1 /*
2  *   Copyright (c) International Business Machines Corp., 2001-2004
3  *
4  *   This program is free software;  you can redistribute it and/or modify
5  *   it under the terms of the GNU General Public License as published by
6  *   the Free Software Foundation; either version 2 of the License, or
7  *   (at your option) any later version.
8  *
9  *   This program is distributed in the hope that it will be useful,
10  *   but WITHOUT ANY WARRANTY;  without even the implied warranty of
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
12  *   the GNU General Public License for more details.
13  *
14  *   You should have received a copy of the GNU General Public License
15  *   along with this program;  if not, write to the Free Software
16  *   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
17  */
18 #include <stdio.h>
19 #include <stdlib.h>
20 #include <assert.h>
21 #include "rbt.h"
22 
23 /*
24  * ***********************************************
25  *
26  * D.H. IBM, S. Rao
27  *
28  * Module: Operations executed on red-black struct
29  *
30  * ***********************************************
31  */
32 
33 /* Construct a red-black tree node */
34 
rbnode_construct(datatype object,rb_color color)35 rb_node *rbnode_construct(datatype object, rb_color color)
36 {
37 	rb_node *node = (rb_node *) malloc(sizeof(rb_node));
38 	if (!node) {
39 		fprintf(stderr, "Memory Shortage - No Execution Possible\n");
40 		return NULL;
41 	}
42 	node->object = object;
43 	node->color = color;
44 	node->parent = node->right = node->left = NULL;
45 	return node;
46 }
47 
48 /* Destructor of a red-black tree node */
49 
rbnode_destruct(rb_node * node,destructor d)50 void rbnode_destruct(rb_node * node, destructor d)
51 {
52 	if (!node)
53 		return;
54 	if (d != NULL)
55 		d(node->object);
56 	rbnode_destruct(node->right, d);
57 	rbnode_destruct(node->left, d);
58 	free(node);
59 }
60 
61 /* Determine the depth of the subtree spanned by a given node */
62 
rbnode_depth(rb_node * node)63 int rbnode_depth(rb_node * node)
64 {
65 	/* Recursively determine the depth of the left and right
66 	 * subtrees
67 	 */
68 	int irightdepth = (node->right) ? rbnode_depth(node->right) : 0;
69 	int ileftdepth = (node->left) ? rbnode_depth(node->left) : 0;
70 
71 	/* Return the maximal child depth + 1 (the current node) */
72 	return ((irightdepth >
73 		 ileftdepth) ? (irightdepth + 1) : (ileftdepth + 1));
74 }
75 
76 /* Return the leftmost leaf in the tree */
77 
rbnode_minimum(rb_node * node)78 rb_node *rbnode_minimum(rb_node * node)
79 {
80 	while (node->left)
81 		node = node->left;
82 	return node;
83 }
84 
85 /* Return the rightmost leaf in the tree */
86 
rbnode_maximum(rb_node * node)87 rb_node *rbnode_maximum(rb_node * node)
88 {
89 	while (node->right)
90 		node = node->right;
91 	return node;
92 }
93 
94 /* Replace an object */
95 
rbnode_replace(rb_node * node,datatype object)96 void rbnode_replace(rb_node * node, datatype object)
97 {
98 	/* Make sure the replacement does not violate the tree order
99 	 * Replace the object at the node
100 	 */
101 	node->object = object;
102 }
103 
104 /* Get the next node in the tree (according to the tree order) */
105 
rbnode_successor(rb_node * node)106 rb_node *rbnode_successor(rb_node * node)
107 {
108 	rb_node *succ_node;
109 
110 	if (node->right) {
111 
112 		/* If there is a right child, the successor is the
113 		 * minimal object in the sub-tree spanned by this
114 		 * child.
115 		 */
116 
117 		succ_node = node->right;
118 		while (succ_node->left)
119 			succ_node = succ_node->left;
120 	} else {
121 
122 		/* Otherwise, go up the tree until reaching the parent
123 		 * from the left direction.
