1 //===- LazyCallGraph.h - Analysis of a Module's call graph ------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 ///
11 /// Implements a lazy call graph analysis and related passes for the new pass
12 /// manager.
13 ///
14 /// NB: This is *not* a traditional call graph! It is a graph which models both
15 /// the current calls and potential calls. As a consequence there are many
16 /// edges in this call graph that do not correspond to a 'call' or 'invoke'
17 /// instruction.
18 ///
19 /// The primary use cases of this graph analysis is to facilitate iterating
20 /// across the functions of a module in ways that ensure all callees are
21 /// visited prior to a caller (given any SCC constraints), or vice versa. As
22 /// such is it particularly well suited to organizing CGSCC optimizations such
23 /// as inlining, outlining, argument promotion, etc. That is its primary use
24 /// case and motivates the design. It may not be appropriate for other
25 /// purposes. The use graph of functions or some other conservative analysis of
26 /// call instructions may be interesting for optimizations and subsequent
27 /// analyses which don't work in the context of an overly specified
28 /// potential-call-edge graph.
29 ///
30 /// To understand the specific rules and nature of this call graph analysis,
31 /// see the documentation of the \c LazyCallGraph below.
32 ///
33 //===----------------------------------------------------------------------===//
34 
35 #ifndef LLVM_ANALYSIS_LAZYCALLGRAPH_H
36 #define LLVM_ANALYSIS_LAZYCALLGRAPH_H
37 
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/PointerUnion.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include "llvm/ADT/SetVector.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/iterator.h"
45 #include "llvm/ADT/iterator_range.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/Support/Allocator.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <iterator>
53 #include <utility>
54 
55 namespace llvm {
56 class PreservedAnalyses;
57 class raw_ostream;
58 
59 /// A lazily constructed view of the call graph of a module.
60 ///
61 /// With the edges of this graph, the motivating constraint that we are
62 /// attempting to maintain is that function-local optimization, CGSCC-local
63 /// optimizations, and optimizations transforming a pair of functions connected
64 /// by an edge in the graph, do not invalidate a bottom-up traversal of the SCC
65 /// DAG. That is, no optimizations will delete, remove, or add an edge such
66 /// that functions already visited in a bottom-up order of the SCC DAG are no
67 /// longer valid to have visited, or such that functions not yet visited in
68 /// a bottom-up order of the SCC DAG are not required to have already been
69 /// visited.
70 ///
71 /// Within this constraint, the desire is to minimize the merge points of the
72 /// SCC DAG. The greater the fanout of the SCC DAG and the fewer merge points
73 /// in the SCC DAG, the more independence there is in optimizing within it.
74 /// There is a strong desire to enable parallelization of optimizations over
75 /// the call graph, and both limited fanout and merge points will (artificially
76 /// in some cases) limit the scaling of such an effort.
77 ///
78 /// To this end, graph represents both direct and any potential resolution to
79 /// an indirect call edge. Another way to think about it is that it represents
80 /// both the direct call edges and any direct call edges that might be formed
81 /// through static optimizations. Specifically, it considers taking the address
82 /// of a function to be an edge in the call graph because this might be
83 /// forwarded to become a direct call by some subsequent function-local
84 /// optimization. The result is that the graph closely follows the use-def
85 /// edges for functions. Walking "up" the graph can be done by looking at all
86 /// of the uses of a function.
87 ///
88 /// The roots of the call graph are the external functions and functions
89 /// escaped into global variables. Those functions can be called from outside
90 /// of the module or via unknowable means in the IR -- we may not be able to
91 /// form even a potential call edge from a function body which may dynamically
92 /// load the function and call it.
93 ///
94 /// This analysis still requires updates to remain valid after optimizations
95 /// which could potentially change the set of potential callees. The
96 /// constraints it operates under only make the traversal order remain valid.
97 ///
98 /// The entire analysis must be re-computed if full interprocedural
99 /// optimizations run at any point. For example, globalopt completely
100 /// invalidates the information in this analysis.
101 ///
102 /// FIXME: This class is named LazyCallGraph in a lame attempt to distinguish
103 /// it from the existing CallGraph. At some point, it is expected that this
104 /// will be the only call graph and it will be renamed accordingly.
105 class LazyCallGraph {
106 public:
107   class Node;
108   class SCC;
109   class RefSCC;
110   class edge_iterator;
111   class call_edge_iterator;
112 
113   /// A class used to represent edges in the call graph.
114   ///
115   /// The lazy call graph models both *call* edges and *reference* edges. Call
116   /// edges are much what you would expect, and exist when there is a 'call' or
117   /// 'invoke' instruction of some function. Reference edges are also tracked
118   /// along side these, and exist whenever any instruction (transitively
119   /// through its operands) references a function. All call edges are
120   /// inherently reference edges, and so the reference graph forms a superset
121   /// of the formal call graph.
122   ///
123   /// Furthermore, edges also may point to raw \c Function objects when those
124   /// functions have not been scanned and incorporated into the graph (yet).
125   /// This is one of the primary ways in which the graph can be lazy. When
126   /// functions are scanned and fully incorporated into the graph, all of the
127   /// edges referencing them are updated to point to the graph \c Node objects
128   /// instead of to the raw \c Function objects. This class even provides
129   /// methods to trigger this scan on-demand by attempting to get the target
130   /// node of the graph and providing a reference back to the graph in order to
131   /// lazily build it if necessary.
