1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.animation;
18 
19 import android.annotation.CallSuper;
20 import android.annotation.IntDef;
21 import android.annotation.TestApi;
22 import android.os.Looper;
23 import android.os.Trace;
24 import android.util.AndroidRuntimeException;
25 import android.util.Log;
26 import android.view.animation.AccelerateDecelerateInterpolator;
27 import android.view.animation.Animation;
28 import android.view.animation.AnimationUtils;
29 import android.view.animation.LinearInterpolator;
30 
31 import java.lang.annotation.Retention;
32 import java.lang.annotation.RetentionPolicy;
33 import java.util.ArrayList;
34 import java.util.HashMap;
35 
36 /**
37  * This class provides a simple timing engine for running animations
38  * which calculate animated values and set them on target objects.
39  *
40  * <p>There is a single timing pulse that all animations use. It runs in a
41  * custom handler to ensure that property changes happen on the UI thread.</p>
42  *
43  * <p>By default, ValueAnimator uses non-linear time interpolation, via the
44  * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
45  * out of an animation. This behavior can be changed by calling
46  * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
47  *
48  * <p>Animators can be created from either code or resource files. Here is an example
49  * of a ValueAnimator resource file:</p>
50  *
51  * {@sample development/samples/ApiDemos/res/anim/animator.xml ValueAnimatorResources}
52  *
53  * <p>Starting from API 23, it is also possible to use a combination of {@link PropertyValuesHolder}
54  * and {@link Keyframe} resource tags to create a multi-step animation.
55  * Note that you can specify explicit fractional values (from 0 to 1) for
56  * each keyframe to determine when, in the overall duration, the animation should arrive at that
57  * value. Alternatively, you can leave the fractions off and the keyframes will be equally
58  * distributed within the total duration:</p>
59  *
60  * {@sample development/samples/ApiDemos/res/anim/value_animator_pvh_kf.xml
61  * ValueAnimatorKeyframeResources}
62  *
63  * <div class="special reference">
64  * <h3>Developer Guides</h3>
65  * <p>For more information about animating with {@code ValueAnimator}, read the
66  * <a href="{@docRoot}guide/topics/graphics/prop-animation.html#value-animator">Property
67  * Animation</a> developer guide.</p>
68  * </div>
69  */
70 @SuppressWarnings("unchecked")
71 public class ValueAnimator extends Animator implements AnimationHandler.AnimationFrameCallback {
72     private static final String TAG = "ValueAnimator";
73     private static final boolean DEBUG = false;
74 
75     /**
76      * Internal constants
77      */
78     private static float sDurationScale = 1.0f;
79 
80     /**
81      * Internal variables
82      * NOTE: This object implements the clone() method, making a deep copy of any referenced
83      * objects. As other non-trivial fields are added to this class, make sure to add logic
84      * to clone() to make deep copies of them.
85      */
86 
87     /**
88      * The first time that the animation's animateFrame() method is called. This time is used to
89      * determine elapsed time (and therefore the elapsed fraction) in subsequent calls
90      * to animateFrame().
91      *
92      * Whenever mStartTime is set, you must also update mStartTimeCommitted.
93      */
94     long mStartTime = -1;
95 
96     /**
97      * When true, the start time has been firmly committed as a chosen reference point in
98      * time by which the progress of the animation will be evaluated.  When false, the
99      * start time may be updated when the first animation frame is committed so as
100      * to compensate for jank that may have occurred between when the start time was
101      * initialized and when the frame was actually drawn.
102      *
103      * This flag is generally set to false during the first frame of the animation
104      * when the animation playing state transitions from STOPPED to RUNNING or
105      * resumes after having been paused.  This flag is set to true when the start time
106      * is firmly committed and should not be further compensated for jank.
107      */
108     boolean mStartTimeCommitted;
109 
110     /**
111      * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
112      * to a value.
113      */
114     float mSeekFraction = -1;
115 
116     /**
117      * Set on the next frame after pause() is called, used to calculate a new startTime
118      * or delayStartTime which allows the animator to continue from the point at which
119      * it was paused. If negative, has not yet been set.
120      */
121     private long mPauseTime;
122 
123     /**
124      * Set when an animator is resumed. This triggers logic in the next frame which
125      * actually resumes the animator.
126      */
127     private boolean mResumed = false;
128 
129     // The time interpolator to be used if none is set on the animation
130     private static final TimeInterpolator sDefaultInterpolator =
131             new AccelerateDecelerateInterpolator();
132 
133     /**
134      * Flag to indicate whether this animator is playing in reverse mode, specifically
135      * by being started or interrupted by a call to reverse(). This flag is different than
136      * mPlayingBackwards, which indicates merely whether the current iteration of the
137      * animator is playing in reverse. It is used in corner cases to determine proper end
138      * behavior.
139      */
140     private boolean mReversing;
141 
142     /**
143      * Tracks the overall fraction of the animation, ranging from 0 to mRepeatCount + 1
144      */
145     private float mOverallFraction = 0f;
146 
147     /**
148      * Tracks current elapsed/eased fraction, for querying in getAnimatedFraction().
149      * This is calculated by interpolating the fraction (range: [0, 1]) in the current iteration.
150      */
151     private float mCurrentFraction = 0f;
152 
153     /**
154      * Tracks the time (in milliseconds) when the last frame arrived.
155      */
156     private long mLastFrameTime = -1;
157 
158     /**
159      * Tracks the time (in milliseconds) when the first frame arrived. Note the frame may arrive
160      * during the start delay.
161      */
162     private long mFirstFrameTime = -1;
163 
164     /**
165      * Additional playing state to indicate whether an animator has been start()'d. There is
166      * some lag between a call to start() and the first animation frame. We should still note
167      * that the animation has been started, even if it's first animation frame has not yet
168      * happened, and reflect that state in isRunning().
169      * Note that delayed animations are different: they are not started until their first
170      * animation frame, which occurs after their delay elapses.
171      */
172     private boolean mRunning = false;
173 
174     /**
175      * Additional playing state to indicate whether an animator has been start()'d, whether or
176      * not there is a nonzero startDelay.
177      */
178     private boolean mStarted = false;
179 
180     /**
181      * Tracks whether we've notified listeners of the onAnimationStart() event. This can be
182      * complex to keep track of since we notify listeners at different times depending on
183      * startDelay and whether start() was called before end().
184      */
185     private boolean mStartListenersCalled = false;
186 
187     /**
188      * Flag that denotes whether the animation is set up and ready to go. Used to
189      * set up animation that has not yet been started.
190      */
191     boolean mInitialized = false;
192 
193     /**
194      * Flag that tracks whether animation has been requested to end.
195      */
196     private boolean mAnimationEndRequested = false;
197 
198     //
199     // Backing variables
200     //
201 
202     // How long the animation should last in ms
203     private long mDuration = 300;
204 
205     // The amount of time in ms to delay starting the animation after start() is called. Note
206     // that this start delay is unscaled. When there is a duration scale set on the animator, the
207     // scaling factor will be applied to this delay.
208     private long mStartDelay = 0;
209 
210     // The number of times the animation will repeat. The default is 0, which means the animation
211     // will play only once
212     private int mRepeatCount = 0;
213 
214     /**
215      * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
216      * animation will start from the beginning on every new cycle. REVERSE means the animation
217      * will reverse directions on each iteration.
218      */
219     private int mRepeatMode = RESTART;
220 
221     /**
222      * Whether or not the animator should register for its own animation callback to receive
223      * animation pulse.
224      */
225     private boolean mSelfPulse = true;
226 
227     /**
228      * Whether or not the animator has been requested to start without pulsing. This flag gets set
229      * in startWithoutPulsing(), and reset in start().
