1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #if V8_TARGET_ARCH_X87
6
7 #include "src/crankshaft/x87/lithium-codegen-x87.h"
8
9 #include "src/base/bits.h"
10 #include "src/code-factory.h"
11 #include "src/code-stubs.h"
12 #include "src/codegen.h"
13 #include "src/crankshaft/hydrogen-osr.h"
14 #include "src/deoptimizer.h"
15 #include "src/ic/ic.h"
16 #include "src/ic/stub-cache.h"
17 #include "src/x87/frames-x87.h"
18
19 namespace v8 {
20 namespace internal {
21
22 // When invoking builtins, we need to record the safepoint in the middle of
23 // the invoke instruction sequence generated by the macro assembler.
24 class SafepointGenerator final : public CallWrapper {
25 public:
SafepointGenerator(LCodeGen * codegen,LPointerMap * pointers,Safepoint::DeoptMode mode)26 SafepointGenerator(LCodeGen* codegen,
27 LPointerMap* pointers,
28 Safepoint::DeoptMode mode)
29 : codegen_(codegen),
30 pointers_(pointers),
31 deopt_mode_(mode) {}
~SafepointGenerator()32 virtual ~SafepointGenerator() {}
33
BeforeCall(int call_size) const34 void BeforeCall(int call_size) const override {}
35
AfterCall() const36 void AfterCall() const override {
37 codegen_->RecordSafepoint(pointers_, deopt_mode_);
38 }
39
40 private:
41 LCodeGen* codegen_;
42 LPointerMap* pointers_;
43 Safepoint::DeoptMode deopt_mode_;
44 };
45
46
47 #define __ masm()->
48
GenerateCode()49 bool LCodeGen::GenerateCode() {
50 LPhase phase("Z_Code generation", chunk());
51 DCHECK(is_unused());
52 status_ = GENERATING;
53
54 // Open a frame scope to indicate that there is a frame on the stack. The
55 // MANUAL indicates that the scope shouldn't actually generate code to set up
56 // the frame (that is done in GeneratePrologue).
57 FrameScope frame_scope(masm_, StackFrame::MANUAL);
58
59 return GeneratePrologue() &&
60 GenerateBody() &&
61 GenerateDeferredCode() &&
62 GenerateJumpTable() &&
63 GenerateSafepointTable();
64 }
65
66
FinishCode(Handle<Code> code)67 void LCodeGen::FinishCode(Handle<Code> code) {
68 DCHECK(is_done());
69 code->set_stack_slots(GetTotalFrameSlotCount());
70 code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
71 PopulateDeoptimizationData(code);
72 if (info()->ShouldEnsureSpaceForLazyDeopt()) {
73 Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code);
74 }
75 }
76
77
78 #ifdef _MSC_VER
MakeSureStackPagesMapped(int offset)79 void LCodeGen::MakeSureStackPagesMapped(int offset) {
80 const int kPageSize = 4 * KB;
81 for (offset -= kPageSize; offset > 0; offset -= kPageSize) {
82 __ mov(Operand(esp, offset), eax);
83 }
84 }
85 #endif
86
87
GeneratePrologue()88 bool LCodeGen::GeneratePrologue() {
89 DCHECK(is_generating());
90
91 if (info()->IsOptimizing()) {
92 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
93 }
94
95 info()->set_prologue_offset(masm_->pc_offset());
96 if (NeedsEagerFrame()) {
97 DCHECK(!frame_is_built_);
98 frame_is_built_ = true;
99 if (info()->IsStub()) {
100 __ StubPrologue(StackFrame::STUB);
101 } else {
102 __ Prologue(info()->GeneratePreagedPrologue());
103 }
104 }
105
106 // Reserve space for the stack slots needed by the code.
107 int slots = GetStackSlotCount();
108 DCHECK(slots != 0 || !info()->IsOptimizing());
109 if (slots > 0) {
110 __ sub(Operand(esp), Immediate(slots * kPointerSize));
111 #ifdef _MSC_VER
112 MakeSureStackPagesMapped(slots * kPointerSize);
113 #endif
114 if (FLAG_debug_code) {
115 __ push(eax);
116 __ mov(Operand(eax), Immediate(slots));
117 Label loop;
118 __ bind(&loop);
119 __ mov(MemOperand(esp, eax, times_4, 0), Immediate(kSlotsZapValue));
120 __ dec(eax);
121 __ j(not_zero, &loop);
122 __ pop(eax);
123 }
124 }
125
126 // Initailize FPU state.
127 __ fninit();
128
129 return !is_aborted();
130 }
131
132
DoPrologue(LPrologue * instr)133 void LCodeGen::DoPrologue(LPrologue* instr) {
134 Comment(";;; Prologue begin");
135
136 // Possibly allocate a local context.
137 if (info_->scope()->NeedsContext()) {
138 Comment(";;; Allocate local context");
139 bool need_write_barrier = true;
140 // Argument to NewContext is the function, which is still in edi.
141 int slots = info_->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
142 Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
143 if (info()->scope()->is_script_scope()) {
144 __ push(edi);
145 __ Push(info()->scope()->scope_info());
146 __ CallRuntime(Runtime::kNewScriptContext);
147 deopt_mode = Safepoint::kLazyDeopt;
148 } else {
149 if (slots <= FastNewFunctionContextStub::kMaximumSlots) {
150 FastNewFunctionContextStub stub(isolate());
151 __ mov(FastNewFunctionContextDescriptor::SlotsRegister(),
152 Immediate(slots));
153 __ CallStub(&stub);
154 // Result of FastNewFunctionContextStub is always in new space.
155 need_write_barrier = false;
156 } else {
157 __ push(edi);
158 __ CallRuntime(Runtime::kNewFunctionContext);
159 }
160 }
161 RecordSafepoint(deopt_mode);
162
163 // Context is returned in eax. It replaces the context passed to us.
164 // It's saved in the stack and kept live in esi.
165 __ mov(esi, eax);
166 __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), eax);
167
168 // Copy parameters into context if necessary.
169 int num_parameters = info()->scope()->num_parameters();
170 int first_parameter = info()->scope()->has_this_declaration() ? -1 : 0;
171 for (int i = first_parameter; i < num_parameters; i++) {
172 Variable* var = (i == -1) ? info()->scope()->receiver()
173 : info()->scope()->parameter(i);
174 if (var->IsContextSlot()) {
175 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
176 (num_parameters - 1 - i) * kPointerSize;
177 // Load parameter from stack.
178 __ mov(eax, Operand(ebp, parameter_offset));
179 // Store it in the context.
180 int context_offset = Context::SlotOffset(var->index());
181 __ mov(Operand(esi, context_offset), eax);
182 // Update the write barrier. This clobbers eax and ebx.
183 if (need_write_barrier) {
184 __ RecordWriteContextSlot(esi, context_offset, eax, ebx,
185 kDontSaveFPRegs);
186 } else if (FLAG_debug_code) {
187 Label done;
188 __ JumpIfInNewSpace(esi, eax, &done, Label::kNear);
189 __ Abort(kExpectedNewSpaceObject);
190 __ bind(&done);
191 }
192 }
193 }
194 Comment(";;; End allocate local context");
195 }
196
197 Comment(";;; Prologue end");
198 }
199
200
GenerateOsrPrologue()201 void LCodeGen::GenerateOsrPrologue() {
202 // Generate the OSR entry prologue at the first unknown OSR value, or if there
203 // are none, at the OSR entrypoint instruction.
204 if (osr_pc_offset_ >= 0) return;
205
206 osr_pc_offset_ = masm()->pc_offset();
207
208 // Interpreter is the first tier compiler now. It will run the code generated
209 // by TurboFan compiler which will always put "1" on x87 FPU stack.
210 // This behavior will affect crankshaft's x87 FPU stack depth check under
211 // debug mode.
212 // Need to reset the FPU stack here for this scenario.
213 __ fninit();
214
215 // Adjust the frame size, subsuming the unoptimized frame into the
216 // optimized frame.
217 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
218 DCHECK(slots >= 0);
219 __ sub(esp, Immediate(slots * kPointerSize));
220 }
221
222
GenerateBodyInstructionPre(LInstruction * instr)223 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
224 if (instr->IsCall()) {
225 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
226 }
227 if (!instr->IsLazyBailout() && !instr->IsGap()) {
228 safepoints_.BumpLastLazySafepointIndex();
229 }
230 FlushX87StackIfNecessary(instr);
231 }
232
233
GenerateBodyInstructionPost(LInstruction * instr)234 void LCodeGen::GenerateBodyInstructionPost(LInstruction* instr) {
235 // When return from function call, FPU should be initialized again.
236 if (instr->IsCall() && instr->ClobbersDoubleRegisters(isolate())) {
237 bool double_result = instr->HasDoubleRegisterResult();
238 if (double_result) {
239 __ lea(esp, Operand(esp, -kDoubleSize));
240 __ fstp_d(Operand(esp, 0));
241 }
242 __ fninit();
243 if (double_result) {
244 __ fld_d(Operand(esp, 0));
245 __ lea(esp, Operand(esp, kDoubleSize));
246 }
247 }
248 if (instr->IsGoto()) {
249 x87_stack_.LeavingBlock(current_block_, LGoto::cast(instr), this);
250 } else if (FLAG_debug_code && FLAG_enable_slow_asserts &&
251 !instr->IsGap() && !instr->IsReturn()) {
252 if (instr->ClobbersDoubleRegisters(isolate())) {
253 if (instr->HasDoubleRegisterResult()) {
254 DCHECK_EQ(1, x87_stack_.depth());
255 } else {
256 DCHECK_EQ(0, x87_stack_.depth());
257 }
258 }
259 __ VerifyX87StackDepth(x87_stack_.depth());
260 }
261 }
262
263
GenerateJumpTable()264 bool LCodeGen::GenerateJumpTable() {
265 if (!jump_table_.length()) return !is_aborted();
266
267 Label needs_frame;
268 Comment(";;; -------------------- Jump table --------------------");
269
270 for (int i = 0; i < jump_table_.length(); i++) {
271 Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
272 __ bind(&table_entry->label);
273 Address entry = table_entry->address;
274 DeoptComment(table_entry->deopt_info);
275 if (table_entry->needs_frame) {
276 DCHECK(!info()->saves_caller_doubles());
277 __ push(Immediate(ExternalReference::ForDeoptEntry(entry)));
278 __ call(&needs_frame);
279 } else {
280 __ call(entry, RelocInfo::RUNTIME_ENTRY);
281 }
282 }
283 if (needs_frame.is_linked()) {
284 __ bind(&needs_frame);
285 /* stack layout
286 3: entry address
287 2: return address <-- esp
288 1: garbage
289 0: garbage
290 */
291 __ push(MemOperand(esp, 0)); // Copy return address.
292 __ push(MemOperand(esp, 2 * kPointerSize)); // Copy entry address.
293
294 /* stack layout
295 4: entry address
296 3: return address
297 1: return address
298 0: entry address <-- esp
299 */
300 __ mov(MemOperand(esp, 3 * kPointerSize), ebp); // Save ebp.
301 // Fill ebp with the right stack frame address.
302 __ lea(ebp, MemOperand(esp, 3 * kPointerSize));
303
304 // This variant of deopt can only be used with stubs. Since we don't
305 // have a function pointer to install in the stack frame that we're
306 // building, install a special marker there instead.
307 DCHECK(info()->IsStub());
308 __ mov(MemOperand(esp, 2 * kPointerSize),
309 Immediate(Smi::FromInt(StackFrame::STUB)));
310
311 /* stack layout
312 3: old ebp
313 2: stub marker
314 1: return address
315 0: entry address <-- esp
316 */
317 __ ret(0); // Call the continuation without clobbering registers.
318 }
319 return !is_aborted();
320 }
321
322
GenerateDeferredCode()323 bool LCodeGen::GenerateDeferredCode() {
324 DCHECK(is_generating());
325 if (deferred_.length() > 0) {
326 for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
327 LDeferredCode* code = deferred_[i];
328 X87Stack copy(code->x87_stack());
329 x87_stack_ = copy;
330
331 HValue* value =
332 instructions_->at(code->instruction_index())->hydrogen_value();
333 RecordAndWritePosition(value->position());
334
335 Comment(";;; <@%d,#%d> "
336 "-------------------- Deferred %s --------------------",
337 code->instruction_index(),
338 code->instr()->hydrogen_value()->id(),
339 code->instr()->Mnemonic());
340 __ bind(code->entry());
341 if (NeedsDeferredFrame()) {
342 Comment(";;; Build frame");
343 DCHECK(!frame_is_built_);
344 DCHECK(info()->IsStub());
345 frame_is_built_ = true;
346 // Build the frame in such a way that esi isn't trashed.
347 __ push(ebp); // Caller's frame pointer.
348 __ push(Immediate(Smi::FromInt(StackFrame::STUB)));
349 __ lea(ebp, Operand(esp, TypedFrameConstants::kFixedFrameSizeFromFp));
350 Comment(";;; Deferred code");
351 }
352 code->Generate();
353 if (NeedsDeferredFrame()) {
354 __ bind(code->done());
355 Comment(";;; Destroy frame");
356 DCHECK(frame_is_built_);
357 frame_is_built_ = false;
358 __ mov(esp, ebp);
359 __ pop(ebp);
360 }
361 __ jmp(code->exit());
362 }
363 }
364
365 // Deferred code is the last part of the instruction sequence. Mark
366 // the generated code as done unless we bailed out.
367 if (!is_aborted()) status_ = DONE;
368 return !is_aborted();
369 }
370
371
GenerateSafepointTable()372 bool LCodeGen::GenerateSafepointTable() {
373 DCHECK(is_done());
374 if (info()->ShouldEnsureSpaceForLazyDeopt()) {
375 // For lazy deoptimization we need space to patch a call after every call.
376 // Ensure there is always space for such patching, even if the code ends
377 // in a call.
378 int target_offset = masm()->pc_offset() + Deoptimizer::patch_size();
379 while (masm()->pc_offset() < target_offset) {
380 masm()->nop();
381 }
382 }
383 safepoints_.Emit(masm(), GetTotalFrameSlotCount());
384 return !is_aborted();
385 }
386
387
ToRegister(int code) const388 Register LCodeGen::ToRegister(int code) const {
389 return Register::from_code(code);
390 }
391
392
ToX87Register(int code) const393 X87Register LCodeGen::ToX87Register(int code) const {
394 return X87Register::from_code(code);
395 }
396
397
X87LoadForUsage(X87Register reg)398 void LCodeGen::X87LoadForUsage(X87Register reg) {
399 DCHECK(x87_stack_.Contains(reg));
400 x87_stack_.Fxch(reg);
401 x87_stack_.pop();
402 }
403
404
X87LoadForUsage(X87Register reg1,X87Register reg2)405 void LCodeGen::X87LoadForUsage(X87Register reg1, X87Register reg2) {
406 DCHECK(x87_stack_.Contains(reg1));
407 DCHECK(x87_stack_.Contains(reg2));
408 if (reg1.is(reg2) && x87_stack_.depth() == 1) {
409 __ fld(x87_stack_.st(reg1));
410 x87_stack_.push(reg1);
411 x87_stack_.pop();
412 x87_stack_.pop();
413 } else {
414 x87_stack_.Fxch(reg1, 1);
415 x87_stack_.Fxch(reg2);
416 x87_stack_.pop();
417 x87_stack_.pop();
418 }
419 }
420
421
GetLayout()422 int LCodeGen::X87Stack::GetLayout() {
423 int layout = stack_depth_;
424 for (int i = 0; i < stack_depth_; i++) {
425 layout |= (stack_[stack_depth_ - 1 - i].code() << ((i + 1) * 3));
426 }
427
428 return layout;
429 }
430
431
Fxch(X87Register reg,int other_slot)432 void LCodeGen::X87Stack::Fxch(X87Register reg, int other_slot) {
433 DCHECK(is_mutable_);
434 DCHECK(Contains(reg) && stack_depth_ > other_slot);
435 int i = ArrayIndex(reg);
436 int st = st2idx(i);
437 if (st != other_slot) {
438 int other_i = st2idx(other_slot);
439 X87Register other = stack_[other_i];
440 stack_[other_i] = reg;
441 stack_[i] = other;
442 if (st == 0) {
443 __ fxch(other_slot);
444 } else if (other_slot == 0) {
445 __ fxch(st);
446 } else {
447 __ fxch(st);
448 __ fxch(other_slot);
449 __ fxch(st);
450 }
451 }
452 }
453
454
st2idx(int pos)455 int LCodeGen::X87Stack::st2idx(int pos) {
456 return stack_depth_ - pos - 1;
457 }
458
459
ArrayIndex(X87Register reg)460 int LCodeGen::X87Stack::ArrayIndex(X87Register reg) {
461 for (int i = 0; i < stack_depth_; i++) {
462 if (stack_[i].is(reg)) return i;
463 }
464 UNREACHABLE();
465 return -1;
466 }
467
468
Contains(X87Register reg)469 bool LCodeGen::X87Stack::Contains(X87Register reg) {
470 for (int i = 0; i < stack_depth_; i++) {
471 if (stack_[i].is(reg)) return true;
472 }
473 return false;
474 }
475
476
Free(X87Register reg)477 void LCodeGen::X87Stack::Free(X87Register reg) {
478 DCHECK(is_mutable_);
479 DCHECK(Contains(reg));
480 int i = ArrayIndex(reg);
481 int st = st2idx(i);
482 if (st > 0) {
483 // keep track of how fstp(i) changes the order of elements
484 int tos_i = st2idx(0);
485 stack_[i] = stack_[tos_i];
486 }
487 pop();
488 __ fstp(st);
489 }
490
491
X87Mov(X87Register dst,Operand src,X87OperandType opts)492 void LCodeGen::X87Mov(X87Register dst, Operand src, X87OperandType opts) {
493 if (x87_stack_.Contains(dst)) {
494 x87_stack_.Fxch(dst);
495 __ fstp(0);
496 } else {
497 x87_stack_.push(dst);
498 }
499 X87Fld(src, opts);
500 }
501
502
X87Mov(X87Register dst,X87Register src,X87OperandType opts)503 void LCodeGen::X87Mov(X87Register dst, X87Register src, X87OperandType opts) {
504 if (x87_stack_.Contains(dst)) {
505 x87_stack_.Fxch(dst);
506 __ fstp(0);
507 x87_stack_.pop();
508 // Push ST(i) onto the FPU register stack
509 __ fld(x87_stack_.st(src));
510 x87_stack_.push(dst);
511 } else {
512 // Push ST(i) onto the FPU register stack
513 __ fld(x87_stack_.st(src));
514 x87_stack_.push(dst);
515 }
516 }
517
518
X87Fld(Operand src,X87OperandType opts)519 void LCodeGen::X87Fld(Operand src, X87OperandType opts) {
520 DCHECK(!src.is_reg_only());
521 switch (opts) {
522 case kX87DoubleOperand:
523 __ fld_d(src);
524 break;
525 case kX87FloatOperand:
526 __ fld_s(src);
527 break;
528 case kX87IntOperand:
529 __ fild_s(src);
530 break;
531 default:
532 UNREACHABLE();
533 }
534 }
535
536
X87Mov(Operand dst,X87Register src,X87OperandType opts)537 void LCodeGen::X87Mov(Operand dst, X87Register src, X87OperandType opts) {
538 DCHECK(!dst.is_reg_only());
539 x87_stack_.Fxch(src);
540 switch (opts) {
541 case kX87DoubleOperand:
542 __ fst_d(dst);
543 break;
544 case kX87FloatOperand:
545 __ fst_s(dst);
546 break;
547 case kX87IntOperand:
548 __ fist_s(dst);
549 break;
550 default:
551 UNREACHABLE();
552 }
553 }
554
555
PrepareToWrite(X87Register reg)556 void LCodeGen::X87Stack::PrepareToWrite(X87Register reg) {
557 DCHECK(is_mutable_);
558 if (Contains(reg)) {
559 Free(reg);
560 }
561 // Mark this register as the next register to write to
562 stack_[stack_depth_] = reg;
563 }
564
565
CommitWrite(X87Register reg)566 void LCodeGen::X87Stack::CommitWrite(X87Register reg) {
567 DCHECK(is_mutable_);
568 // Assert the reg is prepared to write, but not on the virtual stack yet
569 DCHECK(!Contains(reg) && stack_[stack_depth_].is(reg) &&
570 stack_depth_ < X87Register::kMaxNumAllocatableRegisters);
571 stack_depth_++;
572 }
573
574
X87PrepareBinaryOp(X87Register left,X87Register right,X87Register result)575 void LCodeGen::X87PrepareBinaryOp(
576 X87Register left, X87Register right, X87Register result) {
577 // You need to use DefineSameAsFirst for x87 instructions
578 DCHECK(result.is(left));
579 x87_stack_.Fxch(right, 1);
580 x87_stack_.Fxch(left);
581 }
582
583
FlushIfNecessary(LInstruction * instr,LCodeGen * cgen)584 void LCodeGen::X87Stack::FlushIfNecessary(LInstruction* instr, LCodeGen* cgen) {
585 if (stack_depth_ > 0 && instr->ClobbersDoubleRegisters(isolate())) {
586 bool double_inputs = instr->HasDoubleRegisterInput();
587
588 // Flush stack from tos down, since FreeX87() will mess with tos
589 for (int i = stack_depth_-1; i >= 0; i--) {
590 X87Register reg = stack_[i];
591 // Skip registers which contain the inputs for the next instruction
592 // when flushing the stack
593 if (double_inputs && instr->IsDoubleInput(reg, cgen)) {
594 continue;
595 }
596 Free(reg);
597 if (i < stack_depth_-1) i++;
598 }
599 }
600 if (instr->IsReturn()) {
601 while (stack_depth_ > 0) {
602 __ fstp(0);
603 stack_depth_--;
604 }
605 if (FLAG_debug_code && FLAG_enable_slow_asserts) __ VerifyX87StackDepth(0);
606 }
607 }
608
609
LeavingBlock(int current_block_id,LGoto * goto_instr,LCodeGen * cgen)610 void LCodeGen::X87Stack::LeavingBlock(int current_block_id, LGoto* goto_instr,
611 LCodeGen* cgen) {
612 // For going to a joined block, an explicit LClobberDoubles is inserted before
613 // LGoto. Because all used x87 registers are spilled to stack slots. The
614 // ResolvePhis phase of register allocator could guarantee the two input's x87
615 // stacks have the same layout. So don't check stack_depth_ <= 1 here.
