1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_
6 #define BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_
7 
8 #include <memory>
9 #include <queue>
10 #include <string>
11 
12 #include "base/base_export.h"
13 #include "base/callback_forward.h"
14 #include "base/debug/task_annotator.h"
15 #include "base/gtest_prod_util.h"
16 #include "base/location.h"
17 #include "base/macros.h"
18 #include "base/memory/ref_counted.h"
19 #include "base/message_loop/incoming_task_queue.h"
20 #include "base/message_loop/message_loop_task_runner.h"
21 #include "base/message_loop/message_pump.h"
22 #include "base/message_loop/timer_slack.h"
23 #include "base/observer_list.h"
24 #include "base/pending_task.h"
25 #include "base/sequenced_task_runner_helpers.h"
26 #include "base/synchronization/lock.h"
27 #include "base/time/time.h"
28 #include "base/tracking_info.h"
29 #include "build/build_config.h"
30 
31 // TODO(sky): these includes should not be necessary. Nuke them.
32 #if defined(OS_WIN)
33 #include "base/message_loop/message_pump_win.h"
34 #elif defined(OS_IOS)
35 #include "base/message_loop/message_pump_io_ios.h"
36 #elif defined(OS_POSIX)
37 #include "base/message_loop/message_pump_libevent.h"
38 #endif
39 
40 namespace base {
41 
42 class HistogramBase;
43 class RunLoop;
44 class ThreadTaskRunnerHandle;
45 class WaitableEvent;
46 
47 // A MessageLoop is used to process events for a particular thread.  There is
48 // at most one MessageLoop instance per thread.
49 //
50 // Events include at a minimum Task instances submitted to PostTask and its
51 // variants.  Depending on the type of message pump used by the MessageLoop
52 // other events such as UI messages may be processed.  On Windows APC calls (as
53 // time permits) and signals sent to a registered set of HANDLEs may also be
54 // processed.
55 //
56 // NOTE: Unless otherwise specified, a MessageLoop's methods may only be called
57 // on the thread where the MessageLoop's Run method executes.
58 //
59 // NOTE: MessageLoop has task reentrancy protection.  This means that if a
60 // task is being processed, a second task cannot start until the first task is
61 // finished.  Reentrancy can happen when processing a task, and an inner
62 // message pump is created.  That inner pump then processes native messages
63 // which could implicitly start an inner task.  Inner message pumps are created
64 // with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions
65 // (DoDragDrop), printer functions (StartDoc) and *many* others.
66 //
67 // Sample workaround when inner task processing is needed:
68 //   HRESULT hr;
69 //   {
70 //     MessageLoop::ScopedNestableTaskAllower allow(MessageLoop::current());
71 //     hr = DoDragDrop(...); // Implicitly runs a modal message loop.
72 //   }
73 //   // Process |hr| (the result returned by DoDragDrop()).
74 //
75 // Please be SURE your task is reentrant (nestable) and all global variables
76 // are stable and accessible before calling SetNestableTasksAllowed(true).
77 //
78 class BASE_EXPORT MessageLoop : public MessagePump::Delegate {
79  public:
80   // A MessageLoop has a particular type, which indicates the set of
81   // asynchronous events it may process in addition to tasks and timers.
82   //
83   // TYPE_DEFAULT
84   //   This type of ML only supports tasks and timers.
85   //
86   // TYPE_UI
87   //   This type of ML also supports native UI events (e.g., Windows messages).
88   //   See also MessageLoopForUI.
89   //
90   // TYPE_IO
91   //   This type of ML also supports asynchronous IO.  See also
92   //   MessageLoopForIO.
93   //
94   // TYPE_JAVA
95   //   This type of ML is backed by a Java message handler which is responsible
96   //   for running the tasks added to the ML. This is only for use on Android.
97   //   TYPE_JAVA behaves in essence like TYPE_UI, except during construction
98   //   where it does not use the main thread specific pump factory.
99   //
100   // TYPE_CUSTOM
101   //   MessagePump was supplied to constructor.
102   //
103   enum Type {
104     TYPE_DEFAULT,
105     TYPE_UI,
106     TYPE_CUSTOM,
107     TYPE_IO,
108 #if defined(OS_ANDROID)
109     TYPE_JAVA,
110 #endif  // defined(OS_ANDROID)
111   };
112 
113   // Normally, it is not necessary to instantiate a MessageLoop.  Instead, it
114   // is typical to make use of the current thread's MessageLoop instance.