230      */
231     private boolean mSuppressSelfPulseRequested = false;
232 
233     /**
234      * The time interpolator to be used. The elapsed fraction of the animation will be passed
235      * through this interpolator to calculate the interpolated fraction, which is then used to
236      * calculate the animated values.
237      */
238     private TimeInterpolator mInterpolator = sDefaultInterpolator;
239 
240     /**
241      * The set of listeners to be sent events through the life of an animation.
242      */
243     ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
244 
245     /**
246      * The property/value sets being animated.
247      */
248     PropertyValuesHolder[] mValues;
249 
250     /**
251      * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
252      * by property name during calls to getAnimatedValue(String).
253      */
254     HashMap<String, PropertyValuesHolder> mValuesMap;
255 
256     /**
257      * Public constants
258      */
259 
260     /** @hide */
261     @IntDef({RESTART, REVERSE})
262     @Retention(RetentionPolicy.SOURCE)
263     public @interface RepeatMode {}
264 
265     /**
266      * When the animation reaches the end and <code>repeatCount</code> is INFINITE
267      * or a positive value, the animation restarts from the beginning.
268      */
269     public static final int RESTART = 1;
270     /**
271      * When the animation reaches the end and <code>repeatCount</code> is INFINITE
272      * or a positive value, the animation reverses direction on every iteration.
273      */
274     public static final int REVERSE = 2;
275     /**
276      * This value used used with the {@link #setRepeatCount(int)} property to repeat
277      * the animation indefinitely.
278      */
279     public static final int INFINITE = -1;
280 
281     /**
282      * @hide
283      */
284     @TestApi
setDurationScale(float durationScale)285     public static void setDurationScale(float durationScale) {
286         sDurationScale = durationScale;
287     }
288 
289     /**
290      * @hide
291      */
292     @TestApi
getDurationScale()293     public static float getDurationScale() {
294         return sDurationScale;
295     }
296 
297     /**
298      * Returns whether animators are currently enabled, system-wide. By default, all
299      * animators are enabled. This can change if either the user sets a Developer Option
300      * to set the animator duration scale to 0 or by Battery Savery mode being enabled
301      * (which disables all animations).
302      *
303      * <p>Developers should not typically need to call this method, but should an app wish
304      * to show a different experience when animators are disabled, this return value
305      * can be used as a decider of which experience to offer.
306      *
307      * @return boolean Whether animators are currently enabled. The default value is
308      * <code>true</code>.
309      */
areAnimatorsEnabled()310     public static boolean areAnimatorsEnabled() {
311         return !(sDurationScale == 0);
312     }
313 
314     /**
315      * Creates a new ValueAnimator object. This default constructor is primarily for
316      * use internally; the factory methods which take parameters are more generally
317      * useful.
318      */
ValueAnimator()319     public ValueAnimator() {
320     }
321 
322     /**
323      * Constructs and returns a ValueAnimator that animates between int values. A single
324      * value implies that that value is the one being animated to. However, this is not typically
325      * useful in a ValueAnimator object because there is no way for the object to determine the
326      * starting value for the animation (unlike ObjectAnimator, which can derive that value
327      * from the target object and property being animated). Therefore, there should typically
328      * be two or more values.
329      *
330      * @param values A set of values that the animation will animate between over time.
331      * @return A ValueAnimator object that is set up to animate between the given values.
332      */
ofInt(int... values)333     public static ValueAnimator ofInt(int... values) {
334         ValueAnimator anim = new ValueAnimator();
335         anim.setIntValues(values);
336         return anim;
337     }
338 
339     /**
340      * Constructs and returns a ValueAnimator that animates between color values. A single
341      * value implies that that value is the one being animated to. However, this is not typically
342      * useful in a ValueAnimator object because there is no way for the object to determine the
343      * starting value for the animation (unlike ObjectAnimator, which can derive that value
344      * from the target object and property being animated). Therefore, there should typically
345      * be two or more values.
346      *
347      * @param values A set of values that the animation will animate between over time.
348      * @return A ValueAnimator object that is set up to animate between the given values.
349      */
ofArgb(int... values)350     public static ValueAnimator ofArgb(int... values) {
351         ValueAnimator anim = new ValueAnimator();
352         anim.setIntValues(values);
353         anim.setEvaluator(ArgbEvaluator.getInstance());
354         return anim;
355     }
356 
357     /**
358      * Constructs and returns a ValueAnimator that animates between float values. A single
359      * value implies that that value is the one being animated to. However, this is not typically
360      * useful in a ValueAnimator object because there is no way for the object to determine the
361      * starting value for the animation (unlike ObjectAnimator, which can derive that value
362      * from the target object and property being animated). Therefore, there should typically
363      * be two or more values.
364      *
365      * @param values A set of values that the animation will animate between over time.
366      * @return A ValueAnimator object that is set up to animate between the given values.
367      */
ofFloat(float... values)368     public static ValueAnimator ofFloat(float... values) {
369         ValueAnimator anim = new ValueAnimator();
370         anim.setFloatValues(values);
371         return anim;
372     }
373 
374     /**
375      * Constructs and returns a ValueAnimator that animates between the values
376      * specified in the PropertyValuesHolder objects.
377      *
378      * @param values A set of PropertyValuesHolder objects whose values will be animated
379      * between over time.
380      * @return A ValueAnimator object that is set up to animate between the given values.
381      */
ofPropertyValuesHolder(PropertyValuesHolder... values)382     public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
383         ValueAnimator anim = new ValueAnimator();
384         anim.setValues(values);
385         return anim;
386     }
387     /**
388      * Constructs and returns a ValueAnimator that animates between Object values. A single
389      * value implies that that value is the one being animated to. However, this is not typically
390      * useful in a ValueAnimator object because there is no way for the object to determine the
391      * starting value for the animation (unlike ObjectAnimator, which can derive that value
392      * from the target object and property being animated). Therefore, there should typically
393      * be two or more values.
394      *
395      * <p><strong>Note:</strong> The Object values are stored as references to the original
396      * objects, which means that changes to those objects after this method is called will
397      * affect the values on the animator. If the objects will be mutated externally after
398      * this method is called, callers should pass a copy of those objects instead.
399      *
400      * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
401      * factory method also takes a TypeEvaluator object that the ValueAnimator will use
402      * to perform that interpolation.
403      *
404      * @param evaluator A TypeEvaluator that will be called on each animation frame to
405      * provide the ncessry interpolation between the Object values to derive the animated
406      * value.
407      * @param values A set of values that the animation will animate between over time.
408      * @return A ValueAnimator object that is set up to animate between the given values.
409      */
ofObject(TypeEvaluator evaluator, Object... values)410     public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
411         ValueAnimator anim = new ValueAnimator();
412         anim.setObjectValues(values);
413         anim.setEvaluator(evaluator);
414         return anim;
415     }
416 
417     /**
418      * Sets int values that will be animated between. A single
419      * value implies that that value is the one being animated to. However, this is not typically
420      * useful in a ValueAnimator object because there is no way for the object to determine the
421      * starting value for the animation (unlike ObjectAnimator, which can derive that value
422      * from the target object and property being animated). Therefore, there should typically
423      * be two or more values.
424      *
425      * <p>If there are already multiple sets of values defined for this ValueAnimator via more
426      * than one PropertyValuesHolder object, this method will set the values for the first
427      * of those objects.</p>
428      *
429      * @param values A set of values that the animation will animate between over time.
