1 /*
2  * The copyright in this software is being made available under the 2-clauses
3  * BSD License, included below. This software may be subject to other third
4  * party and contributor rights, including patent rights, and no such rights
5  * are granted under this license.
6  *
7  * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
8  * Copyright (c) 2002-2014, Professor Benoit Macq
9  * Copyright (c) 2001-2003, David Janssens
10  * Copyright (c) 2002-2003, Yannick Verschueren
11  * Copyright (c) 2003-2007, Francois-Olivier Devaux
12  * Copyright (c) 2003-2014, Antonin Descampe
13  * Copyright (c) 2005, Herve Drolon, FreeImage Team
14  * Copyright (c) 2007, Jonathan Ballard <dzonatas@dzonux.net>
15  * Copyright (c) 2007, Callum Lerwick <seg@haxxed.com>
16  * All rights reserved.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
28  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
31  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 #ifdef __SSE__
41 #include <xmmintrin.h>
42 #endif
43 
44 #include "opj_includes.h"
45 
46 /** @defgroup DWT DWT - Implementation of a discrete wavelet transform */
47 /*@{*/
48 
49 /** @name Local data structures */
50 /*@{*/
51 
52 typedef struct dwt_local {
53 	OPJ_INT32* mem;
54 	OPJ_SIZE_T mem_count;
55 	OPJ_INT32 dn;
56 	OPJ_INT32 sn;
57 	OPJ_INT32 cas;
58 } opj_dwt_t;
59 
60 typedef union {
61 	OPJ_FLOAT32	f[4];
62 } opj_v4_t;
63 
64 typedef struct v4dwt_local {
65 	opj_v4_t*	wavelet ;
66 	OPJ_INT32		dn ;
67 	OPJ_INT32		sn ;
68 	OPJ_INT32		cas ;
69 } opj_v4dwt_t ;
70 
71 static const OPJ_FLOAT32 opj_dwt_alpha =  1.586134342f; /*  12994 */
72 static const OPJ_FLOAT32 opj_dwt_beta  =  0.052980118f; /*    434 */
73 static const OPJ_FLOAT32 opj_dwt_gamma = -0.882911075f; /*  -7233 */
74 static const OPJ_FLOAT32 opj_dwt_delta = -0.443506852f; /*  -3633 */
75 
76 static const OPJ_FLOAT32 opj_K      = 1.230174105f; /*  10078 */
77 static const OPJ_FLOAT32 opj_c13318 = 1.625732422f;
78 
79 /*@}*/
80 
81 /**
82 Virtual function type for wavelet transform in 1-D
83 */
84 typedef void (*DWT1DFN)(opj_dwt_t* v);
85 
86 /** @name Local static functions */
87 /*@{*/
88 
89 /**
90 Forward lazy transform (horizontal)
91 */
92 static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
93 /**
94 Forward lazy transform (vertical)
95 */
96 static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas);
97 /**
98 Inverse lazy transform (horizontal)
99 */
100 static void opj_dwt_interleave_h(opj_dwt_t* h, OPJ_INT32 *a);
101 /**
102 Inverse lazy transform (vertical)
103 */
104 static void opj_dwt_interleave_v(opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x);
105 /**
106 Forward 5-3 wavelet transform in 1-D
107 */
108 static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
109 /**
110 Inverse 5-3 wavelet transform in 1-D
111 */
112 static void opj_dwt_decode_1(opj_dwt_t *v);
113 static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
114 /**
115 Forward 9-7 wavelet transform in 1-D
116 */
117 static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
118 /**
119 Explicit calculation of the Quantization Stepsizes
120 */
121 static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, opj_stepsize_t *bandno_stepsize);
122 /**
123 Inverse wavelet transform in 2-D.
124 */
125 static OPJ_BOOL opj_dwt_decode_tile(const opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i, DWT1DFN fn);
126 
127 static OPJ_BOOL opj_dwt_encode_procedure(const opj_tcd_tilecomp_t * tilec,
128 										    void(*p_function)(OPJ_INT32 *, OPJ_SIZE_T, OPJ_INT32, OPJ_INT32, OPJ_INT32));
129 
130 static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* restrict r, OPJ_UINT32 i);
131 
132 /* <summary>                             */
133 /* Inverse 9-7 wavelet transform in 1-D. */
134 /* </summary>                            */
135 static void opj_v4dwt_decode(opj_v4dwt_t* restrict dwt);
136 
137 static void opj_v4dwt_interleave_h(opj_v4dwt_t* restrict w, OPJ_FLOAT32* restrict a, OPJ_INT32 x, OPJ_INT32 size);
138 
139 static void opj_v4dwt_interleave_v(opj_v4dwt_t* restrict v , OPJ_FLOAT32* restrict a , OPJ_INT32 x, OPJ_INT32 nb_elts_read);
