1 /* 2 * Copyright (C) 2010 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 package android.animation; 18 19 import android.annotation.CallSuper; 20 import android.annotation.IntDef; 21 import android.annotation.TestApi; 22 import android.os.Looper; 23 import android.os.Trace; 24 import android.util.AndroidRuntimeException; 25 import android.util.Log; 26 import android.view.animation.AccelerateDecelerateInterpolator; 27 import android.view.animation.Animation; 28 import android.view.animation.AnimationUtils; 29 import android.view.animation.LinearInterpolator; 30 31 import java.lang.annotation.Retention; 32 import java.lang.annotation.RetentionPolicy; 33 import java.util.ArrayList; 34 import java.util.HashMap; 35 36 /** 37 * This class provides a simple timing engine for running animations 38 * which calculate animated values and set them on target objects. 39 * 40 * <p>There is a single timing pulse that all animations use. It runs in a 41 * custom handler to ensure that property changes happen on the UI thread.</p> 42 * 43 * <p>By default, ValueAnimator uses non-linear time interpolation, via the 44 * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates 45 * out of an animation. This behavior can be changed by calling 46 * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p> 47 * 48 * <p>Animators can be created from either code or resource files. Here is an example 49 * of a ValueAnimator resource file:</p> 50 * 51 * {@sample development/samples/ApiDemos/res/anim/animator.xml ValueAnimatorResources} 52 * 53 * <p>Starting from API 23, it is also possible to use a combination of {@link PropertyValuesHolder} 54 * and {@link Keyframe} resource tags to create a multi-step animation. 55 * Note that you can specify explicit fractional values (from 0 to 1) for 56 * each keyframe to determine when, in the overall duration, the animation should arrive at that 57 * value. Alternatively, you can leave the fractions off and the keyframes will be equally 58 * distributed within the total duration:</p> 59 * 60 * {@sample development/samples/ApiDemos/res/anim/value_animator_pvh_kf.xml 61 * ValueAnimatorKeyframeResources} 62 * 63 * <div class="special reference"> 64 * <h3>Developer Guides</h3> 65 * <p>For more information about animating with {@code ValueAnimator}, read the 66 * <a href="{@docRoot}guide/topics/graphics/prop-animation.html#value-animator">Property 67 * Animation</a> developer guide.</p> 68 * </div> 69 */ 70 @SuppressWarnings("unchecked") 71 public class ValueAnimator extends Animator implements AnimationHandler.AnimationFrameCallback { 72 private static final String TAG = "ValueAnimator"; 73 private static final boolean DEBUG = false; 74 75 /** 76 * Internal constants 77 */ 78 private static float sDurationScale = 1.0f; 79 80 /** 81 * Internal variables 82 * NOTE: This object implements the clone() method, making a deep copy of any referenced 83 * objects. As other non-trivial fields are added to this class, make sure to add logic 84 * to clone() to make deep copies of them. 85 */ 86 87 /** 88 * The first time that the animation's animateFrame() method is called. This time is used to 89 * determine elapsed time (and therefore the elapsed fraction) in subsequent calls 90 * to animateFrame(). 91 * 92 * Whenever mStartTime is set, you must also update mStartTimeCommitted. 93 */ 94 long mStartTime = -1; 95 96 /** 97 * When true, the start time has been firmly committed as a chosen reference point in 98 * time by which the progress of the animation will be evaluated. When false, the 99 * start time may be updated when the first animation frame is committed so as 100 * to compensate for jank that may have occurred between when the start time was 101 * initialized and when the frame was actually drawn. 102 * 103 * This flag is generally set to false during the first frame of the animation 104 * when the animation playing state transitions from STOPPED to RUNNING or 105 * resumes after having been paused. This flag is set to true when the start time 106 * is firmly committed and should not be further compensated for jank. 107 */ 108 boolean mStartTimeCommitted; 109 110 /** 111 * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked 112 * to a value. 113 */ 114 float mSeekFraction = -1; 115 116 /** 117 * Set on the next frame after pause() is called, used to calculate a new startTime 118 * or delayStartTime which allows the animator to continue from the point at which 119 * it was paused. If negative, has not yet been set. 120 */ 121 private long mPauseTime; 122 123 /** 124 * Set when an animator is resumed. This triggers logic in the next frame which 125 * actually resumes the animator. 126 */ 127 private boolean mResumed = false; 128 129 // The time interpolator to be used if none is set on the animation 130 private static final TimeInterpolator sDefaultInterpolator = 131 new AccelerateDecelerateInterpolator(); 132 133 /** 134 * Flag to indicate whether this animator is playing in reverse mode, specifically 135 * by being started or interrupted by a call to reverse(). This flag is different than 136 * mPlayingBackwards, which indicates merely whether the current iteration of the 137 * animator is playing in reverse. It is used in corner cases to determine proper end 138 * behavior. 139 */ 140 private boolean mReversing; 141 142 /** 143 * Tracks the overall fraction of the animation, ranging from 0 to mRepeatCount + 1 144 */ 145 private float mOverallFraction = 0f; 146 147 /** 148 * Tracks current elapsed/eased fraction, for querying in getAnimatedFraction(). 149 * This is calculated by interpolating the fraction (range: [0, 1]) in the current iteration. 150 */ 151 private float mCurrentFraction = 0f; 152 153 /** 154 * Tracks the time (in milliseconds) when the last frame arrived. 155 */ 156 private long mLastFrameTime = -1; 157 158 /** 159 * Tracks the time (in milliseconds) when the first frame arrived. Note the frame may arrive 160 * during the start delay. 161 */ 162 private long mFirstFrameTime = -1; 163 164 /** 165 * Additional playing state to indicate whether an animator has been start()'d. There is 166 * some lag between a call to start() and the first animation frame. We should still note 167 * that the animation has been started, even if it's first animation frame has not yet 168 * happened, and reflect that state in isRunning(). 169 * Note that delayed animations are different: they are not started until their first 170 * animation frame, which occurs after their delay elapses. 171 */ 172 private boolean mRunning = false; 173 174 /** 175 * Additional playing state to indicate whether an animator has been start()'d, whether or 176 * not there is a nonzero startDelay. 177 */ 178 private boolean mStarted = false; 179 180 /** 181 * Tracks whether we've notified listeners of the onAnimationStart() event. This can be 182 * complex to keep track of since we notify listeners at different times depending on 183 * startDelay and whether start() was called before end(). 184 */ 185 private boolean mStartListenersCalled = false; 186 187 /** 188 * Flag that denotes whether the animation is set up and ready to go. Used to 189 * set up animation that has not yet been started. 190 */ 191 boolean mInitialized = false; 192 193 /** 194 * Flag that tracks whether animation has been requested to end. 195 */ 196 private boolean mAnimationEndRequested = false; 197 198 // 199 // Backing variables 200 // 201 202 // How long the animation should last in ms 203 private long mDuration = 300; 204 205 // The amount of time in ms to delay starting the animation after start() is called. Note 206 // that this start delay is unscaled. When there is a duration scale set on the animator, the 207 // scaling factor will be applied to this delay. 208 private long mStartDelay = 0; 209 210 // The number of times the animation will repeat. The default is 0, which means the animation 211 // will play only once 212 private int mRepeatCount = 0; 213 214 /** 215 * The type of repetition that will occur when repeatMode is nonzero. RESTART means the 216 * animation will start from the beginning on every new cycle. REVERSE means the animation 217 * will reverse directions on each iteration. 