1 /*
2  * DTLS implementation written by Nagendra Modadugu
3  * (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
4  */
5 /* ====================================================================
6  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  *
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  *
20  * 3. All advertising materials mentioning features or use of this
21  *    software must display the following acknowledgment:
22  *    "This product includes software developed by the OpenSSL Project
23  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24  *
25  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26  *    endorse or promote products derived from this software without
27  *    prior written permission. For written permission, please contact
28  *    openssl-core@openssl.org.
29  *
30  * 5. Products derived from this software may not be called "OpenSSL"
31  *    nor may "OpenSSL" appear in their names without prior written
32  *    permission of the OpenSSL Project.
33  *
34  * 6. Redistributions of any form whatsoever must retain the following
35  *    acknowledgment:
36  *    "This product includes software developed by the OpenSSL Project
37  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38  *
39  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50  * OF THE POSSIBILITY OF SUCH DAMAGE.
51  * ====================================================================
52  *
53  * This product includes cryptographic software written by Eric Young
54  * (eay@cryptsoft.com).  This product includes software written by Tim
55  * Hudson (tjh@cryptsoft.com).
56  *
57  */
58 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
59  * All rights reserved.
60  *
61  * This package is an SSL implementation written
62  * by Eric Young (eay@cryptsoft.com).
63  * The implementation was written so as to conform with Netscapes SSL.
64  *
65  * This library is free for commercial and non-commercial use as long as
66  * the following conditions are aheared to.  The following conditions
67  * apply to all code found in this distribution, be it the RC4, RSA,
68  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
69  * included with this distribution is covered by the same copyright terms
70  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
71  *
72  * Copyright remains Eric Young's, and as such any Copyright notices in
73  * the code are not to be removed.
74  * If this package is used in a product, Eric Young should be given attribution
75  * as the author of the parts of the library used.
76  * This can be in the form of a textual message at program startup or
77  * in documentation (online or textual) provided with the package.
78  *
79  * Redistribution and use in source and binary forms, with or without
80  * modification, are permitted provided that the following conditions
81  * are met:
82  * 1. Redistributions of source code must retain the copyright
83  *    notice, this list of conditions and the following disclaimer.
84  * 2. Redistributions in binary form must reproduce the above copyright
85  *    notice, this list of conditions and the following disclaimer in the
86  *    documentation and/or other materials provided with the distribution.
87  * 3. All advertising materials mentioning features or use of this software
88  *    must display the following acknowledgement:
89  *    "This product includes cryptographic software written by
90  *     Eric Young (eay@cryptsoft.com)"
91  *    The word 'cryptographic' can be left out if the rouines from the library
92  *    being used are not cryptographic related :-).
93  * 4. If you include any Windows specific code (or a derivative thereof) from
94  *    the apps directory (application code) you must include an acknowledgement:
95  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
96  *
97  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
98  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
99  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
100  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
101  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
102  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
103  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
104  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
105  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
106  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
107  * SUCH DAMAGE.