616 int goto_block_id = goto_instr->block_id();
617 if (current_block_id + 1 != goto_block_id) {
618 // If we have a value on the x87 stack on leaving a block, it must be a
619 // phi input. If the next block we compile is not the join block, we have
620 // to discard the stack state.
621 // Before discarding the stack state, we need to save it if the "goto block"
622 // has unreachable last predecessor when FLAG_unreachable_code_elimination.
623 if (FLAG_unreachable_code_elimination) {
624 int length = goto_instr->block()->predecessors()->length();
625 bool has_unreachable_last_predecessor = false;
626 for (int i = 0; i < length; i++) {
627 HBasicBlock* block = goto_instr->block()->predecessors()->at(i);
628 if (block->IsUnreachable() &&
629 (block->block_id() + 1) == goto_block_id) {
630 has_unreachable_last_predecessor = true;
631 }
632 }
633 if (has_unreachable_last_predecessor) {
634 if (cgen->x87_stack_map_.find(goto_block_id) ==
635 cgen->x87_stack_map_.end()) {
636 X87Stack* stack = new (cgen->zone()) X87Stack(*this);
637 cgen->x87_stack_map_.insert(std::make_pair(goto_block_id, stack));
638 }
639 }
640 }
641
642 // Discard the stack state.
643 stack_depth_ = 0;
644 }
645 }
646
647
EmitFlushX87ForDeopt()648 void LCodeGen::EmitFlushX87ForDeopt() {
649 // The deoptimizer does not support X87 Registers. But as long as we
650 // deopt from a stub its not a problem, since we will re-materialize the
651 // original stub inputs, which can't be double registers.
652 // DCHECK(info()->IsStub());
653 if (FLAG_debug_code && FLAG_enable_slow_asserts) {
654 __ pushfd();
655 __ VerifyX87StackDepth(x87_stack_.depth());
656 __ popfd();
657 }
658
659 // Flush X87 stack in the deoptimizer entry.
660 }
661
662
ToRegister(LOperand * op) const663 Register LCodeGen::ToRegister(LOperand* op) const {
664 DCHECK(op->IsRegister());
665 return ToRegister(op->index());
666 }
667
668
ToX87Register(LOperand * op) const669 X87Register LCodeGen::ToX87Register(LOperand* op) const {
670 DCHECK(op->IsDoubleRegister());
671 return ToX87Register(op->index());
672 }
673
674
ToInteger32(LConstantOperand * op) const675 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
676 return ToRepresentation(op, Representation::Integer32());
677 }
678
679
ToRepresentation(LConstantOperand * op,const Representation & r) const680 int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
681 const Representation& r) const {
682 HConstant* constant = chunk_->LookupConstant(op);
683 if (r.IsExternal()) {
684 return reinterpret_cast<int32_t>(
685 constant->ExternalReferenceValue().address());
686 }
687 int32_t value = constant->Integer32Value();
688 if (r.IsInteger32()) return value;
689 DCHECK(r.IsSmiOrTagged());
690 return reinterpret_cast<int32_t>(Smi::FromInt(value));
691 }
692
693
ToHandle(LConstantOperand * op) const694 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
695 HConstant* constant = chunk_->LookupConstant(op);
696 DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
697 return constant->handle(isolate());
698 }
699
700
ToDouble(LConstantOperand * op) const701 double LCodeGen::ToDouble(LConstantOperand* op) const {
702 HConstant* constant = chunk_->LookupConstant(op);
703 DCHECK(constant->HasDoubleValue());
704 return constant->DoubleValue();
705 }
706
707
ToExternalReference(LConstantOperand * op) const708 ExternalReference LCodeGen::ToExternalReference(LConstantOperand* op) const {
709 HConstant* constant = chunk_->LookupConstant(op);
710 DCHECK(constant->HasExternalReferenceValue());
711 return constant->ExternalReferenceValue();
712 }
713
714
IsInteger32(LConstantOperand * op) const715 bool LCodeGen::IsInteger32(LConstantOperand* op) const {
716 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
717 }
718
719
IsSmi(LConstantOperand * op) const720 bool LCodeGen::IsSmi(LConstantOperand* op) const {
721 return chunk_->LookupLiteralRepresentation(op).IsSmi();
722 }
723
724
ArgumentsOffsetWithoutFrame(int index)725 static int ArgumentsOffsetWithoutFrame(int index) {
726 DCHECK(index < 0);
727 return -(index + 1) * kPointerSize + kPCOnStackSize;
728 }
729
730
ToOperand(LOperand * op) const731 Operand LCodeGen::ToOperand(LOperand* op) const {
732 if (op->IsRegister()) return Operand(ToRegister(op));
733 DCHECK(!op->IsDoubleRegister());
734 DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
735 if (NeedsEagerFrame()) {
736 return Operand(ebp, FrameSlotToFPOffset(op->index()));
737 } else {
738 // Retrieve parameter without eager stack-frame relative to the
739 // stack-pointer.
740 return Operand(esp, ArgumentsOffsetWithoutFrame(op->index()));
741 }
742 }
743
744
HighOperand(LOperand * op)745 Operand LCodeGen::HighOperand(LOperand* op) {
746 DCHECK(op->IsDoubleStackSlot());
747 if (NeedsEagerFrame()) {
748 return Operand(ebp, FrameSlotToFPOffset(op->index()) + kPointerSize);
749 } else {
750 // Retrieve parameter without eager stack-frame relative to the
751 // stack-pointer.
752 return Operand(
753 esp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
754 }
755 }
756
757
WriteTranslation(LEnvironment * environment,Translation * translation)758 void LCodeGen::WriteTranslation(LEnvironment* environment,
759 Translation* translation) {
760 if (environment == NULL) return;
761
762 // The translation includes one command per value in the environment.
763 int translation_size = environment->translation_size();
764
765 WriteTranslation(environment->outer(), translation);
766 WriteTranslationFrame(environment, translation);
767
768 int object_index = 0;
769 int dematerialized_index = 0;
770 for (int i = 0; i < translation_size; ++i) {
771 LOperand* value = environment->values()->at(i);
772 AddToTranslation(environment,
773 translation,
774 value,
775 environment->HasTaggedValueAt(i),
776 environment->HasUint32ValueAt(i),
777 &object_index,
778 &dematerialized_index);
779 }
780 }
781
782
AddToTranslation(LEnvironment * environment,Translation * translation,LOperand * op,bool is_tagged,bool is_uint32,int * object_index_pointer,int * dematerialized_index_pointer)783 void LCodeGen::AddToTranslation(LEnvironment* environment,
784 Translation* translation,
785 LOperand* op,
786 bool is_tagged,
787 bool is_uint32,
788 int* object_index_pointer,
789 int* dematerialized_index_pointer) {
790 if (op == LEnvironment::materialization_marker()) {
791 int object_index = (*object_index_pointer)++;
792 if (environment->ObjectIsDuplicateAt(object_index)) {
793 int dupe_of = environment->ObjectDuplicateOfAt(object_index);
794 translation->DuplicateObject(dupe_of);
795 return;
796 }
797 int object_length = environment->ObjectLengthAt(object_index);
798 if (environment->ObjectIsArgumentsAt(object_index)) {
799 translation->BeginArgumentsObject(object_length);
800 } else {
801 translation->BeginCapturedObject(object_length);
802 }
803 int dematerialized_index = *dematerialized_index_pointer;
804 int env_offset = environment->translation_size() + dematerialized_index;
805 *dematerialized_index_pointer += object_length;
806 for (int i = 0; i < object_length; ++i) {
807 LOperand* value = environment->values()->at(env_offset + i);
808 AddToTranslation(environment,
809 translation,
810 value,
811 environment->HasTaggedValueAt(env_offset + i),
812 environment->HasUint32ValueAt(env_offset + i),
813 object_index_pointer,
814 dematerialized_index_pointer);
815 }
816 return;
817 }
818
819 if (op->IsStackSlot()) {
820 int index = op->index();
821 if (is_tagged) {
822 translation->StoreStackSlot(index);
823 } else if (is_uint32) {
824 translation->StoreUint32StackSlot(index);
825 } else {
826 translation->StoreInt32StackSlot(index);
827 }
828 } else if (op->IsDoubleStackSlot()) {
829 int index = op->index();
830 translation->StoreDoubleStackSlot(index);
831 } else if (op->IsRegister()) {
832 Register reg = ToRegister(op);
833 if (is_tagged) {
834 translation->StoreRegister(reg);
835 } else if (is_uint32) {
836 translation->StoreUint32Register(reg);
837 } else {
838 translation->StoreInt32Register(reg);
839 }
840 } else if (op->IsDoubleRegister()) {
841 X87Register reg = ToX87Register(op);
842 translation->StoreDoubleRegister(reg);
843 } else if (op->IsConstantOperand()) {
844 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
845 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
846 translation->StoreLiteral(src_index);
847 } else {
848 UNREACHABLE();
849 }
850 }
851
852
CallCodeGeneric(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr,SafepointMode safepoint_mode)853 void LCodeGen::CallCodeGeneric(Handle<Code> code,
854 RelocInfo::Mode mode,
855 LInstruction* instr,
856 SafepointMode safepoint_mode) {
857 DCHECK(instr != NULL);
858 __ call(code, mode);
859 RecordSafepointWithLazyDeopt(instr, safepoint_mode);
860
861 // Signal that we don't inline smi code before these stubs in the
862 // optimizing code generator.
863 if (code->kind() == Code::BINARY_OP_IC ||
864 code->kind() == Code::COMPARE_IC) {
865 __ nop();
866 }
867 }
868
869
CallCode(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr)870 void LCodeGen::CallCode(Handle<Code> code,
871 RelocInfo::Mode mode,
872 LInstruction* instr) {
873 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
874 }
875
876
CallRuntime(const Runtime::Function * fun,int argc,LInstruction * instr,SaveFPRegsMode save_doubles)877 void LCodeGen::CallRuntime(const Runtime::Function* fun, int argc,
878 LInstruction* instr, SaveFPRegsMode save_doubles) {
879 DCHECK(instr != NULL);
880 DCHECK(instr->HasPointerMap());
881
882 __ CallRuntime(fun, argc, save_doubles);
883
884 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
885
886 DCHECK(info()->is_calling());
887 }
888
889
LoadContextFromDeferred(LOperand * context)890 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
891 if (context->IsRegister()) {
892 if (!ToRegister(context).is(esi)) {
893 __ mov(esi, ToRegister(context));
894 }
895 } else if (context->IsStackSlot()) {
896 __ mov(esi, ToOperand(context));
897 } else if (context->IsConstantOperand()) {
898 HConstant* constant =
899 chunk_->LookupConstant(LConstantOperand::cast(context));
900 __ LoadObject(esi, Handle<Object>::cast(constant->handle(isolate())));
901 } else {
902 UNREACHABLE();
903 }
904 }
905
CallRuntimeFromDeferred(Runtime::FunctionId id,int argc,LInstruction * instr,LOperand * context)906 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
907 int argc,
908 LInstruction* instr,
909 LOperand* context) {
910 LoadContextFromDeferred(context);
911
912 __ CallRuntimeSaveDoubles(id);
913 RecordSafepointWithRegisters(
914 instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
915
916 DCHECK(info()->is_calling());
917 }
918
919
RegisterEnvironmentForDeoptimization(LEnvironment * environment,Safepoint::DeoptMode mode)920 void LCodeGen::RegisterEnvironmentForDeoptimization(
921 LEnvironment* environment, Safepoint::DeoptMode mode) {
922 environment->set_has_been_used();
923 if (!environment->HasBeenRegistered()) {
924 // Physical stack frame layout:
925 // -x ............. -4 0 ..................................... y
926 // [incoming arguments] [spill slots] [pushed outgoing arguments]
927
928 // Layout of the environment:
929 // 0 ..................................................... size-1
930 // [parameters] [locals] [expression stack including arguments]
931
932 // Layout of the translation:
933 // 0 ........................................................ size - 1 + 4
934 // [expression stack including arguments] [locals] [4 words] [parameters]
935 // |>------------ translation_size ------------<|
936
937 int frame_count = 0;
938 int jsframe_count = 0;
939 for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
940 ++frame_count;
941 if (e->frame_type() == JS_FUNCTION) {
942 ++jsframe_count;
943 }
944 }
945 Translation translation(&translations_, frame_count, jsframe_count, zone());
946 WriteTranslation(environment, &translation);
947 int deoptimization_index = deoptimizations_.length();
948 int pc_offset = masm()->pc_offset();
949 environment->Register(deoptimization_index,
950 translation.index(),
951 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
952 deoptimizations_.Add(environment, zone());
953 }
954 }
955
DeoptimizeIf(Condition cc,LInstruction * instr,DeoptimizeReason deopt_reason,Deoptimizer::BailoutType bailout_type)956 void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
957 DeoptimizeReason deopt_reason,
958 Deoptimizer::BailoutType bailout_type) {
959 LEnvironment* environment = instr->environment();
960 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
961 DCHECK(environment->HasBeenRegistered());
962 int id = environment->deoptimization_index();
963 Address entry =
964 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
965 if (entry == NULL) {
966 Abort(kBailoutWasNotPrepared);
967 return;
968 }
969
970 if (DeoptEveryNTimes()) {
971 ExternalReference count = ExternalReference::stress_deopt_count(isolate());
972 Label no_deopt;
973 __ pushfd();
974 __ push(eax);
975 __ mov(eax, Operand::StaticVariable(count));
976 __ sub(eax, Immediate(1));
977 __ j(not_zero, &no_deopt, Label::kNear);
978 if (FLAG_trap_on_deopt) __ int3();
979 __ mov(eax, Immediate(FLAG_deopt_every_n_times));
980 __ mov(Operand::StaticVariable(count), eax);
981 __ pop(eax);
982 __ popfd();
983 DCHECK(frame_is_built_);
984 // Put the x87 stack layout in TOS.
985 if (x87_stack_.depth() > 0) EmitFlushX87ForDeopt();
986 __ push(Immediate(x87_stack_.GetLayout()));
987 __ fild_s(MemOperand(esp, 0));
988 // Don't touch eflags.
989 __ lea(esp, Operand(esp, kPointerSize));
990 __ call(entry, RelocInfo::RUNTIME_ENTRY);
991 __ bind(&no_deopt);
992 __ mov(Operand::StaticVariable(count), eax);
993 __ pop(eax);
994 __ popfd();
995 }
996
997 // Put the x87 stack layout in TOS, so that we can save x87 fp registers in
998 // the correct location.
999 {
1000 Label done;
1001 if (cc != no_condition) __ j(NegateCondition(cc), &done, Label::kNear);
1002 if (x87_stack_.depth() > 0) EmitFlushX87ForDeopt();
1003
1004 int x87_stack_layout = x87_stack_.GetLayout();
1005 __ push(Immediate(x87_stack_layout));
1006 __ fild_s(MemOperand(esp, 0));
1007 // Don't touch eflags.
1008 __ lea(esp, Operand(esp, kPointerSize));
1009 __ bind(&done);
1010 }
1011
1012 if (info()->ShouldTrapOnDeopt()) {
1013 Label done;
1014 if (cc != no_condition) __ j(NegateCondition(cc), &done, Label::kNear);
1015 __ int3();
1016 __ bind(&done);
1017 }
1018
1019 Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id);
1020
1021 DCHECK(info()->IsStub() || frame_is_built_);
1022 if (cc == no_condition && frame_is_built_) {
1023 DeoptComment(deopt_info);
1024 __ call(entry, RelocInfo::RUNTIME_ENTRY);
1025 } else {
1026 Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
1027 !frame_is_built_);
1028 // We often have several deopts to the same entry, reuse the last
1029 // jump entry if this is the case.
1030 if (FLAG_trace_deopt || isolate()->is_profiling() ||
1031 jump_table_.is_empty() ||
1032 !table_entry.IsEquivalentTo(jump_table_.last())) {
1033 jump_table_.Add(table_entry, zone());
1034 }
1035 if (cc == no_condition) {
1036 __ jmp(&jump_table_.last().label);
1037 } else {
1038 __ j(cc, &jump_table_.last().label);
1039 }
1040 }
1041 }
1042
DeoptimizeIf(Condition cc,LInstruction * instr,DeoptimizeReason deopt_reason)1043 void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
1044 DeoptimizeReason deopt_reason) {
1045 Deoptimizer::BailoutType bailout_type = info()->IsStub()
1046 ? Deoptimizer::LAZY
1047 : Deoptimizer::EAGER;
1048 DeoptimizeIf(cc, instr, deopt_reason, bailout_type);
1049 }
1050
1051
RecordSafepointWithLazyDeopt(LInstruction * instr,SafepointMode safepoint_mode)1052 void LCodeGen::RecordSafepointWithLazyDeopt(
1053 LInstruction* instr, SafepointMode safepoint_mode) {
1054 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
1055 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
1056 } else {
1057 DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
1058 RecordSafepointWithRegisters(
1059 instr->pointer_map(), 0, Safepoint::kLazyDeopt);
1060 }
1061 }
1062
1063
RecordSafepoint(LPointerMap * pointers,Safepoint::Kind kind,int arguments,Safepoint::DeoptMode deopt_mode)1064 void LCodeGen::RecordSafepoint(
1065 LPointerMap* pointers,
1066 Safepoint::Kind kind,
1067 int arguments,
1068 Safepoint::DeoptMode deopt_mode) {
1069 DCHECK(kind == expected_safepoint_kind_);
1070 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
1071 Safepoint safepoint =
1072 safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode);
1073 for (int i = 0; i < operands->length(); i++) {
1074 LOperand* pointer = operands->at(i);
1075 if (pointer->IsStackSlot()) {
1076 safepoint.DefinePointerSlot(pointer->index(), zone());
1077 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
1078 safepoint.DefinePointerRegister(ToRegister(pointer), zone());
1079 }
1080 }
1081 }
1082
1083
RecordSafepoint(LPointerMap * pointers,Safepoint::DeoptMode mode)1084 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
1085 Safepoint::DeoptMode mode) {
1086 RecordSafepoint(pointers, Safepoint::kSimple, 0, mode);
1087 }
1088
1089
RecordSafepoint(Safepoint::DeoptMode mode)1090 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode mode) {
1091 LPointerMap empty_pointers(zone());
1092 RecordSafepoint(&empty_pointers, mode);
1093 }
1094
1095
RecordSafepointWithRegisters(LPointerMap * pointers,int arguments,Safepoint::DeoptMode mode)1096 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
1097 int arguments,
1098 Safepoint::DeoptMode mode) {
1099 RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, mode);
1100 }
1101
1102
LabelType(LLabel * label)1103 static const char* LabelType(LLabel* label) {
1104 if (label->is_loop_header()) return " (loop header)";
1105 if (label->is_osr_entry()) return " (OSR entry)";
1106 return "";
1107 }
1108
1109
DoLabel(LLabel * label)1110 void LCodeGen::DoLabel(LLabel* label) {
1111 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
1112 current_instruction_,
1113 label->hydrogen_value()->id(),
1114 label->block_id(),
1115 LabelType(label));
1116 __ bind(label->label());
1117 current_block_ = label->block_id();
1118 if (label->block()->predecessors()->length() > 1) {
1119 // A join block's x87 stack is that of its last visited predecessor.