132   ///
133   /// All of these forms of edges are fundamentally represented as outgoing
134   /// edges. The edges are stored in the source node and point at the target
135   /// node. This allows the edge structure itself to be a very compact data
136   /// structure: essentially a tagged pointer.
137   class Edge {
138   public:
139     /// The kind of edge in the graph.
140     enum Kind : bool { Ref = false, Call = true };
141 
142     Edge();
143     explicit Edge(Function &F, Kind K);
144     explicit Edge(Node &N, Kind K);
145 
146     /// Test whether the edge is null.
147     ///
148     /// This happens when an edge has been deleted. We leave the edge objects
149     /// around but clear them.
150     operator bool() const;
151 
152     /// Test whether the edge represents a direct call to a function.
153     ///
154     /// This requires that the edge is not null.
155     bool isCall() const;
156 
157     /// Get the function referenced by this edge.
158     ///
159     /// This requires that the edge is not null, but will succeed whether we
160     /// have built a graph node for the function yet or not.
161     Function &getFunction() const;
162 
163     /// Get the call graph node referenced by this edge if one exists.
164     ///
165     /// This requires that the edge is not null. If we have built a graph node
166     /// for the function this edge points to, this will return that node,
167     /// otherwise it will return null.
168     Node *getNode() const;
169 
170     /// Get the call graph node for this edge, building it if necessary.
171     ///
172     /// This requires that the edge is not null. If we have not yet built
173     /// a graph node for the function this edge points to, this will first ask
174     /// the graph to build that node, inserting it into all the relevant
175     /// structures.
176     Node &getNode(LazyCallGraph &G);
177 
178   private:
179     friend class LazyCallGraph::Node;
180 
181     PointerIntPair<PointerUnion<Function *, Node *>, 1, Kind> Value;
182 
setKind(Kind K)183     void setKind(Kind K) { Value.setInt(K); }
184   };
185 
186   typedef SmallVector<Edge, 4> EdgeVectorT;
187   typedef SmallVectorImpl<Edge> EdgeVectorImplT;
188 
189   /// A node in the call graph.
190   ///
191   /// This represents a single node. It's primary roles are to cache the list of
192   /// callees, de-duplicate and provide fast testing of whether a function is
193   /// a callee, and facilitate iteration of child nodes in the graph.
194   class Node {
195     friend class LazyCallGraph;
196     friend class LazyCallGraph::SCC;
197 
198     LazyCallGraph *G;
199     Function &F;
200 
201     // We provide for the DFS numbering and Tarjan walk lowlink numbers to be
202     // stored directly within the node. These are both '-1' when nodes are part
203     // of an SCC (or RefSCC), or '0' when not yet reached in a DFS walk.
204     int DFSNumber;
205     int LowLink;
206 
207     mutable EdgeVectorT Edges;
208     DenseMap<Function *, int> EdgeIndexMap;
209 
210     /// Basic constructor implements the scanning of F into Edges and
211     /// EdgeIndexMap.
212     Node(LazyCallGraph &G, Function &F);
213 
214     /// Internal helper to insert an edge to a function.
215     void insertEdgeInternal(Function &ChildF, Edge::Kind EK);
216 
217     /// Internal helper to insert an edge to a node.
218     void insertEdgeInternal(Node &ChildN, Edge::Kind EK);
219 
220     /// Internal helper to change an edge kind.
221     void setEdgeKind(Function &ChildF, Edge::Kind EK);
222 
223     /// Internal helper to remove the edge to the given function.
224     void removeEdgeInternal(Function &ChildF);
225 
226     /// Print the name of this node's function.
227     friend raw_ostream &operator<<(raw_ostream &OS, const Node &N) {
228       return OS << N.F.getName();
229     }
230 
231     /// Dump the name of this node's function to stderr.
232     void dump() const;
233 
234   public:
getGraph()235     LazyCallGraph &getGraph() const { return *G; }
236 
getFunction()237     Function &getFunction() const { return F; }
238 
begin()239     edge_iterator begin() const {
240       return edge_iterator(Edges.begin(), Edges.end());
241     }
end()242     edge_iterator end() const { return edge_iterator(Edges.end(), Edges.end()); }
243 
244     const Edge &operator[](int i) const { return Edges[i]; }
245     const Edge &operator[](Function &F) const {
246       assert(EdgeIndexMap.find(&F) != EdgeIndexMap.end() && "No such edge!");
247       return Edges[EdgeIndexMap.find(&F)->second];
248     }
249     const Edge &operator[](Node &N) const { return (*this)[N.getFunction()]; }
250 
call_begin()251     call_edge_iterator call_begin() const {
252       return call_edge_iterator(Edges.begin(), Edges.end());
253     }
call_end()254     call_edge_iterator call_end() const {
255       return call_edge_iterator(Edges.end(), Edges.end());
256     }
257 
calls()258     iterator_range<call_edge_iterator> calls() const {
259       return make_range(call_begin(), call_end());
260     }
261 
262     /// Equality is defined as address equality.
263     bool operator==(const Node &N) const { return this == &N; }
264     bool operator!=(const Node &N) const { return !operator==(N); }
265   };
266 
267   /// A lazy iterator used for both the entry nodes and child nodes.