108  *
109  * The licence and distribution terms for any publically available version or
110  * derivative of this code cannot be changed.  i.e. this code cannot simply be
111  * copied and put under another distribution licence
112  * [including the GNU Public Licence.] */
113 
114 #include <openssl/ssl.h>
115 
116 #include <assert.h>
117 #include <limits.h>
118 #include <string.h>
119 
120 #include <openssl/buf.h>
121 #include <openssl/err.h>
122 #include <openssl/evp.h>
123 #include <openssl/mem.h>
124 #include <openssl/rand.h>
125 #include <openssl/type_check.h>
126 
127 #include "../crypto/internal.h"
128 #include "internal.h"
129 
130 
131 /* TODO(davidben): 28 comes from the size of IP + UDP header. Is this reasonable
132  * for these values? Notably, why is kMinMTU a function of the transport
133  * protocol's overhead rather than, say, what's needed to hold a minimally-sized
134  * handshake fragment plus protocol overhead. */
135 
136 /* kMinMTU is the minimum acceptable MTU value. */
137 static const unsigned int kMinMTU = 256 - 28;
138 
139 /* kDefaultMTU is the default MTU value to use if neither the user nor
140  * the underlying BIO supplies one. */
141 static const unsigned int kDefaultMTU = 1500 - 28;
142 
143 
144 /* Receiving handshake messages. */
145 
dtls1_hm_fragment_free(hm_fragment * frag)146 static void dtls1_hm_fragment_free(hm_fragment *frag) {
147   if (frag == NULL) {
148     return;
149   }
150   OPENSSL_free(frag->data);
151   OPENSSL_free(frag->reassembly);
152   OPENSSL_free(frag);
153 }
154 
dtls1_hm_fragment_new(const struct hm_header_st * msg_hdr)155 static hm_fragment *dtls1_hm_fragment_new(const struct hm_header_st *msg_hdr) {
156   hm_fragment *frag = OPENSSL_malloc(sizeof(hm_fragment));
157   if (frag == NULL) {
158     OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
159     return NULL;
160   }
161   OPENSSL_memset(frag, 0, sizeof(hm_fragment));
162   frag->type = msg_hdr->type;
163   frag->seq = msg_hdr->seq;
164   frag->msg_len = msg_hdr->msg_len;
165 
166   /* Allocate space for the reassembled message and fill in the header. */
167   frag->data = OPENSSL_malloc(DTLS1_HM_HEADER_LENGTH + msg_hdr->msg_len);
168   if (frag->data == NULL) {
169     OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
170     goto err;
171   }
172 
173   CBB cbb;
174   if (!CBB_init_fixed(&cbb, frag->data, DTLS1_HM_HEADER_LENGTH) ||
175       !CBB_add_u8(&cbb, msg_hdr->type) ||
176       !CBB_add_u24(&cbb, msg_hdr->msg_len) ||
177       !CBB_add_u16(&cbb, msg_hdr->seq) ||
178       !CBB_add_u24(&cbb, 0 /* frag_off */) ||
179       !CBB_add_u24(&cbb, msg_hdr->msg_len) ||
180       !CBB_finish(&cbb, NULL, NULL)) {
181     CBB_cleanup(&cbb);
182     OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
183     goto err;
184   }
185 
186   /* If the handshake message is empty, |frag->reassembly| is NULL. */
187   if (msg_hdr->msg_len > 0) {
188     /* Initialize reassembly bitmask. */
189     if (msg_hdr->msg_len + 7 < msg_hdr->msg_len) {
190       OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
191       goto err;
192     }
193     size_t bitmask_len = (msg_hdr->msg_len + 7) / 8;
194     frag->reassembly = OPENSSL_malloc(bitmask_len);
195     if (frag->reassembly == NULL) {
196       OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
197       goto err;
198     }
199     OPENSSL_memset(frag->reassembly, 0, bitmask_len);
200   }
201 
202   return frag;
203 
204 err:
205   dtls1_hm_fragment_free(frag);
206   return NULL;
207 }
208 
209 /* bit_range returns a |uint8_t| with bits |start|, inclusive, to |end|,
210  * exclusive, set. */
bit_range(size_t start,size_t end)211 static uint8_t bit_range(size_t start, size_t end) {
212   return (uint8_t)(~((1u << start) - 1) & ((1u << end) - 1));
213 }
214 
215 /* dtls1_hm_fragment_mark marks bytes |start|, inclusive, to |end|, exclusive,
216  * as received in |frag|. If |frag| becomes complete, it clears
217  * |frag->reassembly|. The range must be within the bounds of |frag|'s message
