1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_COMPILER_INSTRUCTION_H_
6 #define V8_COMPILER_INSTRUCTION_H_
7 
8 #include <deque>
9 #include <iosfwd>
10 #include <map>
11 #include <set>
12 
13 #include "src/base/compiler-specific.h"
14 #include "src/compiler/common-operator.h"
15 #include "src/compiler/frame.h"
16 #include "src/compiler/instruction-codes.h"
17 #include "src/compiler/opcodes.h"
18 #include "src/globals.h"
19 #include "src/macro-assembler.h"
20 #include "src/register-configuration.h"
21 #include "src/zone/zone-allocator.h"
22 
23 namespace v8 {
24 namespace internal {
25 
26 class SourcePosition;
27 
28 namespace compiler {
29 
30 class Schedule;
31 class SourcePositionTable;
32 
33 class V8_EXPORT_PRIVATE InstructionOperand {
34  public:
35   static const int kInvalidVirtualRegister = -1;
36 
37   // TODO(dcarney): recover bit. INVALID can be represented as UNALLOCATED with
38   // kInvalidVirtualRegister and some DCHECKS.
39   enum Kind {
40     INVALID,
41     UNALLOCATED,
42     CONSTANT,
43     IMMEDIATE,
44     // Location operand kinds.
45     EXPLICIT,
46     ALLOCATED,
47     FIRST_LOCATION_OPERAND_KIND = EXPLICIT
48     // Location operand kinds must be last.
49   };
50 
InstructionOperand()51   InstructionOperand() : InstructionOperand(INVALID) {}
52 
kind()53   Kind kind() const { return KindField::decode(value_); }
54 
55 #define INSTRUCTION_OPERAND_PREDICATE(name, type) \
56   bool Is##name() const { return kind() == type; }
57   INSTRUCTION_OPERAND_PREDICATE(Invalid, INVALID)
58   // UnallocatedOperands are place-holder operands created before register
59   // allocation. They later are assigned registers and become AllocatedOperands.
60   INSTRUCTION_OPERAND_PREDICATE(Unallocated, UNALLOCATED)
61   // Constant operands participate in register allocation. They are allocated to
62   // registers but have a special "spilling" behavior. When a ConstantOperand
63   // value must be rematerialized, it is loaded from an immediate constant
64   // rather from an unspilled slot.
65   INSTRUCTION_OPERAND_PREDICATE(Constant, CONSTANT)
66   // ImmediateOperands do not participate in register allocation and are only
67   // embedded directly in instructions, e.g. small integers and on some
68   // platforms Objects.
69   INSTRUCTION_OPERAND_PREDICATE(Immediate, IMMEDIATE)
70   // ExplicitOperands do not participate in register allocation. They are
71   // created by the instruction selector for direct access to registers and
72   // stack slots, completely bypassing the register allocator. They are never
73   // associated with a virtual register
74   INSTRUCTION_OPERAND_PREDICATE(Explicit, EXPLICIT)
75   // AllocatedOperands are registers or stack slots that are assigned by the
76   // register allocator and are always associated with a virtual register.
77   INSTRUCTION_OPERAND_PREDICATE(Allocated, ALLOCATED)
78 #undef INSTRUCTION_OPERAND_PREDICATE
79 
80   inline bool IsAnyLocationOperand() const;
81   inline bool IsLocationOperand() const;
82   inline bool IsFPLocationOperand() const;
83   inline bool IsAnyRegister() const;
84   inline bool IsRegister() const;
85   inline bool IsFPRegister() const;
86   inline bool IsFloatRegister() const;
87   inline bool IsDoubleRegister() const;
88   inline bool IsSimd128Register() const;
89   inline bool IsAnyStackSlot() const;
90   inline bool IsStackSlot() const;
91   inline bool IsFPStackSlot() const;
92   inline bool IsFloatStackSlot() const;
93   inline bool IsDoubleStackSlot() const;
94   inline bool IsSimd128StackSlot() const;
95 
96   template <typename SubKindOperand>
New(Zone * zone,const SubKindOperand & op)97   static SubKindOperand* New(Zone* zone, const SubKindOperand& op) {
98     void* buffer = zone->New(sizeof(op));
99     return new (buffer) SubKindOperand(op);
100   }
101 
ReplaceWith(InstructionOperand * dest,const InstructionOperand * src)102   static void ReplaceWith(InstructionOperand* dest,
103                           const InstructionOperand* src) {
104     *dest = *src;
105   }
106 
Equals(const InstructionOperand & that)107   bool Equals(const InstructionOperand& that) const {
108     return this->value_ == that.value_;
109   }
110 
Compare(const InstructionOperand & that)111   bool Compare(const InstructionOperand& that) const {
112     return this->value_ < that.value_;
113   }
114 
EqualsCanonicalized(const InstructionOperand & that)115   bool EqualsCanonicalized(const InstructionOperand& that) const {
116     return this->GetCanonicalizedValue() == that.GetCanonicalizedValue();
117   }
118 
CompareCanonicalized(const InstructionOperand & that)119   bool CompareCanonicalized(const InstructionOperand& that) const {
120     return this->GetCanonicalizedValue() < that.GetCanonicalizedValue();
121   }
122 
123   bool InterferesWith(const InstructionOperand& other) const;
124 
125   // APIs to aid debugging. For general-stream APIs, use operator<<
126   void Print(const RegisterConfiguration* config) const;
127   void Print() const;
128 
129  protected:
InstructionOperand(Kind kind)130   explicit InstructionOperand(Kind kind) : value_(KindField::encode(kind)) {}
131 
132   inline uint64_t GetCanonicalizedValue() const;
133 
134   class KindField : public BitField64<Kind, 0, 3> {};
135 
136   uint64_t value_;
137 };
138 
139 
140 typedef ZoneVector<InstructionOperand> InstructionOperandVector;
141 
142 
143 struct PrintableInstructionOperand {
144   const RegisterConfiguration* register_configuration_;
145   InstructionOperand op_;
146 };
147 
148 
149 std::ostream& operator<<(std::ostream& os,
150                          const PrintableInstructionOperand& op);
151 
152 
153 #define INSTRUCTION_OPERAND_CASTS(OperandType, OperandKind)      \
154                                                                  \
155   static OperandType* cast(InstructionOperand* op) {             \
156     DCHECK_EQ(OperandKind, op->kind());                          \
157     return static_cast<OperandType*>(op);                        \
158   }                                                              \
159                                                                  \
160   static const OperandType* cast(const InstructionOperand* op) { \
161     DCHECK_EQ(OperandKind, op->kind());                          \
162     return static_cast<const OperandType*>(op);                  \
163   }                                                              \
164                                                                  \
165   static OperandType cast(const InstructionOperand& op) {        \
166     DCHECK_EQ(OperandKind, op.kind());                           \
167     return *static_cast<const OperandType*>(&op);                \
168   }
169 
170 class UnallocatedOperand : public InstructionOperand {
171  public:
172   enum BasicPolicy { FIXED_SLOT, EXTENDED_POLICY };
173 
174   enum ExtendedPolicy {
175     NONE,
176     ANY,
177     FIXED_REGISTER,
178     FIXED_FP_REGISTER,
179     MUST_HAVE_REGISTER,
180     MUST_HAVE_SLOT,
181     SAME_AS_FIRST_INPUT
182   };
183 
184   // Lifetime of operand inside the instruction.
185   enum Lifetime {
186     // USED_AT_START operand is guaranteed to be live only at
187     // instruction start. Register allocator is free to assign the same register
188     // to some other operand used inside instruction (i.e. temporary or
189     // output).
190     USED_AT_START,
191 
192     // USED_AT_END operand is treated as live until the end of
193     // instruction. This means that register allocator will not reuse it's
194     // register for any other operand inside instruction.