124 		 */
125 
126 		rb_node *prev_node = node;
127 		succ_node = node->parent;
128 		while (succ_node && prev_node == succ_node->right) {
129 			prev_node = succ_node;
130 			succ_node = succ_node->parent;
131 		}
132 	}
133 
134 	return (succ_node);
135 }
136 
137 /* Get the previous node in the tree (according to the tree order) */
138 
rbnode_predecessor(rb_node * node)139 rb_node *rbnode_predecessor(rb_node * node)
140 {
141 	rb_node *pred_node;
142 
143 	if (node->left) {
144 
145 		/* If there is a left child, the predecessor is the
146 		 * maximal object in the sub-tree spanned by this
147 		 * child.
148 		 */
149 
150 		pred_node = node->left;
151 		while (pred_node->right)
152 			pred_node = pred_node->right;
153 	} else {
154 
155 		/* Otherwise, go up the tree until reaching the parent
156 		 * from the right direction.
157 		 */
158 
159 		rb_node *prev_node = node;
160 		pred_node = node->parent;
161 		while (pred_node && prev_node == pred_node->left) {
162 			prev_node = pred_node;
163 			pred_node = pred_node->parent;
164 		}
165 	}
166 
167 	return (pred_node);
168 }
169 
170 /* Return a pointer to a duplication of the given node */
171 
rbnode_duplicate(rb_node * node)172 rb_node *rbnode_duplicate(rb_node * node)
173 {
174 	/* Create a node of the same color, containing the same
175 	 * object
176 	 */
177 	rb_node *dup_node = rbnode_construct(node->object, node->color);
178 	if (!dup_node)
179 		return NULL;
180 
181 	/* Duplicate the children recursively */
182 	if (node->right) {
183 		dup_node->right = rbnode_duplicate(node->right);
184 		dup_node->right->parent = dup_node;
185 	} else {
186 		dup_node->right = NULL;
187 	}
188 
189 	if (node->left) {
190 		dup_node->left = rbnode_duplicate(node->left);
191 		dup_node->left->parent = dup_node;
192 	} else {
193 		dup_node->left = NULL;
194 	}
195 
196 	return dup_node;	/* Return the duplicated node */
197 }
198 
199 /* Traverse a red-black subtree */
200 
rbnode_traverse(rb_node * node,opr * op)201 void rbnode_traverse(rb_node * node, opr * op)
202 {
203 	if (!node)
204 		return;
205 	rbnode_traverse(node->left, op);
206 	op(node->object);
207 	rbnode_traverse(node->right, op);
208 }
209 
210 /*
211  * ***********************************
212  *
213  * Operations on rb_tree struct
214  *
215  * ***********************************
216  */
217 
218 /* Intialize a tree */
rbtree_init(rb_tree * tree)219 void rbtree_init(rb_tree * tree)
220 {
221 /*   tree->comp = comp; */
222 	tree->isize = 0;
223 	tree->root = NULL;
224 }
225 
226 /* Construct a tree given a comparison function */
227 
rbtree_construct()228 rb_tree *rbtree_construct()
229 {
230 	rb_tree *tree = (rb_tree *) malloc(sizeof(rb_tree));
231 	if (!tree) {
232 		fprintf(stderr, "Memory Issue - Shortge Exists!\n");
233 		return NULL;
234 	}
235 	rbtree_init(tree);
236 	return tree;
237 }
238 
239 /* Remove all objects from a black-red tree */
240 
rbtree_clean(rb_tree * tree,destructor d)241 void rbtree_clean(rb_tree * tree, destructor d)
242 {
243 	if (tree->root)
244 		rbnode_destruct(tree->root, d);
245 	tree->root = NULL;
246 	tree->isize = 0;
247 }
248 
249 /* Destruct a red-black tree */
250 
rbtree_destruct(rb_tree * tree,destructor d)251 void rbtree_destruct(rb_tree * tree, destructor d)
252 {
253 	rbtree_clean(tree, d);
254 	free(tree);
255 }
256 
257 /* Returns the size of the tree */
258 
rbtree_size(rb_tree * tree)259 int rbtree_size(rb_tree * tree)
260 {
261 	return tree->isize;
262 }
263 
264 /* Returns the depth of the tree */
265 
rbtree_depth(rb_tree * tree)266 int rbtree_depth(rb_tree * tree)
267 {
