1 /* 2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 3 * 4 * This code is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License version 2 only, as 6 * published by the Free Software Foundation. Oracle designates this 7 * particular file as subject to the "Classpath" exception as provided 8 * by Oracle in the LICENSE file that accompanied this code. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 */ 24 25 /* 26 * This file is available under and governed by the GNU General Public 27 * License version 2 only, as published by the Free Software Foundation. 28 * However, the following notice accompanied the original version of this 29 * file: 30 * 31 * Written by Doug Lea with assistance from members of JCP JSR-166 32 * Expert Group and released to the public domain, as explained at 33 * http://creativecommons.org/publicdomain/zero/1.0/ 34 */ 35 36 package java.util.concurrent; 37 38 import java.io.ObjectStreamField; 39 import java.io.Serializable; 40 import java.lang.reflect.ParameterizedType; 41 import java.lang.reflect.Type; 42 import java.util.AbstractMap; 43 import java.util.Arrays; 44 import java.util.Collection; 45 import java.util.Enumeration; 46 import java.util.HashMap; 47 import java.util.Hashtable; 48 import java.util.Iterator; 49 import java.util.Map; 50 import java.util.NoSuchElementException; 51 import java.util.Set; 52 import java.util.Spliterator; 53 import java.util.concurrent.atomic.AtomicReference; 54 import java.util.concurrent.locks.LockSupport; 55 import java.util.concurrent.locks.ReentrantLock; 56 import java.util.function.BiConsumer; 57 import java.util.function.BiFunction; 58 import java.util.function.Consumer; 59 import java.util.function.DoubleBinaryOperator; 60 import java.util.function.Function; 61 import java.util.function.IntBinaryOperator; 62 import java.util.function.LongBinaryOperator; 63 import java.util.function.Predicate; 64 import java.util.function.ToDoubleBiFunction; 65 import java.util.function.ToDoubleFunction; 66 import java.util.function.ToIntBiFunction; 67 import java.util.function.ToIntFunction; 68 import java.util.function.ToLongBiFunction; 69 import java.util.function.ToLongFunction; 70 import java.util.stream.Stream; 71 72 // BEGIN android-note 73 // removed link to collections framework docs 74 // END android-note 75 76 /** 77 * A hash table supporting full concurrency of retrievals and 78 * high expected concurrency for updates. This class obeys the 79 * same functional specification as {@link java.util.Hashtable}, and 80 * includes versions of methods corresponding to each method of 81 * {@code Hashtable}. However, even though all operations are 82 * thread-safe, retrieval operations do <em>not</em> entail locking, 83 * and there is <em>not</em> any support for locking the entire table 84 * in a way that prevents all access. This class is fully 85 * interoperable with {@code Hashtable} in programs that rely on its 86 * thread safety but not on its synchronization details. 87 * 88 * <p>Retrieval operations (including {@code get}) generally do not 89 * block, so may overlap with update operations (including {@code put} 90 * and {@code remove}). Retrievals reflect the results of the most 91 * recently <em>completed</em> update operations holding upon their 92 * onset. (More formally, an update operation for a given key bears a 93 * <em>happens-before</em> relation with any (non-null) retrieval for 94 * that key reporting the updated value.) For aggregate operations 95 * such as {@code putAll} and {@code clear}, concurrent retrievals may 96 * reflect insertion or removal of only some entries. Similarly, 97 * Iterators, Spliterators and Enumerations return elements reflecting the 98 * state of the hash table at some point at or since the creation of the 99 * iterator/enumeration. They do <em>not</em> throw {@link 100 * java.util.ConcurrentModificationException ConcurrentModificationException}. 101 * However, iterators are designed to be used by only one thread at a time. 102 * Bear in mind that the results of aggregate status methods including 103 * {@code size}, {@code isEmpty}, and {@code containsValue} are typically 104 * useful only when a map is not undergoing concurrent updates in other threads. 105 * Otherwise the results of these methods reflect transient states 106 * that may be adequate for monitoring or estimation purposes, but not 107 * for program control. 108 * 109 * <p>The table is dynamically expanded when there are too many 110 * collisions (i.e., keys that have distinct hash codes but fall into 111 * the same slot modulo the table size), with the expected average 112 * effect of maintaining roughly two bins per mapping (corresponding 113 * to a 0.75 load factor threshold for resizing). There may be much 114 * variance around this average as mappings are added and removed, but 115 * overall, this maintains a commonly accepted time/space tradeoff for 116 * hash tables. However, resizing this or any other kind of hash 117 * table may be a relatively slow operation. When possible, it is a 118 * good idea to provide a size estimate as an optional {@code 119 * initialCapacity} constructor argument. An additional optional 120 * {@code loadFactor} constructor argument provides a further means of 121 * customizing initial table capacity by specifying the table density 122 * to be used in calculating the amount of space to allocate for the 123 * given number of elements. Also, for compatibility with previous 124 * versions of this class, constructors may optionally specify an 125 * expected {@code concurrencyLevel} as an additional hint for 126 * internal sizing. Note that using many keys with exactly the same 127 * {@code hashCode()} is a sure way to slow down performance of any 128 * hash table. To ameliorate impact, when keys are {@link Comparable}, 129 * this class may use comparison order among keys to help break ties. 130 * 131 * <p>A {@link Set} projection of a ConcurrentHashMap may be created 132 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed 133 * (using {@link #keySet(Object)} when only keys are of interest, and the 134 * mapped values are (perhaps transiently) not used or all take the 135 * same mapping value. 136 * 137 * <p>A ConcurrentHashMap can be used as a scalable frequency map (a 138 * form of histogram or multiset) by using {@link 139 * java.util.concurrent.atomic.LongAdder} values and initializing via 140 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count 141 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use 142 * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();} 143 * 144 * <p>This class and its views and iterators implement all of the 145 * <em>optional</em> methods of the {@link Map} and {@link Iterator} 146 * interfaces. 147 * 148 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class 149 * does <em>not</em> allow {@code null} to be used as a key or value. 150 * 151 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk 152 * operations that, unlike most {@link Stream} methods, are designed 153 * to be safely, and often sensibly, applied even with maps that are 154 * being concurrently updated by other threads; for example, when 155 * computing a snapshot summary of the values in a shared registry. 156 * There are three kinds of operation, each with four forms, accepting 157 * functions with keys, values, entries, and (key, value) pairs as 158 * arguments and/or return values. Because the elements of a 159 * ConcurrentHashMap are not ordered in any particular way, and may be 160 * processed in different orders in different parallel executions, the 161 * correctness of supplied functions should not depend on any 162 * ordering, or on any other objects or values that may transiently 163 * change while computation is in progress; and except for forEach 164 * actions, should ideally be side-effect-free. Bulk operations on 165 * {@link java.util.Map.Entry} objects do not support method {@code 166 * setValue}. 167 * 168 * <ul> 169 * <li>forEach: Performs a given action on each element. 170 * A variant form applies a given transformation on each element 171 * before performing the action. 172 * 173 * <li>search: Returns the first available non-null result of 174 * applying a given function on each element; skipping further 175 * search when a result is found. 176 * 177 * <li>reduce: Accumulates each element. The supplied reduction 178 * function cannot rely on ordering (more formally, it should be 179 * both associative and commutative). There are five variants: 180 * 181 * <ul> 182 * 183 * <li>Plain reductions. (There is not a form of this method for 184 * (key, value) function arguments since there is no corresponding 185 * return type.) 186 * 187 * <li>Mapped reductions that accumulate the results of a given 188 * function applied to each element. 189 * 190 * <li>Reductions to scalar doubles, longs, and ints, using a 191 * given basis value. 192 * 193 * </ul> 194 * </ul> 195 * 196 * <p>These bulk operations accept a {@code parallelismThreshold} 197 * argument. Methods proceed sequentially if the current map size is 198 * estimated to be less than the given threshold. Using a value of 199 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value 200 * of {@code 1} results in maximal parallelism by partitioning into 201 * enough subtasks to fully utilize the {@link 202 * ForkJoinPool#commonPool()} that is used for all parallel 203 * computations. Normally, you would initially choose one of these 204 * extreme values, and then measure performance of using in-between 205 * values that trade off overhead versus throughput. 206 * 207 * <p>The concurrency properties of bulk operations follow 208 * from those of ConcurrentHashMap: Any non-null result returned 209 * from {@code get(key)} and related access methods bears a 210 * happens-before relation with the associated insertion or 211 * update. The result of any bulk operation reflects the 212 * composition of these per-element relations (but is not 213 * necessarily atomic with respect to the map as a whole unless it 214 * is somehow known to be quiescent). Conversely, because keys 215 * and values in the map are never null, null serves as a reliable 216 * atomic indicator of the current lack of any result. To 217 * maintain this property, null serves as an implicit basis for 218 * all non-scalar reduction operations. For the double, long, and 219 * int versions, the basis should be one that, when combined with 220 * any other value, returns that other value (more formally, it 221 * should be the identity element for the reduction). Most common 222 * reductions have these properties; for example, computing a sum 223 * with basis 0 or a minimum with basis MAX_VALUE. 224 * 225 * <p>Search and transformation functions provided as arguments 226 * should similarly return null to indicate the lack of any result 227 * (in which case it is not used). In the case of mapped 228 * reductions, this also enables transformations to serve as 229 * filters, returning null (or, in the case of primitive 230 * specializations, the identity basis) if the element should not 231 * be combined. You can create compound transformations and 232 * filterings by composing them yourself under this "null means 233 * there is nothing there now" rule before using them in search or 234 * reduce operations. 235 * 236 * <p>Methods accepting and/or returning Entry arguments maintain 237 * key-value associations. They may be useful for example when 238 * finding the key for the greatest value. Note that "plain" Entry 239 * arguments can be supplied using {@code new 240 * AbstractMap.SimpleEntry(k,v)}. 241 * 242 * <p>Bulk operations may complete abruptly, throwing an 243 * exception encountered in the application of a supplied 244 * function. Bear in mind when handling such exceptions that other 245 * concurrently executing functions could also have thrown 246 * exceptions, or would have done so if the first exception had 247 * not occurred. 248 * 249 * <p>Speedups for parallel compared to sequential forms are common 250 * but not guaranteed. Parallel operations involving brief functions 251 * on small maps may execute more slowly than sequential forms if the 252 * underlying work to parallelize the computation is more expensive 253 * than the computation itself. Similarly, parallelization may not 254 * lead to much actual parallelism if all processors are busy 255 * performing unrelated tasks. 256 * 257 * <p>All arguments to all task methods must be non-null. 258 * 259 * @since 1.5 260 * @author Doug Lea 261 * @param <K> the type of keys maintained by this map 262 * @param <V> the type of mapped values 263 */ 264 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V> 265 implements ConcurrentMap<K,V>, Serializable { 266 private static final long serialVersionUID = 7249069246763182397L; 267 268 /* 269 * Overview: 270 * 271 * The primary design goal of this hash table is to maintain 272 * concurrent readability (typically method get(), but also 273 * iterators and related methods) while minimizing update 274 * contention. Secondary goals are to keep space consumption about 275 * the same or better than java.util.HashMap, and to support high 276 * initial insertion rates on an empty table by many threads. 277 * 278 * This map usually acts as a binned (bucketed) hash table. Each 279 * key-value mapping is held in a Node. Most nodes are instances 280 * of the basic Node class with hash, key, value, and next 281 * fields. However, various subclasses exist: TreeNodes are 282 * arranged in balanced trees, not lists. TreeBins hold the roots 283 * of sets of TreeNodes. ForwardingNodes are placed at the heads 284 * of bins during resizing. ReservationNodes are used as 285 * placeholders while establishing values in computeIfAbsent and 286 * related methods. The types TreeBin, ForwardingNode, and 287 * ReservationNode do not hold normal user keys, values, or 288 * hashes, and are readily distinguishable during search etc 289 * because they have negative hash fields and null key and value 290 * fields. (These special nodes are either uncommon or transient, 291 * so the impact of carrying around some unused fields is 292 * insignificant.) 293 * 294 * The table is lazily initialized to a power-of-two size upon the 295 * first insertion. Each bin in the table normally contains a 296 * list of Nodes (most often, the list has only zero or one Node). 297 * Table accesses require volatile/atomic reads, writes, and 298 * CASes. Because there is no other way to arrange this without 299 * adding further indirections, we use intrinsics 300 * (sun.misc.Unsafe) operations. 301 * 302 * We use the top (sign) bit of Node hash fields for control 303 * purposes -- it is available anyway because of addressing 304 * constraints. Nodes with negative hash fields are specially 305 * handled or ignored in map methods. 306 * 307 * Insertion (via put or its variants) of the first node in an 308 * empty bin is performed by just CASing it to the bin. This is 309 * by far the most common case for put operations under most 310 * key/hash distributions. Other update operations (insert, 311 * delete, and replace) require locks. We do not want to waste 312 * the space required to associate a distinct lock object with 313 * each bin, so instead use the first node of a bin list itself as 314 * a lock. Locking support for these locks relies on builtin 315 * "synchronized" monitors. 316 * 317 * Using the first node of a list as a lock does not by itself 318 * suffice though: When a node is locked, any update must first 319 * validate that it is still the first node after locking it, and 320 * retry if not. Because new nodes are always appended to lists, 321 * once a node is first in a bin, it remains first until deleted 322 * or the bin becomes invalidated (upon resizing). 323 * 324 * The main disadvantage of per-bin locks is that other update 325 * operations on other nodes in a bin list protected by the same 326 * lock can stall, for example when user equals() or mapping 327 * functions take a long time. However, statistically, under 328 * random hash codes, this is not a common problem. Ideally, the 329 * frequency of nodes in bins follows a Poisson distribution 330 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a 331 * parameter of about 0.5 on average, given the resizing threshold 332 * of 0.75, although with a large variance because of resizing 333 * granularity. Ignoring variance, the expected occurrences of 334 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The 335 * first values are: 336 * 337 * 0: 0.60653066 338 * 1: 0.30326533 339 * 2: 0.07581633 340 * 3: 0.01263606 341 * 4: 0.00157952 342 * 5: 0.00015795 343 * 6: 0.00001316 344 * 7: 0.00000094 345 * 8: 0.00000006 346 * more: less than 1 in ten million 347 * 348 * Lock contention probability for two threads accessing distinct 349 * elements is roughly 1 / (8 * #elements) under random hashes. 350 * 351 * Actual hash code distributions encountered in practice 352 * sometimes deviate significantly from uniform randomness. This 353 * includes the case when N > (1<<30), so some keys MUST collide. 354 * Similarly for dumb or hostile usages in which multiple keys are 355 * designed to have identical hash codes or ones that differs only 356 * in masked-out high bits. So we use a secondary strategy that 357 * applies when the number of nodes in a bin exceeds a 358 * threshold. These TreeBins use a balanced tree to hold nodes (a 359 * specialized form of red-black trees), bounding search time to 360 * O(log N). Each search step in a TreeBin is at least twice as 361 * slow as in a regular list, but given that N cannot exceed 362 * (1<<64) (before running out of addresses) this bounds search 363 * steps, lock hold times, etc, to reasonable constants (roughly 364 * 100 nodes inspected per operation worst case) so long as keys 365 * are Comparable (which is very common -- String, Long, etc). 366 * TreeBin nodes (TreeNodes) also maintain the same "next" 367 * traversal pointers as regular nodes, so can be traversed in 368 * iterators in the same way. 369 * 370 * The table is resized when occupancy exceeds a percentage 371 * threshold (nominally, 0.75, but see below). Any thread 372 * noticing an overfull bin may assist in resizing after the 373 * initiating thread allocates and sets up the replacement array. 374 * However, rather than stalling, these other threads may proceed 375 * with insertions etc. The use of TreeBins shields us from the 376 * worst case effects of overfilling while resizes are in 377 * progress. Resizing proceeds by transferring bins, one by one, 378 * from the table to the next table. However, threads claim small 379 * blocks of indices to transfer (via field transferIndex) before 380 * doing so, reducing contention. A generation stamp in field 381 * sizeCtl ensures that resizings do not overlap. Because we are 382 * using power-of-two expansion, the elements from each bin must 383 * either stay at same index, or move with a power of two 384 * offset. We eliminate unnecessary node creation by catching 385 * cases where old nodes can be reused because their next fields 386 * won't change. On average, only about one-sixth of them need 387 * cloning when a table doubles. The nodes they replace will be 388 * garbage collectable as soon as they are no longer referenced by 389 * any reader thread that may be in the midst of concurrently 390 * traversing table. Upon transfer, the old table bin contains 391 * only a special forwarding node (with hash field "MOVED") that 392 * contains the next table as its key. On encountering a 393 * forwarding node, access and update operations restart, using 394 * the new table. 395 * 396 * Each bin transfer requires its bin lock, which can stall 397 * waiting for locks while resizing. However, because other 398 * threads can join in and help resize rather than contend for 399 * locks, average aggregate waits become shorter as resizing 400 * progresses. The transfer operation must also ensure that all 401 * accessible bins in both the old and new table are usable by any 402 * traversal. This is arranged in part by proceeding from the 403 * last bin (table.length - 1) up towards the first. Upon seeing 404 * a forwarding node, traversals (see class Traverser) arrange to 405 * move to the new table without revisiting nodes. To ensure that 406 * no intervening nodes are skipped even when moved out of order, 407 * a stack (see class TableStack) is created on first encounter of 408 * a forwarding node during a traversal, to maintain its place if 409 * later processing the current table. The need for these 410 * save/restore mechanics is relatively rare, but when one 411 * forwarding node is encountered, typically many more will be. 412 * So Traversers use a simple caching scheme to avoid creating so 413 * many new TableStack nodes. (Thanks to Peter Levart for 414 * suggesting use of a stack here.) 415 * 416 * The traversal scheme also applies to partial traversals of 417 * ranges of bins (via an alternate Traverser constructor) 418 * to support partitioned aggregate operations. Also, read-only 419 * operations give up if ever forwarded to a null table, which 420 * provides support for shutdown-style clearing, which is also not 421 * currently implemented. 422 * 423 * Lazy table initialization minimizes footprint until first use, 424 * and also avoids resizings when the first operation is from a 425 * putAll, constructor with map argument, or deserialization. 426 * These cases attempt to override the initial capacity settings, 427 * but harmlessly fail to take effect in cases of races. 428 * 429 * The element count is maintained using a specialization of 430 * LongAdder. We need to incorporate a specialization rather than 431 * just use a LongAdder in order to access implicit 432 * contention-sensing that leads to creation of multiple 433 * CounterCells. The counter mechanics avoid contention on 434 * updates but can encounter cache thrashing if read too 435 * frequently during concurrent access. To avoid reading so often, 436 * resizing under contention is attempted only upon adding to a 437 * bin already holding two or more nodes. Under uniform hash 438 * distributions, the probability of this occurring at threshold 439 * is around 13%, meaning that only about 1 in 8 puts check 440 * threshold (and after resizing, many fewer do so). 441 * 442 * TreeBins use a special form of comparison for search and 443 * related operations (which is the main reason we cannot use 444 * existing collections such as TreeMaps). TreeBins contain 445 * Comparable elements, but may contain others, as well as 446 * elements that are Comparable but not necessarily Comparable for 447 * the same T, so we cannot invoke compareTo among them. To handle 448 * this, the tree is ordered primarily by hash value, then by 449 * Comparable.compareTo order if applicable. On lookup at a node, 450 * if elements are not comparable or compare as 0 then both left 451 * and right children may need to be searched in the case of tied 452 * hash values. (This corresponds to the full list search that 453 * would be necessary if all elements were non-Comparable and had 454 * tied hashes.) On insertion, to keep a total ordering (or as 455 * close as is required here) across rebalancings, we compare 456 * classes and identityHashCodes as tie-breakers. The red-black 457 * balancing code is updated from pre-jdk-collections 458 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java) 459 * based in turn on Cormen, Leiserson, and Rivest "Introduction to 460 * Algorithms" (CLR). 461 * 462 * TreeBins also require an additional locking mechanism. While 463 * list traversal is always possible by readers even during 464 * updates, tree traversal is not, mainly because of tree-rotations 465 * that may change the root node and/or its linkages. TreeBins 466 * include a simple read-write lock mechanism parasitic on the 467 * main bin-synchronization strategy: Structural adjustments 468 * associated with an insertion or removal are already bin-locked 469 * (and so cannot conflict with other writers) but must wait for 470 * ongoing readers to finish. Since there can be only one such 471 * waiter, we use a simple scheme using a single "waiter" field to 472 * block writers. However, readers need never block. If the root 473 * lock is held, they proceed along the slow traversal path (via 474 * next-pointers) until the lock becomes available or the list is 475 * exhausted, whichever comes first. These cases are not fast, but 476 * maximize aggregate expected throughput. 477 * 478 * Maintaining API and serialization compatibility with previous 479 * versions of this class introduces several oddities. Mainly: We 480 * leave untouched but unused constructor arguments referring to 481 * concurrencyLevel. We accept a loadFactor constructor argument, 482 * but apply it only to initial table capacity (which is the only 483 * time that we can guarantee to honor it.) We also declare an 484 * unused "Segment" class that is instantiated in minimal form 485 * only when serializing. 486 * 487 * Also, solely for compatibility with previous versions of this 488 * class, it extends AbstractMap, even though all of its methods 489 * are overridden, so it is just useless baggage. 490 * 491 * This file is organized to make things a little easier to follow 492 * while reading than they might otherwise: First the main static 493 * declarations and utilities, then fields, then main public 494 * methods (with a few factorings of multiple public methods into 495 * internal ones), then sizing methods, trees, traversers, and 496 * bulk operations. 497 */ 498 499 /* ---------------- Constants -------------- */ 500 501 /** 502 * The largest possible table capacity. This value must be 503 * exactly 1<<30 to stay within Java array allocation and indexing 504 * bounds for power of two table sizes, and is further required 505 * because the top two bits of 32bit hash fields are used for 506 * control purposes. 507 */ 508 private static final int MAXIMUM_CAPACITY = 1 << 30; 509 510 /** 511 * The default initial table capacity. Must be a power of 2 512 * (i.e., at least 1) and at most MAXIMUM_CAPACITY. 513 */ 514 private static final int DEFAULT_CAPACITY = 16; 515 516 /** 517 * The largest possible (non-power of two) array size. 518 * Needed by toArray and related methods. 519 */ 520 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; 521 522 /** 523 * The default concurrency level for this table. Unused but 524 * defined for compatibility with previous versions of this class. 525 */ 526 private static final int DEFAULT_CONCURRENCY_LEVEL = 16; 527 528 /** 529 * The load factor for this table. Overrides of this value in 530 * constructors affect only the initial table capacity. The 531 * actual floating point value isn't normally used -- it is 532 * simpler to use expressions such as {@code n - (n >>> 2)} for 533 * the associated resizing threshold. 534 */ 535 private static final float LOAD_FACTOR = 0.75f; 536 537 /** 538 * The bin count threshold for using a tree rather than list for a 539 * bin. Bins are converted to trees when adding an element to a 540 * bin with at least this many nodes. The value must be greater 541 * than 2, and should be at least 8 to mesh with assumptions in 542 * tree removal about conversion back to plain bins upon 543 * shrinkage. 544 */ 545 static final int TREEIFY_THRESHOLD = 8; 546 547 /** 548 * The bin count threshold for untreeifying a (split) bin during a 549 * resize operation. Should be less than TREEIFY_THRESHOLD, and at 550 * most 6 to mesh with shrinkage detection under removal. 551 */ 552 static final int UNTREEIFY_THRESHOLD = 6; 553 554 /** 555 * The smallest table capacity for which bins may be treeified. 556 * (Otherwise the table is resized if too many nodes in a bin.) 557 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid 558 * conflicts between resizing and treeification thresholds. 559 */ 560 static final int MIN_TREEIFY_CAPACITY = 64; 561 562 /** 563 * Minimum number of rebinnings per transfer step. Ranges are 564 * subdivided to allow multiple resizer threads. This value 565 * serves as a lower bound to avoid resizers encountering 566 * excessive memory contention. The value should be at least 567 * DEFAULT_CAPACITY. 568 */ 569 private static final int MIN_TRANSFER_STRIDE = 16; 570 571 /** 572 * The number of bits used for generation stamp in sizeCtl. 573 * Must be at least 6 for 32bit arrays. 574 */ 575 private static final int RESIZE_STAMP_BITS = 16; 576 577 /** 578 * The maximum number of threads that can help resize. 579 * Must fit in 32 - RESIZE_STAMP_BITS bits. 580 */ 581 private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1; 582 583 /** 584 * The bit shift for recording size stamp in sizeCtl. 585 */ 586 private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS; 587 588 /* 589 * Encodings for Node hash fields. See above for explanation. 