140 
141 #ifdef __SSE__
142 static void opj_v4dwt_decode_step1_sse(opj_v4_t* w, OPJ_INT32 count, const __m128 c);
143 
144 static void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, __m128 c);
145 
146 #else
147 static void opj_v4dwt_decode_step1(opj_v4_t* w, OPJ_INT32 count, const OPJ_FLOAT32 c);
148 
149 static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, OPJ_FLOAT32 c);
150 
151 #endif
152 
153 /*@}*/
154 
155 /*@}*/
156 
157 #define IDX_S(i) (i)*2
158 #define IDX_D(i) 1 + (i)* 2
159 #define UNDERFLOW_SN(i) ((i) >= sn&&sn>0)
160 #define UNDERFLOW_DN(i) ((i) >= dn&&dn>0)
161 #define OVERFLOW_S(i) (IDX_S(i) >= a_count)
162 #define OVERFLOW_D(i) (IDX_D(i) >= a_count)
163 
164 #define OPJ_S(i) a[IDX_S(i)]
165 #define OPJ_D(i) a[IDX_D(i)]
166 #define OPJ_S_(i) ((i)<0 ? OPJ_S(0) : (UNDERFLOW_SN(i) ? OPJ_S(sn - 1) : OVERFLOW_S(i) ? OPJ_S(i - 1) : OPJ_S(i)))
167 #define OPJ_D_(i) ((i)<0 ? OPJ_D(0) : (UNDERFLOW_DN(i) ? OPJ_D(dn - 1) : OVERFLOW_D(i) ? OPJ_D(i - 1) : OPJ_D(i)))
168 /* new */
169 #define OPJ_SS_(i) ((i)<0 ? OPJ_S(0) : (UNDERFLOW_DN(i) ? OPJ_S(dn - 1) : OVERFLOW_S(i) ? OPJ_S(i - 1) : OPJ_S(i)))
170 #define OPJ_DD_(i) ((i)<0 ? OPJ_D(0) : (UNDERFLOW_SN(i) ? OPJ_D(sn - 1) : OVERFLOW_D(i) ? OPJ_D(i - 1) : OPJ_D(i)))
171 
172 /* <summary>                                                              */
173 /* This table contains the norms of the 5-3 wavelets for different bands. */
174 /* </summary>                                                             */
175 static const OPJ_FLOAT64 opj_dwt_norms[4][10] = {
176 	{1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3},
177 	{1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
178 	{1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
179 	{.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93}
180 };
181 
182 /* <summary>                                                              */
183 /* This table contains the norms of the 9-7 wavelets for different bands. */
184 /* </summary>                                                             */
185 static const OPJ_FLOAT64 opj_dwt_norms_real[4][10] = {
186 	{1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9},
187 	{2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
188 	{2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
189 	{2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2}
190 };
191 
192 /*
193 ==========================================================
194    local functions
195 ==========================================================
196 */
197 
198 /* <summary>			                 */
199 /* Forward lazy transform (horizontal).  */
200 /* </summary>                            */
opj_dwt_deinterleave_h(OPJ_INT32 * a,OPJ_INT32 * b,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 cas)201 static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
202 	OPJ_INT32 i;
203 	OPJ_INT32 * l_dest = b;
204 	OPJ_INT32 * l_src = a+cas;
205 
206     for (i=0; i<sn; ++i) {
207 		*l_dest++ = *l_src;
208 		l_src += 2;
209 	}
210 
211     l_dest = b + sn;
212 	l_src = a + 1 - cas;
213 
214     for	(i=0; i<dn; ++i)  {
215 		*l_dest++=*l_src;
216 		l_src += 2;
217 	}
218 }
219 
220 /* <summary>                             */
221 /* Forward lazy transform (vertical).    */
222 /* </summary>                            */
opj_dwt_deinterleave_v(OPJ_INT32 * a,OPJ_INT32 * b,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 x,OPJ_INT32 cas)223 static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas) {
224     OPJ_INT32 i = sn;
225 	OPJ_INT32 * l_dest = b;
226 	OPJ_INT32 * l_src = a+cas;
227 
228     while (i--) {
229 		*l_dest = *l_src;
230 		l_dest += x;
231 		l_src += 2;
232 		} /* b[i*x]=a[2*i+cas]; */
233 
234 	l_dest = b + sn * x;
235 	l_src = a + 1 - cas;
236 
237 	i = dn;
238     while (i--) {
239 		*l_dest = *l_src;
240 		l_dest += x;
241 		l_src += 2;
242         } /*b[(sn+i)*x]=a[(2*i+1-cas)];*/
243 }
244 
245 /* <summary>                             */
246 /* Inverse lazy transform (horizontal).  */
247 /* </summary>                            */