218  * and |frag->reassembly| must not be NULL. */
dtls1_hm_fragment_mark(hm_fragment * frag,size_t start,size_t end)219 static void dtls1_hm_fragment_mark(hm_fragment *frag, size_t start,
220                                    size_t end) {
221   size_t msg_len = frag->msg_len;
222 
223   if (frag->reassembly == NULL || start > end || end > msg_len) {
224     assert(0);
225     return;
226   }
227   /* A zero-length message will never have a pending reassembly. */
228   assert(msg_len > 0);
229 
230   if ((start >> 3) == (end >> 3)) {
231     frag->reassembly[start >> 3] |= bit_range(start & 7, end & 7);
232   } else {
233     frag->reassembly[start >> 3] |= bit_range(start & 7, 8);
234     for (size_t i = (start >> 3) + 1; i < (end >> 3); i++) {
235       frag->reassembly[i] = 0xff;
236     }
237     if ((end & 7) != 0) {
238       frag->reassembly[end >> 3] |= bit_range(0, end & 7);
239     }
240   }
241 
242   /* Check if the fragment is complete. */
243   for (size_t i = 0; i < (msg_len >> 3); i++) {
244     if (frag->reassembly[i] != 0xff) {
245       return;
246     }
247   }
248   if ((msg_len & 7) != 0 &&
249       frag->reassembly[msg_len >> 3] != bit_range(0, msg_len & 7)) {
250     return;
251   }
252 
253   OPENSSL_free(frag->reassembly);
254   frag->reassembly = NULL;
255 }
256 
257 /* dtls1_is_current_message_complete returns one if the current handshake
258  * message is complete and zero otherwise. */
dtls1_is_current_message_complete(const SSL * ssl)259 static int dtls1_is_current_message_complete(const SSL *ssl) {
260   hm_fragment *frag = ssl->d1->incoming_messages[ssl->d1->handshake_read_seq %
261                                                  SSL_MAX_HANDSHAKE_FLIGHT];
262   return frag != NULL && frag->reassembly == NULL;
263 }
264 
265 /* dtls1_get_incoming_message returns the incoming message corresponding to
266  * |msg_hdr|. If none exists, it creates a new one and inserts it in the
267  * queue. Otherwise, it checks |msg_hdr| is consistent with the existing one. It
268  * returns NULL on failure. The caller does not take ownership of the result. */
dtls1_get_incoming_message(SSL * ssl,const struct hm_header_st * msg_hdr)269 static hm_fragment *dtls1_get_incoming_message(
270     SSL *ssl, const struct hm_header_st *msg_hdr) {
271   if (msg_hdr->seq < ssl->d1->handshake_read_seq ||
272       msg_hdr->seq - ssl->d1->handshake_read_seq >= SSL_MAX_HANDSHAKE_FLIGHT) {
273     return NULL;
274   }
275 
276   size_t idx = msg_hdr->seq % SSL_MAX_HANDSHAKE_FLIGHT;
277   hm_fragment *frag = ssl->d1->incoming_messages[idx];
278   if (frag != NULL) {
279     assert(frag->seq == msg_hdr->seq);
280     /* The new fragment must be compatible with the previous fragments from this
281      * message. */
282     if (frag->type != msg_hdr->type ||
283         frag->msg_len != msg_hdr->msg_len) {
284       OPENSSL_PUT_ERROR(SSL, SSL_R_FRAGMENT_MISMATCH);
285       ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
286       return NULL;
287     }
288     return frag;
289   }
290 
291   /* This is the first fragment from this message. */
292   frag = dtls1_hm_fragment_new(msg_hdr);
293   if (frag == NULL) {
294     return NULL;
295   }
296   ssl->d1->incoming_messages[idx] = frag;
297   return frag;
298 }
299 
300 /* dtls1_process_handshake_record reads a handshake record and processes it. It
301  * returns one if the record was successfully processed and 0 or -1 on error. */
dtls1_process_handshake_record(SSL * ssl)302 static int dtls1_process_handshake_record(SSL *ssl) {
303   SSL3_RECORD *rr = &ssl->s3->rrec;
304 
305 start:
306   if (rr->length == 0) {
307     int ret = dtls1_get_record(ssl);
308     if (ret <= 0) {
309       return ret;
310     }
311   }
312 
313   /* Cross-epoch records are discarded, but we may receive out-of-order
314    * application data between ChangeCipherSpec and Finished or a
315    * ChangeCipherSpec before the appropriate point in the handshake. Those must
316    * be silently discarded.
317    *
318    * However, only allow the out-of-order records in the correct epoch.