268   ///
269   /// When this iterator is dereferenced, if not yet available, a function will
270   /// be scanned for "calls" or uses of functions and its child information
271   /// will be constructed. All of these results are accumulated and cached in
272   /// the graph.
273   class edge_iterator
274       : public iterator_adaptor_base<edge_iterator, EdgeVectorImplT::iterator,
275                                      std::forward_iterator_tag> {
276     friend class LazyCallGraph;
277     friend class LazyCallGraph::Node;
278 
279     EdgeVectorImplT::iterator E;
280 
281     // Build the iterator for a specific position in the edge list.
edge_iterator(EdgeVectorImplT::iterator BaseI,EdgeVectorImplT::iterator E)282     edge_iterator(EdgeVectorImplT::iterator BaseI,
283                   EdgeVectorImplT::iterator E)
284         : iterator_adaptor_base(BaseI), E(E) {
285       while (I != E && !*I)
286         ++I;
287     }
288 
289   public:
edge_iterator()290     edge_iterator() {}
291 
292     using iterator_adaptor_base::operator++;
293     edge_iterator &operator++() {
294       do {
295         ++I;
296       } while (I != E && !*I);
297       return *this;
298     }
299   };
300 
301   /// A lazy iterator over specifically call edges.
302   ///
303   /// This has the same iteration properties as the \c edge_iterator, but
304   /// restricts itself to edges which represent actual calls.
305   class call_edge_iterator
306       : public iterator_adaptor_base<call_edge_iterator,
307                                      EdgeVectorImplT::iterator,
308                                      std::forward_iterator_tag> {
309     friend class LazyCallGraph;
310     friend class LazyCallGraph::Node;
311 
312     EdgeVectorImplT::iterator E;
313 
314     /// Advance the iterator to the next valid, call edge.
advanceToNextEdge()315     void advanceToNextEdge() {
316       while (I != E && (!*I || !I->isCall()))
317         ++I;
318     }
319 
320     // Build the iterator for a specific position in the edge list.
call_edge_iterator(EdgeVectorImplT::iterator BaseI,EdgeVectorImplT::iterator E)321     call_edge_iterator(EdgeVectorImplT::iterator BaseI,
322                        EdgeVectorImplT::iterator E)
323         : iterator_adaptor_base(BaseI), E(E) {
324       advanceToNextEdge();
325     }
326 
327   public:
call_edge_iterator()328     call_edge_iterator() {}
329 
330     using iterator_adaptor_base::operator++;
331     call_edge_iterator &operator++() {
332       ++I;
333       advanceToNextEdge();
334       return *this;
335     }
336   };
337 
338   /// An SCC of the call graph.
339   ///
340   /// This represents a Strongly Connected Component of the direct call graph
341   /// -- ignoring indirect calls and function references. It stores this as
342   /// a collection of call graph nodes. While the order of nodes in the SCC is
343   /// stable, it is not any particular order.
344   ///
345   /// The SCCs are nested within a \c RefSCC, see below for details about that
346   /// outer structure. SCCs do not support mutation of the call graph, that
347   /// must be done through the containing \c RefSCC in order to fully reason
348   /// about the ordering and connections of the graph.
349   class SCC {
350     friend class LazyCallGraph;
351     friend class LazyCallGraph::Node;
352 
353     RefSCC *OuterRefSCC;
354     SmallVector<Node *, 1> Nodes;
355 
356     template <typename NodeRangeT>
SCC(RefSCC & OuterRefSCC,NodeRangeT && Nodes)357     SCC(RefSCC &OuterRefSCC, NodeRangeT &&Nodes)
358         : OuterRefSCC(&OuterRefSCC), Nodes(std::forward<NodeRangeT>(Nodes)) {}
359 
clear()360     void clear() {
361       OuterRefSCC = nullptr;
362       Nodes.clear();
363     }
364 
365     /// Print a short descrtiption useful for debugging or logging.
366     ///
367     /// We print the function names in the SCC wrapped in '()'s and skipping
368     /// the middle functions if there are a large number.
369     //
370     // Note: this is defined inline to dodge issues with GCC's interpretation
371     // of enclosing namespaces for friend function declarations.
372     friend raw_ostream &operator<<(raw_ostream &OS, const SCC &C) {
373       OS << '(';
374       int i = 0;
375       for (LazyCallGraph::Node &N : C) {
376         if (i > 0)
377           OS << ", ";
378         // Elide the inner elements if there are too many.
379         if (i > 8) {
380           OS << "..., " << *C.Nodes.back();
381           break;
382         }
383         OS << N;
384         ++i;
385       }
386       OS << ')';
387       return OS;
388     }
389 
390     /// Dump a short description of this SCC to stderr.
391     void dump() const;
392 
393 #ifndef NDEBUG
394     /// Verify invariants about the SCC.
395     ///
396     /// This will attempt to validate all of the basic invariants within an
397     /// SCC, but not that it is a strongly connected componet per-se. Primarily
398     /// useful while building and updating the graph to check that basic
399     /// properties are in place rather than having inexplicable crashes later.
400     void verify();
401 #endif
402 
403   public:
404     typedef pointee_iterator<SmallVectorImpl<Node *>::const_iterator> iterator;
405 
begin()406     iterator begin() const { return Nodes.begin(); }
end()407     iterator end() const { return Nodes.end(); }
408 
size()409     int size() const { return Nodes.size(); }
410 
getOuterRefSCC()411     RefSCC &getOuterRefSCC() const { return *OuterRefSCC; }
412 
413     /// Provide a short name by printing this SCC to a std::string.