590 */ 591 static final int MOVED = -1; // hash for forwarding nodes 592 static final int TREEBIN = -2; // hash for roots of trees 593 static final int RESERVED = -3; // hash for transient reservations 594 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash 595 596 /** Number of CPUS, to place bounds on some sizings */ 597 static final int NCPU = Runtime.getRuntime().availableProcessors(); 598 599 /** 600 * Serialized pseudo-fields, provided only for jdk7 compatibility. 601 * @serialField segments Segment[] 602 * The segments, each of which is a specialized hash table. 603 * @serialField segmentMask int 604 * Mask value for indexing into segments. The upper bits of a 605 * key's hash code are used to choose the segment. 606 * @serialField segmentShift int 607 * Shift value for indexing within segments. 608 */ 609 private static final ObjectStreamField[] serialPersistentFields = { 610 new ObjectStreamField("segments", Segment[].class), 611 new ObjectStreamField("segmentMask", Integer.TYPE), 612 new ObjectStreamField("segmentShift", Integer.TYPE), 613 }; 614 615 /* ---------------- Nodes -------------- */ 616 617 /** 618 * Key-value entry. This class is never exported out as a 619 * user-mutable Map.Entry (i.e., one supporting setValue; see 620 * MapEntry below), but can be used for read-only traversals used 621 * in bulk tasks. Subclasses of Node with a negative hash field 622 * are special, and contain null keys and values (but are never 623 * exported). Otherwise, keys and vals are never null. 624 */ 625 static class Node<K,V> implements Map.Entry<K,V> { 626 final int hash; 627 final K key; 628 volatile V val; 629 volatile Node<K,V> next; 630 Node(int hash, K key, V val, Node<K,V> next)631 Node(int hash, K key, V val, Node<K,V> next) { 632 this.hash = hash; 633 this.key = key; 634 this.val = val; 635 this.next = next; 636 } 637 getKey()638 public final K getKey() { return key; } getValue()639 public final V getValue() { return val; } hashCode()640 public final int hashCode() { return key.hashCode() ^ val.hashCode(); } toString()641 public final String toString() { 642 return Helpers.mapEntryToString(key, val); 643 } setValue(V value)644 public final V setValue(V value) { 645 throw new UnsupportedOperationException(); 646 } 647 equals(Object o)648 public final boolean equals(Object o) { 649 Object k, v, u; Map.Entry<?,?> e; 650 return ((o instanceof Map.Entry) && 651 (k = (e = (Map.Entry<?,?>)o).getKey()) != null && 652 (v = e.getValue()) != null && 653 (k == key || k.equals(key)) && 654 (v == (u = val) || v.equals(u))); 655 } 656 657 /** 658 * Virtualized support for map.get(); overridden in subclasses. 659 */ find(int h, Object k)660 Node<K,V> find(int h, Object k) { 661 Node<K,V> e = this; 662 if (k != null) { 663 do { 664 K ek; 665 if (e.hash == h && 666 ((ek = e.key) == k || (ek != null && k.equals(ek)))) 667 return e; 668 } while ((e = e.next) != null); 669 } 670 return null; 671 } 672 } 673 674 /* ---------------- Static utilities -------------- */ 675 676 /** 677 * Spreads (XORs) higher bits of hash to lower and also forces top 678 * bit to 0. Because the table uses power-of-two masking, sets of 679 * hashes that vary only in bits above the current mask will 680 * always collide. (Among known examples are sets of Float keys 681 * holding consecutive whole numbers in small tables.) So we 682 * apply a transform that spreads the impact of higher bits 683 * downward. There is a tradeoff between speed, utility, and 684 * quality of bit-spreading. Because many common sets of hashes 685 * are already reasonably distributed (so don't benefit from 686 * spreading), and because we use trees to handle large sets of 687 * collisions in bins, we just XOR some shifted bits in the 688 * cheapest possible way to reduce systematic lossage, as well as 689 * to incorporate impact of the highest bits that would otherwise 690 * never be used in index calculations because of table bounds. 691 */ spread(int h)692 static final int spread(int h) { 693 return (h ^ (h >>> 16)) & HASH_BITS; 694 } 695 696 /** 697 * Returns a power of two table size for the given desired capacity. 698 * See Hackers Delight, sec 3.2 699 */ tableSizeFor(int c)700 private static final int tableSizeFor(int c) { 701 int n = c - 1; 702 n |= n >>> 1; 703 n |= n >>> 2; 704 n |= n >>> 4; 705 n |= n >>> 8; 706 n |= n >>> 16; 707 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; 708 } 709 710 /** 711 * Returns x's Class if it is of the form "class C implements 712 * Comparable<C>", else null. 713 */ comparableClassFor(Object x)714 static Class<?> comparableClassFor(Object x) { 715 if (x instanceof Comparable) { 716 Class<?> c; Type[] ts, as; Type t; ParameterizedType p; 717 if ((c = x.getClass()) == String.class) // bypass checks 718 return c; 719 if ((ts = c.getGenericInterfaces()) != null) { 720 for (int i = 0; i < ts.length; ++i) { 721 if (((t = ts[i]) instanceof ParameterizedType) && 722 ((p = (ParameterizedType)t).getRawType() == 723 Comparable.class) && 724 (as = p.getActualTypeArguments()) != null && 725 as.length == 1 && as[0] == c) // type arg is c 726 return c; 727 } 728 } 729 } 730 return null; 731 } 732 733 /** 734 * Returns k.compareTo(x) if x matches kc (k's screened comparable 735 * class), else 0. 736 */ 737 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable compareComparables(Class<?> kc, Object k, Object x)738 static int compareComparables(Class<?> kc, Object k, Object x) { 739 return (x == null || x.getClass() != kc ? 0 : 740 ((Comparable)k).compareTo(x)); 741 } 742 743 /* ---------------- Table element access -------------- */ 744 745 /* 746 * Volatile access methods are used for table elements as well as 747 * elements of in-progress next table while resizing. All uses of 748 * the tab arguments must be null checked by callers. All callers 749 * also paranoically precheck that tab's length is not zero (or an 750 * equivalent check), thus ensuring that any index argument taking 751 * the form of a hash value anded with (length - 1) is a valid 752 * index. Note that, to be correct wrt arbitrary concurrency 753 * errors by users, these checks must operate on local variables, 754 * which accounts for some odd-looking inline assignments below. 755 * Note that calls to setTabAt always occur within locked regions, 756 * and so in principle require only release ordering, not 757 * full volatile semantics, but are currently coded as volatile 758 * writes to be conservative. 759 */ 760 761 @SuppressWarnings("unchecked") tabAt(Node<K,V>[] tab, int i)762 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) { 763 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE); 764 } 765 casTabAt(Node<K,V>[] tab, int i, Node<K,V> c, Node<K,V> v)766 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i, 767 Node<K,V> c, Node<K,V> v) { 768 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v); 769 } 770 setTabAt(Node<K,V>[] tab, int i, Node<K,V> v)771 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) { 772 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v); 773 } 774 775 /* ---------------- Fields -------------- */ 776 777 /** 778 * The array of bins. Lazily initialized upon first insertion. 779 * Size is always a power of two. Accessed directly by iterators. 780 */ 781 transient volatile Node<K,V>[] table; 782 783 /** 784 * The next table to use; non-null only while resizing. 785 */ 786 private transient volatile Node<K,V>[] nextTable; 787 788 /** 789 * Base counter value, used mainly when there is no contention, 790 * but also as a fallback during table initialization 791 * races. Updated via CAS. 792 */ 793 private transient volatile long baseCount; 794 795 /** 796 * Table initialization and resizing control. When negative, the 797 * table is being initialized or resized: -1 for initialization, 798 * else -(1 + the number of active resizing threads). Otherwise, 799 * when table is null, holds the initial table size to use upon 800 * creation, or 0 for default. After initialization, holds the 801 * next element count value upon which to resize the table. 802 */ 803 private transient volatile int sizeCtl; 804 805 /** 806 * The next table index (plus one) to split while resizing. 807 */ 808 private transient volatile int transferIndex; 809 810 /** 811 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells. 812 */ 813 private transient volatile int cellsBusy; 814 815 /** 816 * Table of counter cells. When non-null, size is a power of 2. 817 */ 818 private transient volatile CounterCell[] counterCells; 819 820 // views 821 private transient KeySetView<K,V> keySet; 822 private transient ValuesView<K,V> values; 823 private transient EntrySetView<K,V> entrySet; 824 825 826 /* ---------------- Public operations -------------- */ 827 828 /** 829 * Creates a new, empty map with the default initial table size (16). 830 */ ConcurrentHashMap()831 public ConcurrentHashMap() { 832 } 833 834 /** 835 * Creates a new, empty map with an initial table size 836 * accommodating the specified number of elements without the need 837 * to dynamically resize. 838 * 839 * @param initialCapacity The implementation performs internal 840 * sizing to accommodate this many elements. 841 * @throws IllegalArgumentException if the initial capacity of 842 * elements is negative 843 */ ConcurrentHashMap(int initialCapacity)844 public ConcurrentHashMap(int initialCapacity) { 845 if (initialCapacity < 0) 846 throw new IllegalArgumentException(); 847 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ? 848 MAXIMUM_CAPACITY : 849 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1)); 850 this.sizeCtl = cap; 851 } 852 853 /** 854 * Creates a new map with the same mappings as the given map. 855 * 856 * @param m the map 857 */ ConcurrentHashMap(Map<? extends K, ? extends V> m)858 public ConcurrentHashMap(Map<? extends K, ? extends V> m) { 859 this.sizeCtl = DEFAULT_CAPACITY; 860 putAll(m); 861 } 862 863 /** 864 * Creates a new, empty map with an initial table size based on 865 * the given number of elements ({@code initialCapacity}) and 866 * initial table density ({@code loadFactor}). 867 * 868 * @param initialCapacity the initial capacity. The implementation 869 * performs internal sizing to accommodate this many elements, 870 * given the specified load factor. 871 * @param loadFactor the load factor (table density) for 872 * establishing the initial table size 873 * @throws IllegalArgumentException if the initial capacity of 874 * elements is negative or the load factor is nonpositive 875 * 876 * @since 1.6 877 */ ConcurrentHashMap(int initialCapacity, float loadFactor)878 public ConcurrentHashMap(int initialCapacity, float loadFactor) { 879 this(initialCapacity, loadFactor, 1); 880 } 881 882 /** 883 * Creates a new, empty map with an initial table size based on 884 * the given number of elements ({@code initialCapacity}), table 885 * density ({@code loadFactor}), and number of concurrently 886 * updating threads ({@code concurrencyLevel}). 887 * 888 * @param initialCapacity the initial capacity. The implementation 889 * performs internal sizing to accommodate this many elements, 890 * given the specified load factor. 891 * @param loadFactor the load factor (table density) for 892 * establishing the initial table size 893 * @param concurrencyLevel the estimated number of concurrently 894 * updating threads. The implementation may use this value as 895 * a sizing hint. 896 * @throws IllegalArgumentException if the initial capacity is 897 * negative or the load factor or concurrencyLevel are 898 * nonpositive 899 */ ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel)900 public ConcurrentHashMap(int initialCapacity, 901 float loadFactor, int concurrencyLevel) { 902 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0) 903 throw new IllegalArgumentException(); 904 if (initialCapacity < concurrencyLevel) // Use at least as many bins 905 initialCapacity = concurrencyLevel; // as estimated threads 906 long size = (long)(1.0 + (long)initialCapacity / loadFactor); 907 int cap = (size >= (long)MAXIMUM_CAPACITY) ? 908 MAXIMUM_CAPACITY : tableSizeFor((int)size); 909 this.sizeCtl = cap; 910 } 911 912 // Original (since JDK1.2) Map methods 913 914 /** 915 * {@inheritDoc} 916 */ size()917 public int size() { 918 long n = sumCount(); 919 return ((n < 0L) ? 0 : 920 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE : 921 (int)n); 922 } 923 924 /** 925 * {@inheritDoc} 926 */ isEmpty()927 public boolean isEmpty() { 928 return sumCount() <= 0L; // ignore transient negative values 929 } 930 931 /** 932 * Returns the value to which the specified key is mapped, 933 * or {@code null} if this map contains no mapping for the key. 934 * 935 * <p>More formally, if this map contains a mapping from a key 936 * {@code k} to a value {@code v} such that {@code key.equals(k)}, 937 * then this method returns {@code v}; otherwise it returns 938 * {@code null}. (There can be at most one such mapping.) 939 * 940 * @throws NullPointerException if the specified key is null 941 */ get(Object key)942 public V get(Object key) { 943 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek; 944 int h = spread(key.hashCode()); 945 if ((tab = table) != null && (n = tab.length) > 0 && 946 (e = tabAt(tab, (n - 1) & h)) != null) { 947 if ((eh = e.hash) == h) { 948 if ((ek = e.key) == key || (ek != null && key.equals(ek))) 949 return e.val; 950 } 951 else if (eh < 0) 952 return (p = e.find(h, key)) != null ? p.val : null; 953 while ((e = e.next) != null) { 954 if (e.hash == h && 955 ((ek = e.key) == key || (ek != null && key.equals(ek)))) 956 return e.val; 957 } 958 } 959 return null; 960 } 961 962 /** 963 * Tests if the specified object is a key in this table. 964 * 965 * @param key possible key 966 * @return {@code true} if and only if the specified object 967 * is a key in this table, as determined by the 968 * {@code equals} method; {@code false} otherwise 969 * @throws NullPointerException if the specified key is null 970 */ containsKey(Object key)971 public boolean containsKey(Object key) { 972 return get(key) != null; 973 } 974 975 /** 976 * Returns {@code true} if this map maps one or more keys to the 977 * specified value. Note: This method may require a full traversal 978 * of the map, and is much slower than method {@code containsKey}. 979 * 980 * @param value value whose presence in this map is to be tested 981 * @return {@code true} if this map maps one or more keys to the 982 * specified value 983 * @throws NullPointerException if the specified value is null 984 */ containsValue(Object value)985 public boolean containsValue(Object value) { 986 if (value == null) 987 throw new NullPointerException(); 988 Node<K,V>[] t; 989 if ((t = table) != null) { 990 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length); 991 for (Node<K,V> p; (p = it.advance()) != null; ) { 992 V v; 993 if ((v = p.val) == value || (v != null && value.equals(v))) 994 return true; 995 } 996 } 997 return false; 998 } 999 1000 /** 1001 * Maps the specified key to the specified value in this table. 1002 * Neither the key nor the value can be null. 1003 * 1004 * <p>The value can be retrieved by calling the {@code get} method 1005 * with a key that is equal to the original key. 1006 * 1007 * @param key key with which the specified value is to be associated 1008 * @param value value to be associated with the specified key 1009 * @return the previous value associated with {@code key}, or 1010 * {@code null} if there was no mapping for {@code key} 1011 * @throws NullPointerException if the specified key or value is null 1012 */ put(K key, V value)1013 public V put(K key, V value) { 1014 return putVal(key, value, false); 1015 } 1016 1017 /** Implementation for put and putIfAbsent */ putVal(K key, V value, boolean onlyIfAbsent)1018 final V putVal(K key, V value, boolean onlyIfAbsent) { 1019 if (key == null || value == null) throw new NullPointerException(); 1020 int hash = spread(key.hashCode()); 1021 int binCount = 0; 1022 for (Node<K,V>[] tab = table;;) { 1023 Node<K,V> f; int n, i, fh; 1024 if (tab == null || (n = tab.length) == 0) 1025 tab = initTable(); 1026 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { 1027 if (casTabAt(tab, i, null, 1028 new Node<K,V>(hash, key, value, null))) 1029 break; // no lock when adding to empty bin 1030 } 1031 else if ((fh = f.hash) == MOVED) 1032 tab = helpTransfer(tab, f); 1033 else { 1034 V oldVal = null; 1035 synchronized (f) { 1036 if (tabAt(tab, i) == f) { 1037 if (fh >= 0) { 1038 binCount = 1; 1039 for (Node<K,V> e = f;; ++binCount) { 1040 K ek; 1041 if (e.hash == hash && 1042 ((ek = e.key) == key || 1043 (ek != null && key.equals(ek)))) { 1044 oldVal = e.val; 1045 if (!onlyIfAbsent) 1046 e.val = value; 1047 break; 1048 } 1049 Node<K,V> pred = e; 1050 if ((e = e.next) == null) { 1051 pred.next = new Node<K,V>(hash, key, 1052 value, null); 1053 break; 1054 } 1055 } 1056 } 1057 else if (f instanceof TreeBin) { 1058 Node<K,V> p; 1059 binCount = 2; 1060 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, 1061 value)) != null) { 1062 oldVal = p.val; 1063 if (!onlyIfAbsent) 1064 p.val = value; 1065 } 1066 } 1067 else if (f instanceof ReservationNode) 1068 throw new IllegalStateException("Recursive update"); 1069 } 1070 } 1071 if (binCount != 0) { 1072 if (binCount >= TREEIFY_THRESHOLD) 1073 treeifyBin(tab, i); 1074 if (oldVal != null) 1075 return oldVal; 1076 break; 1077 } 1078 } 1079 } 1080 addCount(1L, binCount); 1081 return null; 1082 } 1083 1084 /** 1085 * Copies all of the mappings from the specified map to this one. 1086 * These mappings replace any mappings that this map had for any of the 1087 * keys currently in the specified map. 1088 * 1089 * @param m mappings to be stored in this map 1090 */ putAll(Map<? extends K, ? extends V> m)1091 public void putAll(Map<? extends K, ? extends V> m) { 1092 tryPresize(m.size()); 1093 for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) 1094 putVal(e.getKey(), e.getValue(), false); 1095 } 1096 1097 /** 1098 * Removes the key (and its corresponding value) from this map. 1099 * This method does nothing if the key is not in the map. 1100 * 1101 * @param key the key that needs to be removed 1102 * @return the previous value associated with {@code key}, or 1103 * {@code null} if there was no mapping for {@code key} 1104 * @throws NullPointerException if the specified key is null 1105 */ remove(Object key)1106 public V remove(Object key) { 1107 return replaceNode(key, null, null); 1108 } 1109 1110 /** 1111 * Implementation for the four public remove/replace methods: 1112 * Replaces node value with v, conditional upon match of cv if 1113 * non-null. If resulting value is null, delete. 1114 */ replaceNode(Object key, V value, Object cv)1115 final V replaceNode(Object key, V value, Object cv) { 1116 int hash = spread(key.hashCode()); 1117 for (Node<K,V>[] tab = table;;) { 1118 Node<K,V> f; int n, i, fh; 1119 if (tab == null || (n = tab.length) == 0 || 1120 (f = tabAt(tab, i = (n - 1) & hash)) == null) 1121 break; 1122 else if ((fh = f.hash) == MOVED) 1123 tab = helpTransfer(tab, f); 1124 else { 1125 V oldVal = null; 1126 boolean validated = false; 1127 synchronized (f) { 1128 if (tabAt(tab, i) == f) { 1129 if (fh >= 0) { 1130 validated = true; 1131 for (Node<K,V> e = f, pred = null;;) { 1132 K ek; 1133 if (e.hash == hash && 1134 ((ek = e.key) == key || 1135 (ek != null && key.equals(ek)))) { 1136 V ev = e.val; 1137 if (cv == null || cv == ev || 1138 (ev != null && cv.equals(ev))) { 1139 oldVal = ev; 1140 if (value != null) 1141 e.val = value; 1142 else if (pred != null) 1143 pred.next = e.next; 1144 else 1145 setTabAt(tab, i, e.next); 1146 } 1147 break; 1148 } 1149 pred = e; 1150 if ((e = e.next) == null) 1151 break; 1152 } 1153 } 1154 else if (f instanceof TreeBin) { 1155 validated = true; 1156 TreeBin<K,V> t = (TreeBin<K,V>)f; 1157 TreeNode<K,V> r, p; 1158 if ((r = t.root) != null && 1159 (p = r.findTreeNode(hash, key, null)) != null) { 1160 V pv = p.val; 1161 if (cv == null || cv == pv || 1162 (pv != null && cv.equals(pv))) { 1163 oldVal = pv; 1164 if (value != null) 1165 p.val = value; 1166 else if (t.removeTreeNode(p)) 1167 setTabAt(tab, i, untreeify(t.first)); 1168 } 1169 } 1170 } 1171 else if (f instanceof ReservationNode) 1172 throw new IllegalStateException("Recursive update"); 1173 } 1174 } 1175 if (validated) { 1176 if (oldVal != null) { 1177 if (value == null) 1178 addCount(-1L, -1); 1179 return oldVal; 1180 } 1181 break; 1182 } 1183 } 1184 } 1185 return null; 1186 } 1187 1188 /** 1189 * Removes all of the mappings from this map. 1190 */ clear()1191 public void clear() { 1192 long delta = 0L; // negative number of deletions 1193 int i = 0; 1194 Node<K,V>[] tab = table; 1195 while (tab != null && i < tab.length) { 1196 int fh; 1197 Node<K,V> f = tabAt(tab, i); 1198 if (f == null) 1199 ++i; 1200 else if ((fh = f.hash) == MOVED) { 1201 tab = helpTransfer(tab, f); 1202 i = 0; // restart 1203 } 1204 else { 1205 synchronized (f) { 1206 if (tabAt(tab, i) == f) { 1207 Node<K,V> p = (fh >= 0 ? f : 1208 (f instanceof TreeBin) ? 1209 ((TreeBin<K,V>)f).first : null); 1210 while (p != null) { 1211 --delta; 1212 p = p.next; 1213 } 1214 setTabAt(tab, i++, null); 1215 } 1216 } 1217 } 1218 } 1219 if (delta != 0L) 1220 addCount(delta, -1); 1221 } 1222 1223 /** 1224 * Returns a {@link Set} view of the keys contained in this map. 1225 * The set is backed by the map, so changes to the map are 1226 * reflected in the set, and vice-versa. The set supports element 1227 * removal, which removes the corresponding mapping from this map, 1228 * via the {@code Iterator.remove}, {@code Set.remove}, 1229 * {@code removeAll}, {@code retainAll}, and {@code clear} 1230 * operations. It does not support the {@code add} or 1231 * {@code addAll} operations. 1232 * 1233 * <p> The set returned by this method is guaranteed to an instance of 1234 * {@link KeySetView}. 1235 * 1236 * <p>The view's iterators and spliterators are 1237 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. 1238 * 1239 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}, 1240 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}. 1241 * 1242 * @return the set view 1243 */ 1244 // NOTE: The upstream version of this function returns KeySetView (See http://b/28099367). keySet()1245 public Set<K> keySet() { 1246 KeySetView<K,V> ks; 1247 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null)); 1248 } 1249 1250 /** 1251 * Returns a {@link Collection} view of the values contained in this map. 1252 * The collection is backed by the map, so changes to the map are 1253 * reflected in the collection, and vice-versa. The collection 1254 * supports element removal, which removes the corresponding 1255 * mapping from this map, via the {@code Iterator.remove}, 1256 * {@code Collection.remove}, {@code removeAll}, 1257 * {@code retainAll}, and {@code clear} operations. It does not 1258 * support the {@code add} or {@code addAll} operations. 1259 * 1260 * <p>The view's iterators and spliterators are 1261 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. 1262 * 1263 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT} 1264 * and {@link Spliterator#NONNULL}. 1265 * 1266 * @return the collection view 1267 */ values()1268 public Collection<V> values() { 1269 ValuesView<K,V> vs; 1270 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this)); 1271 } 1272 1273 /** 1274 * Returns a {@link Set} view of the mappings contained in this map. 1275 * The set is backed by the map, so changes to the map are 1276 * reflected in the set, and vice-versa. The set supports element 1277 * removal, which removes the corresponding mapping from the map, 1278 * via the {@code Iterator.remove}, {@code Set.remove}, 1279 * {@code removeAll}, {@code retainAll}, and {@code clear} 1280 * operations. 1281 * 1282 * <p>The view's iterators and spliterators are 1283 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. 1284 * 1285 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}, 1286 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}. 1287 * 1288 * @return the set view 1289 */ entrySet()1290 public Set<Map.Entry<K,V>> entrySet() { 1291 EntrySetView<K,V> es; 1292 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this)); 1293 } 1294 1295 /** 1296 * Returns the hash code value for this {@link Map}, i.e., 1297 * the sum of, for each key-value pair in the map, 1298 * {@code key.hashCode() ^ value.hashCode()}. 1299 * 1300 * @return the hash code value for this map 1301 */ hashCode()1302 public int hashCode() { 1303 int h = 0; 1304 Node<K,V>[] t; 1305 if ((t = table) != null) { 1306 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length); 1307 for (Node<K,V> p; (p = it.advance()) != null; ) 1308 h += p.key.hashCode() ^ p.val.hashCode(); 1309 } 1310 return h; 1311 } 1312 1313 /** 1314 * Returns a string representation of this map. The string 1315 * representation consists of a list of key-value mappings (in no 1316 * particular order) enclosed in braces ("{@code {}}"). Adjacent 1317 * mappings are separated by the characters {@code ", "} (comma 1318 * and space). Each key-value mapping is rendered as the key 1319 * followed by an equals sign ("{@code =}") followed by the 1320 * associated value. 1321 * 1322 * @return a string representation of this map 1323 */ toString()1324 public String toString() { 1325 Node<K,V>[] t; 1326 int f = (t = table) == null ? 0 : t.length; 1327 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f); 1328 StringBuilder sb = new StringBuilder(); 1329 sb.append('{'); 1330 Node<K,V> p; 1331 if ((p = it.advance()) != null) { 1332 for (;;) { 1333 K k = p.key; 1334 V v = p.val; 1335 sb.append(k == this ? "(this Map)" : k); 1336 sb.append('='); 1337 sb.append(v == this ? "(this Map)" : v); 1338 if ((p = it.advance()) == null) 1339 break; 1340 sb.append(',').append(' '); 1341 } 1342 } 1343 return sb.append('}').toString(); 1344 } 1345 1346 /** 1347 * Compares the specified object with this map for equality. 1348 * Returns {@code true} if the given object is a map with the same 1349 * mappings as this map. This operation may return misleading 1350 * results if either map is concurrently modified during execution 1351 * of this method. 1352 * 1353 * @param o object to be compared for equality with this map 1354 * @return {@code true} if the specified object is equal to this map 1355 */ equals(Object o)1356 public boolean equals(Object o) { 1357 if (o != this) { 1358 if (!(o instanceof Map)) 1359 return false; 1360 Map<?,?> m = (Map<?,?>) o; 1361 Node<K,V>[] t; 1362 int f = (t = table) == null ? 0 : t.length; 1363 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f); 1364 for (Node<K,V> p; (p = it.advance()) != null; ) { 1365 V val = p.val; 1366 Object v = m.get(p.key); 1367 if (v == null || (v != val && !v.equals(val))) 1368 return false; 1369 } 1370 for (Map.Entry<?,?> e : m.entrySet()) { 1371 Object mk, mv, v; 1372 if ((mk = e.getKey()) == null || 1373 (mv = e.getValue()) == null || 1374 (v = get(mk)) == null || 1375 (mv != v && !mv.equals(v))) 1376 return false; 1377 } 1378 } 1379 return true; 1380 } 1381 1382 /** 1383 * Stripped-down version of helper class used in previous version, 1384 * declared for the sake of serialization compatibility. 1385 */ 1386 static class Segment<K,V> extends ReentrantLock implements Serializable { 1387 private static final long serialVersionUID = 2249069246763182397L; 1388 final float loadFactor; Segment(float lf)1389 Segment(float lf) { this.loadFactor = lf; } 1390 } 1391 1392 /** 1393 * Saves the state of the {@code ConcurrentHashMap} instance to a 1394 * stream (i.e., serializes it). 1395 * @param s the stream 1396 * @throws java.io.IOException if an I/O error occurs 1397 * @serialData 1398 * the serialized fields, followed by the key (Object) and value 1399 * (Object) for each key-value mapping, followed by a null pair. 1400 * The key-value mappings are emitted in no particular order. 1401 */ writeObject(java.io.ObjectOutputStream s)1402 private void writeObject(java.io.ObjectOutputStream s) 1403 throws java.io.IOException { 1404 // For serialization compatibility 1405 // Emulate segment calculation from previous version of this class 1406 int sshift = 0; 1407 int ssize = 1; 1408 while (ssize < DEFAULT_CONCURRENCY_LEVEL) { 1409 ++sshift; 1410 ssize <<= 1; 1411 } 1412 int segmentShift = 32 - sshift; 1413 int segmentMask = ssize - 1; 1414 @SuppressWarnings("unchecked") 1415 Segment<K,V>[] segments = (Segment<K,V>[]) 1416 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL]; 1417 for (int i = 0; i < segments.length; ++i) 1418 segments[i] = new Segment<K,V>(LOAD_FACTOR); 1419 java.io.ObjectOutputStream.PutField streamFields = s.putFields(); 1420 streamFields.put("segments", segments); 1421 streamFields.put("segmentShift", segmentShift); 1422 streamFields.put("segmentMask", segmentMask); 1423 s.writeFields(); 1424 1425 Node<K,V>[] t; 1426 if ((t = table) != null) { 1427 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length); 1428 for (Node<K,V> p; (p = it.advance()) != null; ) { 1429 s.writeObject(p.key); 1430 s.writeObject(p.val); 1431 } 1432 } 1433 s.writeObject(null); 1434 s.writeObject(null); 1435 } 1436 1437 /** 1438 * Reconstitutes the instance from a stream (that is, deserializes it). 