319    * Application data must come in the encrypted epoch, and ChangeCipherSpec in
320    * the unencrypted epoch (we never renegotiate). Other cases fall through and
321    * fail with a fatal error. */
322   if ((rr->type == SSL3_RT_APPLICATION_DATA &&
323        ssl->s3->aead_read_ctx != NULL) ||
324       (rr->type == SSL3_RT_CHANGE_CIPHER_SPEC &&
325        ssl->s3->aead_read_ctx == NULL)) {
326     rr->length = 0;
327     goto start;
328   }
329 
330   if (rr->type != SSL3_RT_HANDSHAKE) {
331     ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
332     OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
333     return -1;
334   }
335 
336   CBS cbs;
337   CBS_init(&cbs, rr->data, rr->length);
338 
339   while (CBS_len(&cbs) > 0) {
340     /* Read a handshake fragment. */
341     struct hm_header_st msg_hdr;
342     CBS body;
343     if (!dtls1_parse_fragment(&cbs, &msg_hdr, &body)) {
344       OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_HANDSHAKE_RECORD);
345       ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
346       return -1;
347     }
348 
349     const size_t frag_off = msg_hdr.frag_off;
350     const size_t frag_len = msg_hdr.frag_len;
351     const size_t msg_len = msg_hdr.msg_len;
352     if (frag_off > msg_len || frag_off + frag_len < frag_off ||
353         frag_off + frag_len > msg_len ||
354         msg_len > ssl_max_handshake_message_len(ssl)) {
355       OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESSIVE_MESSAGE_SIZE);
356       ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
357       return -1;
358     }
359 
360     /* The encrypted epoch in DTLS has only one handshake message. */
361     if (ssl->d1->r_epoch == 1 && msg_hdr.seq != ssl->d1->handshake_read_seq) {
362       OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
363       ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
364       return -1;
365     }
366 
367     if (msg_hdr.seq < ssl->d1->handshake_read_seq ||
368         msg_hdr.seq >
369             (unsigned)ssl->d1->handshake_read_seq + SSL_MAX_HANDSHAKE_FLIGHT) {
370       /* Ignore fragments from the past, or ones too far in the future. */
371       continue;
372     }
373 
374     hm_fragment *frag = dtls1_get_incoming_message(ssl, &msg_hdr);
375     if (frag == NULL) {
376       return -1;
377     }
378     assert(frag->msg_len == msg_len);
379 
380     if (frag->reassembly == NULL) {
381       /* The message is already assembled. */
382       continue;
383     }
384     assert(msg_len > 0);
385 
386     /* Copy the body into the fragment. */
387     OPENSSL_memcpy(frag->data + DTLS1_HM_HEADER_LENGTH + frag_off,
388                    CBS_data(&body), CBS_len(&body));
389     dtls1_hm_fragment_mark(frag, frag_off, frag_off + frag_len);
390   }
391 
392   rr->length = 0;
393   ssl_read_buffer_discard(ssl);
394   return 1;
395 }
396 
dtls1_get_message(SSL * ssl)397 int dtls1_get_message(SSL *ssl) {
398   if (ssl->s3->tmp.reuse_message) {
399     /* There must be a current message. */
400     assert(ssl->init_msg != NULL);
401     ssl->s3->tmp.reuse_message = 0;
402   } else {
403     dtls1_release_current_message(ssl, 0 /* don't free buffer */);
404   }
405 
406   /* Process handshake records until the current message is ready. */
407   while (!dtls1_is_current_message_complete(ssl)) {
408     int ret = dtls1_process_handshake_record(ssl);
409     if (ret <= 0) {
410       return ret;
411     }
412   }
413 
414   hm_fragment *frag = ssl->d1->incoming_messages[ssl->d1->handshake_read_seq %
415                                                  SSL_MAX_HANDSHAKE_FLIGHT];
416   assert(frag != NULL);
417   assert(frag->reassembly == NULL);
418   assert(ssl->d1->handshake_read_seq == frag->seq);
419 
