1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_GC_HEAP_H_
18 #define ART_RUNTIME_GC_HEAP_H_
19 
20 #include <iosfwd>
21 #include <string>
22 #include <unordered_set>
23 #include <vector>
24 
25 #include "allocator_type.h"
26 #include "arch/instruction_set.h"
27 #include "atomic.h"
28 #include "base/time_utils.h"
29 #include "gc/accounting/atomic_stack.h"
30 #include "gc/accounting/card_table.h"
31 #include "gc/accounting/read_barrier_table.h"
32 #include "gc/gc_cause.h"
33 #include "gc/collector/gc_type.h"
34 #include "gc/collector_type.h"
35 #include "gc/space/large_object_space.h"
36 #include "globals.h"
37 #include "handle.h"
38 #include "obj_ptr.h"
39 #include "object_callbacks.h"
40 #include "offsets.h"
41 #include "process_state.h"
42 #include "safe_map.h"
43 #include "verify_object.h"
44 
45 namespace art {
46 
47 class ConditionVariable;
48 class Mutex;
49 class StackVisitor;
50 class Thread;
51 class ThreadPool;
52 class TimingLogger;
53 class VariableSizedHandleScope;
54 
55 namespace mirror {
56   class Class;
57   class Object;
58 }  // namespace mirror
59 
60 namespace gc {
61 
62 class AllocationListener;
63 class AllocRecordObjectMap;
64 class GcPauseListener;
65 class ReferenceProcessor;
66 class TaskProcessor;
67 class Verification;
68 
69 namespace accounting {
70   class HeapBitmap;
71   class ModUnionTable;
72   class RememberedSet;
73 }  // namespace accounting
74 
75 namespace collector {
76   class ConcurrentCopying;
77   class GarbageCollector;
78   class MarkCompact;
79   class MarkSweep;
80   class SemiSpace;
81 }  // namespace collector
82 
83 namespace allocator {
84   class RosAlloc;
85 }  // namespace allocator
86 
87 namespace space {
88   class AllocSpace;
89   class BumpPointerSpace;
90   class ContinuousMemMapAllocSpace;
91   class DiscontinuousSpace;
92   class DlMallocSpace;
93   class ImageSpace;
94   class LargeObjectSpace;
95   class MallocSpace;
96   class RegionSpace;
97   class RosAllocSpace;
98   class Space;
99   class ZygoteSpace;
100 }  // namespace space
101 
102 class AgeCardVisitor {
103  public:
operator()104   uint8_t operator()(uint8_t card) const {
105     return (card == accounting::CardTable::kCardDirty) ? card - 1 : 0;
106   }
107 };
108 
109 enum HomogeneousSpaceCompactResult {
110   // Success.
111   kSuccess,
112   // Reject due to disabled moving GC.
113   kErrorReject,
114   // Unsupported due to the current configuration.
115   kErrorUnsupported,
116   // System is shutting down.
117   kErrorVMShuttingDown,
118 };
119 
120 // If true, use rosalloc/RosAllocSpace instead of dlmalloc/DlMallocSpace
121 static constexpr bool kUseRosAlloc = true;
122 
123 // If true, use thread-local allocation stack.
124 static constexpr bool kUseThreadLocalAllocationStack = true;
125 
126 class Heap {
127  public:
128   // If true, measure the total allocation time.
129   static constexpr size_t kDefaultStartingSize = kPageSize;
130   static constexpr size_t kDefaultInitialSize = 2 * MB;
131   static constexpr size_t kDefaultMaximumSize = 256 * MB;
132   static constexpr size_t kDefaultNonMovingSpaceCapacity = 64 * MB;
133   static constexpr size_t kDefaultMaxFree = 2 * MB;
134   static constexpr size_t kDefaultMinFree = kDefaultMaxFree / 4;
135   static constexpr size_t kDefaultLongPauseLogThreshold = MsToNs(5);
136   static constexpr size_t kDefaultLongGCLogThreshold = MsToNs(100);
137   static constexpr size_t kDefaultTLABSize = 32 * KB;
138   static constexpr double kDefaultTargetUtilization = 0.5;
139   static constexpr double kDefaultHeapGrowthMultiplier = 2.0;
140   // Primitive arrays larger than this size are put in the large object space.
141   static constexpr size_t kMinLargeObjectThreshold = 3 * kPageSize;
142   static constexpr size_t kDefaultLargeObjectThreshold = kMinLargeObjectThreshold;
143   // Whether or not parallel GC is enabled. If not, then we never create the thread pool.
144   static constexpr bool kDefaultEnableParallelGC = false;
145 
146   // Whether or not we use the free list large object space. Only use it if USE_ART_LOW_4G_ALLOCATOR
147   // since this means that we have to use the slow msync loop in MemMap::MapAnonymous.
148   static constexpr space::LargeObjectSpaceType kDefaultLargeObjectSpaceType =
149       USE_ART_LOW_4G_ALLOCATOR ?
150           space::LargeObjectSpaceType::kFreeList
151         : space::LargeObjectSpaceType::kMap;
152 
153   // Used so that we don't overflow the allocation time atomic integer.
154   static constexpr size_t kTimeAdjust = 1024;
155 
156   // How often we allow heap trimming to happen (nanoseconds).
157   static constexpr uint64_t kHeapTrimWait = MsToNs(5000);
158   // How long we wait after a transition request to perform a collector transition (nanoseconds).
159   static constexpr uint64_t kCollectorTransitionWait = MsToNs(5000);
160 
161   // Create a heap with the requested sizes. The possible empty
162   // image_file_names names specify Spaces to load based on
163   // ImageWriter output.
164   Heap(size_t initial_size,
165        size_t growth_limit,
166        size_t min_free,
167        size_t max_free,
168        double target_utilization,
169        double foreground_heap_growth_multiplier,
170        size_t capacity,
171        size_t non_moving_space_capacity,
172        const std::string& original_image_file_name,
173        InstructionSet image_instruction_set,
174        CollectorType foreground_collector_type,
175        CollectorType background_collector_type,
176        space::LargeObjectSpaceType large_object_space_type,
177        size_t large_object_threshold,
178        size_t parallel_gc_threads,
179        size_t conc_gc_threads,
180        bool low_memory_mode,
181        size_t long_pause_threshold,
182        size_t long_gc_threshold,
183        bool ignore_max_footprint,
184        bool use_tlab,
185        bool verify_pre_gc_heap,
186        bool verify_pre_sweeping_heap,
187        bool verify_post_gc_heap,
188        bool verify_pre_gc_rosalloc,
189        bool verify_pre_sweeping_rosalloc,
190        bool verify_post_gc_rosalloc,
191        bool gc_stress_mode,
192        bool measure_gc_performance,
193        bool use_homogeneous_space_compaction,
194        uint64_t min_interval_homogeneous_space_compaction_by_oom);
195 
196   ~Heap();
197 
198   // Allocates and initializes storage for an object instance.
199   template <bool kInstrumented, typename PreFenceVisitor>
AllocObject(Thread * self,ObjPtr<mirror::Class> klass,size_t num_bytes,const PreFenceVisitor & pre_fence_visitor)200   mirror::Object* AllocObject(Thread* self,
201                               ObjPtr<mirror::Class> klass,
202                               size_t num_bytes,
203                               const PreFenceVisitor& pre_fence_visitor)
204       REQUIRES_SHARED(Locks::mutator_lock_)
205       REQUIRES(!*gc_complete_lock_,
206                !*pending_task_lock_,
207                !*backtrace_lock_,
208                !Roles::uninterruptible_) {
209     return AllocObjectWithAllocator<kInstrumented, true>(self,
210                                                          klass,
211                                                          num_bytes,
212                                                          GetCurrentAllocator(),
213                                                          pre_fence_visitor);
214   }
215 
216   template <bool kInstrumented, typename PreFenceVisitor>
AllocNonMovableObject(Thread * self,ObjPtr<mirror::Class> klass,size_t num_bytes,const PreFenceVisitor & pre_fence_visitor)217   mirror::Object* AllocNonMovableObject(Thread* self,
218                                         ObjPtr<mirror::Class> klass,
219                                         size_t num_bytes,
220                                         const PreFenceVisitor& pre_fence_visitor)
221       REQUIRES_SHARED(Locks::mutator_lock_)
222       REQUIRES(!*gc_complete_lock_,
223                !*pending_task_lock_,
224                !*backtrace_lock_,
225                !Roles::uninterruptible_) {
226     return AllocObjectWithAllocator<kInstrumented, true>(self,
227                                                          klass,
228                                                          num_bytes,
229                                                          GetCurrentNonMovingAllocator(),
230                                                          pre_fence_visitor);
231   }
232 
233   template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor>
234   ALWAYS_INLINE mirror::Object* AllocObjectWithAllocator(Thread* self,
235                                                          ObjPtr<mirror::Class> klass,
236                                                          size_t byte_count,
237                                                          AllocatorType allocator,
238                                                          const PreFenceVisitor& pre_fence_visitor)
239       REQUIRES_SHARED(Locks::mutator_lock_)
240       REQUIRES(!*gc_complete_lock_,
241                !*pending_task_lock_,
242                !*backtrace_lock_,
243                !Roles::uninterruptible_);
244 
GetCurrentAllocator()245   AllocatorType GetCurrentAllocator() const {
246     return current_allocator_;
247   }
248 
GetCurrentNonMovingAllocator()249   AllocatorType GetCurrentNonMovingAllocator() const {
250     return current_non_moving_allocator_;
251   }
252 
253   // Visit all of the live objects in the heap.