414     ///
415     /// This copes with the fact that we don't have a name per-se for an SCC
416     /// while still making the use of this in debugging and logging useful.
getName()417     std::string getName() const {
418       std::string Name;
419       raw_string_ostream OS(Name);
420       OS << *this;
421       OS.flush();
422       return Name;
423     }
424   };
425 
426   /// A RefSCC of the call graph.
427   ///
428   /// This models a Strongly Connected Component of function reference edges in
429   /// the call graph. As opposed to actual SCCs, these can be used to scope
430   /// subgraphs of the module which are independent from other subgraphs of the
431   /// module because they do not reference it in any way. This is also the unit
432   /// where we do mutation of the graph in order to restrict mutations to those
433   /// which don't violate this independence.
434   ///
435   /// A RefSCC contains a DAG of actual SCCs. All the nodes within the RefSCC
436   /// are necessarily within some actual SCC that nests within it. Since
437   /// a direct call *is* a reference, there will always be at least one RefSCC
438   /// around any SCC.
439   class RefSCC {
440     friend class LazyCallGraph;
441     friend class LazyCallGraph::Node;
442 
443     LazyCallGraph *G;
444     SmallPtrSet<RefSCC *, 1> Parents;
445 
446     /// A postorder list of the inner SCCs.
447     SmallVector<SCC *, 4> SCCs;
448 
449     /// A map from SCC to index in the postorder list.
450     SmallDenseMap<SCC *, int, 4> SCCIndices;
451 
452     /// Fast-path constructor. RefSCCs should instead be constructed by calling
453     /// formRefSCCFast on the graph itself.
454     RefSCC(LazyCallGraph &G);
455 
456     /// Print a short description useful for debugging or logging.
457     ///
458     /// We print the SCCs wrapped in '[]'s and skipping the middle SCCs if
459     /// there are a large number.
460     //
461     // Note: this is defined inline to dodge issues with GCC's interpretation
462     // of enclosing namespaces for friend function declarations.
463     friend raw_ostream &operator<<(raw_ostream &OS, const RefSCC &RC) {
464       OS << '[';
465       int i = 0;
466       for (LazyCallGraph::SCC &C : RC) {
467         if (i > 0)
468           OS << ", ";
469         // Elide the inner elements if there are too many.
470         if (i > 4) {
471           OS << "..., " << *RC.SCCs.back();
472           break;
473         }
474         OS << C;
475         ++i;
476       }
477       OS << ']';
478       return OS;
479     }
480 
481     /// Dump a short description of this RefSCC to stderr.
482     void dump() const;
483 
484 #ifndef NDEBUG
485     /// Verify invariants about the RefSCC and all its SCCs.
486     ///
487     /// This will attempt to validate all of the invariants *within* the
488     /// RefSCC, but not that it is a strongly connected component of the larger
489     /// graph. This makes it useful even when partially through an update.
490     ///
491     /// Invariants checked:
492     /// - SCCs and their indices match.
493     /// - The SCCs list is in fact in post-order.
494     void verify();
495 #endif
496 
497   public:
498     typedef pointee_iterator<SmallVectorImpl<SCC *>::const_iterator> iterator;
499     typedef iterator_range<iterator> range;
500     typedef pointee_iterator<SmallPtrSetImpl<RefSCC *>::const_iterator>
501         parent_iterator;
502 
begin()503     iterator begin() const { return SCCs.begin(); }
end()504     iterator end() const { return SCCs.end(); }
505 
size()506     ssize_t size() const { return SCCs.size(); }
507 
508     SCC &operator[](int Idx) { return *SCCs[Idx]; }
509 
find(SCC & C)510     iterator find(SCC &C) const {
511       return SCCs.begin() + SCCIndices.find(&C)->second;
512     }
513 
parent_begin()514     parent_iterator parent_begin() const { return Parents.begin(); }
parent_end()515     parent_iterator parent_end() const { return Parents.end(); }
516 
parents()517     iterator_range<parent_iterator> parents() const {
518       return make_range(parent_begin(), parent_end());
519     }
520 
521     /// Test if this SCC is a parent of \a C.
isParentOf(const RefSCC & C)522     bool isParentOf(const RefSCC &C) const { return C.isChildOf(*this); }
523 
524     /// Test if this RefSCC is an ancestor of \a C.
isAncestorOf(const RefSCC & C)525     bool isAncestorOf(const RefSCC &C) const { return C.isDescendantOf(*this); }
526 
527     /// Test if this RefSCC is a child of \a C.
isChildOf(const RefSCC & C)528     bool isChildOf(const RefSCC &C) const {
529       return Parents.count(const_cast<RefSCC *>(&C));
530     }
531 
532     /// Test if this RefSCC is a descendant of \a C.
533     bool isDescendantOf(const RefSCC &C) const;
534 
535     /// Provide a short name by printing this SCC to a std::string.