420   /* TODO(davidben): This function has a lot of implicit outputs. Simplify the
421    * |ssl_get_message| API. */
422   ssl->s3->tmp.message_type = frag->type;
423   ssl->init_msg = frag->data + DTLS1_HM_HEADER_LENGTH;
424   ssl->init_num = frag->msg_len;
425 
426   ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HANDSHAKE, frag->data,
427                       ssl->init_num + DTLS1_HM_HEADER_LENGTH);
428   return 1;
429 }
430 
dtls1_get_current_message(const SSL * ssl,CBS * out)431 void dtls1_get_current_message(const SSL *ssl, CBS *out) {
432   assert(dtls1_is_current_message_complete(ssl));
433 
434   hm_fragment *frag = ssl->d1->incoming_messages[ssl->d1->handshake_read_seq %
435                                                  SSL_MAX_HANDSHAKE_FLIGHT];
436   CBS_init(out, frag->data, DTLS1_HM_HEADER_LENGTH + frag->msg_len);
437 }
438 
dtls1_release_current_message(SSL * ssl,int free_buffer)439 void dtls1_release_current_message(SSL *ssl, int free_buffer) {
440   if (ssl->init_msg == NULL) {
441     return;
442   }
443 
444   assert(dtls1_is_current_message_complete(ssl));
445   size_t index = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT;
446   dtls1_hm_fragment_free(ssl->d1->incoming_messages[index]);
447   ssl->d1->incoming_messages[index] = NULL;
448   ssl->d1->handshake_read_seq++;
449 
450   ssl->init_msg = NULL;
451   ssl->init_num = 0;
452 }
453 
dtls_clear_incoming_messages(SSL * ssl)454 void dtls_clear_incoming_messages(SSL *ssl) {
455   for (size_t i = 0; i < SSL_MAX_HANDSHAKE_FLIGHT; i++) {
456     dtls1_hm_fragment_free(ssl->d1->incoming_messages[i]);
457     ssl->d1->incoming_messages[i] = NULL;
458   }
459 }
460 
dtls_has_incoming_messages(const SSL * ssl)461 int dtls_has_incoming_messages(const SSL *ssl) {
462   size_t current = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT;
463   for (size_t i = 0; i < SSL_MAX_HANDSHAKE_FLIGHT; i++) {
464     /* Skip the current message. */
465     if (ssl->init_msg != NULL && i == current) {
466       assert(dtls1_is_current_message_complete(ssl));
467       continue;
468     }
469     if (ssl->d1->incoming_messages[i] != NULL) {
470       return 1;
471     }
472   }
473   return 0;
474 }
475 
dtls1_parse_fragment(CBS * cbs,struct hm_header_st * out_hdr,CBS * out_body)476 int dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr,
477                          CBS *out_body) {
478   OPENSSL_memset(out_hdr, 0x00, sizeof(struct hm_header_st));
479 
480   if (!CBS_get_u8(cbs, &out_hdr->type) ||
481       !CBS_get_u24(cbs, &out_hdr->msg_len) ||
482       !CBS_get_u16(cbs, &out_hdr->seq) ||
483       !CBS_get_u24(cbs, &out_hdr->frag_off) ||
484       !CBS_get_u24(cbs, &out_hdr->frag_len) ||
485       !CBS_get_bytes(cbs, out_body, out_hdr->frag_len)) {
486     return 0;
487   }
488 
489   return 1;
490 }
491 
492 
493 /* Sending handshake messages. */
494 
dtls_clear_outgoing_messages(SSL * ssl)495 void dtls_clear_outgoing_messages(SSL *ssl) {
496   for (size_t i = 0; i < ssl->d1->outgoing_messages_len; i++) {
497     OPENSSL_free(ssl->d1->outgoing_messages[i].data);
498     ssl->d1->outgoing_messages[i].data = NULL;
499   }
500   ssl->d1->outgoing_messages_len = 0;
501   ssl->d1->outgoing_written = 0;
502   ssl->d1->outgoing_offset = 0;
503 }
504 
dtls1_init_message(SSL * ssl,CBB * cbb,CBB * body,uint8_t type)505 int dtls1_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type) {
506   /* Pick a modest size hint to save most of the |realloc| calls. */
507   if (!CBB_init(cbb, 64) ||
508       !CBB_add_u8(cbb, type) ||
509       !CBB_add_u24(cbb, 0 /* length (filled in later) */) ||
510       !CBB_add_u16(cbb, ssl->d1->handshake_write_seq) ||
511       !CBB_add_u24(cbb, 0 /* offset */) ||
512       !CBB_add_u24_length_prefixed(cbb, body)) {