430      */
setIntValues(int... values)431     public void setIntValues(int... values) {
432         if (values == null || values.length == 0) {
433             return;
434         }
435         if (mValues == null || mValues.length == 0) {
436             setValues(PropertyValuesHolder.ofInt("", values));
437         } else {
438             PropertyValuesHolder valuesHolder = mValues[0];
439             valuesHolder.setIntValues(values);
440         }
441         // New property/values/target should cause re-initialization prior to starting
442         mInitialized = false;
443     }
444 
445     /**
446      * Sets float values that will be animated between. A single
447      * value implies that that value is the one being animated to. However, this is not typically
448      * useful in a ValueAnimator object because there is no way for the object to determine the
449      * starting value for the animation (unlike ObjectAnimator, which can derive that value
450      * from the target object and property being animated). Therefore, there should typically
451      * be two or more values.
452      *
453      * <p>If there are already multiple sets of values defined for this ValueAnimator via more
454      * than one PropertyValuesHolder object, this method will set the values for the first
455      * of those objects.</p>
456      *
457      * @param values A set of values that the animation will animate between over time.
458      */
setFloatValues(float... values)459     public void setFloatValues(float... values) {
460         if (values == null || values.length == 0) {
461             return;
462         }
463         if (mValues == null || mValues.length == 0) {
464             setValues(PropertyValuesHolder.ofFloat("", values));
465         } else {
466             PropertyValuesHolder valuesHolder = mValues[0];
467             valuesHolder.setFloatValues(values);
468         }
469         // New property/values/target should cause re-initialization prior to starting
470         mInitialized = false;
471     }
472 
473     /**
474      * Sets the values to animate between for this animation. A single
475      * value implies that that value is the one being animated to. However, this is not typically
476      * useful in a ValueAnimator object because there is no way for the object to determine the
477      * starting value for the animation (unlike ObjectAnimator, which can derive that value
478      * from the target object and property being animated). Therefore, there should typically
479      * be two or more values.
480      *
481      * <p><strong>Note:</strong> The Object values are stored as references to the original
482      * objects, which means that changes to those objects after this method is called will
483      * affect the values on the animator. If the objects will be mutated externally after
484      * this method is called, callers should pass a copy of those objects instead.
485      *
486      * <p>If there are already multiple sets of values defined for this ValueAnimator via more
487      * than one PropertyValuesHolder object, this method will set the values for the first
488      * of those objects.</p>
489      *
490      * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
491      * between these value objects. ValueAnimator only knows how to interpolate between the
492      * primitive types specified in the other setValues() methods.</p>
493      *
494      * @param values The set of values to animate between.
495      */
setObjectValues(Object... values)496     public void setObjectValues(Object... values) {
497         if (values == null || values.length == 0) {
498             return;
499         }
500         if (mValues == null || mValues.length == 0) {
501             setValues(PropertyValuesHolder.ofObject("", null, values));
502         } else {
503             PropertyValuesHolder valuesHolder = mValues[0];
504             valuesHolder.setObjectValues(values);
505         }
506         // New property/values/target should cause re-initialization prior to starting
507         mInitialized = false;
508     }
509 
510     /**
511      * Sets the values, per property, being animated between. This function is called internally
512      * by the constructors of ValueAnimator that take a list of values. But a ValueAnimator can
513      * be constructed without values and this method can be called to set the values manually
514      * instead.
515      *
516      * @param values The set of values, per property, being animated between.
517      */
setValues(PropertyValuesHolder... values)518     public void setValues(PropertyValuesHolder... values) {
519         int numValues = values.length;
520         mValues = values;
521         mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
522         for (int i = 0; i < numValues; ++i) {
523             PropertyValuesHolder valuesHolder = values[i];
524             mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
525         }
526         // New property/values/target should cause re-initialization prior to starting
527         mInitialized = false;
528     }
529 
530     /**
531      * Returns the values that this ValueAnimator animates between. These values are stored in
532      * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
533      * of value objects instead.
534      *
535      * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
536      * values, per property, that define the animation.
537      */
getValues()538     public PropertyValuesHolder[] getValues() {
539         return mValues;
540     }
541 
542     /**
543      * This function is called immediately before processing the first animation
544      * frame of an animation. If there is a nonzero <code>startDelay</code>, the
545      * function is called after that delay ends.
546      * It takes care of the final initialization steps for the
547      * animation.
548      *
549      *  <p>Overrides of this method should call the superclass method to ensure
550      *  that internal mechanisms for the animation are set up correctly.</p>
551      */
552     @CallSuper
initAnimation()553     void initAnimation() {
554         if (!mInitialized) {
555             int numValues = mValues.length;
556             for (int i = 0; i < numValues; ++i) {
557                 mValues[i].init();
558             }
559             mInitialized = true;
560         }
561     }
562 
563     /**
564      * Sets the length of the animation. The default duration is 300 milliseconds.
565      *
566      * @param duration The length of the animation, in milliseconds. This value cannot
567      * be negative.
568      * @return ValueAnimator The object called with setDuration(). This return
569      * value makes it easier to compose statements together that construct and then set the
570      * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
571      */
572     @Override
setDuration(long duration)573     public ValueAnimator setDuration(long duration) {
574         if (duration < 0) {
575             throw new IllegalArgumentException("Animators cannot have negative duration: " +
576                     duration);
577         }
578         mDuration = duration;
579         return this;
580     }
581 
getScaledDuration()582     private long getScaledDuration() {
583         return (long)(mDuration * sDurationScale);
584     }
585 
586     /**
587      * Gets the length of the animation. The default duration is 300 milliseconds.
588      *
589      * @return The length of the animation, in milliseconds.
590      */
591     @Override
getDuration()592     public long getDuration() {
593         return mDuration;
594     }
595 
596     @Override
getTotalDuration()597     public long getTotalDuration() {
598         if (mRepeatCount == INFINITE) {
599             return DURATION_INFINITE;
600         } else {
601             return mStartDelay + (mDuration * (mRepeatCount + 1));
602         }
603     }
604 
605     /**
606      * Sets the position of the animation to the specified point in time. This time should
607      * be between 0 and the total duration of the animation, including any repetition. If
608      * the animation has not yet been started, then it will not advance forward after it is
609      * set to this time; it will simply set the time to this value and perform any appropriate
610      * actions based on that time. If the animation is already running, then setCurrentPlayTime()
611      * will set the current playing time to this value and continue playing from that point.
612      *
613      * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
614      */
setCurrentPlayTime(long playTime)615     public void setCurrentPlayTime(long playTime) {
616         float fraction = mDuration > 0 ? (float) playTime / mDuration : 1;
617         setCurrentFraction(fraction);
618     }
619 
620     /**
621      * Sets the position of the animation to the specified fraction. This fraction should
622      * be between 0 and the total fraction of the animation, including any repetition. That is,
623      * a fraction of 0 will position the animation at the beginning, a value of 1 at the end,
624      * and a value of 2 at the end of a reversing animator that repeats once. If
625      * the animation has not yet been started, then it will not advance forward after it is
626      * set to this fraction; it will simply set the fraction to this value and perform any
627      * appropriate actions based on that fraction. If the animation is already running, then
628      * setCurrentFraction() will set the current fraction to this value and continue
629      * playing from that point. {@link Animator.AnimatorListener} events are not called
630      * due to changing the fraction; those events are only processed while the animation
631      * is running.
632      *
633      * @param fraction The fraction to which the animation is advanced or rewound. Values
634      * outside the range of 0 to the maximum fraction for the animator will be clamped to
635      * the correct range.
636      */
setCurrentFraction(float fraction)637     public void setCurrentFraction(float fraction) {
638         initAnimation();
639         fraction = clampFraction(fraction);
640         mStartTimeCommitted = true; // do not allow start time to be compensated for jank
641         if (isPulsingInternal()) {
642             long seekTime = (long) (getScaledDuration() * fraction);
643             long currentTime = AnimationUtils.currentAnimationTimeMillis();
644             // Only modify the start time when the animation is running. Seek fraction will ensure
645             // non-running animations skip to the correct start time.