218 */ 219 private int mRepeatMode = RESTART; 220 221 /** 222 * Whether or not the animator should register for its own animation callback to receive 223 * animation pulse. 224 */ 225 private boolean mSelfPulse = true; 226 227 /** 228 * Whether or not the animator has been requested to start without pulsing. This flag gets set 229 * in startWithoutPulsing(), and reset in start(). 230 */ 231 private boolean mSuppressSelfPulseRequested = false; 232 233 /** 234 * The time interpolator to be used. The elapsed fraction of the animation will be passed 235 * through this interpolator to calculate the interpolated fraction, which is then used to 236 * calculate the animated values. 237 */ 238 private TimeInterpolator mInterpolator = sDefaultInterpolator; 239 240 /** 241 * The set of listeners to be sent events through the life of an animation. 242 */ 243 ArrayList<AnimatorUpdateListener> mUpdateListeners = null; 244 245 /** 246 * The property/value sets being animated. 247 */ 248 PropertyValuesHolder[] mValues; 249 250 /** 251 * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values 252 * by property name during calls to getAnimatedValue(String). 253 */ 254 HashMap<String, PropertyValuesHolder> mValuesMap; 255 256 /** 257 * Public constants 258 */ 259 260 /** @hide */ 261 @IntDef({RESTART, REVERSE}) 262 @Retention(RetentionPolicy.SOURCE) 263 public @interface RepeatMode {} 264 265 /** 266 * When the animation reaches the end and <code>repeatCount</code> is INFINITE 267 * or a positive value, the animation restarts from the beginning. 268 */ 269 public static final int RESTART = 1; 270 /** 271 * When the animation reaches the end and <code>repeatCount</code> is INFINITE 272 * or a positive value, the animation reverses direction on every iteration. 273 */ 274 public static final int REVERSE = 2; 275 /** 276 * This value used used with the {@link #setRepeatCount(int)} property to repeat 277 * the animation indefinitely. 278 */ 279 public static final int INFINITE = -1; 280 281 /** 282 * @hide 283 */ 284 @TestApi setDurationScale(float durationScale)285 public static void setDurationScale(float durationScale) { 286 sDurationScale = durationScale; 287 } 288 289 /** 290 * @hide 291 */ 292 @TestApi getDurationScale()293 public static float getDurationScale() { 294 return sDurationScale; 295 } 296 297 /** 298 * Returns whether animators are currently enabled, system-wide. By default, all 299 * animators are enabled. This can change if either the user sets a Developer Option 300 * to set the animator duration scale to 0 or by Battery Savery mode being enabled 301 * (which disables all animations). 302 * 303 * <p>Developers should not typically need to call this method, but should an app wish 304 * to show a different experience when animators are disabled, this return value 305 * can be used as a decider of which experience to offer. 306 * 307 * @return boolean Whether animators are currently enabled. The default value is 308 * <code>true</code>. 309 */ areAnimatorsEnabled()310 public static boolean areAnimatorsEnabled() { 311 return !(sDurationScale == 0); 312 } 313 314 /** 315 * Creates a new ValueAnimator object. This default constructor is primarily for 316 * use internally; the factory methods which take parameters are more generally 317 * useful. 318 */ ValueAnimator()319 public ValueAnimator() { 320 } 321 322 /** 323 * Constructs and returns a ValueAnimator that animates between int values. A single 324 * value implies that that value is the one being animated to. However, this is not typically 325 * useful in a ValueAnimator object because there is no way for the object to determine the 326 * starting value for the animation (unlike ObjectAnimator, which can derive that value 327 * from the target object and property being animated). Therefore, there should typically 328 * be two or more values. 329 * 330 * @param values A set of values that the animation will animate between over time. 331 * @return A ValueAnimator object that is set up to animate between the given values. 332 */ ofInt(int... values)333 public static ValueAnimator ofInt(int... values) { 334 ValueAnimator anim = new ValueAnimator(); 335 anim.setIntValues(values); 336 return anim; 337 } 338 339 /** 340 * Constructs and returns a ValueAnimator that animates between color values. A single 341 * value implies that that value is the one being animated to. However, this is not typically 342 * useful in a ValueAnimator object because there is no way for the object to determine the 343 * starting value for the animation (unlike ObjectAnimator, which can derive that value 344 * from the target object and property being animated). Therefore, there should typically 345 * be two or more values. 346 * 347 * @param values A set of values that the animation will animate between over time. 348 * @return A ValueAnimator object that is set up to animate between the given values. 349 */ ofArgb(int... values)350 public static ValueAnimator ofArgb(int... values) { 351 ValueAnimator anim = new ValueAnimator(); 352 anim.setIntValues(values); 353 anim.setEvaluator(ArgbEvaluator.getInstance()); 354 return anim; 355 } 356 357 /** 358 * Constructs and returns a ValueAnimator that animates between float values. A single 359 * value implies that that value is the one being animated to. However, this is not typically 360 * useful in a ValueAnimator object because there is no way for the object to determine the 361 * starting value for the animation (unlike ObjectAnimator, which can derive that value 362 * from the target object and property being animated). Therefore, there should typically 363 * be two or more values. 364 * 365 * @param values A set of values that the animation will animate between over time. 366 * @return A ValueAnimator object that is set up to animate between the given values. 367 */ ofFloat(float... values)368 public static ValueAnimator ofFloat(float... values) { 369 ValueAnimator anim = new ValueAnimator(); 370 anim.setFloatValues(values); 371 return anim; 372 } 373 374 /** 375 * Constructs and returns a ValueAnimator that animates between the values 376 * specified in the PropertyValuesHolder objects. 377 * 378 * @param values A set of PropertyValuesHolder objects whose values will be animated 379 * between over time. 380 * @return A ValueAnimator object that is set up to animate between the given values. 381 */ ofPropertyValuesHolder(PropertyValuesHolder... values)382 public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) { 383 ValueAnimator anim = new ValueAnimator(); 384 anim.setValues(values); 385 return anim; 386 } 387 /** 388 * Constructs and returns a ValueAnimator that animates between Object values. A single 389 * value implies that that value is the one being animated to. However, this is not typically 390 * useful in a ValueAnimator object because there is no way for the object to determine the 391 * starting value for the animation (unlike ObjectAnimator, which can derive that value 392 * from the target object and property being animated). Therefore, there should typically 393 * be two or more values. 394 * 395 * <p><strong>Note:</strong> The Object values are stored as references to the original 396 * objects, which means that changes to those objects after this method is called will 397 * affect the values on the animator. If the objects will be mutated externally after 398 * this method is called, callers should pass a copy of those objects instead. 399 * 400 * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this 401 * factory method also takes a TypeEvaluator object that the ValueAnimator will use 402 * to perform that interpolation. 403 * 404 * @param evaluator A TypeEvaluator that will be called on each animation frame to 405 * provide the ncessry interpolation between the Object values to derive the animated 406 * value. 407 * @param values A set of values that the animation will animate between over time. 408 * @return A ValueAnimator object that is set up to animate between the given values. 