513     return 0;
514   }
515 
516   return 1;
517 }
518 
dtls1_finish_message(SSL * ssl,CBB * cbb,uint8_t ** out_msg,size_t * out_len)519 int dtls1_finish_message(SSL *ssl, CBB *cbb, uint8_t **out_msg,
520                          size_t *out_len) {
521   *out_msg = NULL;
522   if (!CBB_finish(cbb, out_msg, out_len) ||
523       *out_len < DTLS1_HM_HEADER_LENGTH) {
524     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
525     OPENSSL_free(*out_msg);
526     return 0;
527   }
528 
529   /* Fix up the header. Copy the fragment length into the total message
530    * length. */
531   OPENSSL_memcpy(*out_msg + 1, *out_msg + DTLS1_HM_HEADER_LENGTH - 3, 3);
532   return 1;
533 }
534 
535 /* add_outgoing adds a new handshake message or ChangeCipherSpec to the current
536  * outgoing flight. It returns one on success and zero on error. In both cases,
537  * it takes ownership of |data| and releases it with |OPENSSL_free| when
538  * done. */
add_outgoing(SSL * ssl,int is_ccs,uint8_t * data,size_t len)539 static int add_outgoing(SSL *ssl, int is_ccs, uint8_t *data, size_t len) {
540   OPENSSL_COMPILE_ASSERT(SSL_MAX_HANDSHAKE_FLIGHT <
541                              (1 << 8 * sizeof(ssl->d1->outgoing_messages_len)),
542                          outgoing_messages_len_is_too_small);
543   if (ssl->d1->outgoing_messages_len >= SSL_MAX_HANDSHAKE_FLIGHT) {
544     assert(0);
545     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
546     OPENSSL_free(data);
547     return 0;
548   }
549 
550   if (!is_ccs) {
551     /* TODO(svaldez): Move this up a layer to fix abstraction for SSL_TRANSCRIPT
552      * on hs. */
553     if (ssl->s3->hs != NULL &&
554         !SSL_TRANSCRIPT_update(&ssl->s3->hs->transcript, data, len)) {
555       OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
556       OPENSSL_free(data);
557       return 0;
558     }
559     ssl->d1->handshake_write_seq++;
560   }
561 
562   DTLS_OUTGOING_MESSAGE *msg =
563       &ssl->d1->outgoing_messages[ssl->d1->outgoing_messages_len];
564   msg->data = data;
565   msg->len = len;
566   msg->epoch = ssl->d1->w_epoch;
567   msg->is_ccs = is_ccs;
568 
569   ssl->d1->outgoing_messages_len++;
570   return 1;
571 }
572 
dtls1_add_message(SSL * ssl,uint8_t * data,size_t len)573 int dtls1_add_message(SSL *ssl, uint8_t *data, size_t len) {
574   return add_outgoing(ssl, 0 /* handshake */, data, len);
575 }
576 
dtls1_add_change_cipher_spec(SSL * ssl)577 int dtls1_add_change_cipher_spec(SSL *ssl) {
578   return add_outgoing(ssl, 1 /* ChangeCipherSpec */, NULL, 0);
579 }
580 
dtls1_add_alert(SSL * ssl,uint8_t level,uint8_t desc)581 int dtls1_add_alert(SSL *ssl, uint8_t level, uint8_t desc) {
582   /* The |add_alert| path is only used for warning alerts for now, which DTLS
583    * never sends. This will be implemented later once closure alerts are
584    * converted. */
585   assert(0);
586   OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
587   return 0;
588 }
589 
590 /* dtls1_update_mtu updates the current MTU from the BIO, ensuring it is above
591  * the minimum. */
dtls1_update_mtu(SSL * ssl)592 static void dtls1_update_mtu(SSL *ssl) {
593   /* TODO(davidben): No consumer implements |BIO_CTRL_DGRAM_SET_MTU| and the
594    * only |BIO_CTRL_DGRAM_QUERY_MTU| implementation could use
595    * |SSL_set_mtu|. Does this need to be so complex?  */
596   if (ssl->d1->mtu < dtls1_min_mtu() &&
597       !(SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) {
598     long mtu = BIO_ctrl(ssl->wbio, BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL);
599     if (mtu >= 0 && mtu <= (1 << 30) && (unsigned)mtu >= dtls1_min_mtu()) {
600       ssl->d1->mtu = (unsigned)mtu;
601     } else {
602       ssl->d1->mtu = kDefaultMTU;