115   explicit MessageLoop(Type type = TYPE_DEFAULT);
116   // Creates a TYPE_CUSTOM MessageLoop with the supplied MessagePump, which must
117   // be non-NULL.
118   explicit MessageLoop(std::unique_ptr<MessagePump> pump);
119 
120   ~MessageLoop() override;
121 
122   // Returns the MessageLoop object for the current thread, or null if none.
123   static MessageLoop* current();
124 
125   static void EnableHistogrammer(bool enable_histogrammer);
126 
127   typedef std::unique_ptr<MessagePump>(MessagePumpFactory)();
128   // Uses the given base::MessagePumpForUIFactory to override the default
129   // MessagePump implementation for 'TYPE_UI'. Returns true if the factory
130   // was successfully registered.
131   static bool InitMessagePumpForUIFactory(MessagePumpFactory* factory);
132 
133   // Creates the default MessagePump based on |type|. Caller owns return
134   // value.
135   static std::unique_ptr<MessagePump> CreateMessagePumpForType(Type type);
136 
137   // A DestructionObserver is notified when the current MessageLoop is being
138   // destroyed.  These observers are notified prior to MessageLoop::current()
139   // being changed to return NULL.  This gives interested parties the chance to
140   // do final cleanup that depends on the MessageLoop.
141   //
142   // NOTE: Any tasks posted to the MessageLoop during this notification will
143   // not be run.  Instead, they will be deleted.
144   //
145   class BASE_EXPORT DestructionObserver {
146    public:
147     virtual void WillDestroyCurrentMessageLoop() = 0;
148 
149    protected:
150     virtual ~DestructionObserver();
151   };
152 
153   // Add a DestructionObserver, which will start receiving notifications
154   // immediately.
155   void AddDestructionObserver(DestructionObserver* destruction_observer);
156 
157   // Remove a DestructionObserver.  It is safe to call this method while a
158   // DestructionObserver is receiving a notification callback.
159   void RemoveDestructionObserver(DestructionObserver* destruction_observer);
160 
161   // A NestingObserver is notified when a nested message loop begins. The
162   // observers are notified before the first task is processed.
163   class BASE_EXPORT NestingObserver {
164    public:
165     virtual void OnBeginNestedMessageLoop() = 0;
166 
167    protected:
168     virtual ~NestingObserver();
169   };
170 
171   void AddNestingObserver(NestingObserver* observer);
172   void RemoveNestingObserver(NestingObserver* observer);
173 
174   // NOTE: Deprecated; prefer task_runner() and the TaskRunner interfaces.
175   // TODO(skyostil): Remove these functions (crbug.com/465354).
176   //
177   // The "PostTask" family of methods call the task's Run method asynchronously
178   // from within a message loop at some point in the future.
179   //
180   // With the PostTask variant, tasks are invoked in FIFO order, inter-mixed
181   // with normal UI or IO event processing.  With the PostDelayedTask variant,
182   // tasks are called after at least approximately 'delay_ms' have elapsed.
183   //
184   // The NonNestable variants work similarly except that they promise never to
185   // dispatch the task from a nested invocation of MessageLoop::Run.  Instead,
186   // such tasks get deferred until the top-most MessageLoop::Run is executing.
187   //
188   // The MessageLoop takes ownership of the Task, and deletes it after it has
189   // been Run().
190   //
191   // PostTask(from_here, task) is equivalent to
192   // PostDelayedTask(from_here, task, 0).
193   //
194   // NOTE: These methods may be called on any thread.  The Task will be invoked
195   // on the thread that executes MessageLoop::Run().
196   void PostTask(const tracked_objects::Location& from_here,
197                 const Closure& task);
198 
199   void PostDelayedTask(const tracked_objects::Location& from_here,
200                        const Closure& task,
201                        TimeDelta delay);
202 
203   // A variant on PostTask that deletes the given object.  This is useful
204   // if the object needs to live until the next run of the MessageLoop (for
205   // example, deleting a RenderProcessHost from within an IPC callback is not
206   // good).