opj_dwt_interleave_h(opj_dwt_t * h,OPJ_INT32 * a)248 static void opj_dwt_interleave_h(opj_dwt_t* h, OPJ_INT32 *a) {
249     OPJ_INT32 *ai = a;
250     OPJ_INT32 *bi = h->mem + h->cas;
251     OPJ_INT32  i	= h->sn;
252     while( i-- ) {
253       *bi = *(ai++);
254 	  bi += 2;
255     }
256     ai	= a + h->sn;
257     bi	= h->mem + 1 - h->cas;
258     i	= h->dn ;
259     while( i-- ) {
260       *bi = *(ai++);
261 	  bi += 2;
262     }
263 }
264 
265 /* <summary>                             */
266 /* Inverse lazy transform (vertical).    */
267 /* </summary>                            */
opj_dwt_interleave_v(opj_dwt_t * v,OPJ_INT32 * a,OPJ_INT32 x)268 static void opj_dwt_interleave_v(opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x) {
269     OPJ_INT32 *ai = a;
270     OPJ_INT32 *bi = v->mem + v->cas;
271     OPJ_INT32  i = v->sn;
272     while( i-- ) {
273       *bi = *ai;
274 	  bi += 2;
275 	  ai += x;
276     }
277     ai = a + (v->sn * x);
278     bi = v->mem + 1 - v->cas;
279     i = v->dn ;
280     while( i-- ) {
281       *bi = *ai;
282 	  bi += 2;
283 	  ai += x;
284     }
285 }
286 
287 
288 /* <summary>                            */
289 /* Forward 5-3 wavelet transform in 1-D. */
290 /* </summary>                           */
opj_dwt_encode_1(OPJ_INT32 * a,OPJ_SIZE_T a_count,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 cas)291 static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
292 	OPJ_INT32 i;
293 
294 	if (!cas) {
295 		if ((dn > 0) || (sn > 1)) {	/* NEW :  CASE ONE ELEMENT */
296 			for (i = 0; i < dn; i++) OPJ_D(i) -= (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
297 			for (i = 0; i < sn; i++) OPJ_S(i) += (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
298 		}
299 	} else {
300 		if (!sn && dn == 1)		    /* NEW :  CASE ONE ELEMENT */
301 			OPJ_S(0) *= 2;
302 		else {
303 			for (i = 0; i < dn; i++) OPJ_S(i) -= (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
304 			for (i = 0; i < sn; i++) OPJ_D(i) += (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
305 		}
306 	}
307 }
308 
309 /* <summary>                            */
310 /* Inverse 5-3 wavelet transform in 1-D. */
311 /* </summary>                           */
opj_dwt_decode_1_(OPJ_INT32 * a,OPJ_SIZE_T a_count,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 cas)312 static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
313 	OPJ_INT32 i;
314 
315 	if (!cas) {
316 		if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */
317 			for (i = 0; i < sn; i++) OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
318 			for (i = 0; i < dn; i++) OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
319 		}
320 	} else {
321 		if (!sn  && dn == 1)          /* NEW :  CASE ONE ELEMENT */
322 			OPJ_S(0) /= 2;
323 		else {
324 			for (i = 0; i < sn; i++) OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
325 			for (i = 0; i < dn; i++) OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
326 		}
327 	}
328 }
329 
330 /* <summary>                            */
331 /* Inverse 5-3 wavelet transform in 1-D. */
332 /* </summary>                           */
opj_dwt_decode_1(opj_dwt_t * v)333 static void opj_dwt_decode_1(opj_dwt_t *v) {
334 	opj_dwt_decode_1_(v->mem, v->mem_count, v->dn, v->sn, v->cas);
335 }
336 
337 /* <summary>                             */
338 /* Forward 9-7 wavelet transform in 1-D. */
339 /* </summary>                            */
opj_dwt_encode_1_real(OPJ_INT32 * a,OPJ_SIZE_T a_count,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 cas)340 static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
341 	OPJ_INT32 i;
342 	if (!cas) {
343 		if ((dn > 0) || (sn > 1)) {	/* NEW :  CASE ONE ELEMENT */
344 			for (i = 0; i < dn; i++)
345 				OPJ_D(i) -= opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 12993);
346 			for (i = 0; i < sn; i++)
347 				OPJ_S(i) -= opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 434);
348 			for (i = 0; i < dn; i++)
349 				OPJ_D(i) += opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 7233);
350 			for (i = 0; i < sn; i++)
351 				OPJ_S(i) += opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 3633);