1439 * @param s the stream 1440 * @throws ClassNotFoundException if the class of a serialized object 1441 * could not be found 1442 * @throws java.io.IOException if an I/O error occurs 1443 */ readObject(java.io.ObjectInputStream s)1444 private void readObject(java.io.ObjectInputStream s) 1445 throws java.io.IOException, ClassNotFoundException { 1446 /* 1447 * To improve performance in typical cases, we create nodes 1448 * while reading, then place in table once size is known. 1449 * However, we must also validate uniqueness and deal with 1450 * overpopulated bins while doing so, which requires 1451 * specialized versions of putVal mechanics. 1452 */ 1453 sizeCtl = -1; // force exclusion for table construction 1454 s.defaultReadObject(); 1455 long size = 0L; 1456 Node<K,V> p = null; 1457 for (;;) { 1458 @SuppressWarnings("unchecked") 1459 K k = (K) s.readObject(); 1460 @SuppressWarnings("unchecked") 1461 V v = (V) s.readObject(); 1462 if (k != null && v != null) { 1463 p = new Node<K,V>(spread(k.hashCode()), k, v, p); 1464 ++size; 1465 } 1466 else 1467 break; 1468 } 1469 if (size == 0L) 1470 sizeCtl = 0; 1471 else { 1472 int n; 1473 if (size >= (long)(MAXIMUM_CAPACITY >>> 1)) 1474 n = MAXIMUM_CAPACITY; 1475 else { 1476 int sz = (int)size; 1477 n = tableSizeFor(sz + (sz >>> 1) + 1); 1478 } 1479 @SuppressWarnings("unchecked") 1480 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n]; 1481 int mask = n - 1; 1482 long added = 0L; 1483 while (p != null) { 1484 boolean insertAtFront; 1485 Node<K,V> next = p.next, first; 1486 int h = p.hash, j = h & mask; 1487 if ((first = tabAt(tab, j)) == null) 1488 insertAtFront = true; 1489 else { 1490 K k = p.key; 1491 if (first.hash < 0) { 1492 TreeBin<K,V> t = (TreeBin<K,V>)first; 1493 if (t.putTreeVal(h, k, p.val) == null) 1494 ++added; 1495 insertAtFront = false; 1496 } 1497 else { 1498 int binCount = 0; 1499 insertAtFront = true; 1500 Node<K,V> q; K qk; 1501 for (q = first; q != null; q = q.next) { 1502 if (q.hash == h && 1503 ((qk = q.key) == k || 1504 (qk != null && k.equals(qk)))) { 1505 insertAtFront = false; 1506 break; 1507 } 1508 ++binCount; 1509 } 1510 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) { 1511 insertAtFront = false; 1512 ++added; 1513 p.next = first; 1514 TreeNode<K,V> hd = null, tl = null; 1515 for (q = p; q != null; q = q.next) { 1516 TreeNode<K,V> t = new TreeNode<K,V> 1517 (q.hash, q.key, q.val, null, null); 1518 if ((t.prev = tl) == null) 1519 hd = t; 1520 else 1521 tl.next = t; 1522 tl = t; 1523 } 1524 setTabAt(tab, j, new TreeBin<K,V>(hd)); 1525 } 1526 } 1527 } 1528 if (insertAtFront) { 1529 ++added; 1530 p.next = first; 1531 setTabAt(tab, j, p); 1532 } 1533 p = next; 1534 } 1535 table = tab; 1536 sizeCtl = n - (n >>> 2); 1537 baseCount = added; 1538 } 1539 } 1540 1541 // ConcurrentMap methods 1542 1543 /** 1544 * {@inheritDoc} 1545 * 1546 * @return the previous value associated with the specified key, 1547 * or {@code null} if there was no mapping for the key 1548 * @throws NullPointerException if the specified key or value is null 1549 */ putIfAbsent(K key, V value)1550 public V putIfAbsent(K key, V value) { 1551 return putVal(key, value, true); 1552 } 1553 1554 /** 1555 * {@inheritDoc} 1556 * 1557 * @throws NullPointerException if the specified key is null 1558 */ remove(Object key, Object value)1559 public boolean remove(Object key, Object value) { 1560 if (key == null) 1561 throw new NullPointerException(); 1562 return value != null && replaceNode(key, null, value) != null; 1563 } 1564 1565 /** 1566 * {@inheritDoc} 1567 * 1568 * @throws NullPointerException if any of the arguments are null 1569 */ replace(K key, V oldValue, V newValue)1570 public boolean replace(K key, V oldValue, V newValue) { 1571 if (key == null || oldValue == null || newValue == null) 1572 throw new NullPointerException(); 1573 return replaceNode(key, newValue, oldValue) != null; 1574 } 1575 1576 /** 1577 * {@inheritDoc} 1578 * 1579 * @return the previous value associated with the specified key, 1580 * or {@code null} if there was no mapping for the key 1581 * @throws NullPointerException if the specified key or value is null 1582 */ replace(K key, V value)1583 public V replace(K key, V value) { 1584 if (key == null || value == null) 1585 throw new NullPointerException(); 1586 return replaceNode(key, value, null); 1587 } 1588 1589 // Overrides of JDK8+ Map extension method defaults 1590 1591 /** 1592 * Returns the value to which the specified key is mapped, or the 1593 * given default value if this map contains no mapping for the 1594 * key. 1595 * 1596 * @param key the key whose associated value is to be returned 1597 * @param defaultValue the value to return if this map contains 1598 * no mapping for the given key 1599 * @return the mapping for the key, if present; else the default value 1600 * @throws NullPointerException if the specified key is null 1601 */ getOrDefault(Object key, V defaultValue)1602 public V getOrDefault(Object key, V defaultValue) { 1603 V v; 1604 return (v = get(key)) == null ? defaultValue : v; 1605 } 1606 forEach(BiConsumer<? super K, ? super V> action)1607 public void forEach(BiConsumer<? super K, ? super V> action) { 1608 if (action == null) throw new NullPointerException(); 1609 Node<K,V>[] t; 1610 if ((t = table) != null) { 1611 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length); 1612 for (Node<K,V> p; (p = it.advance()) != null; ) { 1613 action.accept(p.key, p.val); 1614 } 1615 } 1616 } 1617 replaceAll(BiFunction<? super K, ? super V, ? extends V> function)1618 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { 1619 if (function == null) throw new NullPointerException(); 1620 Node<K,V>[] t; 1621 if ((t = table) != null) { 1622 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length); 1623 for (Node<K,V> p; (p = it.advance()) != null; ) { 1624 V oldValue = p.val; 1625 for (K key = p.key;;) { 1626 V newValue = function.apply(key, oldValue); 1627 if (newValue == null) 1628 throw new NullPointerException(); 1629 if (replaceNode(key, newValue, oldValue) != null || 1630 (oldValue = get(key)) == null) 1631 break; 1632 } 1633 } 1634 } 1635 } 1636 1637 /** 1638 * Helper method for EntrySetView.removeIf. 1639 */ removeEntryIf(Predicate<? super Entry<K,V>> function)1640 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) { 1641 if (function == null) throw new NullPointerException(); 1642 Node<K,V>[] t; 1643 boolean removed = false; 1644 if ((t = table) != null) { 1645 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length); 1646 for (Node<K,V> p; (p = it.advance()) != null; ) { 1647 K k = p.key; 1648 V v = p.val; 1649 Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v); 1650 if (function.test(e) && replaceNode(k, null, v) != null) 1651 removed = true; 1652 } 1653 } 1654 return removed; 1655 } 1656 1657 /** 1658 * Helper method for ValuesView.removeIf. 1659 */ removeValueIf(Predicate<? super V> function)1660 boolean removeValueIf(Predicate<? super V> function) { 1661 if (function == null) throw new NullPointerException(); 1662 Node<K,V>[] t; 1663 boolean removed = false; 1664 if ((t = table) != null) { 1665 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length); 1666 for (Node<K,V> p; (p = it.advance()) != null; ) { 1667 K k = p.key; 1668 V v = p.val; 1669 if (function.test(v) && replaceNode(k, null, v) != null) 1670 removed = true; 1671 } 1672 } 1673 return removed; 1674 } 1675 1676 /** 1677 * If the specified key is not already associated with a value, 1678 * attempts to compute its value using the given mapping function 1679 * and enters it into this map unless {@code null}. The entire 1680 * method invocation is performed atomically, so the function is 1681 * applied at most once per key. Some attempted update operations 1682 * on this map by other threads may be blocked while computation 1683 * is in progress, so the computation should be short and simple, 1684 * and must not attempt to update any other mappings of this map. 1685 * 1686 * @param key key with which the specified value is to be associated 1687 * @param mappingFunction the function to compute a value 1688 * @return the current (existing or computed) value associated with 1689 * the specified key, or null if the computed value is null 1690 * @throws NullPointerException if the specified key or mappingFunction 1691 * is null 1692 * @throws IllegalStateException if the computation detectably 1693 * attempts a recursive update to this map that would 1694 * otherwise never complete 1695 * @throws RuntimeException or Error if the mappingFunction does so, 1696 * in which case the mapping is left unestablished 1697 */ computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction)1698 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) { 1699 if (key == null || mappingFunction == null) 1700 throw new NullPointerException(); 1701 int h = spread(key.hashCode()); 1702 V val = null; 1703 int binCount = 0; 1704 for (Node<K,V>[] tab = table;;) { 1705 Node<K,V> f; int n, i, fh; 1706 if (tab == null || (n = tab.length) == 0) 1707 tab = initTable(); 1708 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) { 1709 Node<K,V> r = new ReservationNode<K,V>(); 1710 synchronized (r) { 1711 if (casTabAt(tab, i, null, r)) { 1712 binCount = 1; 1713 Node<K,V> node = null; 1714 try { 1715 if ((val = mappingFunction.apply(key)) != null) 1716 node = new Node<K,V>(h, key, val, null); 1717 } finally { 1718 setTabAt(tab, i, node); 1719 } 1720 } 1721 } 1722 if (binCount != 0) 1723 break; 1724 } 1725 else if ((fh = f.hash) == MOVED) 1726 tab = helpTransfer(tab, f); 1727 else { 1728 boolean added = false; 1729 synchronized (f) { 1730 if (tabAt(tab, i) == f) { 1731 if (fh >= 0) { 1732 binCount = 1; 1733 for (Node<K,V> e = f;; ++binCount) { 1734 K ek; 1735 if (e.hash == h && 1736 ((ek = e.key) == key || 1737 (ek != null && key.equals(ek)))) { 1738 val = e.val; 1739 break; 1740 } 1741 Node<K,V> pred = e; 1742 if ((e = e.next) == null) { 1743 if ((val = mappingFunction.apply(key)) != null) { 1744 if (pred.next != null) 1745 throw new IllegalStateException("Recursive update"); 1746 added = true; 1747 pred.next = new Node<K,V>(h, key, val, null); 1748 } 1749 break; 1750 } 1751 } 1752 } 1753 else if (f instanceof TreeBin) { 1754 binCount = 2; 1755 TreeBin<K,V> t = (TreeBin<K,V>)f; 1756 TreeNode<K,V> r, p; 1757 if ((r = t.root) != null && 1758 (p = r.findTreeNode(h, key, null)) != null) 1759 val = p.val; 1760 else if ((val = mappingFunction.apply(key)) != null) { 1761 added = true; 1762 t.putTreeVal(h, key, val); 1763 } 1764 } 1765 else if (f instanceof ReservationNode) 1766 throw new IllegalStateException("Recursive update"); 1767 } 1768 } 1769 if (binCount != 0) { 1770 if (binCount >= TREEIFY_THRESHOLD) 1771 treeifyBin(tab, i); 1772 if (!added) 1773 return val; 1774 break; 1775 } 1776 } 1777 } 1778 if (val != null) 1779 addCount(1L, binCount); 1780 return val; 1781 } 1782 1783 /** 1784 * If the value for the specified key is present, attempts to 1785 * compute a new mapping given the key and its current mapped 1786 * value. The entire method invocation is performed atomically. 1787 * Some attempted update operations on this map by other threads 1788 * may be blocked while computation is in progress, so the 1789 * computation should be short and simple, and must not attempt to 1790 * update any other mappings of this map. 1791 * 1792 * @param key key with which a value may be associated 1793 * @param remappingFunction the function to compute a value 1794 * @return the new value associated with the specified key, or null if none 1795 * @throws NullPointerException if the specified key or remappingFunction 1796 * is null 1797 * @throws IllegalStateException if the computation detectably 1798 * attempts a recursive update to this map that would 1799 * otherwise never complete 1800 * @throws RuntimeException or Error if the remappingFunction does so, 1801 * in which case the mapping is unchanged 1802 */ computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction)1803 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { 1804 if (key == null || remappingFunction == null) 1805 throw new NullPointerException(); 1806 int h = spread(key.hashCode()); 1807 V val = null; 1808 int delta = 0; 1809 int binCount = 0; 1810 for (Node<K,V>[] tab = table;;) { 1811 Node<K,V> f; int n, i, fh; 1812 if (tab == null || (n = tab.length) == 0) 1813 tab = initTable(); 1814 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) 1815 break; 1816 else if ((fh = f.hash) == MOVED) 1817 tab = helpTransfer(tab, f); 1818 else { 1819 synchronized (f) { 1820 if (tabAt(tab, i) == f) { 1821 if (fh >= 0) { 1822 binCount = 1; 1823 for (Node<K,V> e = f, pred = null;; ++binCount) { 1824 K ek; 1825 if (e.hash == h && 1826 ((ek = e.key) == key || 1827 (ek != null && key.equals(ek)))) { 1828 val = remappingFunction.apply(key, e.val); 1829 if (val != null) 1830 e.val = val; 1831 else { 1832 delta = -1; 1833 Node<K,V> en = e.next; 1834 if (pred != null) 1835 pred.next = en; 1836 else 1837 setTabAt(tab, i, en); 1838 } 1839 break; 1840 } 1841 pred = e; 1842 if ((e = e.next) == null) 1843 break; 1844 } 1845 } 1846 else if (f instanceof TreeBin) { 1847 binCount = 2; 1848 TreeBin<K,V> t = (TreeBin<K,V>)f; 1849 TreeNode<K,V> r, p; 1850 if ((r = t.root) != null && 1851 (p = r.findTreeNode(h, key, null)) != null) { 1852 val = remappingFunction.apply(key, p.val); 1853 if (val != null) 1854 p.val = val; 1855 else { 1856 delta = -1; 1857 if (t.removeTreeNode(p)) 1858 setTabAt(tab, i, untreeify(t.first)); 1859 } 1860 } 1861 } 1862 else if (f instanceof ReservationNode) 1863 throw new IllegalStateException("Recursive update"); 1864 } 1865 } 1866 if (binCount != 0) 1867 break; 1868 } 1869 } 1870 if (delta != 0) 1871 addCount((long)delta, binCount); 1872 return val; 1873 } 1874 1875 /** 1876 * Attempts to compute a mapping for the specified key and its 1877 * current mapped value (or {@code null} if there is no current 1878 * mapping). The entire method invocation is performed atomically. 1879 * Some attempted update operations on this map by other threads 1880 * may be blocked while computation is in progress, so the 1881 * computation should be short and simple, and must not attempt to 1882 * update any other mappings of this Map. 1883 * 1884 * @param key key with which the specified value is to be associated 1885 * @param remappingFunction the function to compute a value 1886 * @return the new value associated with the specified key, or null if none 1887 * @throws NullPointerException if the specified key or remappingFunction 1888 * is null 1889 * @throws IllegalStateException if the computation detectably 1890 * attempts a recursive update to this map that would 1891 * otherwise never complete 1892 * @throws RuntimeException or Error if the remappingFunction does so, 1893 * in which case the mapping is unchanged 1894 */ compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction)1895 public V compute(K key, 1896 BiFunction<? super K, ? super V, ? extends V> remappingFunction) { 1897 if (key == null || remappingFunction == null) 1898 throw new NullPointerException(); 1899 int h = spread(key.hashCode()); 1900 V val = null; 1901 int delta = 0; 1902 int binCount = 0; 1903 for (Node<K,V>[] tab = table;;) { 1904 Node<K,V> f; int n, i, fh; 1905 if (tab == null || (n = tab.length) == 0) 1906 tab = initTable(); 1907 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) { 1908 Node<K,V> r = new ReservationNode<K,V>(); 1909 synchronized (r) { 1910 if (casTabAt(tab, i, null, r)) { 1911 binCount = 1; 1912 Node<K,V> node = null; 1913 try { 1914 if ((val = remappingFunction.apply(key, null)) != null) { 1915 delta = 1; 1916 node = new Node<K,V>(h, key, val, null); 1917 } 1918 } finally { 1919 setTabAt(tab, i, node); 1920 } 1921 } 1922 } 1923 if (binCount != 0) 1924 break; 1925 } 1926 else if ((fh = f.hash) == MOVED) 1927 tab = helpTransfer(tab, f); 1928 else { 1929 synchronized (f) { 1930 if (tabAt(tab, i) == f) { 1931 if (fh >= 0) { 1932 binCount = 1; 1933 for (Node<K,V> e = f, pred = null;; ++binCount) { 1934 K ek; 1935 if (e.hash == h && 1936 ((ek = e.key) == key || 1937 (ek != null && key.equals(ek)))) { 1938 val = remappingFunction.apply(key, e.val); 1939 if (val != null) 1940 e.val = val; 1941 else { 1942 delta = -1; 1943 Node<K,V> en = e.next; 1944 if (pred != null) 1945 pred.next = en; 1946 else 1947 setTabAt(tab, i, en); 1948 } 1949 break; 1950 } 1951 pred = e; 1952 if ((e = e.next) == null) { 1953 val = remappingFunction.apply(key, null); 1954 if (val != null) { 1955 if (pred.next != null) 1956 throw new IllegalStateException("Recursive update"); 1957 delta = 1; 1958 pred.next = 1959 new Node<K,V>(h, key, val, null); 1960 } 1961 break; 1962 } 1963 } 1964 } 1965 else if (f instanceof TreeBin) { 1966 binCount = 1; 1967 TreeBin<K,V> t = (TreeBin<K,V>)f; 1968 TreeNode<K,V> r, p; 1969 if ((r = t.root) != null) 1970 p = r.findTreeNode(h, key, null); 1971 else 1972 p = null; 1973 V pv = (p == null) ? null : p.val; 1974 val = remappingFunction.apply(key, pv); 1975 if (val != null) { 1976 if (p != null) 1977 p.val = val; 1978 else { 1979 delta = 1; 1980 t.putTreeVal(h, key, val); 1981 } 1982 } 1983 else if (p != null) { 1984 delta = -1; 1985 if (t.removeTreeNode(p)) 1986 setTabAt(tab, i, untreeify(t.first)); 1987 } 1988 } 1989 else if (f instanceof ReservationNode) 1990 throw new IllegalStateException("Recursive update"); 1991 } 1992 } 1993 if (binCount != 0) { 1994 if (binCount >= TREEIFY_THRESHOLD) 1995 treeifyBin(tab, i); 1996 break; 1997 } 1998 } 1999 } 2000 if (delta != 0) 2001 addCount((long)delta, binCount); 2002 return val; 2003 } 2004 2005 /** 2006 * If the specified key is not already associated with a 2007 * (non-null) value, associates it with the given value. 2008 * Otherwise, replaces the value with the results of the given 2009 * remapping function, or removes if {@code null}. The entire 2010 * method invocation is performed atomically. Some attempted 2011 * update operations on this map by other threads may be blocked 2012 * while computation is in progress, so the computation should be 2013 * short and simple, and must not attempt to update any other 2014 * mappings of this Map. 2015 * 2016 * @param key key with which the specified value is to be associated 2017 * @param value the value to use if absent 2018 * @param remappingFunction the function to recompute a value if present 2019 * @return the new value associated with the specified key, or null if none 2020 * @throws NullPointerException if the specified key or the 2021 * remappingFunction is null 2022 * @throws RuntimeException or Error if the remappingFunction does so, 2023 * in which case the mapping is unchanged 2024 */ merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction)2025 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) { 2026 if (key == null || value == null || remappingFunction == null) 2027 throw new NullPointerException(); 2028 int h = spread(key.hashCode()); 2029 V val = null; 2030 int delta = 0; 2031 int binCount = 0; 2032 for (Node<K,V>[] tab = table;;) { 2033 Node<K,V> f; int n, i, fh; 2034 if (tab == null || (n = tab.length) == 0) 2035 tab = initTable(); 2036 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) { 2037 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) { 2038 delta = 1; 2039 val = value; 2040 break; 2041 } 2042 } 2043 else if ((fh = f.hash) == MOVED) 2044 tab = helpTransfer(tab, f); 2045 else { 2046 synchronized (f) { 2047 if (tabAt(tab, i) == f) { 2048 if (fh >= 0) { 2049 binCount = 1; 2050 for (Node<K,V> e = f, pred = null;; ++binCount) { 2051 K ek; 2052 if (e.hash == h && 2053 ((ek = e.key) == key || 2054 (ek != null && key.equals(ek)))) { 2055 val = remappingFunction.apply(e.val, value); 2056 if (val != null) 2057 e.val = val; 2058 else { 2059 delta = -1; 2060 Node<K,V> en = e.next; 2061 if (pred != null) 2062 pred.next = en; 2063 else 2064 setTabAt(tab, i, en); 2065 } 2066 break; 2067 } 2068 pred = e; 2069 if ((e = e.next) == null) { 2070 delta = 1; 2071 val = value; 2072 pred.next = 2073 new Node<K,V>(h, key, val, null); 2074 break; 2075 } 2076 } 2077 } 2078 else if (f instanceof TreeBin) { 2079 binCount = 2; 2080 TreeBin<K,V> t = (TreeBin<K,V>)f; 2081 TreeNode<K,V> r = t.root; 2082 TreeNode<K,V> p = (r == null) ? null : 2083 r.findTreeNode(h, key, null); 2084 val = (p == null) ? value : 2085 remappingFunction.apply(p.val, value); 2086 if (val != null) { 2087 if (p != null) 2088 p.val = val; 2089 else { 2090 delta = 1; 2091 t.putTreeVal(h, key, val); 2092 } 2093 } 2094 else if (p != null) { 2095 delta = -1; 2096 if (t.removeTreeNode(p)) 2097 setTabAt(tab, i, untreeify(t.first)); 2098 } 2099 } 2100 else if (f instanceof ReservationNode) 2101 throw new IllegalStateException("Recursive update"); 2102 } 2103 } 2104 if (binCount != 0) { 2105 if (binCount >= TREEIFY_THRESHOLD) 2106 treeifyBin(tab, i); 2107 break; 2108 } 2109 } 2110 } 2111 if (delta != 0) 2112 addCount((long)delta, binCount); 2113 return val; 2114 } 2115 2116 // Hashtable legacy methods 2117 2118 /** 2119 * Tests if some key maps into the specified value in this table. 2120 * 2121 * <p>Note that this method is identical in functionality to 2122 * {@link #containsValue(Object)}, and exists solely to ensure 2123 * full compatibility with class {@link java.util.Hashtable}, 2124 * which supported this method prior to introduction of the 2125 * Java Collections Framework. 2126 * 2127 * @param value a value to search for 2128 * @return {@code true} if and only if some key maps to the 2129 * {@code value} argument in this table as 2130 * determined by the {@code equals} method; 2131 * {@code false} otherwise 2132 * @throws NullPointerException if the specified value is null 2133 */ contains(Object value)2134 public boolean contains(Object value) { 2135 return containsValue(value); 2136 } 2137 2138 /** 2139 * Returns an enumeration of the keys in this table. 2140 * 2141 * @return an enumeration of the keys in this table 2142 * @see #keySet() 2143 */ keys()2144 public Enumeration<K> keys() { 2145 Node<K,V>[] t; 2146 int f = (t = table) == null ? 0 : t.length; 2147 return new KeyIterator<K,V>(t, f, 0, f, this); 2148 } 2149 2150 /** 2151 * Returns an enumeration of the values in this table. 2152 * 2153 * @return an enumeration of the values in this table 2154 * @see #values() 2155 */ elements()2156 public Enumeration<V> elements() { 2157 Node<K,V>[] t; 2158 int f = (t = table) == null ? 0 : t.length; 2159 return new ValueIterator<K,V>(t, f, 0, f, this); 2160 } 2161 2162 // ConcurrentHashMap-only methods 2163 2164 /** 2165 * Returns the number of mappings. This method should be used 2166 * instead of {@link #size} because a ConcurrentHashMap may 2167 * contain more mappings than can be represented as an int. The 2168 * value returned is an estimate; the actual count may differ if 2169 * there are concurrent insertions or removals. 2170 * 2171 * @return the number of mappings 2172 * @since 1.8 2173 */ mappingCount()2174 public long mappingCount() { 2175 long n = sumCount(); 2176 return (n < 0L) ? 0L : n; // ignore transient negative values 2177 } 2178 2179 /** 2180 * Creates a new {@link Set} backed by a ConcurrentHashMap 2181 * from the given type to {@code Boolean.TRUE}. 2182 * 2183 * @param <K> the element type of the returned set 2184 * @return the new set 2185 * @since 1.8 2186 */ newKeySet()2187 public static <K> KeySetView<K,Boolean> newKeySet() { 2188 return new KeySetView<K,Boolean> 2189 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE); 2190 } 2191 2192 /** 2193 * Creates a new {@link Set} backed by a ConcurrentHashMap 2194 * from the given type to {@code Boolean.TRUE}. 2195 * 2196 * @param initialCapacity The implementation performs internal 2197 * sizing to accommodate this many elements. 2198 * @param <K> the element type of the returned set 2199 * @return the new set 2200 * @throws IllegalArgumentException if the initial capacity of 2201 * elements is negative 2202 * @since 1.8 2203 */ newKeySet(int initialCapacity)2204 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) { 2205 return new KeySetView<K,Boolean> 2206 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE); 2207 } 2208 2209 /** 2210 * Returns a {@link Set} view of the keys in this map, using the 2211 * given common mapped value for any additions (i.e., {@link 2212 * Collection#add} and {@link Collection#addAll(Collection)}). 2213 * This is of course only appropriate if it is acceptable to use 2214 * the same value for all additions from this view. 2215 * 2216 * @param mappedValue the mapped value to use for any additions 2217 * @return the set view 2218 * @throws NullPointerException if the mappedValue is null 2219 */ keySet(V mappedValue)2220 public KeySetView<K,V> keySet(V mappedValue) { 2221 if (mappedValue == null) 2222 throw new NullPointerException(); 2223 return new KeySetView<K,V>(this, mappedValue); 2224 } 2225 2226 /* ---------------- Special Nodes -------------- */ 2227 2228 /** 2229 * A node inserted at head of bins during transfer operations. 2230 */ 2231 static final class ForwardingNode<K,V> extends Node<K,V> { 2232 final Node<K,V>[] nextTable; ForwardingNode(Node<K,V>[] tab)2233 ForwardingNode(Node<K,V>[] tab) { 2234 super(MOVED, null, null, null); 2235 this.nextTable = tab; 2236 } 2237 find(int h, Object k)2238 Node<K,V> find(int h, Object k) { 2239 // loop to avoid arbitrarily deep recursion on forwarding nodes 2240 outer: for (Node<K,V>[] tab = nextTable;;) { 2241 Node<K,V> e; int n; 2242 if (k == null || tab == null || (n = tab.length) == 0 || 2243 (e = tabAt(tab, (n - 1) & h)) == null) 2244 return null; 2245 for (;;) { 2246 int eh; K ek; 2247 if ((eh = e.hash) == h && 2248 ((ek = e.key) == k || (ek != null && k.equals(ek)))) 2249 return e; 2250 if (eh < 0) { 2251 if (e instanceof ForwardingNode) { 2252 tab = ((ForwardingNode<K,V>)e).nextTable; 2253 continue outer; 2254 } 2255 else 2256 return e.find(h, k); 2257 } 2258 if ((e = e.next) == null) 2259 return null; 2260 } 2261 } 2262 } 2263 } 2264 2265 /** 2266 * A place-holder node used in computeIfAbsent and compute. 2267 */ 2268 static final class ReservationNode<K,V> extends Node<K,V> { ReservationNode()2269 ReservationNode() { 2270 super(RESERVED, null, null, null); 2271 } 2272 find(int h, Object k)2273 Node<K,V> find(int h, Object k) { 2274 return null; 2275 } 2276 } 2277 2278 /* ---------------- Table Initialization and Resizing -------------- */ 2279 2280 /** 2281 * Returns the stamp bits for resizing a table of size n. 2282 * Must be negative when shifted left by RESIZE_STAMP_SHIFT. 2283 */ resizeStamp(int n)2284 static final int resizeStamp(int n) { 2285 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1)); 2286 } 2287 2288 /** 2289 * Initializes table, using the size recorded in sizeCtl. 2290 */ initTable()2291 private final Node<K,V>[] initTable() { 2292 Node<K,V>[] tab; int sc; 2293 while ((tab = table) == null || tab.length == 0) { 2294 if ((sc = sizeCtl) < 0) 2295 Thread.yield(); // lost initialization race; just spin 2296 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { 2297 try { 2298 if ((tab = table) == null || tab.length == 0) { 2299 int n = (sc > 0) ? sc : DEFAULT_CAPACITY; 2300 @SuppressWarnings("unchecked") 2301 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n]; 2302 table = tab = nt; 2303 sc = n - (n >>> 2); 2304 } 2305 } finally { 2306 sizeCtl = sc; 2307 } 2308 break; 2309 } 2310 } 2311 return tab; 2312 } 2313 2314 /** 2315 * Adds to count, and if table is too small and not already 2316 * resizing, initiates transfer. If already resizing, helps 2317 * perform transfer if work is available. Rechecks occupancy 2318 * after a transfer to see if another resize is already needed 2319 * because resizings are lagging additions. 2320 * 2321 * @param x the count to add 2322 * @param check if <0, don't check resize, if <= 1 only check if uncontended 2323 */ addCount(long x, int check)2324 private final void addCount(long x, int check) { 2325 CounterCell[] as; long b, s; 2326 if ((as = counterCells) != null || 2327 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) { 2328 CounterCell a; long v; int m; 2329 boolean uncontended = true; 2330 if (as == null || (m = as.length - 1) < 0 || 2331 (a = as[ThreadLocalRandom.getProbe() & m]) == null || 2332 !(uncontended = 2333 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) { 2334 fullAddCount(x, uncontended); 2335 return; 2336 } 2337 if (check <= 1) 2338 return; 2339 s = sumCount(); 2340 } 2341 if (check >= 0) { 2342 Node<K,V>[] tab, nt; int n, sc; 2343 while (s >= (long)(sc = sizeCtl) && (tab = table) != null && 2344 (n = tab.length) < MAXIMUM_CAPACITY) { 2345 int rs = resizeStamp(n); 2346 if (sc < 0) { 2347 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || 2348 sc == rs + MAX_RESIZERS || (nt = nextTable) == null || 2349 transferIndex <= 0) 2350 break; 2351 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) 2352 transfer(tab, nt); 2353 } 2354 else if (U.compareAndSwapInt(this, SIZECTL, sc, 2355 (rs << RESIZE_STAMP_SHIFT) + 2)) 2356 transfer(tab, null); 2357 s = sumCount(); 2358 } 2359 } 2360 } 2361 2362 /** 2363 * Helps transfer if a resize is in progress. 