207   //
208   // NOTE: This method may be called on any thread.  The object will be deleted
209   // on the thread that executes MessageLoop::Run().
210   template <class T>
DeleteSoon(const tracked_objects::Location & from_here,const T * object)211   void DeleteSoon(const tracked_objects::Location& from_here, const T* object) {
212     base::subtle::DeleteHelperInternal<T, void>::DeleteViaSequencedTaskRunner(
213         this, from_here, object);
214   }
215 
216   // A variant on PostTask that releases the given reference counted object
217   // (by calling its Release method).  This is useful if the object needs to
218   // live until the next run of the MessageLoop, or if the object needs to be
219   // released on a particular thread.
220   //
221   // A common pattern is to manually increment the object's reference count
222   // (AddRef), clear the pointer, then issue a ReleaseSoon.  The reference count
223   // is incremented manually to ensure clearing the pointer does not trigger a
224   // delete and to account for the upcoming decrement (ReleaseSoon).  For
225   // example:
226   //
227   // scoped_refptr<Foo> foo = ...
228   // foo->AddRef();
229   // Foo* raw_foo = foo.get();
230   // foo = NULL;
231   // message_loop->ReleaseSoon(raw_foo);
232   //
233   // NOTE: This method may be called on any thread.  The object will be
234   // released (and thus possibly deleted) on the thread that executes
235   // MessageLoop::Run().  If this is not the same as the thread that calls
236   // ReleaseSoon(FROM_HERE, ), then T MUST inherit from
237   // RefCountedThreadSafe<T>!
238   template <class T>
ReleaseSoon(const tracked_objects::Location & from_here,const T * object)239   void ReleaseSoon(const tracked_objects::Location& from_here,
240                    const T* object) {
241     base::subtle::ReleaseHelperInternal<T, void>::ReleaseViaSequencedTaskRunner(
242         this, from_here, object);
243   }
244 
245   // Deprecated: use RunLoop instead.
246   // Run the message loop.
247   void Run();
248 
249   // Deprecated: use RunLoop instead.
250   // Process all pending tasks, windows messages, etc., but don't wait/sleep.
251   // Return as soon as all items that can be run are taken care of.
252   void RunUntilIdle();
253 
254   // Deprecated: use RunLoop instead.
255   //
256   // Signals the Run method to return when it becomes idle. It will continue to
257   // process pending messages and future messages as long as they are enqueued.
258   // Warning: if the MessageLoop remains busy, it may never quit. Only use this
259   // Quit method when looping procedures (such as web pages) have been shut
260   // down.
261   //
262   // This method may only be called on the same thread that called Run, and Run
263   // must still be on the call stack.
264   //
265   // Use QuitClosure variants if you need to Quit another thread's MessageLoop,
266   // but note that doing so is fairly dangerous if the target thread makes
267   // nested calls to MessageLoop::Run.  The problem being that you won't know
268   // which nested run loop you are quitting, so be careful!
269   void QuitWhenIdle();
270 
271   // Deprecated: use RunLoop instead.
272   //
273   // This method is a variant of Quit, that does not wait for pending messages
274   // to be processed before returning from Run.
275   void QuitNow();
276 
277   // Deprecated: use RunLoop instead.
278   // Construct a Closure that will call QuitWhenIdle(). Useful to schedule an
279   // arbitrary MessageLoop to QuitWhenIdle.
280   static Closure QuitWhenIdleClosure();
281 
282   // Set the timer slack for this message loop.
SetTimerSlack(TimerSlack timer_slack)283   void SetTimerSlack(TimerSlack timer_slack) {
284     pump_->SetTimerSlack(timer_slack);
285   }
286 
287   // Returns true if this loop is |type|. This allows subclasses (especially
288   // those in tests) to specialize how they are identified.
289   virtual bool IsType(Type type) const;
290 
291   // Returns the type passed to the constructor.
type()292   Type type() const { return type_; }
293 
294   // Returns the name of the thread this message loop is bound to.
295   // This function is only valid when this message loop is running and
296   // BindToCurrentThread has already been called.