352 			for (i = 0; i < dn; i++)
353 				OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 5038);	/*5038 */
354 			for (i = 0; i < sn; i++)
355 				OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 6659);	/*6660 */
356 		}
357 	} else {
358 		if ((sn > 0) || (dn > 1)) {	/* NEW :  CASE ONE ELEMENT */
359 			for (i = 0; i < dn; i++)
360 				OPJ_S(i) -= opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 12993);
361 			for (i = 0; i < sn; i++)
362 				OPJ_D(i) -= opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 434);
363 			for (i = 0; i < dn; i++)
364 				OPJ_S(i) += opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 7233);
365 			for (i = 0; i < sn; i++)
366 				OPJ_D(i) += opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 3633);
367 			for (i = 0; i < dn; i++)
368 				OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 5038);	/*5038 */
369 			for (i = 0; i < sn; i++)
370 				OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 6659);	/*6660 */
371 		}
372 	}
373 }
374 
opj_dwt_encode_stepsize(OPJ_INT32 stepsize,OPJ_INT32 numbps,opj_stepsize_t * bandno_stepsize)375 static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, opj_stepsize_t *bandno_stepsize) {
376 	OPJ_INT32 p, n;
377 	p = opj_int_floorlog2(stepsize) - 13;
378 	n = 11 - opj_int_floorlog2(stepsize);
379 	bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff;
380 	bandno_stepsize->expn = numbps - p;
381 }
382 
383 /*
384 ==========================================================
385    DWT interface
386 ==========================================================
387 */
388 
389 
390 /* <summary>                            */
391 /* Forward 5-3 wavelet transform in 2-D. */
392 /* </summary>                           */
opj_dwt_encode_procedure(const opj_tcd_tilecomp_t * tilec,void (* p_function)(OPJ_INT32 *,OPJ_SIZE_T,OPJ_INT32,OPJ_INT32,OPJ_INT32))393 static INLINE OPJ_BOOL opj_dwt_encode_procedure(const opj_tcd_tilecomp_t * tilec, void(*p_function)(OPJ_INT32 *, OPJ_SIZE_T, OPJ_INT32, OPJ_INT32, OPJ_INT32))
394 {
395 	OPJ_INT32 i, j, k;
396 	OPJ_INT32 *a = 00;
397 	OPJ_INT32 *aj = 00;
398 	OPJ_INT32 *bj = 00;
399 	OPJ_INT32 w, l;
400 
401 	OPJ_INT32 rw;			/* width of the resolution level computed   */
402 	OPJ_INT32 rh;			/* height of the resolution level computed  */
403 	OPJ_SIZE_T l_data_count;
404 	OPJ_SIZE_T l_data_size;
405 
406 	opj_tcd_resolution_t * l_cur_res = 0;
407 	opj_tcd_resolution_t * l_last_res = 0;
408 
409 	w = tilec->x1-tilec->x0;
410 	l = (OPJ_INT32)tilec->numresolutions-1;
411 	a = tilec->data;
412 
413 	l_cur_res = tilec->resolutions + l;
414 	l_last_res = l_cur_res - 1;
415 
416 	l_data_count = opj_dwt_max_resolution(tilec->resolutions, tilec->numresolutions) * (OPJ_UINT32)sizeof(OPJ_INT32);
417 	l_data_size = l_data_count * (OPJ_UINT32)sizeof(OPJ_INT32);
418 	bj = (OPJ_INT32*)opj_malloc(l_data_size);
419 	if (! bj) {
420 		return OPJ_FALSE;
421 	}
422 	i = l;
423 
424 	while (i--) {
425 		OPJ_INT32 rw1;		/* width of the resolution level once lower than computed one                                       */
426 		OPJ_INT32 rh1;		/* height of the resolution level once lower than computed one                                      */
427 		OPJ_INT32 cas_col;	/* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */
428 		OPJ_INT32 cas_row;	/* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering   */
429 		OPJ_INT32 dn, sn;
430 
431 		rw  = l_cur_res->x1 - l_cur_res->x0;
432 		rh  = l_cur_res->y1 - l_cur_res->y0;
433 		rw1 = l_last_res->x1 - l_last_res->x0;
434 		rh1 = l_last_res->y1 - l_last_res->y0;
435 
436 		cas_row = l_cur_res->x0 & 1;
437 		cas_col = l_cur_res->y0 & 1;
438 
439 		sn = rh1;
440 		dn = rh - rh1;
441 		for (j = 0; j < rw; ++j) {
442 			aj = a + j;
443 			for (k = 0; k < rh; ++k) {
444 				bj[k] = aj[k*w];
445 			}
446 
447 			(*p_function) (bj, l_data_count, dn, sn, cas_col);
448 
449 			opj_dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col);
450 		}
451 
452 		sn = rw1;
453 		dn = rw - rw1;
454 
455 		for (j = 0; j < rh; j++) {
456 			aj = a + j * w;
457 			for (k = 0; k < rw; k++)  bj[k] = aj[k];