603       BIO_ctrl(ssl->wbio, BIO_CTRL_DGRAM_SET_MTU, ssl->d1->mtu, NULL);
604     }
605   }
606 
607   /* The MTU should be above the minimum now. */
608   assert(ssl->d1->mtu >= dtls1_min_mtu());
609 }
610 
611 enum seal_result_t {
612   seal_error,
613   seal_no_progress,
614   seal_partial,
615   seal_success,
616 };
617 
618 /* seal_next_message seals |msg|, which must be the next message, to |out|. If
619  * progress was made, it returns |seal_partial| or |seal_success| and sets
620  * |*out_len| to the number of bytes written. */
seal_next_message(SSL * ssl,uint8_t * out,size_t * out_len,size_t max_out,const DTLS_OUTGOING_MESSAGE * msg)621 static enum seal_result_t seal_next_message(SSL *ssl, uint8_t *out,
622                                             size_t *out_len, size_t max_out,
623                                             const DTLS_OUTGOING_MESSAGE *msg) {
624   assert(ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len);
625   assert(msg == &ssl->d1->outgoing_messages[ssl->d1->outgoing_written]);
626 
627   /* DTLS renegotiation is unsupported, so only epochs 0 (NULL cipher) and 1
628    * (negotiated cipher) exist. */
629   assert(ssl->d1->w_epoch == 0 || ssl->d1->w_epoch == 1);
630   assert(msg->epoch <= ssl->d1->w_epoch);
631   enum dtls1_use_epoch_t use_epoch = dtls1_use_current_epoch;
632   if (ssl->d1->w_epoch == 1 && msg->epoch == 0) {
633     use_epoch = dtls1_use_previous_epoch;
634   }
635   size_t overhead = dtls_max_seal_overhead(ssl, use_epoch);
636   size_t prefix = dtls_seal_prefix_len(ssl, use_epoch);
637 
638   if (msg->is_ccs) {
639     /* Check there is room for the ChangeCipherSpec. */
640     static const uint8_t kChangeCipherSpec[1] = {SSL3_MT_CCS};
641     if (max_out < sizeof(kChangeCipherSpec) + overhead) {
642       return seal_no_progress;
643     }
644 
645     if (!dtls_seal_record(ssl, out, out_len, max_out,
646                           SSL3_RT_CHANGE_CIPHER_SPEC, kChangeCipherSpec,
647                           sizeof(kChangeCipherSpec), use_epoch)) {
648       return seal_error;
649     }
650 
651     ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_CHANGE_CIPHER_SPEC,
652                         kChangeCipherSpec, sizeof(kChangeCipherSpec));
653     return seal_success;
654   }
655 
656   /* DTLS messages are serialized as a single fragment in |msg|. */
657   CBS cbs, body;
658   struct hm_header_st hdr;
659   CBS_init(&cbs, msg->data, msg->len);
660   if (!dtls1_parse_fragment(&cbs, &hdr, &body) ||
661       hdr.frag_off != 0 ||
662       hdr.frag_len != CBS_len(&body) ||
663       hdr.msg_len != CBS_len(&body) ||
664       !CBS_skip(&body, ssl->d1->outgoing_offset) ||
665       CBS_len(&cbs) != 0) {
666     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
667     return seal_error;
668   }
669 
670   /* Determine how much progress can be made. */
671   if (max_out < DTLS1_HM_HEADER_LENGTH + 1 + overhead || max_out < prefix) {
672     return seal_no_progress;
673   }
674   size_t todo = CBS_len(&body);
675   if (todo > max_out - DTLS1_HM_HEADER_LENGTH - overhead) {
676     todo = max_out - DTLS1_HM_HEADER_LENGTH - overhead;
677   }
678 
679   /* Assemble a fragment, to be sealed in-place. */
680   CBB cbb;
681   uint8_t *frag = out + prefix;
682   size_t max_frag = max_out - prefix, frag_len;
683   if (!CBB_init_fixed(&cbb, frag, max_frag) ||
684       !CBB_add_u8(&cbb, hdr.type) ||
685       !CBB_add_u24(&cbb, hdr.msg_len) ||
686       !CBB_add_u16(&cbb, hdr.seq) ||
687       !CBB_add_u24(&cbb, ssl->d1->outgoing_offset) ||
688       !CBB_add_u24(&cbb, todo) ||
689       !CBB_add_bytes(&cbb, CBS_data(&body), todo) ||
690       !CBB_finish(&cbb, NULL, &frag_len)) {
691     CBB_cleanup(&cbb);