409 */ ofObject(TypeEvaluator evaluator, Object... values)410 public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) { 411 ValueAnimator anim = new ValueAnimator(); 412 anim.setObjectValues(values); 413 anim.setEvaluator(evaluator); 414 return anim; 415 } 416 417 /** 418 * Sets int values that will be animated between. A single 419 * value implies that that value is the one being animated to. However, this is not typically 420 * useful in a ValueAnimator object because there is no way for the object to determine the 421 * starting value for the animation (unlike ObjectAnimator, which can derive that value 422 * from the target object and property being animated). Therefore, there should typically 423 * be two or more values. 424 * 425 * <p>If there are already multiple sets of values defined for this ValueAnimator via more 426 * than one PropertyValuesHolder object, this method will set the values for the first 427 * of those objects.</p> 428 * 429 * @param values A set of values that the animation will animate between over time. 430 */ setIntValues(int... values)431 public void setIntValues(int... values) { 432 if (values == null || values.length == 0) { 433 return; 434 } 435 if (mValues == null || mValues.length == 0) { 436 setValues(PropertyValuesHolder.ofInt("", values)); 437 } else { 438 PropertyValuesHolder valuesHolder = mValues[0]; 439 valuesHolder.setIntValues(values); 440 } 441 // New property/values/target should cause re-initialization prior to starting 442 mInitialized = false; 443 } 444 445 /** 446 * Sets float values that will be animated between. A single 447 * value implies that that value is the one being animated to. However, this is not typically 448 * useful in a ValueAnimator object because there is no way for the object to determine the 449 * starting value for the animation (unlike ObjectAnimator, which can derive that value 450 * from the target object and property being animated). Therefore, there should typically 451 * be two or more values. 452 * 453 * <p>If there are already multiple sets of values defined for this ValueAnimator via more 454 * than one PropertyValuesHolder object, this method will set the values for the first 455 * of those objects.</p> 456 * 457 * @param values A set of values that the animation will animate between over time. 458 */ setFloatValues(float... values)459 public void setFloatValues(float... values) { 460 if (values == null || values.length == 0) { 461 return; 462 } 463 if (mValues == null || mValues.length == 0) { 464 setValues(PropertyValuesHolder.ofFloat("", values)); 465 } else { 466 PropertyValuesHolder valuesHolder = mValues[0]; 467 valuesHolder.setFloatValues(values); 468 } 469 // New property/values/target should cause re-initialization prior to starting 470 mInitialized = false; 471 } 472 473 /** 474 * Sets the values to animate between for this animation. A single 475 * value implies that that value is the one being animated to. However, this is not typically 476 * useful in a ValueAnimator object because there is no way for the object to determine the 477 * starting value for the animation (unlike ObjectAnimator, which can derive that value 478 * from the target object and property being animated). Therefore, there should typically 479 * be two or more values. 480 * 481 * <p><strong>Note:</strong> The Object values are stored as references to the original 482 * objects, which means that changes to those objects after this method is called will 483 * affect the values on the animator. If the objects will be mutated externally after 484 * this method is called, callers should pass a copy of those objects instead. 485 * 486 * <p>If there are already multiple sets of values defined for this ValueAnimator via more 487 * than one PropertyValuesHolder object, this method will set the values for the first 488 * of those objects.</p> 489 * 490 * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate 491 * between these value objects. ValueAnimator only knows how to interpolate between the 492 * primitive types specified in the other setValues() methods.</p> 493 * 494 * @param values The set of values to animate between. 495 */ setObjectValues(Object... values)496 public void setObjectValues(Object... values) { 497 if (values == null || values.length == 0) { 498 return; 499 } 500 if (mValues == null || mValues.length == 0) { 501 setValues(PropertyValuesHolder.ofObject("", null, values)); 502 } else { 503 PropertyValuesHolder valuesHolder = mValues[0]; 504 valuesHolder.setObjectValues(values); 505 } 506 // New property/values/target should cause re-initialization prior to starting 507 mInitialized = false; 508 } 509 510 /** 511 * Sets the values, per property, being animated between. This function is called internally 512 * by the constructors of ValueAnimator that take a list of values. But a ValueAnimator can 513 * be constructed without values and this method can be called to set the values manually 514 * instead. 515 * 516 * @param values The set of values, per property, being animated between. 517 */ setValues(PropertyValuesHolder... values)518 public void setValues(PropertyValuesHolder... values) { 519 int numValues = values.length; 520 mValues = values; 521 mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues); 522 for (int i = 0; i < numValues; ++i) { 523 PropertyValuesHolder valuesHolder = values[i]; 524 mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder); 525 } 526 // New property/values/target should cause re-initialization prior to starting 527 mInitialized = false; 528 } 529 530 /** 531 * Returns the values that this ValueAnimator animates between. These values are stored in 532 * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list 533 * of value objects instead. 534 * 535 * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the 536 * values, per property, that define the animation. 537 */ getValues()538 public PropertyValuesHolder[] getValues() { 539 return mValues; 540 } 541 542 /** 543 * This function is called immediately before processing the first animation 544 * frame of an animation. If there is a nonzero <code>startDelay</code>, the 545 * function is called after that delay ends. 546 * It takes care of the final initialization steps for the 547 * animation. 548 * 549 * <p>Overrides of this method should call the superclass method to ensure 550 * that internal mechanisms for the animation are set up correctly.</p> 551 */ 552 @CallSuper initAnimation()553 void initAnimation() { 554 if (!mInitialized) { 555 int numValues = mValues.length; 556 for (int i = 0; i < numValues; ++i) { 557 mValues[i].init(); 558 } 559 mInitialized = true; 560 } 561 } 562 563 /** 564 * Sets the length of the animation. The default duration is 300 milliseconds. 565 * 566 * @param duration The length of the animation, in milliseconds. This value cannot 567 * be negative. 568 * @return ValueAnimator The object called with setDuration(). This return 569 * value makes it easier to compose statements together that construct and then set the 570 * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>. 571 */ 572 @Override setDuration(long duration)573 public ValueAnimator setDuration(long duration) { 574 if (duration < 0) { 575 throw new IllegalArgumentException("Animators cannot have negative duration: " + 576 duration); 577 } 578 mDuration = duration; 579 return this; 580 } 581 getScaledDuration()582 private long getScaledDuration() { 583 return (long)(mDuration * sDurationScale); 584 } 585 586 /** 587 * Gets the length of the animation. The default duration is 300 milliseconds. 588 * 589 * @return The length of the animation, in milliseconds. 590 */ 591 @Override getDuration()592 public long getDuration() { 593 return mDuration; 594 } 595 596 @Override getTotalDuration()597 public long getTotalDuration() { 598 if (mRepeatCount == INFINITE) { 599 return DURATION_INFINITE; 600 } else { 601 return mStartDelay + (mDuration * (mRepeatCount + 1)); 602 } 603 } 604 605 /** 606 * Sets the position of the animation to the specified point in time. This time should 607 * be between 0 and the total duration of the animation, including any repetition. If 608 * the animation has not yet been started, then it will not advance forward after it is 609 * set to this time; it will simply set the time to this value and perform any appropriate 610 * actions based on that time. If the animation is already running, then setCurrentPlayTime() 611 * will set the current playing time to this value and continue playing from that point. 