268 	if (!(tree->root))
269 		return 0;
270 	return rbnode_depth(tree->root);
271 }
272 
273 /* Check whether the tree contains a certain object */
274 
rbtree_contains(rb_tree * tree,datatype object)275 int rbtree_contains(rb_tree * tree, datatype object)
276 {
277 	return (rbtree_find(tree, object) != NULL);
278 }
279 
280 /* Insert an object into the rb-tree */
281 
rbtree_insert(rb_tree * tree,datatype object)282 rb_node *rbtree_insert(rb_tree * tree, datatype object)
283 {
284 	rb_node *cur_node;
285 	rb_node *new_node;
286 	int comp_result = 0;
287 
288 	if (!(tree->root)) {
289 		/* Assign a new root node (the root is always
290 		 * black)
291 		 */
292 		new_node = rbnode_construct(object, black);
293 		if (!new_node)
294 			return NULL;
295 		tree->root = new_node;
296 		tree->isize = 1;
297 		return new_node;
298 	}
299 
300 	/* Find a spot for the new object, insert the object as a red
301 	 * leaf
302 	 */
303 
304 	cur_node = tree->root;
305 	new_node = rbnode_construct(object, red);
306 	if (!new_node)
307 		return NULL;
308 
309 	while (cur_node) {
310 		/* Compare inserted object with the object stored in
311 		 * the current node
312 		 */
313 		comp_result = COMP_NODES(object, cur_node->object);
314 		if (comp_result == 0) {
315 			printf
316 			    ("Attempted to insert duplicate node, aborting\n");
317 			free(new_node);
318 			return NULL;
319 		}
320 		if (comp_result > 0) {
321 			if (!(cur_node->left)) {
322 				/* Insert the new leaf as the left
323 				 * child of the current node
324 				 */
325 				cur_node->left = new_node;
326 				new_node->parent = cur_node;
327 				cur_node = NULL;	/* Terminate the while loop */
328 			} else {
329 				/* Go to the left subtree */
330 				cur_node = cur_node->left;
331 			}
332 		} else {
333 			if (!(cur_node->right)) {
334 				/* Insert the new leaf as the right
335 				 * child of the current node
336 				 */
337 				cur_node->right = new_node;
338 				new_node->parent = cur_node;
339 				cur_node = NULL;	/* Terminate the while loop */
340 			} else {
341 				/* Go to the right subtree */
342 				cur_node = cur_node->right;
343 			}
344 		}
345 	}
346 
347 	/* Mark the fact that a new node was added */
348 	tree->isize++;
349 
350 	/* Fix the tree properties */
351 	rbtree_insert_fixup(tree, new_node);
352 
353 	return new_node;
354 }
355 
356 /* Insert a new object to the tree as the a successor of a given
357  * node
358  */
359 
insert_successor_at(rb_tree * tree,rb_node * at_node,datatype object)360 rb_node *insert_successor_at(rb_tree * tree, rb_node * at_node, datatype object)
361 {
362 	rb_node *parent;
363 	rb_node *new_node;
364 
365 	if (!(tree->root)) {
366 		/* Assign a new root node (the root is always
367 		 * black)
368 		 */
369 		new_node = rbnode_construct(object, black);
370 		if (!new_node)
371 			return NULL;
372 		tree->root = new_node;
373 		tree->isize = 1;
374 		return new_node;
375 	}
376 
377 	/* Insert the new object as a red leaf, being the successor of
378 	 * node
379 	 */
380 	new_node = rbnode_construct(object, red);
381 	if (!new_node)
382 		return NULL;
383 
384 	if (!at_node) {
385 		/* The new node should become the tree's minimum Place
386 		 * is as the left child of the current minimal leaf
387 		 */
388 		parent = rbnode_minimum(tree->root);
389 		parent->left = new_node;
390 	} else {
391 		/* Make sure the insertion does not violate the tree
392 		 * order In case given node has no right child, place
393 		 * the new node as its right child. Otherwise, place
394 		 * it at the leftmost position at the sub-tree rooted
395 		 * at its right side.