195     USED_AT_END
196   };
197 
UnallocatedOperand(ExtendedPolicy policy,int virtual_register)198   UnallocatedOperand(ExtendedPolicy policy, int virtual_register)
199       : UnallocatedOperand(virtual_register) {
200     value_ |= BasicPolicyField::encode(EXTENDED_POLICY);
201     value_ |= ExtendedPolicyField::encode(policy);
202     value_ |= LifetimeField::encode(USED_AT_END);
203   }
204 
UnallocatedOperand(BasicPolicy policy,int index,int virtual_register)205   UnallocatedOperand(BasicPolicy policy, int index, int virtual_register)
206       : UnallocatedOperand(virtual_register) {
207     DCHECK(policy == FIXED_SLOT);
208     value_ |= BasicPolicyField::encode(policy);
209     value_ |= static_cast<int64_t>(index) << FixedSlotIndexField::kShift;
210     DCHECK(this->fixed_slot_index() == index);
211   }
212 
UnallocatedOperand(ExtendedPolicy policy,int index,int virtual_register)213   UnallocatedOperand(ExtendedPolicy policy, int index, int virtual_register)
214       : UnallocatedOperand(virtual_register) {
215     DCHECK(policy == FIXED_REGISTER || policy == FIXED_FP_REGISTER);
216     value_ |= BasicPolicyField::encode(EXTENDED_POLICY);
217     value_ |= ExtendedPolicyField::encode(policy);
218     value_ |= LifetimeField::encode(USED_AT_END);
219     value_ |= FixedRegisterField::encode(index);
220   }
221 
UnallocatedOperand(ExtendedPolicy policy,Lifetime lifetime,int virtual_register)222   UnallocatedOperand(ExtendedPolicy policy, Lifetime lifetime,
223                      int virtual_register)
224       : UnallocatedOperand(virtual_register) {
225     value_ |= BasicPolicyField::encode(EXTENDED_POLICY);
226     value_ |= ExtendedPolicyField::encode(policy);
227     value_ |= LifetimeField::encode(lifetime);
228   }
229 
UnallocatedOperand(int reg_id,int slot_id,int virtual_register)230   UnallocatedOperand(int reg_id, int slot_id, int virtual_register)
231       : UnallocatedOperand(FIXED_REGISTER, reg_id, virtual_register) {
232     value_ |= HasSecondaryStorageField::encode(true);
233     value_ |= SecondaryStorageField::encode(slot_id);
234   }
235 
236   // Predicates for the operand policy.
HasAnyPolicy()237   bool HasAnyPolicy() const {
238     return basic_policy() == EXTENDED_POLICY && extended_policy() == ANY;
239   }
HasFixedPolicy()240   bool HasFixedPolicy() const {
241     return basic_policy() == FIXED_SLOT ||
242            extended_policy() == FIXED_REGISTER ||
243            extended_policy() == FIXED_FP_REGISTER;
244   }
HasRegisterPolicy()245   bool HasRegisterPolicy() const {
246     return basic_policy() == EXTENDED_POLICY &&
247            extended_policy() == MUST_HAVE_REGISTER;
248   }
HasSlotPolicy()249   bool HasSlotPolicy() const {
250     return basic_policy() == EXTENDED_POLICY &&
251            extended_policy() == MUST_HAVE_SLOT;
252   }
HasSameAsInputPolicy()253   bool HasSameAsInputPolicy() const {
254     return basic_policy() == EXTENDED_POLICY &&
255            extended_policy() == SAME_AS_FIRST_INPUT;
256   }
HasFixedSlotPolicy()257   bool HasFixedSlotPolicy() const { return basic_policy() == FIXED_SLOT; }
HasFixedRegisterPolicy()258   bool HasFixedRegisterPolicy() const {
259     return basic_policy() == EXTENDED_POLICY &&
260            extended_policy() == FIXED_REGISTER;
261   }
HasFixedFPRegisterPolicy()262   bool HasFixedFPRegisterPolicy() const {
263     return basic_policy() == EXTENDED_POLICY &&
264            extended_policy() == FIXED_FP_REGISTER;
265   }
HasSecondaryStorage()266   bool HasSecondaryStorage() const {
267     return basic_policy() == EXTENDED_POLICY &&
268            extended_policy() == FIXED_REGISTER &&
269            HasSecondaryStorageField::decode(value_);
270   }
GetSecondaryStorage()271   int GetSecondaryStorage() const {
272     DCHECK(HasSecondaryStorage());
273     return SecondaryStorageField::decode(value_);
274   }
275 
276   // [basic_policy]: Distinguish between FIXED_SLOT and all other policies.
basic_policy()277   BasicPolicy basic_policy() const {
278     DCHECK_EQ(UNALLOCATED, kind());
279     return BasicPolicyField::decode(value_);
280   }
281 
282   // [extended_policy]: Only for non-FIXED_SLOT. The finer-grained policy.
extended_policy()283   ExtendedPolicy extended_policy() const {
284     DCHECK(basic_policy() == EXTENDED_POLICY);
285     return ExtendedPolicyField::decode(value_);
286   }
287 
288   // [fixed_slot_index]: Only for FIXED_SLOT.
fixed_slot_index()289   int fixed_slot_index() const {
290     DCHECK(HasFixedSlotPolicy());
291     return static_cast<int>(static_cast<int64_t>(value_) >>
292                             FixedSlotIndexField::kShift);
293   }
294 
295   // [fixed_register_index]: Only for FIXED_REGISTER or FIXED_FP_REGISTER.
fixed_register_index()296   int fixed_register_index() const {
297     DCHECK(HasFixedRegisterPolicy() || HasFixedFPRegisterPolicy());
298     return FixedRegisterField::decode(value_);
299   }
300 
301   // [virtual_register]: The virtual register ID for this operand.
virtual_register()302   int32_t virtual_register() const {
303     DCHECK_EQ(UNALLOCATED, kind());
304     return static_cast<int32_t>(VirtualRegisterField::decode(value_));
305   }
306 
307   // TODO(dcarney): remove this.
set_virtual_register(int32_t id)308   void set_virtual_register(int32_t id) {
309     DCHECK_EQ(UNALLOCATED, kind());
310     value_ = VirtualRegisterField::update(value_, static_cast<uint32_t>(id));
311   }
312 
313   // [lifetime]: Only for non-FIXED_SLOT.
IsUsedAtStart()314   bool IsUsedAtStart() const {
315     DCHECK(basic_policy() == EXTENDED_POLICY);
316     return LifetimeField::decode(value_) == USED_AT_START;
317   }
318 
319   INSTRUCTION_OPERAND_CASTS(UnallocatedOperand, UNALLOCATED);
320 
321   // The encoding used for UnallocatedOperand operands depends on the policy
322   // that is
323   // stored within the operand. The FIXED_SLOT policy uses a compact encoding
324   // because it accommodates a larger pay-load.
325   //
326   // For FIXED_SLOT policy:
327   //     +------------------------------------------------+
328   //     |      slot_index   | 0 | virtual_register | 001 |
329   //     +------------------------------------------------+
330   //
331   // For all other (extended) policies:
332   //     +-----------------------------------------------------+
333   //     |  reg_index  | L | PPP |  1 | virtual_register | 001 |
334   //     +-----------------------------------------------------+
335   //     L ... Lifetime
336   //     P ... Policy
337   //
338   // The slot index is a signed value which requires us to decode it manually
339   // instead of using the BitField utility class.
340 
341   STATIC_ASSERT(KindField::kSize == 3);
342 
343   class VirtualRegisterField : public BitField64<uint32_t, 3, 32> {};
344 
345   // BitFields for all unallocated operands.
346   class BasicPolicyField : public BitField64<BasicPolicy, 35, 1> {};
347 
348   // BitFields specific to BasicPolicy::FIXED_SLOT.
349   class FixedSlotIndexField : public BitField64<int, 36, 28> {};
350 
351   // BitFields specific to BasicPolicy::EXTENDED_POLICY.