612 * 613 * @param playTime The time, in milliseconds, to which the animation is advanced or rewound. 614 */ setCurrentPlayTime(long playTime)615 public void setCurrentPlayTime(long playTime) { 616 float fraction = mDuration > 0 ? (float) playTime / mDuration : 1; 617 setCurrentFraction(fraction); 618 } 619 620 /** 621 * Sets the position of the animation to the specified fraction. This fraction should 622 * be between 0 and the total fraction of the animation, including any repetition. That is, 623 * a fraction of 0 will position the animation at the beginning, a value of 1 at the end, 624 * and a value of 2 at the end of a reversing animator that repeats once. If 625 * the animation has not yet been started, then it will not advance forward after it is 626 * set to this fraction; it will simply set the fraction to this value and perform any 627 * appropriate actions based on that fraction. If the animation is already running, then 628 * setCurrentFraction() will set the current fraction to this value and continue 629 * playing from that point. {@link Animator.AnimatorListener} events are not called 630 * due to changing the fraction; those events are only processed while the animation 631 * is running. 632 * 633 * @param fraction The fraction to which the animation is advanced or rewound. Values 634 * outside the range of 0 to the maximum fraction for the animator will be clamped to 635 * the correct range. 636 */ setCurrentFraction(float fraction)637 public void setCurrentFraction(float fraction) { 638 initAnimation(); 639 fraction = clampFraction(fraction); 640 mStartTimeCommitted = true; // do not allow start time to be compensated for jank 641 if (isPulsingInternal()) { 642 long seekTime = (long) (getScaledDuration() * fraction); 643 long currentTime = AnimationUtils.currentAnimationTimeMillis(); 644 // Only modify the start time when the animation is running. Seek fraction will ensure 645 // non-running animations skip to the correct start time. 646 mStartTime = currentTime - seekTime; 647 } else { 648 // If the animation loop hasn't started, or during start delay, the startTime will be 649 // adjusted once the delay has passed based on seek fraction. 650 mSeekFraction = fraction; 651 } 652 mOverallFraction = fraction; 653 final float currentIterationFraction = getCurrentIterationFraction(fraction, mReversing); 654 animateValue(currentIterationFraction); 655 } 656 657 /** 658 * Calculates current iteration based on the overall fraction. The overall fraction will be 659 * in the range of [0, mRepeatCount + 1]. Both current iteration and fraction in the current 660 * iteration can be derived from it. 661 */ getCurrentIteration(float fraction)662 private int getCurrentIteration(float fraction) { 663 fraction = clampFraction(fraction); 664 // If the overall fraction is a positive integer, we consider the current iteration to be 665 // complete. In other words, the fraction for the current iteration would be 1, and the 666 // current iteration would be overall fraction - 1. 667 double iteration = Math.floor(fraction); 668 if (fraction == iteration && fraction > 0) { 669 iteration--; 670 } 671 return (int) iteration; 672 } 673 674 /** 675 * Calculates the fraction of the current iteration, taking into account whether the animation 676 * should be played backwards. E.g. When the animation is played backwards in an iteration, 677 * the fraction for that iteration will go from 1f to 0f. 678 */ getCurrentIterationFraction(float fraction, boolean inReverse)679 private float getCurrentIterationFraction(float fraction, boolean inReverse) { 680 fraction = clampFraction(fraction); 681 int iteration = getCurrentIteration(fraction); 682 float currentFraction = fraction - iteration; 683 return shouldPlayBackward(iteration, inReverse) ? 1f - currentFraction : currentFraction; 684 } 685 686 /** 687 * Clamps fraction into the correct range: [0, mRepeatCount + 1]. If repeat count is infinite, 688 * no upper bound will be set for the fraction. 689 * 690 * @param fraction fraction to be clamped 691 * @return fraction clamped into the range of [0, mRepeatCount + 1] 692 */ clampFraction(float fraction)693 private float clampFraction(float fraction) { 694 if (fraction < 0) { 695 fraction = 0; 696 } else if (mRepeatCount != INFINITE) { 697 fraction = Math.min(fraction, mRepeatCount + 1); 698 } 699 return fraction; 700 } 701 702 /** 703 * Calculates the direction of animation playing (i.e. forward or backward), based on 1) 704 * whether the entire animation is being reversed, 2) repeat mode applied to the current 705 * iteration. 706 */ shouldPlayBackward(int iteration, boolean inReverse)707 private boolean shouldPlayBackward(int iteration, boolean inReverse) { 708 if (iteration > 0 && mRepeatMode == REVERSE && 709 (iteration < (mRepeatCount + 1) || mRepeatCount == INFINITE)) { 710 // if we were seeked to some other iteration in a reversing animator, 711 // figure out the correct direction to start playing based on the iteration 712 if (inReverse) { 713 return (iteration % 2) == 0; 714 } else { 715 return (iteration % 2) != 0; 716 } 717 } else { 718 return inReverse; 719 } 720 } 721 722 /** 723 * Gets the current position of the animation in time, which is equal to the current 724 * time minus the time that the animation started. An animation that is not yet started will 725 * return a value of zero, unless the animation has has its play time set via 726 * {@link #setCurrentPlayTime(long)} or {@link #setCurrentFraction(float)}, in which case 727 * it will return the time that was set. 728 * 729 * @return The current position in time of the animation. 730 */ getCurrentPlayTime()731 public long getCurrentPlayTime() { 732 if (!mInitialized || (!mStarted && mSeekFraction < 0)) { 733 return 0; 734 } 735 if (mSeekFraction >= 0) { 736 return (long) (mDuration * mSeekFraction); 737 } 738 float durationScale = sDurationScale == 0 ? 1 : sDurationScale; 739 return (long) ((AnimationUtils.currentAnimationTimeMillis() - mStartTime) / durationScale); 740 } 741 742 /** 743 * The amount of time, in milliseconds, to delay starting the animation after 744 * {@link #start()} is called. 745 * 746 * @return the number of milliseconds to delay running the animation 747 */ 748 @Override getStartDelay()749 public long getStartDelay() { 750 return mStartDelay; 751 } 752 753 /** 754 * The amount of time, in milliseconds, to delay starting the animation after 755 * {@link #start()} is called. Note that the start delay should always be non-negative. Any 756 * negative start delay will be clamped to 0 on N and above. 757 * 758 * @param startDelay The amount of the delay, in milliseconds 759 */ 760 @Override setStartDelay(long startDelay)761 public void setStartDelay(long startDelay) { 762 // Clamp start delay to non-negative range. 763 if (startDelay < 0) { 764 Log.w(TAG, "Start delay should always be non-negative"); 765 startDelay = 0; 766 } 767 mStartDelay = startDelay; 768 } 769 770 /** 771 * The amount of time, in milliseconds, between each frame of the animation. This is a 772 * requested time that the animation will attempt to honor, but the actual delay between 773 * frames may be different, depending on system load and capabilities. This is a static 774 * function because the same delay will be applied to all animations, since they are all 775 * run off of a single timing loop. 776 * 777 * The frame delay may be ignored when the animation system uses an external timing 778 * source, such as the display refresh rate (vsync), to govern animations. 779 * 780 * Note that this method should be called from the same thread that {@link #start()} is 781 * called in order to check the frame delay for that animation. A runtime exception will be 782 * thrown if the calling thread does not have a Looper. 