692     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
693     return seal_error;
694   }
695 
696   ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HANDSHAKE, frag, frag_len);
697 
698   if (!dtls_seal_record(ssl, out, out_len, max_out, SSL3_RT_HANDSHAKE,
699                         out + prefix, frag_len, use_epoch)) {
700     return seal_error;
701   }
702 
703   if (todo == CBS_len(&body)) {
704     /* The next message is complete. */
705     ssl->d1->outgoing_offset = 0;
706     return seal_success;
707   }
708 
709   ssl->d1->outgoing_offset += todo;
710   return seal_partial;
711 }
712 
713 /* seal_next_packet writes as much of the next flight as possible to |out| and
714  * advances |ssl->d1->outgoing_written| and |ssl->d1->outgoing_offset| as
715  * appropriate. */
seal_next_packet(SSL * ssl,uint8_t * out,size_t * out_len,size_t max_out)716 static int seal_next_packet(SSL *ssl, uint8_t *out, size_t *out_len,
717                             size_t max_out) {
718   int made_progress = 0;
719   size_t total = 0;
720   assert(ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len);
721   for (; ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len;
722        ssl->d1->outgoing_written++) {
723     const DTLS_OUTGOING_MESSAGE *msg =
724         &ssl->d1->outgoing_messages[ssl->d1->outgoing_written];
725     size_t len;
726     enum seal_result_t ret = seal_next_message(ssl, out, &len, max_out, msg);
727     switch (ret) {
728       case seal_error:
729         return 0;
730 
731       case seal_no_progress:
732         goto packet_full;
733 
734       case seal_partial:
735       case seal_success:
736         out += len;
737         max_out -= len;
738         total += len;
739         made_progress = 1;
740 
741         if (ret == seal_partial) {
742           goto packet_full;
743         }
744         break;
745     }
746   }
747 
748 packet_full:
749   /* The MTU was too small to make any progress. */
750   if (!made_progress) {
751     OPENSSL_PUT_ERROR(SSL, SSL_R_MTU_TOO_SMALL);
752     return 0;
753   }
754 
755   *out_len = total;
756   return 1;
757 }
758 
dtls1_flush_flight(SSL * ssl)759 int dtls1_flush_flight(SSL *ssl) {
760   dtls1_update_mtu(ssl);
761 
762   int ret = -1;
763   uint8_t *packet = OPENSSL_malloc(ssl->d1->mtu);
764   if (packet == NULL) {
765     OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
766     goto err;
767   }
768 
769   while (ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len) {
770     uint8_t old_written = ssl->d1->outgoing_written;
771     uint32_t old_offset = ssl->d1->outgoing_offset;
772 
773     size_t packet_len;
774     if (!seal_next_packet(ssl, packet, &packet_len, ssl->d1->mtu)) {
775       goto err;
776     }
777 
778     int bio_ret = BIO_write(ssl->wbio, packet, packet_len);
779     if (bio_ret <= 0) {
780       /* Retry this packet the next time around. */
781       ssl->d1->outgoing_written = old_written;
782       ssl->d1->outgoing_offset = old_offset;
783       ssl->rwstate = SSL_WRITING;
784       ret = bio_ret;
785       goto err;
786     }
787   }
788 
789   if (BIO_flush(ssl->wbio) <= 0) {
790     ssl->rwstate = SSL_WRITING;
791     goto err;
792   }
793 
794   ret = 1;
795 
796 err:
797   OPENSSL_free(packet);
798   return ret;
799 }
800 
dtls1_retransmit_outgoing_messages(SSL * ssl)801 int dtls1_retransmit_outgoing_messages(SSL *ssl) {
802   /* Rewind to the start of the flight and write it again.
803    *
804    * TODO(davidben): This does not allow retransmits to be resumed on
805    * non-blocking write. */
806   ssl->d1->outgoing_written = 0;
807   ssl->d1->outgoing_offset = 0;
808 
809   return dtls1_flush_flight(ssl);
810 }
811 
dtls1_min_mtu(void)812 unsigned int dtls1_min_mtu(void) {
813   return kMinMTU;
814 }
815