352   class ExtendedPolicyField : public BitField64<ExtendedPolicy, 36, 3> {};
353   class LifetimeField : public BitField64<Lifetime, 39, 1> {};
354   class HasSecondaryStorageField : public BitField64<bool, 40, 1> {};
355   class FixedRegisterField : public BitField64<int, 41, 6> {};
356   class SecondaryStorageField : public BitField64<int, 47, 3> {};
357 
358  private:
UnallocatedOperand(int virtual_register)359   explicit UnallocatedOperand(int virtual_register)
360       : InstructionOperand(UNALLOCATED) {
361     value_ |=
362         VirtualRegisterField::encode(static_cast<uint32_t>(virtual_register));
363   }
364 };
365 
366 
367 class ConstantOperand : public InstructionOperand {
368  public:
ConstantOperand(int virtual_register)369   explicit ConstantOperand(int virtual_register)
370       : InstructionOperand(CONSTANT) {
371     value_ |=
372         VirtualRegisterField::encode(static_cast<uint32_t>(virtual_register));
373   }
374 
virtual_register()375   int32_t virtual_register() const {
376     return static_cast<int32_t>(VirtualRegisterField::decode(value_));
377   }
378 
New(Zone * zone,int virtual_register)379   static ConstantOperand* New(Zone* zone, int virtual_register) {
380     return InstructionOperand::New(zone, ConstantOperand(virtual_register));
381   }
382 
383   INSTRUCTION_OPERAND_CASTS(ConstantOperand, CONSTANT);
384 
385   STATIC_ASSERT(KindField::kSize == 3);
386   class VirtualRegisterField : public BitField64<uint32_t, 3, 32> {};
387 };
388 
389 
390 class ImmediateOperand : public InstructionOperand {
391  public:
392   enum ImmediateType { INLINE, INDEXED };
393 
ImmediateOperand(ImmediateType type,int32_t value)394   explicit ImmediateOperand(ImmediateType type, int32_t value)
395       : InstructionOperand(IMMEDIATE) {
396     value_ |= TypeField::encode(type);
397     value_ |= static_cast<int64_t>(value) << ValueField::kShift;
398   }
399 
type()400   ImmediateType type() const { return TypeField::decode(value_); }
401 
inline_value()402   int32_t inline_value() const {
403     DCHECK_EQ(INLINE, type());
404     return static_cast<int64_t>(value_) >> ValueField::kShift;
405   }
406 
indexed_value()407   int32_t indexed_value() const {
408     DCHECK_EQ(INDEXED, type());
409     return static_cast<int64_t>(value_) >> ValueField::kShift;
410   }
411 
New(Zone * zone,ImmediateType type,int32_t value)412   static ImmediateOperand* New(Zone* zone, ImmediateType type, int32_t value) {
413     return InstructionOperand::New(zone, ImmediateOperand(type, value));
414   }
415 
416   INSTRUCTION_OPERAND_CASTS(ImmediateOperand, IMMEDIATE);
417 
418   STATIC_ASSERT(KindField::kSize == 3);
419   class TypeField : public BitField64<ImmediateType, 3, 1> {};
420   class ValueField : public BitField64<int32_t, 32, 32> {};
421 };
422 
423 
424 class LocationOperand : public InstructionOperand {
425  public:
426   enum LocationKind { REGISTER, STACK_SLOT };
427 
LocationOperand(InstructionOperand::Kind operand_kind,LocationOperand::LocationKind location_kind,MachineRepresentation rep,int index)428   LocationOperand(InstructionOperand::Kind operand_kind,
429                   LocationOperand::LocationKind location_kind,
430                   MachineRepresentation rep, int index)
431       : InstructionOperand(operand_kind) {
432     DCHECK_IMPLIES(location_kind == REGISTER, index >= 0);
433     DCHECK(IsSupportedRepresentation(rep));
434     value_ |= LocationKindField::encode(location_kind);
435     value_ |= RepresentationField::encode(rep);
436     value_ |= static_cast<int64_t>(index) << IndexField::kShift;
437   }
438 
index()439   int index() const {
440     DCHECK(IsStackSlot() || IsFPStackSlot());
441     return static_cast<int64_t>(value_) >> IndexField::kShift;
442   }
443 
register_code()444   int register_code() const {
445     DCHECK(IsRegister() || IsFPRegister());
446     return static_cast<int64_t>(value_) >> IndexField::kShift;
447   }
448 
GetRegister()449   Register GetRegister() const {
450     DCHECK(IsRegister());
451     return Register::from_code(register_code());
452   }
453 
GetFloatRegister()454   FloatRegister GetFloatRegister() const {
455     DCHECK(IsFloatRegister());
456     return FloatRegister::from_code(register_code());
457   }
458 
GetDoubleRegister()459   DoubleRegister GetDoubleRegister() const {
460     // On platforms where FloatRegister, DoubleRegister, and Simd128Register
461     // are all the same type, it's convenient to treat everything as a
462     // DoubleRegister, so be lax about type checking here.
463     DCHECK(IsFPRegister());
464     return DoubleRegister::from_code(register_code());
465   }
466 
GetSimd128Register()467   Simd128Register GetSimd128Register() const {
468     DCHECK(IsSimd128Register());
469     return Simd128Register::from_code(register_code());
470   }
471 
location_kind()472   LocationKind location_kind() const {
473     return LocationKindField::decode(value_);
474   }
475 
representation()476   MachineRepresentation representation() const {
477     return RepresentationField::decode(value_);
478   }
479 
IsSupportedRepresentation(MachineRepresentation rep)480   static bool IsSupportedRepresentation(MachineRepresentation rep) {
481     switch (rep) {
482       case MachineRepresentation::kWord32:
483       case MachineRepresentation::kWord64:
484       case MachineRepresentation::kFloat32:
485       case MachineRepresentation::kFloat64:
486       case MachineRepresentation::kSimd128:
487       case MachineRepresentation::kTaggedSigned:
488       case MachineRepresentation::kTaggedPointer:
489       case MachineRepresentation::kTagged:
490         return true;
491       case MachineRepresentation::kBit:
492       case MachineRepresentation::kWord8:
493       case MachineRepresentation::kWord16:
494       case MachineRepresentation::kNone:
495         return false;
496     }
497     UNREACHABLE();
498     return false;
499   }
500 
cast(InstructionOperand * op)501   static LocationOperand* cast(InstructionOperand* op) {
502     DCHECK(op->IsAnyLocationOperand());
503     return static_cast<LocationOperand*>(op);
504   }
505 
cast(const InstructionOperand * op)506   static const LocationOperand* cast(const InstructionOperand* op) {
507     DCHECK(op->IsAnyLocationOperand());
508     return static_cast<const LocationOperand*>(op);
509   }
510 
cast(const InstructionOperand & op)511   static LocationOperand cast(const InstructionOperand& op) {
512     DCHECK(op.IsAnyLocationOperand());
513     return *static_cast<const LocationOperand*>(&op);
514   }
515 
516   STATIC_ASSERT(KindField::kSize == 3);
517   class LocationKindField : public BitField64<LocationKind, 3, 2> {};
518   class RepresentationField : public BitField64<MachineRepresentation, 5, 8> {};
519   class IndexField : public BitField64<int32_t, 35, 29> {};
520 };
521 
522 class V8_EXPORT_PRIVATE ExplicitOperand
NON_EXPORTED_BASE(LocationOperand)523     : public NON_EXPORTED_BASE(LocationOperand) {
524  public:
525   ExplicitOperand(LocationKind kind, MachineRepresentation rep, int index);
526 
527   static ExplicitOperand* New(Zone* zone, LocationKind kind,
528                               MachineRepresentation rep, int index) {
529     return InstructionOperand::New(zone, ExplicitOperand(kind, rep, index));
530   }
531 
532   INSTRUCTION_OPERAND_CASTS(ExplicitOperand, EXPLICIT);
533 };
534 
535 
536 class AllocatedOperand : public LocationOperand {
537  public:
AllocatedOperand(LocationKind kind,MachineRepresentation rep,int index)538   AllocatedOperand(LocationKind kind, MachineRepresentation rep, int index)
539       : LocationOperand(ALLOCATED, kind, rep, index) {}
540 
New(Zone * zone,LocationKind kind,MachineRepresentation rep,int index)541   static AllocatedOperand* New(Zone* zone, LocationKind kind,
542                                MachineRepresentation rep, int index) {
543     return InstructionOperand::New(zone, AllocatedOperand(kind, rep, index));
544   }
545 
546   INSTRUCTION_OPERAND_CASTS(AllocatedOperand, ALLOCATED);
547 };
548 
549 
550 #undef INSTRUCTION_OPERAND_CASTS