396 		 */
397 		if (!at_node->right) {
398 			parent = at_node;
399 			parent->right = new_node;
400 		} else {
401 			parent = rbnode_minimum(at_node->right);
402 			parent->left = new_node;
403 		}
404 	}
405 
406 	new_node->parent = parent;
407 
408 	/* Mark that a new node was added */
409 	tree->isize++;
410 
411 	/* Fix the tree properties */
412 	rbtree_insert_fixup(tree, new_node);
413 
414 	return new_node;
415 }
416 
417 /* Insert a new object to the tree as the a predecessor of a given node */
418 
insert_predecessor_at(rb_tree * tree,rb_node * at_node,datatype object)419 rb_node *insert_predecessor_at(rb_tree * tree, rb_node * at_node,
420 			       datatype object)
421 {
422 	rb_node *parent;
423 	rb_node *new_node;
424 
425 	if (!(tree->root)) {
426 		/* Assign a new root node (the root is always
427 		 * black)
428 		 */
429 		new_node = rbnode_construct(object, black);
430 		if (!new_node)
431 			return NULL;
432 		tree->root = new_node;
433 		tree->isize = 1;
434 		return new_node;
435 	}
436 
437 	/* Insert the new object as a red leaf, being the predecessor
438 	 * of at_node
439 	 */
440 	new_node = rbnode_construct(object, red);
441 	if (!new_node)
442 		return NULL;
443 
444 	if (!at_node) {
445 		/* The new node should become the tree maximum. Place
446 		 * is as the right child of the current maximal leaf
447 		 */
448 		parent = rbnode_maximum(tree->root);
449 		parent->right = new_node;
450 	} else {
451 		/* Make sure the insertion does not violate the tree
452 		 * order In case given node has no left child, place
453 		 * the new node as its left child. Otherwise, place it
454 		 * at the rightmost position at the sub-tree rooted at
455 		 * its left side.
456 		 */
457 		if (!(at_node->left)) {
458 			parent = at_node;
459 			parent->left = new_node;
460 		} else {
461 			parent = rbnode_maximum(at_node->left);
462 			parent->right = new_node;
463 		}
464 	}
465 
466 	new_node->parent = parent;
467 
468 	/* Mark that a new node was added */
469 	tree->isize++;
470 
471 	/* Fix the tree properties */
472 	rbtree_insert_fixup(tree, new_node);
473 
474 	return new_node;
475 }
476 
477 /* Remove an object from the tree */
478 
rbtree_remove(rb_tree * tree,datatype object,destructor d)479 void rbtree_remove(rb_tree * tree, datatype object, destructor d)
480 {
481 	rb_node *node = rbtree_find(tree, object);	/* Find the node */
482 	rbtree_remove_at(tree, node, d);	/* Remove the node */
483 }
484 
485 /* Remove the object pointed by the given node. */
486 
rbtree_remove_at(rb_tree * tree,rb_node * node,destructor d)487 void rbtree_remove_at(rb_tree * tree, rb_node * node, destructor d)
488 {
489 	rb_node *child = NULL;
490 
491 	/* In case of deleting the single object stored in the tree,
492 	 * free the root, thus emptying the tree
493 	 */
494 	if (tree->isize == 1) {
495 		rbnode_destruct(tree->root, d);
496 		tree->root = NULL;
497 		tree->isize = 0;
498 		return;
499 	}
500 
501 	/* Remove the given node from the tree */
502 	if (node->left && node->right) {
503 		/* If the node we want to remove has two children,
504 		 * find its successor, which is the leftmost child in
505 		 * its right sub-tree and has at most one child (it
506 		 * may have a right child).
507 		 */
508 		rb_node *succ_node = rbnode_minimum(node->right);
509 
510 		/* Now physically swap node and its successor. Notice
511 		 * this may temporarily violate the tree properties,
512 		 * but we are going to remove node anyway.  This way
513 		 * we have moved node to a position were it is more
514 		 * convinient to delete it.