254   void VisitObjects(ObjectCallback callback, void* arg)
255       REQUIRES_SHARED(Locks::mutator_lock_)
256       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_);
257   void VisitObjectsPaused(ObjectCallback callback, void* arg)
258       REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
259 
260   void CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count)
261       REQUIRES_SHARED(Locks::mutator_lock_);
262 
263   void RegisterNativeAllocation(JNIEnv* env, size_t bytes)
264       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !*native_blocking_gc_lock_);
265   void RegisterNativeFree(JNIEnv* env, size_t bytes);
266 
267   // Change the allocator, updates entrypoints.
268   void ChangeAllocator(AllocatorType allocator)
269       REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_);
270 
271   // Transition the garbage collector during runtime, may copy objects from one space to another.
272   void TransitionCollector(CollectorType collector_type) REQUIRES(!*gc_complete_lock_);
273 
274   // Change the collector to be one of the possible options (MS, CMS, SS).
275   void ChangeCollector(CollectorType collector_type)
276       REQUIRES(Locks::mutator_lock_);
277 
278   // The given reference is believed to be to an object in the Java heap, check the soundness of it.
279   // TODO: NO_THREAD_SAFETY_ANALYSIS since we call this everywhere and it is impossible to find a
280   // proper lock ordering for it.
281   void VerifyObjectBody(ObjPtr<mirror::Object> o) NO_THREAD_SAFETY_ANALYSIS;
282 
283   // Check sanity of all live references.
284   void VerifyHeap() REQUIRES(!Locks::heap_bitmap_lock_);
285   // Returns how many failures occured.
286   size_t VerifyHeapReferences(bool verify_referents = true)
287       REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
288   bool VerifyMissingCardMarks()
289       REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
290 
291   // A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock,
292   // and doesn't abort on error, allowing the caller to report more
293   // meaningful diagnostics.
294   bool IsValidObjectAddress(const void* obj) const REQUIRES_SHARED(Locks::mutator_lock_);
295 
296   // Faster alternative to IsHeapAddress since finding if an object is in the large object space is
297   // very slow.
298   bool IsNonDiscontinuousSpaceHeapAddress(const void* addr) const
299       REQUIRES_SHARED(Locks::mutator_lock_);
300 
301   // Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses).
302   // Requires the heap lock to be held.
303   bool IsLiveObjectLocked(ObjPtr<mirror::Object> obj,
304                           bool search_allocation_stack = true,
305                           bool search_live_stack = true,
306                           bool sorted = false)
307       REQUIRES_SHARED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
308 
309   // Returns true if there is any chance that the object (obj) will move.
310   bool IsMovableObject(ObjPtr<mirror::Object> obj) const REQUIRES_SHARED(Locks::mutator_lock_);
311 
312   // Enables us to compacting GC until objects are released.
313   void IncrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_);
314   void DecrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_);
315 
316   // Temporarily disable thread flip for JNI critical calls.
317   void IncrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_);
318   void DecrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_);
319   void ThreadFlipBegin(Thread* self) REQUIRES(!*thread_flip_lock_);
320   void ThreadFlipEnd(Thread* self) REQUIRES(!*thread_flip_lock_);
321 
322   // Clear all of the mark bits, doesn't clear bitmaps which have the same live bits as mark bits.
323   // Mutator lock is required for GetContinuousSpaces.
324   void ClearMarkedObjects()
325       REQUIRES(Locks::heap_bitmap_lock_)
326       REQUIRES_SHARED(Locks::mutator_lock_);
327 
328   // Initiates an explicit garbage collection.
329   void CollectGarbage(bool clear_soft_references)
330       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
331 
332   // Does a concurrent GC, should only be called by the GC daemon thread
333   // through runtime.
334   void ConcurrentGC(Thread* self, GcCause cause, bool force_full)
335       REQUIRES(!Locks::runtime_shutdown_lock_, !*gc_complete_lock_, !*pending_task_lock_);
336 
337   // Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount.
338   // The boolean decides whether to use IsAssignableFrom or == when comparing classes.
339   void CountInstances(const std::vector<Handle<mirror::Class>>& classes,
340                       bool use_is_assignable_from,
341                       uint64_t* counts)
342       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_)
343       REQUIRES_SHARED(Locks::mutator_lock_);
344 
345   // Implements JDWP RT_Instances.
346   void GetInstances(VariableSizedHandleScope& scope,
347                     Handle<mirror::Class> c,
348                     int32_t max_count,
349                     std::vector<Handle<mirror::Object>>& instances)
350       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_)
351       REQUIRES_SHARED(Locks::mutator_lock_);
352 
353   // Implements JDWP OR_ReferringObjects.
354   void GetReferringObjects(VariableSizedHandleScope& scope,
355                            Handle<mirror::Object> o,
356                            int32_t max_count,
357                            std::vector<Handle<mirror::Object>>& referring_objects)
358       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_)
359       REQUIRES_SHARED(Locks::mutator_lock_);
360 
361   // Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to
362   // implement dalvik.system.VMRuntime.clearGrowthLimit.
363   void ClearGrowthLimit();
364 
365   // Make the current growth limit the new maximum capacity, unmaps pages at the end of spaces
366   // which will never be used. Used to implement dalvik.system.VMRuntime.clampGrowthLimit.
367   void ClampGrowthLimit() REQUIRES(!Locks::heap_bitmap_lock_);
368 
369   // Target ideal heap utilization ratio, implements
370   // dalvik.system.VMRuntime.getTargetHeapUtilization.
GetTargetHeapUtilization()371   double GetTargetHeapUtilization() const {
372     return target_utilization_;
373   }
374 
375   // Data structure memory usage tracking.
376   void RegisterGCAllocation(size_t bytes);
377   void RegisterGCDeAllocation(size_t bytes);
378 
379   // Set the heap's private space pointers to be the same as the space based on it's type. Public
380   // due to usage by tests.
381   void SetSpaceAsDefault(space::ContinuousSpace* continuous_space)
382       REQUIRES(!Locks::heap_bitmap_lock_);
383   void AddSpace(space::Space* space)
384       REQUIRES(!Locks::heap_bitmap_lock_)
385       REQUIRES(Locks::mutator_lock_);
386   void RemoveSpace(space::Space* space)
387     REQUIRES(!Locks::heap_bitmap_lock_)
388     REQUIRES(Locks::mutator_lock_);
389 
390   // Set target ideal heap utilization ratio, implements
391   // dalvik.system.VMRuntime.setTargetHeapUtilization.
392   void SetTargetHeapUtilization(float target);
393 
394   // For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate
395   // from the system. Doesn't allow the space to exceed its growth limit.
396   void SetIdealFootprint(size_t max_allowed_footprint);
397 
398   // Blocks the caller until the garbage collector becomes idle and returns the type of GC we
399   // waited for.
400   collector::GcType WaitForGcToComplete(GcCause cause, Thread* self) REQUIRES(!*gc_complete_lock_);
401 
402   // Update the heap's process state to a new value, may cause compaction to occur.