2364 */ helpTransfer(Node<K,V>[] tab, Node<K,V> f)2365 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) { 2366 Node<K,V>[] nextTab; int sc; 2367 if (tab != null && (f instanceof ForwardingNode) && 2368 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) { 2369 int rs = resizeStamp(tab.length); 2370 while (nextTab == nextTable && table == tab && 2371 (sc = sizeCtl) < 0) { 2372 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || 2373 sc == rs + MAX_RESIZERS || transferIndex <= 0) 2374 break; 2375 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) { 2376 transfer(tab, nextTab); 2377 break; 2378 } 2379 } 2380 return nextTab; 2381 } 2382 return table; 2383 } 2384 2385 /** 2386 * Tries to presize table to accommodate the given number of elements. 2387 * 2388 * @param size number of elements (doesn't need to be perfectly accurate) 2389 */ tryPresize(int size)2390 private final void tryPresize(int size) { 2391 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY : 2392 tableSizeFor(size + (size >>> 1) + 1); 2393 int sc; 2394 while ((sc = sizeCtl) >= 0) { 2395 Node<K,V>[] tab = table; int n; 2396 if (tab == null || (n = tab.length) == 0) { 2397 n = (sc > c) ? sc : c; 2398 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { 2399 try { 2400 if (table == tab) { 2401 @SuppressWarnings("unchecked") 2402 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n]; 2403 table = nt; 2404 sc = n - (n >>> 2); 2405 } 2406 } finally { 2407 sizeCtl = sc; 2408 } 2409 } 2410 } 2411 else if (c <= sc || n >= MAXIMUM_CAPACITY) 2412 break; 2413 else if (tab == table) { 2414 int rs = resizeStamp(n); 2415 if (U.compareAndSwapInt(this, SIZECTL, sc, 2416 (rs << RESIZE_STAMP_SHIFT) + 2)) 2417 transfer(tab, null); 2418 } 2419 } 2420 } 2421 2422 /** 2423 * Moves and/or copies the nodes in each bin to new table. See 2424 * above for explanation. 2425 */ transfer(Node<K,V>[] tab, Node<K,V>[] nextTab)2426 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) { 2427 int n = tab.length, stride; 2428 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE) 2429 stride = MIN_TRANSFER_STRIDE; // subdivide range 2430 if (nextTab == null) { // initiating 2431 try { 2432 @SuppressWarnings("unchecked") 2433 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1]; 2434 nextTab = nt; 2435 } catch (Throwable ex) { // try to cope with OOME 2436 sizeCtl = Integer.MAX_VALUE; 2437 return; 2438 } 2439 nextTable = nextTab; 2440 transferIndex = n; 2441 } 2442 int nextn = nextTab.length; 2443 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab); 2444 boolean advance = true; 2445 boolean finishing = false; // to ensure sweep before committing nextTab 2446 for (int i = 0, bound = 0;;) { 2447 Node<K,V> f; int fh; 2448 while (advance) { 2449 int nextIndex, nextBound; 2450 if (--i >= bound || finishing) 2451 advance = false; 2452 else if ((nextIndex = transferIndex) <= 0) { 2453 i = -1; 2454 advance = false; 2455 } 2456 else if (U.compareAndSwapInt 2457 (this, TRANSFERINDEX, nextIndex, 2458 nextBound = (nextIndex > stride ? 2459 nextIndex - stride : 0))) { 2460 bound = nextBound; 2461 i = nextIndex - 1; 2462 advance = false; 2463 } 2464 } 2465 if (i < 0 || i >= n || i + n >= nextn) { 2466 int sc; 2467 if (finishing) { 2468 nextTable = null; 2469 table = nextTab; 2470 sizeCtl = (n << 1) - (n >>> 1); 2471 return; 2472 } 2473 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) { 2474 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT) 2475 return; 2476 finishing = advance = true; 2477 i = n; // recheck before commit 2478 } 2479 } 2480 else if ((f = tabAt(tab, i)) == null) 2481 advance = casTabAt(tab, i, null, fwd); 2482 else if ((fh = f.hash) == MOVED) 2483 advance = true; // already processed 2484 else { 2485 synchronized (f) { 2486 if (tabAt(tab, i) == f) { 2487 Node<K,V> ln, hn; 2488 if (fh >= 0) { 2489 int runBit = fh & n; 2490 Node<K,V> lastRun = f; 2491 for (Node<K,V> p = f.next; p != null; p = p.next) { 2492 int b = p.hash & n; 2493 if (b != runBit) { 2494 runBit = b; 2495 lastRun = p; 2496 } 2497 } 2498 if (runBit == 0) { 2499 ln = lastRun; 2500 hn = null; 2501 } 2502 else { 2503 hn = lastRun; 2504 ln = null; 2505 } 2506 for (Node<K,V> p = f; p != lastRun; p = p.next) { 2507 int ph = p.hash; K pk = p.key; V pv = p.val; 2508 if ((ph & n) == 0) 2509 ln = new Node<K,V>(ph, pk, pv, ln); 2510 else 2511 hn = new Node<K,V>(ph, pk, pv, hn); 2512 } 2513 setTabAt(nextTab, i, ln); 2514 setTabAt(nextTab, i + n, hn); 2515 setTabAt(tab, i, fwd); 2516 advance = true; 2517 } 2518 else if (f instanceof TreeBin) { 2519 TreeBin<K,V> t = (TreeBin<K,V>)f; 2520 TreeNode<K,V> lo = null, loTail = null; 2521 TreeNode<K,V> hi = null, hiTail = null; 2522 int lc = 0, hc = 0; 2523 for (Node<K,V> e = t.first; e != null; e = e.next) { 2524 int h = e.hash; 2525 TreeNode<K,V> p = new TreeNode<K,V> 2526 (h, e.key, e.val, null, null); 2527 if ((h & n) == 0) { 2528 if ((p.prev = loTail) == null) 2529 lo = p; 2530 else 2531 loTail.next = p; 2532 loTail = p; 2533 ++lc; 2534 } 2535 else { 2536 if ((p.prev = hiTail) == null) 2537 hi = p; 2538 else 2539 hiTail.next = p; 2540 hiTail = p; 2541 ++hc; 2542 } 2543 } 2544 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) : 2545 (hc != 0) ? new TreeBin<K,V>(lo) : t; 2546 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) : 2547 (lc != 0) ? new TreeBin<K,V>(hi) : t; 2548 setTabAt(nextTab, i, ln); 2549 setTabAt(nextTab, i + n, hn); 2550 setTabAt(tab, i, fwd); 2551 advance = true; 2552 } 2553 } 2554 } 2555 } 2556 } 2557 } 2558 2559 /* ---------------- Counter support -------------- */ 2560 2561 /** 2562 * A padded cell for distributing counts. Adapted from LongAdder 2563 * and Striped64. See their internal docs for explanation. 2564 */ 2565 //@jdk.internal.vm.annotation.Contended // Android-removed 2566 static final class CounterCell { 2567 volatile long value; CounterCell(long x)2568 CounterCell(long x) { value = x; } 2569 } 2570 sumCount()2571 final long sumCount() { 2572 CounterCell[] as = counterCells; CounterCell a; 2573 long sum = baseCount; 2574 if (as != null) { 2575 for (int i = 0; i < as.length; ++i) { 2576 if ((a = as[i]) != null) 2577 sum += a.value; 2578 } 2579 } 2580 return sum; 2581 } 2582 2583 // See LongAdder version for explanation fullAddCount(long x, boolean wasUncontended)2584 private final void fullAddCount(long x, boolean wasUncontended) { 2585 int h; 2586 if ((h = ThreadLocalRandom.getProbe()) == 0) { 2587 ThreadLocalRandom.localInit(); // force initialization 2588 h = ThreadLocalRandom.getProbe(); 2589 wasUncontended = true; 2590 } 2591 boolean collide = false; // True if last slot nonempty 2592 for (;;) { 2593 CounterCell[] as; CounterCell a; int n; long v; 2594 if ((as = counterCells) != null && (n = as.length) > 0) { 2595 if ((a = as[(n - 1) & h]) == null) { 2596 if (cellsBusy == 0) { // Try to attach new Cell 2597 CounterCell r = new CounterCell(x); // Optimistic create 2598 if (cellsBusy == 0 && 2599 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { 2600 boolean created = false; 2601 try { // Recheck under lock 2602 CounterCell[] rs; int m, j; 2603 if ((rs = counterCells) != null && 2604 (m = rs.length) > 0 && 2605 rs[j = (m - 1) & h] == null) { 2606 rs[j] = r; 2607 created = true; 2608 } 2609 } finally { 2610 cellsBusy = 0; 2611 } 2612 if (created) 2613 break; 2614 continue; // Slot is now non-empty 2615 } 2616 } 2617 collide = false; 2618 } 2619 else if (!wasUncontended) // CAS already known to fail 2620 wasUncontended = true; // Continue after rehash 2621 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x)) 2622 break; 2623 else if (counterCells != as || n >= NCPU) 2624 collide = false; // At max size or stale 2625 else if (!collide) 2626 collide = true; 2627 else if (cellsBusy == 0 && 2628 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { 2629 try { 2630 if (counterCells == as) {// Expand table unless stale 2631 CounterCell[] rs = new CounterCell[n << 1]; 2632 for (int i = 0; i < n; ++i) 2633 rs[i] = as[i]; 2634 counterCells = rs; 2635 } 2636 } finally { 2637 cellsBusy = 0; 2638 } 2639 collide = false; 2640 continue; // Retry with expanded table 2641 } 2642 h = ThreadLocalRandom.advanceProbe(h); 2643 } 2644 else if (cellsBusy == 0 && counterCells == as && 2645 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { 2646 boolean init = false; 2647 try { // Initialize table 2648 if (counterCells == as) { 2649 CounterCell[] rs = new CounterCell[2]; 2650 rs[h & 1] = new CounterCell(x); 2651 counterCells = rs; 2652 init = true; 2653 } 2654 } finally { 2655 cellsBusy = 0; 2656 } 2657 if (init) 2658 break; 2659 } 2660 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x)) 2661 break; // Fall back on using base 2662 } 2663 } 2664 2665 /* ---------------- Conversion from/to TreeBins -------------- */ 2666 2667 /** 2668 * Replaces all linked nodes in bin at given index unless table is 2669 * too small, in which case resizes instead. 2670 */ treeifyBin(Node<K,V>[] tab, int index)2671 private final void treeifyBin(Node<K,V>[] tab, int index) { 2672 Node<K,V> b; int n; 2673 if (tab != null) { 2674 if ((n = tab.length) < MIN_TREEIFY_CAPACITY) 2675 tryPresize(n << 1); 2676 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) { 2677 synchronized (b) { 2678 if (tabAt(tab, index) == b) { 2679 TreeNode<K,V> hd = null, tl = null; 2680 for (Node<K,V> e = b; e != null; e = e.next) { 2681 TreeNode<K,V> p = 2682 new TreeNode<K,V>(e.hash, e.key, e.val, 2683 null, null); 2684 if ((p.prev = tl) == null) 2685 hd = p; 2686 else 2687 tl.next = p; 2688 tl = p; 2689 } 2690 setTabAt(tab, index, new TreeBin<K,V>(hd)); 2691 } 2692 } 2693 } 2694 } 2695 } 2696 2697 /** 2698 * Returns a list on non-TreeNodes replacing those in given list. 2699 */ untreeify(Node<K,V> b)2700 static <K,V> Node<K,V> untreeify(Node<K,V> b) { 2701 Node<K,V> hd = null, tl = null; 2702 for (Node<K,V> q = b; q != null; q = q.next) { 2703 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null); 2704 if (tl == null) 2705 hd = p; 2706 else 2707 tl.next = p; 2708 tl = p; 2709 } 2710 return hd; 2711 } 2712 2713 /* ---------------- TreeNodes -------------- */ 2714 2715 /** 2716 * Nodes for use in TreeBins. 2717 */ 2718 static final class TreeNode<K,V> extends Node<K,V> { 2719 TreeNode<K,V> parent; // red-black tree links 2720 TreeNode<K,V> left; 2721 TreeNode<K,V> right; 2722 TreeNode<K,V> prev; // needed to unlink next upon deletion 2723 boolean red; 2724 TreeNode(int hash, K key, V val, Node<K,V> next, TreeNode<K,V> parent)2725 TreeNode(int hash, K key, V val, Node<K,V> next, 2726 TreeNode<K,V> parent) { 2727 super(hash, key, val, next); 2728 this.parent = parent; 2729 } 2730 find(int h, Object k)2731 Node<K,V> find(int h, Object k) { 2732 return findTreeNode(h, k, null); 2733 } 2734 2735 /** 2736 * Returns the TreeNode (or null if not found) for the given key 2737 * starting at given root. 2738 */ findTreeNode(int h, Object k, Class<?> kc)2739 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) { 2740 if (k != null) { 2741 TreeNode<K,V> p = this; 2742 do { 2743 int ph, dir; K pk; TreeNode<K,V> q; 2744 TreeNode<K,V> pl = p.left, pr = p.right; 2745 if ((ph = p.hash) > h) 2746 p = pl; 2747 else if (ph < h) 2748 p = pr; 2749 else if ((pk = p.key) == k || (pk != null && k.equals(pk))) 2750 return p; 2751 else if (pl == null) 2752 p = pr; 2753 else if (pr == null) 2754 p = pl; 2755 else if ((kc != null || 2756 (kc = comparableClassFor(k)) != null) && 2757 (dir = compareComparables(kc, k, pk)) != 0) 2758 p = (dir < 0) ? pl : pr; 2759 else if ((q = pr.findTreeNode(h, k, kc)) != null) 2760 return q; 2761 else 2762 p = pl; 2763 } while (p != null); 2764 } 2765 return null; 2766 } 2767 } 2768 2769 /* ---------------- TreeBins -------------- */ 2770 2771 /** 2772 * TreeNodes used at the heads of bins. TreeBins do not hold user 2773 * keys or values, but instead point to list of TreeNodes and 2774 * their root. They also maintain a parasitic read-write lock 2775 * forcing writers (who hold bin lock) to wait for readers (who do 2776 * not) to complete before tree restructuring operations. 2777 */ 2778 static final class TreeBin<K,V> extends Node<K,V> { 2779 TreeNode<K,V> root; 2780 volatile TreeNode<K,V> first; 2781 volatile Thread waiter; 2782 volatile int lockState; 2783 // values for lockState 2784 static final int WRITER = 1; // set while holding write lock 2785 static final int WAITER = 2; // set when waiting for write lock 2786 static final int READER = 4; // increment value for setting read lock 2787 2788 /** 2789 * Tie-breaking utility for ordering insertions when equal 2790 * hashCodes and non-comparable. We don't require a total 2791 * order, just a consistent insertion rule to maintain 2792 * equivalence across rebalancings. Tie-breaking further than 2793 * necessary simplifies testing a bit. 2794 */ tieBreakOrder(Object a, Object b)2795 static int tieBreakOrder(Object a, Object b) { 2796 int d; 2797 if (a == null || b == null || 2798 (d = a.getClass().getName(). 2799 compareTo(b.getClass().getName())) == 0) 2800 d = (System.identityHashCode(a) <= System.identityHashCode(b) ? 2801 -1 : 1); 2802 return d; 2803 } 2804 2805 /** 2806 * Creates bin with initial set of nodes headed by b. 2807 */ TreeBin(TreeNode<K,V> b)2808 TreeBin(TreeNode<K,V> b) { 2809 super(TREEBIN, null, null, null); 2810 this.first = b; 2811 TreeNode<K,V> r = null; 2812 for (TreeNode<K,V> x = b, next; x != null; x = next) { 2813 next = (TreeNode<K,V>)x.next; 2814 x.left = x.right = null; 2815 if (r == null) { 2816 x.parent = null; 2817 x.red = false; 2818 r = x; 2819 } 2820 else { 2821 K k = x.key; 2822 int h = x.hash; 2823 Class<?> kc = null; 2824 for (TreeNode<K,V> p = r;;) { 2825 int dir, ph; 2826 K pk = p.key; 2827 if ((ph = p.hash) > h) 2828 dir = -1; 2829 else if (ph < h) 2830 dir = 1; 2831 else if ((kc == null && 2832 (kc = comparableClassFor(k)) == null) || 2833 (dir = compareComparables(kc, k, pk)) == 0) 2834 dir = tieBreakOrder(k, pk); 2835 TreeNode<K,V> xp = p; 2836 if ((p = (dir <= 0) ? p.left : p.right) == null) { 2837 x.parent = xp; 2838 if (dir <= 0) 2839 xp.left = x; 2840 else 2841 xp.right = x; 2842 r = balanceInsertion(r, x); 2843 break; 2844 } 2845 } 2846 } 2847 } 2848 this.root = r; 2849 assert checkInvariants(root); 2850 } 2851 2852 /** 2853 * Acquires write lock for tree restructuring. 2854 */ lockRoot()2855 private final void lockRoot() { 2856 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER)) 2857 contendedLock(); // offload to separate method 2858 } 2859 2860 /** 2861 * Releases write lock for tree restructuring. 2862 */ unlockRoot()2863 private final void unlockRoot() { 2864 lockState = 0; 2865 } 2866 2867 /** 2868 * Possibly blocks awaiting root lock. 2869 */ contendedLock()2870 private final void contendedLock() { 2871 boolean waiting = false; 2872 for (int s;;) { 2873 if (((s = lockState) & ~WAITER) == 0) { 2874 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) { 2875 if (waiting) 2876 waiter = null; 2877 return; 2878 } 2879 } 2880 else if ((s & WAITER) == 0) { 2881 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) { 2882 waiting = true; 2883 waiter = Thread.currentThread(); 2884 } 2885 } 2886 else if (waiting) 2887 LockSupport.park(this); 2888 } 2889 } 2890 2891 /** 2892 * Returns matching node or null if none. Tries to search 2893 * using tree comparisons from root, but continues linear 2894 * search when lock not available. 2895 */ find(int h, Object k)2896 final Node<K,V> find(int h, Object k) { 2897 if (k != null) { 2898 for (Node<K,V> e = first; e != null; ) { 2899 int s; K ek; 2900 if (((s = lockState) & (WAITER|WRITER)) != 0) { 2901 if (e.hash == h && 2902 ((ek = e.key) == k || (ek != null && k.equals(ek)))) 2903 return e; 2904 e = e.next; 2905 } 2906 else if (U.compareAndSwapInt(this, LOCKSTATE, s, 2907 s + READER)) { 2908 TreeNode<K,V> r, p; 2909 try { 2910 p = ((r = root) == null ? null : 2911 r.findTreeNode(h, k, null)); 2912 } finally { 2913 Thread w; 2914 if (U.getAndAddInt(this, LOCKSTATE, -READER) == 2915 (READER|WAITER) && (w = waiter) != null) 2916 LockSupport.unpark(w); 2917 } 2918 return p; 2919 } 2920 } 2921 } 2922 return null; 2923 } 2924 2925 /** 2926 * Finds or adds a node. 2927 * @return null if added 2928 */ putTreeVal(int h, K k, V v)2929 final TreeNode<K,V> putTreeVal(int h, K k, V v) { 2930 Class<?> kc = null; 2931 boolean searched = false; 2932 for (TreeNode<K,V> p = root;;) { 2933 int dir, ph; K pk; 2934 if (p == null) { 2935 first = root = new TreeNode<K,V>(h, k, v, null, null); 2936 break; 2937 } 2938 else if ((ph = p.hash) > h) 2939 dir = -1; 2940 else if (ph < h) 2941 dir = 1; 2942 else if ((pk = p.key) == k || (pk != null && k.equals(pk))) 2943 return p; 2944 else if ((kc == null && 2945 (kc = comparableClassFor(k)) == null) || 2946 (dir = compareComparables(kc, k, pk)) == 0) { 2947 if (!searched) { 2948 TreeNode<K,V> q, ch; 2949 searched = true; 2950 if (((ch = p.left) != null && 2951 (q = ch.findTreeNode(h, k, kc)) != null) || 2952 ((ch = p.right) != null && 2953 (q = ch.findTreeNode(h, k, kc)) != null)) 2954 return q; 2955 } 2956 dir = tieBreakOrder(k, pk); 2957 } 2958 2959 TreeNode<K,V> xp = p; 2960 if ((p = (dir <= 0) ? p.left : p.right) == null) { 2961 TreeNode<K,V> x, f = first; 2962 first = x = new TreeNode<K,V>(h, k, v, f, xp); 2963 if (f != null) 2964 f.prev = x; 2965 if (dir <= 0) 2966 xp.left = x; 2967 else 2968 xp.right = x; 2969 if (!xp.red) 2970 x.red = true; 2971 else { 2972 lockRoot(); 2973 try { 2974 root = balanceInsertion(root, x); 2975 } finally { 2976 unlockRoot(); 2977 } 2978 } 2979 break; 2980 } 2981 } 2982 assert checkInvariants(root); 2983 return null; 2984 } 2985 2986 /** 2987 * Removes the given node, that must be present before this 2988 * call. This is messier than typical red-black deletion code 2989 * because we cannot swap the contents of an interior node 2990 * with a leaf successor that is pinned by "next" pointers 2991 * that are accessible independently of lock. So instead we 2992 * swap the tree linkages. 2993 * 2994 * @return true if now too small, so should be untreeified 2995 */ removeTreeNode(TreeNode<K,V> p)2996 final boolean removeTreeNode(TreeNode<K,V> p) { 2997 TreeNode<K,V> next = (TreeNode<K,V>)p.next; 2998 TreeNode<K,V> pred = p.prev; // unlink traversal pointers 2999 TreeNode<K,V> r, rl; 3000 if (pred == null) 3001 first = next; 3002 else 3003 pred.next = next; 3004 if (next != null) 3005 next.prev = pred; 3006 if (first == null) { 3007 root = null; 3008 return true; 3009 } 3010 if ((r = root) == null || r.right == null || // too small 3011 (rl = r.left) == null || rl.left == null) 3012 return true; 3013 lockRoot(); 3014 try { 3015 TreeNode<K,V> replacement; 3016 TreeNode<K,V> pl = p.left; 3017 TreeNode<K,V> pr = p.right; 3018 if (pl != null && pr != null) { 3019 TreeNode<K,V> s = pr, sl; 3020 while ((sl = s.left) != null) // find successor 3021 s = sl; 3022 boolean c = s.red; s.red = p.red; p.red = c; // swap colors 3023 TreeNode<K,V> sr = s.right; 3024 TreeNode<K,V> pp = p.parent; 3025 if (s == pr) { // p was s's direct parent 3026 p.parent = s; 3027 s.right = p; 3028 } 3029 else { 3030 TreeNode<K,V> sp = s.parent; 3031 if ((p.parent = sp) != null) { 3032 if (s == sp.left) 3033 sp.left = p; 3034 else 3035 sp.right = p; 3036 } 3037 if ((s.right = pr) != null) 3038 pr.parent = s; 3039 } 3040 p.left = null; 3041 if ((p.right = sr) != null) 3042 sr.parent = p; 3043 if ((s.left = pl) != null) 3044 pl.parent = s; 3045 if ((s.parent = pp) == null) 3046 r = s; 3047 else if (p == pp.left) 3048 pp.left = s; 3049 else 3050 pp.right = s; 3051 if (sr != null) 3052 replacement = sr; 3053 else 3054 replacement = p; 3055 } 3056 else if (pl != null) 3057 replacement = pl; 3058 else if (pr != null) 3059 replacement = pr; 3060 else 3061 replacement = p; 3062 if (replacement != p) { 3063 TreeNode<K,V> pp = replacement.parent = p.parent; 3064 if (pp == null) 3065 r = replacement; 3066 else if (p == pp.left) 3067 pp.left = replacement; 3068 else 3069 pp.right = replacement; 3070 p.left = p.right = p.parent = null; 3071 } 3072 3073 root = (p.red) ? r : balanceDeletion(r, replacement); 3074 3075 if (p == replacement) { // detach pointers 3076 TreeNode<K,V> pp; 3077 if ((pp = p.parent) != null) { 3078 if (p == pp.left) 3079 pp.left = null; 3080 else if (p == pp.right) 3081 pp.right = null; 3082 p.parent = null; 3083 } 3084 } 3085 } finally { 3086 unlockRoot(); 3087 } 3088 assert checkInvariants(root); 3089 return false; 3090 } 3091 3092 /* ------------------------------------------------------------ */ 3093 // Red-black tree methods, all adapted from CLR 3094 rotateLeft(TreeNode<K,V> root, TreeNode<K,V> p)3095 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root, 3096 TreeNode<K,V> p) { 3097 TreeNode<K,V> r, pp, rl; 3098 if (p != null && (r = p.right) != null) { 3099 if ((rl = p.right = r.left) != null) 3100 rl.parent = p; 3101 if ((pp = r.parent = p.parent) == null) 3102 (root = r).red = false; 3103 else if (pp.left == p) 3104 pp.left = r; 3105 else 3106 pp.right = r; 3107 r.left = p; 3108 p.parent = r; 3109 } 3110 return root; 3111 } 3112 rotateRight(TreeNode<K,V> root, TreeNode<K,V> p)3113 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root, 3114 TreeNode<K,V> p) { 3115 TreeNode<K,V> l, pp, lr; 3116 if (p != null && (l = p.left) != null) { 3117 if ((lr = p.left = l.right) != null) 3118 lr.parent = p; 3119 if ((pp = l.parent = p.parent) == null) 3120 (root = l).red = false; 3121 else if (pp.right == p) 3122 pp.right = l; 3123 else 3124 pp.left = l; 3125 l.right = p; 3126 p.parent = l; 3127 } 3128 return root; 3129 } 3130 balanceInsertion(TreeNode<K,V> root, TreeNode<K,V> x)3131 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root, 3132 TreeNode<K,V> x) { 3133 x.red = true; 3134 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) { 3135 if ((xp = x.parent) == null) { 3136 x.red = false; 3137 return x; 3138 } 3139 else if (!xp.red || (xpp = xp.parent) == null) 3140 return root; 3141 if (xp == (xppl = xpp.left)) { 3142 if ((xppr = xpp.right) != null && xppr.red) { 3143 xppr.red = false; 3144 xp.red = false; 3145 xpp.red = true; 3146 x = xpp; 3147 } 3148 else { 3149 if (x == xp.right) { 3150 root = rotateLeft(root, x = xp); 3151 xpp = (xp = x.parent) == null ? null : xp.parent; 3152 } 3153 if (xp != null) { 3154 xp.red = false; 3155 if (xpp != null) { 3156 xpp.red = true; 3157 root = rotateRight(root, xpp); 3158 } 3159 } 3160 } 3161 } 3162 else { 3163 if (xppl != null && xppl.red) { 3164 xppl.red = false; 3165 xp.red = false; 3166 xpp.red = true; 3167 x = xpp; 3168 } 3169 else { 3170 if (x == xp.left) { 3171 root = rotateRight(root, x = xp); 3172 xpp = (xp = x.parent) == null ? null : xp.parent; 3173 } 3174 if (xp != null) { 3175 xp.red = false; 3176 if (xpp != null) { 3177 xpp.red = true; 3178 root = rotateLeft(root, xpp); 3179 } 3180 } 3181 } 3182 } 3183 } 3184 } 3185 balanceDeletion(TreeNode<K,V> root, TreeNode<K,V> x)3186 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root, 3187 TreeNode<K,V> x) { 3188 for (TreeNode<K,V> xp, xpl, xpr;;) { 3189 if (x == null || x == root) 3190 return root; 3191 else if ((xp = x.parent) == null) { 3192 x.red = false; 3193 return x; 3194 } 3195 else if (x.red) { 3196 x.red = false; 3197 return root; 3198 } 3199 else if ((xpl = xp.left) == x) { 3200 if ((xpr = xp.right) != null && xpr.red) { 3201 xpr.red = false; 3202 xp.red = true; 3203 root = rotateLeft(root, xp); 3204 xpr = (xp = x.parent) == null ? null : xp.right; 3205 } 3206 if (xpr == null) 3207 x = xp; 3208 else { 3209 TreeNode<K,V> sl = xpr.left, sr = xpr.right; 3210 if ((sr == null || !sr.red) && 3211 (sl == null || !sl.red)) { 3212 xpr.red = true; 3213 x = xp; 3214 } 3215 else { 3216 if (sr == null || !sr.red) { 3217 if (sl != null) 3218 sl.red = false; 3219 xpr.red = true; 3220 root = rotateRight(root, xpr); 3221 xpr = (xp = x.parent) == null ? 3222 null : xp.right; 3223 } 3224 if (xpr != null) { 3225 xpr.red = (xp == null) ? false : xp.red; 3226 if ((sr = xpr.right) != null) 3227 sr.red = false; 3228 } 3229 if (xp != null) { 3230 xp.red = false; 3231 root = rotateLeft(root, xp); 3232 } 3233 x = root; 3234 } 3235 } 3236 } 3237 else { // symmetric 3238 if (xpl != null && xpl.red) { 3239 xpl.red = false; 3240 xp.red = true; 3241 root = rotateRight(root, xp); 3242 xpl = (xp = x.parent) == null ? null : xp.left; 3243 } 3244 if (xpl == null) 3245 x = xp; 3246 else { 3247 TreeNode<K,V> sl = xpl.left, sr = xpl.right; 3248 if ((sl == null || !sl.red) && 3249 (sr == null || !sr.red)) { 3250 xpl.red = true; 3251 x = xp; 3252 } 3253 else { 3254 if (sl == null || !sl.red) { 3255 if (sr != null) 3256 sr.red = false; 3257 xpl.red = true; 3258 root = rotateLeft(root, xpl); 3259 xpl = (xp = x.parent) == null ? 3260 null : xp.left; 3261 } 3262 if (xpl != null) { 3263 xpl.red = (xp == null) ? false : xp.red; 3264 if ((sl = xpl.left) != null) 3265 sl.red = false; 3266 } 3267 if (xp != null) { 3268 xp.red = false; 3269 root = rotateRight(root, xp); 3270 } 3271 x = root; 3272 } 3273 } 3274 } 3275 } 3276 } 3277 3278 /** 3279 * Checks invariants recursively for the tree of Nodes rooted at t. 3280 */ checkInvariants(TreeNode<K,V> t)3281 static <K,V> boolean checkInvariants(TreeNode<K,V> t) { 3282 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right, 3283 tb = t.prev, tn = (TreeNode<K,V>)t.next; 3284 if (tb != null && tb.next != t) 3285 return false; 3286 if (tn != null && tn.prev != t) 3287 return false; 3288 if (tp != null && t != tp.left && t != tp.right) 3289 return false; 3290 if (tl != null && (tl.parent != t || tl.hash > t.hash)) 3291 return false; 3292 if (tr != null && (tr.parent != t || tr.hash < t.hash)) 3293 return false; 3294 if (t.red && tl != null && tl.red && tr != null && tr.red) 3295 return false; 3296 if (tl != null && !checkInvariants(tl)) 3297 return false; 3298 if (tr != null && !checkInvariants(tr)) 3299 return false; 3300 return true; 3301 } 3302 3303 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe(); 3304 private static final long LOCKSTATE; 3305 static { 3306 try { 3307 LOCKSTATE = U.objectFieldOffset 3308 (TreeBin.class.getDeclaredField("lockState")); 3309 } catch (ReflectiveOperationException e) { 3310 throw new Error(e); 3311 } 3312 } 3313 } 3314 3315 /* ----------------Table Traversal -------------- */ 3316 3317 /** 3318 * Records the table, its length, and current traversal index for a 3319 * traverser that must process a region of a forwarded table before 3320 * proceeding with current table. 3321 */ 3322 static final class TableStack<K,V> { 3323 int length; 3324 int index; 3325 Node<K,V>[] tab; 3326 TableStack<K,V> next; 3327 } 3328 3329 /** 3330 * Encapsulates traversal for methods such as containsValue; also 3331 * serves as a base class for other iterators and spliterators. 3332 * 3333 * Method advance visits once each still-valid node that was 3334 * reachable upon iterator construction. It might miss some that 3335 * were added to a bin after the bin was visited, which is OK wrt 3336 * consistency guarantees. Maintaining this property in the face 3337 * of possible ongoing resizes requires a fair amount of 3338 * bookkeeping state that is difficult to optimize away amidst 3339 * volatile accesses. Even so, traversal maintains reasonable 3340 * throughput. 3341 * 3342 * Normally, iteration proceeds bin-by-bin traversing lists. 3343 * However, if the table has been resized, then all future steps 3344 * must traverse both the bin at the current index as well as at 3345 * (index + baseSize); and so on for further resizings. To 3346 * paranoically cope with potential sharing by users of iterators 3347 * across threads, iteration terminates if a bounds checks fails 3348 * for a table read. 3349 */ 3350 static class Traverser<K,V> { 3351 Node<K,V>[] tab; // current table; updated if resized 3352 Node<K,V> next; // the next entry to use 3353 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes 3354 int index; // index of bin to use next 3355 int baseIndex; // current index of initial table 3356 int baseLimit; // index bound for initial table 3357 final int baseSize; // initial table size 3358 Traverser(Node<K,V>[] tab, int size, int index, int limit)3359 Traverser(Node<K,V>[] tab, int size, int index, int limit) { 3360 this.tab = tab; 3361 this.baseSize = size; 3362 this.baseIndex = this.index = index; 3363 this.baseLimit = limit; 3364 this.next = null; 3365 } 3366 3367 /** 3368 * Advances if possible, returning next valid node, or null if none. 3369 */ advance()3370 final Node<K,V> advance() { 3371 Node<K,V> e; 3372 if ((e = next) != null) 3373 e = e.next; 3374 for (;;) { 3375 Node<K,V>[] t; int i, n; // must use locals in checks 3376 if (e != null) 3377 return next = e; 3378 if (baseIndex >= baseLimit || (t = tab) == null || 3379 (n = t.length) <= (i = index) || i < 0) 3380 return next = null; 3381 if ((e = tabAt(t, i)) != null && e.hash < 0) { 3382 if (e instanceof ForwardingNode) { 3383 tab = ((ForwardingNode<K,V>)e).nextTable; 3384 e = null; 3385 pushState(t, i, n); 3386 continue; 3387 } 3388 else if (e instanceof TreeBin) 3389 e = ((TreeBin<K,V>)e).first; 3390 else 3391 e = null; 3392 } 3393 if (stack != null) 3394 recoverState(n); 3395 else if ((index = i + baseSize) >= n) 3396 index = ++baseIndex; // visit upper slots if present 3397 } 3398 } 3399 3400 /** 3401 * Saves traversal state upon encountering a forwarding node. 3402 */ pushState(Node<K,V>[] t, int i, int n)3403 private void pushState(Node<K,V>[] t, int i, int n) { 3404 TableStack<K,V> s = spare; // reuse if possible 3405 if (s != null) 3406 spare = s.next; 3407 else 3408 s = new TableStack<K,V>(); 3409 s.tab = t; 3410 s.length = n; 3411 s.index = i; 3412 s.next = stack; 3413 stack = s; 3414 } 3415 3416 /** 3417 * Possibly pops traversal state. 