515 		 */
516 		int immediate_succ = (node->right == succ_node);
517 		rb_node *succ_parent = succ_node->parent;
518 		rb_node *succ_left = succ_node->left;
519 		rb_node *succ_right = succ_node->right;
520 		rb_color succ_color = succ_node->color;
521 
522 		succ_node->parent = node->parent;
523 		succ_node->left = node->left;
524 		succ_node->right = immediate_succ ? node : node->right;
525 		succ_node->color = node->color;
526 
527 		node->parent = immediate_succ ? succ_node : succ_parent;
528 		node->left = succ_left;
529 		node->right = succ_right;
530 		node->color = succ_color;
531 
532 		if (!immediate_succ) {
533 			if (succ_node == node->parent->left)
534 				node->parent->left = node;
535 			else
536 				node->parent->right = node;
537 		}
538 
539 		if (node->left)
540 			node->left->parent = node;
541 		if (node->right)
542 			node->right->parent = node;
543 
544 		if (succ_node->parent) {
545 			if (node == succ_node->parent->left)
546 				succ_node->parent->left = succ_node;
547 			else
548 				succ_node->parent->right = succ_node;
549 		} else {
550 			tree->root = succ_node;
551 		}
552 
553 		if (succ_node->left)
554 			succ_node->left->parent = succ_node;
555 		if (succ_node->right)
556 			succ_node->right->parent = succ_node;
557 	}
558 
559 	/* At this stage, the node we are going to remove has at most
560 	 * one child
561 	 */
562 	child = (node->left) ? node->left : node->right;
563 
564 	/* Splice out the node to be removed, by linking its parent
565 	 * straight to the removed node's single child.
566 	 */
567 	if (child)
568 		child->parent = node->parent;
569 
570 	if (!(node->parent)) {
571 		/* If we are deleting the root, make the child the new
572 		 * tree node
573 		 */
574 		tree->root = child;
575 	} else {
576 		/* Link the removed node parent to its child */
577 		if (node == node->parent->left)
578 			node->parent->left = child;
579 		else
580 			node->parent->right = child;
581 	}
582 
583 	/* Fix-up the red-black properties that may have been damaged:
584 	 * If we have just removed a black node, the black-depth
585 	 * property is no longer valid
586 	 */
587 	if (node->color == black && child)
588 		rbtree_remove_fixup(tree, child);
589 
590 	/* Delete the un-necessary node (nullify both its children
591 	 * because the node's destructor is recursive).
592 	 */
593 	node->left = NULL;
594 	node->right = NULL;
595 	free(node);
596 
597 	/* Decrease the number of objects in the tree */
598 	tree->isize--;
599 }
600 
601 /* Get the tree minimum */
602 
rbtree_minimum(rb_tree * tree)603 rb_node *rbtree_minimum(rb_tree * tree)
604 {
605 	if (!(tree->root))
606 		return NULL;
607 
608 	/* Return the leftmost leaf in the tree */
609 	return rbnode_minimum(tree->root);
610 }
611 
612 /* Get the tree maximum */
613 
rbtree_maximum(rb_tree * tree)614 rb_node *rbtree_maximum(rb_tree * tree)
615 {
616 	if (!(tree->root))
617 		return NULL;
618 
619 	/* Return the rightmost leaf in the tree */
620 	return rbnode_maximum(tree->root);
621 }
622 
623 /* Return a pointer to the node containing the given object */
624 
rbtree_find(rb_tree * tree,datatype object)625 rb_node *rbtree_find(rb_tree * tree, datatype object)
626 {
627 	rb_node *cur_node = tree->root;
628 	int comp_result;
629 
630 	while (cur_node) {
631 		comp_result = COMP_NODES(object, cur_node->object);
632 		/* In case of equality, we can return the current
633 		 * node.