551 
IsAnyLocationOperand()552 bool InstructionOperand::IsAnyLocationOperand() const {
553   return this->kind() >= FIRST_LOCATION_OPERAND_KIND;
554 }
555 
IsLocationOperand()556 bool InstructionOperand::IsLocationOperand() const {
557   return IsAnyLocationOperand() &&
558          !IsFloatingPoint(LocationOperand::cast(this)->representation());
559 }
560 
IsFPLocationOperand()561 bool InstructionOperand::IsFPLocationOperand() const {
562   return IsAnyLocationOperand() &&
563          IsFloatingPoint(LocationOperand::cast(this)->representation());
564 }
565 
IsAnyRegister()566 bool InstructionOperand::IsAnyRegister() const {
567   return IsAnyLocationOperand() &&
568          LocationOperand::cast(this)->location_kind() ==
569              LocationOperand::REGISTER;
570 }
571 
572 
IsRegister()573 bool InstructionOperand::IsRegister() const {
574   return IsAnyRegister() &&
575          !IsFloatingPoint(LocationOperand::cast(this)->representation());
576 }
577 
IsFPRegister()578 bool InstructionOperand::IsFPRegister() const {
579   return IsAnyRegister() &&
580          IsFloatingPoint(LocationOperand::cast(this)->representation());
581 }
582 
IsFloatRegister()583 bool InstructionOperand::IsFloatRegister() const {
584   return IsAnyRegister() &&
585          LocationOperand::cast(this)->representation() ==
586              MachineRepresentation::kFloat32;
587 }
588 
IsDoubleRegister()589 bool InstructionOperand::IsDoubleRegister() const {
590   return IsAnyRegister() &&
591          LocationOperand::cast(this)->representation() ==
592              MachineRepresentation::kFloat64;
593 }
594 
IsSimd128Register()595 bool InstructionOperand::IsSimd128Register() const {
596   return IsAnyRegister() &&
597          LocationOperand::cast(this)->representation() ==
598              MachineRepresentation::kSimd128;
599 }
600 
IsAnyStackSlot()601 bool InstructionOperand::IsAnyStackSlot() const {
602   return IsAnyLocationOperand() &&
603          LocationOperand::cast(this)->location_kind() ==
604              LocationOperand::STACK_SLOT;
605 }
606 
IsStackSlot()607 bool InstructionOperand::IsStackSlot() const {
608   return IsAnyStackSlot() &&
609          !IsFloatingPoint(LocationOperand::cast(this)->representation());
610 }
611 
IsFPStackSlot()612 bool InstructionOperand::IsFPStackSlot() const {
613   return IsAnyStackSlot() &&
614          IsFloatingPoint(LocationOperand::cast(this)->representation());
615 }
616 
IsFloatStackSlot()617 bool InstructionOperand::IsFloatStackSlot() const {
618   return IsAnyLocationOperand() &&
619          LocationOperand::cast(this)->location_kind() ==
620              LocationOperand::STACK_SLOT &&
621          LocationOperand::cast(this)->representation() ==
622              MachineRepresentation::kFloat32;
623 }
624 
IsDoubleStackSlot()625 bool InstructionOperand::IsDoubleStackSlot() const {
626   return IsAnyLocationOperand() &&
627          LocationOperand::cast(this)->location_kind() ==
628              LocationOperand::STACK_SLOT &&
629          LocationOperand::cast(this)->representation() ==
630              MachineRepresentation::kFloat64;
631 }
632 
IsSimd128StackSlot()633 bool InstructionOperand::IsSimd128StackSlot() const {
634   return IsAnyLocationOperand() &&
635          LocationOperand::cast(this)->location_kind() ==
636              LocationOperand::STACK_SLOT &&
637          LocationOperand::cast(this)->representation() ==
638              MachineRepresentation::kSimd128;
639 }
640 
GetCanonicalizedValue()641 uint64_t InstructionOperand::GetCanonicalizedValue() const {
642   if (IsAnyLocationOperand()) {
643     MachineRepresentation canonical = MachineRepresentation::kNone;
644     if (IsFPRegister()) {
645       if (kSimpleFPAliasing) {
646         // We treat all FP register operands the same for simple aliasing.
647         canonical = MachineRepresentation::kFloat64;
648       } else {
649         // We need to distinguish FP register operands of different reps when
650         // aliasing is not simple (e.g. ARM).
651         canonical = LocationOperand::cast(this)->representation();
652       }
653     }
654     return InstructionOperand::KindField::update(
655         LocationOperand::RepresentationField::update(this->value_, canonical),
656         LocationOperand::EXPLICIT);
657   }
658   return this->value_;
659 }
660 
661 // Required for maps that don't care about machine type.
662 struct CompareOperandModuloType {
operatorCompareOperandModuloType663   bool operator()(const InstructionOperand& a,
664                   const InstructionOperand& b) const {
665     return a.CompareCanonicalized(b);
666   }
667 };
668 
669 class V8_EXPORT_PRIVATE MoveOperands final
NON_EXPORTED_BASE(ZoneObject)670     : public NON_EXPORTED_BASE(ZoneObject) {
671  public:
672   MoveOperands(const InstructionOperand& source,
673                const InstructionOperand& destination)
674       : source_(source), destination_(destination) {
675     DCHECK(!source.IsInvalid() && !destination.IsInvalid());
676   }
677 
678   const InstructionOperand& source() const { return source_; }
679   InstructionOperand& source() { return source_; }
680   void set_source(const InstructionOperand& operand) { source_ = operand; }
681 
682   const InstructionOperand& destination() const { return destination_; }
683   InstructionOperand& destination() { return destination_; }
684   void set_destination(const InstructionOperand& operand) {
685     destination_ = operand;
686   }
687 
688   // The gap resolver marks moves as "in-progress" by clearing the
689   // destination (but not the source).
690   bool IsPending() const {
691     return destination_.IsInvalid() && !source_.IsInvalid();
692   }
693   void SetPending() { destination_ = InstructionOperand(); }
694 
695   // A move is redundant if it's been eliminated or if its source and
696   // destination are the same.
697   bool IsRedundant() const {
698     DCHECK_IMPLIES(!destination_.IsInvalid(), !destination_.IsConstant());
699     return IsEliminated() || source_.EqualsCanonicalized(destination_);
700   }
701 
702   // We clear both operands to indicate move that's been eliminated.
703   void Eliminate() { source_ = destination_ = InstructionOperand(); }
704   bool IsEliminated() const {
705     DCHECK_IMPLIES(source_.IsInvalid(), destination_.IsInvalid());
706     return source_.IsInvalid();
707   }
708 
709   // APIs to aid debugging. For general-stream APIs, use operator<<
710   void Print(const RegisterConfiguration* config) const;
711   void Print() const;
712 
713  private:
714   InstructionOperand source_;
715   InstructionOperand destination_;
716 
717   DISALLOW_COPY_AND_ASSIGN(MoveOperands);
718 };
719 
720 
721 struct PrintableMoveOperands {
722   const RegisterConfiguration* register_configuration_;
723   const MoveOperands* move_operands_;
724 };
725 
726 
727 std::ostream& operator<<(std::ostream& os, const PrintableMoveOperands& mo);
728 
729 class V8_EXPORT_PRIVATE ParallelMove final
NON_EXPORTED_BASE(ZoneVector<MoveOperands * >)730     : public NON_EXPORTED_BASE(ZoneVector<MoveOperands *>),
731       public NON_EXPORTED_BASE(ZoneObject) {
732  public:
733   explicit ParallelMove(Zone* zone) : ZoneVector<MoveOperands*>(zone) {
734     reserve(4);
735   }
736 
737   MoveOperands* AddMove(const InstructionOperand& from,
738                         const InstructionOperand& to) {
739     Zone* zone = get_allocator().zone();
740     return AddMove(from, to, zone);
741   }
742 
743   MoveOperands* AddMove(const InstructionOperand& from,
744                         const InstructionOperand& to,
745                         Zone* operand_allocation_zone) {
746     MoveOperands* move = new (operand_allocation_zone) MoveOperands(from, to);
747     push_back(move);
748     return move;
749   }
750 
751   bool IsRedundant() const;
752 
753   // Prepare this ParallelMove to insert move as if it happened in a subsequent
754   // ParallelMove.  move->source() may be changed.  Any MoveOperands added to
755   // to_eliminate must be Eliminated.