1120 // If the last visited predecessor block is unreachable, the stack state
1121 // will be wrong. In such case, use the x87 stack of reachable predecessor.
1122 X87StackMap::const_iterator it = x87_stack_map_.find(current_block_);
1123 // Restore x87 stack.
1124 if (it != x87_stack_map_.end()) {
1125 x87_stack_ = *(it->second);
1126 }
1127 }
1128 DoGap(label);
1129 }
1130
1131
DoParallelMove(LParallelMove * move)1132 void LCodeGen::DoParallelMove(LParallelMove* move) {
1133 resolver_.Resolve(move);
1134 }
1135
1136
DoGap(LGap * gap)1137 void LCodeGen::DoGap(LGap* gap) {
1138 for (int i = LGap::FIRST_INNER_POSITION;
1139 i <= LGap::LAST_INNER_POSITION;
1140 i++) {
1141 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
1142 LParallelMove* move = gap->GetParallelMove(inner_pos);
1143 if (move != NULL) DoParallelMove(move);
1144 }
1145 }
1146
1147
DoInstructionGap(LInstructionGap * instr)1148 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
1149 DoGap(instr);
1150 }
1151
1152
DoParameter(LParameter * instr)1153 void LCodeGen::DoParameter(LParameter* instr) {
1154 // Nothing to do.
1155 }
1156
1157
DoUnknownOSRValue(LUnknownOSRValue * instr)1158 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
1159 GenerateOsrPrologue();
1160 }
1161
1162
DoModByPowerOf2I(LModByPowerOf2I * instr)1163 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
1164 Register dividend = ToRegister(instr->dividend());
1165 int32_t divisor = instr->divisor();
1166 DCHECK(dividend.is(ToRegister(instr->result())));
1167
1168 // Theoretically, a variation of the branch-free code for integer division by
1169 // a power of 2 (calculating the remainder via an additional multiplication
1170 // (which gets simplified to an 'and') and subtraction) should be faster, and
1171 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
1172 // indicate that positive dividends are heavily favored, so the branching
1173 // version performs better.
1174 HMod* hmod = instr->hydrogen();
1175 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
1176 Label dividend_is_not_negative, done;
1177 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
1178 __ test(dividend, dividend);
1179 __ j(not_sign, ÷nd_is_not_negative, Label::kNear);
1180 // Note that this is correct even for kMinInt operands.
1181 __ neg(dividend);
1182 __ and_(dividend, mask);
1183 __ neg(dividend);
1184 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1185 DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
1186 }
1187 __ jmp(&done, Label::kNear);
1188 }
1189
1190 __ bind(÷nd_is_not_negative);
1191 __ and_(dividend, mask);
1192 __ bind(&done);
1193 }
1194
1195
DoModByConstI(LModByConstI * instr)1196 void LCodeGen::DoModByConstI(LModByConstI* instr) {
1197 Register dividend = ToRegister(instr->dividend());
1198 int32_t divisor = instr->divisor();
1199 DCHECK(ToRegister(instr->result()).is(eax));
1200
1201 if (divisor == 0) {
1202 DeoptimizeIf(no_condition, instr, DeoptimizeReason::kDivisionByZero);
1203 return;
1204 }
1205
1206 __ TruncatingDiv(dividend, Abs(divisor));
1207 __ imul(edx, edx, Abs(divisor));
1208 __ mov(eax, dividend);
1209 __ sub(eax, edx);
1210
1211 // Check for negative zero.
1212 HMod* hmod = instr->hydrogen();
1213 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1214 Label remainder_not_zero;
1215 __ j(not_zero, &remainder_not_zero, Label::kNear);
1216 __ cmp(dividend, Immediate(0));
1217 DeoptimizeIf(less, instr, DeoptimizeReason::kMinusZero);
1218 __ bind(&remainder_not_zero);
1219 }
1220 }
1221
1222
DoModI(LModI * instr)1223 void LCodeGen::DoModI(LModI* instr) {
1224 HMod* hmod = instr->hydrogen();
1225
1226 Register left_reg = ToRegister(instr->left());
1227 DCHECK(left_reg.is(eax));
1228 Register right_reg = ToRegister(instr->right());
1229 DCHECK(!right_reg.is(eax));
1230 DCHECK(!right_reg.is(edx));
1231 Register result_reg = ToRegister(instr->result());
1232 DCHECK(result_reg.is(edx));
1233
1234 Label done;
1235 // Check for x % 0, idiv would signal a divide error. We have to
1236 // deopt in this case because we can't return a NaN.
1237 if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
1238 __ test(right_reg, Operand(right_reg));
1239 DeoptimizeIf(zero, instr, DeoptimizeReason::kDivisionByZero);
1240 }
1241
1242 // Check for kMinInt % -1, idiv would signal a divide error. We
1243 // have to deopt if we care about -0, because we can't return that.
1244 if (hmod->CheckFlag(HValue::kCanOverflow)) {
1245 Label no_overflow_possible;
1246 __ cmp(left_reg, kMinInt);
1247 __ j(not_equal, &no_overflow_possible, Label::kNear);
1248 __ cmp(right_reg, -1);
1249 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1250 DeoptimizeIf(equal, instr, DeoptimizeReason::kMinusZero);
1251 } else {
1252 __ j(not_equal, &no_overflow_possible, Label::kNear);
1253 __ Move(result_reg, Immediate(0));
1254 __ jmp(&done, Label::kNear);
1255 }
1256 __ bind(&no_overflow_possible);
1257 }
1258
1259 // Sign extend dividend in eax into edx:eax.
1260 __ cdq();
1261
1262 // If we care about -0, test if the dividend is <0 and the result is 0.
1263 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1264 Label positive_left;
1265 __ test(left_reg, Operand(left_reg));
1266 __ j(not_sign, &positive_left, Label::kNear);
1267 __ idiv(right_reg);
1268 __ test(result_reg, Operand(result_reg));
1269 DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
1270 __ jmp(&done, Label::kNear);
1271 __ bind(&positive_left);
1272 }
1273 __ idiv(right_reg);
1274 __ bind(&done);
1275 }
1276
1277
DoDivByPowerOf2I(LDivByPowerOf2I * instr)1278 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
1279 Register dividend = ToRegister(instr->dividend());
1280 int32_t divisor = instr->divisor();
1281 Register result = ToRegister(instr->result());
1282 DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
1283 DCHECK(!result.is(dividend));
1284
1285 // Check for (0 / -x) that will produce negative zero.
1286 HDiv* hdiv = instr->hydrogen();
1287 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1288 __ test(dividend, dividend);
1289 DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
1290 }
1291 // Check for (kMinInt / -1).
1292 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
1293 __ cmp(dividend, kMinInt);
1294 DeoptimizeIf(zero, instr, DeoptimizeReason::kOverflow);
1295 }
1296 // Deoptimize if remainder will not be 0.
1297 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
1298 divisor != 1 && divisor != -1) {
1299 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
1300 __ test(dividend, Immediate(mask));
1301 DeoptimizeIf(not_zero, instr, DeoptimizeReason::kLostPrecision);
1302 }
1303 __ Move(result, dividend);
1304 int32_t shift = WhichPowerOf2Abs(divisor);
1305 if (shift > 0) {
1306 // The arithmetic shift is always OK, the 'if' is an optimization only.
1307 if (shift > 1) __ sar(result, 31);
1308 __ shr(result, 32 - shift);
1309 __ add(result, dividend);
1310 __ sar(result, shift);
1311 }
1312 if (divisor < 0) __ neg(result);
1313 }
1314
1315
DoDivByConstI(LDivByConstI * instr)1316 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
1317 Register dividend = ToRegister(instr->dividend());
1318 int32_t divisor = instr->divisor();
1319 DCHECK(ToRegister(instr->result()).is(edx));
1320
1321 if (divisor == 0) {
1322 DeoptimizeIf(no_condition, instr, DeoptimizeReason::kDivisionByZero);
1323 return;
1324 }
1325
1326 // Check for (0 / -x) that will produce negative zero.
1327 HDiv* hdiv = instr->hydrogen();
1328 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1329 __ test(dividend, dividend);
1330 DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
1331 }
1332
1333 __ TruncatingDiv(dividend, Abs(divisor));
1334 if (divisor < 0) __ neg(edx);
1335
1336 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
1337 __ mov(eax, edx);
1338 __ imul(eax, eax, divisor);
1339 __ sub(eax, dividend);
1340 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kLostPrecision);
1341 }
1342 }
1343
1344
1345 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
DoDivI(LDivI * instr)1346 void LCodeGen::DoDivI(LDivI* instr) {
1347 HBinaryOperation* hdiv = instr->hydrogen();
1348 Register dividend = ToRegister(instr->dividend());
1349 Register divisor = ToRegister(instr->divisor());
1350 Register remainder = ToRegister(instr->temp());
1351 DCHECK(dividend.is(eax));
1352 DCHECK(remainder.is(edx));
1353 DCHECK(ToRegister(instr->result()).is(eax));
1354 DCHECK(!divisor.is(eax));
1355 DCHECK(!divisor.is(edx));
1356
1357 // Check for x / 0.
1358 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1359 __ test(divisor, divisor);
1360 DeoptimizeIf(zero, instr, DeoptimizeReason::kDivisionByZero);
1361 }
1362
1363 // Check for (0 / -x) that will produce negative zero.
1364 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1365 Label dividend_not_zero;
1366 __ test(dividend, dividend);
1367 __ j(not_zero, ÷nd_not_zero, Label::kNear);
1368 __ test(divisor, divisor);
1369 DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero);
1370 __ bind(÷nd_not_zero);
1371 }
1372
1373 // Check for (kMinInt / -1).
1374 if (hdiv->CheckFlag(HValue::kCanOverflow)) {
1375 Label dividend_not_min_int;
1376 __ cmp(dividend, kMinInt);
1377 __ j(not_zero, ÷nd_not_min_int, Label::kNear);
1378 __ cmp(divisor, -1);
1379 DeoptimizeIf(zero, instr, DeoptimizeReason::kOverflow);
1380 __ bind(÷nd_not_min_int);
1381 }
1382
1383 // Sign extend to edx (= remainder).
1384 __ cdq();
1385 __ idiv(divisor);
1386
1387 if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1388 // Deoptimize if remainder is not 0.
1389 __ test(remainder, remainder);
1390 DeoptimizeIf(not_zero, instr, DeoptimizeReason::kLostPrecision);
1391 }
1392 }
1393
1394
DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I * instr)1395 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
1396 Register dividend = ToRegister(instr->dividend());
1397 int32_t divisor = instr->divisor();
1398 DCHECK(dividend.is(ToRegister(instr->result())));
1399
1400 // If the divisor is positive, things are easy: There can be no deopts and we
1401 // can simply do an arithmetic right shift.
1402 if (divisor == 1) return;
1403 int32_t shift = WhichPowerOf2Abs(divisor);
1404 if (divisor > 1) {
1405 __ sar(dividend, shift);
1406 return;
1407 }
1408
1409 // If the divisor is negative, we have to negate and handle edge cases.
1410 __ neg(dividend);
1411 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1412 DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
1413 }
1414
1415 // Dividing by -1 is basically negation, unless we overflow.
1416 if (divisor == -1) {
1417 if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1418 DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
1419 }
1420 return;
1421 }
1422
1423 // If the negation could not overflow, simply shifting is OK.
1424 if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1425 __ sar(dividend, shift);
1426 return;
1427 }
1428
1429 Label not_kmin_int, done;
1430 __ j(no_overflow, ¬_kmin_int, Label::kNear);
1431 __ mov(dividend, Immediate(kMinInt / divisor));
1432 __ jmp(&done, Label::kNear);
1433 __ bind(¬_kmin_int);
1434 __ sar(dividend, shift);
1435 __ bind(&done);
1436 }
1437
1438
DoFlooringDivByConstI(LFlooringDivByConstI * instr)1439 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
1440 Register dividend = ToRegister(instr->dividend());
1441 int32_t divisor = instr->divisor();
1442 DCHECK(ToRegister(instr->result()).is(edx));
1443
1444 if (divisor == 0) {
1445 DeoptimizeIf(no_condition, instr, DeoptimizeReason::kDivisionByZero);
1446 return;
1447 }
1448
1449 // Check for (0 / -x) that will produce negative zero.
1450 HMathFloorOfDiv* hdiv = instr->hydrogen();
1451 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1452 __ test(dividend, dividend);
1453 DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
1454 }
1455
1456 // Easy case: We need no dynamic check for the dividend and the flooring
1457 // division is the same as the truncating division.
1458 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
1459 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
1460 __ TruncatingDiv(dividend, Abs(divisor));
1461 if (divisor < 0) __ neg(edx);
1462 return;
1463 }
1464
1465 // In the general case we may need to adjust before and after the truncating
1466 // division to get a flooring division.
1467 Register temp = ToRegister(instr->temp3());
1468 DCHECK(!temp.is(dividend) && !temp.is(eax) && !temp.is(edx));
1469 Label needs_adjustment, done;
1470 __ cmp(dividend, Immediate(0));
1471 __ j(divisor > 0 ? less : greater, &needs_adjustment, Label::kNear);
1472 __ TruncatingDiv(dividend, Abs(divisor));
1473 if (divisor < 0) __ neg(edx);
1474 __ jmp(&done, Label::kNear);
1475 __ bind(&needs_adjustment);
1476 __ lea(temp, Operand(dividend, divisor > 0 ? 1 : -1));
1477 __ TruncatingDiv(temp, Abs(divisor));
1478 if (divisor < 0) __ neg(edx);
1479 __ dec(edx);
1480 __ bind(&done);
1481 }
1482
1483
1484 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
DoFlooringDivI(LFlooringDivI * instr)1485 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
1486 HBinaryOperation* hdiv = instr->hydrogen();
1487 Register dividend = ToRegister(instr->dividend());
1488 Register divisor = ToRegister(instr->divisor());
1489 Register remainder = ToRegister(instr->temp());
1490 Register result = ToRegister(instr->result());
1491 DCHECK(dividend.is(eax));
1492 DCHECK(remainder.is(edx));
1493 DCHECK(result.is(eax));
1494 DCHECK(!divisor.is(eax));
1495 DCHECK(!divisor.is(edx));
1496
1497 // Check for x / 0.
1498 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1499 __ test(divisor, divisor);
1500 DeoptimizeIf(zero, instr, DeoptimizeReason::kDivisionByZero);
1501 }
1502
1503 // Check for (0 / -x) that will produce negative zero.
1504 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1505 Label dividend_not_zero;
1506 __ test(dividend, dividend);
1507 __ j(not_zero, ÷nd_not_zero, Label::kNear);
1508 __ test(divisor, divisor);
1509 DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero);
1510 __ bind(÷nd_not_zero);
1511 }
1512
1513 // Check for (kMinInt / -1).
1514 if (hdiv->CheckFlag(HValue::kCanOverflow)) {
1515 Label dividend_not_min_int;
1516 __ cmp(dividend, kMinInt);
1517 __ j(not_zero, ÷nd_not_min_int, Label::kNear);
1518 __ cmp(divisor, -1);
1519 DeoptimizeIf(zero, instr, DeoptimizeReason::kOverflow);
1520 __ bind(÷nd_not_min_int);
1521 }
1522
1523 // Sign extend to edx (= remainder).
1524 __ cdq();
1525 __ idiv(divisor);
1526
1527 Label done;
1528 __ test(remainder, remainder);
1529 __ j(zero, &done, Label::kNear);
1530 __ xor_(remainder, divisor);
1531 __ sar(remainder, 31);
1532 __ add(result, remainder);
1533 __ bind(&done);
1534 }
1535
1536
DoMulI(LMulI * instr)1537 void LCodeGen::DoMulI(LMulI* instr) {
1538 Register left = ToRegister(instr->left());
1539 LOperand* right = instr->right();
1540
1541 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1542 __ mov(ToRegister(instr->temp()), left);
1543 }
1544
1545 if (right->IsConstantOperand()) {
1546 // Try strength reductions on the multiplication.
1547 // All replacement instructions are at most as long as the imul
1548 // and have better latency.
1549 int constant = ToInteger32(LConstantOperand::cast(right));
1550 if (constant == -1) {
1551 __ neg(left);
1552 } else if (constant == 0) {
1553 __ xor_(left, Operand(left));
1554 } else if (constant == 2) {
1555 __ add(left, Operand(left));
1556 } else if (!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1557 // If we know that the multiplication can't overflow, it's safe to
1558 // use instructions that don't set the overflow flag for the
1559 // multiplication.
1560 switch (constant) {
1561 case 1:
1562 // Do nothing.
1563 break;
1564 case 3:
1565 __ lea(left, Operand(left, left, times_2, 0));
1566 break;
1567 case 4:
1568 __ shl(left, 2);
1569 break;
1570 case 5:
1571 __ lea(left, Operand(left, left, times_4, 0));
1572 break;
1573 case 8:
1574 __ shl(left, 3);
1575 break;
1576 case 9:
1577 __ lea(left, Operand(left, left, times_8, 0));
1578 break;
1579 case 16:
1580 __ shl(left, 4);
1581 break;
1582 default:
1583 __ imul(left, left, constant);
1584 break;
1585 }
1586 } else {
1587 __ imul(left, left, constant);
1588 }
1589 } else {
1590 if (instr->hydrogen()->representation().IsSmi()) {
1591 __ SmiUntag(left);
1592 }
1593 __ imul(left, ToOperand(right));
1594 }
1595
1596 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1597 DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
1598 }
1599
1600 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1601 // Bail out if the result is supposed to be negative zero.
1602 Label done;
1603 __ test(left, Operand(left));
1604 __ j(not_zero, &done);
1605 if (right->IsConstantOperand()) {
1606 if (ToInteger32(LConstantOperand::cast(right)) < 0) {
1607 DeoptimizeIf(no_condition, instr, DeoptimizeReason::kMinusZero);
1608 } else if (ToInteger32(LConstantOperand::cast(right)) == 0) {
1609 __ cmp(ToRegister(instr->temp()), Immediate(0));
1610 DeoptimizeIf(less, instr, DeoptimizeReason::kMinusZero);
1611 }
1612 } else {
1613 // Test the non-zero operand for negative sign.