783 * 784 * @return the requested time between frames, in milliseconds 785 */ getFrameDelay()786 public static long getFrameDelay() { 787 return AnimationHandler.getInstance().getFrameDelay(); 788 } 789 790 /** 791 * The amount of time, in milliseconds, between each frame of the animation. This is a 792 * requested time that the animation will attempt to honor, but the actual delay between 793 * frames may be different, depending on system load and capabilities. This is a static 794 * function because the same delay will be applied to all animations, since they are all 795 * run off of a single timing loop. 796 * 797 * The frame delay may be ignored when the animation system uses an external timing 798 * source, such as the display refresh rate (vsync), to govern animations. 799 * 800 * Note that this method should be called from the same thread that {@link #start()} is 801 * called in order to have the new frame delay take effect on that animation. A runtime 802 * exception will be thrown if the calling thread does not have a Looper. 803 * 804 * @param frameDelay the requested time between frames, in milliseconds 805 */ setFrameDelay(long frameDelay)806 public static void setFrameDelay(long frameDelay) { 807 AnimationHandler.getInstance().setFrameDelay(frameDelay); 808 } 809 810 /** 811 * The most recent value calculated by this <code>ValueAnimator</code> when there is just one 812 * property being animated. This value is only sensible while the animation is running. The main 813 * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code> 814 * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which 815 * is called during each animation frame, immediately after the value is calculated. 816 * 817 * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for 818 * the single property being animated. If there are several properties being animated 819 * (specified by several PropertyValuesHolder objects in the constructor), this function 820 * returns the animated value for the first of those objects. 821 */ getAnimatedValue()822 public Object getAnimatedValue() { 823 if (mValues != null && mValues.length > 0) { 824 return mValues[0].getAnimatedValue(); 825 } 826 // Shouldn't get here; should always have values unless ValueAnimator was set up wrong 827 return null; 828 } 829 830 /** 831 * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>. 832 * The main purpose for this read-only property is to retrieve the value from the 833 * <code>ValueAnimator</code> during a call to 834 * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which 835 * is called during each animation frame, immediately after the value is calculated. 836 * 837 * @return animatedValue The value most recently calculated for the named property 838 * by this <code>ValueAnimator</code>. 839 */ getAnimatedValue(String propertyName)840 public Object getAnimatedValue(String propertyName) { 841 PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName); 842 if (valuesHolder != null) { 843 return valuesHolder.getAnimatedValue(); 844 } else { 845 // At least avoid crashing if called with bogus propertyName 846 return null; 847 } 848 } 849 850 /** 851 * Sets how many times the animation should be repeated. If the repeat 852 * count is 0, the animation is never repeated. If the repeat count is 853 * greater than 0 or {@link #INFINITE}, the repeat mode will be taken 854 * into account. The repeat count is 0 by default. 855 * 856 * @param value the number of times the animation should be repeated 857 */ setRepeatCount(int value)858 public void setRepeatCount(int value) { 859 mRepeatCount = value; 860 } 861 /** 862 * Defines how many times the animation should repeat. The default value 863 * is 0. 864 * 865 * @return the number of times the animation should repeat, or {@link #INFINITE} 866 */ getRepeatCount()867 public int getRepeatCount() { 868 return mRepeatCount; 869 } 870 871 /** 872 * Defines what this animation should do when it reaches the end. This 873 * setting is applied only when the repeat count is either greater than 874 * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}. 875 * 876 * @param value {@link #RESTART} or {@link #REVERSE} 877 */ setRepeatMode(@epeatMode int value)878 public void setRepeatMode(@RepeatMode int value) { 879 mRepeatMode = value; 880 } 881 882 /** 883 * Defines what this animation should do when it reaches the end. 884 * 885 * @return either one of {@link #REVERSE} or {@link #RESTART} 886 */ 887 @RepeatMode getRepeatMode()888 public int getRepeatMode() { 889 return mRepeatMode; 890 } 891 892 /** 893 * Adds a listener to the set of listeners that are sent update events through the life of 894 * an animation. This method is called on all listeners for every frame of the animation, 895 * after the values for the animation have been calculated. 896 * 897 * @param listener the listener to be added to the current set of listeners for this animation. 898 */ addUpdateListener(AnimatorUpdateListener listener)899 public void addUpdateListener(AnimatorUpdateListener listener) { 900 if (mUpdateListeners == null) { 901 mUpdateListeners = new ArrayList<AnimatorUpdateListener>(); 902 } 903 mUpdateListeners.add(listener); 904 } 905 906 /** 907 * Removes all listeners from the set listening to frame updates for this animation. 908 */ removeAllUpdateListeners()909 public void removeAllUpdateListeners() { 910 if (mUpdateListeners == null) { 911 return; 912 } 913 mUpdateListeners.clear(); 914 mUpdateListeners = null; 915 } 916 917 /** 918 * Removes a listener from the set listening to frame updates for this animation. 919 * 920 * @param listener the listener to be removed from the current set of update listeners 921 * for this animation. 922 */ removeUpdateListener(AnimatorUpdateListener listener)923 public void removeUpdateListener(AnimatorUpdateListener listener) { 924 if (mUpdateListeners == null) { 925 return; 926 } 927 mUpdateListeners.remove(listener); 928 if (mUpdateListeners.size() == 0) { 929 mUpdateListeners = null; 930 } 931 } 932 933 934 /** 935 * The time interpolator used in calculating the elapsed fraction of this animation. The 936 * interpolator determines whether the animation runs with linear or non-linear motion, 937 * such as acceleration and deceleration. The default value is 938 * {@link android.view.animation.AccelerateDecelerateInterpolator} 939 * 940 * @param value the interpolator to be used by this animation. A value of <code>null</code> 941 * will result in linear interpolation. 942 */ 943 @Override setInterpolator(TimeInterpolator value)944 public void setInterpolator(TimeInterpolator value) { 945 if (value != null) { 946 mInterpolator = value; 947 } else { 948 mInterpolator = new LinearInterpolator(); 949 } 950 } 951 952 /** 953 * Returns the timing interpolator that this ValueAnimator uses. 954 * 955 * @return The timing interpolator for this ValueAnimator. 956 */ 957 @Override getInterpolator()958 public TimeInterpolator getInterpolator() { 959 return mInterpolator; 960 } 961 962 /** 963 * The type evaluator to be used when calculating the animated values of this animation. 964 * The system will automatically assign a float or int evaluator based on the type 965 * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values 966 * are not one of these primitive types, or if different evaluation is desired (such as is 967 * necessary with int values that represent colors), a custom evaluator needs to be assigned. 968 * For example, when running an animation on color values, the {@link ArgbEvaluator} 969 * should be used to get correct RGB color interpolation. 970 * 971 * <p>If this ValueAnimator has only one set of values being animated between, this evaluator 972 * will be used for that set. If there are several sets of values being animated, which is 973 * the case if PropertyValuesHolder objects were set on the ValueAnimator, then the evaluator 974 * is assigned just to the first PropertyValuesHolder object.