3418 * 3419 * @param n length of current table 3420 */ recoverState(int n)3421 private void recoverState(int n) { 3422 TableStack<K,V> s; int len; 3423 while ((s = stack) != null && (index += (len = s.length)) >= n) { 3424 n = len; 3425 index = s.index; 3426 tab = s.tab; 3427 s.tab = null; 3428 TableStack<K,V> next = s.next; 3429 s.next = spare; // save for reuse 3430 stack = next; 3431 spare = s; 3432 } 3433 if (s == null && (index += baseSize) >= n) 3434 index = ++baseIndex; 3435 } 3436 } 3437 3438 /** 3439 * Base of key, value, and entry Iterators. Adds fields to 3440 * Traverser to support iterator.remove. 3441 */ 3442 static class BaseIterator<K,V> extends Traverser<K,V> { 3443 final ConcurrentHashMap<K,V> map; 3444 Node<K,V> lastReturned; BaseIterator(Node<K,V>[] tab, int size, int index, int limit, ConcurrentHashMap<K,V> map)3445 BaseIterator(Node<K,V>[] tab, int size, int index, int limit, 3446 ConcurrentHashMap<K,V> map) { 3447 super(tab, size, index, limit); 3448 this.map = map; 3449 advance(); 3450 } 3451 hasNext()3452 public final boolean hasNext() { return next != null; } hasMoreElements()3453 public final boolean hasMoreElements() { return next != null; } 3454 remove()3455 public final void remove() { 3456 Node<K,V> p; 3457 if ((p = lastReturned) == null) 3458 throw new IllegalStateException(); 3459 lastReturned = null; 3460 map.replaceNode(p.key, null, null); 3461 } 3462 } 3463 3464 static final class KeyIterator<K,V> extends BaseIterator<K,V> 3465 implements Iterator<K>, Enumeration<K> { KeyIterator(Node<K,V>[] tab, int index, int size, int limit, ConcurrentHashMap<K,V> map)3466 KeyIterator(Node<K,V>[] tab, int index, int size, int limit, 3467 ConcurrentHashMap<K,V> map) { 3468 super(tab, index, size, limit, map); 3469 } 3470 next()3471 public final K next() { 3472 Node<K,V> p; 3473 if ((p = next) == null) 3474 throw new NoSuchElementException(); 3475 K k = p.key; 3476 lastReturned = p; 3477 advance(); 3478 return k; 3479 } 3480 nextElement()3481 public final K nextElement() { return next(); } 3482 } 3483 3484 static final class ValueIterator<K,V> extends BaseIterator<K,V> 3485 implements Iterator<V>, Enumeration<V> { ValueIterator(Node<K,V>[] tab, int index, int size, int limit, ConcurrentHashMap<K,V> map)3486 ValueIterator(Node<K,V>[] tab, int index, int size, int limit, 3487 ConcurrentHashMap<K,V> map) { 3488 super(tab, index, size, limit, map); 3489 } 3490 next()3491 public final V next() { 3492 Node<K,V> p; 3493 if ((p = next) == null) 3494 throw new NoSuchElementException(); 3495 V v = p.val; 3496 lastReturned = p; 3497 advance(); 3498 return v; 3499 } 3500 nextElement()3501 public final V nextElement() { return next(); } 3502 } 3503 3504 static final class EntryIterator<K,V> extends BaseIterator<K,V> 3505 implements Iterator<Map.Entry<K,V>> { EntryIterator(Node<K,V>[] tab, int index, int size, int limit, ConcurrentHashMap<K,V> map)3506 EntryIterator(Node<K,V>[] tab, int index, int size, int limit, 3507 ConcurrentHashMap<K,V> map) { 3508 super(tab, index, size, limit, map); 3509 } 3510 next()3511 public final Map.Entry<K,V> next() { 3512 Node<K,V> p; 3513 if ((p = next) == null) 3514 throw new NoSuchElementException(); 3515 K k = p.key; 3516 V v = p.val; 3517 lastReturned = p; 3518 advance(); 3519 return new MapEntry<K,V>(k, v, map); 3520 } 3521 } 3522 3523 /** 3524 * Exported Entry for EntryIterator. 3525 */ 3526 static final class MapEntry<K,V> implements Map.Entry<K,V> { 3527 final K key; // non-null 3528 V val; // non-null 3529 final ConcurrentHashMap<K,V> map; MapEntry(K key, V val, ConcurrentHashMap<K,V> map)3530 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) { 3531 this.key = key; 3532 this.val = val; 3533 this.map = map; 3534 } getKey()3535 public K getKey() { return key; } getValue()3536 public V getValue() { return val; } hashCode()3537 public int hashCode() { return key.hashCode() ^ val.hashCode(); } toString()3538 public String toString() { 3539 return Helpers.mapEntryToString(key, val); 3540 } 3541 equals(Object o)3542 public boolean equals(Object o) { 3543 Object k, v; Map.Entry<?,?> e; 3544 return ((o instanceof Map.Entry) && 3545 (k = (e = (Map.Entry<?,?>)o).getKey()) != null && 3546 (v = e.getValue()) != null && 3547 (k == key || k.equals(key)) && 3548 (v == val || v.equals(val))); 3549 } 3550 3551 /** 3552 * Sets our entry's value and writes through to the map. The 3553 * value to return is somewhat arbitrary here. Since we do not 3554 * necessarily track asynchronous changes, the most recent 3555 * "previous" value could be different from what we return (or 3556 * could even have been removed, in which case the put will 3557 * re-establish). We do not and cannot guarantee more. 3558 */ setValue(V value)3559 public V setValue(V value) { 3560 if (value == null) throw new NullPointerException(); 3561 V v = val; 3562 val = value; 3563 map.put(key, value); 3564 return v; 3565 } 3566 } 3567 3568 static final class KeySpliterator<K,V> extends Traverser<K,V> 3569 implements Spliterator<K> { 3570 long est; // size estimate KeySpliterator(Node<K,V>[] tab, int size, int index, int limit, long est)3571 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit, 3572 long est) { 3573 super(tab, size, index, limit); 3574 this.est = est; 3575 } 3576 trySplit()3577 public KeySpliterator<K,V> trySplit() { 3578 int i, f, h; 3579 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null : 3580 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h, 3581 f, est >>>= 1); 3582 } 3583 forEachRemaining(Consumer<? super K> action)3584 public void forEachRemaining(Consumer<? super K> action) { 3585 if (action == null) throw new NullPointerException(); 3586 for (Node<K,V> p; (p = advance()) != null;) 3587 action.accept(p.key); 3588 } 3589 tryAdvance(Consumer<? super K> action)3590 public boolean tryAdvance(Consumer<? super K> action) { 3591 if (action == null) throw new NullPointerException(); 3592 Node<K,V> p; 3593 if ((p = advance()) == null) 3594 return false; 3595 action.accept(p.key); 3596 return true; 3597 } 3598 estimateSize()3599 public long estimateSize() { return est; } 3600 characteristics()3601 public int characteristics() { 3602 return Spliterator.DISTINCT | Spliterator.CONCURRENT | 3603 Spliterator.NONNULL; 3604 } 3605 } 3606 3607 static final class ValueSpliterator<K,V> extends Traverser<K,V> 3608 implements Spliterator<V> { 3609 long est; // size estimate ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit, long est)3610 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit, 3611 long est) { 3612 super(tab, size, index, limit); 3613 this.est = est; 3614 } 3615 trySplit()3616 public ValueSpliterator<K,V> trySplit() { 3617 int i, f, h; 3618 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null : 3619 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h, 3620 f, est >>>= 1); 3621 } 3622 forEachRemaining(Consumer<? super V> action)3623 public void forEachRemaining(Consumer<? super V> action) { 3624 if (action == null) throw new NullPointerException(); 3625 for (Node<K,V> p; (p = advance()) != null;) 3626 action.accept(p.val); 3627 } 3628 tryAdvance(Consumer<? super V> action)3629 public boolean tryAdvance(Consumer<? super V> action) { 3630 if (action == null) throw new NullPointerException(); 3631 Node<K,V> p; 3632 if ((p = advance()) == null) 3633 return false; 3634 action.accept(p.val); 3635 return true; 3636 } 3637 estimateSize()3638 public long estimateSize() { return est; } 3639 characteristics()3640 public int characteristics() { 3641 return Spliterator.CONCURRENT | Spliterator.NONNULL; 3642 } 3643 } 3644 3645 static final class EntrySpliterator<K,V> extends Traverser<K,V> 3646 implements Spliterator<Map.Entry<K,V>> { 3647 final ConcurrentHashMap<K,V> map; // To export MapEntry 3648 long est; // size estimate EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit, long est, ConcurrentHashMap<K,V> map)3649 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit, 3650 long est, ConcurrentHashMap<K,V> map) { 3651 super(tab, size, index, limit); 3652 this.map = map; 3653 this.est = est; 3654 } 3655 trySplit()3656 public EntrySpliterator<K,V> trySplit() { 3657 int i, f, h; 3658 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null : 3659 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h, 3660 f, est >>>= 1, map); 3661 } 3662 forEachRemaining(Consumer<? super Map.Entry<K,V>> action)3663 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) { 3664 if (action == null) throw new NullPointerException(); 3665 for (Node<K,V> p; (p = advance()) != null; ) 3666 action.accept(new MapEntry<K,V>(p.key, p.val, map)); 3667 } 3668 tryAdvance(Consumer<? super Map.Entry<K,V>> action)3669 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) { 3670 if (action == null) throw new NullPointerException(); 3671 Node<K,V> p; 3672 if ((p = advance()) == null) 3673 return false; 3674 action.accept(new MapEntry<K,V>(p.key, p.val, map)); 3675 return true; 3676 } 3677 estimateSize()3678 public long estimateSize() { return est; } 3679 characteristics()3680 public int characteristics() { 3681 return Spliterator.DISTINCT | Spliterator.CONCURRENT | 3682 Spliterator.NONNULL; 3683 } 3684 } 3685 3686 // Parallel bulk operations 3687 3688 /** 3689 * Computes initial batch value for bulk tasks. The returned value 3690 * is approximately exp2 of the number of times (minus one) to 3691 * split task by two before executing leaf action. This value is 3692 * faster to compute and more convenient to use as a guide to 3693 * splitting than is the depth, since it is used while dividing by 3694 * two anyway. 3695 */ batchFor(long b)3696 final int batchFor(long b) { 3697 long n; 3698 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b) 3699 return 0; 3700 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4 3701 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n; 3702 } 3703 3704 /** 3705 * Performs the given action for each (key, value). 3706 * 3707 * @param parallelismThreshold the (estimated) number of elements 3708 * needed for this operation to be executed in parallel 3709 * @param action the action 3710 * @since 1.8 3711 */ forEach(long parallelismThreshold, BiConsumer<? super K,? super V> action)3712 public void forEach(long parallelismThreshold, 3713 BiConsumer<? super K,? super V> action) { 3714 if (action == null) throw new NullPointerException(); 3715 new ForEachMappingTask<K,V> 3716 (null, batchFor(parallelismThreshold), 0, 0, table, 3717 action).invoke(); 3718 } 3719 3720 /** 3721 * Performs the given action for each non-null transformation 3722 * of each (key, value). 3723 * 3724 * @param parallelismThreshold the (estimated) number of elements 3725 * needed for this operation to be executed in parallel 3726 * @param transformer a function returning the transformation 3727 * for an element, or null if there is no transformation (in 3728 * which case the action is not applied) 3729 * @param action the action 3730 * @param <U> the return type of the transformer 3731 * @since 1.8 3732 */ forEach(long parallelismThreshold, BiFunction<? super K, ? super V, ? extends U> transformer, Consumer<? super U> action)3733 public <U> void forEach(long parallelismThreshold, 3734 BiFunction<? super K, ? super V, ? extends U> transformer, 3735 Consumer<? super U> action) { 3736 if (transformer == null || action == null) 3737 throw new NullPointerException(); 3738 new ForEachTransformedMappingTask<K,V,U> 3739 (null, batchFor(parallelismThreshold), 0, 0, table, 3740 transformer, action).invoke(); 3741 } 3742 3743 /** 3744 * Returns a non-null result from applying the given search 3745 * function on each (key, value), or null if none. Upon 3746 * success, further element processing is suppressed and the 3747 * results of any other parallel invocations of the search 3748 * function are ignored. 3749 * 3750 * @param parallelismThreshold the (estimated) number of elements 3751 * needed for this operation to be executed in parallel 3752 * @param searchFunction a function returning a non-null 3753 * result on success, else null 3754 * @param <U> the return type of the search function 3755 * @return a non-null result from applying the given search 3756 * function on each (key, value), or null if none 3757 * @since 1.8 3758 */ search(long parallelismThreshold, BiFunction<? super K, ? super V, ? extends U> searchFunction)3759 public <U> U search(long parallelismThreshold, 3760 BiFunction<? super K, ? super V, ? extends U> searchFunction) { 3761 if (searchFunction == null) throw new NullPointerException(); 3762 return new SearchMappingsTask<K,V,U> 3763 (null, batchFor(parallelismThreshold), 0, 0, table, 3764 searchFunction, new AtomicReference<U>()).invoke(); 3765 } 3766 3767 /** 3768 * Returns the result of accumulating the given transformation 3769 * of all (key, value) pairs using the given reducer to 3770 * combine values, or null if none. 3771 * 3772 * @param parallelismThreshold the (estimated) number of elements 3773 * needed for this operation to be executed in parallel 3774 * @param transformer a function returning the transformation 3775 * for an element, or null if there is no transformation (in 3776 * which case it is not combined) 3777 * @param reducer a commutative associative combining function 3778 * @param <U> the return type of the transformer 3779 * @return the result of accumulating the given transformation 3780 * of all (key, value) pairs 3781 * @since 1.8 3782 */ reduce(long parallelismThreshold, BiFunction<? super K, ? super V, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer)3783 public <U> U reduce(long parallelismThreshold, 3784 BiFunction<? super K, ? super V, ? extends U> transformer, 3785 BiFunction<? super U, ? super U, ? extends U> reducer) { 3786 if (transformer == null || reducer == null) 3787 throw new NullPointerException(); 3788 return new MapReduceMappingsTask<K,V,U> 3789 (null, batchFor(parallelismThreshold), 0, 0, table, 3790 null, transformer, reducer).invoke(); 3791 } 3792 3793 /** 3794 * Returns the result of accumulating the given transformation 3795 * of all (key, value) pairs using the given reducer to 3796 * combine values, and the given basis as an identity value. 3797 * 3798 * @param parallelismThreshold the (estimated) number of elements 3799 * needed for this operation to be executed in parallel 3800 * @param transformer a function returning the transformation 3801 * for an element 3802 * @param basis the identity (initial default value) for the reduction 3803 * @param reducer a commutative associative combining function 3804 * @return the result of accumulating the given transformation 3805 * of all (key, value) pairs 3806 * @since 1.8 3807 */ reduceToDouble(long parallelismThreshold, ToDoubleBiFunction<? super K, ? super V> transformer, double basis, DoubleBinaryOperator reducer)3808 public double reduceToDouble(long parallelismThreshold, 3809 ToDoubleBiFunction<? super K, ? super V> transformer, 3810 double basis, 3811 DoubleBinaryOperator reducer) { 3812 if (transformer == null || reducer == null) 3813 throw new NullPointerException(); 3814 return new MapReduceMappingsToDoubleTask<K,V> 3815 (null, batchFor(parallelismThreshold), 0, 0, table, 3816 null, transformer, basis, reducer).invoke(); 3817 } 3818 3819 /** 3820 * Returns the result of accumulating the given transformation 3821 * of all (key, value) pairs using the given reducer to 3822 * combine values, and the given basis as an identity value. 3823 * 3824 * @param parallelismThreshold the (estimated) number of elements 3825 * needed for this operation to be executed in parallel 3826 * @param transformer a function returning the transformation 3827 * for an element 3828 * @param basis the identity (initial default value) for the reduction 3829 * @param reducer a commutative associative combining function 3830 * @return the result of accumulating the given transformation 3831 * of all (key, value) pairs 3832 * @since 1.8 3833 */ reduceToLong(long parallelismThreshold, ToLongBiFunction<? super K, ? super V> transformer, long basis, LongBinaryOperator reducer)3834 public long reduceToLong(long parallelismThreshold, 3835 ToLongBiFunction<? super K, ? super V> transformer, 3836 long basis, 3837 LongBinaryOperator reducer) { 3838 if (transformer == null || reducer == null) 3839 throw new NullPointerException(); 3840 return new MapReduceMappingsToLongTask<K,V> 3841 (null, batchFor(parallelismThreshold), 0, 0, table, 3842 null, transformer, basis, reducer).invoke(); 3843 } 3844 3845 /** 3846 * Returns the result of accumulating the given transformation 3847 * of all (key, value) pairs using the given reducer to 3848 * combine values, and the given basis as an identity value. 3849 * 3850 * @param parallelismThreshold the (estimated) number of elements 3851 * needed for this operation to be executed in parallel 3852 * @param transformer a function returning the transformation 3853 * for an element 3854 * @param basis the identity (initial default value) for the reduction 3855 * @param reducer a commutative associative combining function 3856 * @return the result of accumulating the given transformation 3857 * of all (key, value) pairs 3858 * @since 1.8 3859 */ reduceToInt(long parallelismThreshold, ToIntBiFunction<? super K, ? super V> transformer, int basis, IntBinaryOperator reducer)3860 public int reduceToInt(long parallelismThreshold, 3861 ToIntBiFunction<? super K, ? super V> transformer, 3862 int basis, 3863 IntBinaryOperator reducer) { 3864 if (transformer == null || reducer == null) 3865 throw new NullPointerException(); 3866 return new MapReduceMappingsToIntTask<K,V> 3867 (null, batchFor(parallelismThreshold), 0, 0, table, 3868 null, transformer, basis, reducer).invoke(); 3869 } 3870 3871 /** 3872 * Performs the given action for each key. 3873 * 3874 * @param parallelismThreshold the (estimated) number of elements 3875 * needed for this operation to be executed in parallel 3876 * @param action the action 3877 * @since 1.8 3878 */ forEachKey(long parallelismThreshold, Consumer<? super K> action)3879 public void forEachKey(long parallelismThreshold, 3880 Consumer<? super K> action) { 3881 if (action == null) throw new NullPointerException(); 3882 new ForEachKeyTask<K,V> 3883 (null, batchFor(parallelismThreshold), 0, 0, table, 3884 action).invoke(); 3885 } 3886 3887 /** 3888 * Performs the given action for each non-null transformation 3889 * of each key. 3890 * 3891 * @param parallelismThreshold the (estimated) number of elements 3892 * needed for this operation to be executed in parallel 3893 * @param transformer a function returning the transformation 3894 * for an element, or null if there is no transformation (in 3895 * which case the action is not applied) 3896 * @param action the action 3897 * @param <U> the return type of the transformer 3898 * @since 1.8 3899 */ forEachKey(long parallelismThreshold, Function<? super K, ? extends U> transformer, Consumer<? super U> action)3900 public <U> void forEachKey(long parallelismThreshold, 3901 Function<? super K, ? extends U> transformer, 3902 Consumer<? super U> action) { 3903 if (transformer == null || action == null) 3904 throw new NullPointerException(); 3905 new ForEachTransformedKeyTask<K,V,U> 3906 (null, batchFor(parallelismThreshold), 0, 0, table, 3907 transformer, action).invoke(); 3908 } 3909 3910 /** 3911 * Returns a non-null result from applying the given search 3912 * function on each key, or null if none. Upon success, 3913 * further element processing is suppressed and the results of 3914 * any other parallel invocations of the search function are 3915 * ignored. 3916 * 3917 * @param parallelismThreshold the (estimated) number of elements 3918 * needed for this operation to be executed in parallel 3919 * @param searchFunction a function returning a non-null 3920 * result on success, else null 3921 * @param <U> the return type of the search function 3922 * @return a non-null result from applying the given search 3923 * function on each key, or null if none 3924 * @since 1.8 3925 */ searchKeys(long parallelismThreshold, Function<? super K, ? extends U> searchFunction)3926 public <U> U searchKeys(long parallelismThreshold, 3927 Function<? super K, ? extends U> searchFunction) { 3928 if (searchFunction == null) throw new NullPointerException(); 3929 return new SearchKeysTask<K,V,U> 3930 (null, batchFor(parallelismThreshold), 0, 0, table, 3931 searchFunction, new AtomicReference<U>()).invoke(); 3932 } 3933 3934 /** 3935 * Returns the result of accumulating all keys using the given 3936 * reducer to combine values, or null if none. 3937 * 3938 * @param parallelismThreshold the (estimated) number of elements 3939 * needed for this operation to be executed in parallel 3940 * @param reducer a commutative associative combining function 3941 * @return the result of accumulating all keys using the given 3942 * reducer to combine values, or null if none 3943 * @since 1.8 3944 */ reduceKeys(long parallelismThreshold, BiFunction<? super K, ? super K, ? extends K> reducer)3945 public K reduceKeys(long parallelismThreshold, 3946 BiFunction<? super K, ? super K, ? extends K> reducer) { 3947 if (reducer == null) throw new NullPointerException(); 3948 return new ReduceKeysTask<K,V> 3949 (null, batchFor(parallelismThreshold), 0, 0, table, 3950 null, reducer).invoke(); 3951 } 3952 3953 /** 3954 * Returns the result of accumulating the given transformation 3955 * of all keys using the given reducer to combine values, or 3956 * null if none. 3957 * 3958 * @param parallelismThreshold the (estimated) number of elements 3959 * needed for this operation to be executed in parallel 3960 * @param transformer a function returning the transformation 3961 * for an element, or null if there is no transformation (in 3962 * which case it is not combined) 3963 * @param reducer a commutative associative combining function 3964 * @param <U> the return type of the transformer 3965 * @return the result of accumulating the given transformation 3966 * of all keys 3967 * @since 1.8 3968 */ reduceKeys(long parallelismThreshold, Function<? super K, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer)3969 public <U> U reduceKeys(long parallelismThreshold, 3970 Function<? super K, ? extends U> transformer, 3971 BiFunction<? super U, ? super U, ? extends U> reducer) { 3972 if (transformer == null || reducer == null) 3973 throw new NullPointerException(); 3974 return new MapReduceKeysTask<K,V,U> 3975 (null, batchFor(parallelismThreshold), 0, 0, table, 3976 null, transformer, reducer).invoke(); 3977 } 3978 3979 /** 3980 * Returns the result of accumulating the given transformation 3981 * of all keys using the given reducer to combine values, and 3982 * the given basis as an identity value. 3983 * 3984 * @param parallelismThreshold the (estimated) number of elements 3985 * needed for this operation to be executed in parallel 3986 * @param transformer a function returning the transformation 3987 * for an element 3988 * @param basis the identity (initial default value) for the reduction 3989 * @param reducer a commutative associative combining function 3990 * @return the result of accumulating the given transformation 3991 * of all keys 3992 * @since 1.8 3993 */ reduceKeysToDouble(long parallelismThreshold, ToDoubleFunction<? super K> transformer, double basis, DoubleBinaryOperator reducer)3994 public double reduceKeysToDouble(long parallelismThreshold, 3995 ToDoubleFunction<? super K> transformer, 3996 double basis, 3997 DoubleBinaryOperator reducer) { 3998 if (transformer == null || reducer == null) 3999 throw new NullPointerException(); 4000 return new MapReduceKeysToDoubleTask<K,V> 4001 (null, batchFor(parallelismThreshold), 0, 0, table, 4002 null, transformer, basis, reducer).invoke(); 4003 } 4004 4005 /** 4006 * Returns the result of accumulating the given transformation 4007 * of all keys using the given reducer to combine values, and 4008 * the given basis as an identity value. 4009 * 4010 * @param parallelismThreshold the (estimated) number of elements 4011 * needed for this operation to be executed in parallel 4012 * @param transformer a function returning the transformation 4013 * for an element 4014 * @param basis the identity (initial default value) for the reduction 4015 * @param reducer a commutative associative combining function 4016 * @return the result of accumulating the given transformation 4017 * of all keys 4018 * @since 1.8 4019 */ reduceKeysToLong(long parallelismThreshold, ToLongFunction<? super K> transformer, long basis, LongBinaryOperator reducer)4020 public long reduceKeysToLong(long parallelismThreshold, 4021 ToLongFunction<? super K> transformer, 4022 long basis, 4023 LongBinaryOperator reducer) { 4024 if (transformer == null || reducer == null) 4025 throw new NullPointerException(); 4026 return new MapReduceKeysToLongTask<K,V> 4027 (null, batchFor(parallelismThreshold), 0, 0, table, 4028 null, transformer, basis, reducer).invoke(); 4029 } 4030 4031 /** 4032 * Returns the result of accumulating the given transformation 4033 * of all keys using the given reducer to combine values, and 4034 * the given basis as an identity value. 4035 * 4036 * @param parallelismThreshold the (estimated) number of elements 4037 * needed for this operation to be executed in parallel 4038 * @param transformer a function returning the transformation 4039 * for an element 4040 * @param basis the identity (initial default value) for the reduction 4041 * @param reducer a commutative associative combining function 4042 * @return the result of accumulating the given transformation 4043 * of all keys 4044 * @since 1.8 4045 */ reduceKeysToInt(long parallelismThreshold, ToIntFunction<? super K> transformer, int basis, IntBinaryOperator reducer)4046 public int reduceKeysToInt(long parallelismThreshold, 4047 ToIntFunction<? super K> transformer, 4048 int basis, 4049 IntBinaryOperator reducer) { 4050 if (transformer == null || reducer == null) 4051 throw new NullPointerException(); 4052 return new MapReduceKeysToIntTask<K,V> 4053 (null, batchFor(parallelismThreshold), 0, 0, table, 4054 null, transformer, basis, reducer).invoke(); 4055 } 4056 4057 /** 4058 * Performs the given action for each value. 4059 * 4060 * @param parallelismThreshold the (estimated) number of elements 4061 * needed for this operation to be executed in parallel 4062 * @param action the action 4063 * @since 1.8 4064 */ forEachValue(long parallelismThreshold, Consumer<? super V> action)4065 public void forEachValue(long parallelismThreshold, 4066 Consumer<? super V> action) { 4067 if (action == null) 4068 throw new NullPointerException(); 4069 new ForEachValueTask<K,V> 4070 (null, batchFor(parallelismThreshold), 0, 0, table, 4071 action).invoke(); 4072 } 4073 4074 /** 4075 * Performs the given action for each non-null transformation 4076 * of each value. 4077 * 4078 * @param parallelismThreshold the (estimated) number of elements 4079 * needed for this operation to be executed in parallel 4080 * @param transformer a function returning the transformation 4081 * for an element, or null if there is no transformation (in 4082 * which case the action is not applied) 4083 * @param action the action 4084 * @param <U> the return type of the transformer 4085 * @since 1.8 4086 */ forEachValue(long parallelismThreshold, Function<? super V, ? extends U> transformer, Consumer<? super U> action)4087 public <U> void forEachValue(long parallelismThreshold, 4088 Function<? super V, ? extends U> transformer, 4089 Consumer<? super U> action) { 4090 if (transformer == null || action == null) 4091 throw new NullPointerException(); 4092 new ForEachTransformedValueTask<K,V,U> 4093 (null, batchFor(parallelismThreshold), 0, 0, table, 4094 transformer, action).invoke(); 4095 } 4096 4097 /** 4098 * Returns a non-null result from applying the given search 4099 * function on each value, or null if none. Upon success, 4100 * further element processing is suppressed and the results of 4101 * any other parallel invocations of the search function are 4102 * ignored. 