1614 __ or_(ToRegister(instr->temp()), ToOperand(right));
1615 DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero);
1616 }
1617 __ bind(&done);
1618 }
1619 }
1620
1621
DoBitI(LBitI * instr)1622 void LCodeGen::DoBitI(LBitI* instr) {
1623 LOperand* left = instr->left();
1624 LOperand* right = instr->right();
1625 DCHECK(left->Equals(instr->result()));
1626 DCHECK(left->IsRegister());
1627
1628 if (right->IsConstantOperand()) {
1629 int32_t right_operand =
1630 ToRepresentation(LConstantOperand::cast(right),
1631 instr->hydrogen()->representation());
1632 switch (instr->op()) {
1633 case Token::BIT_AND:
1634 __ and_(ToRegister(left), right_operand);
1635 break;
1636 case Token::BIT_OR:
1637 __ or_(ToRegister(left), right_operand);
1638 break;
1639 case Token::BIT_XOR:
1640 if (right_operand == int32_t(~0)) {
1641 __ not_(ToRegister(left));
1642 } else {
1643 __ xor_(ToRegister(left), right_operand);
1644 }
1645 break;
1646 default:
1647 UNREACHABLE();
1648 break;
1649 }
1650 } else {
1651 switch (instr->op()) {
1652 case Token::BIT_AND:
1653 __ and_(ToRegister(left), ToOperand(right));
1654 break;
1655 case Token::BIT_OR:
1656 __ or_(ToRegister(left), ToOperand(right));
1657 break;
1658 case Token::BIT_XOR:
1659 __ xor_(ToRegister(left), ToOperand(right));
1660 break;
1661 default:
1662 UNREACHABLE();
1663 break;
1664 }
1665 }
1666 }
1667
1668
DoShiftI(LShiftI * instr)1669 void LCodeGen::DoShiftI(LShiftI* instr) {
1670 LOperand* left = instr->left();
1671 LOperand* right = instr->right();
1672 DCHECK(left->Equals(instr->result()));
1673 DCHECK(left->IsRegister());
1674 if (right->IsRegister()) {
1675 DCHECK(ToRegister(right).is(ecx));
1676
1677 switch (instr->op()) {
1678 case Token::ROR:
1679 __ ror_cl(ToRegister(left));
1680 break;
1681 case Token::SAR:
1682 __ sar_cl(ToRegister(left));
1683 break;
1684 case Token::SHR:
1685 __ shr_cl(ToRegister(left));
1686 if (instr->can_deopt()) {
1687 __ test(ToRegister(left), ToRegister(left));
1688 DeoptimizeIf(sign, instr, DeoptimizeReason::kNegativeValue);
1689 }
1690 break;
1691 case Token::SHL:
1692 __ shl_cl(ToRegister(left));
1693 break;
1694 default:
1695 UNREACHABLE();
1696 break;
1697 }
1698 } else {
1699 int value = ToInteger32(LConstantOperand::cast(right));
1700 uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1701 switch (instr->op()) {
1702 case Token::ROR:
1703 if (shift_count == 0 && instr->can_deopt()) {
1704 __ test(ToRegister(left), ToRegister(left));
1705 DeoptimizeIf(sign, instr, DeoptimizeReason::kNegativeValue);
1706 } else {
1707 __ ror(ToRegister(left), shift_count);
1708 }
1709 break;
1710 case Token::SAR:
1711 if (shift_count != 0) {
1712 __ sar(ToRegister(left), shift_count);
1713 }
1714 break;
1715 case Token::SHR:
1716 if (shift_count != 0) {
1717 __ shr(ToRegister(left), shift_count);
1718 } else if (instr->can_deopt()) {
1719 __ test(ToRegister(left), ToRegister(left));
1720 DeoptimizeIf(sign, instr, DeoptimizeReason::kNegativeValue);
1721 }
1722 break;
1723 case Token::SHL:
1724 if (shift_count != 0) {
1725 if (instr->hydrogen_value()->representation().IsSmi() &&
1726 instr->can_deopt()) {
1727 if (shift_count != 1) {
1728 __ shl(ToRegister(left), shift_count - 1);
1729 }
1730 __ SmiTag(ToRegister(left));
1731 DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
1732 } else {
1733 __ shl(ToRegister(left), shift_count);
1734 }
1735 }
1736 break;
1737 default:
1738 UNREACHABLE();
1739 break;
1740 }
1741 }
1742 }
1743
1744
DoSubI(LSubI * instr)1745 void LCodeGen::DoSubI(LSubI* instr) {
1746 LOperand* left = instr->left();
1747 LOperand* right = instr->right();
1748 DCHECK(left->Equals(instr->result()));
1749
1750 if (right->IsConstantOperand()) {
1751 __ sub(ToOperand(left),
1752 ToImmediate(right, instr->hydrogen()->representation()));
1753 } else {
1754 __ sub(ToRegister(left), ToOperand(right));
1755 }
1756 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1757 DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
1758 }
1759 }
1760
1761
DoConstantI(LConstantI * instr)1762 void LCodeGen::DoConstantI(LConstantI* instr) {
1763 __ Move(ToRegister(instr->result()), Immediate(instr->value()));
1764 }
1765
1766
DoConstantS(LConstantS * instr)1767 void LCodeGen::DoConstantS(LConstantS* instr) {
1768 __ Move(ToRegister(instr->result()), Immediate(instr->value()));
1769 }
1770
1771
DoConstantD(LConstantD * instr)1772 void LCodeGen::DoConstantD(LConstantD* instr) {
1773 uint64_t const bits = instr->bits();
1774 uint32_t const lower = static_cast<uint32_t>(bits);
1775 uint32_t const upper = static_cast<uint32_t>(bits >> 32);
1776 DCHECK(instr->result()->IsDoubleRegister());
1777
1778 __ push(Immediate(upper));
1779 __ push(Immediate(lower));
1780 X87Register reg = ToX87Register(instr->result());
1781 X87Mov(reg, Operand(esp, 0));
1782 __ add(Operand(esp), Immediate(kDoubleSize));
1783 }
1784
1785
DoConstantE(LConstantE * instr)1786 void LCodeGen::DoConstantE(LConstantE* instr) {
1787 __ lea(ToRegister(instr->result()), Operand::StaticVariable(instr->value()));
1788 }
1789
1790
DoConstantT(LConstantT * instr)1791 void LCodeGen::DoConstantT(LConstantT* instr) {
1792 Register reg = ToRegister(instr->result());
1793 Handle<Object> object = instr->value(isolate());
1794 AllowDeferredHandleDereference smi_check;
1795 __ LoadObject(reg, object);
1796 }
1797
1798
BuildSeqStringOperand(Register string,LOperand * index,String::Encoding encoding)1799 Operand LCodeGen::BuildSeqStringOperand(Register string,
1800 LOperand* index,
1801 String::Encoding encoding) {
1802 if (index->IsConstantOperand()) {
1803 int offset = ToRepresentation(LConstantOperand::cast(index),
1804 Representation::Integer32());
1805 if (encoding == String::TWO_BYTE_ENCODING) {
1806 offset *= kUC16Size;
1807 }
1808 STATIC_ASSERT(kCharSize == 1);
1809 return FieldOperand(string, SeqString::kHeaderSize + offset);
1810 }
1811 return FieldOperand(
1812 string, ToRegister(index),
1813 encoding == String::ONE_BYTE_ENCODING ? times_1 : times_2,
1814 SeqString::kHeaderSize);
1815 }
1816
1817
DoSeqStringGetChar(LSeqStringGetChar * instr)1818 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
1819 String::Encoding encoding = instr->hydrogen()->encoding();
1820 Register result = ToRegister(instr->result());
1821 Register string = ToRegister(instr->string());
1822
1823 if (FLAG_debug_code) {
1824 __ push(string);
1825 __ mov(string, FieldOperand(string, HeapObject::kMapOffset));
1826 __ movzx_b(string, FieldOperand(string, Map::kInstanceTypeOffset));
1827
1828 __ and_(string, Immediate(kStringRepresentationMask | kStringEncodingMask));
1829 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1830 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1831 __ cmp(string, Immediate(encoding == String::ONE_BYTE_ENCODING
1832 ? one_byte_seq_type : two_byte_seq_type));
1833 __ Check(equal, kUnexpectedStringType);
1834 __ pop(string);
1835 }
1836
1837 Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1838 if (encoding == String::ONE_BYTE_ENCODING) {
1839 __ movzx_b(result, operand);
1840 } else {
1841 __ movzx_w(result, operand);
1842 }
1843 }
1844
1845
DoSeqStringSetChar(LSeqStringSetChar * instr)1846 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
1847 String::Encoding encoding = instr->hydrogen()->encoding();
1848 Register string = ToRegister(instr->string());
1849
1850 if (FLAG_debug_code) {
1851 Register value = ToRegister(instr->value());
1852 Register index = ToRegister(instr->index());
1853 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1854 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1855 int encoding_mask =
1856 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
1857 ? one_byte_seq_type : two_byte_seq_type;
1858 __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
1859 }
1860
1861 Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1862 if (instr->value()->IsConstantOperand()) {
1863 int value = ToRepresentation(LConstantOperand::cast(instr->value()),
1864 Representation::Integer32());
1865 DCHECK_LE(0, value);
1866 if (encoding == String::ONE_BYTE_ENCODING) {
1867 DCHECK_LE(value, String::kMaxOneByteCharCode);
1868 __ mov_b(operand, static_cast<int8_t>(value));
1869 } else {
1870 DCHECK_LE(value, String::kMaxUtf16CodeUnit);
1871 __ mov_w(operand, static_cast<int16_t>(value));
1872 }
1873 } else {
1874 Register value = ToRegister(instr->value());
1875 if (encoding == String::ONE_BYTE_ENCODING) {
1876 __ mov_b(operand, value);
1877 } else {
1878 __ mov_w(operand, value);
1879 }
1880 }
1881 }
1882
1883
DoAddI(LAddI * instr)1884 void LCodeGen::DoAddI(LAddI* instr) {
1885 LOperand* left = instr->left();
1886 LOperand* right = instr->right();
1887
1888 if (LAddI::UseLea(instr->hydrogen()) && !left->Equals(instr->result())) {
1889 if (right->IsConstantOperand()) {
1890 int32_t offset = ToRepresentation(LConstantOperand::cast(right),
1891 instr->hydrogen()->representation());
1892 __ lea(ToRegister(instr->result()), MemOperand(ToRegister(left), offset));
1893 } else {
1894 Operand address(ToRegister(left), ToRegister(right), times_1, 0);
1895 __ lea(ToRegister(instr->result()), address);
1896 }
1897 } else {
1898 if (right->IsConstantOperand()) {
1899 __ add(ToOperand(left),
1900 ToImmediate(right, instr->hydrogen()->representation()));
1901 } else {
1902 __ add(ToRegister(left), ToOperand(right));
1903 }
1904 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1905 DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
1906 }
1907 }
1908 }
1909
1910
DoMathMinMax(LMathMinMax * instr)1911 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
1912 LOperand* left = instr->left();
1913 LOperand* right = instr->right();
1914 DCHECK(left->Equals(instr->result()));
1915 HMathMinMax::Operation operation = instr->hydrogen()->operation();
1916 if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
1917 Label return_left;
1918 Condition condition = (operation == HMathMinMax::kMathMin)
1919 ? less_equal
1920 : greater_equal;
1921 if (right->IsConstantOperand()) {
1922 Operand left_op = ToOperand(left);
1923 Immediate immediate = ToImmediate(LConstantOperand::cast(instr->right()),
1924 instr->hydrogen()->representation());
1925 __ cmp(left_op, immediate);
1926 __ j(condition, &return_left, Label::kNear);
1927 __ mov(left_op, immediate);
1928 } else {
1929 Register left_reg = ToRegister(left);
1930 Operand right_op = ToOperand(right);
1931 __ cmp(left_reg, right_op);
1932 __ j(condition, &return_left, Label::kNear);
1933 __ mov(left_reg, right_op);
1934 }
1935 __ bind(&return_left);
1936 } else {
1937 DCHECK(instr->hydrogen()->representation().IsDouble());
1938 Label check_nan_left, check_zero, return_left, return_right;
1939 Condition condition = (operation == HMathMinMax::kMathMin) ? below : above;
1940 X87Register left_reg = ToX87Register(left);
1941 X87Register right_reg = ToX87Register(right);
1942
1943 X87PrepareBinaryOp(left_reg, right_reg, ToX87Register(instr->result()));
1944 __ fld(1);
1945 __ fld(1);
1946 __ FCmp();
1947 __ j(parity_even, &check_nan_left, Label::kNear); // At least one NaN.
1948 __ j(equal, &check_zero, Label::kNear); // left == right.
1949 __ j(condition, &return_left, Label::kNear);
1950 __ jmp(&return_right, Label::kNear);
1951
1952 __ bind(&check_zero);
1953 __ fld(0);
1954 __ fldz();
1955 __ FCmp();
1956 __ j(not_equal, &return_left, Label::kNear); // left == right != 0.
1957 // At this point, both left and right are either 0 or -0.
1958 if (operation == HMathMinMax::kMathMin) {
1959 // Push st0 and st1 to stack, then pop them to temp registers and OR them,
1960 // load it to left.
1961 Register scratch_reg = ToRegister(instr->temp());
1962 __ fld(1);
1963 __ fld(1);
1964 __ sub(esp, Immediate(2 * kPointerSize));
1965 __ fstp_s(MemOperand(esp, 0));
1966 __ fstp_s(MemOperand(esp, kPointerSize));
1967 __ pop(scratch_reg);
1968 __ or_(MemOperand(esp, 0), scratch_reg);
1969 X87Mov(left_reg, MemOperand(esp, 0), kX87FloatOperand);
1970 __ pop(scratch_reg); // restore esp
1971 } else {
1972 // Since we operate on +0 and/or -0, addsd and andsd have the same effect.
1973 // Should put the result in stX0
1974 __ fadd_i(1);
1975 }
1976 __ jmp(&return_left, Label::kNear);
1977
1978 __ bind(&check_nan_left);
1979 __ fld(0);
1980 __ fld(0);
1981 __ FCmp(); // NaN check.
1982 __ j(parity_even, &return_left, Label::kNear); // left == NaN.
1983
1984 __ bind(&return_right);
1985 X87Mov(left_reg, right_reg);
1986
1987 __ bind(&return_left);
1988 }
1989 }
1990
1991
DoArithmeticD(LArithmeticD * instr)1992 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1993 X87Register left = ToX87Register(instr->left());
1994 X87Register right = ToX87Register(instr->right());
1995 X87Register result = ToX87Register(instr->result());
1996 if (instr->op() != Token::MOD) {
1997 X87PrepareBinaryOp(left, right, result);
1998 }
1999 // Set the precision control to double-precision.
2000 __ X87SetFPUCW(0x027F);
2001 switch (instr->op()) {
2002 case Token::ADD:
2003 __ fadd_i(1);
2004 break;
2005 case Token::SUB:
2006 __ fsub_i(1);
2007 break;
2008 case Token::MUL:
2009 __ fmul_i(1);
2010 break;
2011 case Token::DIV:
2012 __ fdiv_i(1);
2013 break;
2014 case Token::MOD: {
2015 // Pass two doubles as arguments on the stack.
2016 __ PrepareCallCFunction(4, eax);
2017 X87Mov(Operand(esp, 1 * kDoubleSize), right);
2018 X87Mov(Operand(esp, 0), left);
2019 X87Free(right);
2020 DCHECK(left.is(result));
2021 X87PrepareToWrite(result);
2022 __ CallCFunction(
2023 ExternalReference::mod_two_doubles_operation(isolate()),
2024 4);
2025
2026 // Return value is in st(0) on ia32.
2027 X87CommitWrite(result);
2028 break;
2029 }
2030 default:
2031 UNREACHABLE();
2032 break;
2033 }
2034
2035 // Restore the default value of control word.
2036 __ X87SetFPUCW(0x037F);
2037 }
2038
2039
DoArithmeticT(LArithmeticT * instr)2040 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
2041 DCHECK(ToRegister(instr->context()).is(esi));
2042 DCHECK(ToRegister(instr->left()).is(edx));
2043 DCHECK(ToRegister(instr->right()).is(eax));
2044 DCHECK(ToRegister(instr->result()).is(eax));
2045
2046 Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
2047 CallCode(code, RelocInfo::CODE_TARGET, instr);
2048 }
2049
2050
2051 template<class InstrType>
EmitBranch(InstrType instr,Condition cc)2052 void LCodeGen::EmitBranch(InstrType instr, Condition cc) {
2053 int left_block = instr->TrueDestination(chunk_);
2054 int right_block = instr->FalseDestination(chunk_);
2055
2056 int next_block = GetNextEmittedBlock();
2057
2058 if (right_block == left_block || cc == no_condition) {
2059 EmitGoto(left_block);
2060 } else if (left_block == next_block) {
2061 __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
2062 } else if (right_block == next_block) {
2063 __ j(cc, chunk_->GetAssemblyLabel(left_block));
2064 } else {
2065 __ j(cc, chunk_->GetAssemblyLabel(left_block));
2066 __ jmp(chunk_->GetAssemblyLabel(right_block));
2067 }
2068 }
2069
2070
2071 template <class InstrType>
EmitTrueBranch(InstrType instr,Condition cc)2072 void LCodeGen::EmitTrueBranch(InstrType instr, Condition cc) {
2073 int true_block = instr->TrueDestination(chunk_);
2074 if (cc == no_condition) {
2075 __ jmp(chunk_->GetAssemblyLabel(true_block));
2076 } else {
2077 __ j(cc, chunk_->GetAssemblyLabel(true_block));
2078 }
2079 }
2080
2081
2082 template<class InstrType>
EmitFalseBranch(InstrType instr,Condition cc)2083 void LCodeGen::EmitFalseBranch(InstrType instr, Condition cc) {
2084 int false_block = instr->FalseDestination(chunk_);
2085 if (cc == no_condition) {
2086 __ jmp(chunk_->GetAssemblyLabel(false_block));
2087 } else {
2088 __ j(cc, chunk_->GetAssemblyLabel(false_block));
2089 }
2090 }
2091
2092
DoBranch(LBranch * instr)2093 void LCodeGen::DoBranch(LBranch* instr) {
2094 Representation r = instr->hydrogen()->value()->representation();
2095 if (r.IsSmiOrInteger32()) {
2096 Register reg = ToRegister(instr->value());
2097 __ test(reg, Operand(reg));
2098 EmitBranch(instr, not_zero);
2099 } else if (r.IsDouble()) {
2100 X87Register reg = ToX87Register(instr->value());
2101 X87LoadForUsage(reg);
2102 __ fldz();
2103 __ FCmp();
2104 EmitBranch(instr, not_zero);
2105 } else {
2106 DCHECK(r.IsTagged());
2107 Register reg = ToRegister(instr->value());
2108 HType type = instr->hydrogen()->value()->type();
2109 if (type.IsBoolean()) {
2110 DCHECK(!info()->IsStub());
2111 __ cmp(reg, factory()->true_value());
2112 EmitBranch(instr, equal);
2113 } else if (type.IsSmi()) {
2114 DCHECK(!info()->IsStub());
2115 __ test(reg, Operand(reg));
2116 EmitBranch(instr, not_equal);
2117 } else if (type.IsJSArray()) {
2118 DCHECK(!info()->IsStub());
2119 EmitBranch(instr, no_condition);
2120 } else if (type.IsHeapNumber()) {
2121 UNREACHABLE();
2122 } else if (type.IsString()) {
2123 DCHECK(!info()->IsStub());
2124 __ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
2125 EmitBranch(instr, not_equal);
2126 } else {
2127 ToBooleanHints expected = instr->hydrogen()->expected_input_types();
2128 if (expected == ToBooleanHint::kNone) expected = ToBooleanHint::kAny;
2129
2130 if (expected & ToBooleanHint::kUndefined) {
2131 // undefined -> false.
2132 __ cmp(reg, factory()->undefined_value());
2133 __ j(equal, instr->FalseLabel(chunk_));
2134 }
2135 if (expected & ToBooleanHint::kBoolean) {
2136 // true -> true.