634 		 */
635 		if (comp_result == 0)
636 			return cur_node;
637 		/* Go down to the left or right child. */
638 		cur_node = (comp_result > 0) ? cur_node->left : cur_node->right;
639 	}
640 
641 	/* If we get here, the object is not in the tree */
642 	return NULL;
643 }
644 
rbtree_rotate_left(rb_tree * tree,rb_node * x_node)645 void rbtree_rotate_left(rb_tree * tree, rb_node * x_node)
646 {
647 	/* Get the right child of the node */
648 	rb_node *y_node = x_node->right;
649 
650 	/* Change its left subtree (T2) to x's right subtree */
651 	x_node->right = y_node->left;
652 
653 	/* Link T2 to its new parent x */
654 	if (y_node->left != NULL)
655 		y_node->left->parent = x_node;
656 
657 	/* Assign x's parent to be y's parent */
658 	y_node->parent = x_node->parent;
659 
660 	if (!(x_node->parent)) {
661 		/* Make y the new tree root */
662 		tree->root = y_node;
663 	} else {
664 		/* Assign a pointer to y from x's parent */
665 		if (x_node == x_node->parent->left)
666 			x_node->parent->left = y_node;
667 		else
668 			x_node->parent->right = y_node;
669 	}
670 
671 	/* Assign x to be y's left child */
672 	y_node->left = x_node;
673 	x_node->parent = y_node;
674 }
675 
676 /* Right-rotate the sub-tree spanned by the given node */
677 
rbtree_rotate_right(rb_tree * tree,rb_node * y_node)678 void rbtree_rotate_right(rb_tree * tree, rb_node * y_node)
679 {
680 	/* Get the left child of the node */
681 	rb_node *x_node = y_node->left;
682 
683 	/* Change its right subtree (T2) to y's left subtree */
684 	y_node->left = x_node->right;
685 
686 	/* Link T2 to its new parent y */
687 	if (x_node->right != NULL)
688 		x_node->right->parent = y_node;
689 
690 	/* Assign y's parent to be x's parent */
691 	x_node->parent = y_node->parent;
692 
693 	if (!(y_node->parent)) {
694 		/* Make x the new tree root */
695 		tree->root = x_node;
696 	} else {
697 		/* Assign a pointer to x from y's parent */
698 		if (y_node == y_node->parent->left)
699 			y_node->parent->left = x_node;
700 		else
701 			y_node->parent->right = x_node;
702 	}
703 
704 	/* Assign y to be x's right child */
705 	x_node->right = y_node;
706 	y_node->parent = x_node;
707 }
708 
709 /* Fix the tree so it maintains the red-black properties after an insert */
710 
rbtree_insert_fixup(rb_tree * tree,rb_node * node)711 void rbtree_insert_fixup(rb_tree * tree, rb_node * node)
712 {
713 	/* Fix the red-black propreties. We may have inserted a red
714 	 * leaf as the child of a red parent - so we have to fix the
715 	 * coloring of the parent recursively.
716 	 */
717 	rb_node *curr_node = node;
718 	rb_node *grandparent;
719 	rb_node *uncle;
720 
721 	assert(node && node->color == red);
722 
723 	while (curr_node != tree->root && curr_node->parent->color == red) {
724 		/* Get a pointer to the current node's grandparent
725 		 * (the root is always black, so the red parent must
726 		 * have a parent).
727 		 */
728 
729 		grandparent = curr_node->parent->parent;
730 
731 		if (curr_node->parent == grandparent->left) {
732 			/* If the red parent is a left child, the
733 			 * uncle is the right child of the grandparent.
734 			 */
735 			uncle = grandparent->right;
736 
737 			if (uncle && uncle->color == red) {
738 
739 				/* If both parent and uncle are red,
740 				 * color them black and color the
741 				 * grandparent red. In case of a NULL
742 				 * uncle, treat it as a black node
743 				 */
744 				curr_node->parent->color = black;
745 				uncle->color = black;
746 				grandparent->color = red;
747 
748 				/* Move to the grandparent */
749 				curr_node = grandparent;
750 			} else {
751 				/* Make sure the current node is a
752 				 * right child. If not, left-rotate the
753 				 * parent's sub-tree so the parent
754 				 * becomes the right child of the
755 				 * current node (see _rotate_left).
756 				 */
757 				if (curr_node == curr_node->parent->right) {
758 					curr_node = curr_node->parent;
759 					rbtree_rotate_left(tree, curr_node);
760 				}
761 
762 				/* Color the parent black and the
763 				 * grandparent red
764 				 */
765 				curr_node->parent->color = black;
766 				grandparent->color = red;
767 
768 				/* Right-rotate the grandparent's
769 				 * sub-tree
770 				 */
771 				rbtree_rotate_right(tree, grandparent);
772 			}
773 		} else {
774 			/* If the red parent is a right child, the
775 			 * uncle is the left child of the grandparent.
776 			 */
777 			uncle = grandparent->left;
778 
779 			if (uncle && uncle->color == red) {
780 				/* If both parent and uncle are red,
781 				 * color them black and color the
782 				 * grandparent red. In case of a NULL
783 				 * uncle, treat it as a black node
784 				 */
785 				curr_node->parent->color = black;
786 				uncle->color = black;
787 				grandparent->color = red;
788 
789 				/* Move to the grandparent */
790 				curr_node = grandparent;
791 			} else {
792 				/* Make sure the current node is a
793 				 * left child. If not, right-rotate
794 				 * the parent's sub-tree so the parent
795 				 * becomes the left child of the
796 				 * current node.