403   void UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state)
404       REQUIRES(!*pending_task_lock_, !*gc_complete_lock_);
405 
HaveContinuousSpaces()406   bool HaveContinuousSpaces() const NO_THREAD_SAFETY_ANALYSIS {
407     // No lock since vector empty is thread safe.
408     return !continuous_spaces_.empty();
409   }
410 
GetContinuousSpaces()411   const std::vector<space::ContinuousSpace*>& GetContinuousSpaces() const
412       REQUIRES_SHARED(Locks::mutator_lock_) {
413     return continuous_spaces_;
414   }
415 
GetDiscontinuousSpaces()416   const std::vector<space::DiscontinuousSpace*>& GetDiscontinuousSpaces() const {
417     return discontinuous_spaces_;
418   }
419 
GetCurrentGcIteration()420   const collector::Iteration* GetCurrentGcIteration() const {
421     return &current_gc_iteration_;
422   }
GetCurrentGcIteration()423   collector::Iteration* GetCurrentGcIteration() {
424     return &current_gc_iteration_;
425   }
426 
427   // Enable verification of object references when the runtime is sufficiently initialized.
EnableObjectValidation()428   void EnableObjectValidation() {
429     verify_object_mode_ = kVerifyObjectSupport;
430     if (verify_object_mode_ > kVerifyObjectModeDisabled) {
431       VerifyHeap();
432     }
433   }
434 
435   // Disable object reference verification for image writing.
DisableObjectValidation()436   void DisableObjectValidation() {
437     verify_object_mode_ = kVerifyObjectModeDisabled;
438   }
439 
440   // Other checks may be performed if we know the heap should be in a sane state.
IsObjectValidationEnabled()441   bool IsObjectValidationEnabled() const {
442     return verify_object_mode_ > kVerifyObjectModeDisabled;
443   }
444 
445   // Returns true if low memory mode is enabled.
IsLowMemoryMode()446   bool IsLowMemoryMode() const {
447     return low_memory_mode_;
448   }
449 
450   // Returns the heap growth multiplier, this affects how much we grow the heap after a GC.
451   // Scales heap growth, min free, and max free.
452   double HeapGrowthMultiplier() const;
453 
454   // Freed bytes can be negative in cases where we copy objects from a compacted space to a
455   // free-list backed space.
456   void RecordFree(uint64_t freed_objects, int64_t freed_bytes);
457 
458   // Record the bytes freed by thread-local buffer revoke.
459   void RecordFreeRevoke();
460 
461   // Must be called if a field of an Object in the heap changes, and before any GC safe-point.
462   // The call is not needed if null is stored in the field.
463   ALWAYS_INLINE void WriteBarrierField(ObjPtr<mirror::Object> dst,
464                                        MemberOffset offset,
465                                        ObjPtr<mirror::Object> new_value)
466       REQUIRES_SHARED(Locks::mutator_lock_);
467 
468   // Write barrier for array operations that update many field positions
469   ALWAYS_INLINE void WriteBarrierArray(ObjPtr<mirror::Object> dst,
470                                        int start_offset,
471                                        // TODO: element_count or byte_count?
472                                        size_t length)
473       REQUIRES_SHARED(Locks::mutator_lock_);
474 
475   ALWAYS_INLINE void WriteBarrierEveryFieldOf(ObjPtr<mirror::Object> obj)
476       REQUIRES_SHARED(Locks::mutator_lock_);
477 
GetCardTable()478   accounting::CardTable* GetCardTable() const {
479     return card_table_.get();
480   }
481 
GetReadBarrierTable()482   accounting::ReadBarrierTable* GetReadBarrierTable() const {
483     return rb_table_.get();
484   }
485 
486   void AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object);
487 
488   // Returns the number of bytes currently allocated.
GetBytesAllocated()489   size_t GetBytesAllocated() const {
490     return num_bytes_allocated_.LoadSequentiallyConsistent();
491   }
492 
493   // Returns the number of objects currently allocated.
494   size_t GetObjectsAllocated() const
495       REQUIRES(!Locks::heap_bitmap_lock_);
496 
497   // Returns the total number of objects allocated since the heap was created.
498   uint64_t GetObjectsAllocatedEver() const;
499 
500   // Returns the total number of bytes allocated since the heap was created.
501   uint64_t GetBytesAllocatedEver() const;
502 
503   // Returns the total number of objects freed since the heap was created.
GetObjectsFreedEver()504   uint64_t GetObjectsFreedEver() const {
505     return total_objects_freed_ever_;
506   }
507 
508   // Returns the total number of bytes freed since the heap was created.
GetBytesFreedEver()509   uint64_t GetBytesFreedEver() const {
510     return total_bytes_freed_ever_;
511   }
512 
513   // Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can
514   // consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx
515   // were specified. Android apps start with a growth limit (small heap size) which is
516   // cleared/extended for large apps.
GetMaxMemory()517   size_t GetMaxMemory() const {
518     // There is some race conditions in the allocation code that can cause bytes allocated to
519     // become larger than growth_limit_ in rare cases.
520     return std::max(GetBytesAllocated(), growth_limit_);
521   }
522 
523   // Implements java.lang.Runtime.totalMemory, returning approximate amount of memory currently
524   // consumed by an application.
525   size_t GetTotalMemory() const;
526 
527   // Returns approximately how much free memory we have until the next GC happens.
GetFreeMemoryUntilGC()528   size_t GetFreeMemoryUntilGC() const {
529     return max_allowed_footprint_ - GetBytesAllocated();
530   }
531 
532   // Returns approximately how much free memory we have until the next OOME happens.
GetFreeMemoryUntilOOME()533   size_t GetFreeMemoryUntilOOME() const {
534     return growth_limit_ - GetBytesAllocated();
535   }
536 
537   // Returns how much free memory we have until we need to grow the heap to perform an allocation.
538   // Similar to GetFreeMemoryUntilGC. Implements java.lang.Runtime.freeMemory.
GetFreeMemory()539   size_t GetFreeMemory() const {
540     size_t byte_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
541     size_t total_memory = GetTotalMemory();
542     // Make sure we don't get a negative number.
543     return total_memory - std::min(total_memory, byte_allocated);
544   }
545 
546   // get the space that corresponds to an object's address. Current implementation searches all
547   // spaces in turn. If fail_ok is false then failing to find a space will cause an abort.
548   // TODO: consider using faster data structure like binary tree.
549   space::ContinuousSpace* FindContinuousSpaceFromObject(ObjPtr<mirror::Object>, bool fail_ok) const
550       REQUIRES_SHARED(Locks::mutator_lock_);
551 
552   space::ContinuousSpace* FindContinuousSpaceFromAddress(const mirror::Object* addr) const
553       REQUIRES_SHARED(Locks::mutator_lock_);
554 
555   space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object>,
556                                                               bool fail_ok) const
557       REQUIRES_SHARED(Locks::mutator_lock_);
558 
559   space::Space* FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const
560       REQUIRES_SHARED(Locks::mutator_lock_);
561 
562   space::Space* FindSpaceFromAddress(const void* ptr) const
563       REQUIRES_SHARED(Locks::mutator_lock_);
564 
565   void DumpForSigQuit(std::ostream& os) REQUIRES(!*gc_complete_lock_);
566 
567   // Do a pending collector transition.
568   void DoPendingCollectorTransition() REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
569 
570   // Deflate monitors, ... and trim the spaces.
571   void Trim(Thread* self) REQUIRES(!*gc_complete_lock_);
572 
573   void RevokeThreadLocalBuffers(Thread* thread);
574   void RevokeRosAllocThreadLocalBuffers(Thread* thread);
575   void RevokeAllThreadLocalBuffers();
576   void AssertThreadLocalBuffersAreRevoked(Thread* thread);
577   void AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
578   void RosAllocVerification(TimingLogger* timings, const char* name)
579       REQUIRES(Locks::mutator_lock_);
580 
GetLiveBitmap()581   accounting::HeapBitmap* GetLiveBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
582     return live_bitmap_.get();
583   }
584 
GetMarkBitmap()585   accounting::HeapBitmap* GetMarkBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
586     return mark_bitmap_.get();
587   }
588 
GetLiveStack()589   accounting::ObjectStack* GetLiveStack() REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
590     return live_stack_.get();
591   }
592 
593   void PreZygoteFork() NO_THREAD_SAFETY_ANALYSIS;
594 
595   // Mark and empty stack.