646             mStartTime = currentTime - seekTime;
647         } else {
648             // If the animation loop hasn't started, or during start delay, the startTime will be
649             // adjusted once the delay has passed based on seek fraction.
650             mSeekFraction = fraction;
651         }
652         mOverallFraction = fraction;
653         final float currentIterationFraction = getCurrentIterationFraction(fraction, mReversing);
654         animateValue(currentIterationFraction);
655     }
656 
657     /**
658      * Calculates current iteration based on the overall fraction. The overall fraction will be
659      * in the range of [0, mRepeatCount + 1]. Both current iteration and fraction in the current
660      * iteration can be derived from it.
661      */
getCurrentIteration(float fraction)662     private int getCurrentIteration(float fraction) {
663         fraction = clampFraction(fraction);
664         // If the overall fraction is a positive integer, we consider the current iteration to be
665         // complete. In other words, the fraction for the current iteration would be 1, and the
666         // current iteration would be overall fraction - 1.
667         double iteration = Math.floor(fraction);
668         if (fraction == iteration && fraction > 0) {
669             iteration--;
670         }
671         return (int) iteration;
672     }
673 
674     /**
675      * Calculates the fraction of the current iteration, taking into account whether the animation
676      * should be played backwards. E.g. When the animation is played backwards in an iteration,
677      * the fraction for that iteration will go from 1f to 0f.
678      */
getCurrentIterationFraction(float fraction, boolean inReverse)679     private float getCurrentIterationFraction(float fraction, boolean inReverse) {
680         fraction = clampFraction(fraction);
681         int iteration = getCurrentIteration(fraction);
682         float currentFraction = fraction - iteration;
683         return shouldPlayBackward(iteration, inReverse) ? 1f - currentFraction : currentFraction;
684     }
685 
686     /**
687      * Clamps fraction into the correct range: [0, mRepeatCount + 1]. If repeat count is infinite,
688      * no upper bound will be set for the fraction.
689      *
690      * @param fraction fraction to be clamped
691      * @return fraction clamped into the range of [0, mRepeatCount + 1]
692      */
clampFraction(float fraction)693     private float clampFraction(float fraction) {
694         if (fraction < 0) {
695             fraction = 0;
696         } else if (mRepeatCount != INFINITE) {
697             fraction = Math.min(fraction, mRepeatCount + 1);
698         }
699         return fraction;
700     }
701 
702     /**
703      * Calculates the direction of animation playing (i.e. forward or backward), based on 1)
704      * whether the entire animation is being reversed, 2) repeat mode applied to the current
705      * iteration.
706      */
shouldPlayBackward(int iteration, boolean inReverse)707     private boolean shouldPlayBackward(int iteration, boolean inReverse) {
708         if (iteration > 0 && mRepeatMode == REVERSE &&
709                 (iteration < (mRepeatCount + 1) || mRepeatCount == INFINITE)) {
710             // if we were seeked to some other iteration in a reversing animator,
711             // figure out the correct direction to start playing based on the iteration
712             if (inReverse) {
713                 return (iteration % 2) == 0;
714             } else {
715                 return (iteration % 2) != 0;
716             }
717         } else {
718             return inReverse;
719         }
720     }
721 
722     /**
723      * Gets the current position of the animation in time, which is equal to the current
724      * time minus the time that the animation started. An animation that is not yet started will
725      * return a value of zero, unless the animation has has its play time set via
726      * {@link #setCurrentPlayTime(long)} or {@link #setCurrentFraction(float)}, in which case
727      * it will return the time that was set.
728      *
729      * @return The current position in time of the animation.
730      */
getCurrentPlayTime()731     public long getCurrentPlayTime() {
732         if (!mInitialized || (!mStarted && mSeekFraction < 0)) {
733             return 0;
734         }
735         if (mSeekFraction >= 0) {
736             return (long) (mDuration * mSeekFraction);
737         }
738         float durationScale = sDurationScale == 0 ? 1 : sDurationScale;
739         return (long) ((AnimationUtils.currentAnimationTimeMillis() - mStartTime) / durationScale);
740     }
741 
742     /**
743      * The amount of time, in milliseconds, to delay starting the animation after
744      * {@link #start()} is called.
745      *
746      * @return the number of milliseconds to delay running the animation
747      */
748     @Override
getStartDelay()749     public long getStartDelay() {
750         return mStartDelay;
751     }
752 
753     /**
754      * The amount of time, in milliseconds, to delay starting the animation after
755      * {@link #start()} is called. Note that the start delay should always be non-negative. Any
756      * negative start delay will be clamped to 0 on N and above.
757      *
758      * @param startDelay The amount of the delay, in milliseconds
759      */
760     @Override
setStartDelay(long startDelay)761     public void setStartDelay(long startDelay) {
762         // Clamp start delay to non-negative range.
763         if (startDelay < 0) {
764             Log.w(TAG, "Start delay should always be non-negative");
765             startDelay = 0;
766         }
767         mStartDelay = startDelay;
768     }
769 
770     /**
771      * The amount of time, in milliseconds, between each frame of the animation. This is a
772      * requested time that the animation will attempt to honor, but the actual delay between
773      * frames may be different, depending on system load and capabilities. This is a static
774      * function because the same delay will be applied to all animations, since they are all
775      * run off of a single timing loop.
776      *
777      * The frame delay may be ignored when the animation system uses an external timing
778      * source, such as the display refresh rate (vsync), to govern animations.
779      *
780      * Note that this method should be called from the same thread that {@link #start()} is
781      * called in order to check the frame delay for that animation. A runtime exception will be
782      * thrown if the calling thread does not have a Looper.
783      *
784      * @return the requested time between frames, in milliseconds
785      */
getFrameDelay()786     public static long getFrameDelay() {
787         return AnimationHandler.getInstance().getFrameDelay();
788     }
789 
790     /**
791      * The amount of time, in milliseconds, between each frame of the animation. This is a
792      * requested time that the animation will attempt to honor, but the actual delay between
793      * frames may be different, depending on system load and capabilities. This is a static
794      * function because the same delay will be applied to all animations, since they are all
795      * run off of a single timing loop.
796      *
797      * The frame delay may be ignored when the animation system uses an external timing
798      * source, such as the display refresh rate (vsync), to govern animations.
799      *
800      * Note that this method should be called from the same thread that {@link #start()} is
801      * called in order to have the new frame delay take effect on that animation. A runtime
802      * exception will be thrown if the calling thread does not have a Looper.
803      *
804      * @param frameDelay the requested time between frames, in milliseconds
805      */
setFrameDelay(long frameDelay)806     public static void setFrameDelay(long frameDelay) {
807         AnimationHandler.getInstance().setFrameDelay(frameDelay);
808     }
809 
810     /**
811      * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
812      * property being animated. This value is only sensible while the animation is running. The main
813      * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
814      * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
815      * is called during each animation frame, immediately after the value is calculated.
816      *
817      * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
818      * the single property being animated. If there are several properties being animated
819      * (specified by several PropertyValuesHolder objects in the constructor), this function
820      * returns the animated value for the first of those objects.
821      */
getAnimatedValue()822     public Object getAnimatedValue() {
823         if (mValues != null && mValues.length > 0) {
824             return mValues[0].getAnimatedValue();
825         }
826         // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
827         return null;
828     }
829 
830     /**
831      * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
832      * The main purpose for this read-only property is to retrieve the value from the
833      * <code>ValueAnimator</code> during a call to
834      * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
835      * is called during each animation frame, immediately after the value is calculated.
836      *
837      * @return animatedValue The value most recently calculated for the named property
838      * by this <code>ValueAnimator</code>.