</p> 975 * 976 * @param value the evaluator to be used this animation 977 */ setEvaluator(TypeEvaluator value)978 public void setEvaluator(TypeEvaluator value) { 979 if (value != null && mValues != null && mValues.length > 0) { 980 mValues[0].setEvaluator(value); 981 } 982 } 983 notifyStartListeners()984 private void notifyStartListeners() { 985 if (mListeners != null && !mStartListenersCalled) { 986 ArrayList<AnimatorListener> tmpListeners = 987 (ArrayList<AnimatorListener>) mListeners.clone(); 988 int numListeners = tmpListeners.size(); 989 for (int i = 0; i < numListeners; ++i) { 990 tmpListeners.get(i).onAnimationStart(this, mReversing); 991 } 992 } 993 mStartListenersCalled = true; 994 } 995 996 /** 997 * Start the animation playing. This version of start() takes a boolean flag that indicates 998 * whether the animation should play in reverse. The flag is usually false, but may be set 999 * to true if called from the reverse() method. 1000 * 1001 * <p>The animation started by calling this method will be run on the thread that called 1002 * this method. This thread should have a Looper on it (a runtime exception will be thrown if 1003 * this is not the case). Also, if the animation will animate 1004 * properties of objects in the view hierarchy, then the calling thread should be the UI 1005 * thread for that view hierarchy.</p> 1006 * 1007 * @param playBackwards Whether the ValueAnimator should start playing in reverse. 1008 */ start(boolean playBackwards)1009 private void start(boolean playBackwards) { 1010 if (Looper.myLooper() == null) { 1011 throw new AndroidRuntimeException("Animators may only be run on Looper threads"); 1012 } 1013 mReversing = playBackwards; 1014 mSelfPulse = !mSuppressSelfPulseRequested; 1015 // Special case: reversing from seek-to-0 should act as if not seeked at all. 1016 if (playBackwards && mSeekFraction != -1 && mSeekFraction != 0) { 1017 if (mRepeatCount == INFINITE) { 1018 // Calculate the fraction of the current iteration. 1019 float fraction = (float) (mSeekFraction - Math.floor(mSeekFraction)); 1020 mSeekFraction = 1 - fraction; 1021 } else { 1022 mSeekFraction = 1 + mRepeatCount - mSeekFraction; 1023 } 1024 } 1025 mStarted = true; 1026 mPaused = false; 1027 mRunning = false; 1028 mAnimationEndRequested = false; 1029 // Resets mLastFrameTime when start() is called, so that if the animation was running, 1030 // calling start() would put the animation in the 1031 // started-but-not-yet-reached-the-first-frame phase. 1032 mLastFrameTime = -1; 1033 mFirstFrameTime = -1; 1034 mStartTime = -1; 1035 addAnimationCallback(0); 1036 1037 if (mStartDelay == 0 || mSeekFraction >= 0 || mReversing) { 1038 // If there's no start delay, init the animation and notify start listeners right away 1039 // to be consistent with the previous behavior. Otherwise, postpone this until the first 1040 // frame after the start delay. 1041 startAnimation(); 1042 if (mSeekFraction == -1) { 1043 // No seek, start at play time 0. Note that the reason we are not using fraction 0 1044 // is because for animations with 0 duration, we want to be consistent with pre-N 1045 // behavior: skip to the final value immediately. 1046 setCurrentPlayTime(0); 1047 } else { 1048 setCurrentFraction(mSeekFraction); 1049 } 1050 } 1051 } 1052 startWithoutPulsing(boolean inReverse)1053 void startWithoutPulsing(boolean inReverse) { 1054 mSuppressSelfPulseRequested = true; 1055 if (inReverse) { 1056 reverse(); 1057 } else { 1058 start(); 1059 } 1060 mSuppressSelfPulseRequested = false; 1061 } 1062 1063 @Override start()1064 public void start() { 1065 start(false); 1066 } 1067 1068 @Override cancel()1069 public void cancel() { 1070 if (Looper.myLooper() == null) { 1071 throw new AndroidRuntimeException("Animators may only be run on Looper threads"); 1072 } 1073 1074 // If end has already been requested, through a previous end() or cancel() call, no-op 1075 // until animation starts again. 1076 if (mAnimationEndRequested) { 1077 return; 1078 } 1079 1080 // Only cancel if the animation is actually running or has been started and is about 1081 // to run 1082 // Only notify listeners if the animator has actually started 1083 if ((mStarted || mRunning) && mListeners != null) { 1084 if (!mRunning) { 1085 // If it's not yet running, then start listeners weren't called. Call them now. 1086 notifyStartListeners(); 1087 } 1088 ArrayList<AnimatorListener> tmpListeners = 1089 (ArrayList<AnimatorListener>) mListeners.clone(); 1090 for (AnimatorListener listener : tmpListeners) { 1091 listener.onAnimationCancel(this); 1092 } 1093 } 1094 endAnimation(); 1095 1096 } 1097 1098 @Override end()1099 public void end() { 1100 if (Looper.myLooper() == null) { 1101 throw new AndroidRuntimeException("Animators may only be run on Looper threads"); 1102 } 1103 if (!mRunning) { 1104 // Special case if the animation has not yet started; get it ready for ending 1105 startAnimation(); 1106 mStarted = true; 1107 } else if (!mInitialized) { 1108 initAnimation(); 1109 } 1110 animateValue(shouldPlayBackward(mRepeatCount, mReversing) ? 0f : 1f); 1111 endAnimation(); 1112 } 1113 1114 @Override resume()1115 public void resume() { 1116 if (Looper.myLooper() == null) { 1117 throw new AndroidRuntimeException("Animators may only be resumed from the same " + 1118 "thread that the animator was started on"); 1119 } 1120 if (mPaused && !mResumed) { 1121 mResumed = true; 1122 if (mPauseTime > 0) { 1123 addAnimationCallback(0); 1124 } 1125 } 1126 super.resume(); 1127 } 1128 1129 @Override pause()1130 public void pause() { 1131 boolean previouslyPaused = mPaused; 1132 super.pause(); 1133 if (!previouslyPaused && mPaused) { 1134 mPauseTime = -1; 1135 mResumed = false; 1136 } 1137 } 1138 1139 @Override isRunning()1140 public boolean isRunning() { 1141 return mRunning; 1142 } 1143 1144 @Override isStarted()1145 public boolean isStarted() { 1146 return mStarted; 1147 } 1148 1149 /** 1150 * Plays the ValueAnimator in reverse. If the animation is already running, 1151 * it will stop itself and play backwards from the point reached when reverse was called. 1152 * If the animation is not currently running, then it will start from the end and 1153 * play backwards. This behavior is only set for the current animation; future playing 1154 * of the animation will use the default behavior of playing forward. 1155 */ 1156 @Override reverse()1157 public void reverse() { 1158 if (isPulsingInternal()) { 1159 long currentTime = AnimationUtils.currentAnimationTimeMillis(); 1160 long currentPlayTime = currentTime - mStartTime; 1161 long timeLeft = getScaledDuration() - currentPlayTime; 1162 mStartTime = currentTime - timeLeft; 1163 mStartTimeCommitted = true; // do not allow start time to be compensated for jank 1164 mReversing = !mReversing; 1165 } else if (mStarted) { 1166 mReversing = !mReversing; 1167 end(); 1168 } else { 1169 start(true); 1170 } 1171 } 1172 1173 /** 1174 * @hide 1175 */ 1176 @Override canReverse()1177 public boolean canReverse() { 1178 return true; 1179 } 1180 1181 /** 1182 * Called internally to end an animation by removing it from the animations list. Must be 1183 * called on the UI thread. 1184 */ endAnimation()1185 private void endAnimation() { 1186 if (mAnimationEndRequested) { 1187 return; 1188 } 1189 removeAnimationCallback(); 1190 1191 mAnimationEndRequested = true; 1192 mPaused = false; 1193 boolean notify = (mStarted || mRunning) && mListeners != null; 1194 if (notify && !mRunning) { 1195 // If it's not yet running, then start listeners weren't called. Call them now. 1196 notifyStartListeners(); 1197 } 1198 mRunning = false; 1199 mStarted = false; 1200 mStartListenersCalled = false; 1201 mLastFrameTime = -1; 1202 mFirstFrameTime = -1; 1203 mStartTime = -1; 1204 if (notify && mListeners != null) { 1205 ArrayList<AnimatorListener> tmpListeners = 1206 (ArrayList<AnimatorListener>) mListeners.clone(); 1207 int numListeners = tmpListeners.size(); 1208 for (int i = 0; i < numListeners; ++i) { 1209 tmpListeners.get(i).onAnimationEnd(this, mReversing); 1210 } 1211 } 1212 // mReversing needs to be reset *after* notifying the listeners for the end callbacks. 1213 mReversing = false; 1214 if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) { 1215 Trace.asyncTraceEnd(Trace.TRACE_TAG_VIEW, getNameForTrace(), 1216 System.identityHashCode(this)); 1217 } 1218 } 1219 1220 /** 1221 * Called internally to start an animation by adding it to the active animations list. Must be 1222 * called on the UI thread. 