596   void FlushAllocStack()
597       REQUIRES_SHARED(Locks::mutator_lock_)
598       REQUIRES(Locks::heap_bitmap_lock_);
599 
600   // Revoke all the thread-local allocation stacks.
601   void RevokeAllThreadLocalAllocationStacks(Thread* self)
602       REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_);
603 
604   // Mark all the objects in the allocation stack in the specified bitmap.
605   // TODO: Refactor?
606   void MarkAllocStack(accounting::SpaceBitmap<kObjectAlignment>* bitmap1,
607                       accounting::SpaceBitmap<kObjectAlignment>* bitmap2,
608                       accounting::SpaceBitmap<kLargeObjectAlignment>* large_objects,
609                       accounting::ObjectStack* stack)
610       REQUIRES_SHARED(Locks::mutator_lock_)
611       REQUIRES(Locks::heap_bitmap_lock_);
612 
613   // Mark the specified allocation stack as live.
614   void MarkAllocStackAsLive(accounting::ObjectStack* stack)
615       REQUIRES_SHARED(Locks::mutator_lock_)
616       REQUIRES(Locks::heap_bitmap_lock_);
617 
618   // Unbind any bound bitmaps.
619   void UnBindBitmaps()
620       REQUIRES(Locks::heap_bitmap_lock_)
621       REQUIRES_SHARED(Locks::mutator_lock_);
622 
623   // Returns the boot image spaces. There may be multiple boot image spaces.
GetBootImageSpaces()624   const std::vector<space::ImageSpace*>& GetBootImageSpaces() const {
625     return boot_image_spaces_;
626   }
627 
628   bool ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const
629       REQUIRES_SHARED(Locks::mutator_lock_);
630 
631   bool IsInBootImageOatFile(const void* p) const
632       REQUIRES_SHARED(Locks::mutator_lock_);
633 
634   void GetBootImagesSize(uint32_t* boot_image_begin,
635                          uint32_t* boot_image_end,
636                          uint32_t* boot_oat_begin,
637                          uint32_t* boot_oat_end);
638 
639   // Permenantly disable moving garbage collection.
640   void DisableMovingGc() REQUIRES(!*gc_complete_lock_);
641 
GetDlMallocSpace()642   space::DlMallocSpace* GetDlMallocSpace() const {
643     return dlmalloc_space_;
644   }
645 
GetRosAllocSpace()646   space::RosAllocSpace* GetRosAllocSpace() const {
647     return rosalloc_space_;
648   }
649 
650   // Return the corresponding rosalloc space.
651   space::RosAllocSpace* GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const
652       REQUIRES_SHARED(Locks::mutator_lock_);
653 
GetNonMovingSpace()654   space::MallocSpace* GetNonMovingSpace() const {
655     return non_moving_space_;
656   }
657 
GetLargeObjectsSpace()658   space::LargeObjectSpace* GetLargeObjectsSpace() const {
659     return large_object_space_;
660   }
661 
662   // Returns the free list space that may contain movable objects (the
663   // one that's not the non-moving space), either rosalloc_space_ or
664   // dlmalloc_space_.
GetPrimaryFreeListSpace()665   space::MallocSpace* GetPrimaryFreeListSpace() {
666     if (kUseRosAlloc) {
667       DCHECK(rosalloc_space_ != nullptr);
668       // reinterpret_cast is necessary as the space class hierarchy
669       // isn't known (#included) yet here.
670       return reinterpret_cast<space::MallocSpace*>(rosalloc_space_);
671     } else {
672       DCHECK(dlmalloc_space_ != nullptr);
673       return reinterpret_cast<space::MallocSpace*>(dlmalloc_space_);
674     }
675   }
676 
677   void DumpSpaces(std::ostream& stream) const REQUIRES_SHARED(Locks::mutator_lock_);
678   std::string DumpSpaces() const REQUIRES_SHARED(Locks::mutator_lock_);
679 
680   // GC performance measuring
681   void DumpGcPerformanceInfo(std::ostream& os)
682       REQUIRES(!*gc_complete_lock_);
683   void ResetGcPerformanceInfo() REQUIRES(!*gc_complete_lock_);
684 
685   // Thread pool.
686   void CreateThreadPool();
687   void DeleteThreadPool();
GetThreadPool()688   ThreadPool* GetThreadPool() {
689     return thread_pool_.get();
690   }
GetParallelGCThreadCount()691   size_t GetParallelGCThreadCount() const {
692     return parallel_gc_threads_;
693   }
GetConcGCThreadCount()694   size_t GetConcGCThreadCount() const {
695     return conc_gc_threads_;
696   }
697   accounting::ModUnionTable* FindModUnionTableFromSpace(space::Space* space);
698   void AddModUnionTable(accounting::ModUnionTable* mod_union_table);
699 
700   accounting::RememberedSet* FindRememberedSetFromSpace(space::Space* space);
701   void AddRememberedSet(accounting::RememberedSet* remembered_set);
702   // Also deletes the remebered set.
703   void RemoveRememberedSet(space::Space* space);
704 
705   bool IsCompilingBoot() const;
HasBootImageSpace()706   bool HasBootImageSpace() const {
707     return !boot_image_spaces_.empty();
708   }
709 
GetReferenceProcessor()710   ReferenceProcessor* GetReferenceProcessor() {
711     return reference_processor_.get();
712   }
GetTaskProcessor()713   TaskProcessor* GetTaskProcessor() {
714     return task_processor_.get();
715   }
716 
HasZygoteSpace()717   bool HasZygoteSpace() const {
718     return zygote_space_ != nullptr;
719   }
720 
ConcurrentCopyingCollector()721   collector::ConcurrentCopying* ConcurrentCopyingCollector() {
722     return concurrent_copying_collector_;
723   }
724 
CurrentCollectorType()725   CollectorType CurrentCollectorType() {
726     return collector_type_;
727   }
728 
IsGcConcurrentAndMoving()729   bool IsGcConcurrentAndMoving() const {
730     if (IsGcConcurrent() && IsMovingGc(collector_type_)) {
731       // Assume no transition when a concurrent moving collector is used.
732       DCHECK_EQ(collector_type_, foreground_collector_type_);
733       return true;
734     }
735     return false;
736   }
737 
IsMovingGCDisabled(Thread * self)738   bool IsMovingGCDisabled(Thread* self) REQUIRES(!*gc_complete_lock_) {
739     MutexLock mu(self, *gc_complete_lock_);
740     return disable_moving_gc_count_ > 0;
741   }
742 
743   // Request an asynchronous trim.
744   void RequestTrim(Thread* self) REQUIRES(!*pending_task_lock_);
745 
746   // Request asynchronous GC.
747   void RequestConcurrentGC(Thread* self, GcCause cause, bool force_full)
748       REQUIRES(!*pending_task_lock_);
749 
750   // Whether or not we may use a garbage collector, used so that we only create collectors we need.
751   bool MayUseCollector(CollectorType type) const;
752 
753   // Used by tests to reduce timinig-dependent flakiness in OOME behavior.
SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval)754   void SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval) {
755     min_interval_homogeneous_space_compaction_by_oom_ = interval;
756   }
757 
758   // Helpers for android.os.Debug.getRuntimeStat().