797 				 */
798 				if (curr_node == curr_node->parent->left) {
799 					curr_node = curr_node->parent;
800 					rbtree_rotate_right(tree, curr_node);
801 				}
802 
803 				/* Color the parent black and the
804 				 * grandparent red
805 				 */
806 				curr_node->parent->color = black;
807 				grandparent->color = red;
808 
809 				/* Left-rotate the grandparent's
810 				 * sub-tree
811 				 */
812 				rbtree_rotate_left(tree, grandparent);
813 			}
814 		}
815 	}
816 
817 	/* Make sure that the root is black */
818 	tree->root->color = black;
819 }
820 
rbtree_remove_fixup(rb_tree * tree,rb_node * node)821 void rbtree_remove_fixup(rb_tree * tree, rb_node * node)
822 {
823 	rb_node *curr_node = node;
824 	rb_node *sibling;
825 
826 	while (curr_node != tree->root && curr_node->color == black) {
827 		/* Get a pointer to the current node's sibling (notice
828 		 * that the node's parent must exist, since the node
829 		 * is not the root).
830 		 */
831 		if (curr_node == curr_node->parent->left) {
832 			/* If the current node is a left child, its
833 			 * sibling is the right child of the parent.
834 			 */
835 			sibling = curr_node->parent->right;
836 
837 			/* Check the sibling's color. Notice that NULL
838 			 * nodes are treated as if they are colored
839 			 * black.
840 			 */
841 			if (sibling && sibling->color == red) {
842 				/* In case the sibling is red, color
843 				 * it black and rotate.  Then color
844 				 * the parent red (the grandparent is
845 				 * now black)
846 				 */
847 				sibling->color = black;
848 				curr_node->parent->color = red;
849 				rbtree_rotate_left(tree, curr_node->parent);
850 				sibling = curr_node->parent->right;
851 			}
852 
853 			if (sibling &&
854 			    (!(sibling->left) || sibling->left->color == black)
855 			    && (!(sibling->right)
856 				|| sibling->right->color == black)) {
857 				/* If the sibling has two black
858 				 * children, color it red
859 				 */
860 				sibling->color = red;
861 				if (curr_node->parent->color == red) {
862 					/* If the parent is red, we
863 					 * can safely color it black
864 					 * and terminate the fix
865 					 * process.
866 					 */
867 					curr_node->parent->color = black;
868 					/* In order to stop the while loop */
869 					curr_node = tree->root;
870 				} else {
871 					/* The black depth of the
872 					 * entire sub-tree rooted at
873 					 * the parent is now too small
874 					 * - fix it up recursively.
875 					 */
876 					curr_node = curr_node->parent;
877 				}
878 			} else {
879 				if (!sibling) {
880 					/* Take special care of the
881 					 * case of a NULL sibling
882 					 */
883 					if (curr_node->parent->color == red) {
884 						curr_node->parent->color =
885 						    black;
886 						/* In order to stop
887 						 * the while loop */
888 						curr_node = tree->root;
889 					} else {
890 						curr_node = curr_node->parent;
891 					}
892 				} else {
893 					/* In this case, at least one
894 					 * of the sibling's children
895 					 * is red.  It is therfore
896 					 * obvious that the sibling
897 					 * itself is black.
898 					 */
899 					if (sibling->right
900 					    && sibling->right->color == red) {
901 						/* If the right child
902 						 * of the sibling is
903 						 * red, color it black
904 						 * and rotate around
905 						 * the current parent.
906 						 */
907 						sibling->right->color = black;
908 						rbtree_rotate_left(tree,
909 								   curr_node->
910 								   parent);
911 					} else {
912 						/* If the left child
913 						 * of the sibling is
914 						 * red, rotate around
915 						 * the sibling, then
916 						 * rotate around the
917 						 * new sibling of our
918 						 * current node.
919 						 */
920 						rbtree_rotate_right(tree,
921 								    sibling);
922 						sibling =
923 						    curr_node->parent->right;
924 						rbtree_rotate_left(tree,
925 								   sibling);
926 					}
927 
928 					/* It is now safe to color the
929 					 * parent black and to
930 					 * terminate the fix process.