297   std::string GetThreadName() const;
298 
299   // Gets the TaskRunner associated with this message loop.
task_runner()300   const scoped_refptr<SingleThreadTaskRunner>& task_runner() {
301     return task_runner_;
302   }
303 
304   // Sets a new TaskRunner for this message loop. The message loop must already
305   // have been bound to a thread prior to this call, and the task runner must
306   // belong to that thread. Note that changing the task runner will also affect
307   // the ThreadTaskRunnerHandle for the target thread. Must be called on the
308   // thread to which the message loop is bound.
309   void SetTaskRunner(scoped_refptr<SingleThreadTaskRunner> task_runner);
310 
311   // Enables or disables the recursive task processing. This happens in the case
312   // of recursive message loops. Some unwanted message loops may occur when
313   // using common controls or printer functions. By default, recursive task
314   // processing is disabled.
315   //
316   // Please use |ScopedNestableTaskAllower| instead of calling these methods
317   // directly.  In general, nestable message loops are to be avoided.  They are
318   // dangerous and difficult to get right, so please use with extreme caution.
319   //
320   // The specific case where tasks get queued is:
321   // - The thread is running a message loop.
322   // - It receives a task #1 and executes it.
323   // - The task #1 implicitly starts a message loop, like a MessageBox in the
324   //   unit test. This can also be StartDoc or GetSaveFileName.
325   // - The thread receives a task #2 before or while in this second message
326   //   loop.
327   // - With NestableTasksAllowed set to true, the task #2 will run right away.
328   //   Otherwise, it will get executed right after task #1 completes at "thread
329   //   message loop level".
330   void SetNestableTasksAllowed(bool allowed);
331   bool NestableTasksAllowed() const;
332 
333   // Enables nestable tasks on |loop| while in scope.
334   class ScopedNestableTaskAllower {
335    public:
ScopedNestableTaskAllower(MessageLoop * loop)336     explicit ScopedNestableTaskAllower(MessageLoop* loop)
337         : loop_(loop),
338           old_state_(loop_->NestableTasksAllowed()) {
339       loop_->SetNestableTasksAllowed(true);
340     }
~ScopedNestableTaskAllower()341     ~ScopedNestableTaskAllower() {
342       loop_->SetNestableTasksAllowed(old_state_);
343     }
344 
345    private:
346     MessageLoop* loop_;
347     bool old_state_;
348   };
349 
350   // Returns true if we are currently running a nested message loop.
351   bool IsNested();
352 
353   // A TaskObserver is an object that receives task notifications from the
354   // MessageLoop.
355   //
356   // NOTE: A TaskObserver implementation should be extremely fast!
357   class BASE_EXPORT TaskObserver {
358    public:
359     TaskObserver();
360 
361     // This method is called before processing a task.
362     virtual void WillProcessTask(const PendingTask& pending_task) = 0;
363 
364     // This method is called after processing a task.
365     virtual void DidProcessTask(const PendingTask& pending_task) = 0;
366 
367    protected:
368     virtual ~TaskObserver();
369   };
370 
371   // These functions can only be called on the same thread that |this| is
372   // running on.
373   void AddTaskObserver(TaskObserver* task_observer);
374   void RemoveTaskObserver(TaskObserver* task_observer);
375 
376   // Can only be called from the thread that owns the MessageLoop.
377   bool is_running() const;
378 
379   // Returns true if the message loop has high resolution timers enabled.
380   // Provided for testing.
381   bool HasHighResolutionTasks();
382 
383   // Returns true if the message loop is "idle". Provided for testing.
384   bool IsIdleForTesting();
385 
386   // Returns the TaskAnnotator which is used to add debug information to posted
387   // tasks.
task_annotator()388   debug::TaskAnnotator* task_annotator() { return &task_annotator_; }
389 
390   // Runs the specified PendingTask.
391   void RunTask(const PendingTask& pending_task);
392 
393 #if defined(OS_WIN)
394   // TODO (stanisc): crbug.com/596190: Remove this after the signaling issue
395   // has been investigated.
396   // This should be used for diagnostic only. If message pump wake-up mechanism
397   // is based on auto-reset event this call would reset the event to unset
398   // state.
399   bool MessagePumpWasSignaled();
400 #endif
401 
402   //----------------------------------------------------------------------------
403  protected:
404   std::unique_ptr<MessagePump> pump_;
405 
406   using MessagePumpFactoryCallback = Callback<std::unique_ptr<MessagePump>()>;
407 
408   // Common protected constructor. Other constructors delegate the
409   // initialization to this constructor.