759   uint64_t GetGcCount() const;
760   uint64_t GetGcTime() const;
761   uint64_t GetBlockingGcCount() const;
762   uint64_t GetBlockingGcTime() const;
763   void DumpGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_);
764   void DumpBlockingGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_);
765 
766   // Allocation tracking support
767   // Callers to this function use double-checked locking to ensure safety on allocation_records_
IsAllocTrackingEnabled()768   bool IsAllocTrackingEnabled() const {
769     return alloc_tracking_enabled_.LoadRelaxed();
770   }
771 
SetAllocTrackingEnabled(bool enabled)772   void SetAllocTrackingEnabled(bool enabled) REQUIRES(Locks::alloc_tracker_lock_) {
773     alloc_tracking_enabled_.StoreRelaxed(enabled);
774   }
775 
GetAllocationRecords()776   AllocRecordObjectMap* GetAllocationRecords() const
777       REQUIRES(Locks::alloc_tracker_lock_) {
778     return allocation_records_.get();
779   }
780 
781   void SetAllocationRecords(AllocRecordObjectMap* records)
782       REQUIRES(Locks::alloc_tracker_lock_);
783 
784   void VisitAllocationRecords(RootVisitor* visitor) const
785       REQUIRES_SHARED(Locks::mutator_lock_)
786       REQUIRES(!Locks::alloc_tracker_lock_);
787 
788   void SweepAllocationRecords(IsMarkedVisitor* visitor) const
789       REQUIRES_SHARED(Locks::mutator_lock_)
790       REQUIRES(!Locks::alloc_tracker_lock_);
791 
792   void DisallowNewAllocationRecords() const
793       REQUIRES_SHARED(Locks::mutator_lock_)
794       REQUIRES(!Locks::alloc_tracker_lock_);
795 
796   void AllowNewAllocationRecords() const
797       REQUIRES_SHARED(Locks::mutator_lock_)
798       REQUIRES(!Locks::alloc_tracker_lock_);
799 
800   void BroadcastForNewAllocationRecords() const
801       REQUIRES(!Locks::alloc_tracker_lock_);
802 
803   void DisableGCForShutdown() REQUIRES(!*gc_complete_lock_);
804 
805   // Create a new alloc space and compact default alloc space to it.
806   HomogeneousSpaceCompactResult PerformHomogeneousSpaceCompact() REQUIRES(!*gc_complete_lock_);
807   bool SupportHomogeneousSpaceCompactAndCollectorTransitions() const;
808 
809   // Install an allocation listener.
810   void SetAllocationListener(AllocationListener* l);
811   // Remove an allocation listener. Note: the listener must not be deleted, as for performance
812   // reasons, we assume it stays valid when we read it (so that we don't require a lock).
813   void RemoveAllocationListener();
814 
815   // Install a gc pause listener.
816   void SetGcPauseListener(GcPauseListener* l);
817   // Get the currently installed gc pause listener, or null.
GetGcPauseListener()818   GcPauseListener* GetGcPauseListener() {
819     return gc_pause_listener_.LoadAcquire();
820   }
821   // Remove a gc pause listener. Note: the listener must not be deleted, as for performance
822   // reasons, we assume it stays valid when we read it (so that we don't require a lock).
823   void RemoveGcPauseListener();
824 
825   const Verification* GetVerification() const;
826 
827  private:
828   class ConcurrentGCTask;
829   class CollectorTransitionTask;
830   class HeapTrimTask;
831 
832   // Compact source space to target space. Returns the collector used.
833   collector::GarbageCollector* Compact(space::ContinuousMemMapAllocSpace* target_space,
834                                        space::ContinuousMemMapAllocSpace* source_space,
835                                        GcCause gc_cause)
836       REQUIRES(Locks::mutator_lock_);
837 
838   void LogGC(GcCause gc_cause, collector::GarbageCollector* collector);
839   void StartGC(Thread* self, GcCause cause, CollectorType collector_type)
840       REQUIRES(!*gc_complete_lock_);
841   void FinishGC(Thread* self, collector::GcType gc_type) REQUIRES(!*gc_complete_lock_);
842 
843   // Create a mem map with a preferred base address.
844   static MemMap* MapAnonymousPreferredAddress(const char* name, uint8_t* request_begin,
845                                               size_t capacity, std::string* out_error_str);
846 
SupportHSpaceCompaction()847   bool SupportHSpaceCompaction() const {
848     // Returns true if we can do hspace compaction
849     return main_space_backup_ != nullptr;
850   }
851 
AllocatorHasAllocationStack(AllocatorType allocator_type)852   static ALWAYS_INLINE bool AllocatorHasAllocationStack(AllocatorType allocator_type) {
853     return
854         allocator_type != kAllocatorTypeBumpPointer &&
855         allocator_type != kAllocatorTypeTLAB &&
856         allocator_type != kAllocatorTypeRegion &&
857         allocator_type != kAllocatorTypeRegionTLAB;
858   }
AllocatorMayHaveConcurrentGC(AllocatorType allocator_type)859   static ALWAYS_INLINE bool AllocatorMayHaveConcurrentGC(AllocatorType allocator_type) {
860     if (kUseReadBarrier) {
861       // Read barrier may have the TLAB allocator but is always concurrent. TODO: clean this up.
862       return true;
863     }
864     return
865         allocator_type != kAllocatorTypeBumpPointer &&
866         allocator_type != kAllocatorTypeTLAB;
867   }
IsMovingGc(CollectorType collector_type)868   static bool IsMovingGc(CollectorType collector_type) {
869     return
870         collector_type == kCollectorTypeSS ||
871         collector_type == kCollectorTypeGSS ||
872         collector_type == kCollectorTypeCC ||
873         collector_type == kCollectorTypeCCBackground ||
874         collector_type == kCollectorTypeMC ||
875         collector_type == kCollectorTypeHomogeneousSpaceCompact;
876   }
877   bool ShouldAllocLargeObject(ObjPtr<mirror::Class> c, size_t byte_count) const
878       REQUIRES_SHARED(Locks::mutator_lock_);
879   ALWAYS_INLINE void CheckConcurrentGC(Thread* self,
880                                        size_t new_num_bytes_allocated,
881                                        ObjPtr<mirror::Object>* obj)
882       REQUIRES_SHARED(Locks::mutator_lock_)
883       REQUIRES(!*pending_task_lock_, !*gc_complete_lock_);
884 
GetMarkStack()885   accounting::ObjectStack* GetMarkStack() {
886     return mark_stack_.get();
887   }
888 
889   // We don't force this to be inlined since it is a slow path.
890   template <bool kInstrumented, typename PreFenceVisitor>
891   mirror::Object* AllocLargeObject(Thread* self,
892                                    ObjPtr<mirror::Class>* klass,
893                                    size_t byte_count,
894                                    const PreFenceVisitor& pre_fence_visitor)
895       REQUIRES_SHARED(Locks::mutator_lock_)
896       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !*backtrace_lock_);
897 
898   // Handles Allocate()'s slow allocation path with GC involved after
899   // an initial allocation attempt failed.
900   mirror::Object* AllocateInternalWithGc(Thread* self,
901                                          AllocatorType allocator,
902                                          bool instrumented,
903                                          size_t num_bytes,
904                                          size_t* bytes_allocated,
905                                          size_t* usable_size,
906                                          size_t* bytes_tl_bulk_allocated,
907                                          ObjPtr<mirror::Class>* klass)
908       REQUIRES(!Locks::thread_suspend_count_lock_, !*gc_complete_lock_, !*pending_task_lock_)
909       REQUIRES_SHARED(Locks::mutator_lock_);
910 
911   // Allocate into a specific space.
912   mirror::Object* AllocateInto(Thread* self,
913                                space::AllocSpace* space,
914                                ObjPtr<mirror::Class> c,
915                                size_t bytes)
916       REQUIRES_SHARED(Locks::mutator_lock_);
917 
918   // Need to do this with mutators paused so that somebody doesn't accidentally allocate into the
919   // wrong space.
920   void SwapSemiSpaces() REQUIRES(Locks::mutator_lock_);
921 
922   // Try to allocate a number of bytes, this function never does any GCs. Needs to be inlined so
923   // that the switch statement is constant optimized in the entrypoints.
924   template <const bool kInstrumented, const bool kGrow>
925   ALWAYS_INLINE mirror::Object* TryToAllocate(Thread* self,
926                                               AllocatorType allocator_type,
927                                               size_t alloc_size,
928                                               size_t* bytes_allocated,
929                                               size_t* usable_size,
930                                               size_t* bytes_tl_bulk_allocated)
931       REQUIRES_SHARED(Locks::mutator_lock_);
932 
933   mirror::Object* AllocWithNewTLAB(Thread* self,
934                                    size_t alloc_size,
935                                    bool grow,
936                                    size_t* bytes_allocated,
937                                    size_t* usable_size,
938                                    size_t* bytes_tl_bulk_allocated)
939       REQUIRES_SHARED(Locks::mutator_lock_);
940 
941   void ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type)
942       REQUIRES_SHARED(Locks::mutator_lock_);
943 
944   ALWAYS_INLINE bool IsOutOfMemoryOnAllocation(AllocatorType allocator_type,
945                                                size_t alloc_size,
946                                                bool grow);
947 
948   // Run the finalizers. If timeout is non zero, then we use the VMRuntime version.