458 			(*p_function) (bj, l_data_count, dn, sn, cas_row);
459 			opj_dwt_deinterleave_h(bj, aj, dn, sn, cas_row);
460 		}
461 
462 		l_cur_res = l_last_res;
463 
464 		--l_last_res;
465 	}
466 
467 	opj_free(bj);
468 	return OPJ_TRUE;
469 }
470 
471 /* Forward 5-3 wavelet transform in 2-D. */
472 /* </summary>                           */
opj_dwt_encode(opj_tcd_tilecomp_t * tilec)473 OPJ_BOOL opj_dwt_encode(opj_tcd_tilecomp_t * tilec)
474 {
475 	return opj_dwt_encode_procedure(tilec,opj_dwt_encode_1);
476 }
477 
478 /* <summary>                            */
479 /* Inverse 5-3 wavelet transform in 2-D. */
480 /* </summary>                           */
opj_dwt_decode(opj_tcd_tilecomp_t * tilec,OPJ_UINT32 numres)481 OPJ_BOOL opj_dwt_decode(opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres) {
482 	return opj_dwt_decode_tile(tilec, numres, &opj_dwt_decode_1);
483 }
484 
485 
486 /* <summary>                          */
487 /* Get gain of 5-3 wavelet transform. */
488 /* </summary>                         */
opj_dwt_getgain(OPJ_UINT32 orient)489 OPJ_UINT32 opj_dwt_getgain(OPJ_UINT32 orient) {
490 	if (orient == 0)
491 		return 0;
492 	if (orient == 1 || orient == 2)
493 		return 1;
494 	return 2;
495 }
496 
497 /* <summary>                */
498 /* Get norm of 5-3 wavelet. */
499 /* </summary>               */
opj_dwt_getnorm(OPJ_UINT32 level,OPJ_UINT32 orient)500 OPJ_FLOAT64 opj_dwt_getnorm(OPJ_UINT32 level, OPJ_UINT32 orient) {
501 	return opj_dwt_norms[orient][level];
502 }
503 
504 /* <summary>                             */
505 /* Forward 9-7 wavelet transform in 2-D. */
506 /* </summary>                            */
opj_dwt_encode_real(opj_tcd_tilecomp_t * tilec)507 OPJ_BOOL opj_dwt_encode_real(opj_tcd_tilecomp_t * tilec)
508 {
509 	return opj_dwt_encode_procedure(tilec,opj_dwt_encode_1_real);
510 }
511 
512 /* <summary>                          */
513 /* Get gain of 9-7 wavelet transform. */
514 /* </summary>                         */
opj_dwt_getgain_real(OPJ_UINT32 orient)515 OPJ_UINT32 opj_dwt_getgain_real(OPJ_UINT32 orient) {
516 	(void)orient;
517 	return 0;
518 }
519 
520 /* <summary>                */
521 /* Get norm of 9-7 wavelet. */
522 /* </summary>               */
opj_dwt_getnorm_real(OPJ_UINT32 level,OPJ_UINT32 orient)523 OPJ_FLOAT64 opj_dwt_getnorm_real(OPJ_UINT32 level, OPJ_UINT32 orient) {
524 	return opj_dwt_norms_real[orient][level];
525 }
526 
opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp,OPJ_UINT32 prec)527 void opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, OPJ_UINT32 prec) {
528 	OPJ_UINT32 numbands, bandno;
529 	numbands = 3 * tccp->numresolutions - 2;
530 	for (bandno = 0; bandno < numbands; bandno++) {
531 		OPJ_FLOAT64 stepsize;
532 		OPJ_UINT32 resno, level, orient, gain;
533 
534 		resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1);
535 		orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1);
536 		level = tccp->numresolutions - 1 - resno;
537 		gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) || (orient == 2)) ? 1 : 2));
538 		if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) {
539 			stepsize = 1.0;
540 		} else {
541 			OPJ_FLOAT64 norm = opj_dwt_norms_real[orient][level];
542 			stepsize = (1 << (gain)) / norm;
543 		}
544 		opj_dwt_encode_stepsize((OPJ_INT32) floor(stepsize * 8192.0), (OPJ_INT32)(prec + gain), &tccp->stepsizes[bandno]);
545 	}
546 }
547 
548 /* <summary>                             */
549 /* Determine maximum computed resolution level for inverse wavelet transform */
550 /* </summary>                            */
opj_dwt_max_resolution(opj_tcd_resolution_t * restrict r,OPJ_UINT32 i)551 static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* restrict r, OPJ_UINT32 i) {
552 	OPJ_UINT32 mr	= 0;
553 	OPJ_UINT32 w;
554 	while( --i ) {
555 		++r;
556 		if( mr < ( w = (OPJ_UINT32)(r->x1 - r->x0) ) )
557 			mr = w ;
558 		if( mr < ( w = (OPJ_UINT32)(r->y1 - r->y0) ) )
559 			mr = w ;
560 	}
561 	return mr ;
562 }
563 
564 /* <summary>                            */
565 /* Inverse wavelet transform in 2-D.     */