931 					 */
932 					if (curr_node->parent->parent)
933 						curr_node->parent->parent->
934 						    color =
935 						    curr_node->parent->color;
936 					curr_node->parent->color = black;
937 					/* In order to stop the while loop */
938 					curr_node = tree->root;
939 				}
940 			}
941 		} else {
942 			/* If the current node is a right child, its
943 			 * sibling is the left child of the parent.
944 			 */
945 			sibling = curr_node->parent->left;
946 
947 			/* Check the sibling's color. Notice that NULL
948 			 * nodes are treated as if they are colored
949 			 * black.
950 			 */
951 			if (sibling && sibling->color == red) {
952 				/* In case the sibling is red, color
953 				 * it black and rotate.  Then color
954 				 * the parent red (the grandparent is
955 				 * now black).
956 				 */
957 				sibling->color = black;
958 				curr_node->parent->color = red;
959 				rbtree_rotate_right(tree, curr_node->parent);
960 
961 				sibling = curr_node->parent->left;
962 			}
963 
964 			if (sibling &&
965 			    (!(sibling->left) || sibling->left->color == black)
966 			    && (!(sibling->right)
967 				|| sibling->right->color == black)) {
968 				/* If the sibling has two black children, color it red */
969 				sibling->color = red;
970 				if (curr_node->parent->color == red) {
971 					/* If the parent is red, we
972 					 * can safely color it black
973 					 * and terminate the fix-up
974 					 * process.
975 					 */
976 					curr_node->parent->color = black;
977 					/* In order to stop the while
978 					 * loop
979 					 */
980 					curr_node = tree->root;
981 				} else {
982 					/* The black depth of the
983 					 * entire sub-tree rooted at
984 					 * the parent is now too small
985 					 * - fix it up recursively.
986 					 */
987 					curr_node = curr_node->parent;
988 				}
989 			} else {
990 				if (!sibling) {
991 					/* Take special care of the
992 					 * case of a NULL sibling */
993 					if (curr_node->parent->color == red) {
994 						curr_node->parent->color =
995 						    black;
996 						/* In order to stop
997 						 * the while loop */
998 						curr_node = tree->root;
999 					} else {
1000 						curr_node = curr_node->parent;
1001 					}
1002 				} else {
1003 					/* In this case, at least one
1004 					 * of the sibling's children is
1005 					 * red.  It is therfore obvious
1006 					 * that the sibling itself is
1007 					 * black.
1008 					 */
1009 					if (sibling->left
1010 					    && sibling->left->color == red) {
1011 						/* If the left child
1012 						 * of the sibling is
1013 						 * red, color it black
1014 						 * and rotate around
1015 						 * the current parent
1016 						 */
1017 						sibling->left->color = black;
1018 						rbtree_rotate_right(tree,
1019 								    curr_node->
1020 								    parent);
1021 					} else {
1022 						/* If the right child
1023 						 * of the sibling is
1024 						 * red, rotate around
1025 						 * the sibling, then
1026 						 * rotate around the
1027 						 * new sibling of our
1028 						 * current node
1029 						 */
1030 						rbtree_rotate_left(tree,
1031 								   sibling);
1032 						sibling =
1033 						    curr_node->parent->left;
1034 						rbtree_rotate_right(tree,
1035 								    sibling);
1036 					}
1037 
1038 					/* It is now safe to color the
1039 					 * parent black and to
1040 					 * terminate the fix process.
1041 					 */
1042 					if (curr_node->parent->parent)
1043 						curr_node->parent->parent->
1044 						    color =
1045 						    curr_node->parent->color;
1046 					curr_node->parent->color = black;
1047 					/* In order to stop the while loop */
1048 					curr_node = tree->root;
1049 				}
1050 			}
1051 		}
1052 	}
1053 
1054 	/* The root can always be colored black */
1055 	curr_node->color = black;
1056 }
1057 
1058 /* Traverse a red-black tree */
1059 
rbtree_traverse(rb_tree * tree,opr * op)1060 void rbtree_traverse(rb_tree * tree, opr * op)
1061 {
1062 	rbnode_traverse(tree->root, op);
1063 }
1064