839      */
getAnimatedValue(String propertyName)840     public Object getAnimatedValue(String propertyName) {
841         PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
842         if (valuesHolder != null) {
843             return valuesHolder.getAnimatedValue();
844         } else {
845             // At least avoid crashing if called with bogus propertyName
846             return null;
847         }
848     }
849 
850     /**
851      * Sets how many times the animation should be repeated. If the repeat
852      * count is 0, the animation is never repeated. If the repeat count is
853      * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
854      * into account. The repeat count is 0 by default.
855      *
856      * @param value the number of times the animation should be repeated
857      */
setRepeatCount(int value)858     public void setRepeatCount(int value) {
859         mRepeatCount = value;
860     }
861     /**
862      * Defines how many times the animation should repeat. The default value
863      * is 0.
864      *
865      * @return the number of times the animation should repeat, or {@link #INFINITE}
866      */
getRepeatCount()867     public int getRepeatCount() {
868         return mRepeatCount;
869     }
870 
871     /**
872      * Defines what this animation should do when it reaches the end. This
873      * setting is applied only when the repeat count is either greater than
874      * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
875      *
876      * @param value {@link #RESTART} or {@link #REVERSE}
877      */
setRepeatMode(@epeatMode int value)878     public void setRepeatMode(@RepeatMode int value) {
879         mRepeatMode = value;
880     }
881 
882     /**
883      * Defines what this animation should do when it reaches the end.
884      *
885      * @return either one of {@link #REVERSE} or {@link #RESTART}
886      */
887     @RepeatMode
getRepeatMode()888     public int getRepeatMode() {
889         return mRepeatMode;
890     }
891 
892     /**
893      * Adds a listener to the set of listeners that are sent update events through the life of
894      * an animation. This method is called on all listeners for every frame of the animation,
895      * after the values for the animation have been calculated.
896      *
897      * @param listener the listener to be added to the current set of listeners for this animation.
898      */
addUpdateListener(AnimatorUpdateListener listener)899     public void addUpdateListener(AnimatorUpdateListener listener) {
900         if (mUpdateListeners == null) {
901             mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
902         }
903         mUpdateListeners.add(listener);
904     }
905 
906     /**
907      * Removes all listeners from the set listening to frame updates for this animation.
908      */
removeAllUpdateListeners()909     public void removeAllUpdateListeners() {
910         if (mUpdateListeners == null) {
911             return;
912         }
913         mUpdateListeners.clear();
914         mUpdateListeners = null;
915     }
916 
917     /**
918      * Removes a listener from the set listening to frame updates for this animation.
919      *
920      * @param listener the listener to be removed from the current set of update listeners
921      * for this animation.
922      */
removeUpdateListener(AnimatorUpdateListener listener)923     public void removeUpdateListener(AnimatorUpdateListener listener) {
924         if (mUpdateListeners == null) {
925             return;
926         }
927         mUpdateListeners.remove(listener);
928         if (mUpdateListeners.size() == 0) {
929             mUpdateListeners = null;
930         }
931     }
932 
933 
934     /**
935      * The time interpolator used in calculating the elapsed fraction of this animation. The
936      * interpolator determines whether the animation runs with linear or non-linear motion,
937      * such as acceleration and deceleration. The default value is
938      * {@link android.view.animation.AccelerateDecelerateInterpolator}
939      *
940      * @param value the interpolator to be used by this animation. A value of <code>null</code>
941      * will result in linear interpolation.
942      */
943     @Override
setInterpolator(TimeInterpolator value)944     public void setInterpolator(TimeInterpolator value) {
945         if (value != null) {
946             mInterpolator = value;
947         } else {
948             mInterpolator = new LinearInterpolator();
949         }
950     }
951 
952     /**
953      * Returns the timing interpolator that this ValueAnimator uses.
954      *
955      * @return The timing interpolator for this ValueAnimator.
956      */
957     @Override
getInterpolator()958     public TimeInterpolator getInterpolator() {
959         return mInterpolator;
960     }
961 
962     /**
963      * The type evaluator to be used when calculating the animated values of this animation.
964      * The system will automatically assign a float or int evaluator based on the type
965      * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
966      * are not one of these primitive types, or if different evaluation is desired (such as is
967      * necessary with int values that represent colors), a custom evaluator needs to be assigned.
968      * For example, when running an animation on color values, the {@link ArgbEvaluator}
969      * should be used to get correct RGB color interpolation.
970      *
971      * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
972      * will be used for that set. If there are several sets of values being animated, which is
973      * the case if PropertyValuesHolder objects were set on the ValueAnimator, then the evaluator
974      * is assigned just to the first PropertyValuesHolder object.</p>
975      *
976      * @param value the evaluator to be used this animation
977      */
setEvaluator(TypeEvaluator value)978     public void setEvaluator(TypeEvaluator value) {
979         if (value != null && mValues != null && mValues.length > 0) {
980             mValues[0].setEvaluator(value);
981         }
982     }
983 
notifyStartListeners()984     private void notifyStartListeners() {
985         if (mListeners != null && !mStartListenersCalled) {
986             ArrayList<AnimatorListener> tmpListeners =
987                     (ArrayList<AnimatorListener>) mListeners.clone();
988             int numListeners = tmpListeners.size();
989             for (int i = 0; i < numListeners; ++i) {
990                 tmpListeners.get(i).onAnimationStart(this, mReversing);
991             }
992         }
993         mStartListenersCalled = true;
994     }
995 
996     /**
997      * Start the animation playing. This version of start() takes a boolean flag that indicates
998      * whether the animation should play in reverse. The flag is usually false, but may be set
999      * to true if called from the reverse() method.
1000      *
1001      * <p>The animation started by calling this method will be run on the thread that called
1002      * this method. This thread should have a Looper on it (a runtime exception will be thrown if
1003      * this is not the case). Also, if the animation will animate
1004      * properties of objects in the view hierarchy, then the calling thread should be the UI
1005      * thread for that view hierarchy.</p>
1006      *
1007      * @param playBackwards Whether the ValueAnimator should start playing in reverse.
1008      */
start(boolean playBackwards)1009     private void start(boolean playBackwards) {
1010         if (Looper.myLooper() == null) {
1011             throw new AndroidRuntimeException("Animators may only be run on Looper threads");
1012         }
1013         mReversing = playBackwards;
1014         mSelfPulse = !mSuppressSelfPulseRequested;
1015         // Special case: reversing from seek-to-0 should act as if not seeked at all.
1016         if (playBackwards && mSeekFraction != -1 && mSeekFraction != 0) {
1017             if (mRepeatCount == INFINITE) {
1018                 // Calculate the fraction of the current iteration.
1019                 float fraction = (float) (mSeekFraction - Math.floor(mSeekFraction));
1020                 mSeekFraction = 1 - fraction;
1021             } else {
1022                 mSeekFraction = 1 + mRepeatCount - mSeekFraction;
1023             }
1024         }
1025         mStarted = true;
1026         mPaused = false;
1027         mRunning = false;
1028         mAnimationEndRequested = false;
1029         // Resets mLastFrameTime when start() is called, so that if the animation was running,
1030         // calling start() would put the animation in the
1031         // started-but-not-yet-reached-the-first-frame phase.
1032         mLastFrameTime = -1;
1033         mFirstFrameTime = -1;
1034         mStartTime = -1;
1035         addAnimationCallback(0);
1036 
1037         if (mStartDelay == 0 || mSeekFraction >= 0 || mReversing) {
1038             // If there's no start delay, init the animation and notify start listeners right away
1039             // to be consistent with the previous behavior. Otherwise, postpone this until the first
1040             // frame after the start delay.
1041             startAnimation();
1042             if (mSeekFraction == -1) {
1043                 // No seek, start at play time 0. Note that the reason we are not using fraction 0
1044                 // is because for animations with 0 duration, we want to be consistent with pre-N
1045                 // behavior: skip to the final value immediately.