1223 */ startAnimation()1224 private void startAnimation() { 1225 if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) { 1226 Trace.asyncTraceBegin(Trace.TRACE_TAG_VIEW, getNameForTrace(), 1227 System.identityHashCode(this)); 1228 } 1229 1230 mAnimationEndRequested = false; 1231 initAnimation(); 1232 mRunning = true; 1233 if (mSeekFraction >= 0) { 1234 mOverallFraction = mSeekFraction; 1235 } else { 1236 mOverallFraction = 0f; 1237 } 1238 if (mListeners != null) { 1239 notifyStartListeners(); 1240 } 1241 } 1242 1243 /** 1244 * Internal only: This tracks whether the animation has gotten on the animation loop. Note 1245 * this is different than {@link #isRunning()} in that the latter tracks the time after start() 1246 * is called (or after start delay if any), which may be before the animation loop starts. 1247 */ isPulsingInternal()1248 private boolean isPulsingInternal() { 1249 return mLastFrameTime >= 0; 1250 } 1251 1252 /** 1253 * Returns the name of this animator for debugging purposes. 1254 */ getNameForTrace()1255 String getNameForTrace() { 1256 return "animator"; 1257 } 1258 1259 /** 1260 * Applies an adjustment to the animation to compensate for jank between when 1261 * the animation first ran and when the frame was drawn. 1262 * @hide 1263 */ commitAnimationFrame(long frameTime)1264 public void commitAnimationFrame(long frameTime) { 1265 if (!mStartTimeCommitted) { 1266 mStartTimeCommitted = true; 1267 long adjustment = frameTime - mLastFrameTime; 1268 if (adjustment > 0) { 1269 mStartTime += adjustment; 1270 if (DEBUG) { 1271 Log.d(TAG, "Adjusted start time by " + adjustment + " ms: " + toString()); 1272 } 1273 } 1274 } 1275 } 1276 1277 /** 1278 * This internal function processes a single animation frame for a given animation. The 1279 * currentTime parameter is the timing pulse sent by the handler, used to calculate the 1280 * elapsed duration, and therefore 1281 * the elapsed fraction, of the animation. The return value indicates whether the animation 1282 * should be ended (which happens when the elapsed time of the animation exceeds the 1283 * animation's duration, including the repeatCount). 1284 * 1285 * @param currentTime The current time, as tracked by the static timing handler 1286 * @return true if the animation's duration, including any repetitions due to 1287 * <code>repeatCount</code> has been exceeded and the animation should be ended. 1288 */ animateBasedOnTime(long currentTime)1289 boolean animateBasedOnTime(long currentTime) { 1290 boolean done = false; 1291 if (mRunning) { 1292 final long scaledDuration = getScaledDuration(); 1293 final float fraction = scaledDuration > 0 ? 1294 (float)(currentTime - mStartTime) / scaledDuration : 1f; 1295 final float lastFraction = mOverallFraction; 1296 final boolean newIteration = (int) fraction > (int) lastFraction; 1297 final boolean lastIterationFinished = (fraction >= mRepeatCount + 1) && 1298 (mRepeatCount != INFINITE); 1299 if (scaledDuration == 0) { 1300 // 0 duration animator, ignore the repeat count and skip to the end 1301 done = true; 1302 } else if (newIteration && !lastIterationFinished) { 1303 // Time to repeat 1304 if (mListeners != null) { 1305 int numListeners = mListeners.size(); 1306 for (int i = 0; i < numListeners; ++i) { 1307 mListeners.get(i).onAnimationRepeat(this); 1308 } 1309 } 1310 } else if (lastIterationFinished) { 1311 done = true; 1312 } 1313 mOverallFraction = clampFraction(fraction); 1314 float currentIterationFraction = getCurrentIterationFraction( 1315 mOverallFraction, mReversing); 1316 animateValue(currentIterationFraction); 1317 } 1318 return done; 1319 } 1320 1321 /** 1322 * Internal use only. 1323 * 1324 * This method does not modify any fields of the animation. It should be called when seeking 1325 * in an AnimatorSet. When the last play time and current play time are of different repeat 1326 * iterations, 1327 * {@link android.view.animation.Animation.AnimationListener#onAnimationRepeat(Animation)} 1328 * will be called. 1329 */ 1330 @Override animateBasedOnPlayTime(long currentPlayTime, long lastPlayTime, boolean inReverse)1331 void animateBasedOnPlayTime(long currentPlayTime, long lastPlayTime, boolean inReverse) { 1332 if (currentPlayTime < 0 || lastPlayTime < 0) { 1333 throw new UnsupportedOperationException("Error: Play time should never be negative."); 1334 } 1335 1336 initAnimation(); 1337 // Check whether repeat callback is needed only when repeat count is non-zero 1338 if (mRepeatCount > 0) { 1339 int iteration = (int) (currentPlayTime / mDuration); 1340 int lastIteration = (int) (lastPlayTime / mDuration); 1341 1342 // Clamp iteration to [0, mRepeatCount] 1343 iteration = Math.min(iteration, mRepeatCount); 1344 lastIteration = Math.min(lastIteration, mRepeatCount); 1345 1346 if (iteration != lastIteration) { 1347 if (mListeners != null) { 1348 int numListeners = mListeners.size(); 1349 for (int i = 0; i < numListeners; ++i) { 1350 mListeners.get(i).onAnimationRepeat(this); 1351 } 1352 } 1353 } 1354 } 1355 1356 if (mRepeatCount != INFINITE && currentPlayTime >= (mRepeatCount + 1) * mDuration) { 1357 skipToEndValue(inReverse); 1358 } else { 1359 // Find the current fraction: 1360 float fraction = currentPlayTime / (float) mDuration; 1361 fraction = getCurrentIterationFraction(fraction, inReverse); 1362 animateValue(fraction); 1363 } 1364 } 1365 1366 /** 1367 * Internal use only. 1368 * Skips the animation value to end/start, depending on whether the play direction is forward 1369 * or backward. 1370 * 1371 * @param inReverse whether the end value is based on a reverse direction. If yes, this is 1372 * equivalent to skip to start value in a forward playing direction. 1373 */ skipToEndValue(boolean inReverse)1374 void skipToEndValue(boolean inReverse) { 1375 initAnimation(); 1376 float endFraction = inReverse ? 0f : 1f; 1377 if (mRepeatCount % 2 == 1 && mRepeatMode == REVERSE) { 1378 // This would end on fraction = 0 1379 endFraction = 0f; 1380 } 1381 animateValue(endFraction); 1382 } 1383 1384 @Override isInitialized()1385 boolean isInitialized() { 1386 return mInitialized; 1387 } 1388 1389 /** 1390 * Processes a frame of the animation, adjusting the start time if needed. 1391 * 1392 * @param frameTime The frame time. 1393 * @return true if the animation has ended. 1394 * @hide 1395 */ doAnimationFrame(long frameTime)1396 public final boolean doAnimationFrame(long frameTime) { 1397 if (mStartTime < 0) { 1398 // First frame. If there is start delay, start delay count down will happen *after* this 1399 // frame. 1400 mStartTime = mReversing ? frameTime : frameTime + (long) (mStartDelay * sDurationScale); 1401 } 1402 1403 // Handle pause/resume 1404 if (mPaused) { 1405 mPauseTime = frameTime; 1406 removeAnimationCallback(); 1407 return false; 1408 } else if (mResumed) { 1409 mResumed = false; 1410 if (mPauseTime > 0) { 1411 // Offset by the duration that the animation was paused 1412 mStartTime += (frameTime - mPauseTime); 1413 } 1414 } 1415 1416 if (!mRunning) { 1417 // If not running, that means the animation is in the start delay phase of a forward 1418 // running animation. In the case of reversing, we want to run start delay in the end. 1419 if (mStartTime > frameTime && mSeekFraction == -1) { 1420 // This is when no seek fraction is set during start delay. If developers change the 1421 // seek fraction during the delay, animation will start from the seeked position 1422 // right away. 1423 return false; 1424 } else { 1425 // If mRunning is not set by now, that means non-zero start delay, 1426 // no seeking, not reversing. At this point, start delay has passed. 1427 mRunning = true; 1428 startAnimation(); 1429 } 1430 } 1431 1432 if (mLastFrameTime < 0) { 1433 if (mSeekFraction >= 0) { 1434 long seekTime = (long) (getScaledDuration() * mSeekFraction); 1435 mStartTime = frameTime - seekTime; 1436 mSeekFraction = -1; 1437 } 1438 mStartTimeCommitted = false; // allow start time to be compensated for jank 1439 } 1440 mLastFrameTime = frameTime; 1441 // The frame time might be before the start time during the first frame of 1442 // an animation. The "current time" must always be on or after the start 1443 // time to avoid animating frames at negative time intervals. In practice, this 1444 // is very rare and only happens when seeking backwards. 