566 /* </summary>                           */
opj_dwt_decode_tile(const opj_tcd_tilecomp_t * tilec,OPJ_UINT32 numres,DWT1DFN dwt_1D)567 static OPJ_BOOL opj_dwt_decode_tile(const opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres, DWT1DFN dwt_1D) {
568 	opj_dwt_t h;
569 	opj_dwt_t v;
570 
571 	opj_tcd_resolution_t* tr = tilec->resolutions;
572 
573 	OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 - tr->x0);	/* width of the resolution level computed */
574 	OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 - tr->y0);	/* height of the resolution level computed */
575 
576 	OPJ_UINT32 w = (OPJ_UINT32)(tilec->x1 - tilec->x0);
577 
578 	h.mem_count = opj_dwt_max_resolution(tr, numres);
579 	if (((OPJ_UINT32)-1) / (OPJ_UINT32)sizeof(OPJ_INT32) < (OPJ_UINT32)h.mem_count) {
580 		return OPJ_FALSE;
581 	}
582 	h.mem = (OPJ_INT32*)opj_aligned_malloc(h.mem_count * sizeof(OPJ_INT32));
583 	if (! h.mem){
584 		/* FIXME event manager error callback */
585 		return OPJ_FALSE;
586 	}
587 
588 	v.mem_count = h.mem_count;
589 	v.mem = h.mem;
590 
591 	while( --numres) {
592 		OPJ_INT32 * restrict tiledp = tilec->data;
593 		OPJ_UINT32 j;
594 
595 		++tr;
596 		h.sn = (OPJ_INT32)rw;
597 		v.sn = (OPJ_INT32)rh;
598 
599 		rw = (OPJ_UINT32)(tr->x1 - tr->x0);
600 		rh = (OPJ_UINT32)(tr->y1 - tr->y0);
601 
602 		h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
603 		h.cas = tr->x0 % 2;
604 
605 		for(j = 0; j < rh; ++j) {
606 			opj_dwt_interleave_h(&h, &tiledp[j*w]);
607 			(dwt_1D)(&h);
608 			memcpy(&tiledp[j*w], h.mem, rw * sizeof(OPJ_INT32));
609 		}
610 
611 		v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
612 		v.cas = tr->y0 % 2;
613 
614 		for(j = 0; j < rw; ++j){
615 			OPJ_UINT32 k;
616 			opj_dwt_interleave_v(&v, &tiledp[j], (OPJ_INT32)w);
617 			(dwt_1D)(&v);
618 			for(k = 0; k < rh; ++k) {
619 				tiledp[k * w + j] = v.mem[k];
620 			}
621 		}
622 	}
623 	opj_aligned_free(h.mem);
624 	return OPJ_TRUE;
625 }
626 
opj_v4dwt_interleave_h(opj_v4dwt_t * restrict w,OPJ_FLOAT32 * restrict a,OPJ_INT32 x,OPJ_INT32 size)627 static void opj_v4dwt_interleave_h(opj_v4dwt_t* restrict w, OPJ_FLOAT32* restrict a, OPJ_INT32 x, OPJ_INT32 size){
628 	OPJ_FLOAT32* restrict bi = (OPJ_FLOAT32*) (w->wavelet + w->cas);
629 	OPJ_INT32 count = w->sn;
630 	OPJ_INT32 i, k;
631 
632 	for(k = 0; k < 2; ++k){
633 		if ( count + 3 * x < size && ((size_t) a & 0x0f) == 0 && ((size_t) bi & 0x0f) == 0 && (x & 0x0f) == 0 ) {
634 			/* Fast code path */
635 			for(i = 0; i < count; ++i){
636 				OPJ_INT32 j = i;
637 				bi[i*8    ] = a[j];
638 				j += x;
639 				bi[i*8 + 1] = a[j];
640 				j += x;
641 				bi[i*8 + 2] = a[j];
642 				j += x;
643 				bi[i*8 + 3] = a[j];
644 			}
645 		}
646 		else {
647 			/* Slow code path */
648 			for(i = 0; i < count; ++i){
649 				OPJ_INT32 j = i;
650 				bi[i*8    ] = a[j];
651 				j += x;
652 				if(j >= size) continue;
653 				bi[i*8 + 1] = a[j];
654 				j += x;
655 				if(j >= size) continue;
656 				bi[i*8 + 2] = a[j];
657 				j += x;
658 				if(j >= size) continue;
659 				bi[i*8 + 3] = a[j]; /* This one*/
660 			}
661 		}
662 
663 		bi = (OPJ_FLOAT32*) (w->wavelet + 1 - w->cas);
664 		a += w->sn;
665 		size -= w->sn;
666 		count = w->dn;
667 	}
668 }
669 
opj_v4dwt_interleave_v(opj_v4dwt_t * restrict v,OPJ_FLOAT32 * restrict a,OPJ_INT32 x,OPJ_INT32 nb_elts_read)670 static void opj_v4dwt_interleave_v(opj_v4dwt_t* restrict v , OPJ_FLOAT32* restrict a , OPJ_INT32 x, OPJ_INT32 nb_elts_read){
671 	opj_v4_t* restrict bi = v->wavelet + v->cas;
672 	OPJ_INT32 i;
673 
674 	for(i = 0; i < v->sn; ++i){
675 		memcpy(&bi[i*2], &a[i*x], (size_t)nb_elts_read * sizeof(OPJ_FLOAT32));
676 	}
677 
678 	a += v->sn * x;
679 	bi = v->wavelet + 1 - v->cas;
680 
681 	for(i = 0; i < v->dn; ++i){
682 		memcpy(&bi[i*2], &a[i*x], (size_t)nb_elts_read * sizeof(OPJ_FLOAT32));
683 	}
684 }
685 
686 #ifdef __SSE__
687 
opj_v4dwt_decode_step1_sse(opj_v4_t * w,OPJ_INT32 count,const __m128 c)688 static void opj_v4dwt_decode_step1_sse(opj_v4_t* w, OPJ_INT32 count, const __m128 c){
689 	__m128* restrict vw = (__m128*) w;
690 	OPJ_INT32 i;
691 	/* 4x unrolled loop */