1046                 setCurrentPlayTime(0);
1047             } else {
1048                 setCurrentFraction(mSeekFraction);
1049             }
1050         }
1051     }
1052 
startWithoutPulsing(boolean inReverse)1053     void startWithoutPulsing(boolean inReverse) {
1054         mSuppressSelfPulseRequested = true;
1055         if (inReverse) {
1056             reverse();
1057         } else {
1058             start();
1059         }
1060         mSuppressSelfPulseRequested = false;
1061     }
1062 
1063     @Override
start()1064     public void start() {
1065         start(false);
1066     }
1067 
1068     @Override
cancel()1069     public void cancel() {
1070         if (Looper.myLooper() == null) {
1071             throw new AndroidRuntimeException("Animators may only be run on Looper threads");
1072         }
1073 
1074         // If end has already been requested, through a previous end() or cancel() call, no-op
1075         // until animation starts again.
1076         if (mAnimationEndRequested) {
1077             return;
1078         }
1079 
1080         // Only cancel if the animation is actually running or has been started and is about
1081         // to run
1082         // Only notify listeners if the animator has actually started
1083         if ((mStarted || mRunning) && mListeners != null) {
1084             if (!mRunning) {
1085                 // If it's not yet running, then start listeners weren't called. Call them now.
1086                 notifyStartListeners();
1087             }
1088             ArrayList<AnimatorListener> tmpListeners =
1089                     (ArrayList<AnimatorListener>) mListeners.clone();
1090             for (AnimatorListener listener : tmpListeners) {
1091                 listener.onAnimationCancel(this);
1092             }
1093         }
1094         endAnimation();
1095 
1096     }
1097 
1098     @Override
end()1099     public void end() {
1100         if (Looper.myLooper() == null) {
1101             throw new AndroidRuntimeException("Animators may only be run on Looper threads");
1102         }
1103         if (!mRunning) {
1104             // Special case if the animation has not yet started; get it ready for ending
1105             startAnimation();
1106             mStarted = true;
1107         } else if (!mInitialized) {
1108             initAnimation();
1109         }
1110         animateValue(shouldPlayBackward(mRepeatCount, mReversing) ? 0f : 1f);
1111         endAnimation();
1112     }
1113 
1114     @Override
resume()1115     public void resume() {
1116         if (Looper.myLooper() == null) {
1117             throw new AndroidRuntimeException("Animators may only be resumed from the same " +
1118                     "thread that the animator was started on");
1119         }
1120         if (mPaused && !mResumed) {
1121             mResumed = true;
1122             if (mPauseTime > 0) {
1123                 addAnimationCallback(0);
1124             }
1125         }
1126         super.resume();
1127     }
1128 
1129     @Override
pause()1130     public void pause() {
1131         boolean previouslyPaused = mPaused;
1132         super.pause();
1133         if (!previouslyPaused && mPaused) {
1134             mPauseTime = -1;
1135             mResumed = false;
1136         }
1137     }
1138 
1139     @Override
isRunning()1140     public boolean isRunning() {
1141         return mRunning;
1142     }
1143 
1144     @Override
isStarted()1145     public boolean isStarted() {
1146         return mStarted;
1147     }
1148 
1149     /**
1150      * Plays the ValueAnimator in reverse. If the animation is already running,
1151      * it will stop itself and play backwards from the point reached when reverse was called.
1152      * If the animation is not currently running, then it will start from the end and
1153      * play backwards. This behavior is only set for the current animation; future playing
1154      * of the animation will use the default behavior of playing forward.
1155      */
1156     @Override
reverse()1157     public void reverse() {
1158         if (isPulsingInternal()) {
1159             long currentTime = AnimationUtils.currentAnimationTimeMillis();
1160             long currentPlayTime = currentTime - mStartTime;
1161             long timeLeft = getScaledDuration() - currentPlayTime;
1162             mStartTime = currentTime - timeLeft;
1163             mStartTimeCommitted = true; // do not allow start time to be compensated for jank
1164             mReversing = !mReversing;
1165         } else if (mStarted) {
1166             mReversing = !mReversing;
1167             end();
1168         } else {
1169             start(true);
1170         }
1171     }
1172 
1173     /**
1174      * @hide
1175      */
1176     @Override
canReverse()1177     public boolean canReverse() {
1178         return true;
1179     }
1180 
1181     /**
1182      * Called internally to end an animation by removing it from the animations list. Must be
1183      * called on the UI thread.
1184      */
endAnimation()1185     private void endAnimation() {
1186         if (mAnimationEndRequested) {
1187             return;
1188         }
1189         removeAnimationCallback();
1190 
1191         mAnimationEndRequested = true;
1192         mPaused = false;
1193         boolean notify = (mStarted || mRunning) && mListeners != null;
1194         if (notify && !mRunning) {
1195             // If it's not yet running, then start listeners weren't called. Call them now.
1196             notifyStartListeners();
1197         }
1198         mRunning = false;
1199         mStarted = false;
1200         mStartListenersCalled = false;
1201         mLastFrameTime = -1;
1202         mFirstFrameTime = -1;
1203         mStartTime = -1;
1204         if (notify && mListeners != null) {
1205             ArrayList<AnimatorListener> tmpListeners =
1206                     (ArrayList<AnimatorListener>) mListeners.clone();
1207             int numListeners = tmpListeners.size();
1208             for (int i = 0; i < numListeners; ++i) {
1209                 tmpListeners.get(i).onAnimationEnd(this, mReversing);
1210             }
1211         }
1212         // mReversing needs to be reset *after* notifying the listeners for the end callbacks.
1213         mReversing = false;
1214         if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1215             Trace.asyncTraceEnd(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1216                     System.identityHashCode(this));
1217         }
1218     }
1219 
1220     /**
1221      * Called internally to start an animation by adding it to the active animations list. Must be
1222      * called on the UI thread.
1223      */
startAnimation()1224     private void startAnimation() {
1225         if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1226             Trace.asyncTraceBegin(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1227                     System.identityHashCode(this));
1228         }
1229 
1230         mAnimationEndRequested = false;
1231         initAnimation();
1232         mRunning = true;
1233         if (mSeekFraction >= 0) {
1234             mOverallFraction = mSeekFraction;
1235         } else {
1236             mOverallFraction = 0f;
1237         }
1238         if (mListeners != null) {
1239             notifyStartListeners();
1240         }
1241     }
1242 
1243     /**
1244      * Internal only: This tracks whether the animation has gotten on the animation loop. Note
1245      * this is different than {@link #isRunning()} in that the latter tracks the time after start()
1246      * is called (or after start delay if any), which may be before the animation loop starts.
1247      */
isPulsingInternal()1248     private boolean isPulsingInternal() {
1249         return mLastFrameTime >= 0;
1250     }
1251 
1252     /**
1253      * Returns the name of this animator for debugging purposes.
1254      */
getNameForTrace()1255     String getNameForTrace() {
1256         return "animator";
1257     }
1258 
1259     /**
1260      * Applies an adjustment to the animation to compensate for jank between when
1261      * the animation first ran and when the frame was drawn.
1262      * @hide
1263      */
commitAnimationFrame(long frameTime)1264     public void commitAnimationFrame(long frameTime) {
1265         if (!mStartTimeCommitted) {
1266             mStartTimeCommitted = true;
1267             long adjustment = frameTime - mLastFrameTime;
1268             if (adjustment > 0) {
1269                 mStartTime += adjustment;
1270                 if (DEBUG) {
1271                     Log.d(TAG, "Adjusted start time by " + adjustment + " ms: " + toString());
1272                 }
1273             }
1274         }
1275     }
1276 
1277     /**
1278      * This internal function processes a single animation frame for a given animation. The
1279      * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1280      * elapsed duration, and therefore
1281      * the elapsed fraction, of the animation. The return value indicates whether the animation
1282      * should be ended (which happens when the elapsed time of the animation exceeds the
1283      * animation's duration, including the repeatCount).