949   void RunFinalization(JNIEnv* env, uint64_t timeout);
950 
951   // Blocks the caller until the garbage collector becomes idle and returns the type of GC we
952   // waited for.
953   collector::GcType WaitForGcToCompleteLocked(GcCause cause, Thread* self)
954       REQUIRES(gc_complete_lock_);
955 
956   void RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time)
957       REQUIRES(!*pending_task_lock_);
958 
959   void RequestConcurrentGCAndSaveObject(Thread* self, bool force_full, ObjPtr<mirror::Object>* obj)
960       REQUIRES_SHARED(Locks::mutator_lock_)
961       REQUIRES(!*pending_task_lock_);
962   bool IsGCRequestPending() const;
963 
964   // Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns
965   // which type of Gc was actually ran.
966   collector::GcType CollectGarbageInternal(collector::GcType gc_plan,
967                                            GcCause gc_cause,
968                                            bool clear_soft_references)
969       REQUIRES(!*gc_complete_lock_, !Locks::heap_bitmap_lock_, !Locks::thread_suspend_count_lock_,
970                !*pending_task_lock_);
971 
972   void PreGcVerification(collector::GarbageCollector* gc)
973       REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_);
974   void PreGcVerificationPaused(collector::GarbageCollector* gc)
975       REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
976   void PrePauseRosAllocVerification(collector::GarbageCollector* gc)
977       REQUIRES(Locks::mutator_lock_);
978   void PreSweepingGcVerification(collector::GarbageCollector* gc)
979       REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
980   void PostGcVerification(collector::GarbageCollector* gc)
981       REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_);
982   void PostGcVerificationPaused(collector::GarbageCollector* gc)
983       REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
984 
985   // Find a collector based on GC type.
986   collector::GarbageCollector* FindCollectorByGcType(collector::GcType gc_type);
987 
988   // Create the main free list malloc space, either a RosAlloc space or DlMalloc space.
989   void CreateMainMallocSpace(MemMap* mem_map,
990                              size_t initial_size,
991                              size_t growth_limit,
992                              size_t capacity);
993 
994   // Create a malloc space based on a mem map. Does not set the space as default.
995   space::MallocSpace* CreateMallocSpaceFromMemMap(MemMap* mem_map,
996                                                   size_t initial_size,
997                                                   size_t growth_limit,
998                                                   size_t capacity,
999                                                   const char* name,
1000                                                   bool can_move_objects);
1001 
1002   // Given the current contents of the alloc space, increase the allowed heap footprint to match
1003   // the target utilization ratio.  This should only be called immediately after a full garbage
1004   // collection. bytes_allocated_before_gc is used to measure bytes / second for the period which
1005   // the GC was run.
1006   void GrowForUtilization(collector::GarbageCollector* collector_ran,
1007                           uint64_t bytes_allocated_before_gc = 0);
1008 
1009   size_t GetPercentFree();
1010 
1011   static void VerificationCallback(mirror::Object* obj, void* arg)
1012       REQUIRES_SHARED(Locks::heap_bitmap_lock_);
1013 
1014   // Swap the allocation stack with the live stack.
1015   void SwapStacks() REQUIRES_SHARED(Locks::mutator_lock_);
1016 
1017   // Clear cards and update the mod union table. When process_alloc_space_cards is true,
1018   // if clear_alloc_space_cards is true, then we clear cards instead of ageing them. We do
1019   // not process the alloc space if process_alloc_space_cards is false.
1020   void ProcessCards(TimingLogger* timings,
1021                     bool use_rem_sets,
1022                     bool process_alloc_space_cards,
1023                     bool clear_alloc_space_cards)
1024       REQUIRES_SHARED(Locks::mutator_lock_);
1025 
1026   // Push an object onto the allocation stack.
1027   void PushOnAllocationStack(Thread* self, ObjPtr<mirror::Object>* obj)
1028       REQUIRES_SHARED(Locks::mutator_lock_)
1029       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
1030   void PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj)
1031       REQUIRES_SHARED(Locks::mutator_lock_)
1032       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
1033   void PushOnThreadLocalAllocationStackWithInternalGC(Thread* thread, ObjPtr<mirror::Object>* obj)
1034       REQUIRES_SHARED(Locks::mutator_lock_)
1035       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
1036 
1037   void ClearConcurrentGCRequest();
1038   void ClearPendingTrim(Thread* self) REQUIRES(!*pending_task_lock_);
1039   void ClearPendingCollectorTransition(Thread* self) REQUIRES(!*pending_task_lock_);
1040 
1041   // What kind of concurrency behavior is the runtime after? Currently true for concurrent mark
1042   // sweep GC, false for other GC types.
IsGcConcurrent()1043   bool IsGcConcurrent() const ALWAYS_INLINE {
1044     return collector_type_ == kCollectorTypeCMS ||
1045         collector_type_ == kCollectorTypeCC ||
1046         collector_type_ == kCollectorTypeCCBackground;
1047   }
1048 
1049   // Trim the managed and native spaces by releasing unused memory back to the OS.
1050   void TrimSpaces(Thread* self) REQUIRES(!*gc_complete_lock_);
1051 
1052   // Trim 0 pages at the end of reference tables.
1053   void TrimIndirectReferenceTables(Thread* self);
1054 
1055   void VisitObjectsInternal(ObjectCallback callback, void* arg)
1056       REQUIRES_SHARED(Locks::mutator_lock_)
1057       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_);
1058   void VisitObjectsInternalRegionSpace(ObjectCallback callback, void* arg)
1059       REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
1060 
1061   void UpdateGcCountRateHistograms() REQUIRES(gc_complete_lock_);
1062 
1063   // GC stress mode attempts to do one GC per unique backtrace.
1064   void CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj)
1065       REQUIRES_SHARED(Locks::mutator_lock_)
1066       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !*backtrace_lock_);
1067 
NonStickyGcType()1068   collector::GcType NonStickyGcType() const {
1069     return HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
1070   }
1071 
1072   // How large new_native_bytes_allocated_ can grow before we trigger a new
1073   // GC.
NativeAllocationGcWatermark()1074   ALWAYS_INLINE size_t NativeAllocationGcWatermark() const {
1075     // Reuse max_free_ for the native allocation gc watermark, so that the
1076     // native heap is treated in the same way as the Java heap in the case
1077     // where the gc watermark update would exceed max_free_. Using max_free_
1078     // instead of the target utilization means the watermark doesn't depend on
1079     // the current number of registered native allocations.
1080     return max_free_;
1081   }
1082 
1083   // How large new_native_bytes_allocated_ can grow while GC is in progress
1084   // before we block the allocating thread to allow GC to catch up.
NativeAllocationBlockingGcWatermark()1085   ALWAYS_INLINE size_t NativeAllocationBlockingGcWatermark() const {
1086     // Historically the native allocations were bounded by growth_limit_. This
1087     // uses that same value, dividing growth_limit_ by 2 to account for
1088     // the fact that now the bound is relative to the number of retained
1089     // registered native allocations rather than absolute.
1090     return growth_limit_ / 2;
1091   }
1092 
1093   // All-known continuous spaces, where objects lie within fixed bounds.
1094   std::vector<space::ContinuousSpace*> continuous_spaces_ GUARDED_BY(Locks::mutator_lock_);
1095 
1096   // All-known discontinuous spaces, where objects may be placed throughout virtual memory.
1097   std::vector<space::DiscontinuousSpace*> discontinuous_spaces_ GUARDED_BY(Locks::mutator_lock_);
1098 
1099   // All-known alloc spaces, where objects may be or have been allocated.
1100   std::vector<space::AllocSpace*> alloc_spaces_;
1101 
1102   // A space where non-movable objects are allocated, when compaction is enabled it contains
1103   // Classes, ArtMethods, ArtFields, and non moving objects.
1104   space::MallocSpace* non_moving_space_;
1105 
1106   // Space which we use for the kAllocatorTypeROSAlloc.
1107   space::RosAllocSpace* rosalloc_space_;
1108 
1109   // Space which we use for the kAllocatorTypeDlMalloc.