756   void PrepareInsertAfter(MoveOperands* move,
757                           ZoneVector<MoveOperands*>* to_eliminate) const;
758 
759  private:
760   DISALLOW_COPY_AND_ASSIGN(ParallelMove);
761 };
762 
763 
764 struct PrintableParallelMove {
765   const RegisterConfiguration* register_configuration_;
766   const ParallelMove* parallel_move_;
767 };
768 
769 
770 std::ostream& operator<<(std::ostream& os, const PrintableParallelMove& pm);
771 
772 
773 class ReferenceMap final : public ZoneObject {
774  public:
ReferenceMap(Zone * zone)775   explicit ReferenceMap(Zone* zone)
776       : reference_operands_(8, zone), instruction_position_(-1) {}
777 
reference_operands()778   const ZoneVector<InstructionOperand>& reference_operands() const {
779     return reference_operands_;
780   }
instruction_position()781   int instruction_position() const { return instruction_position_; }
782 
set_instruction_position(int pos)783   void set_instruction_position(int pos) {
784     DCHECK(instruction_position_ == -1);
785     instruction_position_ = pos;
786   }
787 
788   void RecordReference(const AllocatedOperand& op);
789 
790  private:
791   friend std::ostream& operator<<(std::ostream& os, const ReferenceMap& pm);
792 
793   ZoneVector<InstructionOperand> reference_operands_;
794   int instruction_position_;
795 };
796 
797 std::ostream& operator<<(std::ostream& os, const ReferenceMap& pm);
798 
799 class InstructionBlock;
800 
801 class V8_EXPORT_PRIVATE Instruction final {
802  public:
OutputCount()803   size_t OutputCount() const { return OutputCountField::decode(bit_field_); }
OutputAt(size_t i)804   const InstructionOperand* OutputAt(size_t i) const {
805     DCHECK(i < OutputCount());
806     return &operands_[i];
807   }
OutputAt(size_t i)808   InstructionOperand* OutputAt(size_t i) {
809     DCHECK(i < OutputCount());
810     return &operands_[i];
811   }
812 
HasOutput()813   bool HasOutput() const { return OutputCount() == 1; }
Output()814   const InstructionOperand* Output() const { return OutputAt(0); }
Output()815   InstructionOperand* Output() { return OutputAt(0); }
816 
InputCount()817   size_t InputCount() const { return InputCountField::decode(bit_field_); }
InputAt(size_t i)818   const InstructionOperand* InputAt(size_t i) const {
819     DCHECK(i < InputCount());
820     return &operands_[OutputCount() + i];
821   }
InputAt(size_t i)822   InstructionOperand* InputAt(size_t i) {
823     DCHECK(i < InputCount());
824     return &operands_[OutputCount() + i];
825   }
826 
TempCount()827   size_t TempCount() const { return TempCountField::decode(bit_field_); }
TempAt(size_t i)828   const InstructionOperand* TempAt(size_t i) const {
829     DCHECK(i < TempCount());
830     return &operands_[OutputCount() + InputCount() + i];
831   }
TempAt(size_t i)832   InstructionOperand* TempAt(size_t i) {
833     DCHECK(i < TempCount());
834     return &operands_[OutputCount() + InputCount() + i];
835   }
836 
opcode()837   InstructionCode opcode() const { return opcode_; }
arch_opcode()838   ArchOpcode arch_opcode() const { return ArchOpcodeField::decode(opcode()); }
addressing_mode()839   AddressingMode addressing_mode() const {
840     return AddressingModeField::decode(opcode());
841   }
flags_mode()842   FlagsMode flags_mode() const { return FlagsModeField::decode(opcode()); }
flags_condition()843   FlagsCondition flags_condition() const {
844     return FlagsConditionField::decode(opcode());
845   }
846 
New(Zone * zone,InstructionCode opcode)847   static Instruction* New(Zone* zone, InstructionCode opcode) {
848     return New(zone, opcode, 0, nullptr, 0, nullptr, 0, nullptr);
849   }
850 
New(Zone * zone,InstructionCode opcode,size_t output_count,InstructionOperand * outputs,size_t input_count,InstructionOperand * inputs,size_t temp_count,InstructionOperand * temps)851   static Instruction* New(Zone* zone, InstructionCode opcode,
852                           size_t output_count, InstructionOperand* outputs,
853                           size_t input_count, InstructionOperand* inputs,
854                           size_t temp_count, InstructionOperand* temps) {
855     DCHECK(opcode >= 0);
856     DCHECK(output_count == 0 || outputs != nullptr);
857     DCHECK(input_count == 0 || inputs != nullptr);
858     DCHECK(temp_count == 0 || temps != nullptr);
859     // TODO(jarin/mstarzinger): Handle this gracefully. See crbug.com/582702.
860     CHECK(InputCountField::is_valid(input_count));
861 
862     size_t total_extra_ops = output_count + input_count + temp_count;
863     if (total_extra_ops != 0) total_extra_ops--;
864     int size = static_cast<int>(
865         RoundUp(sizeof(Instruction), sizeof(InstructionOperand)) +
866         total_extra_ops * sizeof(InstructionOperand));
867     return new (zone->New(size)) Instruction(
868         opcode, output_count, outputs, input_count, inputs, temp_count, temps);
869   }
870 
MarkAsCall()871   Instruction* MarkAsCall() {
872     bit_field_ = IsCallField::update(bit_field_, true);
873     return this;
874   }
IsCall()875   bool IsCall() const { return IsCallField::decode(bit_field_); }
NeedsReferenceMap()876   bool NeedsReferenceMap() const { return IsCall(); }
HasReferenceMap()877   bool HasReferenceMap() const { return reference_map_ != nullptr; }
878 
ClobbersRegisters()879   bool ClobbersRegisters() const { return IsCall(); }
ClobbersTemps()880   bool ClobbersTemps() const { return IsCall(); }
ClobbersDoubleRegisters()881   bool ClobbersDoubleRegisters() const { return IsCall(); }
reference_map()882   ReferenceMap* reference_map() const { return reference_map_; }
883 
set_reference_map(ReferenceMap * map)884   void set_reference_map(ReferenceMap* map) {
885     DCHECK(NeedsReferenceMap());
886     DCHECK(!reference_map_);
887     reference_map_ = map;
888   }
889 
OverwriteWithNop()890   void OverwriteWithNop() {
891     opcode_ = ArchOpcodeField::encode(kArchNop);
892     bit_field_ = 0;
893     reference_map_ = nullptr;
894   }
895 
IsNop()896   bool IsNop() const { return arch_opcode() == kArchNop; }
897 
IsDeoptimizeCall()898   bool IsDeoptimizeCall() const {
899     return arch_opcode() == ArchOpcode::kArchDeoptimize ||
900            FlagsModeField::decode(opcode()) == kFlags_deoptimize;
901   }
902 
IsJump()903   bool IsJump() const { return arch_opcode() == ArchOpcode::kArchJmp; }
IsRet()904   bool IsRet() const { return arch_opcode() == ArchOpcode::kArchRet; }
IsTailCall()905   bool IsTailCall() const {
906     return arch_opcode() == ArchOpcode::kArchTailCallCodeObject ||
907            arch_opcode() == ArchOpcode::kArchTailCallCodeObjectFromJSFunction ||
908            arch_opcode() == ArchOpcode::kArchTailCallJSFunctionFromJSFunction ||
909            arch_opcode() == ArchOpcode::kArchTailCallAddress;
910   }
IsThrow()911   bool IsThrow() const {
912     return arch_opcode() == ArchOpcode::kArchThrowTerminator;
913   }
914 
915   enum GapPosition {
916     START,
917     END,
918     FIRST_GAP_POSITION = START,
919     LAST_GAP_POSITION = END
920   };
921 
GetOrCreateParallelMove(GapPosition pos,Zone * zone)922   ParallelMove* GetOrCreateParallelMove(GapPosition pos, Zone* zone) {
923     if (parallel_moves_[pos] == nullptr) {
924       parallel_moves_[pos] = new (zone) ParallelMove(zone);
925     }
926     return parallel_moves_[pos];
927   }
928 
GetParallelMove(GapPosition pos)929   ParallelMove* GetParallelMove(GapPosition pos) {
930     return parallel_moves_[pos];
931   }
932 
GetParallelMove(GapPosition pos)933   const ParallelMove* GetParallelMove(GapPosition pos) const {
934     return parallel_moves_[pos];
935   }
936 
937   bool AreMovesRedundant() const;
938 
parallel_moves()939   ParallelMove* const* parallel_moves() const { return &parallel_moves_[0]; }
parallel_moves()940   ParallelMove** parallel_moves() { return &parallel_moves_[0]; }
941 
942   // The block_id may be invalidated in JumpThreading. It is only important for
943   // register allocation, to avoid searching for blocks from instruction
944   // indexes.