1284      *
1285      * @param currentTime The current time, as tracked by the static timing handler
1286      * @return true if the animation's duration, including any repetitions due to
1287      * <code>repeatCount</code> has been exceeded and the animation should be ended.
1288      */
animateBasedOnTime(long currentTime)1289     boolean animateBasedOnTime(long currentTime) {
1290         boolean done = false;
1291         if (mRunning) {
1292             final long scaledDuration = getScaledDuration();
1293             final float fraction = scaledDuration > 0 ?
1294                     (float)(currentTime - mStartTime) / scaledDuration : 1f;
1295             final float lastFraction = mOverallFraction;
1296             final boolean newIteration = (int) fraction > (int) lastFraction;
1297             final boolean lastIterationFinished = (fraction >= mRepeatCount + 1) &&
1298                     (mRepeatCount != INFINITE);
1299             if (scaledDuration == 0) {
1300                 // 0 duration animator, ignore the repeat count and skip to the end
1301                 done = true;
1302             } else if (newIteration && !lastIterationFinished) {
1303                 // Time to repeat
1304                 if (mListeners != null) {
1305                     int numListeners = mListeners.size();
1306                     for (int i = 0; i < numListeners; ++i) {
1307                         mListeners.get(i).onAnimationRepeat(this);
1308                     }
1309                 }
1310             } else if (lastIterationFinished) {
1311                 done = true;
1312             }
1313             mOverallFraction = clampFraction(fraction);
1314             float currentIterationFraction = getCurrentIterationFraction(
1315                     mOverallFraction, mReversing);
1316             animateValue(currentIterationFraction);
1317         }
1318         return done;
1319     }
1320 
1321     /**
1322      * Internal use only.
1323      *
1324      * This method does not modify any fields of the animation. It should be called when seeking
1325      * in an AnimatorSet. When the last play time and current play time are of different repeat
1326      * iterations,
1327      * {@link android.view.animation.Animation.AnimationListener#onAnimationRepeat(Animation)}
1328      * will be called.
1329      */
1330     @Override
animateBasedOnPlayTime(long currentPlayTime, long lastPlayTime, boolean inReverse)1331     void animateBasedOnPlayTime(long currentPlayTime, long lastPlayTime, boolean inReverse) {
1332         if (currentPlayTime < 0 || lastPlayTime < 0) {
1333             throw new UnsupportedOperationException("Error: Play time should never be negative.");
1334         }
1335 
1336         initAnimation();
1337         // Check whether repeat callback is needed only when repeat count is non-zero
1338         if (mRepeatCount > 0) {
1339             int iteration = (int) (currentPlayTime / mDuration);
1340             int lastIteration = (int) (lastPlayTime / mDuration);
1341 
1342             // Clamp iteration to [0, mRepeatCount]
1343             iteration = Math.min(iteration, mRepeatCount);
1344             lastIteration = Math.min(lastIteration, mRepeatCount);
1345 
1346             if (iteration != lastIteration) {
1347                 if (mListeners != null) {
1348                     int numListeners = mListeners.size();
1349                     for (int i = 0; i < numListeners; ++i) {
1350                         mListeners.get(i).onAnimationRepeat(this);
1351                     }
1352                 }
1353             }
1354         }
1355 
1356         if (mRepeatCount != INFINITE && currentPlayTime >= (mRepeatCount + 1) * mDuration) {
1357             skipToEndValue(inReverse);
1358         } else {
1359             // Find the current fraction:
1360             float fraction = currentPlayTime / (float) mDuration;
1361             fraction = getCurrentIterationFraction(fraction, inReverse);
1362             animateValue(fraction);
1363         }
1364     }
1365 
1366     /**
1367      * Internal use only.
1368      * Skips the animation value to end/start, depending on whether the play direction is forward
1369      * or backward.
1370      *
1371      * @param inReverse whether the end value is based on a reverse direction. If yes, this is
1372      *                  equivalent to skip to start value in a forward playing direction.
1373      */
skipToEndValue(boolean inReverse)1374     void skipToEndValue(boolean inReverse) {
1375         initAnimation();
1376         float endFraction = inReverse ? 0f : 1f;
1377         if (mRepeatCount % 2 == 1 && mRepeatMode == REVERSE) {
1378             // This would end on fraction = 0
1379             endFraction = 0f;
1380         }
1381         animateValue(endFraction);
1382     }
1383 
1384     @Override
isInitialized()1385     boolean isInitialized() {
1386         return mInitialized;
1387     }
1388 
1389     /**
1390      * Processes a frame of the animation, adjusting the start time if needed.
1391      *
1392      * @param frameTime The frame time.
1393      * @return true if the animation has ended.
1394      * @hide
1395      */
doAnimationFrame(long frameTime)1396     public final boolean doAnimationFrame(long frameTime) {
1397         if (mStartTime < 0) {
1398             // First frame. If there is start delay, start delay count down will happen *after* this
1399             // frame.
1400             mStartTime = mReversing ? frameTime : frameTime + (long) (mStartDelay * sDurationScale);
1401         }
1402 
1403         // Handle pause/resume
1404         if (mPaused) {
1405             mPauseTime = frameTime;
1406             removeAnimationCallback();
1407             return false;
1408         } else if (mResumed) {
1409             mResumed = false;
1410             if (mPauseTime > 0) {
1411                 // Offset by the duration that the animation was paused
1412                 mStartTime += (frameTime - mPauseTime);
1413             }
1414         }
1415 
1416         if (!mRunning) {
1417             // If not running, that means the animation is in the start delay phase of a forward
1418             // running animation. In the case of reversing, we want to run start delay in the end.
1419             if (mStartTime > frameTime && mSeekFraction == -1) {
1420                 // This is when no seek fraction is set during start delay. If developers change the
1421                 // seek fraction during the delay, animation will start from the seeked position
1422                 // right away.
1423                 return false;
1424             } else {
1425                 // If mRunning is not set by now, that means non-zero start delay,
1426                 // no seeking, not reversing. At this point, start delay has passed.
1427                 mRunning = true;
1428                 startAnimation();
1429             }
1430         }
1431 
1432         if (mLastFrameTime < 0) {
1433             if (mSeekFraction >= 0) {
1434                 long seekTime = (long) (getScaledDuration() * mSeekFraction);
1435                 mStartTime = frameTime - seekTime;
1436                 mSeekFraction = -1;
1437             }
1438             mStartTimeCommitted = false; // allow start time to be compensated for jank
1439         }
1440         mLastFrameTime = frameTime;
1441         // The frame time might be before the start time during the first frame of
1442         // an animation.  The "current time" must always be on or after the start
1443         // time to avoid animating frames at negative time intervals.  In practice, this
1444         // is very rare and only happens when seeking backwards.
1445         final long currentTime = Math.max(frameTime, mStartTime);
1446         boolean finished = animateBasedOnTime(currentTime);
1447 
1448         if (finished) {
1449             endAnimation();
1450         }
1451         return finished;
1452     }
1453 
1454     @Override
pulseAnimationFrame(long frameTime)1455     boolean pulseAnimationFrame(long frameTime) {
1456         if (mSelfPulse) {
1457             // Pulse animation frame will *always* be after calling start(). If mSelfPulse isn't
1458             // set to false at this point, that means child animators did not call super's start().
1459             // This can happen when the Animator is just a non-animating wrapper around a real
1460             // functional animation. In this case, we can't really pulse a frame into the animation,
1461             // because the animation cannot necessarily be properly initialized (i.e. no start/end
1462             // values set).