536     ///
537     /// This copes with the fact that we don't have a name per-se for an SCC
538     /// while still making the use of this in debugging and logging useful.
getName()539     std::string getName() const {
540       std::string Name;
541       raw_string_ostream OS(Name);
542       OS << *this;
543       OS.flush();
544       return Name;
545     }
546 
547     ///@{
548     /// \name Mutation API
549     ///
550     /// These methods provide the core API for updating the call graph in the
551     /// presence of a (potentially still in-flight) DFS-found SCCs.
552     ///
553     /// Note that these methods sometimes have complex runtimes, so be careful
554     /// how you call them.
555 
556     /// Make an existing internal ref edge into a call edge.
557     ///
558     /// This may form a larger cycle and thus collapse SCCs into TargetN's SCC.
559     /// If that happens, the deleted SCC pointers are returned. These SCCs are
560     /// not in a valid state any longer but the pointers will remain valid
561     /// until destruction of the parent graph instance for the purpose of
562     /// clearing cached information.
563     ///
564     /// After this operation, both SourceN's SCC and TargetN's SCC may move
565     /// position within this RefSCC's postorder list. Any SCCs merged are
566     /// merged into the TargetN's SCC in order to preserve reachability analyses
567     /// which took place on that SCC.
568     SmallVector<SCC *, 1> switchInternalEdgeToCall(Node &SourceN,
569                                                    Node &TargetN);
570 
571     /// Make an existing internal call edge into a ref edge.
572     ///
573     /// If SourceN and TargetN are part of a single SCC, it may be split up due
574     /// to breaking a cycle in the call edges that formed it. If that happens,
575     /// then this routine will insert new SCCs into the postorder list *before*
576     /// the SCC of TargetN (previously the SCC of both). This preserves
577     /// postorder as the TargetN can reach all of the other nodes by definition
578     /// of previously being in a single SCC formed by the cycle from SourceN to
579     /// TargetN. The newly added nodes are added *immediately* and contiguously
580     /// prior to the TargetN SCC and so they may be iterated starting from
581     /// there.
582     void switchInternalEdgeToRef(Node &SourceN, Node &TargetN);
583 
584     /// Make an existing outgoing ref edge into a call edge.
585     ///
586     /// Note that this is trivial as there are no cyclic impacts and there
587     /// remains a reference edge.
588     void switchOutgoingEdgeToCall(Node &SourceN, Node &TargetN);
589 
590     /// Make an existing outgoing call edge into a ref edge.
591     ///
592     /// This is trivial as there are no cyclic impacts and there remains
593     /// a reference edge.
594     void switchOutgoingEdgeToRef(Node &SourceN, Node &TargetN);
595 
596     /// Insert a ref edge from one node in this RefSCC to another in this
597     /// RefSCC.
598     ///
599     /// This is always a trivial operation as it doesn't change any part of the
600     /// graph structure besides connecting the two nodes.
601     ///
602     /// Note that we don't support directly inserting internal *call* edges
603     /// because that could change the graph structure and requires returning
604     /// information about what became invalid. As a consequence, the pattern
605     /// should be to first insert the necessary ref edge, and then to switch it
606     /// to a call edge if needed and handle any invalidation that results. See
607     /// the \c switchInternalEdgeToCall routine for details.
608     void insertInternalRefEdge(Node &SourceN, Node &TargetN);
609 
610     /// Insert an edge whose parent is in this RefSCC and child is in some
611     /// child RefSCC.
612     ///
613     /// There must be an existing path from the \p SourceN to the \p TargetN.
614     /// This operation is inexpensive and does not change the set of SCCs and
615     /// RefSCCs in the graph.
616     void insertOutgoingEdge(Node &SourceN, Node &TargetN, Edge::Kind EK);
617 
618     /// Insert an edge whose source is in a descendant RefSCC and target is in
619     /// this RefSCC.
620     ///
621     /// There must be an existing path from the target to the source in this
622     /// case.
623     ///
624     /// NB! This is has the potential to be a very expensive function. It
625     /// inherently forms a cycle in the prior RefSCC DAG and we have to merge
626     /// RefSCCs to resolve that cycle. But finding all of the RefSCCs which
627     /// participate in the cycle can in the worst case require traversing every
628     /// RefSCC in the graph. Every attempt is made to avoid that, but passes
629     /// must still exercise caution calling this routine repeatedly.
630     ///
631     /// Also note that this can only insert ref edges. In order to insert
632     /// a call edge, first insert a ref edge and then switch it to a call edge.
633     /// These are intentionally kept as separate interfaces because each step
634     /// of the operation invalidates a different set of data structures.
635     ///
636     /// This returns all the RefSCCs which were merged into the this RefSCC
637     /// (the target's). This allows callers to invalidate any cached
638     /// information.
639     ///
640     /// FIXME: We could possibly optimize this quite a bit for cases where the
641     /// caller and callee are very nearby in the graph. See comments in the
642     /// implementation for details, but that use case might impact users.
643     SmallVector<RefSCC *, 1> insertIncomingRefEdge(Node &SourceN,
644                                                    Node &TargetN);
645 
646     /// Remove an edge whose source is in this RefSCC and target is *not*.
647     ///
648     /// This removes an inter-RefSCC edge. All inter-RefSCC edges originating
649     /// from this SCC have been fully explored by any in-flight DFS graph
650     /// formation, so this is always safe to call once you have the source
651     /// RefSCC.