4103 * 4104 * @param parallelismThreshold the (estimated) number of elements 4105 * needed for this operation to be executed in parallel 4106 * @param searchFunction a function returning a non-null 4107 * result on success, else null 4108 * @param <U> the return type of the search function 4109 * @return a non-null result from applying the given search 4110 * function on each value, or null if none 4111 * @since 1.8 4112 */ searchValues(long parallelismThreshold, Function<? super V, ? extends U> searchFunction)4113 public <U> U searchValues(long parallelismThreshold, 4114 Function<? super V, ? extends U> searchFunction) { 4115 if (searchFunction == null) throw new NullPointerException(); 4116 return new SearchValuesTask<K,V,U> 4117 (null, batchFor(parallelismThreshold), 0, 0, table, 4118 searchFunction, new AtomicReference<U>()).invoke(); 4119 } 4120 4121 /** 4122 * Returns the result of accumulating all values using the 4123 * given reducer to combine values, or null if none. 4124 * 4125 * @param parallelismThreshold the (estimated) number of elements 4126 * needed for this operation to be executed in parallel 4127 * @param reducer a commutative associative combining function 4128 * @return the result of accumulating all values 4129 * @since 1.8 4130 */ reduceValues(long parallelismThreshold, BiFunction<? super V, ? super V, ? extends V> reducer)4131 public V reduceValues(long parallelismThreshold, 4132 BiFunction<? super V, ? super V, ? extends V> reducer) { 4133 if (reducer == null) throw new NullPointerException(); 4134 return new ReduceValuesTask<K,V> 4135 (null, batchFor(parallelismThreshold), 0, 0, table, 4136 null, reducer).invoke(); 4137 } 4138 4139 /** 4140 * Returns the result of accumulating the given transformation 4141 * of all values using the given reducer to combine values, or 4142 * null if none. 4143 * 4144 * @param parallelismThreshold the (estimated) number of elements 4145 * needed for this operation to be executed in parallel 4146 * @param transformer a function returning the transformation 4147 * for an element, or null if there is no transformation (in 4148 * which case it is not combined) 4149 * @param reducer a commutative associative combining function 4150 * @param <U> the return type of the transformer 4151 * @return the result of accumulating the given transformation 4152 * of all values 4153 * @since 1.8 4154 */ reduceValues(long parallelismThreshold, Function<? super V, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer)4155 public <U> U reduceValues(long parallelismThreshold, 4156 Function<? super V, ? extends U> transformer, 4157 BiFunction<? super U, ? super U, ? extends U> reducer) { 4158 if (transformer == null || reducer == null) 4159 throw new NullPointerException(); 4160 return new MapReduceValuesTask<K,V,U> 4161 (null, batchFor(parallelismThreshold), 0, 0, table, 4162 null, transformer, reducer).invoke(); 4163 } 4164 4165 /** 4166 * Returns the result of accumulating the given transformation 4167 * of all values using the given reducer to combine values, 4168 * and the given basis as an identity value. 4169 * 4170 * @param parallelismThreshold the (estimated) number of elements 4171 * needed for this operation to be executed in parallel 4172 * @param transformer a function returning the transformation 4173 * for an element 4174 * @param basis the identity (initial default value) for the reduction 4175 * @param reducer a commutative associative combining function 4176 * @return the result of accumulating the given transformation 4177 * of all values 4178 * @since 1.8 4179 */ reduceValuesToDouble(long parallelismThreshold, ToDoubleFunction<? super V> transformer, double basis, DoubleBinaryOperator reducer)4180 public double reduceValuesToDouble(long parallelismThreshold, 4181 ToDoubleFunction<? super V> transformer, 4182 double basis, 4183 DoubleBinaryOperator reducer) { 4184 if (transformer == null || reducer == null) 4185 throw new NullPointerException(); 4186 return new MapReduceValuesToDoubleTask<K,V> 4187 (null, batchFor(parallelismThreshold), 0, 0, table, 4188 null, transformer, basis, reducer).invoke(); 4189 } 4190 4191 /** 4192 * Returns the result of accumulating the given transformation 4193 * of all values using the given reducer to combine values, 4194 * and the given basis as an identity value. 4195 * 4196 * @param parallelismThreshold the (estimated) number of elements 4197 * needed for this operation to be executed in parallel 4198 * @param transformer a function returning the transformation 4199 * for an element 4200 * @param basis the identity (initial default value) for the reduction 4201 * @param reducer a commutative associative combining function 4202 * @return the result of accumulating the given transformation 4203 * of all values 4204 * @since 1.8 4205 */ reduceValuesToLong(long parallelismThreshold, ToLongFunction<? super V> transformer, long basis, LongBinaryOperator reducer)4206 public long reduceValuesToLong(long parallelismThreshold, 4207 ToLongFunction<? super V> transformer, 4208 long basis, 4209 LongBinaryOperator reducer) { 4210 if (transformer == null || reducer == null) 4211 throw new NullPointerException(); 4212 return new MapReduceValuesToLongTask<K,V> 4213 (null, batchFor(parallelismThreshold), 0, 0, table, 4214 null, transformer, basis, reducer).invoke(); 4215 } 4216 4217 /** 4218 * Returns the result of accumulating the given transformation 4219 * of all values using the given reducer to combine values, 4220 * and the given basis as an identity value. 4221 * 4222 * @param parallelismThreshold the (estimated) number of elements 4223 * needed for this operation to be executed in parallel 4224 * @param transformer a function returning the transformation 4225 * for an element 4226 * @param basis the identity (initial default value) for the reduction 4227 * @param reducer a commutative associative combining function 4228 * @return the result of accumulating the given transformation 4229 * of all values 4230 * @since 1.8 4231 */ reduceValuesToInt(long parallelismThreshold, ToIntFunction<? super V> transformer, int basis, IntBinaryOperator reducer)4232 public int reduceValuesToInt(long parallelismThreshold, 4233 ToIntFunction<? super V> transformer, 4234 int basis, 4235 IntBinaryOperator reducer) { 4236 if (transformer == null || reducer == null) 4237 throw new NullPointerException(); 4238 return new MapReduceValuesToIntTask<K,V> 4239 (null, batchFor(parallelismThreshold), 0, 0, table, 4240 null, transformer, basis, reducer).invoke(); 4241 } 4242 4243 /** 4244 * Performs the given action for each entry. 4245 * 4246 * @param parallelismThreshold the (estimated) number of elements 4247 * needed for this operation to be executed in parallel 4248 * @param action the action 4249 * @since 1.8 4250 */ forEachEntry(long parallelismThreshold, Consumer<? super Map.Entry<K,V>> action)4251 public void forEachEntry(long parallelismThreshold, 4252 Consumer<? super Map.Entry<K,V>> action) { 4253 if (action == null) throw new NullPointerException(); 4254 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table, 4255 action).invoke(); 4256 } 4257 4258 /** 4259 * Performs the given action for each non-null transformation 4260 * of each entry. 4261 * 4262 * @param parallelismThreshold the (estimated) number of elements 4263 * needed for this operation to be executed in parallel 4264 * @param transformer a function returning the transformation 4265 * for an element, or null if there is no transformation (in 4266 * which case the action is not applied) 4267 * @param action the action 4268 * @param <U> the return type of the transformer 4269 * @since 1.8 4270 */ forEachEntry(long parallelismThreshold, Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action)4271 public <U> void forEachEntry(long parallelismThreshold, 4272 Function<Map.Entry<K,V>, ? extends U> transformer, 4273 Consumer<? super U> action) { 4274 if (transformer == null || action == null) 4275 throw new NullPointerException(); 4276 new ForEachTransformedEntryTask<K,V,U> 4277 (null, batchFor(parallelismThreshold), 0, 0, table, 4278 transformer, action).invoke(); 4279 } 4280 4281 /** 4282 * Returns a non-null result from applying the given search 4283 * function on each entry, or null if none. Upon success, 4284 * further element processing is suppressed and the results of 4285 * any other parallel invocations of the search function are 4286 * ignored. 4287 * 4288 * @param parallelismThreshold the (estimated) number of elements 4289 * needed for this operation to be executed in parallel 4290 * @param searchFunction a function returning a non-null 4291 * result on success, else null 4292 * @param <U> the return type of the search function 4293 * @return a non-null result from applying the given search 4294 * function on each entry, or null if none 4295 * @since 1.8 4296 */ searchEntries(long parallelismThreshold, Function<Map.Entry<K,V>, ? extends U> searchFunction)4297 public <U> U searchEntries(long parallelismThreshold, 4298 Function<Map.Entry<K,V>, ? extends U> searchFunction) { 4299 if (searchFunction == null) throw new NullPointerException(); 4300 return new SearchEntriesTask<K,V,U> 4301 (null, batchFor(parallelismThreshold), 0, 0, table, 4302 searchFunction, new AtomicReference<U>()).invoke(); 4303 } 4304 4305 /** 4306 * Returns the result of accumulating all entries using the 4307 * given reducer to combine values, or null if none. 4308 * 4309 * @param parallelismThreshold the (estimated) number of elements 4310 * needed for this operation to be executed in parallel 4311 * @param reducer a commutative associative combining function 4312 * @return the result of accumulating all entries 4313 * @since 1.8 4314 */ reduceEntries(long parallelismThreshold, BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer)4315 public Map.Entry<K,V> reduceEntries(long parallelismThreshold, 4316 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) { 4317 if (reducer == null) throw new NullPointerException(); 4318 return new ReduceEntriesTask<K,V> 4319 (null, batchFor(parallelismThreshold), 0, 0, table, 4320 null, reducer).invoke(); 4321 } 4322 4323 /** 4324 * Returns the result of accumulating the given transformation 4325 * of all entries using the given reducer to combine values, 4326 * or null if none. 4327 * 4328 * @param parallelismThreshold the (estimated) number of elements 4329 * needed for this operation to be executed in parallel 4330 * @param transformer a function returning the transformation 4331 * for an element, or null if there is no transformation (in 4332 * which case it is not combined) 4333 * @param reducer a commutative associative combining function 4334 * @param <U> the return type of the transformer 4335 * @return the result of accumulating the given transformation 4336 * of all entries 4337 * @since 1.8 4338 */ reduceEntries(long parallelismThreshold, Function<Map.Entry<K,V>, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer)4339 public <U> U reduceEntries(long parallelismThreshold, 4340 Function<Map.Entry<K,V>, ? extends U> transformer, 4341 BiFunction<? super U, ? super U, ? extends U> reducer) { 4342 if (transformer == null || reducer == null) 4343 throw new NullPointerException(); 4344 return new MapReduceEntriesTask<K,V,U> 4345 (null, batchFor(parallelismThreshold), 0, 0, table, 4346 null, transformer, reducer).invoke(); 4347 } 4348 4349 /** 4350 * Returns the result of accumulating the given transformation 4351 * of all entries using the given reducer to combine values, 4352 * and the given basis as an identity value. 4353 * 4354 * @param parallelismThreshold the (estimated) number of elements 4355 * needed for this operation to be executed in parallel 4356 * @param transformer a function returning the transformation 4357 * for an element 4358 * @param basis the identity (initial default value) for the reduction 4359 * @param reducer a commutative associative combining function 4360 * @return the result of accumulating the given transformation 4361 * of all entries 4362 * @since 1.8 4363 */ reduceEntriesToDouble(long parallelismThreshold, ToDoubleFunction<Map.Entry<K,V>> transformer, double basis, DoubleBinaryOperator reducer)4364 public double reduceEntriesToDouble(long parallelismThreshold, 4365 ToDoubleFunction<Map.Entry<K,V>> transformer, 4366 double basis, 4367 DoubleBinaryOperator reducer) { 4368 if (transformer == null || reducer == null) 4369 throw new NullPointerException(); 4370 return new MapReduceEntriesToDoubleTask<K,V> 4371 (null, batchFor(parallelismThreshold), 0, 0, table, 4372 null, transformer, basis, reducer).invoke(); 4373 } 4374 4375 /** 4376 * Returns the result of accumulating the given transformation 4377 * of all entries using the given reducer to combine values, 4378 * and the given basis as an identity value. 4379 * 4380 * @param parallelismThreshold the (estimated) number of elements 4381 * needed for this operation to be executed in parallel 4382 * @param transformer a function returning the transformation 4383 * for an element 4384 * @param basis the identity (initial default value) for the reduction 4385 * @param reducer a commutative associative combining function 4386 * @return the result of accumulating the given transformation 4387 * of all entries 4388 * @since 1.8 4389 */ reduceEntriesToLong(long parallelismThreshold, ToLongFunction<Map.Entry<K,V>> transformer, long basis, LongBinaryOperator reducer)4390 public long reduceEntriesToLong(long parallelismThreshold, 4391 ToLongFunction<Map.Entry<K,V>> transformer, 4392 long basis, 4393 LongBinaryOperator reducer) { 4394 if (transformer == null || reducer == null) 4395 throw new NullPointerException(); 4396 return new MapReduceEntriesToLongTask<K,V> 4397 (null, batchFor(parallelismThreshold), 0, 0, table, 4398 null, transformer, basis, reducer).invoke(); 4399 } 4400 4401 /** 4402 * Returns the result of accumulating the given transformation 4403 * of all entries using the given reducer to combine values, 4404 * and the given basis as an identity value. 4405 * 4406 * @param parallelismThreshold the (estimated) number of elements 4407 * needed for this operation to be executed in parallel 4408 * @param transformer a function returning the transformation 4409 * for an element 4410 * @param basis the identity (initial default value) for the reduction 4411 * @param reducer a commutative associative combining function 4412 * @return the result of accumulating the given transformation 4413 * of all entries 4414 * @since 1.8 4415 */ reduceEntriesToInt(long parallelismThreshold, ToIntFunction<Map.Entry<K,V>> transformer, int basis, IntBinaryOperator reducer)4416 public int reduceEntriesToInt(long parallelismThreshold, 4417 ToIntFunction<Map.Entry<K,V>> transformer, 4418 int basis, 4419 IntBinaryOperator reducer) { 4420 if (transformer == null || reducer == null) 4421 throw new NullPointerException(); 4422 return new MapReduceEntriesToIntTask<K,V> 4423 (null, batchFor(parallelismThreshold), 0, 0, table, 4424 null, transformer, basis, reducer).invoke(); 4425 } 4426 4427 4428 /* ----------------Views -------------- */ 4429 4430 /** 4431 * Base class for views. 4432 */ 4433 abstract static class CollectionView<K,V,E> 4434 implements Collection<E>, java.io.Serializable { 4435 private static final long serialVersionUID = 7249069246763182397L; 4436 final ConcurrentHashMap<K,V> map; CollectionView(ConcurrentHashMap<K,V> map)4437 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; } 4438 4439 /** 4440 * Returns the map backing this view. 4441 * 4442 * @return the map backing this view 4443 */ getMap()4444 public ConcurrentHashMap<K,V> getMap() { return map; } 4445 4446 /** 4447 * Removes all of the elements from this view, by removing all 4448 * the mappings from the map backing this view. 4449 */ clear()4450 public final void clear() { map.clear(); } size()4451 public final int size() { return map.size(); } isEmpty()4452 public final boolean isEmpty() { return map.isEmpty(); } 4453 4454 // implementations below rely on concrete classes supplying these 4455 // abstract methods 4456 /** 4457 * Returns an iterator over the elements in this collection. 4458 * 4459 * <p>The returned iterator is 4460 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. 4461 * 4462 * @return an iterator over the elements in this collection 4463 */ iterator()4464 public abstract Iterator<E> iterator(); contains(Object o)4465 public abstract boolean contains(Object o); remove(Object o)4466 public abstract boolean remove(Object o); 4467 4468 private static final String OOME_MSG = "Required array size too large"; 4469 toArray()4470 public final Object[] toArray() { 4471 long sz = map.mappingCount(); 4472 if (sz > MAX_ARRAY_SIZE) 4473 throw new OutOfMemoryError(OOME_MSG); 4474 int n = (int)sz; 4475 Object[] r = new Object[n]; 4476 int i = 0; 4477 for (E e : this) { 4478 if (i == n) { 4479 if (n >= MAX_ARRAY_SIZE) 4480 throw new OutOfMemoryError(OOME_MSG); 4481 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1) 4482 n = MAX_ARRAY_SIZE; 4483 else 4484 n += (n >>> 1) + 1; 4485 r = Arrays.copyOf(r, n); 4486 } 4487 r[i++] = e; 4488 } 4489 return (i == n) ? r : Arrays.copyOf(r, i); 4490 } 4491 4492 @SuppressWarnings("unchecked") toArray(T[] a)4493 public final <T> T[] toArray(T[] a) { 4494 long sz = map.mappingCount(); 4495 if (sz > MAX_ARRAY_SIZE) 4496 throw new OutOfMemoryError(OOME_MSG); 4497 int m = (int)sz; 4498 T[] r = (a.length >= m) ? a : 4499 (T[])java.lang.reflect.Array 4500 .newInstance(a.getClass().getComponentType(), m); 4501 int n = r.length; 4502 int i = 0; 4503 for (E e : this) { 4504 if (i == n) { 4505 if (n >= MAX_ARRAY_SIZE) 4506 throw new OutOfMemoryError(OOME_MSG); 4507 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1) 4508 n = MAX_ARRAY_SIZE; 4509 else 4510 n += (n >>> 1) + 1; 4511 r = Arrays.copyOf(r, n); 4512 } 4513 r[i++] = (T)e; 4514 } 4515 if (a == r && i < n) { 4516 r[i] = null; // null-terminate 4517 return r; 4518 } 4519 return (i == n) ? r : Arrays.copyOf(r, i); 4520 } 4521 4522 /** 4523 * Returns a string representation of this collection. 4524 * The string representation consists of the string representations 4525 * of the collection's elements in the order they are returned by 4526 * its iterator, enclosed in square brackets ({@code "[]"}). 4527 * Adjacent elements are separated by the characters {@code ", "} 4528 * (comma and space). Elements are converted to strings as by 4529 * {@link String#valueOf(Object)}. 4530 * 4531 * @return a string representation of this collection 4532 */ toString()4533 public final String toString() { 4534 StringBuilder sb = new StringBuilder(); 4535 sb.append('['); 4536 Iterator<E> it = iterator(); 4537 if (it.hasNext()) { 4538 for (;;) { 4539 Object e = it.next(); 4540 sb.append(e == this ? "(this Collection)" : e); 4541 if (!it.hasNext()) 4542 break; 4543 sb.append(',').append(' '); 4544 } 4545 } 4546 return sb.append(']').toString(); 4547 } 4548 containsAll(Collection<?> c)4549 public final boolean containsAll(Collection<?> c) { 4550 if (c != this) { 4551 for (Object e : c) { 4552 if (e == null || !contains(e)) 4553 return false; 4554 } 4555 } 4556 return true; 4557 } 4558 removeAll(Collection<?> c)4559 public final boolean removeAll(Collection<?> c) { 4560 if (c == null) throw new NullPointerException(); 4561 boolean modified = false; 4562 for (Iterator<E> it = iterator(); it.hasNext();) { 4563 if (c.contains(it.next())) { 4564 it.remove(); 4565 modified = true; 4566 } 4567 } 4568 return modified; 4569 } 4570 retainAll(Collection<?> c)4571 public final boolean retainAll(Collection<?> c) { 4572 if (c == null) throw new NullPointerException(); 4573 boolean modified = false; 4574 for (Iterator<E> it = iterator(); it.hasNext();) { 4575 if (!c.contains(it.next())) { 4576 it.remove(); 4577 modified = true; 4578 } 4579 } 4580 return modified; 4581 } 4582 4583 } 4584 4585 /** 4586 * A view of a ConcurrentHashMap as a {@link Set} of keys, in 4587 * which additions may optionally be enabled by mapping to a 4588 * common value. This class cannot be directly instantiated. 4589 * See {@link #keySet(Object) keySet(V)}, 4590 * {@link #newKeySet() newKeySet()}, 4591 * {@link #newKeySet(int) newKeySet(int)}. 4592 * 4593 * @since 1.8 4594 */ 4595 public static class KeySetView<K,V> extends CollectionView<K,V,K> 4596 implements Set<K>, java.io.Serializable { 4597 private static final long serialVersionUID = 7249069246763182397L; 4598 private final V value; KeySetView(ConcurrentHashMap<K,V> map, V value)4599 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public 4600 super(map); 4601 this.value = value; 4602 } 4603 4604 /** 4605 * Returns the default mapped value for additions, 4606 * or {@code null} if additions are not supported. 4607 * 4608 * @return the default mapped value for additions, or {@code null} 4609 * if not supported 4610 */ getMappedValue()4611 public V getMappedValue() { return value; } 4612 4613 /** 4614 * {@inheritDoc} 4615 * @throws NullPointerException if the specified key is null 4616 */ contains(Object o)4617 public boolean contains(Object o) { return map.containsKey(o); } 4618 4619 /** 4620 * Removes the key from this map view, by removing the key (and its 4621 * corresponding value) from the backing map. This method does 4622 * nothing if the key is not in the map. 4623 * 4624 * @param o the key to be removed from the backing map 4625 * @return {@code true} if the backing map contained the specified key 4626 * @throws NullPointerException if the specified key is null 4627 */ remove(Object o)4628 public boolean remove(Object o) { return map.remove(o) != null; } 4629 4630 /** 4631 * @return an iterator over the keys of the backing map 4632 */ iterator()4633 public Iterator<K> iterator() { 4634 Node<K,V>[] t; 4635 ConcurrentHashMap<K,V> m = map; 4636 int f = (t = m.table) == null ? 0 : t.length; 4637 return new KeyIterator<K,V>(t, f, 0, f, m); 4638 } 4639 4640 /** 4641 * Adds the specified key to this set view by mapping the key to 4642 * the default mapped value in the backing map, if defined. 4643 * 4644 * @param e key to be added 4645 * @return {@code true} if this set changed as a result of the call 4646 * @throws NullPointerException if the specified key is null 4647 * @throws UnsupportedOperationException if no default mapped value 4648 * for additions was provided 4649 */ add(K e)4650 public boolean add(K e) { 4651 V v; 4652 if ((v = value) == null) 4653 throw new UnsupportedOperationException(); 4654 return map.putVal(e, v, true) == null; 4655 } 4656 4657 /** 4658 * Adds all of the elements in the specified collection to this set, 4659 * as if by calling {@link #add} on each one. 4660 * 4661 * @param c the elements to be inserted into this set 4662 * @return {@code true} if this set changed as a result of the call 4663 * @throws NullPointerException if the collection or any of its 4664 * elements are {@code null} 4665 * @throws UnsupportedOperationException if no default mapped value 4666 * for additions was provided 4667 */ addAll(Collection<? extends K> c)4668 public boolean addAll(Collection<? extends K> c) { 4669 boolean added = false; 4670 V v; 4671 if ((v = value) == null) 4672 throw new UnsupportedOperationException(); 4673 for (K e : c) { 4674 if (map.putVal(e, v, true) == null) 4675 added = true; 4676 } 4677 return added; 4678 } 4679 hashCode()4680 public int hashCode() { 4681 int h = 0; 4682 for (K e : this) 4683 h += e.hashCode(); 4684 return h; 4685 } 4686 equals(Object o)4687 public boolean equals(Object o) { 4688 Set<?> c; 4689 return ((o instanceof Set) && 4690 ((c = (Set<?>)o) == this || 4691 (containsAll(c) && c.containsAll(this)))); 4692 } 4693 spliterator()4694 public Spliterator<K> spliterator() { 4695 Node<K,V>[] t; 4696 ConcurrentHashMap<K,V> m = map; 4697 long n = m.sumCount(); 4698 int f = (t = m.table) == null ? 0 : t.length; 4699 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n); 4700 } 4701 forEach(Consumer<? super K> action)4702 public void forEach(Consumer<? super K> action) { 4703 if (action == null) throw new NullPointerException(); 4704 Node<K,V>[] t; 4705 if ((t = map.table) != null) { 4706 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length); 4707 for (Node<K,V> p; (p = it.advance()) != null; ) 4708 action.accept(p.key); 4709 } 4710 } 4711 } 4712 4713 /** 4714 * A view of a ConcurrentHashMap as a {@link Collection} of 4715 * values, in which additions are disabled. This class cannot be 4716 * directly instantiated. See {@link #values()}. 4717 */ 4718 static final class ValuesView<K,V> extends CollectionView<K,V,V> 4719 implements Collection<V>, java.io.Serializable { 4720 private static final long serialVersionUID = 2249069246763182397L; ValuesView(ConcurrentHashMap<K,V> map)4721 ValuesView(ConcurrentHashMap<K,V> map) { super(map); } contains(Object o)4722 public final boolean contains(Object o) { 4723 return map.containsValue(o); 4724 } 4725 remove(Object o)4726 public final boolean remove(Object o) { 4727 if (o != null) { 4728 for (Iterator<V> it = iterator(); it.hasNext();) { 4729 if (o.equals(it.next())) { 4730 it.remove(); 4731 return true; 4732 } 4733 } 4734 } 4735 return false; 4736 } 4737 iterator()4738 public final Iterator<V> iterator() { 4739 ConcurrentHashMap<K,V> m = map; 4740 Node<K,V>[] t; 4741 int f = (t = m.table) == null ? 0 : t.length; 4742 return new ValueIterator<K,V>(t, f, 0, f, m); 4743 } 4744 add(V e)4745 public final boolean add(V e) { 4746 throw new UnsupportedOperationException(); 4747 } addAll(Collection<? extends V> c)4748 public final boolean addAll(Collection<? extends V> c) { 4749 throw new UnsupportedOperationException(); 4750 } 4751 removeIf(Predicate<? super V> filter)4752 public boolean removeIf(Predicate<? super V> filter) { 4753 return map.removeValueIf(filter); 4754 } 4755 spliterator()4756 public Spliterator<V> spliterator() { 4757 Node<K,V>[] t; 4758 ConcurrentHashMap<K,V> m = map; 4759 long n = m.sumCount(); 4760 int f = (t = m.table) == null ? 0 : t.length; 4761 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n); 4762 } 4763 forEach(Consumer<? super V> action)4764 public void forEach(Consumer<? super V> action) { 4765 if (action == null) throw new NullPointerException(); 4766 Node<K,V>[] t; 4767 if ((t = map.table) != null) { 4768 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length); 4769 for (Node<K,V> p; (p = it.advance()) != null; ) 4770 action.accept(p.val); 4771 } 4772 } 4773 } 4774 4775 /** 4776 * A view of a ConcurrentHashMap as a {@link Set} of (key, value) 4777 * entries. This class cannot be directly instantiated. See 4778 * {@link #entrySet()}. 4779 */ 4780 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>> 4781 implements Set<Map.Entry<K,V>>, java.io.Serializable { 4782 private static final long serialVersionUID = 2249069246763182397L; EntrySetView(ConcurrentHashMap<K,V> map)4783 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); } 4784 contains(Object o)4785 public boolean contains(Object o) { 4786 Object k, v, r; Map.Entry<?,?> e; 4787 return ((o instanceof Map.Entry) && 4788 (k = (e = (Map.Entry<?,?>)o).getKey()) != null && 4789 (r = map.get(k)) != null && 4790 (v = e.getValue()) != null && 4791 (v == r || v.equals(r))); 4792 } 4793 remove(Object o)4794 public boolean remove(Object o) { 4795 Object k, v; Map.Entry<?,?> e; 4796 return ((o instanceof Map.Entry) && 4797 (k = (e = (Map.Entry<?,?>)o).getKey()) != null && 4798 (v = e.getValue()) != null && 4799 map.remove(k, v)); 4800 } 4801 4802 /** 4803 * @return an iterator over the entries of the backing map 4804 */ iterator()4805 public Iterator<Map.Entry<K,V>> iterator() { 4806 ConcurrentHashMap<K,V> m = map; 4807 Node<K,V>[] t; 4808 int f = (t = m.table) == null ? 0 : t.length; 4809 return new EntryIterator<K,V>(t, f, 0, f, m); 4810 } 4811 add(Entry<K,V> e)4812 public boolean add(Entry<K,V> e) { 4813 return map.putVal(e.getKey(), e.getValue(), false) == null; 4814 } 4815 addAll(Collection<? extends Entry<K,V>> c)4816 public boolean addAll(Collection<? extends Entry<K,V>> c) { 4817 boolean added = false; 4818 for (Entry<K,V> e : c) { 4819 if (add(e)) 4820 added = true; 4821 } 4822 return added; 4823 } 4824 removeIf(Predicate<? super Entry<K,V>> filter)4825 public boolean removeIf(Predicate<? super Entry<K,V>> filter) { 4826 return map.removeEntryIf(filter); 4827 } 4828 hashCode()4829 public final int hashCode() { 4830 int h = 0; 4831 Node<K,V>[] t; 4832 if ((t = map.table) != null) { 4833 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length); 4834 for (Node<K,V> p; (p = it.advance()) != null; ) { 4835 h += p.hashCode(); 4836 } 4837 } 4838 return h; 4839 } 4840 equals(Object o)4841 public final boolean equals(Object o) { 4842 Set<?> c; 4843 return ((o instanceof Set) && 4844 ((c = (Set<?>)o) == this || 4845 (containsAll(c) && c.containsAll(this)))); 4846 } 4847 spliterator()4848 public Spliterator<Map.Entry<K,V>> spliterator() { 4849 Node<K,V>[] t; 4850 ConcurrentHashMap<K,V> m = map; 4851 long n = m.sumCount(); 4852 int f = (t = m.table) == null ? 