410   // A subclass can invoke this constructor to create a message_loop of a
411   // specific type with a custom loop. The implementation does not call
412   // BindToCurrentThread. If this constructor is invoked directly by a subclass,
413   // then the subclass must subsequently bind the message loop.
414   MessageLoop(Type type, MessagePumpFactoryCallback pump_factory);
415 
416   // Configure various members and bind this message loop to the current thread.
417   void BindToCurrentThread();
418 
419  private:
420   friend class RunLoop;
421   friend class internal::IncomingTaskQueue;
422   friend class ScheduleWorkTest;
423   friend class Thread;
424   FRIEND_TEST_ALL_PREFIXES(MessageLoopTest, DeleteUnboundLoop);
425 
426   // Creates a MessageLoop without binding to a thread.
427   // If |type| is TYPE_CUSTOM non-null |pump_factory| must be also given
428   // to create a message pump for this message loop.  Otherwise a default
429   // message pump for the |type| is created.
430   //
431   // It is valid to call this to create a new message loop on one thread,
432   // and then pass it to the thread where the message loop actually runs.
433   // The message loop's BindToCurrentThread() method must be called on the
434   // thread the message loop runs on, before calling Run().
435   // Before BindToCurrentThread() is called, only Post*Task() functions can
436   // be called on the message loop.
437   static std::unique_ptr<MessageLoop> CreateUnbound(
438       Type type,
439       MessagePumpFactoryCallback pump_factory);
440 
441   // Sets the ThreadTaskRunnerHandle for the current thread to point to the
442   // task runner for this message loop.
443   void SetThreadTaskRunnerHandle();
444 
445   // Invokes the actual run loop using the message pump.
446   void RunHandler();
447 
448   // Called to process any delayed non-nestable tasks.
449   bool ProcessNextDelayedNonNestableTask();
450 
451   // Calls RunTask or queues the pending_task on the deferred task list if it
452   // cannot be run right now.  Returns true if the task was run.
453   bool DeferOrRunPendingTask(PendingTask pending_task);
454 
455   // Adds the pending task to delayed_work_queue_.
456   void AddToDelayedWorkQueue(PendingTask pending_task);
457 
458   // Delete tasks that haven't run yet without running them.  Used in the
459   // destructor to make sure all the task's destructors get called.  Returns
460   // true if some work was done.
461   bool DeletePendingTasks();
462 
463   // Loads tasks from the incoming queue to |work_queue_| if the latter is
464   // empty.
465   void ReloadWorkQueue();
466 
467   // Wakes up the message pump. Can be called on any thread. The caller is
468   // responsible for synchronizing ScheduleWork() calls.
469   void ScheduleWork();
470 
471   // Start recording histogram info about events and action IF it was enabled
472   // and IF the statistics recorder can accept a registration of our histogram.
473   void StartHistogrammer();
474 
475   // Add occurrence of event to our histogram, so that we can see what is being
476   // done in a specific MessageLoop instance (i.e., specific thread).
477   // If message_histogram_ is NULL, this is a no-op.
478   void HistogramEvent(int event);
479 
480   // Notify observers that a nested message loop is starting.
481   void NotifyBeginNestedLoop();
482 
483   // MessagePump::Delegate methods:
484   bool DoWork() override;
485   bool DoDelayedWork(TimeTicks* next_delayed_work_time) override;
486   bool DoIdleWork() override;
487 
488   const Type type_;
489 
490   // A list of tasks that need to be processed by this instance.  Note that
491   // this queue is only accessed (push/pop) by our current thread.
492   TaskQueue work_queue_;
493 
494 #if defined(OS_WIN)
495   // How many high resolution tasks are in the pending task queue. This value
496   // increases by N every time we call ReloadWorkQueue() and decreases by 1
497   // every time we call RunTask() if the task needs a high resolution timer.
498   int pending_high_res_tasks_;
499   // Tracks if we have requested high resolution timers. Its only use is to
500   // turn off the high resolution timer upon loop destruction.
501   bool in_high_res_mode_;
502 #endif
503 
504   // Contains delayed tasks, sorted by their 'delayed_run_time' property.