2137 __ cmp(reg, factory()->true_value());
2138 __ j(equal, instr->TrueLabel(chunk_));
2139 // false -> false.
2140 __ cmp(reg, factory()->false_value());
2141 __ j(equal, instr->FalseLabel(chunk_));
2142 }
2143 if (expected & ToBooleanHint::kNull) {
2144 // 'null' -> false.
2145 __ cmp(reg, factory()->null_value());
2146 __ j(equal, instr->FalseLabel(chunk_));
2147 }
2148
2149 if (expected & ToBooleanHint::kSmallInteger) {
2150 // Smis: 0 -> false, all other -> true.
2151 __ test(reg, Operand(reg));
2152 __ j(equal, instr->FalseLabel(chunk_));
2153 __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
2154 } else if (expected & ToBooleanHint::kNeedsMap) {
2155 // If we need a map later and have a Smi -> deopt.
2156 __ test(reg, Immediate(kSmiTagMask));
2157 DeoptimizeIf(zero, instr, DeoptimizeReason::kSmi);
2158 }
2159
2160 Register map = no_reg; // Keep the compiler happy.
2161 if (expected & ToBooleanHint::kNeedsMap) {
2162 map = ToRegister(instr->temp());
2163 DCHECK(!map.is(reg));
2164 __ mov(map, FieldOperand(reg, HeapObject::kMapOffset));
2165
2166 if (expected & ToBooleanHint::kCanBeUndetectable) {
2167 // Undetectable -> false.
2168 __ test_b(FieldOperand(map, Map::kBitFieldOffset),
2169 Immediate(1 << Map::kIsUndetectable));
2170 __ j(not_zero, instr->FalseLabel(chunk_));
2171 }
2172 }
2173
2174 if (expected & ToBooleanHint::kReceiver) {
2175 // spec object -> true.
2176 __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
2177 __ j(above_equal, instr->TrueLabel(chunk_));
2178 }
2179
2180 if (expected & ToBooleanHint::kString) {
2181 // String value -> false iff empty.
2182 Label not_string;
2183 __ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
2184 __ j(above_equal, ¬_string, Label::kNear);
2185 __ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
2186 __ j(not_zero, instr->TrueLabel(chunk_));
2187 __ jmp(instr->FalseLabel(chunk_));
2188 __ bind(¬_string);
2189 }
2190
2191 if (expected & ToBooleanHint::kSymbol) {
2192 // Symbol value -> true.
2193 __ CmpInstanceType(map, SYMBOL_TYPE);
2194 __ j(equal, instr->TrueLabel(chunk_));
2195 }
2196
2197 if (expected & ToBooleanHint::kSimdValue) {
2198 // SIMD value -> true.
2199 __ CmpInstanceType(map, SIMD128_VALUE_TYPE);
2200 __ j(equal, instr->TrueLabel(chunk_));
2201 }
2202
2203 if (expected & ToBooleanHint::kHeapNumber) {
2204 // heap number -> false iff +0, -0, or NaN.
2205 Label not_heap_number;
2206 __ cmp(FieldOperand(reg, HeapObject::kMapOffset),
2207 factory()->heap_number_map());
2208 __ j(not_equal, ¬_heap_number, Label::kNear);
2209 __ fldz();
2210 __ fld_d(FieldOperand(reg, HeapNumber::kValueOffset));
2211 __ FCmp();
2212 __ j(zero, instr->FalseLabel(chunk_));
2213 __ jmp(instr->TrueLabel(chunk_));
2214 __ bind(¬_heap_number);
2215 }
2216
2217 if (expected != ToBooleanHint::kAny) {
2218 // We've seen something for the first time -> deopt.
2219 // This can only happen if we are not generic already.
2220 DeoptimizeIf(no_condition, instr, DeoptimizeReason::kUnexpectedObject);
2221 }
2222 }
2223 }
2224 }
2225
2226
EmitGoto(int block)2227 void LCodeGen::EmitGoto(int block) {
2228 if (!IsNextEmittedBlock(block)) {
2229 __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
2230 }
2231 }
2232
2233
DoClobberDoubles(LClobberDoubles * instr)2234 void LCodeGen::DoClobberDoubles(LClobberDoubles* instr) {
2235 }
2236
2237
DoGoto(LGoto * instr)2238 void LCodeGen::DoGoto(LGoto* instr) {
2239 EmitGoto(instr->block_id());
2240 }
2241
2242
TokenToCondition(Token::Value op,bool is_unsigned)2243 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
2244 Condition cond = no_condition;
2245 switch (op) {
2246 case Token::EQ:
2247 case Token::EQ_STRICT:
2248 cond = equal;
2249 break;
2250 case Token::NE:
2251 case Token::NE_STRICT:
2252 cond = not_equal;
2253 break;
2254 case Token::LT:
2255 cond = is_unsigned ? below : less;
2256 break;
2257 case Token::GT:
2258 cond = is_unsigned ? above : greater;
2259 break;
2260 case Token::LTE:
2261 cond = is_unsigned ? below_equal : less_equal;
2262 break;
2263 case Token::GTE:
2264 cond = is_unsigned ? above_equal : greater_equal;
2265 break;
2266 case Token::IN:
2267 case Token::INSTANCEOF:
2268 default:
2269 UNREACHABLE();
2270 }
2271 return cond;
2272 }
2273
2274
DoCompareNumericAndBranch(LCompareNumericAndBranch * instr)2275 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2276 LOperand* left = instr->left();
2277 LOperand* right = instr->right();
2278 bool is_unsigned =
2279 instr->is_double() ||
2280 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2281 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2282 Condition cc = TokenToCondition(instr->op(), is_unsigned);
2283
2284 if (left->IsConstantOperand() && right->IsConstantOperand()) {
2285 // We can statically evaluate the comparison.
2286 double left_val = ToDouble(LConstantOperand::cast(left));
2287 double right_val = ToDouble(LConstantOperand::cast(right));
2288 int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
2289 ? instr->TrueDestination(chunk_)
2290 : instr->FalseDestination(chunk_);
2291 EmitGoto(next_block);
2292 } else {
2293 if (instr->is_double()) {
2294 X87LoadForUsage(ToX87Register(right), ToX87Register(left));
2295 __ FCmp();
2296 // Don't base result on EFLAGS when a NaN is involved. Instead
2297 // jump to the false block.
2298 __ j(parity_even, instr->FalseLabel(chunk_));
2299 } else {
2300 if (right->IsConstantOperand()) {
2301 __ cmp(ToOperand(left),
2302 ToImmediate(right, instr->hydrogen()->representation()));
2303 } else if (left->IsConstantOperand()) {
2304 __ cmp(ToOperand(right),
2305 ToImmediate(left, instr->hydrogen()->representation()));
2306 // We commuted the operands, so commute the condition.
2307 cc = CommuteCondition(cc);
2308 } else {
2309 __ cmp(ToRegister(left), ToOperand(right));
2310 }
2311 }
2312 EmitBranch(instr, cc);
2313 }
2314 }
2315
2316
DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch * instr)2317 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2318 Register left = ToRegister(instr->left());
2319
2320 if (instr->right()->IsConstantOperand()) {
2321 Handle<Object> right = ToHandle(LConstantOperand::cast(instr->right()));
2322 __ CmpObject(left, right);
2323 } else {
2324 Operand right = ToOperand(instr->right());
2325 __ cmp(left, right);
2326 }
2327 EmitBranch(instr, equal);
2328 }
2329
2330
DoCmpHoleAndBranch(LCmpHoleAndBranch * instr)2331 void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
2332 if (instr->hydrogen()->representation().IsTagged()) {
2333 Register input_reg = ToRegister(instr->object());
2334 __ cmp(input_reg, factory()->the_hole_value());
2335 EmitBranch(instr, equal);
2336 return;
2337 }
2338
2339 // Put the value to the top of stack
2340 X87Register src = ToX87Register(instr->object());
2341 X87LoadForUsage(src);
2342 __ fld(0);
2343 __ fld(0);
2344 __ FCmp();
2345 Label ok;
2346 __ j(parity_even, &ok, Label::kNear);
2347 __ fstp(0);
2348 EmitFalseBranch(instr, no_condition);
2349 __ bind(&ok);
2350
2351
2352 __ sub(esp, Immediate(kDoubleSize));
2353 __ fstp_d(MemOperand(esp, 0));
2354
2355 __ add(esp, Immediate(kDoubleSize));
2356 int offset = sizeof(kHoleNanUpper32);
2357 __ cmp(MemOperand(esp, -offset), Immediate(kHoleNanUpper32));
2358 EmitBranch(instr, equal);
2359 }
2360
2361
EmitIsString(Register input,Register temp1,Label * is_not_string,SmiCheck check_needed=INLINE_SMI_CHECK)2362 Condition LCodeGen::EmitIsString(Register input,
2363 Register temp1,
2364 Label* is_not_string,
2365 SmiCheck check_needed = INLINE_SMI_CHECK) {
2366 if (check_needed == INLINE_SMI_CHECK) {
2367 __ JumpIfSmi(input, is_not_string);
2368 }
2369
2370 Condition cond = masm_->IsObjectStringType(input, temp1, temp1);
2371
2372 return cond;
2373 }
2374
2375
DoIsStringAndBranch(LIsStringAndBranch * instr)2376 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
2377 Register reg = ToRegister(instr->value());
2378 Register temp = ToRegister(instr->temp());
2379
2380 SmiCheck check_needed =
2381 instr->hydrogen()->value()->type().IsHeapObject()
2382 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2383
2384 Condition true_cond = EmitIsString(
2385 reg, temp, instr->FalseLabel(chunk_), check_needed);
2386
2387 EmitBranch(instr, true_cond);
2388 }
2389
2390
DoIsSmiAndBranch(LIsSmiAndBranch * instr)2391 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
2392 Operand input = ToOperand(instr->value());
2393
2394 __ test(input, Immediate(kSmiTagMask));
2395 EmitBranch(instr, zero);
2396 }
2397
2398
DoIsUndetectableAndBranch(LIsUndetectableAndBranch * instr)2399 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
2400 Register input = ToRegister(instr->value());
2401 Register temp = ToRegister(instr->temp());
2402
2403 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2404 STATIC_ASSERT(kSmiTag == 0);
2405 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2406 }
2407 __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
2408 __ test_b(FieldOperand(temp, Map::kBitFieldOffset),
2409 Immediate(1 << Map::kIsUndetectable));
2410 EmitBranch(instr, not_zero);
2411 }
2412
2413
ComputeCompareCondition(Token::Value op)2414 static Condition ComputeCompareCondition(Token::Value op) {
2415 switch (op) {
2416 case Token::EQ_STRICT:
2417 case Token::EQ:
2418 return equal;
2419 case Token::LT:
2420 return less;
2421 case Token::GT:
2422 return greater;
2423 case Token::LTE:
2424 return less_equal;
2425 case Token::GTE:
2426 return greater_equal;
2427 default:
2428 UNREACHABLE();
2429 return no_condition;
2430 }
2431 }
2432
2433
DoStringCompareAndBranch(LStringCompareAndBranch * instr)2434 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
2435 DCHECK(ToRegister(instr->context()).is(esi));
2436 DCHECK(ToRegister(instr->left()).is(edx));
2437 DCHECK(ToRegister(instr->right()).is(eax));
2438
2439 Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code();
2440 CallCode(code, RelocInfo::CODE_TARGET, instr);
2441 __ CompareRoot(eax, Heap::kTrueValueRootIndex);
2442 EmitBranch(instr, equal);
2443 }
2444
2445
TestType(HHasInstanceTypeAndBranch * instr)2446 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2447 InstanceType from = instr->from();
2448 InstanceType to = instr->to();
2449 if (from == FIRST_TYPE) return to;
2450 DCHECK(from == to || to == LAST_TYPE);
2451 return from;
2452 }
2453
2454
BranchCondition(HHasInstanceTypeAndBranch * instr)2455 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2456 InstanceType from = instr->from();
2457 InstanceType to = instr->to();
2458 if (from == to) return equal;
2459 if (to == LAST_TYPE) return above_equal;
2460 if (from == FIRST_TYPE) return below_equal;
2461 UNREACHABLE();
2462 return equal;
2463 }
2464
2465
DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch * instr)2466 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2467 Register input = ToRegister(instr->value());
2468 Register temp = ToRegister(instr->temp());
2469
2470 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2471 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2472 }
2473
2474 __ CmpObjectType(input, TestType(instr->hydrogen()), temp);
2475 EmitBranch(instr, BranchCondition(instr->hydrogen()));
2476 }
2477
2478 // Branches to a label or falls through with the answer in the z flag. Trashes
2479 // the temp registers, but not the input.
EmitClassOfTest(Label * is_true,Label * is_false,Handle<String> class_name,Register input,Register temp,Register temp2)2480 void LCodeGen::EmitClassOfTest(Label* is_true,
2481 Label* is_false,
2482 Handle<String>class_name,
2483 Register input,
2484 Register temp,
2485 Register temp2) {
2486 DCHECK(!input.is(temp));
2487 DCHECK(!input.is(temp2));
2488 DCHECK(!temp.is(temp2));
2489 __ JumpIfSmi(input, is_false);
2490
2491 __ CmpObjectType(input, FIRST_FUNCTION_TYPE, temp);
2492 STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
2493 if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
2494 __ j(above_equal, is_true);
2495 } else {
2496 __ j(above_equal, is_false);
2497 }
2498
2499 // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
2500 // Check if the constructor in the map is a function.
2501 __ GetMapConstructor(temp, temp, temp2);
2502 // Objects with a non-function constructor have class 'Object'.
2503 __ CmpInstanceType(temp2, JS_FUNCTION_TYPE);
2504 if (String::Equals(class_name, isolate()->factory()->Object_string())) {
2505 __ j(not_equal, is_true);
2506 } else {
2507 __ j(not_equal, is_false);
2508 }
2509
2510 // temp now contains the constructor function. Grab the
2511 // instance class name from there.
2512 __ mov(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
2513 __ mov(temp, FieldOperand(temp,
2514 SharedFunctionInfo::kInstanceClassNameOffset));
2515 // The class name we are testing against is internalized since it's a literal.
2516 // The name in the constructor is internalized because of the way the context
2517 // is booted. This routine isn't expected to work for random API-created
2518 // classes and it doesn't have to because you can't access it with natives
2519 // syntax. Since both sides are internalized it is sufficient to use an
2520 // identity comparison.
2521 __ cmp(temp, class_name);
2522 // End with the answer in the z flag.
2523 }
2524
2525
DoClassOfTestAndBranch(LClassOfTestAndBranch * instr)2526 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2527 Register input = ToRegister(instr->value());
2528 Register temp = ToRegister(instr->temp());
2529 Register temp2 = ToRegister(instr->temp2());
2530
2531 Handle<String> class_name = instr->hydrogen()->class_name();
2532
2533 EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2534 class_name, input, temp, temp2);
2535
2536 EmitBranch(instr, equal);
2537 }
2538
2539
DoCmpMapAndBranch(LCmpMapAndBranch * instr)2540 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2541 Register reg = ToRegister(instr->value());
2542 __ cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
2543 EmitBranch(instr, equal);
2544 }
2545
2546
DoHasInPrototypeChainAndBranch(LHasInPrototypeChainAndBranch * instr)2547 void LCodeGen::DoHasInPrototypeChainAndBranch(
2548 LHasInPrototypeChainAndBranch* instr) {
2549 Register const object = ToRegister(instr->object());
2550 Register const object_map = ToRegister(instr->scratch());
2551 Register const object_prototype = object_map;
2552 Register const prototype = ToRegister(instr->prototype());
2553
2554 // The {object} must be a spec object. It's sufficient to know that {object}
2555 // is not a smi, since all other non-spec objects have {null} prototypes and
2556 // will be ruled out below.
2557 if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
2558 __ test(object, Immediate(kSmiTagMask));
2559 EmitFalseBranch(instr, zero);
2560 }
2561
2562 // Loop through the {object}s prototype chain looking for the {prototype}.
2563 __ mov(object_map, FieldOperand(object, HeapObject::kMapOffset));
2564 Label loop;
2565 __ bind(&loop);
2566
2567 // Deoptimize if the object needs to be access checked.
2568 __ test_b(FieldOperand(object_map, Map::kBitFieldOffset),
2569 Immediate(1 << Map::kIsAccessCheckNeeded));
2570 DeoptimizeIf(not_zero, instr, DeoptimizeReason::kAccessCheck);
2571 // Deoptimize for proxies.
2572 __ CmpInstanceType(object_map, JS_PROXY_TYPE);
2573 DeoptimizeIf(equal, instr, DeoptimizeReason::kProxy);
2574
2575 __ mov(object_prototype, FieldOperand(object_map, Map::kPrototypeOffset));
2576 __ cmp(object_prototype, factory()->null_value());
2577 EmitFalseBranch(instr, equal);
2578 __ cmp(object_prototype, prototype);
2579 EmitTrueBranch(instr, equal);
2580 __ mov(object_map, FieldOperand(object_prototype, HeapObject::kMapOffset));
2581 __ jmp(&loop);
2582 }
2583
2584
DoCmpT(LCmpT * instr)2585 void LCodeGen::DoCmpT(LCmpT* instr) {
2586 Token::Value op = instr->op();
2587
2588 Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
2589 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2590
2591 Condition condition = ComputeCompareCondition(op);
2592 Label true_value, done;
2593 __ test(eax, Operand(eax));
2594 __ j(condition, &true_value, Label::kNear);
2595 __ mov(ToRegister(instr->result()), factory()->false_value());
2596 __ jmp(&done, Label::kNear);
2597 __ bind(&true_value);
2598 __ mov(ToRegister(instr->result()), factory()->true_value());
2599 __ bind(&done);
2600 }
2601
EmitReturn(LReturn * instr)2602 void LCodeGen::EmitReturn(LReturn* instr) {
2603 int extra_value_count = 1;
2604
2605 if (instr->has_constant_parameter_count()) {
2606 int parameter_count = ToInteger32(instr->constant_parameter_count());
2607 __ Ret((parameter_count + extra_value_count) * kPointerSize, ecx);
2608 } else {
2609 DCHECK(info()->IsStub()); // Functions would need to drop one more value.
2610 Register reg = ToRegister(instr->parameter_count());
2611 // The argument count parameter is a smi
2612 __ SmiUntag(reg);
2613 Register return_addr_reg = reg.is(ecx) ? ebx : ecx;
2614
2615 // emit code to restore stack based on instr->parameter_count()
2616 __ pop(return_addr_reg); // save return address
2617 __ shl(reg, kPointerSizeLog2);
2618 __ add(esp, reg);
2619 __ jmp(return_addr_reg);
2620 }
2621 }
2622
2623
DoReturn(LReturn * instr)2624 void LCodeGen::DoReturn(LReturn* instr) {
2625 if (FLAG_trace && info()->IsOptimizing()) {
2626 // Preserve the return value on the stack and rely on the runtime call
2627 // to return the value in the same register. We're leaving the code
2628 // managed by the register allocator and tearing down the frame, it's
2629 // safe to write to the context register.