1463             return false;
1464         }
1465         return doAnimationFrame(frameTime);
1466     }
1467 
addOneShotCommitCallback()1468     private void addOneShotCommitCallback() {
1469         if (!mSelfPulse) {
1470             return;
1471         }
1472         getAnimationHandler().addOneShotCommitCallback(this);
1473     }
1474 
removeAnimationCallback()1475     private void removeAnimationCallback() {
1476         if (!mSelfPulse) {
1477             return;
1478         }
1479         getAnimationHandler().removeCallback(this);
1480     }
1481 
addAnimationCallback(long delay)1482     private void addAnimationCallback(long delay) {
1483         if (!mSelfPulse) {
1484             return;
1485         }
1486         getAnimationHandler().addAnimationFrameCallback(this, delay);
1487     }
1488 
1489     /**
1490      * Returns the current animation fraction, which is the elapsed/interpolated fraction used in
1491      * the most recent frame update on the animation.
1492      *
1493      * @return Elapsed/interpolated fraction of the animation.
1494      */
getAnimatedFraction()1495     public float getAnimatedFraction() {
1496         return mCurrentFraction;
1497     }
1498 
1499     /**
1500      * This method is called with the elapsed fraction of the animation during every
1501      * animation frame. This function turns the elapsed fraction into an interpolated fraction
1502      * and then into an animated value (from the evaluator. The function is called mostly during
1503      * animation updates, but it is also called when the <code>end()</code>
1504      * function is called, to set the final value on the property.
1505      *
1506      * <p>Overrides of this method must call the superclass to perform the calculation
1507      * of the animated value.</p>
1508      *
1509      * @param fraction The elapsed fraction of the animation.
1510      */
1511     @CallSuper
animateValue(float fraction)1512     void animateValue(float fraction) {
1513         fraction = mInterpolator.getInterpolation(fraction);
1514         mCurrentFraction = fraction;
1515         int numValues = mValues.length;
1516         for (int i = 0; i < numValues; ++i) {
1517             mValues[i].calculateValue(fraction);
1518         }
1519         if (mUpdateListeners != null) {
1520             int numListeners = mUpdateListeners.size();
1521             for (int i = 0; i < numListeners; ++i) {
1522                 mUpdateListeners.get(i).onAnimationUpdate(this);
1523             }
1524         }
1525     }
1526 
1527     @Override
clone()1528     public ValueAnimator clone() {
1529         final ValueAnimator anim = (ValueAnimator) super.clone();
1530         if (mUpdateListeners != null) {
1531             anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>(mUpdateListeners);
1532         }
1533         anim.mSeekFraction = -1;
1534         anim.mReversing = false;
1535         anim.mInitialized = false;
1536         anim.mStarted = false;
1537         anim.mRunning = false;
1538         anim.mPaused = false;
1539         anim.mResumed = false;
1540         anim.mStartListenersCalled = false;
1541         anim.mStartTime = -1;
1542         anim.mStartTimeCommitted = false;
1543         anim.mAnimationEndRequested = false;
1544         anim.mPauseTime = -1;
1545         anim.mLastFrameTime = -1;
1546         anim.mFirstFrameTime = -1;
1547         anim.mOverallFraction = 0;
1548         anim.mCurrentFraction = 0;
1549         anim.mSelfPulse = true;
1550         anim.mSuppressSelfPulseRequested = false;
1551 
1552         PropertyValuesHolder[] oldValues = mValues;
1553         if (oldValues != null) {
1554             int numValues = oldValues.length;
1555             anim.mValues = new PropertyValuesHolder[numValues];
1556             anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1557             for (int i = 0; i < numValues; ++i) {
1558                 PropertyValuesHolder newValuesHolder = oldValues[i].clone();
1559                 anim.mValues[i] = newValuesHolder;
1560                 anim.mValuesMap.put(newValuesHolder.getPropertyName(), newValuesHolder);
1561             }
1562         }
1563         return anim;
1564     }
1565 
1566     /**
1567      * Implementors of this interface can add themselves as update listeners
1568      * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1569      * frame, after the current frame's values have been calculated for that
1570      * <code>ValueAnimator</code>.
1571      */
1572     public static interface AnimatorUpdateListener {
1573         /**
1574          * <p>Notifies the occurrence of another frame of the animation.</p>
1575          *
1576          * @param animation The animation which was repeated.
1577          */
onAnimationUpdate(ValueAnimator animation)1578         void onAnimationUpdate(ValueAnimator animation);
1579 
1580     }
1581 
1582     /**
1583      * Return the number of animations currently running.
1584      *
1585      * Used by StrictMode internally to annotate violations.
1586      * May be called on arbitrary threads!
1587      *
1588      * @hide
1589      */
getCurrentAnimationsCount()1590     public static int getCurrentAnimationsCount() {
1591         return AnimationHandler.getAnimationCount();
1592     }
1593 
1594     @Override
toString()1595     public String toString() {
1596         String returnVal = "ValueAnimator@" + Integer.toHexString(hashCode());
1597         if (mValues != null) {
1598             for (int i = 0; i < mValues.length; ++i) {
1599                 returnVal += "\n    " + mValues[i].toString();
1600             }
1601         }
1602         return returnVal;
1603     }
1604 
1605     /**
1606      * <p>Whether or not the ValueAnimator is allowed to run asynchronously off of
1607      * the UI thread. This is a hint that informs the ValueAnimator that it is
1608      * OK to run the animation off-thread, however ValueAnimator may decide
1609      * that it must run the animation on the UI thread anyway. For example if there
1610      * is an {@link AnimatorUpdateListener} the animation will run on the UI thread,
1611      * regardless of the value of this hint.</p>
1612      *
1613      * <p>Regardless of whether or not the animation runs asynchronously, all
1614      * listener callbacks will be called on the UI thread.</p>
1615      *
1616      * <p>To be able to use this hint the following must be true:</p>
1617      * <ol>
1618      * <li>{@link #getAnimatedFraction()} is not needed (it will return undefined values).</li>
1619      * <li>The animator is immutable while {@link #isStarted()} is true. Requests
1620      *    to change values, duration, delay, etc... may be ignored.</li>
1621      * <li>Lifecycle callback events may be asynchronous. Events such as
1622      *    {@link Animator.AnimatorListener#onAnimationEnd(Animator)} or
1623      *    {@link Animator.AnimatorListener#onAnimationRepeat(Animator)} may end up delayed
1624      *    as they must be posted back to the UI thread, and any actions performed
1625      *    by those callbacks (such as starting new animations) will not happen
1626      *    in the same frame.</li>
1627      * <li>State change requests ({@link #cancel()}, {@link #end()}, {@link #reverse()}, etc...)
1628      *    may be asynchronous. It is guaranteed that all state changes that are
1629      *    performed on the UI thread in the same frame will be applied as a single
1630      *    atomic update, however that frame may be the current frame,
1631      *    the next frame, or some future frame. This will also impact the observed
1632      *    state of the Animator. For example, {@link #isStarted()} may still return true
1633      *    after a call to {@link #end()}. Using the lifecycle callbacks is preferred over
1634      *    queries to {@link #isStarted()}, {@link #isRunning()}, and {@link #isPaused()}
1635      *    for this reason.</li>
1636      * </ol>
1637      * @hide
1638      */
1639     @Override
setAllowRunningAsynchronously(boolean mayRunAsync)1640     public void setAllowRunningAsynchronously(boolean mayRunAsync) {
1641         // It is up to subclasses to support this, if they can.
1642     }
1643 
1644     /**
1645      * @return The {@link AnimationHandler} that will be used to schedule updates for this animator.
1646      * @hide
1647      */
getAnimationHandler()1648     public AnimationHandler getAnimationHandler() {
1649         return AnimationHandler.getInstance();
1650     }
1651 }
1652