652     ///
653     /// This operation does not change the cyclic structure of the graph and so
654     /// is very inexpensive. It may change the connectivity graph of the SCCs
655     /// though, so be careful calling this while iterating over them.
656     void removeOutgoingEdge(Node &SourceN, Node &TargetN);
657 
658     /// Remove a ref edge which is entirely within this RefSCC.
659     ///
660     /// Both the \a SourceN and the \a TargetN must be within this RefSCC.
661     /// Removing such an edge may break cycles that form this RefSCC and thus
662     /// this operation may change the RefSCC graph significantly. In
663     /// particular, this operation will re-form new RefSCCs based on the
664     /// remaining connectivity of the graph. The following invariants are
665     /// guaranteed to hold after calling this method:
666     ///
667     /// 1) This RefSCC is still a RefSCC in the graph.
668     /// 2) This RefSCC will be the parent of any new RefSCCs. Thus, this RefSCC
669     ///    is preserved as the root of any new RefSCC DAG formed.
670     /// 3) No RefSCC other than this RefSCC has its member set changed (this is
671     ///    inherent in the definition of removing such an edge).
672     /// 4) All of the parent links of the RefSCC graph will be updated to
673     ///    reflect the new RefSCC structure.
674     /// 5) All RefSCCs formed out of this RefSCC, excluding this RefSCC, will
675     ///    be returned in post-order.
676     /// 6) The order of the RefSCCs in the vector will be a valid postorder
677     ///    traversal of the new RefSCCs.
678     ///
679     /// These invariants are very important to ensure that we can build
680     /// optimization pipelines on top of the CGSCC pass manager which
681     /// intelligently update the RefSCC graph without invalidating other parts
682     /// of the RefSCC graph.
683     ///
684     /// Note that we provide no routine to remove a *call* edge. Instead, you
685     /// must first switch it to a ref edge using \c switchInternalEdgeToRef.
686     /// This split API is intentional as each of these two steps can invalidate
687     /// a different aspect of the graph structure and needs to have the
688     /// invalidation handled independently.
689     ///
690     /// The runtime complexity of this method is, in the worst case, O(V+E)
691     /// where V is the number of nodes in this RefSCC and E is the number of
692     /// edges leaving the nodes in this RefSCC. Note that E includes both edges
693     /// within this RefSCC and edges from this RefSCC to child RefSCCs. Some
694     /// effort has been made to minimize the overhead of common cases such as
695     /// self-edges and edge removals which result in a spanning tree with no
696     /// more cycles. There are also detailed comments within the implementation
697     /// on techniques which could substantially improve this routine's
698     /// efficiency.
699     SmallVector<RefSCC *, 1> removeInternalRefEdge(Node &SourceN,
700                                                    Node &TargetN);
701 
702     ///@}
703   };
704 
705   /// A post-order depth-first SCC iterator over the call graph.
706   ///
707   /// This iterator triggers the Tarjan DFS-based formation of the SCC DAG for
708   /// the call graph, walking it lazily in depth-first post-order. That is, it
709   /// always visits SCCs for a callee prior to visiting the SCC for a caller
710   /// (when they are in different SCCs).
711   class postorder_ref_scc_iterator
712       : public iterator_facade_base<postorder_ref_scc_iterator,
713                                     std::forward_iterator_tag, RefSCC> {
714     friend class LazyCallGraph;
715     friend class LazyCallGraph::Node;
716 
717     /// Nonce type to select the constructor for the end iterator.
718     struct IsAtEndT {};
719 
720     LazyCallGraph *G;
721     RefSCC *C;
722 
723     // Build the begin iterator for a node.
postorder_ref_scc_iterator(LazyCallGraph & G)724     postorder_ref_scc_iterator(LazyCallGraph &G) : G(&G) {
725       C = G.getNextRefSCCInPostOrder();
726     }
727 
728     // Build the end iterator for a node. This is selected purely by overload.
postorder_ref_scc_iterator(LazyCallGraph & G,IsAtEndT)729     postorder_ref_scc_iterator(LazyCallGraph &G, IsAtEndT /*Nonce*/)
730         : G(&G), C(nullptr) {}
731 
732   public:
733     bool operator==(const postorder_ref_scc_iterator &Arg) const {
734       return G == Arg.G && C == Arg.C;
735     }
736 
737     reference operator*() const { return *C; }
738 
739     using iterator_facade_base::operator++;
740     postorder_ref_scc_iterator &operator++() {
741       C = G->getNextRefSCCInPostOrder();
742       return *this;
743     }
744   };
745 
746   /// Construct a graph for the given module.
747   ///
748   /// This sets up the graph and computes all of the entry points of the graph.
749   /// No function definitions are scanned until their nodes in the graph are
750   /// requested during traversal.
751   LazyCallGraph(Module &M);
752 
753   LazyCallGraph(LazyCallGraph &&G);
754   LazyCallGraph &operator=(LazyCallGraph &&RHS);
755 
begin()756   edge_iterator begin() {
757     return edge_iterator(EntryEdges.begin(), EntryEdges.end());
758   }
end()759   edge_iterator end() {
760     return edge_iterator(EntryEdges.end(), EntryEdges.end());
761   }
762 
postorder_ref_scc_begin()763   postorder_ref_scc_iterator postorder_ref_scc_begin() {
764     return postorder_ref_scc_iterator(*this);
765   }
postorder_ref_scc_end()766   postorder_ref_scc_iterator postorder_ref_scc_end() {
767     return postorder_ref_scc_iterator(*this,
768                                       postorder_ref_scc_iterator::IsAtEndT());
769   }
770 
postorder_ref_sccs()771   iterator_range<postorder_ref_scc_iterator> postorder_ref_sccs() {
772     return make_range(postorder_ref_scc_begin(), postorder_ref_scc_end());
773   }
774 
775   /// Lookup a function in the graph which has already been scanned and added.
lookup(const Function & F)776   Node *lookup(const Function &F) const { return NodeMap.lookup(&F); }
777 
778   /// Lookup a function's SCC in the graph.