2630 __ push(eax);
2631 __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
2632 __ CallRuntime(Runtime::kTraceExit);
2633 }
2634 if (NeedsEagerFrame()) {
2635 __ mov(esp, ebp);
2636 __ pop(ebp);
2637 }
2638
2639 EmitReturn(instr);
2640 }
2641
2642
DoLoadContextSlot(LLoadContextSlot * instr)2643 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2644 Register context = ToRegister(instr->context());
2645 Register result = ToRegister(instr->result());
2646 __ mov(result, ContextOperand(context, instr->slot_index()));
2647
2648 if (instr->hydrogen()->RequiresHoleCheck()) {
2649 __ cmp(result, factory()->the_hole_value());
2650 if (instr->hydrogen()->DeoptimizesOnHole()) {
2651 DeoptimizeIf(equal, instr, DeoptimizeReason::kHole);
2652 } else {
2653 Label is_not_hole;
2654 __ j(not_equal, &is_not_hole, Label::kNear);
2655 __ mov(result, factory()->undefined_value());
2656 __ bind(&is_not_hole);
2657 }
2658 }
2659 }
2660
2661
DoStoreContextSlot(LStoreContextSlot * instr)2662 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
2663 Register context = ToRegister(instr->context());
2664 Register value = ToRegister(instr->value());
2665
2666 Label skip_assignment;
2667
2668 Operand target = ContextOperand(context, instr->slot_index());
2669 if (instr->hydrogen()->RequiresHoleCheck()) {
2670 __ cmp(target, factory()->the_hole_value());
2671 if (instr->hydrogen()->DeoptimizesOnHole()) {
2672 DeoptimizeIf(equal, instr, DeoptimizeReason::kHole);
2673 } else {
2674 __ j(not_equal, &skip_assignment, Label::kNear);
2675 }
2676 }
2677
2678 __ mov(target, value);
2679 if (instr->hydrogen()->NeedsWriteBarrier()) {
2680 SmiCheck check_needed =
2681 instr->hydrogen()->value()->type().IsHeapObject()
2682 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2683 Register temp = ToRegister(instr->temp());
2684 int offset = Context::SlotOffset(instr->slot_index());
2685 __ RecordWriteContextSlot(context, offset, value, temp, kSaveFPRegs,
2686 EMIT_REMEMBERED_SET, check_needed);
2687 }
2688
2689 __ bind(&skip_assignment);
2690 }
2691
2692
DoLoadNamedField(LLoadNamedField * instr)2693 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
2694 HObjectAccess access = instr->hydrogen()->access();
2695 int offset = access.offset();
2696
2697 if (access.IsExternalMemory()) {
2698 Register result = ToRegister(instr->result());
2699 MemOperand operand = instr->object()->IsConstantOperand()
2700 ? MemOperand::StaticVariable(ToExternalReference(
2701 LConstantOperand::cast(instr->object())))
2702 : MemOperand(ToRegister(instr->object()), offset);
2703 __ Load(result, operand, access.representation());
2704 return;
2705 }
2706
2707 Register object = ToRegister(instr->object());
2708 if (instr->hydrogen()->representation().IsDouble()) {
2709 X87Mov(ToX87Register(instr->result()), FieldOperand(object, offset));
2710 return;
2711 }
2712
2713 Register result = ToRegister(instr->result());
2714 if (!access.IsInobject()) {
2715 __ mov(result, FieldOperand(object, JSObject::kPropertiesOffset));
2716 object = result;
2717 }
2718 __ Load(result, FieldOperand(object, offset), access.representation());
2719 }
2720
2721
EmitPushTaggedOperand(LOperand * operand)2722 void LCodeGen::EmitPushTaggedOperand(LOperand* operand) {
2723 DCHECK(!operand->IsDoubleRegister());
2724 if (operand->IsConstantOperand()) {
2725 Handle<Object> object = ToHandle(LConstantOperand::cast(operand));
2726 AllowDeferredHandleDereference smi_check;
2727 if (object->IsSmi()) {
2728 __ Push(Handle<Smi>::cast(object));
2729 } else {
2730 __ PushHeapObject(Handle<HeapObject>::cast(object));
2731 }
2732 } else if (operand->IsRegister()) {
2733 __ push(ToRegister(operand));
2734 } else {
2735 __ push(ToOperand(operand));
2736 }
2737 }
2738
2739
DoLoadFunctionPrototype(LLoadFunctionPrototype * instr)2740 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
2741 Register function = ToRegister(instr->function());
2742 Register temp = ToRegister(instr->temp());
2743 Register result = ToRegister(instr->result());
2744
2745 // Get the prototype or initial map from the function.
2746 __ mov(result,
2747 FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2748
2749 // Check that the function has a prototype or an initial map.
2750 __ cmp(Operand(result), Immediate(factory()->the_hole_value()));
2751 DeoptimizeIf(equal, instr, DeoptimizeReason::kHole);
2752
2753 // If the function does not have an initial map, we're done.
2754 Label done;
2755 __ CmpObjectType(result, MAP_TYPE, temp);
2756 __ j(not_equal, &done, Label::kNear);
2757
2758 // Get the prototype from the initial map.
2759 __ mov(result, FieldOperand(result, Map::kPrototypeOffset));
2760
2761 // All done.
2762 __ bind(&done);
2763 }
2764
2765
DoLoadRoot(LLoadRoot * instr)2766 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
2767 Register result = ToRegister(instr->result());
2768 __ LoadRoot(result, instr->index());
2769 }
2770
2771
DoAccessArgumentsAt(LAccessArgumentsAt * instr)2772 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
2773 Register arguments = ToRegister(instr->arguments());
2774 Register result = ToRegister(instr->result());
2775 if (instr->length()->IsConstantOperand() &&
2776 instr->index()->IsConstantOperand()) {
2777 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
2778 int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
2779 int index = (const_length - const_index) + 1;
2780 __ mov(result, Operand(arguments, index * kPointerSize));
2781 } else {
2782 Register length = ToRegister(instr->length());
2783 Operand index = ToOperand(instr->index());
2784 // There are two words between the frame pointer and the last argument.
2785 // Subtracting from length accounts for one of them add one more.
2786 __ sub(length, index);
2787 __ mov(result, Operand(arguments, length, times_4, kPointerSize));
2788 }
2789 }
2790
2791
DoLoadKeyedExternalArray(LLoadKeyed * instr)2792 void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
2793 ElementsKind elements_kind = instr->elements_kind();
2794 LOperand* key = instr->key();
2795 if (!key->IsConstantOperand() &&
2796 ExternalArrayOpRequiresTemp(instr->hydrogen()->key()->representation(),
2797 elements_kind)) {
2798 __ SmiUntag(ToRegister(key));
2799 }
2800 Operand operand(BuildFastArrayOperand(
2801 instr->elements(),
2802 key,
2803 instr->hydrogen()->key()->representation(),
2804 elements_kind,
2805 instr->base_offset()));
2806 if (elements_kind == FLOAT32_ELEMENTS) {
2807 X87Mov(ToX87Register(instr->result()), operand, kX87FloatOperand);
2808 } else if (elements_kind == FLOAT64_ELEMENTS) {
2809 X87Mov(ToX87Register(instr->result()), operand);
2810 } else {
2811 Register result(ToRegister(instr->result()));
2812 switch (elements_kind) {
2813 case INT8_ELEMENTS:
2814 __ movsx_b(result, operand);
2815 break;
2816 case UINT8_ELEMENTS:
2817 case UINT8_CLAMPED_ELEMENTS:
2818 __ movzx_b(result, operand);
2819 break;
2820 case INT16_ELEMENTS:
2821 __ movsx_w(result, operand);
2822 break;
2823 case UINT16_ELEMENTS:
2824 __ movzx_w(result, operand);
2825 break;
2826 case INT32_ELEMENTS:
2827 __ mov(result, operand);
2828 break;
2829 case UINT32_ELEMENTS:
2830 __ mov(result, operand);
2831 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
2832 __ test(result, Operand(result));
2833 DeoptimizeIf(negative, instr, DeoptimizeReason::kNegativeValue);
2834 }
2835 break;
2836 case FLOAT32_ELEMENTS:
2837 case FLOAT64_ELEMENTS:
2838 case FAST_SMI_ELEMENTS:
2839 case FAST_ELEMENTS:
2840 case FAST_DOUBLE_ELEMENTS:
2841 case FAST_HOLEY_SMI_ELEMENTS:
2842 case FAST_HOLEY_ELEMENTS:
2843 case FAST_HOLEY_DOUBLE_ELEMENTS:
2844 case DICTIONARY_ELEMENTS:
2845 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
2846 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
2847 case FAST_STRING_WRAPPER_ELEMENTS:
2848 case SLOW_STRING_WRAPPER_ELEMENTS:
2849 case NO_ELEMENTS:
2850 UNREACHABLE();
2851 break;
2852 }
2853 }
2854 }
2855
2856
DoLoadKeyedFixedDoubleArray(LLoadKeyed * instr)2857 void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
2858 if (instr->hydrogen()->RequiresHoleCheck()) {
2859 Operand hole_check_operand = BuildFastArrayOperand(
2860 instr->elements(), instr->key(),
2861 instr->hydrogen()->key()->representation(),
2862 FAST_DOUBLE_ELEMENTS,
2863 instr->base_offset() + sizeof(kHoleNanLower32));
2864 __ cmp(hole_check_operand, Immediate(kHoleNanUpper32));
2865 DeoptimizeIf(equal, instr, DeoptimizeReason::kHole);
2866 }
2867
2868 Operand double_load_operand = BuildFastArrayOperand(
2869 instr->elements(),
2870 instr->key(),
2871 instr->hydrogen()->key()->representation(),
2872 FAST_DOUBLE_ELEMENTS,
2873 instr->base_offset());
2874 X87Mov(ToX87Register(instr->result()), double_load_operand);
2875 }
2876
2877
DoLoadKeyedFixedArray(LLoadKeyed * instr)2878 void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
2879 Register result = ToRegister(instr->result());
2880
2881 // Load the result.
2882 __ mov(result,
2883 BuildFastArrayOperand(instr->elements(), instr->key(),
2884 instr->hydrogen()->key()->representation(),
2885 FAST_ELEMENTS, instr->base_offset()));
2886
2887 // Check for the hole value.
2888 if (instr->hydrogen()->RequiresHoleCheck()) {
2889 if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
2890 __ test(result, Immediate(kSmiTagMask));
2891 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotASmi);
2892 } else {
2893 __ cmp(result, factory()->the_hole_value());
2894 DeoptimizeIf(equal, instr, DeoptimizeReason::kHole);
2895 }
2896 } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
2897 DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
2898 Label done;
2899 __ cmp(result, factory()->the_hole_value());
2900 __ j(not_equal, &done);
2901 if (info()->IsStub()) {
2902 // A stub can safely convert the hole to undefined only if the array
2903 // protector cell contains (Smi) Isolate::kProtectorValid.
2904 // Otherwise it needs to bail out.
2905 __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
2906 __ cmp(FieldOperand(result, PropertyCell::kValueOffset),
2907 Immediate(Smi::FromInt(Isolate::kProtectorValid)));
2908 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kHole);
2909 }
2910 __ mov(result, isolate()->factory()->undefined_value());
2911 __ bind(&done);
2912 }
2913 }
2914
2915
DoLoadKeyed(LLoadKeyed * instr)2916 void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
2917 if (instr->is_fixed_typed_array()) {
2918 DoLoadKeyedExternalArray(instr);
2919 } else if (instr->hydrogen()->representation().IsDouble()) {
2920 DoLoadKeyedFixedDoubleArray(instr);
2921 } else {
2922 DoLoadKeyedFixedArray(instr);
2923 }
2924 }
2925
2926
BuildFastArrayOperand(LOperand * elements_pointer,LOperand * key,Representation key_representation,ElementsKind elements_kind,uint32_t base_offset)2927 Operand LCodeGen::BuildFastArrayOperand(
2928 LOperand* elements_pointer,
2929 LOperand* key,
2930 Representation key_representation,
2931 ElementsKind elements_kind,
2932 uint32_t base_offset) {
2933 Register elements_pointer_reg = ToRegister(elements_pointer);
2934 int element_shift_size = ElementsKindToShiftSize(elements_kind);
2935 int shift_size = element_shift_size;
2936 if (key->IsConstantOperand()) {
2937 int constant_value = ToInteger32(LConstantOperand::cast(key));
2938 if (constant_value & 0xF0000000) {
2939 Abort(kArrayIndexConstantValueTooBig);
2940 }
2941 return Operand(elements_pointer_reg,
2942 ((constant_value) << shift_size)
2943 + base_offset);
2944 } else {
2945 // Take the tag bit into account while computing the shift size.
2946 if (key_representation.IsSmi() && (shift_size >= 1)) {
2947 shift_size -= kSmiTagSize;
2948 }
2949 ScaleFactor scale_factor = static_cast<ScaleFactor>(shift_size);
2950 return Operand(elements_pointer_reg,
2951 ToRegister(key),
2952 scale_factor,
2953 base_offset);
2954 }
2955 }
2956
2957
DoArgumentsElements(LArgumentsElements * instr)2958 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
2959 Register result = ToRegister(instr->result());
2960
2961 if (instr->hydrogen()->from_inlined()) {
2962 __ lea(result, Operand(esp, -2 * kPointerSize));
2963 } else if (instr->hydrogen()->arguments_adaptor()) {
2964 // Check for arguments adapter frame.
2965 Label done, adapted;
2966 __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
2967 __ mov(result,
2968 Operand(result, CommonFrameConstants::kContextOrFrameTypeOffset));
2969 __ cmp(Operand(result),
2970 Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
2971 __ j(equal, &adapted, Label::kNear);
2972
2973 // No arguments adaptor frame.
2974 __ mov(result, Operand(ebp));
2975 __ jmp(&done, Label::kNear);
2976
2977 // Arguments adaptor frame present.
2978 __ bind(&adapted);
2979 __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
2980
2981 // Result is the frame pointer for the frame if not adapted and for the real
2982 // frame below the adaptor frame if adapted.
2983 __ bind(&done);
2984 } else {
2985 __ mov(result, Operand(ebp));
2986 }
2987 }
2988
2989
DoArgumentsLength(LArgumentsLength * instr)2990 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
2991 Operand elem = ToOperand(instr->elements());
2992 Register result = ToRegister(instr->result());
2993
2994 Label done;
2995
2996 // If no arguments adaptor frame the number of arguments is fixed.
2997 __ cmp(ebp, elem);
2998 __ mov(result, Immediate(scope()->num_parameters()));
2999 __ j(equal, &done, Label::kNear);
3000
3001 // Arguments adaptor frame present. Get argument length from there.
3002 __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
3003 __ mov(result, Operand(result,
3004 ArgumentsAdaptorFrameConstants::kLengthOffset));
3005 __ SmiUntag(result);
3006
3007 // Argument length is in result register.
3008 __ bind(&done);
3009 }
3010
3011
DoWrapReceiver(LWrapReceiver * instr)3012 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
3013 Register receiver = ToRegister(instr->receiver());
3014 Register function = ToRegister(instr->function());
3015
3016 // If the receiver is null or undefined, we have to pass the global
3017 // object as a receiver to normal functions. Values have to be
3018 // passed unchanged to builtins and strict-mode functions.
3019 Label receiver_ok, global_object;
3020 Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
3021 Register scratch = ToRegister(instr->temp());
3022
3023 if (!instr->hydrogen()->known_function()) {
3024 // Do not transform the receiver to object for strict mode
3025 // functions.
3026 __ mov(scratch,
3027 FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
3028 __ test_b(FieldOperand(scratch, SharedFunctionInfo::kStrictModeByteOffset),
3029 Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
3030 __ j(not_equal, &receiver_ok, dist);
3031
3032 // Do not transform the receiver to object for builtins.
3033 __ test_b(FieldOperand(scratch, SharedFunctionInfo::kNativeByteOffset),
3034 Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
3035 __ j(not_equal, &receiver_ok, dist);
3036 }
3037
3038 // Normal function. Replace undefined or null with global receiver.
3039 __ cmp(receiver, factory()->null_value());
3040 __ j(equal, &global_object, Label::kNear);
3041 __ cmp(receiver, factory()->undefined_value());
3042 __ j(equal, &global_object, Label::kNear);
3043
3044 // The receiver should be a JS object.
3045 __ test(receiver, Immediate(kSmiTagMask));
3046 DeoptimizeIf(equal, instr, DeoptimizeReason::kSmi);
3047 __ CmpObjectType(receiver, FIRST_JS_RECEIVER_TYPE, scratch);
3048 DeoptimizeIf(below, instr, DeoptimizeReason::kNotAJavaScriptObject);
3049
3050 __ jmp(&receiver_ok, Label::kNear);
3051 __ bind(&global_object);
3052 __ mov(receiver, FieldOperand(function, JSFunction::kContextOffset));
3053 __ mov(receiver, ContextOperand(receiver, Context::NATIVE_CONTEXT_INDEX));
3054 __ mov(receiver, ContextOperand(receiver, Context::GLOBAL_PROXY_INDEX));
3055 __ bind(&receiver_ok);
3056 }
3057
3058
DoApplyArguments(LApplyArguments * instr)3059 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
3060 Register receiver = ToRegister(instr->receiver());
3061 Register function = ToRegister(instr->function());
3062 Register length = ToRegister(instr->length());
3063 Register elements = ToRegister(instr->elements());
3064 DCHECK(receiver.is(eax)); // Used for parameter count.
3065 DCHECK(function.is(edi)); // Required by InvokeFunction.
3066 DCHECK(ToRegister(instr->result()).is(eax));
3067
3068 // Copy the arguments to this function possibly from the
3069 // adaptor frame below it.
3070 const uint32_t kArgumentsLimit = 1 * KB;
3071 __ cmp(length, kArgumentsLimit);
3072 DeoptimizeIf(above, instr, DeoptimizeReason::kTooManyArguments);
3073
3074 __ push(receiver);
3075 __ mov(receiver, length);
3076
3077 // Loop through the arguments pushing them onto the execution
3078 // stack.
3079 Label invoke, loop;
3080 // length is a small non-negative integer, due to the test above.
3081 __ test(length, Operand(length));
3082 __ j(zero, &invoke, Label::kNear);
3083 __ bind(&loop);
3084 __ push(Operand(elements, length, times_pointer_size, 1 * kPointerSize));
3085 __ dec(length);
3086 __ j(not_zero, &loop);
3087
3088 // Invoke the function.
3089 __ bind(&invoke);
3090
3091 InvokeFlag flag = CALL_FUNCTION;
3092 if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) {
3093 DCHECK(!info()->saves_caller_doubles());
3094 // TODO(ishell): drop current frame before pushing arguments to the stack.
3095 flag = JUMP_FUNCTION;
3096 ParameterCount actual(eax);
3097 // It is safe to use ebx, ecx and edx as scratch registers here given that
3098 // 1) we are not going to return to caller function anyway,
3099 // 2) ebx (expected arguments count) and edx (new.target) will be
3100 // initialized below.
3101 PrepareForTailCall(actual, ebx, ecx, edx);
3102 }
3103
3104 DCHECK(instr->HasPointerMap());
3105 LPointerMap* pointers = instr->pointer_map();
3106 SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
3107 ParameterCount actual(eax);
3108 __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator);
3109 }
3110
3111
DoDebugBreak(LDebugBreak * instr)3112 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
3113 __ int3();
3114 }
3115
3116
DoPushArgument(LPushArgument * instr)3117 void LCodeGen::DoPushArgument(LPushArgument* instr) {
3118 LOperand* argument = instr->value();
3119 EmitPushTaggedOperand(argument);
3120 }
3121
3122
DoDrop(LDrop * instr)3123 void LCodeGen::DoDrop(LDrop* instr) {
3124 __ Drop(instr->count());
3125 }
3126
3127
DoThisFunction(LThisFunction * instr)3128 void LCodeGen::DoThisFunction(LThisFunction* instr) {
3129 Register result = ToRegister(instr->result());
3130 __ mov(result, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
3131 }
3132
3133
DoContext(LContext * instr)3134 void LCodeGen::DoContext(LContext* instr) {
3135 Register result = ToRegister(instr->result());
3136 if (info()->IsOptimizing()) {
3137 __ mov(result, Operand(ebp, StandardFrameConstants::kContextOffset));
3138 } else {
3139 // If there is no frame, the context must be in esi.
3140 DCHECK(result.is(esi));
3141 }
3142 }
3143
3144
DoDeclareGlobals(LDeclareGlobals * instr)3145 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
3146 DCHECK(ToRegister(instr->context()).is(esi));
3147 __ push(Immediate(instr->hydrogen()->pairs()));
3148 __ push(Immediate(Smi::FromInt(instr->hydrogen()->flags())));
3149 __ push(Immediate(instr->hydrogen()->feedback_vector()));
3150 CallRuntime(Runtime::kDeclareGlobals, instr);
3151 }
3152
CallKnownFunction(Handle<JSFunction> function,int formal_parameter_count,int arity,bool is_tail_call,LInstruction * instr)3153 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
3154 int formal_parameter_count, int arity,
3155 bool is_tail_call, LInstruction* instr) {
3156 bool dont_adapt_arguments =
3157 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
3158 bool can_invoke_directly =
3159 dont_adapt_arguments || formal_parameter_count == arity;
3160
3161 Register function_reg = edi;
3162
3163 if (can_invoke_directly) {
3164 // Change context.