1445 final long currentTime = Math.max(frameTime, mStartTime); 1446 boolean finished = animateBasedOnTime(currentTime); 1447 1448 if (finished) { 1449 endAnimation(); 1450 } 1451 return finished; 1452 } 1453 1454 @Override pulseAnimationFrame(long frameTime)1455 boolean pulseAnimationFrame(long frameTime) { 1456 if (mSelfPulse) { 1457 // Pulse animation frame will *always* be after calling start(). If mSelfPulse isn't 1458 // set to false at this point, that means child animators did not call super's start(). 1459 // This can happen when the Animator is just a non-animating wrapper around a real 1460 // functional animation. In this case, we can't really pulse a frame into the animation, 1461 // because the animation cannot necessarily be properly initialized (i.e. no start/end 1462 // values set). 1463 return false; 1464 } 1465 return doAnimationFrame(frameTime); 1466 } 1467 addOneShotCommitCallback()1468 private void addOneShotCommitCallback() { 1469 if (!mSelfPulse) { 1470 return; 1471 } 1472 getAnimationHandler().addOneShotCommitCallback(this); 1473 } 1474 removeAnimationCallback()1475 private void removeAnimationCallback() { 1476 if (!mSelfPulse) { 1477 return; 1478 } 1479 getAnimationHandler().removeCallback(this); 1480 } 1481 addAnimationCallback(long delay)1482 private void addAnimationCallback(long delay) { 1483 if (!mSelfPulse) { 1484 return; 1485 } 1486 getAnimationHandler().addAnimationFrameCallback(this, delay); 1487 } 1488 1489 /** 1490 * Returns the current animation fraction, which is the elapsed/interpolated fraction used in 1491 * the most recent frame update on the animation. 1492 * 1493 * @return Elapsed/interpolated fraction of the animation. 1494 */ getAnimatedFraction()1495 public float getAnimatedFraction() { 1496 return mCurrentFraction; 1497 } 1498 1499 /** 1500 * This method is called with the elapsed fraction of the animation during every 1501 * animation frame. This function turns the elapsed fraction into an interpolated fraction 1502 * and then into an animated value (from the evaluator. The function is called mostly during 1503 * animation updates, but it is also called when the <code>end()</code> 1504 * function is called, to set the final value on the property. 1505 * 1506 * <p>Overrides of this method must call the superclass to perform the calculation 1507 * of the animated value.</p> 1508 * 1509 * @param fraction The elapsed fraction of the animation. 1510 */ 1511 @CallSuper animateValue(float fraction)1512 void animateValue(float fraction) { 1513 fraction = mInterpolator.getInterpolation(fraction); 1514 mCurrentFraction = fraction; 1515 int numValues = mValues.length; 1516 for (int i = 0; i < numValues; ++i) { 1517 mValues[i].calculateValue(fraction); 1518 } 1519 if (mUpdateListeners != null) { 1520 int numListeners = mUpdateListeners.size(); 1521 for (int i = 0; i < numListeners; ++i) { 1522 mUpdateListeners.get(i).onAnimationUpdate(this); 1523 } 1524 } 1525 } 1526 1527 @Override clone()1528 public ValueAnimator clone() { 1529 final ValueAnimator anim = (ValueAnimator) super.clone(); 1530 if (mUpdateListeners != null) { 1531 anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>(mUpdateListeners); 1532 } 1533 anim.mSeekFraction = -1; 1534 anim.mReversing = false; 1535 anim.mInitialized = false; 1536 anim.mStarted = false; 1537 anim.mRunning = false; 1538 anim.mPaused = false; 1539 anim.mResumed = false; 1540 anim.mStartListenersCalled = false; 1541 anim.mStartTime = -1; 1542 anim.mStartTimeCommitted = false; 1543 anim.mAnimationEndRequested = false; 1544 anim.mPauseTime = -1; 1545 anim.mLastFrameTime = -1; 1546 anim.mFirstFrameTime = -1; 1547 anim.mOverallFraction = 0; 1548 anim.mCurrentFraction = 0; 1549 anim.mSelfPulse = true; 1550 anim.mSuppressSelfPulseRequested = false; 1551 1552 PropertyValuesHolder[] oldValues = mValues; 1553 if (oldValues != null) { 1554 int numValues = oldValues.length; 1555 anim.mValues = new PropertyValuesHolder[numValues]; 1556 anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues); 1557 for (int i = 0; i < numValues; ++i) { 1558 PropertyValuesHolder newValuesHolder = oldValues[i].clone(); 1559 anim.mValues[i] = newValuesHolder; 1560 anim.mValuesMap.put(newValuesHolder.getPropertyName(), newValuesHolder); 1561 } 1562 } 1563 return anim; 1564 } 1565 1566 /** 1567 * Implementors of this interface can add themselves as update listeners 1568 * to an <code>ValueAnimator</code> instance to receive callbacks on every animation 1569 * frame, after the current frame's values have been calculated for that 1570 * <code>ValueAnimator</code>. 1571 */ 1572 public static interface AnimatorUpdateListener { 1573 /** 1574 * <p>Notifies the occurrence of another frame of the animation.</p> 1575 * 1576 * @param animation The animation which was repeated. 1577 */ onAnimationUpdate(ValueAnimator animation)1578 void onAnimationUpdate(ValueAnimator animation); 1579 1580 } 1581 1582 /** 1583 * Return the number of animations currently running. 1584 * 1585 * Used by StrictMode internally to annotate violations. 1586 * May be called on arbitrary threads! 1587 * 1588 * @hide 1589 */ getCurrentAnimationsCount()1590 public static int getCurrentAnimationsCount() { 1591 return AnimationHandler.getAnimationCount(); 1592 } 1593 1594 @Override toString()1595 public String toString() { 1596 String returnVal = "ValueAnimator@" + Integer.toHexString(hashCode()); 1597 if (mValues != null) { 1598 for (int i = 0; i < mValues.length; ++i) { 1599 returnVal += "\n " + mValues[i].toString(); 1600 } 1601 } 1602 return returnVal; 1603 } 1604 1605 /** 1606 * <p>Whether or not the ValueAnimator is allowed to run asynchronously off of 1607 * the UI thread. This is a hint that informs the ValueAnimator that it is 1608 * OK to run the animation off-thread, however ValueAnimator may decide 1609 * that it must run the animation on the UI thread anyway. For example if there 1610 * is an {@link AnimatorUpdateListener} the animation will run on the UI thread, 1611 * regardless of the value of this hint.</p> 1612 * 1613 * <p>Regardless of whether or not the animation runs asynchronously, all 1614 * listener callbacks will be called on the UI thread.</p> 1615 * 1616 * <p>To be able to use this hint the following must be true:</p> 1617 * <ol> 1618 * <li>{@link #getAnimatedFraction()} is not needed (it will return undefined values).</li> 1619 * <li>The animator is immutable while {@link #isStarted()} is true. Requests 1620 * to change values, duration, delay, etc... may be ignored.</li> 1621 * <li>Lifecycle callback events may be asynchronous. Events such as 1622 * {@link Animator.AnimatorListener#onAnimationEnd(Animator)} or 1623 * {@link Animator.AnimatorListener#onAnimationRepeat(Animator)} may end up delayed 1624 * as they must be posted back to the UI thread, and any actions performed 1625 * by those callbacks (such as starting new animations) will not happen 1626 * in the same frame.</li> 1627 * <li>State change requests ({@link #cancel()}, {@link #end()}, {@link #reverse()}, etc...) 1628 * may be asynchronous. It is guaranteed that all state changes that are 1629 * performed on the UI thread in the same frame will be applied as a single 1630 * atomic update, however that frame may be the current frame, 1631 * the next frame, or some future frame. This will also impact the observed 1632 * state of the Animator. For example, {@link #isStarted()} may still return true 1633 * after a call to {@link #end()}. Using the lifecycle callbacks is preferred over 1634 * queries to {@link #isStarted()}, {@link #isRunning()}, and {@link #isPaused()} 1635 * for this reason.</li> 1636 * </ol> 1637 * @hide 1638 */ 1639 @Override setAllowRunningAsynchronously(boolean mayRunAsync)1640 public void setAllowRunningAsynchronously(boolean mayRunAsync) { 1641 // It is up to subclasses to support this, if they can. 1642 } 1643 1644 /** 1645 * @return The {@link AnimationHandler} that will be used to schedule updates for this animator. 1646 * @hide 1647 */ getAnimationHandler()1648 public AnimationHandler getAnimationHandler() { 1649 return AnimationHandler.getInstance(); 1650 } 1651 } 1652