692 	for(i = 0; i < count >> 2; ++i){
693 		*vw = _mm_mul_ps(*vw, c);
694 		vw += 2;
695 		*vw = _mm_mul_ps(*vw, c);
696 		vw += 2;
697 		*vw = _mm_mul_ps(*vw, c);
698 		vw += 2;
699 		*vw = _mm_mul_ps(*vw, c);
700 		vw += 2;
701 	}
702 	count &= 3;
703 	for(i = 0; i < count; ++i){
704 		*vw = _mm_mul_ps(*vw, c);
705 		vw += 2;
706 	}
707 }
708 
opj_v4dwt_decode_step2_sse(opj_v4_t * l,opj_v4_t * w,OPJ_INT32 k,OPJ_INT32 m,__m128 c)709 void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, __m128 c){
710 	__m128* restrict vl = (__m128*) l;
711 	__m128* restrict vw = (__m128*) w;
712 	OPJ_INT32 i;
713 	__m128 tmp1, tmp2, tmp3;
714 	tmp1 = vl[0];
715 	for(i = 0; i < m; ++i){
716 		tmp2 = vw[-1];
717 		tmp3 = vw[ 0];
718 		vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c));
719 		tmp1 = tmp3;
720 		vw += 2;
721 	}
722 	vl = vw - 2;
723 	if(m >= k){
724 		return;
725 	}
726 	c = _mm_add_ps(c, c);
727 	c = _mm_mul_ps(c, vl[0]);
728 	for(; m < k; ++m){
729 		__m128 tmp = vw[-1];
730 		vw[-1] = _mm_add_ps(tmp, c);
731 		vw += 2;
732 	}
733 }
734 
735 #else
736 
opj_v4dwt_decode_step1(opj_v4_t * w,OPJ_INT32 count,const OPJ_FLOAT32 c)737 static void opj_v4dwt_decode_step1(opj_v4_t* w, OPJ_INT32 count, const OPJ_FLOAT32 c)
738 {
739 	OPJ_FLOAT32* restrict fw = (OPJ_FLOAT32*) w;
740 	OPJ_INT32 i;
741 	for(i = 0; i < count; ++i){
742 		OPJ_FLOAT32 tmp1 = fw[i*8    ];
743 		OPJ_FLOAT32 tmp2 = fw[i*8 + 1];
744 		OPJ_FLOAT32 tmp3 = fw[i*8 + 2];
745 		OPJ_FLOAT32 tmp4 = fw[i*8 + 3];
746 		fw[i*8    ] = tmp1 * c;
747 		fw[i*8 + 1] = tmp2 * c;
748 		fw[i*8 + 2] = tmp3 * c;
749 		fw[i*8 + 3] = tmp4 * c;
750 	}
751 }
752 
opj_v4dwt_decode_step2(opj_v4_t * l,opj_v4_t * w,OPJ_INT32 k,OPJ_INT32 m,OPJ_FLOAT32 c)753 static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, OPJ_FLOAT32 c)
754 {
755 	OPJ_FLOAT32* restrict fl = (OPJ_FLOAT32*) l;
756 	OPJ_FLOAT32* restrict fw = (OPJ_FLOAT32*) w;
757 	OPJ_INT32 i;
758 	for(i = 0; i < m; ++i){
759 		OPJ_FLOAT32 tmp1_1 = fl[0];
760 		OPJ_FLOAT32 tmp1_2 = fl[1];
761 		OPJ_FLOAT32 tmp1_3 = fl[2];
762 		OPJ_FLOAT32 tmp1_4 = fl[3];
763 		OPJ_FLOAT32 tmp2_1 = fw[-4];
764 		OPJ_FLOAT32 tmp2_2 = fw[-3];
765 		OPJ_FLOAT32 tmp2_3 = fw[-2];
766 		OPJ_FLOAT32 tmp2_4 = fw[-1];
767 		OPJ_FLOAT32 tmp3_1 = fw[0];
768 		OPJ_FLOAT32 tmp3_2 = fw[1];
769 		OPJ_FLOAT32 tmp3_3 = fw[2];
770 		OPJ_FLOAT32 tmp3_4 = fw[3];
771 		fw[-4] = tmp2_1 + ((tmp1_1 + tmp3_1) * c);
772 		fw[-3] = tmp2_2 + ((tmp1_2 + tmp3_2) * c);
773 		fw[-2] = tmp2_3 + ((tmp1_3 + tmp3_3) * c);
774 		fw[-1] = tmp2_4 + ((tmp1_4 + tmp3_4) * c);
775 		fl = fw;
776 		fw += 8;
777 	}
778 	if(m < k){
779 		OPJ_FLOAT32 c1;
780 		OPJ_FLOAT32 c2;
781 		OPJ_FLOAT32 c3;
782 		OPJ_FLOAT32 c4;
783 		c += c;
784 		c1 = fl[0] * c;
785 		c2 = fl[1] * c;
786 		c3 = fl[2] * c;
787 		c4 = fl[3] * c;
788 		for(; m < k; ++m){
789 			OPJ_FLOAT32 tmp1 = fw[-4];
790 			OPJ_FLOAT32 tmp2 = fw[-3];
791 			OPJ_FLOAT32 tmp3 = fw[-2];
792 			OPJ_FLOAT32 tmp4 = fw[-1];
793 			fw[-4] = tmp1 + c1;
794 			fw[-3] = tmp2 + c2;
795 			fw[-2] = tmp3 + c3;
796 			fw[-1] = tmp4 + c4;
797 			fw += 8;
798 		}
799 	}
800 }
801 
802 #endif
803 
804 /* <summary>                             */
805 /* Inverse 9-7 wavelet transform in 1-D. */
806 /* </summary>                            */
opj_v4dwt_decode(opj_v4dwt_t * restrict dwt)807 void opj_v4dwt_decode(opj_v4dwt_t* restrict dwt)
808 {
809 	OPJ_INT32 a, b;
810 	if(dwt->cas == 0) {
811 		if(!((dwt->dn > 0) || (dwt->sn > 1))){
812 			return;
813 		}
814 		a = 0;
815 		b = 1;
816 	}else{
817 		if(!((dwt->sn > 0) || (dwt->dn > 1))) {
818 			return;
819 		}
820 		a = 1;
821 		b = 0;
822 	}
823 #ifdef __SSE__
824 	opj_v4dwt_decode_step1_sse(dwt->wavelet+a, dwt->sn, _mm_set1_ps(opj_K));
825 	opj_v4dwt_decode_step1_sse(dwt->wavelet+b, dwt->dn, _mm_set1_ps(opj_c13318));
826 	opj_v4dwt_decode_step2_sse(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), _mm_set1_ps(opj_dwt_delta));
827 	opj_v4dwt_decode_step2_sse(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), _mm_set1_ps(opj_dwt_gamma));
828 	opj_v4dwt_decode_step2_sse(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), _mm_set1_ps(opj_dwt_beta));