1110   space::DlMallocSpace* dlmalloc_space_;
1111 
1112   // The main space is the space which the GC copies to and from on process state updates. This
1113   // space is typically either the dlmalloc_space_ or the rosalloc_space_.
1114   space::MallocSpace* main_space_;
1115 
1116   // The large object space we are currently allocating into.
1117   space::LargeObjectSpace* large_object_space_;
1118 
1119   // The card table, dirtied by the write barrier.
1120   std::unique_ptr<accounting::CardTable> card_table_;
1121 
1122   std::unique_ptr<accounting::ReadBarrierTable> rb_table_;
1123 
1124   // A mod-union table remembers all of the references from the it's space to other spaces.
1125   AllocationTrackingSafeMap<space::Space*, accounting::ModUnionTable*, kAllocatorTagHeap>
1126       mod_union_tables_;
1127 
1128   // A remembered set remembers all of the references from the it's space to the target space.
1129   AllocationTrackingSafeMap<space::Space*, accounting::RememberedSet*, kAllocatorTagHeap>
1130       remembered_sets_;
1131 
1132   // The current collector type.
1133   CollectorType collector_type_;
1134   // Which collector we use when the app is in the foreground.
1135   CollectorType foreground_collector_type_;
1136   // Which collector we will use when the app is notified of a transition to background.
1137   CollectorType background_collector_type_;
1138   // Desired collector type, heap trimming daemon transitions the heap if it is != collector_type_.
1139   CollectorType desired_collector_type_;
1140 
1141   // Lock which guards pending tasks.
1142   Mutex* pending_task_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
1143 
1144   // How many GC threads we may use for paused parts of garbage collection.
1145   const size_t parallel_gc_threads_;
1146 
1147   // How many GC threads we may use for unpaused parts of garbage collection.
1148   const size_t conc_gc_threads_;
1149 
1150   // Boolean for if we are in low memory mode.
1151   const bool low_memory_mode_;
1152 
1153   // If we get a pause longer than long pause log threshold, then we print out the GC after it
1154   // finishes.
1155   const size_t long_pause_log_threshold_;
1156 
1157   // If we get a GC longer than long GC log threshold, then we print out the GC after it finishes.
1158   const size_t long_gc_log_threshold_;
1159 
1160   // If we ignore the max footprint it lets the heap grow until it hits the heap capacity, this is
1161   // useful for benchmarking since it reduces time spent in GC to a low %.
1162   const bool ignore_max_footprint_;
1163 
1164   // Lock which guards zygote space creation.
1165   Mutex zygote_creation_lock_;
1166 
1167   // Non-null iff we have a zygote space. Doesn't contain the large objects allocated before
1168   // zygote space creation.
1169   space::ZygoteSpace* zygote_space_;
1170 
1171   // Minimum allocation size of large object.
1172   size_t large_object_threshold_;
1173 
1174   // Guards access to the state of GC, associated conditional variable is used to signal when a GC
1175   // completes.
1176   Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
1177   std::unique_ptr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_);
1178 
1179   // Used to synchronize between JNI critical calls and the thread flip of the CC collector.
1180   Mutex* thread_flip_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
1181   std::unique_ptr<ConditionVariable> thread_flip_cond_ GUARDED_BY(thread_flip_lock_);
1182   // This counter keeps track of how many threads are currently in a JNI critical section. This is
1183   // incremented once per thread even with nested enters.
1184   size_t disable_thread_flip_count_ GUARDED_BY(thread_flip_lock_);
1185   bool thread_flip_running_ GUARDED_BY(thread_flip_lock_);
1186 
1187   // Reference processor;
1188   std::unique_ptr<ReferenceProcessor> reference_processor_;
1189 
1190   // Task processor, proxies heap trim requests to the daemon threads.
1191   std::unique_ptr<TaskProcessor> task_processor_;
1192 
1193   // True while the garbage collector is running.
1194   volatile CollectorType collector_type_running_ GUARDED_BY(gc_complete_lock_);
1195 
1196   // The thread currently running the GC.
1197   volatile Thread* thread_running_gc_ GUARDED_BY(gc_complete_lock_);
1198 
1199   // Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on.
1200   volatile collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_);
1201   collector::GcType next_gc_type_;
1202 
1203   // Maximum size that the heap can reach.
1204   size_t capacity_;
1205 
1206   // The size the heap is limited to. This is initially smaller than capacity, but for largeHeap
1207   // programs it is "cleared" making it the same as capacity.
1208   size_t growth_limit_;
1209 
1210   // When the number of bytes allocated exceeds the footprint TryAllocate returns null indicating
1211   // a GC should be triggered.
1212   size_t max_allowed_footprint_;
1213 
1214   // When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that
1215   // it completes ahead of an allocation failing.
1216   size_t concurrent_start_bytes_;
1217 
1218   // Since the heap was created, how many bytes have been freed.
1219   uint64_t total_bytes_freed_ever_;
1220 
1221   // Since the heap was created, how many objects have been freed.
1222   uint64_t total_objects_freed_ever_;
1223 
1224   // Number of bytes allocated.  Adjusted after each allocation and free.
1225   Atomic<size_t> num_bytes_allocated_;
1226 
1227   // Number of registered native bytes allocated since the last time GC was
1228   // triggered. Adjusted after each RegisterNativeAllocation and
1229   // RegisterNativeFree. Used to determine when to trigger GC for native
1230   // allocations.
1231   // See the REDESIGN section of go/understanding-register-native-allocation.
1232   Atomic<size_t> new_native_bytes_allocated_;
1233 
1234   // Number of registered native bytes allocated prior to the last time GC was
1235   // triggered, for debugging purposes. The current number of registered
1236   // native bytes is determined by taking the sum of
1237   // old_native_bytes_allocated_ and new_native_bytes_allocated_.
1238   Atomic<size_t> old_native_bytes_allocated_;
1239 
1240   // Used for synchronization of blocking GCs triggered by
1241   // RegisterNativeAllocation.
1242   Mutex* native_blocking_gc_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
1243   std::unique_ptr<ConditionVariable> native_blocking_gc_cond_ GUARDED_BY(native_blocking_gc_lock_);
1244   bool native_blocking_gc_in_progress_ GUARDED_BY(native_blocking_gc_lock_);
1245   uint32_t native_blocking_gcs_finished_ GUARDED_BY(native_blocking_gc_lock_);
1246 
1247   // Number of bytes freed by thread local buffer revokes. This will
1248   // cancel out the ahead-of-time bulk counting of bytes allocated in
1249   // rosalloc thread-local buffers.  It is temporarily accumulated
1250   // here to be subtracted from num_bytes_allocated_ later at the next
1251   // GC.
1252   Atomic<size_t> num_bytes_freed_revoke_;
1253 
1254   // Info related to the current or previous GC iteration.
1255   collector::Iteration current_gc_iteration_;
1256 
1257   // Heap verification flags.
1258   const bool verify_missing_card_marks_;
1259   const bool verify_system_weaks_;
1260   const bool verify_pre_gc_heap_;
1261   const bool verify_pre_sweeping_heap_;
1262   const bool verify_post_gc_heap_;
1263   const bool verify_mod_union_table_;
1264   bool verify_pre_gc_rosalloc_;
1265   bool verify_pre_sweeping_rosalloc_;
1266   bool verify_post_gc_rosalloc_;
1267   const bool gc_stress_mode_;
1268 
1269   // RAII that temporarily disables the rosalloc verification during
1270   // the zygote fork.
1271   class ScopedDisableRosAllocVerification {
1272    private:
1273     Heap* const heap_;
1274     const bool orig_verify_pre_gc_;
1275     const bool orig_verify_pre_sweeping_;
1276     const bool orig_verify_post_gc_;
1277 
1278    public:
ScopedDisableRosAllocVerification(Heap * heap)1279     explicit ScopedDisableRosAllocVerification(Heap* heap)
1280         : heap_(heap),
1281           orig_verify_pre_gc_(heap_->verify_pre_gc_rosalloc_),
1282           orig_verify_pre_sweeping_(heap_->verify_pre_sweeping_rosalloc_),
1283           orig_verify_post_gc_(heap_->verify_post_gc_rosalloc_) {
1284       heap_->verify_pre_gc_rosalloc_ = false;
1285       heap_->verify_pre_sweeping_rosalloc_ = false;
1286       heap_->verify_post_gc_rosalloc_ = false;
1287     }
~ScopedDisableRosAllocVerification()1288     ~ScopedDisableRosAllocVerification() {
1289       heap_->verify_pre_gc_rosalloc_ = orig_verify_pre_gc_;
1290       heap_->verify_pre_sweeping_rosalloc_ = orig_verify_pre_sweeping_;
1291       heap_->verify_post_gc_rosalloc_ = orig_verify_post_gc_;
1292     }
1293   };
1294 
1295   // Parallel GC data structures.