3165 __ mov(esi, FieldOperand(function_reg, JSFunction::kContextOffset));
3166
3167 // Always initialize new target and number of actual arguments.
3168 __ mov(edx, factory()->undefined_value());
3169 __ mov(eax, arity);
3170
3171 bool is_self_call = function.is_identical_to(info()->closure());
3172
3173 // Invoke function directly.
3174 if (is_self_call) {
3175 Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location()));
3176 if (is_tail_call) {
3177 __ Jump(self, RelocInfo::CODE_TARGET);
3178 } else {
3179 __ Call(self, RelocInfo::CODE_TARGET);
3180 }
3181 } else {
3182 Operand target = FieldOperand(function_reg, JSFunction::kCodeEntryOffset);
3183 if (is_tail_call) {
3184 __ jmp(target);
3185 } else {
3186 __ call(target);
3187 }
3188 }
3189
3190 if (!is_tail_call) {
3191 // Set up deoptimization.
3192 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
3193 }
3194 } else {
3195 // We need to adapt arguments.
3196 LPointerMap* pointers = instr->pointer_map();
3197 SafepointGenerator generator(
3198 this, pointers, Safepoint::kLazyDeopt);
3199 ParameterCount actual(arity);
3200 ParameterCount expected(formal_parameter_count);
3201 InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
3202 __ InvokeFunction(function_reg, expected, actual, flag, generator);
3203 }
3204 }
3205
3206
DoCallWithDescriptor(LCallWithDescriptor * instr)3207 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
3208 DCHECK(ToRegister(instr->result()).is(eax));
3209
3210 if (instr->hydrogen()->IsTailCall()) {
3211 if (NeedsEagerFrame()) __ leave();
3212
3213 if (instr->target()->IsConstantOperand()) {
3214 LConstantOperand* target = LConstantOperand::cast(instr->target());
3215 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3216 __ jmp(code, RelocInfo::CODE_TARGET);
3217 } else {
3218 DCHECK(instr->target()->IsRegister());
3219 Register target = ToRegister(instr->target());
3220 __ add(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
3221 __ jmp(target);
3222 }
3223 } else {
3224 LPointerMap* pointers = instr->pointer_map();
3225 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3226
3227 if (instr->target()->IsConstantOperand()) {
3228 LConstantOperand* target = LConstantOperand::cast(instr->target());
3229 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3230 generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
3231 __ call(code, RelocInfo::CODE_TARGET);
3232 } else {
3233 DCHECK(instr->target()->IsRegister());
3234 Register target = ToRegister(instr->target());
3235 generator.BeforeCall(__ CallSize(Operand(target)));
3236 __ add(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
3237 __ call(target);
3238 }
3239 generator.AfterCall();
3240 }
3241 }
3242
3243
DoDeferredMathAbsTaggedHeapNumber(LMathAbs * instr)3244 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
3245 Register input_reg = ToRegister(instr->value());
3246 __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
3247 factory()->heap_number_map());
3248 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumber);
3249
3250 Label slow, allocated, done;
3251 uint32_t available_regs = eax.bit() | ecx.bit() | edx.bit() | ebx.bit();
3252 available_regs &= ~input_reg.bit();
3253 if (instr->context()->IsRegister()) {
3254 // Make sure that the context isn't overwritten in the AllocateHeapNumber
3255 // macro below.
3256 available_regs &= ~ToRegister(instr->context()).bit();
3257 }
3258
3259 Register tmp =
3260 Register::from_code(base::bits::CountTrailingZeros32(available_regs));
3261 available_regs &= ~tmp.bit();
3262 Register tmp2 =
3263 Register::from_code(base::bits::CountTrailingZeros32(available_regs));
3264
3265 // Preserve the value of all registers.
3266 PushSafepointRegistersScope scope(this);
3267
3268 __ mov(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset));
3269 // Check the sign of the argument. If the argument is positive, just
3270 // return it. We do not need to patch the stack since |input| and
3271 // |result| are the same register and |input| will be restored
3272 // unchanged by popping safepoint registers.
3273 __ test(tmp, Immediate(HeapNumber::kSignMask));
3274 __ j(zero, &done, Label::kNear);
3275
3276 __ AllocateHeapNumber(tmp, tmp2, no_reg, &slow);
3277 __ jmp(&allocated, Label::kNear);
3278
3279 // Slow case: Call the runtime system to do the number allocation.
3280 __ bind(&slow);
3281 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0,
3282 instr, instr->context());
3283 // Set the pointer to the new heap number in tmp.
3284 if (!tmp.is(eax)) __ mov(tmp, eax);
3285 // Restore input_reg after call to runtime.
3286 __ LoadFromSafepointRegisterSlot(input_reg, input_reg);
3287
3288 __ bind(&allocated);
3289 __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kExponentOffset));
3290 __ and_(tmp2, ~HeapNumber::kSignMask);
3291 __ mov(FieldOperand(tmp, HeapNumber::kExponentOffset), tmp2);
3292 __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
3293 __ mov(FieldOperand(tmp, HeapNumber::kMantissaOffset), tmp2);
3294 __ StoreToSafepointRegisterSlot(input_reg, tmp);
3295
3296 __ bind(&done);
3297 }
3298
3299
EmitIntegerMathAbs(LMathAbs * instr)3300 void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
3301 Register input_reg = ToRegister(instr->value());
3302 __ test(input_reg, Operand(input_reg));
3303 Label is_positive;
3304 __ j(not_sign, &is_positive, Label::kNear);
3305 __ neg(input_reg); // Sets flags.
3306 DeoptimizeIf(negative, instr, DeoptimizeReason::kOverflow);
3307 __ bind(&is_positive);
3308 }
3309
3310
DoMathAbs(LMathAbs * instr)3311 void LCodeGen::DoMathAbs(LMathAbs* instr) {
3312 // Class for deferred case.
3313 class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
3314 public:
3315 DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen,
3316 LMathAbs* instr,
3317 const X87Stack& x87_stack)
3318 : LDeferredCode(codegen, x87_stack), instr_(instr) { }
3319 void Generate() override {
3320 codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
3321 }
3322 LInstruction* instr() override { return instr_; }
3323
3324 private:
3325 LMathAbs* instr_;
3326 };
3327
3328 DCHECK(instr->value()->Equals(instr->result()));
3329 Representation r = instr->hydrogen()->value()->representation();
3330
3331 if (r.IsDouble()) {
3332 X87Register value = ToX87Register(instr->value());
3333 X87Fxch(value);
3334 __ fabs();
3335 } else if (r.IsSmiOrInteger32()) {
3336 EmitIntegerMathAbs(instr);
3337 } else { // Tagged case.
3338 DeferredMathAbsTaggedHeapNumber* deferred =
3339 new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr, x87_stack_);
3340 Register input_reg = ToRegister(instr->value());
3341 // Smi check.
3342 __ JumpIfNotSmi(input_reg, deferred->entry());
3343 EmitIntegerMathAbs(instr);
3344 __ bind(deferred->exit());
3345 }
3346 }
3347
3348
DoMathFloor(LMathFloor * instr)3349 void LCodeGen::DoMathFloor(LMathFloor* instr) {
3350 Register output_reg = ToRegister(instr->result());
3351 X87Register input_reg = ToX87Register(instr->value());
3352 X87Fxch(input_reg);
3353
3354 Label not_minus_zero, done;
3355 // Deoptimize on unordered.
3356 __ fldz();
3357 __ fld(1);
3358 __ FCmp();
3359 DeoptimizeIf(parity_even, instr, DeoptimizeReason::kNaN);
3360 __ j(below, ¬_minus_zero, Label::kNear);
3361
3362 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3363 // Check for negative zero.
3364 __ j(not_equal, ¬_minus_zero, Label::kNear);
3365 // +- 0.0.
3366 __ fld(0);
3367 __ FXamSign();
3368 DeoptimizeIf(not_zero, instr, DeoptimizeReason::kMinusZero);
3369 __ Move(output_reg, Immediate(0));
3370 __ jmp(&done, Label::kFar);
3371 }
3372
3373 // Positive input.
3374 // rc=01B, round down.
3375 __ bind(¬_minus_zero);
3376 __ fnclex();
3377 __ X87SetRC(0x0400);
3378 __ sub(esp, Immediate(kPointerSize));
3379 __ fist_s(Operand(esp, 0));
3380 __ pop(output_reg);
3381 __ X87SetRC(0x0000);
3382 __ X87CheckIA();
3383 DeoptimizeIf(equal, instr, DeoptimizeReason::kOverflow);
3384 __ fnclex();
3385 __ X87SetRC(0x0000);
3386 __ bind(&done);
3387 }
3388
3389
DoMathRound(LMathRound * instr)3390 void LCodeGen::DoMathRound(LMathRound* instr) {
3391 X87Register input_reg = ToX87Register(instr->value());
3392 Register result = ToRegister(instr->result());
3393 X87Fxch(input_reg);
3394 Label below_one_half, below_minus_one_half, done;
3395
3396 ExternalReference one_half = ExternalReference::address_of_one_half();
3397 ExternalReference minus_one_half =
3398 ExternalReference::address_of_minus_one_half();
3399
3400 __ fld_d(Operand::StaticVariable(one_half));
3401 __ fld(1);
3402 __ FCmp();
3403 __ j(carry, &below_one_half);
3404
3405 // Use rounds towards zero, since 0.5 <= x, we use floor(0.5 + x)
3406 __ fld(0);
3407 __ fadd_d(Operand::StaticVariable(one_half));
3408 // rc=11B, round toward zero.
3409 __ X87SetRC(0x0c00);
3410 __ sub(esp, Immediate(kPointerSize));
3411 // Clear exception bits.
3412 __ fnclex();
3413 __ fistp_s(MemOperand(esp, 0));
3414 // Restore round mode.
3415 __ X87SetRC(0x0000);
3416 // Check overflow.
3417 __ X87CheckIA();
3418 __ pop(result);
3419 DeoptimizeIf(equal, instr, DeoptimizeReason::kConversionOverflow);
3420 __ fnclex();
3421 // Restore round mode.
3422 __ X87SetRC(0x0000);
3423 __ jmp(&done);
3424
3425 __ bind(&below_one_half);
3426 __ fld_d(Operand::StaticVariable(minus_one_half));
3427 __ fld(1);
3428 __ FCmp();
3429 __ j(carry, &below_minus_one_half);
3430 // We return 0 for the input range [+0, 0.5[, or [-0.5, 0.5[ if
3431 // we can ignore the difference between a result of -0 and +0.
3432 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3433 // If the sign is positive, we return +0.
3434 __ fld(0);
3435 __ FXamSign();
3436 DeoptimizeIf(not_zero, instr, DeoptimizeReason::kMinusZero);
3437 }
3438 __ Move(result, Immediate(0));
3439 __ jmp(&done);
3440
3441 __ bind(&below_minus_one_half);
3442 __ fld(0);
3443 __ fadd_d(Operand::StaticVariable(one_half));
3444 // rc=01B, round down.
3445 __ X87SetRC(0x0400);
3446 __ sub(esp, Immediate(kPointerSize));
3447 // Clear exception bits.
3448 __ fnclex();
3449 __ fistp_s(MemOperand(esp, 0));
3450 // Restore round mode.
3451 __ X87SetRC(0x0000);
3452 // Check overflow.
3453 __ X87CheckIA();
3454 __ pop(result);
3455 DeoptimizeIf(equal, instr, DeoptimizeReason::kConversionOverflow);
3456 __ fnclex();
3457 // Restore round mode.
3458 __ X87SetRC(0x0000);
3459
3460 __ bind(&done);
3461 }
3462
3463
DoMathFround(LMathFround * instr)3464 void LCodeGen::DoMathFround(LMathFround* instr) {
3465 X87Register input_reg = ToX87Register(instr->value());
3466 X87Fxch(input_reg);
3467 __ sub(esp, Immediate(kPointerSize));
3468 __ fstp_s(MemOperand(esp, 0));
3469 X87Fld(MemOperand(esp, 0), kX87FloatOperand);
3470 __ add(esp, Immediate(kPointerSize));
3471 }
3472
3473
DoMathSqrt(LMathSqrt * instr)3474 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
3475 X87Register input_reg = ToX87Register(instr->value());
3476 __ X87SetFPUCW(0x027F);
3477 X87Fxch(input_reg);
3478 __ fsqrt();
3479 __ X87SetFPUCW(0x037F);
3480 }
3481
3482
DoMathPowHalf(LMathPowHalf * instr)3483 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3484 X87Register input_reg = ToX87Register(instr->value());
3485 DCHECK(ToX87Register(instr->result()).is(input_reg));
3486 X87Fxch(input_reg);
3487 // Note that according to ECMA-262 15.8.2.13:
3488 // Math.pow(-Infinity, 0.5) == Infinity
3489 // Math.sqrt(-Infinity) == NaN
3490 Label done, sqrt;
3491 // Check base for -Infinity. C3 == 0, C2 == 1, C1 == 1 and C0 == 1
3492 __ fxam();
3493 __ push(eax);
3494 __ fnstsw_ax();
3495 __ and_(eax, Immediate(0x4700));
3496 __ cmp(eax, Immediate(0x0700));
3497 __ j(not_equal, &sqrt, Label::kNear);
3498 // If input is -Infinity, return Infinity.
3499 __ fchs();
3500 __ jmp(&done, Label::kNear);
3501
3502 // Square root.
3503 __ bind(&sqrt);
3504 __ fldz();
3505 __ faddp(); // Convert -0 to +0.
3506 __ fsqrt();
3507 __ bind(&done);
3508 __ pop(eax);
3509 }
3510
3511
DoPower(LPower * instr)3512 void LCodeGen::DoPower(LPower* instr) {
3513 Representation exponent_type = instr->hydrogen()->right()->representation();
3514 X87Register result = ToX87Register(instr->result());
3515 // Having marked this as a call, we can use any registers.
3516 X87Register base = ToX87Register(instr->left());
3517 ExternalReference one_half = ExternalReference::address_of_one_half();
3518
3519 if (exponent_type.IsSmi()) {
3520 Register exponent = ToRegister(instr->right());
3521 X87LoadForUsage(base);
3522 __ SmiUntag(exponent);
3523 __ push(exponent);
3524 __ fild_s(MemOperand(esp, 0));
3525 __ pop(exponent);
3526 } else if (exponent_type.IsTagged()) {
3527 Register exponent = ToRegister(instr->right());
3528 Register temp = exponent.is(ecx) ? eax : ecx;
3529 Label no_deopt, done;
3530 X87LoadForUsage(base);
3531 __ JumpIfSmi(exponent, &no_deopt);
3532 __ CmpObjectType(exponent, HEAP_NUMBER_TYPE, temp);
3533 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumber);
3534 // Heap number(double)
3535 __ fld_d(FieldOperand(exponent, HeapNumber::kValueOffset));
3536 __ jmp(&done);
3537 // SMI
3538 __ bind(&no_deopt);
3539 __ SmiUntag(exponent);
3540 __ push(exponent);
3541 __ fild_s(MemOperand(esp, 0));
3542 __ pop(exponent);
3543 __ bind(&done);
3544 } else if (exponent_type.IsInteger32()) {
3545 Register exponent = ToRegister(instr->right());
3546 X87LoadForUsage(base);
3547 __ push(exponent);
3548 __ fild_s(MemOperand(esp, 0));
3549 __ pop(exponent);
3550 } else {
3551 DCHECK(exponent_type.IsDouble());
3552 X87Register exponent_double = ToX87Register(instr->right());
3553 X87LoadForUsage(base, exponent_double);
3554 }
3555
3556 // FP data stack {base, exponent(TOS)}.
3557 // Handle (exponent==+-0.5 && base == -0).
3558 Label not_plus_0;
3559 __ fld(0);
3560 __ fabs();
3561 X87Fld(Operand::StaticVariable(one_half), kX87DoubleOperand);
3562 __ FCmp();
3563 __ j(parity_even, ¬_plus_0, Label::kNear); // NaN.
3564 __ j(not_equal, ¬_plus_0, Label::kNear);
3565 __ fldz();
3566 // FP data stack {base, exponent(TOS), zero}.
3567 __ faddp(2);
3568 __ bind(¬_plus_0);
3569
3570 {
3571 __ PrepareCallCFunction(4, eax);
3572 __ fstp_d(MemOperand(esp, kDoubleSize)); // Exponent value.
3573 __ fstp_d(MemOperand(esp, 0)); // Base value.
3574 X87PrepareToWrite(result);
3575 __ CallCFunction(ExternalReference::power_double_double_function(isolate()),
3576 4);
3577 // Return value is in st(0) on ia32.
3578 X87CommitWrite(result);
3579 }
3580 }
3581
3582
DoMathLog(LMathLog * instr)3583 void LCodeGen::DoMathLog(LMathLog* instr) {
3584 DCHECK(instr->value()->Equals(instr->result()));
3585 X87Register result = ToX87Register(instr->result());
3586 X87Register input_reg = ToX87Register(instr->value());
3587 X87Fxch(input_reg);
3588
3589 // Pass one double as argument on the stack.
3590 __ PrepareCallCFunction(2, eax);
3591 __ fstp_d(MemOperand(esp, 0));
3592 X87PrepareToWrite(result);
3593 __ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 2);
3594 // Return value is in st(0) on ia32.
3595 X87CommitWrite(result);
3596 }
3597
3598
DoMathClz32(LMathClz32 * instr)3599 void LCodeGen::DoMathClz32(LMathClz32* instr) {
3600 Register input = ToRegister(instr->value());
3601 Register result = ToRegister(instr->result());
3602
3603 __ Lzcnt(result, input);
3604 }
3605
DoMathCos(LMathCos * instr)3606 void LCodeGen::DoMathCos(LMathCos* instr) {
3607 X87Register result = ToX87Register(instr->result());
3608 X87Register input_reg = ToX87Register(instr->value());
3609 __ fld(x87_stack_.st(input_reg));
3610
3611 // Pass one double as argument on the stack.
3612 __ PrepareCallCFunction(2, eax);
3613 __ fstp_d(MemOperand(esp, 0));
3614 X87PrepareToWrite(result);
3615 __ X87SetFPUCW(0x027F);
3616 __ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 2);
3617 __ X87SetFPUCW(0x037F);
3618 // Return value is in st(0) on ia32.
3619 X87CommitWrite(result);
3620 }
3621
DoMathSin(LMathSin * instr)3622 void LCodeGen::DoMathSin(LMathSin* instr) {
3623 X87Register result = ToX87Register(instr->result());
3624 X87Register input_reg = ToX87Register(instr->value());
3625 __ fld(x87_stack_.st(input_reg));
3626
3627 // Pass one double as argument on the stack.
3628 __ PrepareCallCFunction(2, eax);
3629 __ fstp_d(MemOperand(esp, 0));
3630 X87PrepareToWrite(result);
3631 __ X87SetFPUCW(0x027F);
3632 __ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 2);
3633 __ X87SetFPUCW(0x037F);
3634 // Return value is in st(0) on ia32.
3635 X87CommitWrite(result);
3636 }
3637
DoMathExp(LMathExp * instr)3638 void LCodeGen::DoMathExp(LMathExp* instr) {
3639 X87Register result = ToX87Register(instr->result());
3640 X87Register input_reg = ToX87Register(instr->value());
3641 __ fld(x87_stack_.st(input_reg));
3642
3643 // Pass one double as argument on the stack.
3644 __ PrepareCallCFunction(2, eax);
3645 __ fstp_d(MemOperand(esp, 0));
3646 X87PrepareToWrite(result);
3647 __ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 2);
3648 // Return value is in st(0) on ia32.