505   DelayedTaskQueue delayed_work_queue_;
506 
507   // A recent snapshot of Time::Now(), used to check delayed_work_queue_.
508   TimeTicks recent_time_;
509 
510   // A queue of non-nestable tasks that we had to defer because when it came
511   // time to execute them we were in a nested message loop.  They will execute
512   // once we're out of nested message loops.
513   TaskQueue deferred_non_nestable_work_queue_;
514 
515   ObserverList<DestructionObserver> destruction_observers_;
516 
517   ObserverList<NestingObserver> nesting_observers_;
518 
519   // A recursion block that prevents accidentally running additional tasks when
520   // insider a (accidentally induced?) nested message pump.
521   bool nestable_tasks_allowed_;
522 
523   // pump_factory_.Run() is called to create a message pump for this loop
524   // if type_ is TYPE_CUSTOM and pump_ is null.
525   MessagePumpFactoryCallback pump_factory_;
526 
527   // A profiling histogram showing the counts of various messages and events.
528   HistogramBase* message_histogram_;
529 
530   RunLoop* run_loop_;
531 
532   ObserverList<TaskObserver> task_observers_;
533 
534   debug::TaskAnnotator task_annotator_;
535 
536   scoped_refptr<internal::IncomingTaskQueue> incoming_task_queue_;
537 
538   // A task runner which we haven't bound to a thread yet.
539   scoped_refptr<internal::MessageLoopTaskRunner> unbound_task_runner_;
540 
541   // The task runner associated with this message loop.
542   scoped_refptr<SingleThreadTaskRunner> task_runner_;
543   std::unique_ptr<ThreadTaskRunnerHandle> thread_task_runner_handle_;
544 
545   // Id of the thread this message loop is bound to.
546   PlatformThreadId thread_id_;
547 
548   template <class T, class R> friend class base::subtle::DeleteHelperInternal;
549   template <class T, class R> friend class base::subtle::ReleaseHelperInternal;
550 
551   void DeleteSoonInternal(const tracked_objects::Location& from_here,
552                           void(*deleter)(const void*),
553                           const void* object);
554   void ReleaseSoonInternal(const tracked_objects::Location& from_here,
555                            void(*releaser)(const void*),
556                            const void* object);
557 
558   DISALLOW_COPY_AND_ASSIGN(MessageLoop);
559 };
560 
561 #if !defined(OS_NACL)
562 
563 //-----------------------------------------------------------------------------
564 // MessageLoopForUI extends MessageLoop with methods that are particular to a
565 // MessageLoop instantiated with TYPE_UI.
566 //
567 // This class is typically used like so:
568 //   MessageLoopForUI::current()->...call some method...
569 //
570 class BASE_EXPORT MessageLoopForUI : public MessageLoop {
571  public:
MessageLoopForUI()572   MessageLoopForUI() : MessageLoop(TYPE_UI) {
573   }
574 
575   explicit MessageLoopForUI(std::unique_ptr<MessagePump> pump);
576 
577   // Returns the MessageLoopForUI of the current thread.
current()578   static MessageLoopForUI* current() {
579     MessageLoop* loop = MessageLoop::current();
580     DCHECK(loop);
581     DCHECK(loop->IsType(MessageLoop::TYPE_UI));
582     return static_cast<MessageLoopForUI*>(loop);
583   }
584 
IsCurrent()585   static bool IsCurrent() {
586     MessageLoop* loop = MessageLoop::current();
587     return loop && loop->IsType(MessageLoop::TYPE_UI);
588   }
589 
590 #if defined(OS_IOS)
591   // On iOS, the main message loop cannot be Run().  Instead call Attach(),
592   // which connects this MessageLoop to the UI thread's CFRunLoop and allows
593   // PostTask() to work.
594   void Attach();
595 #endif
596 
597 #if defined(OS_ANDROID)
598   // On Android, the UI message loop is handled by Java side. So Run() should
599   // never be called. Instead use Start(), which will forward all the native UI
600   // events to the Java message loop.
601   void Start();
602 #endif
603 
604 #if defined(USE_OZONE) || (defined(USE_X11) && !defined(USE_GLIB))
605   // Please see MessagePumpLibevent for definition.
