra.code() * B16 | frb.code() * B11 |
2322 frc.code() * B6 | rc);
2323 }
2324
2325
2326 // Pseudo instructions.
nop(int type)2327 void Assembler::nop(int type) {
2328 Register reg = r0;
2329 switch (type) {
2330 case NON_MARKING_NOP:
2331 reg = r0;
2332 break;
2333 case GROUP_ENDING_NOP:
2334 reg = r2;
2335 break;
2336 case DEBUG_BREAK_NOP:
2337 reg = r3;
2338 break;
2339 default:
2340 UNIMPLEMENTED();
2341 }
2342
2343 ori(reg, reg, Operand::Zero());
2344 }
2345
2346
IsNop(Instr instr,int type)2347 bool Assembler::IsNop(Instr instr, int type) {
2348 int reg = 0;
2349 switch (type) {
2350 case NON_MARKING_NOP:
2351 reg = 0;
2352 break;
2353 case GROUP_ENDING_NOP:
2354 reg = 2;
2355 break;
2356 case DEBUG_BREAK_NOP:
2357 reg = 3;
2358 break;
2359 default:
2360 UNIMPLEMENTED();
2361 }
2362 return instr == (ORI | reg * B21 | reg * B16);
2363 }
2364
2365
GrowBuffer(int needed)2366 void Assembler::GrowBuffer(int needed) {
2367 if (!own_buffer_) FATAL("external code buffer is too small");
2368
2369 // Compute new buffer size.
2370 CodeDesc desc; // the new buffer
2371 if (buffer_size_ < 4 * KB) {
2372 desc.buffer_size = 4 * KB;
2373 } else if (buffer_size_ < 1 * MB) {
2374 desc.buffer_size = 2 * buffer_size_;
2375 } else {
2376 desc.buffer_size = buffer_size_ + 1 * MB;
2377 }
2378 int space = buffer_space() + (desc.buffer_size - buffer_size_);
2379 if (space < needed) {
2380 desc.buffer_size += needed - space;
2381 }
2382 CHECK_GT(desc.buffer_size, 0); // no overflow
2383
2384 // Set up new buffer.
2385 desc.buffer = NewArray<byte>(desc.buffer_size);
2386 desc.origin = this;
2387
2388 desc.instr_size = pc_offset();
2389 desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
2390
2391 // Copy the data.
2392 intptr_t pc_delta = desc.buffer - buffer_;
2393 intptr_t rc_delta =
2394 (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
2395 memmove(desc.buffer, buffer_, desc.instr_size);
2396 memmove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
2397 desc.reloc_size);
2398
2399 // Switch buffers.
2400 DeleteArray(buffer_);
2401 buffer_ = desc.buffer;
2402 buffer_size_ = desc.buffer_size;
2403 pc_ += pc_delta;
2404 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
2405 reloc_info_writer.last_pc() + pc_delta);
2406
2407 // Nothing else to do here since we keep all internal references and
2408 // deferred relocation entries relative to the buffer (until
2409 // EmitRelocations).
2410 }
2411
2412
db(uint8_t data)2413 void Assembler::db(uint8_t data) {
2414 CheckBuffer();
2415 *reinterpret_cast<uint8_t*>(pc_) = data;
2416 pc_ += sizeof(uint8_t);
2417 }
2418
2419
dd(uint32_t data)2420 void Assembler::dd(uint32_t data) {
2421 CheckBuffer();
2422 *reinterpret_cast<uint32_t*>(pc_) = data;
2423 pc_ += sizeof(uint32_t);
2424 }
2425
2426
dq(uint64_t value)2427 void Assembler::dq(uint64_t value) {
2428 CheckBuffer();
2429 *reinterpret_cast<uint64_t*>(pc_) = value;
2430 pc_ += sizeof(uint64_t);
2431 }
2432
2433
dp(uintptr_t data)2434 void Assembler::dp(uintptr_t data) {
2435 CheckBuffer();
2436 *reinterpret_cast<uintptr_t*>(pc_) = data;
2437 pc_ += sizeof(uintptr_t);
2438 }
2439
2440
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)2441 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2442 if (RelocInfo::IsNone(rmode) ||
2443 // Don't record external references unless the heap will be serialized.
2444 (rmode == RelocInfo::EXTERNAL_REFERENCE && !serializer_enabled() &&
2445 !emit_debug_code())) {
2446 return;
2447 }
2448 if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
2449 data = RecordedAstId().ToInt();
2450 ClearRecordedAstId();
2451 }
2452 DeferredRelocInfo rinfo(pc_offset(), rmode, data);
2453 relocations_.push_back(rinfo);
2454 }
2455
2456
EmitRelocations()2457 void Assembler::EmitRelocations() {
2458 EnsureSpaceFor(relocations_.size() * kMaxRelocSize);
2459
2460 for (std::vector<DeferredRelocInfo>::iterator it = relocations_.begin();
2461 it != relocations_.end(); it++) {
2462 RelocInfo::Mode rmode = it->rmode();
2463 Address pc = buffer_ + it->position();
2464 Code* code = NULL;
2465 RelocInfo rinfo(isolate(), pc, rmode, it->data(), code);
2466
2467 // Fix up internal references now that they are guaranteed to be bound.
2468 if (RelocInfo::IsInternalReference(rmode)) {
2469 // Jump table entry
2470 intptr_t pos = reinterpret_cast<intptr_t>(Memory::Address_at(pc));
2471 Memory::Address_at(pc) = buffer_ + pos;
2472 } else if (RelocInfo::IsInternalReferenceEncoded(rmode)) {
2473 // mov sequence
2474 intptr_t pos = reinterpret_cast<intptr_t>(target_address_at(pc, code));
2475 set_target_address_at(isolate(), pc, code, buffer_ + pos,
2476 SKIP_ICACHE_FLUSH);
2477 }
2478
2479 reloc_info_writer.Write(&rinfo);
2480 }
2481 }
2482
2483
BlockTrampolinePoolFor(int instructions)2484 void Assembler::BlockTrampolinePoolFor(int instructions) {
2485 BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize);
2486 }
2487
2488
CheckTrampolinePool()2489 void Assembler::CheckTrampolinePool() {
2490 // Some small sequences of instructions must not be broken up by the
2491 // insertion of a trampoline pool; such sequences are protected by setting
2492 // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_,
2493 // which are both checked here. Also, recursive calls to CheckTrampolinePool
2494 // are blocked by trampoline_pool_blocked_nesting_.
2495 if (trampoline_pool_blocked_nesting_ > 0) return;
2496 if (pc_offset() < no_trampoline_pool_before_) {
2497 next_trampoline_check_ = no_trampoline_pool_before_;
2498 return;
2499 }
2500
2501 DCHECK(!trampoline_emitted_);
2502 if (tracked_branch_count_ > 0) {
2503 int size = tracked_branch_count_ * kInstrSize;
2504
2505 // As we are only going to emit trampoline once, we need to prevent any
2506 // further emission.
2507 trampoline_emitted_ = true;
2508 next_trampoline_check_ = kMaxInt;
2509
2510 // First we emit jump, then we emit trampoline pool.
2511 b(size + kInstrSize, LeaveLK);
2512 for (int i = size; i > 0; i -= kInstrSize) {
2513 b(i, LeaveLK);
2514 }
2515
2516 trampoline_ = Trampoline(pc_offset() - size, tracked_branch_count_);
2517 }
2518 }
2519
2520
2521 } // namespace internal
2522 } // namespace v8
2523
2524 #endif // V8_TARGET_ARCH_PPC
2525