779   ///
780   /// \returns null if the function hasn't been assigned an SCC via the SCC
781   /// iterator walk.
lookupSCC(Node & N)782   SCC *lookupSCC(Node &N) const { return SCCMap.lookup(&N); }
783 
784   /// Lookup a function's RefSCC in the graph.
785   ///
786   /// \returns null if the function hasn't been assigned a RefSCC via the
787   /// RefSCC iterator walk.
lookupRefSCC(Node & N)788   RefSCC *lookupRefSCC(Node &N) const {
789     if (SCC *C = lookupSCC(N))
790       return &C->getOuterRefSCC();
791 
792     return nullptr;
793   }
794 
795   /// Get a graph node for a given function, scanning it to populate the graph
796   /// data as necessary.
get(Function & F)797   Node &get(Function &F) {
798     Node *&N = NodeMap[&F];
799     if (N)
800       return *N;
801 
802     return insertInto(F, N);
803   }
804 
805   ///@{
806   /// \name Pre-SCC Mutation API
807   ///
808   /// These methods are only valid to call prior to forming any SCCs for this
809   /// call graph. They can be used to update the core node-graph during
810   /// a node-based inorder traversal that precedes any SCC-based traversal.
811   ///
812   /// Once you begin manipulating a call graph's SCCs, you must perform all
813   /// mutation of the graph via the SCC methods.
814 
815   /// Update the call graph after inserting a new edge.
816   void insertEdge(Node &Caller, Function &Callee, Edge::Kind EK);
817 
818   /// Update the call graph after inserting a new edge.
insertEdge(Function & Caller,Function & Callee,Edge::Kind EK)819   void insertEdge(Function &Caller, Function &Callee, Edge::Kind EK) {
820     return insertEdge(get(Caller), Callee, EK);
821   }
822 
823   /// Update the call graph after deleting an edge.
824   void removeEdge(Node &Caller, Function &Callee);
825 
826   /// Update the call graph after deleting an edge.
removeEdge(Function & Caller,Function & Callee)827   void removeEdge(Function &Caller, Function &Callee) {
828     return removeEdge(get(Caller), Callee);
829   }
830 
831   ///@}
832 
833 private:
834   typedef SmallVectorImpl<Node *>::reverse_iterator node_stack_iterator;
835   typedef iterator_range<node_stack_iterator> node_stack_range;
836 
837   /// Allocator that holds all the call graph nodes.
838   SpecificBumpPtrAllocator<Node> BPA;
839 
840   /// Maps function->node for fast lookup.
841   DenseMap<const Function *, Node *> NodeMap;
842 
843   /// The entry nodes to the graph.
844   ///
845   /// These nodes are reachable through "external" means. Put another way, they
846   /// escape at the module scope.
847   EdgeVectorT EntryEdges;
848 
849   /// Map of the entry nodes in the graph to their indices in \c EntryEdges.
850   DenseMap<Function *, int> EntryIndexMap;
851 
852   /// Allocator that holds all the call graph SCCs.
853   SpecificBumpPtrAllocator<SCC> SCCBPA;
854 
855   /// Maps Function -> SCC for fast lookup.
856   DenseMap<Node *, SCC *> SCCMap;
857 
858   /// Allocator that holds all the call graph RefSCCs.
859   SpecificBumpPtrAllocator<RefSCC> RefSCCBPA;
860 
861   /// The leaf RefSCCs of the graph.
862   ///
863   /// These are all of the RefSCCs which have no children.
864   SmallVector<RefSCC *, 4> LeafRefSCCs;
865 
866   /// Stack of nodes in the DFS walk.
867   SmallVector<std::pair<Node *, edge_iterator>, 4> DFSStack;
868 
869   /// Set of entry nodes not-yet-processed into RefSCCs.
870   SmallVector<Function *, 4> RefSCCEntryNodes;
871 
872   /// Stack of nodes the DFS has walked but not yet put into a SCC.
873   SmallVector<Node *, 4> PendingRefSCCStack;
874 
875   /// Counter for the next DFS number to assign.
876   int NextDFSNumber;
877 
878   /// Helper to insert a new function, with an already looked-up entry in
879   /// the NodeMap.
880   Node &insertInto(Function &F, Node *&MappedN);
881 
882   /// Helper to update pointers back to the graph object during moves.
883   void updateGraphPtrs();
884 
885   /// Allocates an SCC and constructs it using the graph allocator.
886   ///
887   /// The arguments are forwarded to the constructor.
createSCC(Ts &&...Args)888   template <typename... Ts> SCC *createSCC(Ts &&... Args) {
889     return new (SCCBPA.Allocate()) SCC(std::forward<Ts>(Args)...);
890   }
891 
892   /// Allocates a RefSCC and constructs it using the graph allocator.