0 : t.length; 4853 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m); 4854 } 4855 forEach(Consumer<? super Map.Entry<K,V>> action)4856 public void forEach(Consumer<? super Map.Entry<K,V>> action) { 4857 if (action == null) throw new NullPointerException(); 4858 Node<K,V>[] t; 4859 if ((t = map.table) != null) { 4860 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length); 4861 for (Node<K,V> p; (p = it.advance()) != null; ) 4862 action.accept(new MapEntry<K,V>(p.key, p.val, map)); 4863 } 4864 } 4865 4866 } 4867 4868 // ------------------------------------------------------- 4869 4870 /** 4871 * Base class for bulk tasks. Repeats some fields and code from 4872 * class Traverser, because we need to subclass CountedCompleter. 4873 */ 4874 @SuppressWarnings("serial") 4875 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> { 4876 Node<K,V>[] tab; // same as Traverser 4877 Node<K,V> next; 4878 TableStack<K,V> stack, spare; 4879 int index; 4880 int baseIndex; 4881 int baseLimit; 4882 final int baseSize; 4883 int batch; // split control 4884 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t)4885 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) { 4886 super(par); 4887 this.batch = b; 4888 this.index = this.baseIndex = i; 4889 if ((this.tab = t) == null) 4890 this.baseSize = this.baseLimit = 0; 4891 else if (par == null) 4892 this.baseSize = this.baseLimit = t.length; 4893 else { 4894 this.baseLimit = f; 4895 this.baseSize = par.baseSize; 4896 } 4897 } 4898 4899 /** 4900 * Same as Traverser version. 4901 */ advance()4902 final Node<K,V> advance() { 4903 Node<K,V> e; 4904 if ((e = next) != null) 4905 e = e.next; 4906 for (;;) { 4907 Node<K,V>[] t; int i, n; 4908 if (e != null) 4909 return next = e; 4910 if (baseIndex >= baseLimit || (t = tab) == null || 4911 (n = t.length) <= (i = index) || i < 0) 4912 return next = null; 4913 if ((e = tabAt(t, i)) != null && e.hash < 0) { 4914 if (e instanceof ForwardingNode) { 4915 tab = ((ForwardingNode<K,V>)e).nextTable; 4916 e = null; 4917 pushState(t, i, n); 4918 continue; 4919 } 4920 else if (e instanceof TreeBin) 4921 e = ((TreeBin<K,V>)e).first; 4922 else 4923 e = null; 4924 } 4925 if (stack != null) 4926 recoverState(n); 4927 else if ((index = i + baseSize) >= n) 4928 index = ++baseIndex; 4929 } 4930 } 4931 pushState(Node<K,V>[] t, int i, int n)4932 private void pushState(Node<K,V>[] t, int i, int n) { 4933 TableStack<K,V> s = spare; 4934 if (s != null) 4935 spare = s.next; 4936 else 4937 s = new TableStack<K,V>(); 4938 s.tab = t; 4939 s.length = n; 4940 s.index = i; 4941 s.next = stack; 4942 stack = s; 4943 } 4944 recoverState(int n)4945 private void recoverState(int n) { 4946 TableStack<K,V> s; int len; 4947 while ((s = stack) != null && (index += (len = s.length)) >= n) { 4948 n = len; 4949 index = s.index; 4950 tab = s.tab; 4951 s.tab = null; 4952 TableStack<K,V> next = s.next; 4953 s.next = spare; // save for reuse 4954 stack = next; 4955 spare = s; 4956 } 4957 if (s == null && (index += baseSize) >= n) 4958 index = ++baseIndex; 4959 } 4960 } 4961 4962 /* 4963 * Task classes. Coded in a regular but ugly format/style to 4964 * simplify checks that each variant differs in the right way from 4965 * others. The null screenings exist because compilers cannot tell 4966 * that we've already null-checked task arguments, so we force 4967 * simplest hoisted bypass to help avoid convoluted traps. 4968 */ 4969 @SuppressWarnings("serial") 4970 static final class ForEachKeyTask<K,V> 4971 extends BulkTask<K,V,Void> { 4972 final Consumer<? super K> action; ForEachKeyTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Consumer<? super K> action)4973 ForEachKeyTask 4974 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 4975 Consumer<? super K> action) { 4976 super(p, b, i, f, t); 4977 this.action = action; 4978 } compute()4979 public final void compute() { 4980 final Consumer<? super K> action; 4981 if ((action = this.action) != null) { 4982 for (int i = baseIndex, f, h; batch > 0 && 4983 (h = ((f = baseLimit) + i) >>> 1) > i;) { 4984 addToPendingCount(1); 4985 new ForEachKeyTask<K,V> 4986 (this, batch >>>= 1, baseLimit = h, f, tab, 4987 action).fork(); 4988 } 4989 for (Node<K,V> p; (p = advance()) != null;) 4990 action.accept(p.key); 4991 propagateCompletion(); 4992 } 4993 } 4994 } 4995 4996 @SuppressWarnings("serial") 4997 static final class ForEachValueTask<K,V> 4998 extends BulkTask<K,V,Void> { 4999 final Consumer<? super V> action; ForEachValueTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Consumer<? super V> action)5000 ForEachValueTask 5001 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 5002 Consumer<? super V> action) { 5003 super(p, b, i, f, t); 5004 this.action = action; 5005 } compute()5006 public final void compute() { 5007 final Consumer<? super V> action; 5008 if ((action = this.action) != null) { 5009 for (int i = baseIndex, f, h; batch > 0 && 5010 (h = ((f = baseLimit) + i) >>> 1) > i;) { 5011 addToPendingCount(1); 5012 new ForEachValueTask<K,V> 5013 (this, batch >>>= 1, baseLimit = h, f, tab, 5014 action).fork(); 5015 } 5016 for (Node<K,V> p; (p = advance()) != null;) 5017 action.accept(p.val); 5018 propagateCompletion(); 5019 } 5020 } 5021 } 5022 5023 @SuppressWarnings("serial") 5024 static final class ForEachEntryTask<K,V> 5025 extends BulkTask<K,V,Void> { 5026 final Consumer<? super Entry<K,V>> action; ForEachEntryTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Consumer<? super Entry<K,V>> action)5027 ForEachEntryTask 5028 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 5029 Consumer<? super Entry<K,V>> action) { 5030 super(p, b, i, f, t); 5031 this.action = action; 5032 } compute()5033 public final void compute() { 5034 final Consumer<? super Entry<K,V>> action; 5035 if ((action = this.action) != null) { 5036 for (int i = baseIndex, f, h; batch > 0 && 5037 (h = ((f = baseLimit) + i) >>> 1) > i;) { 5038 addToPendingCount(1); 5039 new ForEachEntryTask<K,V> 5040 (this, batch >>>= 1, baseLimit = h, f, tab, 5041 action).fork(); 5042 } 5043 for (Node<K,V> p; (p = advance()) != null; ) 5044 action.accept(p); 5045 propagateCompletion(); 5046 } 5047 } 5048 } 5049 5050 @SuppressWarnings("serial") 5051 static final class ForEachMappingTask<K,V> 5052 extends BulkTask<K,V,Void> { 5053 final BiConsumer<? super K, ? super V> action; ForEachMappingTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, BiConsumer<? super K,? super V> action)5054 ForEachMappingTask 5055 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 5056 BiConsumer<? super K,? super V> action) { 5057 super(p, b, i, f, t); 5058 this.action = action; 5059 } compute()5060 public final void compute() { 5061 final BiConsumer<? super K, ? super V> action; 5062 if ((action = this.action) != null) { 5063 for (int i = baseIndex, f, h; batch > 0 && 5064 (h = ((f = baseLimit) + i) >>> 1) > i;) { 5065 addToPendingCount(1); 5066 new ForEachMappingTask<K,V> 5067 (this, batch >>>= 1, baseLimit = h, f, tab, 5068 action).fork(); 5069 } 5070 for (Node<K,V> p; (p = advance()) != null; ) 5071 action.accept(p.key, p.val); 5072 propagateCompletion(); 5073 } 5074 } 5075 } 5076 5077 @SuppressWarnings("serial") 5078 static final class ForEachTransformedKeyTask<K,V,U> 5079 extends BulkTask<K,V,Void> { 5080 final Function<? super K, ? extends U> transformer; 5081 final Consumer<? super U> action; ForEachTransformedKeyTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Function<? super K, ? extends U> transformer, Consumer<? super U> action)5082 ForEachTransformedKeyTask 5083 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 5084 Function<? super K, ? extends U> transformer, Consumer<? super U> action) { 5085 super(p, b, i, f, t); 5086 this.transformer = transformer; this.action = action; 5087 } compute()5088 public final void compute() { 5089 final Function<? super K, ? extends U> transformer; 5090 final Consumer<? super U> action; 5091 if ((transformer = this.transformer) != null && 5092 (action = this.action) != null) { 5093 for (int i = baseIndex, f, h; batch > 0 && 5094 (h = ((f = baseLimit) + i) >>> 1) > i;) { 5095 addToPendingCount(1); 5096 new ForEachTransformedKeyTask<K,V,U> 5097 (this, batch >>>= 1, baseLimit = h, f, tab, 5098 transformer, action).fork(); 5099 } 5100 for (Node<K,V> p; (p = advance()) != null; ) { 5101 U u; 5102 if ((u = transformer.apply(p.key)) != null) 5103 action.accept(u); 5104 } 5105 propagateCompletion(); 5106 } 5107 } 5108 } 5109 5110 @SuppressWarnings("serial") 5111 static final class ForEachTransformedValueTask<K,V,U> 5112 extends BulkTask<K,V,Void> { 5113 final Function<? super V, ? extends U> transformer; 5114 final Consumer<? super U> action; ForEachTransformedValueTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Function<? super V, ? extends U> transformer, Consumer<? super U> action)5115 ForEachTransformedValueTask 5116 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 5117 Function<? super V, ? extends U> transformer, Consumer<? super U> action) { 5118 super(p, b, i, f, t); 5119 this.transformer = transformer; this.action = action; 5120 } compute()5121 public final void compute() { 5122 final Function<? super V, ? extends U> transformer; 5123 final Consumer<? super U> action; 5124 if ((transformer = this.transformer) != null && 5125 (action = this.action) != null) { 5126 for (int i = baseIndex, f, h; batch > 0 && 5127 (h = ((f = baseLimit) + i) >>> 1) > i;) { 5128 addToPendingCount(1); 5129 new ForEachTransformedValueTask<K,V,U> 5130 (this, batch >>>= 1, baseLimit = h, f, tab, 5131 transformer, action).fork(); 5132 } 5133 for (Node<K,V> p; (p = advance()) != null; ) { 5134 U u; 5135 if ((u = transformer.apply(p.val)) != null) 5136 action.accept(u); 5137 } 5138 propagateCompletion(); 5139 } 5140 } 5141 } 5142 5143 @SuppressWarnings("serial") 5144 static final class ForEachTransformedEntryTask<K,V,U> 5145 extends BulkTask<K,V,Void> { 5146 final Function<Map.Entry<K,V>, ? extends U> transformer; 5147 final Consumer<? super U> action; ForEachTransformedEntryTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action)5148 ForEachTransformedEntryTask 5149 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 5150 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) { 5151 super(p, b, i, f, t); 5152 this.transformer = transformer; this.action = action; 5153 } compute()5154 public final void compute() { 5155 final Function<Map.Entry<K,V>, ? extends U> transformer; 5156 final Consumer<? super U> action; 5157 if ((transformer = this.transformer) != null && 5158 (action = this.action) != null) { 5159 for (int i = baseIndex, f, h; batch > 0 && 5160 (h = ((f = baseLimit) + i) >>> 1) > i;) { 5161 addToPendingCount(1); 5162 new ForEachTransformedEntryTask<K,V,U> 5163 (this, batch >>>= 1, baseLimit = h, f, tab, 5164 transformer, action).fork(); 5165 } 5166 for (Node<K,V> p; (p = advance()) != null; ) { 5167 U u; 5168 if ((u = transformer.apply(p)) != null) 5169 action.accept(u); 5170 } 5171 propagateCompletion(); 5172 } 5173 } 5174 } 5175 5176 @SuppressWarnings("serial") 5177 static final class ForEachTransformedMappingTask<K,V,U> 5178 extends BulkTask<K,V,Void> { 5179 final BiFunction<? super K, ? super V, ? extends U> transformer; 5180 final Consumer<? super U> action; ForEachTransformedMappingTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, BiFunction<? super K, ? super V, ? extends U> transformer, Consumer<? super U> action)5181 ForEachTransformedMappingTask 5182 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 5183 BiFunction<? super K, ? super V, ? extends U> transformer, 5184 Consumer<? super U> action) { 5185 super(p, b, i, f, t); 5186 this.transformer = transformer; this.action = action; 5187 } compute()5188 public final void compute() { 5189 final BiFunction<? super K, ? super V, ? extends U> transformer; 5190 final Consumer<? super U> action; 5191 if ((transformer = this.transformer) != null && 5192 (action = this.action) != null) { 5193 for (int i = baseIndex, f, h; batch > 0 && 5194 (h = ((f = baseLimit) + i) >>> 1) > i;) { 5195 addToPendingCount(1); 5196 new ForEachTransformedMappingTask<K,V,U> 5197 (this, batch >>>= 1, baseLimit = h, f, tab, 5198 transformer, action).fork(); 5199 } 5200 for (Node<K,V> p; (p = advance()) != null; ) { 5201 U u; 5202 if ((u = transformer.apply(p.key, p.val)) != null) 5203 action.accept(u); 5204 } 5205 propagateCompletion(); 5206 } 5207 } 5208 } 5209 5210 @SuppressWarnings("serial") 5211 static final class SearchKeysTask<K,V,U> 5212 extends BulkTask<K,V,U> { 5213 final Function<? super K, ? extends U> searchFunction; 5214 final AtomicReference<U> result; SearchKeysTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Function<? super K, ? extends U> searchFunction, AtomicReference<U> result)5215 SearchKeysTask 5216 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 5217 Function<? super K, ? extends U> searchFunction, 5218 AtomicReference<U> result) { 5219 super(p, b, i, f, t); 5220 this.searchFunction = searchFunction; this.result = result; 5221 } getRawResult()5222 public final U getRawResult() { return result.get(); } compute()5223 public final void compute() { 5224 final Function<? super K, ? extends U> searchFunction; 5225 final AtomicReference<U> result; 5226 if ((searchFunction = this.searchFunction) != null && 5227 (result = this.result) != null) { 5228 for (int i = baseIndex, f, h; batch > 0 && 5229 (h = ((f = baseLimit) + i) >>> 1) > i;) { 5230 if (result.get() != null) 5231 return; 5232 addToPendingCount(1); 5233 new SearchKeysTask<K,V,U> 5234 (this, batch >>>= 1, baseLimit = h, f, tab, 5235 searchFunction, result).fork(); 5236 } 5237 while (result.get() == null) { 5238 U u; 5239 Node<K,V> p; 5240 if ((p = advance()) == null) { 5241 propagateCompletion(); 5242 break; 5243 } 5244 if ((u = searchFunction.apply(p.key)) != null) { 5245 if (result.compareAndSet(null, u)) 5246 quietlyCompleteRoot(); 5247 break; 5248 } 5249 } 5250 } 5251 } 5252 } 5253 5254 @SuppressWarnings("serial") 5255 static final class SearchValuesTask<K,V,U> 5256 extends BulkTask<K,V,U> { 5257 final Function<? super V, ? extends U> searchFunction; 5258 final AtomicReference<U> result; SearchValuesTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Function<? super V, ? extends U> searchFunction, AtomicReference<U> result)5259 SearchValuesTask 5260 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 5261 Function<? super V, ? extends U> searchFunction, 5262 AtomicReference<U> result) { 5263 super(p, b, i, f, t); 5264 this.searchFunction = searchFunction; this.result = result; 5265 } getRawResult()5266 public final U getRawResult() { return result.get(); } compute()5267 public final void compute() { 5268 final Function<? super V, ? extends U> searchFunction; 5269 final AtomicReference<U> result; 5270 if ((searchFunction = this.searchFunction) != null && 5271 (result = this.result) != null) { 5272 for (int i = baseIndex, f, h; batch > 0 && 5273 (h = ((f = baseLimit) + i) >>> 1) > i;) { 5274 if (result.get() != null) 5275 return; 5276 addToPendingCount(1); 5277 new SearchValuesTask<K,V,U> 5278 (this, batch >>>= 1, baseLimit = h, f, tab, 5279 searchFunction, result).fork(); 5280 } 5281 while (result.get() == null) { 5282 U u; 5283 Node<K,V> p; 5284 if ((p = advance()) == null) { 5285 propagateCompletion(); 5286 break; 5287 } 5288 if ((u = searchFunction.apply(p.val)) != null) { 5289 if (result.compareAndSet(null, u)) 5290 quietlyCompleteRoot(); 5291 break; 5292 } 5293 } 5294 } 5295 } 5296 } 5297 5298 @SuppressWarnings("serial") 5299 static final class SearchEntriesTask<K,V,U> 5300 extends BulkTask<K,V,U> { 5301 final Function<Entry<K,V>, ? extends U> searchFunction; 5302 final AtomicReference<U> result; SearchEntriesTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Function<Entry<K,V>, ? extends U> searchFunction, AtomicReference<U> result)5303 SearchEntriesTask 5304 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 5305 Function<Entry<K,V>, ? extends U> searchFunction, 5306 AtomicReference<U> result) { 5307 super(p, b, i, f, t); 5308 this.searchFunction = searchFunction; this.result = result; 5309 } getRawResult()5310 public final U getRawResult() { return result.get(); } compute()5311 public final void compute() { 5312 final Function<Entry<K,V>, ? extends U> searchFunction; 5313 final AtomicReference<U> result; 5314 if ((searchFunction = this.searchFunction) != null && 5315 (result = this.result) != null) { 5316 for (int i = baseIndex, f, h; batch > 0 && 5317 (h = ((f = baseLimit) + i) >>> 1) > i;) { 5318 if (result.get() != null) 5319 return; 5320 addToPendingCount(1); 5321 new SearchEntriesTask<K,V,U> 5322 (this, batch >>>= 1, baseLimit = h, f, tab, 5323 searchFunction, result).fork(); 5324 } 5325 while (result.get() == null) { 5326 U u; 5327 Node<K,V> p; 5328 if ((p = advance()) == null) { 5329 propagateCompletion(); 5330 break; 5331 } 5332 if ((u = searchFunction.apply(p)) != null) { 5333 if (result.compareAndSet(null, u)) 5334 quietlyCompleteRoot(); 5335 return; 5336 } 5337 } 5338 } 5339 } 5340 } 5341 5342 @SuppressWarnings("serial") 5343 static final class SearchMappingsTask<K,V,U> 5344 extends BulkTask<K,V,U> { 5345 final BiFunction<? super K, ? super V, ? extends U> searchFunction; 5346 final AtomicReference<U> result; SearchMappingsTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, BiFunction<? super K, ? super V, ? extends U> searchFunction, AtomicReference<U> result)5347 SearchMappingsTask 5348 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 5349 BiFunction<? super K, ? super V, ? extends U> searchFunction, 5350 AtomicReference<U> result) { 5351 super(p, b, i, f, t); 5352 this.searchFunction = searchFunction; this.result = result; 5353 } getRawResult()5354 public final U getRawResult() { return result.get(); } compute()5355 public final void compute() { 5356 final BiFunction<? super K, ? super V, ? extends U> searchFunction; 5357 final AtomicReference<U> result; 5358 if ((searchFunction = this.searchFunction) != null && 5359 (result = this.result) != null) { 5360 for (int i = baseIndex, f, h; batch > 0 && 5361 (h = ((f = baseLimit) + i) >>> 1) > i;) { 5362 if (result.get() != null) 5363 return; 5364 addToPendingCount(1); 5365 new SearchMappingsTask<K,V,U> 5366 (this, batch >>>= 1, baseLimit = h, f, tab, 5367 searchFunction, result).fork(); 5368 } 5369 while (result.get() == null) { 5370 U u; 5371 Node<K,V> p; 5372 if ((p = advance()) == null) { 5373 propagateCompletion(); 5374 break; 5375 } 5376 if ((u = searchFunction.apply(p.key, p.val)) != null) { 5377 if (result.compareAndSet(null, u)) 5378 quietlyCompleteRoot(); 5379 break; 5380 } 5381 } 5382 } 5383 } 5384 } 5385 5386 @SuppressWarnings("serial") 5387 static final class ReduceKeysTask<K,V> 5388 extends BulkTask<K,V,K> { 5389 final BiFunction<? super K, ? super K, ? extends K> reducer; 5390 K result; 5391 ReduceKeysTask<K,V> rights, nextRight; ReduceKeysTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, ReduceKeysTask<K,V> nextRight, BiFunction<? super K, ? super K, ? extends K> reducer)5392 ReduceKeysTask 5393 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 5394 ReduceKeysTask<K,V> nextRight, 5395 BiFunction<? super K, ? super K, ? extends K> reducer) { 5396 super(p, b, i, f, t); this.nextRight = nextRight; 5397 this.reducer = reducer; 5398 } getRawResult()5399 public final K getRawResult() { return result; } compute()5400 public final void compute() { 5401 final BiFunction<? super K, ? super K, ? extends K> reducer; 5402 if ((reducer = this.reducer) != null) { 5403 for (int i = baseIndex, f, h; batch > 0 && 5404 (h = ((f = baseLimit) + i) >>> 1) > i;) { 5405 addToPendingCount(1); 5406 (rights = new ReduceKeysTask<K,V> 5407 (this, batch >>>= 1, baseLimit = h, f, tab, 5408 rights, reducer)).fork(); 5409 } 5410 K r = null; 5411 for (Node<K,V> p; (p = advance()) != null; ) { 5412 K u = p.key; 5413 r = (r == null) ? u : u == null ? r : reducer.apply(r, u); 5414 } 5415 result = r; 5416 CountedCompleter<?> c; 5417 for (c = firstComplete(); c != null; c = c.nextComplete()) { 5418 @SuppressWarnings("unchecked") 5419 ReduceKeysTask<K,V> 5420 t = (ReduceKeysTask<K,V>)c, 5421 s = t.rights; 5422 while (s != null) { 5423 K tr, sr; 5424 if ((sr = s.result) != null) 5425 t.result = (((tr = t.result) == null) ? sr : 5426 reducer.apply(tr, sr)); 5427 s = t.rights = s.nextRight; 5428 } 5429 } 5430 } 5431 } 5432 } 5433 5434 @SuppressWarnings("serial") 5435 static final class ReduceValuesTask<K,V> 5436 extends BulkTask<K,V,V> { 5437 final BiFunction<? super V, ? super V, ? extends V> reducer; 5438 V result; 5439 ReduceValuesTask<K,V> rights, nextRight; ReduceValuesTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, ReduceValuesTask<K,V> nextRight, BiFunction<? super V, ? super V, ? extends V> reducer)5440 ReduceValuesTask 5441 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 5442 ReduceValuesTask<K,V> nextRight, 5443 BiFunction<? super V, ? super V, ? extends V> reducer) { 5444 super(p, b, i, f, t); this.nextRight = nextRight; 5445 this.reducer = reducer; 5446 } getRawResult()5447 public final V getRawResult() { return result; } compute()5448 public final void compute() { 5449 final BiFunction<? super V, ? super V, ? extends V> reducer; 5450 if ((reducer = this.reducer) != null) { 5451 for (int i = baseIndex, f, h; batch > 0 && 5452 (h = ((f = baseLimit) + i) >>> 1) > i;) { 5453 addToPendingCount(1); 5454 (rights = new ReduceValuesTask<K,V> 5455 (this, batch >>>= 1, baseLimit = h, f, tab, 5456 rights, reducer)).fork(); 5457 } 5458 V r = null; 5459 for (Node<K,V> p; (p = advance()) != null; ) { 5460 V v = p.val; 5461 r = (r == null) ? v : reducer.apply(r, v); 5462 } 5463 result = r; 5464 CountedCompleter<?> c; 5465 for (c = firstComplete(); c != null; c = c.nextComplete()) { 5466 @SuppressWarnings("unchecked") 5467 ReduceValuesTask<K,V> 5468 t = (ReduceValuesTask<K,V>)c, 5469 s = t.rights; 5470 while (s != null) { 5471 V tr, sr; 5472 if ((sr = s.result) != null) 5473 t.result = (((tr = t.result) == null) ? sr : 5474 reducer.apply(tr, sr)); 5475 s = t.rights = s.nextRight; 5476 } 5477 } 5478 } 5479 } 5480 } 5481 5482 @SuppressWarnings("serial") 5483 static final class ReduceEntriesTask<K,V> 5484 extends BulkTask<K,V,Map.Entry<K,V>> { 5485 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer; 5486 Map.Entry<K,V> result; 5487 ReduceEntriesTask<K,V> rights, nextRight; ReduceEntriesTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, ReduceEntriesTask<K,V> nextRight, BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer)5488 ReduceEntriesTask 5489 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 5490 ReduceEntriesTask<K,V> nextRight, 5491 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) { 5492 super(p, b, i, f, t); this.nextRight = nextRight; 5493 this.reducer = reducer; 5494 } getRawResult()5495 public final Map.Entry<K,V> getRawResult() { return result; } compute()5496 public final void compute() { 5497 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer; 5498 if ((reducer = this.reducer) != null) { 5499 for (int i = baseIndex, f, h; batch > 0 && 5500 (h = ((f = baseLimit) + i) >>> 1) > i;) { 5501 addToPendingCount(1); 5502 (rights = new ReduceEntriesTask<K,V> 5503 (this, batch >>>= 1, baseLimit = h, f, tab, 5504 rights, reducer)).fork(); 5505 } 5506 Map.Entry<K,V> r = null; 5507 for (Node<K,V> p; (p = advance()) != null; ) 5508 r = (r == null) ? p : reducer.apply(r, p); 5509 result = r; 5510 CountedCompleter<?> c; 5511 for (c = firstComplete(); c != null; c = c.nextComplete()) { 5512 @SuppressWarnings("unchecked") 5513 ReduceEntriesTask<K,V> 5514 t = (ReduceEntriesTask<K,V>)c, 5515 s = t.rights; 5516 while (s != null) { 5517 Map.Entry<K,V> tr, sr; 5518 if ((sr = s.result) != null) 5519 t.result = (((tr = t.result) == null) ? sr : 5520 reducer.apply(tr, sr)); 5521 s = t.rights = s.nextRight; 5522 } 5523 } 5524 } 5525 } 5526 } 5527 5528 @SuppressWarnings("serial") 5529 static final class MapReduceKeysTask<K,V,U> 5530 extends BulkTask<K,V,U> { 5531 final Function<? super K, ? extends U> transformer; 5532 final BiFunction<? super U, ? super U, ? extends U> reducer; 5533 U result; 5534 MapReduceKeysTask<K,V,U> rights, nextRight; MapReduceKeysTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceKeysTask<K,V,U> nextRight, Function<? super K, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer)5535 MapReduceKeysTask 5536 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 5537 MapReduceKeysTask<K,V,U> nextRight, 5538 Function<? super K, ? extends U> transformer, 5539 BiFunction<? super U, ? super U, ? extends U> reducer) { 5540 super(p, b, i, f, t); this.nextRight = nextRight; 5541 this.transformer = transformer; 5542 this.reducer = reducer; 5543 } getRawResult()5544 public final U getRawResult() { return result; } compute()5545 public final void compute() { 5546 final Function<? super K, ? extends U> transformer; 5547 final BiFunction<? super U, ? super U, ? extends U> reducer; 5548 if ((transformer = this.transformer) != null && 5549 (reducer = this.reducer) != null) { 5550 for (int i = baseIndex, f, h; batch > 0 && 5551 (h = ((f = baseLimit) + i) >>> 1) > i;) { 5552 addToPendingCount(1); 5553 (rights = new MapReduceKeysTask<K,V,U> 5554 (this, batch >>>= 1, baseLimit = h, f, tab, 5555 rights, transformer, reducer)).fork(); 5556 } 5557 U r = null; 5558 for (Node<K,V> p; (p = advance()) != null; ) { 5559 U u; 5560 if ((u = transformer.apply(p.key)) != null) 5561 r = (r == null) ? u : reducer.apply(r, u); 5562 } 5563 result = r; 5564 CountedCompleter<?> c; 5565 for (c = firstComplete(); c != null; c = c.nextComplete()) { 5566 @SuppressWarnings("unchecked") 5567 MapReduceKeysTask<K,V,U> 5568 t = (MapReduceKeysTask<K,V,U>)c, 5569 s = t.rights; 5570 while (s != null) { 5571 U tr, sr; 5572 if ((sr = s.result) != null) 5573 t.result = (((tr = t.result) == null) ? sr : 5574 reducer.apply(tr, sr)); 5575 s = t.rights = s.nextRight; 5576 } 5577 } 5578 } 5579 } 5580 } 5581 5582 @SuppressWarnings("serial") 5583 static final class MapReduceValuesTask<K,V,U> 5584 extends BulkTask<K,V,U> { 5585 final Function<? super V, ? extends U> transformer; 5586 final BiFunction<? super U, ? super U, ? extends U> reducer; 5587 U result; 5588 MapReduceValuesTask<K,V,U> rights, nextRight; MapReduceValuesTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceValuesTask<K,V,U> nextRight, Function<? super V, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer)5589 MapReduceValuesTask 5590 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 5591 MapReduceValuesTask<K,V,U> nextRight, 5592 Function<? super V, ? extends U> transformer, 5593 BiFunction<? super U, ? super U, ? extends U> reducer) { 5594 super(p, b, i, f, t); this.nextRight = nextRight; 5595 this.transformer = transformer; 5596 this.reducer = reducer; 5597 } getRawResult()5598 public final U getRawResult() { return result; } compute()5599 public final void compute() { 5600 final Function<? super V, ? extends U> transformer; 5601 final BiFunction<? super U, ? super U, ? extends U> reducer; 5602 if ((transformer = this.transformer) != null && 5603 (reducer = this.reducer) != null) { 5604 for (int i = baseIndex, f, h; batch > 0 && 5605 (h = ((f = baseLimit) + i) >>> 1) > i;) { 5606 addToPendingCount(1); 5607 (rights = new MapReduceValuesTask<K,V,U> 5608 (this, batch >>>= 1, baseLimit = h, f, tab, 5609 rights, transformer, reducer)).fork(); 5610 } 5611 U r = null; 5612 for (Node<K,V> p; (p = advance()) != null; ) { 5613 U u; 5614 if ((u = transformer.apply(p.val)) != null) 5615 r = (r == null) ? u : reducer.apply(r, u); 5616 } 5617 result = r; 5618 CountedCompleter<?> c; 5619 for (c = firstComplete(); c != null; c = c.nextComplete()) { 5620 @SuppressWarnings("unchecked") 5621 MapReduceValuesTask<K,V,U> 5622 t = (MapReduceValuesTask<K,V,U>)c, 5623 s = t.rights; 5624 while (s != null) { 5625 U tr, sr; 5626 if ((sr = s.result) != null) 5627 t.result = (((tr = t.result) == null) ? sr : 5628 reducer.apply(tr, sr)); 5629 s = t.rights = s.nextRight; 5630 } 5631 } 5632 } 5633 } 5634 } 5635 5636 @SuppressWarnings("serial") 5637 static final class MapReduceEntriesTask<K,V,U> 5638 extends BulkTask<K,V,U> { 5639 final Function<Map.Entry<K,V>, ? extends U> transformer; 5640 final BiFunction<? super U, ? super U, ? extends U> reducer; 5641 U result; 5642 MapReduceEntriesTask<K,V,U> rights, nextRight; MapReduceEntriesTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceEntriesTask<K,V,U> nextRight, Function<Map.Entry<K,V>, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer)5643 MapReduceEntriesTask 5644 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 5645 MapReduceEntriesTask<K,V,U> nextRight, 5646 Function<Map.Entry<K,V>, ? extends U> transformer, 5647 BiFunction<? super U, ? super U, ? extends U> reducer) { 5648 super(p, b, i, f, t); this.nextRight = nextRight; 5649 this.transformer = transformer; 5650 this.reducer = reducer; 5651 } getRawResult()5652 public final U getRawResult() { return result; } compute()5653 public final void compute() { 5654 final Function<Map.Entry<K,V>, ? extends U> transformer; 5655 final BiFunction<? super U, ? super U, ? extends U> reducer; 5656 if ((transformer = this.transformer) != null && 5657 (reducer = this.reducer) != null) { 5658 for (int i = baseIndex, f, h; batch > 0 && 5659 (h = ((f = baseLimit) + i) >>> 1) > i;) { 5660 addToPendingCount(1); 5661 (rights = new MapReduceEntriesTask<K,V,U> 5662 (this, batch >>>= 1, baseLimit = h, f, tab, 5663 rights, transformer, reducer)).fork(); 5664 } 5665 U r = null; 5666 for (Node<K,V> p; (p = advance()) != null; ) { 5667 U u; 5668 if ((u = transformer.apply(p)) != null) 5669 r = (r == null) ? u : reducer.apply(r, u); 5670 } 5671 result = r; 5672 CountedCompleter<?