block()945   InstructionBlock* block() const { return block_; }
set_block(InstructionBlock * block)946   void set_block(InstructionBlock* block) {
947     DCHECK_NOT_NULL(block);
948     block_ = block;
949   }
950 
951   // APIs to aid debugging. For general-stream APIs, use operator<<
952   void Print(const RegisterConfiguration* config) const;
953   void Print() const;
954 
955   typedef BitField<size_t, 0, 8> OutputCountField;
956   typedef BitField<size_t, 8, 16> InputCountField;
957   typedef BitField<size_t, 24, 6> TempCountField;
958 
959   static const size_t kMaxOutputCount = OutputCountField::kMax;
960   static const size_t kMaxInputCount = InputCountField::kMax;
961   static const size_t kMaxTempCount = TempCountField::kMax;
962 
963  private:
964   explicit Instruction(InstructionCode opcode);
965 
966   Instruction(InstructionCode opcode, size_t output_count,
967               InstructionOperand* outputs, size_t input_count,
968               InstructionOperand* inputs, size_t temp_count,
969               InstructionOperand* temps);
970 
971   typedef BitField<bool, 30, 1> IsCallField;
972 
973   InstructionCode opcode_;
974   uint32_t bit_field_;
975   ParallelMove* parallel_moves_[2];
976   ReferenceMap* reference_map_;
977   InstructionBlock* block_;
978   InstructionOperand operands_[1];
979 
980   DISALLOW_COPY_AND_ASSIGN(Instruction);
981 };
982 
983 
984 struct PrintableInstruction {
985   const RegisterConfiguration* register_configuration_;
986   const Instruction* instr_;
987 };
988 std::ostream& operator<<(std::ostream& os, const PrintableInstruction& instr);
989 
990 
991 class RpoNumber final {
992  public:
993   static const int kInvalidRpoNumber = -1;
ToInt()994   int ToInt() const {
995     DCHECK(IsValid());
996     return index_;
997   }
ToSize()998   size_t ToSize() const {
999     DCHECK(IsValid());
1000     return static_cast<size_t>(index_);
1001   }
IsValid()1002   bool IsValid() const { return index_ >= 0; }
FromInt(int index)1003   static RpoNumber FromInt(int index) { return RpoNumber(index); }
Invalid()1004   static RpoNumber Invalid() { return RpoNumber(kInvalidRpoNumber); }
1005 
IsNext(const RpoNumber other)1006   bool IsNext(const RpoNumber other) const {
1007     DCHECK(IsValid());
1008     return other.index_ == this->index_ + 1;
1009   }
1010 
1011   // Comparison operators.
1012   bool operator==(RpoNumber other) const { return index_ == other.index_; }
1013   bool operator!=(RpoNumber other) const { return index_ != other.index_; }
1014   bool operator>(RpoNumber other) const { return index_ > other.index_; }
1015   bool operator<(RpoNumber other) const { return index_ < other.index_; }
1016   bool operator<=(RpoNumber other) const { return index_ <= other.index_; }
1017   bool operator>=(RpoNumber other) const { return index_ >= other.index_; }
1018 
1019  private:
RpoNumber(int32_t index)1020   explicit RpoNumber(int32_t index) : index_(index) {}
1021   int32_t index_;
1022 };
1023 
1024 
1025 std::ostream& operator<<(std::ostream&, const RpoNumber&);
1026 
1027 class V8_EXPORT_PRIVATE Constant final {
1028  public:
1029   enum Type {
1030     kInt32,
1031     kInt64,
1032     kFloat32,
1033     kFloat64,
1034     kExternalReference,
1035     kHeapObject,
1036     kRpoNumber
1037   };
1038 
1039   explicit Constant(int32_t v);
Constant(int64_t v)1040   explicit Constant(int64_t v) : type_(kInt64), value_(v) {}
Constant(float v)1041   explicit Constant(float v) : type_(kFloat32), value_(bit_cast<int32_t>(v)) {}
Constant(double v)1042   explicit Constant(double v) : type_(kFloat64), value_(bit_cast<int64_t>(v)) {}
Constant(ExternalReference ref)1043   explicit Constant(ExternalReference ref)
1044       : type_(kExternalReference), value_(bit_cast<intptr_t>(ref)) {}
Constant(Handle<HeapObject> obj)1045   explicit Constant(Handle<HeapObject> obj)
1046       : type_(kHeapObject), value_(bit_cast<intptr_t>(obj)) {}
Constant(RpoNumber rpo)1047   explicit Constant(RpoNumber rpo) : type_(kRpoNumber), value_(rpo.ToInt()) {}
1048   explicit Constant(RelocatablePtrConstantInfo info);
1049 
type()1050   Type type() const { return type_; }
1051 
rmode()1052   RelocInfo::Mode rmode() const { return rmode_; }
1053 
ToInt32()1054   int32_t ToInt32() const {
1055     DCHECK(type() == kInt32 || type() == kInt64);
1056     const int32_t value = static_cast<int32_t>(value_);
1057     DCHECK_EQ(value_, static_cast<int64_t>(value));
1058     return value;
1059   }
1060 
ToInt64()1061   int64_t ToInt64() const {
1062     if (type() == kInt32) return ToInt32();
1063     DCHECK_EQ(kInt64, type());
1064     return value_;
1065   }
1066 
ToFloat32()1067   float ToFloat32() const {
1068     DCHECK_EQ(kFloat32, type());
1069     return bit_cast<float>(static_cast<int32_t>(value_));
1070   }
1071 
ToFloat64()1072   double ToFloat64() const {
1073     if (type() == kInt32) return ToInt32();
1074     DCHECK_EQ(kFloat64, type());
1075     return bit_cast<double>(value_);
1076   }
1077 
ToExternalReference()1078   ExternalReference ToExternalReference() const {
1079     DCHECK_EQ(kExternalReference, type());
1080     return bit_cast<ExternalReference>(static_cast<intptr_t>(value_));
1081   }
1082 
ToRpoNumber()1083   RpoNumber ToRpoNumber() const {
1084     DCHECK_EQ(kRpoNumber, type());
1085     return RpoNumber::FromInt(static_cast<int>(value_));
1086   }
1087 
1088   Handle<HeapObject> ToHeapObject() const;
1089 
1090  private:
1091   Type type_;
1092   int64_t value_;
1093 #if V8_TARGET_ARCH_32_BIT
1094   RelocInfo::Mode rmode_ = RelocInfo::NONE32;
1095 #else
1096   RelocInfo::Mode rmode_ = RelocInfo::NONE64;
1097 #endif
1098 };
1099 
1100 
1101 std::ostream& operator<<(std::ostream& os, const Constant& constant);
1102 
1103 
1104 // Forward declarations.
1105 class FrameStateDescriptor;
1106 
1107 
1108 enum class StateValueKind { kPlain, kNested, kDuplicate };
1109 
1110 
1111 class StateValueDescriptor {
1112  public:
StateValueDescriptor(Zone * zone)1113   explicit StateValueDescriptor(Zone* zone)
1114       : kind_(StateValueKind::kPlain),
1115         type_(MachineType::AnyTagged()),
1116         id_(0),
1117         fields_(zone) {}
1118 
Plain(Zone * zone,MachineType type)1119   static StateValueDescriptor Plain(Zone* zone, MachineType type) {
1120     return StateValueDescriptor(StateValueKind::kPlain, zone, type, 0);
1121   }
Recursive(Zone * zone,size_t id)1122   static StateValueDescriptor Recursive(Zone* zone, size_t id) {
1123     return StateValueDescriptor(StateValueKind::kNested, zone,
1124                                 MachineType::AnyTagged(), id);
1125   }
Duplicate(Zone * zone,size_t id)1126   static StateValueDescriptor Duplicate(Zone* zone, size_t id) {
1127     return StateValueDescriptor(StateValueKind::kDuplicate, zone,
1128                                 MachineType::AnyTagged(), id);
1129   }
1130 
size()1131   size_t size() { return fields_.size(); }
fields()1132   ZoneVector<StateValueDescriptor>& fields() { return fields_; }
IsPlain()1133   int IsPlain() { return kind_ == StateValueKind::kPlain; }
IsNested()1134   int IsNested() { return kind_ == StateValueKind::kNested; }
IsDuplicate()1135   int IsDuplicate() { return kind_ == StateValueKind::kDuplicate; }
type()1136   MachineType type() const { return type_; }
GetOperandType(size_t index)1137   MachineType GetOperandType(size_t index) const {
1138     return fields_[index].type_;
1139   }
id()1140   size_t id() const { return id_; }
1141 
1142  private:
StateValueDescriptor(StateValueKind kind,Zone * zone,MachineType type,size_t id)1143   StateValueDescriptor(StateValueKind kind, Zone* zone, MachineType type,
1144                        size_t id)
1145       : kind_(kind), type_(type), id_(id), fields_(zone) {}
1146 
1147   StateValueKind kind_;
1148   MachineType type_;
1149   size_t id_;
1150   ZoneVector<StateValueDescriptor> fields_;
1151 };
1152 
1153 
1154 class FrameStateDescriptor : public ZoneObject {
1155  public:
1156   FrameStateDescriptor(Zone* zone, FrameStateType type, BailoutId bailout_id,
1157                        OutputFrameStateCombine state_combine,
1158                        size_t parameters_count, size_t locals_count,
1159                        size_t stack_count,
1160                        MaybeHandle<SharedFunctionInfo> shared_info,
1161                        FrameStateDescriptor* outer_state = nullptr);
1162 
type()1163   FrameStateType type() const { return type_; }
bailout_id()1164   BailoutId bailout_id() const { return bailout_id_; }
state_combine()1165   OutputFrameStateCombine state_combine() const { return frame_state_combine_; }
parameters_count()1166   size_t parameters_count() const { return parameters_count_; }
locals_count()1167   size_t locals_count() const { return locals_count_; }
stack_count()1168   size_t stack_count() const { return stack_count_; }
shared_info()1169   MaybeHandle<SharedFunctionInfo> shared_info() const { return shared_info_; }
outer_state()1170   FrameStateDescriptor* outer_state() const { return outer_state_; }
HasContext()1171   bool HasContext() const {
1172     return FrameStateFunctionInfo::IsJSFunctionType(type_);
1173   }
1174 
1175   size_t GetSize(OutputFrameStateCombine combine =
1176                      OutputFrameStateCombine::Ignore()) const;
1177   size_t GetTotalSize() const;
1178   size_t GetFrameCount() const;
1179   size_t GetJSFrameCount() const;
1180 
GetType(size_t index)1181   MachineType GetType(size_t index) const {
1182     return values_.GetOperandType(index);
1183   }
GetStateValueDescriptor()1184   StateValueDescriptor* GetStateValueDescriptor() { return &values_; }
1185 
1186   static const int kImpossibleValue = 0xdead;
1187 
1188  private:
1189   FrameStateType type_;
1190   BailoutId bailout_id_;
1191   OutputFrameStateCombine frame_state_combine_;
1192   size_t parameters_count_;
1193   size_t locals_count_;
1194   size_t stack_count_;
1195   StateValueDescriptor values_;
1196   MaybeHandle<SharedFunctionInfo> const shared_info_;
1197   FrameStateDescriptor* outer_state_;
1198 };
1199 
1200 // A deoptimization entry is a pair of the reason why we deoptimize and the
1201 // frame state descriptor that we have to go back to.