1296   std::unique_ptr<ThreadPool> thread_pool_;
1297 
1298   // Estimated allocation rate (bytes / second). Computed between the time of the last GC cycle
1299   // and the start of the current one.
1300   uint64_t allocation_rate_;
1301 
1302   // For a GC cycle, a bitmap that is set corresponding to the
1303   std::unique_ptr<accounting::HeapBitmap> live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
1304   std::unique_ptr<accounting::HeapBitmap> mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
1305 
1306   // Mark stack that we reuse to avoid re-allocating the mark stack.
1307   std::unique_ptr<accounting::ObjectStack> mark_stack_;
1308 
1309   // Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us
1310   // to use the live bitmap as the old mark bitmap.
1311   const size_t max_allocation_stack_size_;
1312   std::unique_ptr<accounting::ObjectStack> allocation_stack_;
1313 
1314   // Second allocation stack so that we can process allocation with the heap unlocked.
1315   std::unique_ptr<accounting::ObjectStack> live_stack_;
1316 
1317   // Allocator type.
1318   AllocatorType current_allocator_;
1319   const AllocatorType current_non_moving_allocator_;
1320 
1321   // Which GCs we run in order when we an allocation fails.
1322   std::vector<collector::GcType> gc_plan_;
1323 
1324   // Bump pointer spaces.
1325   space::BumpPointerSpace* bump_pointer_space_;
1326   // Temp space is the space which the semispace collector copies to.
1327   space::BumpPointerSpace* temp_space_;
1328 
1329   space::RegionSpace* region_space_;
1330 
1331   // Minimum free guarantees that you always have at least min_free_ free bytes after growing for
1332   // utilization, regardless of target utilization ratio.
1333   size_t min_free_;
1334 
1335   // The ideal maximum free size, when we grow the heap for utilization.
1336   size_t max_free_;
1337 
1338   // Target ideal heap utilization ratio
1339   double target_utilization_;
1340 
1341   // How much more we grow the heap when we are a foreground app instead of background.
1342   double foreground_heap_growth_multiplier_;
1343 
1344   // Total time which mutators are paused or waiting for GC to complete.
1345   uint64_t total_wait_time_;
1346 
1347   // The current state of heap verification, may be enabled or disabled.
1348   VerifyObjectMode verify_object_mode_;
1349 
1350   // Compacting GC disable count, prevents compacting GC from running iff > 0.
1351   size_t disable_moving_gc_count_ GUARDED_BY(gc_complete_lock_);
1352 
1353   std::vector<collector::GarbageCollector*> garbage_collectors_;
1354   collector::SemiSpace* semi_space_collector_;
1355   collector::MarkCompact* mark_compact_collector_;
1356   collector::ConcurrentCopying* concurrent_copying_collector_;
1357 
1358   const bool is_running_on_memory_tool_;
1359   const bool use_tlab_;
1360 
1361   // Pointer to the space which becomes the new main space when we do homogeneous space compaction.
1362   // Use unique_ptr since the space is only added during the homogeneous compaction phase.
1363   std::unique_ptr<space::MallocSpace> main_space_backup_;
1364 
1365   // Minimal interval allowed between two homogeneous space compactions caused by OOM.
1366   uint64_t min_interval_homogeneous_space_compaction_by_oom_;
1367 
1368   // Times of the last homogeneous space compaction caused by OOM.
1369   uint64_t last_time_homogeneous_space_compaction_by_oom_;
1370 
1371   // Saved OOMs by homogeneous space compaction.
1372   Atomic<size_t> count_delayed_oom_;
1373 
1374   // Count for requested homogeneous space compaction.
1375   Atomic<size_t> count_requested_homogeneous_space_compaction_;
1376 
1377   // Count for ignored homogeneous space compaction.
1378   Atomic<size_t> count_ignored_homogeneous_space_compaction_;
1379 
1380   // Count for performed homogeneous space compaction.
1381   Atomic<size_t> count_performed_homogeneous_space_compaction_;
1382 
1383   // Whether or not a concurrent GC is pending.
1384   Atomic<bool> concurrent_gc_pending_;
1385 
1386   // Active tasks which we can modify (change target time, desired collector type, etc..).
1387   CollectorTransitionTask* pending_collector_transition_ GUARDED_BY(pending_task_lock_);
1388   HeapTrimTask* pending_heap_trim_ GUARDED_BY(pending_task_lock_);
1389 
1390   // Whether or not we use homogeneous space compaction to avoid OOM errors.
1391   bool use_homogeneous_space_compaction_for_oom_;
1392 
1393   // True if the currently running collection has made some thread wait.
1394   bool running_collection_is_blocking_ GUARDED_BY(gc_complete_lock_);
1395   // The number of blocking GC runs.
1396   uint64_t blocking_gc_count_;
1397   // The total duration of blocking GC runs.
1398   uint64_t blocking_gc_time_;
1399   // The duration of the window for the GC count rate histograms.
1400   static constexpr uint64_t kGcCountRateHistogramWindowDuration = MsToNs(10 * 1000);  // 10s.
1401   // The last time when the GC count rate histograms were updated.
1402   // This is rounded by kGcCountRateHistogramWindowDuration (a multiple of 10s).
1403   uint64_t last_update_time_gc_count_rate_histograms_;
1404   // The running count of GC runs in the last window.
1405   uint64_t gc_count_last_window_;
1406   // The running count of blocking GC runs in the last window.
1407   uint64_t blocking_gc_count_last_window_;
1408   // The maximum number of buckets in the GC count rate histograms.
1409   static constexpr size_t kGcCountRateMaxBucketCount = 200;
1410   // The histogram of the number of GC invocations per window duration.
1411   Histogram<uint64_t> gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_);
1412   // The histogram of the number of blocking GC invocations per window duration.
1413   Histogram<uint64_t> blocking_gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_);
1414 
1415   // Allocation tracking support
1416   Atomic<bool> alloc_tracking_enabled_;
1417   std::unique_ptr<AllocRecordObjectMap> allocation_records_;
1418 
1419   // GC stress related data structures.
1420   Mutex* backtrace_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
1421   // Debugging variables, seen backtraces vs unique backtraces.
1422   Atomic<uint64_t> seen_backtrace_count_;
1423   Atomic<uint64_t> unique_backtrace_count_;
1424   // Stack trace hashes that we already saw,
1425   std::unordered_set<uint64_t> seen_backtraces_ GUARDED_BY(backtrace_lock_);
1426 
1427   // We disable GC when we are shutting down the runtime in case there are daemon threads still
1428   // allocating.
1429   bool gc_disabled_for_shutdown_ GUARDED_BY(gc_complete_lock_);
1430 
1431   // Boot image spaces.
1432   std::vector<space::ImageSpace*> boot_image_spaces_;
1433 
1434   // An installed allocation listener.
1435   Atomic<AllocationListener*> alloc_listener_;
1436   // An installed GC Pause listener.
1437   Atomic<GcPauseListener*> gc_pause_listener_;
1438 
1439   std::unique_ptr<Verification> verification_;
1440 
1441   friend class CollectorTransitionTask;
1442   friend class collector::GarbageCollector;
1443   friend class collector::MarkCompact;
1444   friend class collector::ConcurrentCopying;
1445   friend class collector::MarkSweep;
1446   friend class collector::SemiSpace;
1447   friend class ReferenceQueue;
1448   friend class ScopedGCCriticalSection;
1449   friend class VerifyReferenceCardVisitor;
1450   friend class VerifyReferenceVisitor;
1451   friend class VerifyObjectVisitor;
1452 
1453   DISALLOW_IMPLICIT_CONSTRUCTORS(Heap);
1454 };
1455 
1456 }  // namespace gc
1457 }  // namespace art
1458 
1459 #endif  // ART_RUNTIME_GC_HEAP_H_
1460