893   ///
894   /// The arguments are forwarded to the constructor.
createRefSCC(Ts &&...Args)895   template <typename... Ts> RefSCC *createRefSCC(Ts &&... Args) {
896     return new (RefSCCBPA.Allocate()) RefSCC(std::forward<Ts>(Args)...);
897   }
898 
899   /// Build the SCCs for a RefSCC out of a list of nodes.
900   void buildSCCs(RefSCC &RC, node_stack_range Nodes);
901 
902   /// Connect a RefSCC into the larger graph.
903   ///
904   /// This walks the edges to connect the RefSCC to its children's parent set,
905   /// and updates the root leaf list.
906   void connectRefSCC(RefSCC &RC);
907 
908   /// Retrieve the next node in the post-order RefSCC walk of the call graph.
909   RefSCC *getNextRefSCCInPostOrder();
910 };
911 
Edge()912 inline LazyCallGraph::Edge::Edge() : Value() {}
Edge(Function & F,Kind K)913 inline LazyCallGraph::Edge::Edge(Function &F, Kind K) : Value(&F, K) {}
Edge(Node & N,Kind K)914 inline LazyCallGraph::Edge::Edge(Node &N, Kind K) : Value(&N, K) {}
915 
916 inline LazyCallGraph::Edge::operator bool() const {
917   return !Value.getPointer().isNull();
918 }
919 
isCall()920 inline bool LazyCallGraph::Edge::isCall() const {
921   assert(*this && "Queried a null edge!");
922   return Value.getInt() == Call;
923 }
924 
getFunction()925 inline Function &LazyCallGraph::Edge::getFunction() const {
926   assert(*this && "Queried a null edge!");
927   auto P = Value.getPointer();
928   if (auto *F = P.dyn_cast<Function *>())
929     return *F;
930 
931   return P.get<Node *>()->getFunction();
932 }
933 
getNode()934 inline LazyCallGraph::Node *LazyCallGraph::Edge::getNode() const {
935   assert(*this && "Queried a null edge!");
936   auto P = Value.getPointer();
937   if (auto *N = P.dyn_cast<Node *>())
938     return N;
939 
940   return nullptr;
941 }
942 
getNode(LazyCallGraph & G)943 inline LazyCallGraph::Node &LazyCallGraph::Edge::getNode(LazyCallGraph &G) {
944   assert(*this && "Queried a null edge!");
945   auto P = Value.getPointer();
946   if (auto *N = P.dyn_cast<Node *>())
947     return *N;
948 
949   Node &N = G.get(*P.get<Function *>());
950   Value.setPointer(&N);
951   return N;
952 }
953 
954 // Provide GraphTraits specializations for call graphs.
955 template <> struct GraphTraits<LazyCallGraph::Node *> {
956   typedef LazyCallGraph::Node NodeType;
957   typedef LazyCallGraph::edge_iterator ChildIteratorType;
958 
959   static NodeType *getEntryNode(NodeType *N) { return N; }
960   static ChildIteratorType child_begin(NodeType *N) { return N->begin(); }
961   static ChildIteratorType child_end(NodeType *N) { return N->end(); }
962 };
963 template <> struct GraphTraits<LazyCallGraph *> {
964   typedef LazyCallGraph::Node NodeType;
965   typedef LazyCallGraph::edge_iterator ChildIteratorType;
966 
967   static NodeType *getEntryNode(NodeType *N) { return N; }
968   static ChildIteratorType child_begin(NodeType *N) { return N->begin(); }
969   static ChildIteratorType child_end(NodeType *N) { return N->end(); }
970 };
971 
972 /// An analysis pass which computes the call graph for a module.
973 class LazyCallGraphAnalysis : public AnalysisInfoMixin<LazyCallGraphAnalysis> {
974   friend AnalysisInfoMixin<LazyCallGraphAnalysis>;
975   static char PassID;
976 
977 public:
978   /// Inform generic clients of the result type.
979   typedef LazyCallGraph Result;
980 
981   /// Compute the \c LazyCallGraph for the module \c M.
982   ///
983   /// This just builds the set of entry points to the call graph. The rest is
984   /// built lazily as it is walked.
985   LazyCallGraph run(Module &M, ModuleAnalysisManager &) {
986     return LazyCallGraph(M);
987   }
988 };
989 
990 /// A pass which prints the call graph to a \c raw_ostream.
991 ///
992 /// This is primarily useful for testing the analysis.
993 class LazyCallGraphPrinterPass
994     : public PassInfoMixin<LazyCallGraphPrinterPass> {
995   raw_ostream &OS;
996 
997 public:
998   explicit LazyCallGraphPrinterPass(raw_ostream &OS);
999 
1000   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
1001 };
1002 
1003 /// A pass which prints the call graph as a DOT file to a \c raw_ostream.
1004 ///
1005 /// This is primarily useful for visualization purposes.
1006 class LazyCallGraphDOTPrinterPass
1007     : public PassInfoMixin<LazyCallGraphDOTPrinterPass> {
1008   raw_ostream &OS;
1009 
1010 public:
1011   explicit LazyCallGraphDOTPrinterPass(raw_ostream &OS);
1012 
1013   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
1014 };
1015 }
1016 
1017 #endif
1018