1202 class DeoptimizationEntry final {
1203  public:
DeoptimizationEntry()1204   DeoptimizationEntry() {}
DeoptimizationEntry(FrameStateDescriptor * descriptor,DeoptimizeReason reason)1205   DeoptimizationEntry(FrameStateDescriptor* descriptor, DeoptimizeReason reason)
1206       : descriptor_(descriptor), reason_(reason) {}
1207 
descriptor()1208   FrameStateDescriptor* descriptor() const { return descriptor_; }
reason()1209   DeoptimizeReason reason() const { return reason_; }
1210 
1211  private:
1212   FrameStateDescriptor* descriptor_ = nullptr;
1213   DeoptimizeReason reason_ = DeoptimizeReason::kNoReason;
1214 };
1215 
1216 typedef ZoneVector<DeoptimizationEntry> DeoptimizationVector;
1217 
1218 class V8_EXPORT_PRIVATE PhiInstruction final
NON_EXPORTED_BASE(ZoneObject)1219     : public NON_EXPORTED_BASE(ZoneObject) {
1220  public:
1221   typedef ZoneVector<InstructionOperand> Inputs;
1222 
1223   PhiInstruction(Zone* zone, int virtual_register, size_t input_count);
1224 
1225   void SetInput(size_t offset, int virtual_register);
1226   void RenameInput(size_t offset, int virtual_register);
1227 
1228   int virtual_register() const { return virtual_register_; }
1229   const IntVector& operands() const { return operands_; }
1230 
1231   // TODO(dcarney): this has no real business being here, since it's internal to
1232   // the register allocator, but putting it here was convenient.
1233   const InstructionOperand& output() const { return output_; }
1234   InstructionOperand& output() { return output_; }
1235 
1236  private:
1237   const int virtual_register_;
1238   InstructionOperand output_;
1239   IntVector operands_;
1240 };
1241 
1242 
1243 // Analogue of BasicBlock for Instructions instead of Nodes.
1244 class V8_EXPORT_PRIVATE InstructionBlock final
NON_EXPORTED_BASE(ZoneObject)1245     : public NON_EXPORTED_BASE(ZoneObject) {
1246  public:
1247   InstructionBlock(Zone* zone, RpoNumber rpo_number, RpoNumber loop_header,
1248                    RpoNumber loop_end, bool deferred, bool handler);
1249 
1250   // Instruction indexes (used by the register allocator).
1251   int first_instruction_index() const {
1252     DCHECK(code_start_ >= 0);
1253     DCHECK(code_end_ > 0);
1254     DCHECK(code_end_ >= code_start_);
1255     return code_start_;
1256   }
1257   int last_instruction_index() const {
1258     DCHECK(code_start_ >= 0);
1259     DCHECK(code_end_ > 0);
1260     DCHECK(code_end_ >= code_start_);
1261     return code_end_ - 1;
1262   }
1263 
1264   int32_t code_start() const { return code_start_; }
1265   void set_code_start(int32_t start) { code_start_ = start; }
1266 
1267   int32_t code_end() const { return code_end_; }
1268   void set_code_end(int32_t end) { code_end_ = end; }
1269 
1270   bool IsDeferred() const { return deferred_; }
1271   bool IsHandler() const { return handler_; }
1272 
1273   RpoNumber ao_number() const { return ao_number_; }
1274   RpoNumber rpo_number() const { return rpo_number_; }
1275   RpoNumber loop_header() const { return loop_header_; }
1276   RpoNumber loop_end() const {
1277     DCHECK(IsLoopHeader());
1278     return loop_end_;
1279   }
1280   inline bool IsLoopHeader() const { return loop_end_.IsValid(); }
1281 
1282   typedef ZoneVector<RpoNumber> Predecessors;
1283   Predecessors& predecessors() { return predecessors_; }
1284   const Predecessors& predecessors() const { return predecessors_; }
1285   size_t PredecessorCount() const { return predecessors_.size(); }
1286   size_t PredecessorIndexOf(RpoNumber rpo_number) const;
1287 
1288   typedef ZoneVector<RpoNumber> Successors;
1289   Successors& successors() { return successors_; }
1290   const Successors& successors() const { return successors_; }
1291   size_t SuccessorCount() const { return successors_.size(); }
1292 
1293   typedef ZoneVector<PhiInstruction*> PhiInstructions;
1294   const PhiInstructions& phis() const { return phis_; }
1295   PhiInstruction* PhiAt(size_t i) const { return phis_[i]; }
1296   void AddPhi(PhiInstruction* phi) { phis_.push_back(phi); }
1297 
1298   void set_ao_number(RpoNumber ao_number) { ao_number_ = ao_number; }
1299 
1300   bool needs_frame() const { return needs_frame_; }
1301   void mark_needs_frame() { needs_frame_ = true; }
1302 
1303   bool must_construct_frame() const { return must_construct_frame_; }
1304   void mark_must_construct_frame() { must_construct_frame_ = true; }
1305 
1306   bool must_deconstruct_frame() const { return must_deconstruct_frame_; }
1307   void mark_must_deconstruct_frame() { must_deconstruct_frame_ = true; }
1308 
1309  private:
1310   Successors successors_;
1311   Predecessors predecessors_;
1312   PhiInstructions phis_;
1313   RpoNumber ao_number_;  // Assembly order number.
1314   const RpoNumber rpo_number_;
1315   const RpoNumber loop_header_;
1316   const RpoNumber loop_end_;
1317   int32_t code_start_;   // start index of arch-specific code.
1318   int32_t code_end_;     // end index of arch-specific code.
1319   const bool deferred_;  // Block contains deferred code.
1320   const bool handler_;   // Block is a handler entry point.
1321   bool needs_frame_;
1322   bool must_construct_frame_;
1323   bool must_deconstruct_frame_;
1324 };
1325 
1326 class InstructionSequence;
1327 
1328 struct PrintableInstructionBlock {
1329   const RegisterConfiguration* register_configuration_;
1330   const InstructionBlock* block_;
1331   const InstructionSequence* code_;
1332 };
1333 
1334 std::ostream& operator<<(std::ostream& os,
1335                          const PrintableInstructionBlock& printable_block);
1336 
1337 typedef ZoneDeque<Constant> ConstantDeque;
1338 typedef std::map<int, Constant, std::less<int>,
1339                  zone_allocator<std::pair<const int, Constant> > > ConstantMap;
1340 
1341 typedef ZoneDeque<Instruction*> InstructionDeque;
1342 typedef ZoneDeque<ReferenceMap*> ReferenceMapDeque;
1343 typedef ZoneVector<InstructionBlock*> InstructionBlocks;
1344 
1345 
1346 // Forward declarations.