606   bool WatchFileDescriptor(
607       int fd,
608       bool persistent,
609       MessagePumpLibevent::Mode mode,
610       MessagePumpLibevent::FileDescriptorWatcher* controller,
611       MessagePumpLibevent::Watcher* delegate);
612 #endif
613 };
614 
615 // Do not add any member variables to MessageLoopForUI!  This is important b/c
616 // MessageLoopForUI is often allocated via MessageLoop(TYPE_UI).  Any extra
617 // data that you need should be stored on the MessageLoop's pump_ instance.
618 static_assert(sizeof(MessageLoop) == sizeof(MessageLoopForUI),
619               "MessageLoopForUI should not have extra member variables");
620 
621 #endif  // !defined(OS_NACL)
622 
623 //-----------------------------------------------------------------------------
624 // MessageLoopForIO extends MessageLoop with methods that are particular to a
625 // MessageLoop instantiated with TYPE_IO.
626 //
627 // This class is typically used like so:
628 //   MessageLoopForIO::current()->...call some method...
629 //
630 class BASE_EXPORT MessageLoopForIO : public MessageLoop {
631  public:
632   MessageLoopForIO();
633 
634   // Returns the MessageLoopForIO of the current thread.
current()635   static MessageLoopForIO* current() {
636     MessageLoop* loop = MessageLoop::current();
637     DCHECK(loop) << "Can't call MessageLoopForIO::current() when no message "
638                     "loop was created for this thread. Use "
639                     " MessageLoop::current() or MessageLoopForIO::IsCurrent().";
640     DCHECK_EQ(MessageLoop::TYPE_IO, loop->type());
641     return static_cast<MessageLoopForIO*>(loop);
642   }
643 
IsCurrent()644   static bool IsCurrent() {
645     MessageLoop* loop = MessageLoop::current();
646     return loop && loop->type() == MessageLoop::TYPE_IO;
647   }
648 
649 #if !defined(OS_NACL_SFI)
650 
651 #if defined(OS_WIN)
652   typedef MessagePumpForIO::IOHandler IOHandler;
653   typedef MessagePumpForIO::IOContext IOContext;
654 #elif defined(OS_IOS)
655   typedef MessagePumpIOSForIO::Watcher Watcher;
656   typedef MessagePumpIOSForIO::FileDescriptorWatcher
657       FileDescriptorWatcher;
658 
659   enum Mode {
660     WATCH_READ = MessagePumpIOSForIO::WATCH_READ,
661     WATCH_WRITE = MessagePumpIOSForIO::WATCH_WRITE,
662     WATCH_READ_WRITE = MessagePumpIOSForIO::WATCH_READ_WRITE
663   };
664 #elif defined(OS_POSIX)
665   typedef MessagePumpLibevent::Watcher Watcher;
666   typedef MessagePumpLibevent::FileDescriptorWatcher
667       FileDescriptorWatcher;
668 
669   enum Mode {
670     WATCH_READ = MessagePumpLibevent::WATCH_READ,
671     WATCH_WRITE = MessagePumpLibevent::WATCH_WRITE,
672     WATCH_READ_WRITE = MessagePumpLibevent::WATCH_READ_WRITE
673   };
674 #endif
675 
676 #if defined(OS_WIN)
677   // Please see MessagePumpWin for definitions of these methods.
678   void RegisterIOHandler(HANDLE file, IOHandler* handler);
679   bool RegisterJobObject(HANDLE job, IOHandler* handler);
680   bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
681 #elif defined(OS_POSIX)
682   // Please see MessagePumpIOSForIO/MessagePumpLibevent for definition.
683   bool WatchFileDescriptor(int fd,
684                            bool persistent,
685                            Mode mode,
686                            FileDescriptorWatcher* controller,
687                            Watcher* delegate);
688 #endif  // defined(OS_IOS) || defined(OS_POSIX)
689 #endif  // !defined(OS_NACL_SFI)
690 };
691 
692 // Do not add any member variables to MessageLoopForIO!  This is important b/c
693 // MessageLoopForIO is often allocated via MessageLoop(TYPE_IO).  Any extra
694 // data that you need should be stored on the MessageLoop's pump_ instance.
695 static_assert(sizeof(MessageLoop) == sizeof(MessageLoopForIO),
696               "MessageLoopForIO should not have extra member variables");
697 
698 }  // namespace base
699 
700 #endif  // BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_
701