> c; 5673 for (c = firstComplete(); c != null; c = c.nextComplete()) { 5674 @SuppressWarnings("unchecked") 5675 MapReduceEntriesTask<K,V,U> 5676 t = (MapReduceEntriesTask<K,V,U>)c, 5677 s = t.rights; 5678 while (s != null) { 5679 U tr, sr; 5680 if ((sr = s.result) != null) 5681 t.result = (((tr = t.result) == null) ? sr : 5682 reducer.apply(tr, sr)); 5683 s = t.rights = s.nextRight; 5684 } 5685 } 5686 } 5687 } 5688 } 5689 5690 @SuppressWarnings("serial") 5691 static final class MapReduceMappingsTask<K,V,U> 5692 extends BulkTask<K,V,U> { 5693 final BiFunction<? super K, ? super V, ? extends U> transformer; 5694 final BiFunction<? super U, ? super U, ? extends U> reducer; 5695 U result; 5696 MapReduceMappingsTask<K,V,U> rights, nextRight; MapReduceMappingsTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceMappingsTask<K,V,U> nextRight, BiFunction<? super K, ? super V, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer)5697 MapReduceMappingsTask 5698 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 5699 MapReduceMappingsTask<K,V,U> nextRight, 5700 BiFunction<? super K, ? super V, ? extends U> transformer, 5701 BiFunction<? super U, ? super U, ? extends U> reducer) { 5702 super(p, b, i, f, t); this.nextRight = nextRight; 5703 this.transformer = transformer; 5704 this.reducer = reducer; 5705 } getRawResult()5706 public final U getRawResult() { return result; } compute()5707 public final void compute() { 5708 final BiFunction<? super K, ? super V, ? extends U> transformer; 5709 final BiFunction<? super U, ? super U, ? extends U> reducer; 5710 if ((transformer = this.transformer) != null && 5711 (reducer = this.reducer) != null) { 5712 for (int i = baseIndex, f, h; batch > 0 && 5713 (h = ((f = baseLimit) + i) >>> 1) > i;) { 5714 addToPendingCount(1); 5715 (rights = new MapReduceMappingsTask<K,V,U> 5716 (this, batch >>>= 1, baseLimit = h, f, tab, 5717 rights, transformer, reducer)).fork(); 5718 } 5719 U r = null; 5720 for (Node<K,V> p; (p = advance()) != null; ) { 5721 U u; 5722 if ((u = transformer.apply(p.key, p.val)) != null) 5723 r = (r == null) ? u : reducer.apply(r, u); 5724 } 5725 result = r; 5726 CountedCompleter<?> c; 5727 for (c = firstComplete(); c != null; c = c.nextComplete()) { 5728 @SuppressWarnings("unchecked") 5729 MapReduceMappingsTask<K,V,U> 5730 t = (MapReduceMappingsTask<K,V,U>)c, 5731 s = t.rights; 5732 while (s != null) { 5733 U tr, sr; 5734 if ((sr = s.result) != null) 5735 t.result = (((tr = t.result) == null) ? sr : 5736 reducer.apply(tr, sr)); 5737 s = t.rights = s.nextRight; 5738 } 5739 } 5740 } 5741 } 5742 } 5743 5744 @SuppressWarnings("serial") 5745 static final class MapReduceKeysToDoubleTask<K,V> 5746 extends BulkTask<K,V,Double> { 5747 final ToDoubleFunction<? super K> transformer; 5748 final DoubleBinaryOperator reducer; 5749 final double basis; 5750 double result; 5751 MapReduceKeysToDoubleTask<K,V> rights, nextRight; MapReduceKeysToDoubleTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceKeysToDoubleTask<K,V> nextRight, ToDoubleFunction<? super K> transformer, double basis, DoubleBinaryOperator reducer)5752 MapReduceKeysToDoubleTask 5753 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 5754 MapReduceKeysToDoubleTask<K,V> nextRight, 5755 ToDoubleFunction<? super K> transformer, 5756 double basis, 5757 DoubleBinaryOperator reducer) { 5758 super(p, b, i, f, t); this.nextRight = nextRight; 5759 this.transformer = transformer; 5760 this.basis = basis; this.reducer = reducer; 5761 } getRawResult()5762 public final Double getRawResult() { return result; } compute()5763 public final void compute() { 5764 final ToDoubleFunction<? super K> transformer; 5765 final DoubleBinaryOperator reducer; 5766 if ((transformer = this.transformer) != null && 5767 (reducer = this.reducer) != null) { 5768 double r = this.basis; 5769 for (int i = baseIndex, f, h; batch > 0 && 5770 (h = ((f = baseLimit) + i) >>> 1) > i;) { 5771 addToPendingCount(1); 5772 (rights = new MapReduceKeysToDoubleTask<K,V> 5773 (this, batch >>>= 1, baseLimit = h, f, tab, 5774 rights, transformer, r, reducer)).fork(); 5775 } 5776 for (Node<K,V> p; (p = advance()) != null; ) 5777 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key)); 5778 result = r; 5779 CountedCompleter<?> c; 5780 for (c = firstComplete(); c != null; c = c.nextComplete()) { 5781 @SuppressWarnings("unchecked") 5782 MapReduceKeysToDoubleTask<K,V> 5783 t = (MapReduceKeysToDoubleTask<K,V>)c, 5784 s = t.rights; 5785 while (s != null) { 5786 t.result = reducer.applyAsDouble(t.result, s.result); 5787 s = t.rights = s.nextRight; 5788 } 5789 } 5790 } 5791 } 5792 } 5793 5794 @SuppressWarnings("serial") 5795 static final class MapReduceValuesToDoubleTask<K,V> 5796 extends BulkTask<K,V,Double> { 5797 final ToDoubleFunction<? super V> transformer; 5798 final DoubleBinaryOperator reducer; 5799 final double basis; 5800 double result; 5801 MapReduceValuesToDoubleTask<K,V> rights, nextRight; MapReduceValuesToDoubleTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceValuesToDoubleTask<K,V> nextRight, ToDoubleFunction<? super V> transformer, double basis, DoubleBinaryOperator reducer)5802 MapReduceValuesToDoubleTask 5803 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 5804 MapReduceValuesToDoubleTask<K,V> nextRight, 5805 ToDoubleFunction<? super V> transformer, 5806 double basis, 5807 DoubleBinaryOperator reducer) { 5808 super(p, b, i, f, t); this.nextRight = nextRight; 5809 this.transformer = transformer; 5810 this.basis = basis; this.reducer = reducer; 5811 } getRawResult()5812 public final Double getRawResult() { return result; } compute()5813 public final void compute() { 5814 final ToDoubleFunction<? super V> transformer; 5815 final DoubleBinaryOperator reducer; 5816 if ((transformer = this.transformer) != null && 5817 (reducer = this.reducer) != null) { 5818 double r = this.basis; 5819 for (int i = baseIndex, f, h; batch > 0 && 5820 (h = ((f = baseLimit) + i) >>> 1) > i;) { 5821 addToPendingCount(1); 5822 (rights = new MapReduceValuesToDoubleTask<K,V> 5823 (this, batch >>>= 1, baseLimit = h, f, tab, 5824 rights, transformer, r, reducer)).fork(); 5825 } 5826 for (Node<K,V> p; (p = advance()) != null; ) 5827 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val)); 5828 result = r; 5829 CountedCompleter<?> c; 5830 for (c = firstComplete(); c != null; c = c.nextComplete()) { 5831 @SuppressWarnings("unchecked") 5832 MapReduceValuesToDoubleTask<K,V> 5833 t = (MapReduceValuesToDoubleTask<K,V>)c, 5834 s = t.rights; 5835 while (s != null) { 5836 t.result = reducer.applyAsDouble(t.result, s.result); 5837 s = t.rights = s.nextRight; 5838 } 5839 } 5840 } 5841 } 5842 } 5843 5844 @SuppressWarnings("serial") 5845 static final class MapReduceEntriesToDoubleTask<K,V> 5846 extends BulkTask<K,V,Double> { 5847 final ToDoubleFunction<Map.Entry<K,V>> transformer; 5848 final DoubleBinaryOperator reducer; 5849 final double basis; 5850 double result; 5851 MapReduceEntriesToDoubleTask<K,V> rights, nextRight; MapReduceEntriesToDoubleTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceEntriesToDoubleTask<K,V> nextRight, ToDoubleFunction<Map.Entry<K,V>> transformer, double basis, DoubleBinaryOperator reducer)5852 MapReduceEntriesToDoubleTask 5853 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 5854 MapReduceEntriesToDoubleTask<K,V> nextRight, 5855 ToDoubleFunction<Map.Entry<K,V>> transformer, 5856 double basis, 5857 DoubleBinaryOperator reducer) { 5858 super(p, b, i, f, t); this.nextRight = nextRight; 5859 this.transformer = transformer; 5860 this.basis = basis; this.reducer = reducer; 5861 } getRawResult()5862 public final Double getRawResult() { return result; } compute()5863 public final void compute() { 5864 final ToDoubleFunction<Map.Entry<K,V>> transformer; 5865 final DoubleBinaryOperator reducer; 5866 if ((transformer = this.transformer) != null && 5867 (reducer = this.reducer) != null) { 5868 double r = this.basis; 5869 for (int i = baseIndex, f, h; batch > 0 && 5870 (h = ((f = baseLimit) + i) >>> 1) > i;) { 5871 addToPendingCount(1); 5872 (rights = new MapReduceEntriesToDoubleTask<K,V> 5873 (this, batch >>>= 1, baseLimit = h, f, tab, 5874 rights, transformer, r, reducer)).fork(); 5875 } 5876 for (Node<K,V> p; (p = advance()) != null; ) 5877 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p)); 5878 result = r; 5879 CountedCompleter<?> c; 5880 for (c = firstComplete(); c != null; c = c.nextComplete()) { 5881 @SuppressWarnings("unchecked") 5882 MapReduceEntriesToDoubleTask<K,V> 5883 t = (MapReduceEntriesToDoubleTask<K,V>)c, 5884 s = t.rights; 5885 while (s != null) { 5886 t.result = reducer.applyAsDouble(t.result, s.result); 5887 s = t.rights = s.nextRight; 5888 } 5889 } 5890 } 5891 } 5892 } 5893 5894 @SuppressWarnings("serial") 5895 static final class MapReduceMappingsToDoubleTask<K,V> 5896 extends BulkTask<K,V,Double> { 5897 final ToDoubleBiFunction<? super K, ? super V> transformer; 5898 final DoubleBinaryOperator reducer; 5899 final double basis; 5900 double result; 5901 MapReduceMappingsToDoubleTask<K,V> rights, nextRight; MapReduceMappingsToDoubleTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceMappingsToDoubleTask<K,V> nextRight, ToDoubleBiFunction<? super K, ? super V> transformer, double basis, DoubleBinaryOperator reducer)5902 MapReduceMappingsToDoubleTask 5903 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 5904 MapReduceMappingsToDoubleTask<K,V> nextRight, 5905 ToDoubleBiFunction<? super K, ? super V> transformer, 5906 double basis, 5907 DoubleBinaryOperator reducer) { 5908 super(p, b, i, f, t); this.nextRight = nextRight; 5909 this.transformer = transformer; 5910 this.basis = basis; this.reducer = reducer; 5911 } getRawResult()5912 public final Double getRawResult() { return result; } compute()5913 public final void compute() { 5914 final ToDoubleBiFunction<? super K, ? super V> transformer; 5915 final DoubleBinaryOperator reducer; 5916 if ((transformer = this.transformer) != null && 5917 (reducer = this.reducer) != null) { 5918 double r = this.basis; 5919 for (int i = baseIndex, f, h; batch > 0 && 5920 (h = ((f = baseLimit) + i) >>> 1) > i;) { 5921 addToPendingCount(1); 5922 (rights = new MapReduceMappingsToDoubleTask<K,V> 5923 (this, batch >>>= 1, baseLimit = h, f, tab, 5924 rights, transformer, r, reducer)).fork(); 5925 } 5926 for (Node<K,V> p; (p = advance()) != null; ) 5927 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val)); 5928 result = r; 5929 CountedCompleter<?> c; 5930 for (c = firstComplete(); c != null; c = c.nextComplete()) { 5931 @SuppressWarnings("unchecked") 5932 MapReduceMappingsToDoubleTask<K,V> 5933 t = (MapReduceMappingsToDoubleTask<K,V>)c, 5934 s = t.rights; 5935 while (s != null) { 5936 t.result = reducer.applyAsDouble(t.result, s.result); 5937 s = t.rights = s.nextRight; 5938 } 5939 } 5940 } 5941 } 5942 } 5943 5944 @SuppressWarnings("serial") 5945 static final class MapReduceKeysToLongTask<K,V> 5946 extends BulkTask<K,V,Long> { 5947 final ToLongFunction<? super K> transformer; 5948 final LongBinaryOperator reducer; 5949 final long basis; 5950 long result; 5951 MapReduceKeysToLongTask<K,V> rights, nextRight; MapReduceKeysToLongTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceKeysToLongTask<K,V> nextRight, ToLongFunction<? super K> transformer, long basis, LongBinaryOperator reducer)5952 MapReduceKeysToLongTask 5953 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 5954 MapReduceKeysToLongTask<K,V> nextRight, 5955 ToLongFunction<? super K> transformer, 5956 long basis, 5957 LongBinaryOperator reducer) { 5958 super(p, b, i, f, t); this.nextRight = nextRight; 5959 this.transformer = transformer; 5960 this.basis = basis; this.reducer = reducer; 5961 } getRawResult()5962 public final Long getRawResult() { return result; } compute()5963 public final void compute() { 5964 final ToLongFunction<? super K> transformer; 5965 final LongBinaryOperator reducer; 5966 if ((transformer = this.transformer) != null && 5967 (reducer = this.reducer) != null) { 5968 long r = this.basis; 5969 for (int i = baseIndex, f, h; batch > 0 && 5970 (h = ((f = baseLimit) + i) >>> 1) > i;) { 5971 addToPendingCount(1); 5972 (rights = new MapReduceKeysToLongTask<K,V> 5973 (this, batch >>>= 1, baseLimit = h, f, tab, 5974 rights, transformer, r, reducer)).fork(); 5975 } 5976 for (Node<K,V> p; (p = advance()) != null; ) 5977 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key)); 5978 result = r; 5979 CountedCompleter<?> c; 5980 for (c = firstComplete(); c != null; c = c.nextComplete()) { 5981 @SuppressWarnings("unchecked") 5982 MapReduceKeysToLongTask<K,V> 5983 t = (MapReduceKeysToLongTask<K,V>)c, 5984 s = t.rights; 5985 while (s != null) { 5986 t.result = reducer.applyAsLong(t.result, s.result); 5987 s = t.rights = s.nextRight; 5988 } 5989 } 5990 } 5991 } 5992 } 5993 5994 @SuppressWarnings("serial") 5995 static final class MapReduceValuesToLongTask<K,V> 5996 extends BulkTask<K,V,Long> { 5997 final ToLongFunction<? super V> transformer; 5998 final LongBinaryOperator reducer; 5999 final long basis; 6000 long result; 6001 MapReduceValuesToLongTask<K,V> rights, nextRight; MapReduceValuesToLongTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceValuesToLongTask<K,V> nextRight, ToLongFunction<? super V> transformer, long basis, LongBinaryOperator reducer)6002 MapReduceValuesToLongTask 6003 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 6004 MapReduceValuesToLongTask<K,V> nextRight, 6005 ToLongFunction<? super V> transformer, 6006 long basis, 6007 LongBinaryOperator reducer) { 6008 super(p, b, i, f, t); this.nextRight = nextRight; 6009 this.transformer = transformer; 6010 this.basis = basis; this.reducer = reducer; 6011 } getRawResult()6012 public final Long getRawResult() { return result; } compute()6013 public final void compute() { 6014 final ToLongFunction<? super V> transformer; 6015 final LongBinaryOperator reducer; 6016 if ((transformer = this.transformer) != null && 6017 (reducer = this.reducer) != null) { 6018 long r = this.basis; 6019 for (int i = baseIndex, f, h; batch > 0 && 6020 (h = ((f = baseLimit) + i) >>> 1) > i;) { 6021 addToPendingCount(1); 6022 (rights = new MapReduceValuesToLongTask<K,V> 6023 (this, batch >>>= 1, baseLimit = h, f, tab, 6024 rights, transformer, r, reducer)).fork(); 6025 } 6026 for (Node<K,V> p; (p = advance()) != null; ) 6027 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val)); 6028 result = r; 6029 CountedCompleter<?> c; 6030 for (c = firstComplete(); c != null; c = c.nextComplete()) { 6031 @SuppressWarnings("unchecked") 6032 MapReduceValuesToLongTask<K,V> 6033 t = (MapReduceValuesToLongTask<K,V>)c, 6034 s = t.rights; 6035 while (s != null) { 6036 t.result = reducer.applyAsLong(t.result, s.result); 6037 s = t.rights = s.nextRight; 6038 } 6039 } 6040 } 6041 } 6042 } 6043 6044 @SuppressWarnings("serial") 6045 static final class MapReduceEntriesToLongTask<K,V> 6046 extends BulkTask<K,V,Long> { 6047 final ToLongFunction<Map.Entry<K,V>> transformer; 6048 final LongBinaryOperator reducer; 6049 final long basis; 6050 long result; 6051 MapReduceEntriesToLongTask<K,V> rights, nextRight; MapReduceEntriesToLongTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceEntriesToLongTask<K,V> nextRight, ToLongFunction<Map.Entry<K,V>> transformer, long basis, LongBinaryOperator reducer)6052 MapReduceEntriesToLongTask 6053 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 6054 MapReduceEntriesToLongTask<K,V> nextRight, 6055 ToLongFunction<Map.Entry<K,V>> transformer, 6056 long basis, 6057 LongBinaryOperator reducer) { 6058 super(p, b, i, f, t); this.nextRight = nextRight; 6059 this.transformer = transformer; 6060 this.basis = basis; this.reducer = reducer; 6061 } getRawResult()6062 public final Long getRawResult() { return result; } compute()6063 public final void compute() { 6064 final ToLongFunction<Map.Entry<K,V>> transformer; 6065 final LongBinaryOperator reducer; 6066 if ((transformer = this.transformer) != null && 6067 (reducer = this.reducer) != null) { 6068 long r = this.basis; 6069 for (int i = baseIndex, f, h; batch > 0 && 6070 (h = ((f = baseLimit) + i) >>> 1) > i;) { 6071 addToPendingCount(1); 6072 (rights = new MapReduceEntriesToLongTask<K,V> 6073 (this, batch >>>= 1, baseLimit = h, f, tab, 6074 rights, transformer, r, reducer)).fork(); 6075 } 6076 for (Node<K,V> p; (p = advance()) != null; ) 6077 r = reducer.applyAsLong(r, transformer.applyAsLong(p)); 6078 result = r; 6079 CountedCompleter<?> c; 6080 for (c = firstComplete(); c != null; c = c.nextComplete()) { 6081 @SuppressWarnings("unchecked") 6082 MapReduceEntriesToLongTask<K,V> 6083 t = (MapReduceEntriesToLongTask<K,V>)c, 6084 s = t.rights; 6085 while (s != null) { 6086 t.result = reducer.applyAsLong(t.result, s.result); 6087 s = t.rights = s.nextRight; 6088 } 6089 } 6090 } 6091 } 6092 } 6093 6094 @SuppressWarnings("serial") 6095 static final class MapReduceMappingsToLongTask<K,V> 6096 extends BulkTask<K,V,Long> { 6097 final ToLongBiFunction<? super K, ? super V> transformer; 6098 final LongBinaryOperator reducer; 6099 final long basis; 6100 long result; 6101 MapReduceMappingsToLongTask<K,V> rights, nextRight; MapReduceMappingsToLongTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceMappingsToLongTask<K,V> nextRight, ToLongBiFunction<? super K, ? super V> transformer, long basis, LongBinaryOperator reducer)6102 MapReduceMappingsToLongTask 6103 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 6104 MapReduceMappingsToLongTask<K,V> nextRight, 6105 ToLongBiFunction<? super K, ? super V> transformer, 6106 long basis, 6107 LongBinaryOperator reducer) { 6108 super(p, b, i, f, t); this.nextRight = nextRight; 6109 this.transformer = transformer; 6110 this.basis = basis; this.reducer = reducer; 6111 } getRawResult()6112 public final Long getRawResult() { return result; } compute()6113 public final void compute() { 6114 final ToLongBiFunction<? super K, ? super V> transformer; 6115 final LongBinaryOperator reducer; 6116 if ((transformer = this.transformer) != null && 6117 (reducer = this.reducer) != null) { 6118 long r = this.basis; 6119 for (int i = baseIndex, f, h; batch > 0 && 6120 (h = ((f = baseLimit) + i) >>> 1) > i;) { 6121 addToPendingCount(1); 6122 (rights = new MapReduceMappingsToLongTask<K,V> 6123 (this, batch >>>= 1, baseLimit = h, f, tab, 6124 rights, transformer, r, reducer)).fork(); 6125 } 6126 for (Node<K,V> p; (p = advance()) != null; ) 6127 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val)); 6128 result = r; 6129 CountedCompleter<?> c; 6130 for (c = firstComplete(); c != null; c = c.nextComplete()) { 6131 @SuppressWarnings("unchecked") 6132 MapReduceMappingsToLongTask<K,V> 6133 t = (MapReduceMappingsToLongTask<K,V>)c, 6134 s = t.rights; 6135 while (s != null) { 6136 t.result = reducer.applyAsLong(t.result, s.result); 6137 s = t.rights = s.nextRight; 6138 } 6139 } 6140 } 6141 } 6142 } 6143 6144 @SuppressWarnings("serial") 6145 static final class MapReduceKeysToIntTask<K,V> 6146 extends BulkTask<K,V,Integer> { 6147 final ToIntFunction<? super K> transformer; 6148 final IntBinaryOperator reducer; 6149 final int basis; 6150 int result; 6151 MapReduceKeysToIntTask<K,V> rights, nextRight; MapReduceKeysToIntTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceKeysToIntTask<K,V> nextRight, ToIntFunction<? super K> transformer, int basis, IntBinaryOperator reducer)6152 MapReduceKeysToIntTask 6153 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 6154 MapReduceKeysToIntTask<K,V> nextRight, 6155 ToIntFunction<? super K> transformer, 6156 int basis, 6157 IntBinaryOperator reducer) { 6158 super(p, b, i, f, t); this.nextRight = nextRight; 6159 this.transformer = transformer; 6160 this.basis = basis; this.reducer = reducer; 6161 } getRawResult()6162 public final Integer getRawResult() { return result; } compute()6163 public final void compute() { 6164 final ToIntFunction<? super K> transformer; 6165 final IntBinaryOperator reducer; 6166 if ((transformer = this.transformer) != null && 6167 (reducer = this.reducer) != null) { 6168 int r = this.basis; 6169 for (int i = baseIndex, f, h; batch > 0 && 6170 (h = ((f = baseLimit) + i) >>> 1) > i;) { 6171 addToPendingCount(1); 6172 (rights = new MapReduceKeysToIntTask<K,V> 6173 (this, batch >>>= 1, baseLimit = h, f, tab, 6174 rights, transformer, r, reducer)).fork(); 6175 } 6176 for (Node<K,V> p; (p = advance()) != null; ) 6177 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key)); 6178 result = r; 6179 CountedCompleter<?> c; 6180 for (c = firstComplete(); c != null; c = c.nextComplete()) { 6181 @SuppressWarnings("unchecked") 6182 MapReduceKeysToIntTask<K,V> 6183 t = (MapReduceKeysToIntTask<K,V>)c, 6184 s = t.rights; 6185 while (s != null) { 6186 t.result = reducer.applyAsInt(t.result, s.result); 6187 s = t.rights = s.nextRight; 6188 } 6189 } 6190 } 6191 } 6192 } 6193 6194 @SuppressWarnings("serial") 6195 static final class MapReduceValuesToIntTask<K,V> 6196 extends BulkTask<K,V,Integer> { 6197 final ToIntFunction<? super V> transformer; 6198 final IntBinaryOperator reducer; 6199 final int basis; 6200 int result; 6201 MapReduceValuesToIntTask<K,V> rights, nextRight; MapReduceValuesToIntTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceValuesToIntTask<K,V> nextRight, ToIntFunction<? super V> transformer, int basis, IntBinaryOperator reducer)6202 MapReduceValuesToIntTask 6203 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 6204 MapReduceValuesToIntTask<K,V> nextRight, 6205 ToIntFunction<? super V> transformer, 6206 int basis, 6207 IntBinaryOperator reducer) { 6208 super(p, b, i, f, t); this.nextRight = nextRight; 6209 this.transformer = transformer; 6210 this.basis = basis; this.reducer = reducer; 6211 } getRawResult()6212 public final Integer getRawResult() { return result; } compute()6213 public final void compute() { 6214 final ToIntFunction<? super V> transformer; 6215 final IntBinaryOperator reducer; 6216 if ((transformer = this.transformer) != null && 6217 (reducer = this.reducer) != null) { 6218 int r = this.basis; 6219 for (int i = baseIndex, f, h; batch > 0 && 6220 (h = ((f = baseLimit) + i) >>> 1) > i;) { 6221 addToPendingCount(1); 6222 (rights = new MapReduceValuesToIntTask<K,V> 6223 (this, batch >>>= 1, baseLimit = h, f, tab, 6224 rights, transformer, r, reducer)).fork(); 6225 } 6226 for (Node<K,V> p; (p = advance()) != null; ) 6227 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val)); 6228 result = r; 6229 CountedCompleter<?> c; 6230 for (c = firstComplete(); c != null; c = c.nextComplete()) { 6231 @SuppressWarnings("unchecked") 6232 MapReduceValuesToIntTask<K,V> 6233 t = (MapReduceValuesToIntTask<K,V>)c, 6234 s = t.rights; 6235 while (s != null) { 6236 t.result = reducer.applyAsInt(t.result, s.result); 6237 s = t.rights = s.nextRight; 6238 } 6239 } 6240 } 6241 } 6242 } 6243 6244 @SuppressWarnings("serial") 6245 static final class MapReduceEntriesToIntTask<K,V> 6246 extends BulkTask<K,V,Integer> { 6247 final ToIntFunction<Map.Entry<K,V>> transformer; 6248 final IntBinaryOperator reducer; 6249 final int basis; 6250 int result; 6251 MapReduceEntriesToIntTask<K,V> rights, nextRight; MapReduceEntriesToIntTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceEntriesToIntTask<K,V> nextRight, ToIntFunction<Map.Entry<K,V>> transformer, int basis, IntBinaryOperator reducer)6252 MapReduceEntriesToIntTask 6253 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 6254 MapReduceEntriesToIntTask<K,V> nextRight, 6255 ToIntFunction<Map.Entry<K,V>> transformer, 6256 int basis, 6257 IntBinaryOperator reducer) { 6258 super(p, b, i, f, t); this.nextRight = nextRight; 6259 this.transformer = transformer; 6260 this.basis = basis; this.reducer = reducer; 6261 } getRawResult()6262 public final Integer getRawResult() { return result; } compute()6263 public final void compute() { 6264 final ToIntFunction<Map.Entry<K,V>> transformer; 6265 final IntBinaryOperator reducer; 6266 if ((transformer = this.transformer) != null && 6267 (reducer = this.reducer) != null) { 6268 int r = this.basis; 6269 for (int i = baseIndex, f, h; batch > 0 && 6270 (h = ((f = baseLimit) + i) >>> 1) > i;) { 6271 addToPendingCount(1); 6272 (rights = new MapReduceEntriesToIntTask<K,V> 6273 (this, batch >>>= 1, baseLimit = h, f, tab, 6274 rights, transformer, r, reducer)).fork(); 6275 } 6276 for (Node<K,V> p; (p = advance()) != null; ) 6277 r = reducer.applyAsInt(r, transformer.applyAsInt(p)); 6278 result = r; 6279 CountedCompleter<?> c; 6280 for (c = firstComplete(); c != null; c = c.nextComplete()) { 6281 @SuppressWarnings("unchecked") 6282 MapReduceEntriesToIntTask<K,V> 6283 t = (MapReduceEntriesToIntTask<K,V>)c, 6284 s = t.rights; 6285 while (s != null) { 6286 t.result = reducer.applyAsInt(t.result, s.result); 6287 s = t.rights = s.nextRight; 6288 } 6289 } 6290 } 6291 } 6292 } 6293 6294 @SuppressWarnings("serial") 6295 static final class MapReduceMappingsToIntTask<K,V> 6296 extends BulkTask<K,V,Integer> { 6297 final ToIntBiFunction<? super K, ? super V> transformer; 6298 final IntBinaryOperator reducer; 6299 final int basis; 6300 int result; 6301 MapReduceMappingsToIntTask<K,V> rights, nextRight; MapReduceMappingsToIntTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceMappingsToIntTask<K,V> nextRight, ToIntBiFunction<? super K, ? super V> transformer, int basis, IntBinaryOperator reducer)6302 MapReduceMappingsToIntTask 6303 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, 6304 MapReduceMappingsToIntTask<K,V> nextRight, 6305 ToIntBiFunction<? super K, ? super V> transformer, 6306 int basis, 6307 IntBinaryOperator reducer) { 6308 super(p, b, i, f, t); this.nextRight = nextRight; 6309 this.transformer = transformer; 6310 this.basis = basis; this.reducer = reducer; 6311 } getRawResult()6312 public final Integer getRawResult() { return result; } compute()6313 public final void compute() { 6314 final ToIntBiFunction<? super K, ? super V> transformer; 6315 final IntBinaryOperator reducer; 6316 if ((transformer = this.transformer) != null && 6317 (reducer = this.reducer) != null) { 6318 int r = this.basis; 6319 for (int i = baseIndex, f, h; batch > 0 && 6320 (h = ((f = baseLimit) + i) >>> 1) > i;) { 6321 addToPendingCount(1); 6322 (rights = new MapReduceMappingsToIntTask<K,V> 6323 (this, batch >>>= 1, baseLimit = h, f, tab, 6324 rights, transformer, r, reducer)).fork(); 6325 } 6326 for (Node<K,V> p; (p = advance()) != null; ) 6327 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val)); 6328 result = r; 6329 CountedCompleter<?> c; 6330 for (c = firstComplete(); c != null; c = c.nextComplete()) { 6331 @SuppressWarnings("unchecked") 6332 MapReduceMappingsToIntTask<K,V> 6333 t = (MapReduceMappingsToIntTask<K,V>)c, 6334 s = t.rights; 6335 while (s != null) { 6336 t.result = reducer.applyAsInt(t.result, s.result); 6337 s = t.rights = s.nextRight; 6338 } 6339 } 6340 } 6341 } 6342 } 6343 6344 // Unsafe mechanics 6345 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe(); 6346 private static final long SIZECTL; 6347 private static final long TRANSFERINDEX; 6348 private static final long BASECOUNT; 6349 private static final long CELLSBUSY; 6350 private static final long CELLVALUE; 6351 private static final int ABASE; 6352 private static final int ASHIFT; 6353 6354 static { 6355 try { 6356 SIZECTL = U.objectFieldOffset 6357 (ConcurrentHashMap.class.getDeclaredField("sizeCtl")); 6358 TRANSFERINDEX = U.objectFieldOffset 6359 (ConcurrentHashMap.class.getDeclaredField("transferIndex")); 6360 BASECOUNT = U.objectFieldOffset 6361 (ConcurrentHashMap.class.getDeclaredField("baseCount")); 6362 CELLSBUSY = U.objectFieldOffset 6363 (ConcurrentHashMap.class.getDeclaredField("cellsBusy")); 6364 6365 CELLVALUE = U.objectFieldOffset 6366 (CounterCell.class.getDeclaredField("value")); 6367 6368 ABASE = U.arrayBaseOffset(Node[].class); 6369 int scale = U.arrayIndexScale(Node[].class); 6370 if ((scale & (scale - 1)) != 0) 6371 throw new Error("array index scale not a power of two"); 6372 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale); 6373 } catch (ReflectiveOperationException e) { 6374 throw new Error(e); 6375 } 6376 6377 // Reduce the risk of rare disastrous classloading in first call to 6378 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773 6379 Class<?> ensureLoaded = LockSupport.class; 6380 } 6381 } 6382