1347 struct PrintableInstructionSequence;
1348 
1349 
1350 // Represents architecture-specific generated code before, during, and after
1351 // register allocation.
1352 class V8_EXPORT_PRIVATE InstructionSequence final
NON_EXPORTED_BASE(ZoneObject)1353     : public NON_EXPORTED_BASE(ZoneObject) {
1354  public:
1355   static InstructionBlocks* InstructionBlocksFor(Zone* zone,
1356                                                  const Schedule* schedule);
1357   // Puts the deferred blocks last.
1358   static void ComputeAssemblyOrder(InstructionBlocks* blocks);
1359 
1360   InstructionSequence(Isolate* isolate, Zone* zone,
1361                       InstructionBlocks* instruction_blocks);
1362 
1363   int NextVirtualRegister();
1364   int VirtualRegisterCount() const { return next_virtual_register_; }
1365 
1366   const InstructionBlocks& instruction_blocks() const {
1367     return *instruction_blocks_;
1368   }
1369 
1370   int InstructionBlockCount() const {
1371     return static_cast<int>(instruction_blocks_->size());
1372   }
1373 
1374   InstructionBlock* InstructionBlockAt(RpoNumber rpo_number) {
1375     return instruction_blocks_->at(rpo_number.ToSize());
1376   }
1377 
1378   int LastLoopInstructionIndex(const InstructionBlock* block) {
1379     return instruction_blocks_->at(block->loop_end().ToSize() - 1)
1380         ->last_instruction_index();
1381   }
1382 
1383   const InstructionBlock* InstructionBlockAt(RpoNumber rpo_number) const {
1384     return instruction_blocks_->at(rpo_number.ToSize());
1385   }
1386 
1387   InstructionBlock* GetInstructionBlock(int instruction_index) const;
1388 
1389   static MachineRepresentation DefaultRepresentation() {
1390     return MachineType::PointerRepresentation();
1391   }
1392   MachineRepresentation GetRepresentation(int virtual_register) const;
1393   void MarkAsRepresentation(MachineRepresentation rep, int virtual_register);
1394   int representation_mask() const { return representation_mask_; }
1395 
1396   bool IsReference(int virtual_register) const {
1397     return CanBeTaggedPointer(GetRepresentation(virtual_register));
1398   }
1399   bool IsFP(int virtual_register) const {
1400     return IsFloatingPoint(GetRepresentation(virtual_register));
1401   }
1402 
1403   Instruction* GetBlockStart(RpoNumber rpo) const;
1404 
1405   typedef InstructionDeque::const_iterator const_iterator;
1406   const_iterator begin() const { return instructions_.begin(); }
1407   const_iterator end() const { return instructions_.end(); }
1408   const InstructionDeque& instructions() const { return instructions_; }
1409   int LastInstructionIndex() const {
1410     return static_cast<int>(instructions().size()) - 1;
1411   }
1412 
1413   Instruction* InstructionAt(int index) const {
1414     DCHECK(index >= 0);
1415     DCHECK(index < static_cast<int>(instructions_.size()));
1416     return instructions_[index];
1417   }
1418 
1419   Isolate* isolate() const { return isolate_; }
1420   const ReferenceMapDeque* reference_maps() const { return &reference_maps_; }
1421   Zone* zone() const { return zone_; }
1422 
1423   // Used by the instruction selector while adding instructions.
1424   int AddInstruction(Instruction* instr);
1425   void StartBlock(RpoNumber rpo);
1426   void EndBlock(RpoNumber rpo);
1427 
1428   int AddConstant(int virtual_register, Constant constant) {
1429     // TODO(titzer): allow RPO numbers as constants?
1430     DCHECK(constant.type() != Constant::kRpoNumber);
1431     DCHECK(virtual_register >= 0 && virtual_register < next_virtual_register_);
1432     DCHECK(constants_.find(virtual_register) == constants_.end());
1433     constants_.insert(std::make_pair(virtual_register, constant));
1434     return virtual_register;
1435   }
1436   Constant GetConstant(int virtual_register) const {
1437     ConstantMap::const_iterator it = constants_.find(virtual_register);
1438     DCHECK(it != constants_.end());
1439     DCHECK_EQ(virtual_register, it->first);
1440     return it->second;
1441   }
1442 
1443   typedef ZoneVector<Constant> Immediates;
1444   Immediates& immediates() { return immediates_; }
1445 
1446   ImmediateOperand AddImmediate(const Constant& constant) {
1447     if (constant.type() == Constant::kInt32 &&
1448         RelocInfo::IsNone(constant.rmode())) {
1449       return ImmediateOperand(ImmediateOperand::INLINE, constant.ToInt32());
1450     }
1451     int index = static_cast<int>(immediates_.size());
1452     immediates_.push_back(constant);
1453     return ImmediateOperand(ImmediateOperand::INDEXED, index);
1454   }
1455 
1456   Constant GetImmediate(const ImmediateOperand* op) const {
1457     switch (op->type()) {
1458       case ImmediateOperand::INLINE:
1459         return Constant(op->inline_value());
1460       case ImmediateOperand::INDEXED: {
1461         int index = op->indexed_value();
1462         DCHECK(index >= 0);
1463         DCHECK(index < static_cast<int>(immediates_.size()));
1464         return immediates_[index];
1465       }
1466     }
1467     UNREACHABLE();
1468     return Constant(static_cast<int32_t>(0));
1469   }
1470 
1471   int AddDeoptimizationEntry(FrameStateDescriptor* descriptor,
1472                              DeoptimizeReason reason);
1473   DeoptimizationEntry const& GetDeoptimizationEntry(int deoptimization_id);
1474   int GetDeoptimizationEntryCount() const {
1475     return static_cast<int>(deoptimization_entries_.size());
1476   }
1477 
1478   RpoNumber InputRpo(Instruction* instr, size_t index);
1479 
1480   bool GetSourcePosition(const Instruction* instr,
1481                          SourcePosition* result) const;
1482   void SetSourcePosition(const Instruction* instr, SourcePosition value);
1483 
1484   bool ContainsCall() const {
1485     for (Instruction* instr : instructions_) {
1486       if (instr->IsCall()) return true;
1487     }
1488     return false;
1489   }
1490 
1491   // APIs to aid debugging. For general-stream APIs, use operator<<
1492   void Print(const RegisterConfiguration* config) const;
1493   void Print() const;
1494 
1495   void PrintBlock(const RegisterConfiguration* config, int block_id) const;
1496   void PrintBlock(int block_id) const;
1497 
1498   void ValidateEdgeSplitForm() const;
1499   void ValidateDeferredBlockExitPaths() const;
1500   void ValidateDeferredBlockEntryPaths() const;
1501   void ValidateSSA() const;
1502 
1503   const RegisterConfiguration* GetRegisterConfigurationForTesting();
1504 
1505  private:
1506   friend V8_EXPORT_PRIVATE std::ostream& operator<<(
1507       std::ostream& os, const PrintableInstructionSequence& code);
1508 
1509   typedef ZoneMap<const Instruction*, SourcePosition> SourcePositionMap;
1510 
1511   Isolate* isolate_;
1512   Zone* const zone_;
1513   InstructionBlocks* const instruction_blocks_;
1514   SourcePositionMap source_positions_;
1515   ConstantMap constants_;
1516   Immediates immediates_;
1517   InstructionDeque instructions_;
1518   int next_virtual_register_;
1519   ReferenceMapDeque reference_maps_;
1520   ZoneVector<MachineRepresentation> representations_;
1521   int representation_mask_;
1522   DeoptimizationVector deoptimization_entries_;
1523 
1524   // Used at construction time
1525   InstructionBlock* current_block_;
1526 
1527   DISALLOW_COPY_AND_ASSIGN(InstructionSequence);
1528 };
1529 
1530 
1531 struct PrintableInstructionSequence {
1532   const RegisterConfiguration* register_configuration_;
1533   const InstructionSequence* sequence_;
1534 };
1535 
1536 V8_EXPORT_PRIVATE std::ostream& operator<<(
1537     std::ostream& os, const PrintableInstructionSequence& code);
1538 
1539 }  // namespace compiler
1540 }  // namespace internal
1541 }  // namespace v8
1542 
1543 #endif  // V8_COMPILER_INSTRUCTION_H_
1544