829 	opj_v4dwt_decode_step2_sse(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), _mm_set1_ps(opj_dwt_alpha));
830 #else
831 	opj_v4dwt_decode_step1(dwt->wavelet+a, dwt->sn, opj_K);
832 	opj_v4dwt_decode_step1(dwt->wavelet+b, dwt->dn, opj_c13318);
833 	opj_v4dwt_decode_step2(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), opj_dwt_delta);
834 	opj_v4dwt_decode_step2(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), opj_dwt_gamma);
835 	opj_v4dwt_decode_step2(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), opj_dwt_beta);
836 	opj_v4dwt_decode_step2(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), opj_dwt_alpha);
837 #endif
838 }
839 
840 
841 /* <summary>                             */
842 /* Inverse 9-7 wavelet transform in 2-D. */
843 /* </summary>                            */
opj_dwt_decode_real(opj_tcd_tilecomp_t * restrict tilec,OPJ_UINT32 numres)844 OPJ_BOOL opj_dwt_decode_real(opj_tcd_tilecomp_t* restrict tilec, OPJ_UINT32 numres)
845 {
846 	opj_v4dwt_t h;
847 	opj_v4dwt_t v;
848 
849 	opj_tcd_resolution_t* res = tilec->resolutions;
850 
851 	OPJ_UINT32 rw = (OPJ_UINT32)(res->x1 - res->x0);	/* width of the resolution level computed */
852 	OPJ_UINT32 rh = (OPJ_UINT32)(res->y1 - res->y0);	/* height of the resolution level computed */
853 
854 	OPJ_UINT32 w = (OPJ_UINT32)(tilec->x1 - tilec->x0);
855 
856 	OPJ_UINT32 mr = opj_dwt_max_resolution(res, numres);
857 
858 	if (mr >= ((OPJ_UINT32)-5)) {
859 		return OPJ_FALSE;
860 	}
861 	mr += 5;
862 
863 	if (((OPJ_UINT32)-1) / (OPJ_UINT32)sizeof(opj_v4_t) < mr) {
864 		return OPJ_FALSE;
865 	}
866 	h.wavelet = (opj_v4_t*) opj_aligned_malloc(mr * sizeof(opj_v4_t));
867 	if (!h.wavelet) {
868 		/* FIXME event manager error callback */
869 		return OPJ_FALSE;
870 	}
871 	v.wavelet = h.wavelet;
872 
873 	while( --numres) {
874 		OPJ_FLOAT32 * restrict aj = (OPJ_FLOAT32*) tilec->data;
875 		OPJ_UINT32 bufsize = (OPJ_UINT32)((tilec->x1 - tilec->x0) * (tilec->y1 - tilec->y0));
876 		OPJ_INT32 j;
877 
878 		h.sn = (OPJ_INT32)rw;
879 		v.sn = (OPJ_INT32)rh;
880 
881 		++res;
882 
883 		rw = (OPJ_UINT32)(res->x1 - res->x0);	/* width of the resolution level computed */
884 		rh = (OPJ_UINT32)(res->y1 - res->y0);	/* height of the resolution level computed */
885 
886 		h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
887 		h.cas = res->x0 % 2;
888 
889 		for(j = (OPJ_INT32)rh; j > 3; j -= 4) {
890 			OPJ_INT32 k;
891 			opj_v4dwt_interleave_h(&h, aj, (OPJ_INT32)w, (OPJ_INT32)bufsize);
892 			opj_v4dwt_decode(&h);
893 
894 			for(k = (OPJ_INT32)rw; --k >= 0;){
895 				aj[k               ] = h.wavelet[k].f[0];
896 				aj[k+(OPJ_INT32)w  ] = h.wavelet[k].f[1];
897 				aj[k+(OPJ_INT32)w*2] = h.wavelet[k].f[2];
898 				aj[k+(OPJ_INT32)w*3] = h.wavelet[k].f[3];
899 			}
900 
901 			aj += w*4;
902 			bufsize -= w*4;
903 		}
904 
905 		if (rh & 0x03) {
906 			OPJ_INT32 k;
907 			j = rh & 0x03;
908 			opj_v4dwt_interleave_h(&h, aj, (OPJ_INT32)w, (OPJ_INT32)bufsize);
909 			opj_v4dwt_decode(&h);
910 			for(k = (OPJ_INT32)rw; --k >= 0;){
911 				switch(j) {
912 					case 3: aj[k+(OPJ_INT32)w*2] = h.wavelet[k].f[2];
913 					case 2: aj[k+(OPJ_INT32)w  ] = h.wavelet[k].f[1];
914 					case 1: aj[k               ] = h.wavelet[k].f[0];
915 				}
916 			}
917 		}
918 
919 		v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
920 		v.cas = res->y0 % 2;
921 
922 		aj = (OPJ_FLOAT32*) tilec->data;
923 		for(j = (OPJ_INT32)rw; j > 3; j -= 4){
924 			OPJ_UINT32 k;
925 
926 			opj_v4dwt_interleave_v(&v, aj, (OPJ_INT32)w, 4);
927 			opj_v4dwt_decode(&v);
928 
929 			for(k = 0; k < rh; ++k){
930 				memcpy(&aj[k*w], &v.wavelet[k], 4 * sizeof(OPJ_FLOAT32));
931 			}
932 			aj += 4;
933 		}
934 
935 		if (rw & 0x03){
936 			OPJ_UINT32 k;
937 
938 			j = rw & 0x03;
939 
940 			opj_v4dwt_interleave_v(&v, aj, (OPJ_INT32)w, j);
941 			opj_v4dwt_decode(&v);
942 
943 			for(k = 0; k < rh; ++k){
944 				memcpy(&aj[k*w], &v.wavelet[k], (size_t)j * sizeof(OPJ_FLOAT32));
945 			}
946 		}
947 	}
948 
949 	opj_aligned_free(h.wavelet);
950 	return OPJ_TRUE;
951 }
952