3649 X87CommitWrite(result);
3650 }
3651
PrepareForTailCall(const ParameterCount & actual,Register scratch1,Register scratch2,Register scratch3)3652 void LCodeGen::PrepareForTailCall(const ParameterCount& actual,
3653 Register scratch1, Register scratch2,
3654 Register scratch3) {
3655 #if DEBUG
3656 if (actual.is_reg()) {
3657 DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3));
3658 } else {
3659 DCHECK(!AreAliased(scratch1, scratch2, scratch3));
3660 }
3661 #endif
3662 if (FLAG_code_comments) {
3663 if (actual.is_reg()) {
3664 Comment(";;; PrepareForTailCall, actual: %s {",
3665 RegisterConfiguration::Crankshaft()->GetGeneralRegisterName(
3666 actual.reg().code()));
3667 } else {
3668 Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate());
3669 }
3670 }
3671
3672 // Check if next frame is an arguments adaptor frame.
3673 Register caller_args_count_reg = scratch1;
3674 Label no_arguments_adaptor, formal_parameter_count_loaded;
3675 __ mov(scratch2, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
3676 __ cmp(Operand(scratch2, StandardFrameConstants::kContextOffset),
3677 Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3678 __ j(not_equal, &no_arguments_adaptor, Label::kNear);
3679
3680 // Drop current frame and load arguments count from arguments adaptor frame.
3681 __ mov(ebp, scratch2);
3682 __ mov(caller_args_count_reg,
3683 Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));
3684 __ SmiUntag(caller_args_count_reg);
3685 __ jmp(&formal_parameter_count_loaded, Label::kNear);
3686
3687 __ bind(&no_arguments_adaptor);
3688 // Load caller's formal parameter count.
3689 __ mov(caller_args_count_reg,
3690 Immediate(info()->literal()->parameter_count()));
3691
3692 __ bind(&formal_parameter_count_loaded);
3693 __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3,
3694 ReturnAddressState::kNotOnStack, 0);
3695 Comment(";;; }");
3696 }
3697
DoInvokeFunction(LInvokeFunction * instr)3698 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3699 HInvokeFunction* hinstr = instr->hydrogen();
3700 DCHECK(ToRegister(instr->context()).is(esi));
3701 DCHECK(ToRegister(instr->function()).is(edi));
3702 DCHECK(instr->HasPointerMap());
3703
3704 bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow;
3705
3706 if (is_tail_call) {
3707 DCHECK(!info()->saves_caller_doubles());
3708 ParameterCount actual(instr->arity());
3709 // It is safe to use ebx, ecx and edx as scratch registers here given that
3710 // 1) we are not going to return to caller function anyway,
3711 // 2) ebx (expected arguments count) and edx (new.target) will be
3712 // initialized below.
3713 PrepareForTailCall(actual, ebx, ecx, edx);
3714 }
3715
3716 Handle<JSFunction> known_function = hinstr->known_function();
3717 if (known_function.is_null()) {
3718 LPointerMap* pointers = instr->pointer_map();
3719 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3720 ParameterCount actual(instr->arity());
3721 InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
3722 __ InvokeFunction(edi, no_reg, actual, flag, generator);
3723 } else {
3724 CallKnownFunction(known_function, hinstr->formal_parameter_count(),
3725 instr->arity(), is_tail_call, instr);
3726 }
3727 }
3728
3729
DoCallNewArray(LCallNewArray * instr)3730 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
3731 DCHECK(ToRegister(instr->context()).is(esi));
3732 DCHECK(ToRegister(instr->constructor()).is(edi));
3733 DCHECK(ToRegister(instr->result()).is(eax));
3734
3735 __ Move(eax, Immediate(instr->arity()));
3736 __ mov(ebx, instr->hydrogen()->site());
3737
3738 ElementsKind kind = instr->hydrogen()->elements_kind();
3739 AllocationSiteOverrideMode override_mode =
3740 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
3741 ? DISABLE_ALLOCATION_SITES
3742 : DONT_OVERRIDE;
3743
3744 if (instr->arity() == 0) {
3745 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
3746 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3747 } else if (instr->arity() == 1) {
3748 Label done;
3749 if (IsFastPackedElementsKind(kind)) {
3750 Label packed_case;
3751 // We might need a change here
3752 // look at the first argument
3753 __ mov(ecx, Operand(esp, 0));
3754 __ test(ecx, ecx);
3755 __ j(zero, &packed_case, Label::kNear);
3756
3757 ElementsKind holey_kind = GetHoleyElementsKind(kind);
3758 ArraySingleArgumentConstructorStub stub(isolate(),
3759 holey_kind,
3760 override_mode);
3761 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3762 __ jmp(&done, Label::kNear);
3763 __ bind(&packed_case);
3764 }
3765
3766 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
3767 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3768 __ bind(&done);
3769 } else {
3770 ArrayNArgumentsConstructorStub stub(isolate());
3771 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3772 }
3773 }
3774
3775
DoCallRuntime(LCallRuntime * instr)3776 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
3777 DCHECK(ToRegister(instr->context()).is(esi));
3778 CallRuntime(instr->function(), instr->arity(), instr, instr->save_doubles());
3779 }
3780
3781
DoStoreCodeEntry(LStoreCodeEntry * instr)3782 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
3783 Register function = ToRegister(instr->function());
3784 Register code_object = ToRegister(instr->code_object());
3785 __ lea(code_object, FieldOperand(code_object, Code::kHeaderSize));
3786 __ mov(FieldOperand(function, JSFunction::kCodeEntryOffset), code_object);
3787 }
3788
3789
DoInnerAllocatedObject(LInnerAllocatedObject * instr)3790 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
3791 Register result = ToRegister(instr->result());
3792 Register base = ToRegister(instr->base_object());
3793 if (instr->offset()->IsConstantOperand()) {
3794 LConstantOperand* offset = LConstantOperand::cast(instr->offset());
3795 __ lea(result, Operand(base, ToInteger32(offset)));
3796 } else {
3797 Register offset = ToRegister(instr->offset());
3798 __ lea(result, Operand(base, offset, times_1, 0));
3799 }
3800 }
3801
3802
DoStoreNamedField(LStoreNamedField * instr)3803 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
3804 Representation representation = instr->hydrogen()->field_representation();
3805
3806 HObjectAccess access = instr->hydrogen()->access();
3807 int offset = access.offset();
3808
3809 if (access.IsExternalMemory()) {
3810 DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
3811 MemOperand operand = instr->object()->IsConstantOperand()
3812 ? MemOperand::StaticVariable(
3813 ToExternalReference(LConstantOperand::cast(instr->object())))
3814 : MemOperand(ToRegister(instr->object()), offset);
3815 if (instr->value()->IsConstantOperand()) {
3816 LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
3817 __ mov(operand, Immediate(ToInteger32(operand_value)));
3818 } else {
3819 Register value = ToRegister(instr->value());
3820 __ Store(value, operand, representation);
3821 }
3822 return;
3823 }
3824
3825 Register object = ToRegister(instr->object());
3826 __ AssertNotSmi(object);
3827 DCHECK(!representation.IsSmi() ||
3828 !instr->value()->IsConstantOperand() ||
3829 IsSmi(LConstantOperand::cast(instr->value())));
3830 if (representation.IsDouble()) {
3831 DCHECK(access.IsInobject());
3832 DCHECK(!instr->hydrogen()->has_transition());
3833 DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
3834 X87Register value = ToX87Register(instr->value());
3835 X87Mov(FieldOperand(object, offset), value);
3836 return;
3837 }
3838
3839 if (instr->hydrogen()->has_transition()) {
3840 Handle<Map> transition = instr->hydrogen()->transition_map();
3841 AddDeprecationDependency(transition);
3842 __ mov(FieldOperand(object, HeapObject::kMapOffset), transition);
3843 if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
3844 Register temp = ToRegister(instr->temp());
3845 Register temp_map = ToRegister(instr->temp_map());
3846 __ mov(temp_map, transition);
3847 __ mov(FieldOperand(object, HeapObject::kMapOffset), temp_map);
3848 // Update the write barrier for the map field.
3849 __ RecordWriteForMap(object, transition, temp_map, temp, kSaveFPRegs);
3850 }
3851 }
3852
3853 // Do the store.
3854 Register write_register = object;
3855 if (!access.IsInobject()) {
3856 write_register = ToRegister(instr->temp());
3857 __ mov(write_register, FieldOperand(object, JSObject::kPropertiesOffset));
3858 }
3859
3860 MemOperand operand = FieldOperand(write_register, offset);
3861 if (instr->value()->IsConstantOperand()) {
3862 LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
3863 if (operand_value->IsRegister()) {
3864 Register value = ToRegister(operand_value);
3865 __ Store(value, operand, representation);
3866 } else if (representation.IsInteger32() || representation.IsExternal()) {
3867 Immediate immediate = ToImmediate(operand_value, representation);
3868 DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
3869 __ mov(operand, immediate);
3870 } else {
3871 Handle<Object> handle_value = ToHandle(operand_value);
3872 DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
3873 __ mov(operand, handle_value);
3874 }
3875 } else {
3876 Register value = ToRegister(instr->value());
3877 __ Store(value, operand, representation);
3878 }
3879
3880 if (instr->hydrogen()->NeedsWriteBarrier()) {
3881 Register value = ToRegister(instr->value());
3882 Register temp = access.IsInobject() ? ToRegister(instr->temp()) : object;
3883 // Update the write barrier for the object for in-object properties.
3884 __ RecordWriteField(write_register, offset, value, temp, kSaveFPRegs,
3885 EMIT_REMEMBERED_SET,
3886 instr->hydrogen()->SmiCheckForWriteBarrier(),
3887 instr->hydrogen()->PointersToHereCheckForValue());
3888 }
3889 }
3890
3891
DoBoundsCheck(LBoundsCheck * instr)3892 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
3893 Condition cc = instr->hydrogen()->allow_equality() ? above : above_equal;
3894 if (instr->index()->IsConstantOperand()) {
3895 __ cmp(ToOperand(instr->length()),
3896 ToImmediate(LConstantOperand::cast(instr->index()),
3897 instr->hydrogen()->length()->representation()));
3898 cc = CommuteCondition(cc);
3899 } else if (instr->length()->IsConstantOperand()) {
3900 __ cmp(ToOperand(instr->index()),
3901 ToImmediate(LConstantOperand::cast(instr->length()),
3902 instr->hydrogen()->index()->representation()));
3903 } else {
3904 __ cmp(ToRegister(instr->index()), ToOperand(instr->length()));
3905 }
3906 if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
3907 Label done;
3908 __ j(NegateCondition(cc), &done, Label::kNear);
3909 __ int3();
3910 __ bind(&done);
3911 } else {
3912 DeoptimizeIf(cc, instr, DeoptimizeReason::kOutOfBounds);
3913 }
3914 }
3915
3916
DoStoreKeyedExternalArray(LStoreKeyed * instr)3917 void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
3918 ElementsKind elements_kind = instr->elements_kind();
3919 LOperand* key = instr->key();
3920 if (!key->IsConstantOperand() &&
3921 ExternalArrayOpRequiresTemp(instr->hydrogen()->key()->representation(),
3922 elements_kind)) {
3923 __ SmiUntag(ToRegister(key));
3924 }
3925 Operand operand(BuildFastArrayOperand(
3926 instr->elements(),
3927 key,
3928 instr->hydrogen()->key()->representation(),
3929 elements_kind,
3930 instr->base_offset()));
3931 if (elements_kind == FLOAT32_ELEMENTS) {
3932 X87Mov(operand, ToX87Register(instr->value()), kX87FloatOperand);
3933 } else if (elements_kind == FLOAT64_ELEMENTS) {
3934 uint64_t int_val = kHoleNanInt64;
3935 int32_t lower = static_cast<int32_t>(int_val);
3936 int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt));
3937 Operand operand2 = BuildFastArrayOperand(
3938 instr->elements(), instr->key(),
3939 instr->hydrogen()->key()->representation(), elements_kind,
3940 instr->base_offset() + kPointerSize);
3941
3942 Label no_special_nan_handling, done;
3943 X87Register value = ToX87Register(instr->value());
3944 X87Fxch(value);
3945 __ lea(esp, Operand(esp, -kDoubleSize));
3946 __ fst_d(MemOperand(esp, 0));
3947 __ lea(esp, Operand(esp, kDoubleSize));
3948 int offset = sizeof(kHoleNanUpper32);
3949 __ cmp(MemOperand(esp, -offset), Immediate(kHoleNanUpper32));
3950 __ j(not_equal, &no_special_nan_handling, Label::kNear);
3951 __ mov(operand, Immediate(lower));
3952 __ mov(operand2, Immediate(upper));
3953 __ jmp(&done, Label::kNear);
3954
3955 __ bind(&no_special_nan_handling);
3956 __ fst_d(operand);
3957 __ bind(&done);
3958 } else {
3959 Register value = ToRegister(instr->value());
3960 switch (elements_kind) {
3961 case UINT8_ELEMENTS:
3962 case INT8_ELEMENTS:
3963 case UINT8_CLAMPED_ELEMENTS:
3964 __ mov_b(operand, value);
3965 break;
3966 case UINT16_ELEMENTS:
3967 case INT16_ELEMENTS:
3968 __ mov_w(operand, value);
3969 break;
3970 case UINT32_ELEMENTS:
3971 case INT32_ELEMENTS:
3972 __ mov(operand, value);
3973 break;
3974 case FLOAT32_ELEMENTS:
3975 case FLOAT64_ELEMENTS:
3976 case FAST_SMI_ELEMENTS:
3977 case FAST_ELEMENTS:
3978 case FAST_DOUBLE_ELEMENTS:
3979 case FAST_HOLEY_SMI_ELEMENTS:
3980 case FAST_HOLEY_ELEMENTS:
3981 case FAST_HOLEY_DOUBLE_ELEMENTS:
3982 case DICTIONARY_ELEMENTS:
3983 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
3984 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
3985 case FAST_STRING_WRAPPER_ELEMENTS:
3986 case SLOW_STRING_WRAPPER_ELEMENTS:
3987 case NO_ELEMENTS:
3988 UNREACHABLE();
3989 break;
3990 }
3991 }
3992 }
3993
3994
DoStoreKeyedFixedDoubleArray(LStoreKeyed * instr)3995 void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
3996 Operand double_store_operand = BuildFastArrayOperand(
3997 instr->elements(),
3998 instr->key(),
3999 instr->hydrogen()->key()->representation(),
4000 FAST_DOUBLE_ELEMENTS,
4001 instr->base_offset());
4002
4003 uint64_t int_val = kHoleNanInt64;
4004 int32_t lower = static_cast<int32_t>(int_val);
4005 int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt));
4006 Operand double_store_operand2 = BuildFastArrayOperand(
4007 instr->elements(), instr->key(),
4008 instr->hydrogen()->key()->representation(), FAST_DOUBLE_ELEMENTS,
4009 instr->base_offset() + kPointerSize);
4010
4011 if (instr->hydrogen()->IsConstantHoleStore()) {
4012 // This means we should store the (double) hole. No floating point
4013 // registers required.
4014 __ mov(double_store_operand, Immediate(lower));
4015 __ mov(double_store_operand2, Immediate(upper));
4016 } else {
4017 Label no_special_nan_handling, done;
4018 X87Register value = ToX87Register(instr->value());
4019 X87Fxch(value);
4020
4021 if (instr->NeedsCanonicalization()) {
4022 __ fld(0);
4023 __ fld(0);
4024 __ FCmp();
4025 __ j(parity_odd, &no_special_nan_handling, Label::kNear);
4026 // All NaNs are Canonicalized to 0x7fffffffffffffff
4027 __ mov(double_store_operand, Immediate(0xffffffff));
4028 __ mov(double_store_operand2, Immediate(0x7fffffff));
4029 __ jmp(&done, Label::kNear);
4030 } else {
4031 __ lea(esp, Operand(esp, -kDoubleSize));
4032 __ fst_d(MemOperand(esp, 0));
4033 __ lea(esp, Operand(esp, kDoubleSize));
4034 int offset = sizeof(kHoleNanUpper32);
4035 __ cmp(MemOperand(esp, -offset), Immediate(kHoleNanUpper32));
4036 __ j(not_equal, &no_special_nan_handling, Label::kNear);
4037 __ mov(double_store_operand, Immediate(lower));
4038 __ mov(double_store_operand2, Immediate(upper));
4039 __ jmp(&done, Label::kNear);
4040 }
4041 __ bind(&no_special_nan_handling);
4042 __ fst_d(double_store_operand);
4043 __ bind(&done);
4044 }
4045 }
4046
4047
DoStoreKeyedFixedArray(LStoreKeyed * instr)4048 void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
4049 Register elements = ToRegister(instr->elements());
4050 Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
4051
4052 Operand operand = BuildFastArrayOperand(
4053 instr->elements(),
4054 instr->key(),
4055 instr->hydrogen()->key()->representation(),
4056 FAST_ELEMENTS,
4057 instr->base_offset());
4058 if (instr->value()->IsRegister()) {
4059 __ mov(operand, ToRegister(instr->value()));
4060 } else {
4061 LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
4062 if (IsSmi(operand_value)) {
4063 Immediate immediate = ToImmediate(operand_value, Representation::Smi());
4064 __ mov(operand, immediate);
4065 } else {
4066 DCHECK(!IsInteger32(operand_value));
4067 Handle<Object> handle_value = ToHandle(operand_value);
4068 __ mov(operand, handle_value);
4069 }
4070 }
4071
4072 if (instr->hydrogen()->NeedsWriteBarrier()) {
4073 DCHECK(instr->value()->IsRegister());
4074 Register value = ToRegister(instr->value());
4075 DCHECK(!instr->key()->IsConstantOperand());
4076 SmiCheck check_needed =
4077 instr->hydrogen()->value()->type().IsHeapObject()
4078 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
4079 // Compute address of modified element and store it into key register.
4080 __ lea(key, operand);
4081 __ RecordWrite(elements, key, value, kSaveFPRegs, EMIT_REMEMBERED_SET,
4082 check_needed,
4083 instr->hydrogen()->PointersToHereCheckForValue());
4084 }
4085 }
4086
4087
DoStoreKeyed(LStoreKeyed * instr)4088 void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
4089 // By cases...external, fast-double, fast
4090 if (instr->is_fixed_typed_array()) {
4091 DoStoreKeyedExternalArray(instr);
4092 } else if (instr->hydrogen()->value()->representation().IsDouble()) {
4093 DoStoreKeyedFixedDoubleArray(instr);
4094 } else {
4095 DoStoreKeyedFixedArray(instr);
4096 }
4097 }
4098
4099
DoTrapAllocationMemento(LTrapAllocationMemento * instr)4100 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
4101 Register object = ToRegister(instr->object());
4102 Register temp = ToRegister(instr->temp());
4103 Label no_memento_found;
4104 __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
4105 DeoptimizeIf(equal, instr, DeoptimizeReason::kMementoFound);
4106 __ bind(&no_memento_found);
4107 }
4108
4109
DoMaybeGrowElements(LMaybeGrowElements * instr)4110 void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
4111 class DeferredMaybeGrowElements final : public LDeferredCode {
4112 public:
4113 DeferredMaybeGrowElements(LCodeGen* codegen,
4114 LMaybeGrowElements* instr,
4115 const X87Stack& x87_stack)
4116 : LDeferredCode(codegen, x87_stack), instr_(instr) {}
4117 void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
4118 LInstruction* instr() override { return instr_; }
4119
4120 private:
4121 LMaybeGrowElements* instr_;
4122 };
4123
4124 Register result = eax;
4125 DeferredMaybeGrowElements* deferred =
4126 new (zone()) DeferredMaybeGrowElements(this, instr, x87_stack_);
4127 LOperand* key = instr->key();
4128 LOperand* current_capacity = instr->current_capacity();
4129
4130 DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
4131 DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
4132 DCHECK(key->IsConstantOperand() || key->IsRegister());
4133 DCHECK(current_capacity->IsConstantOperand() ||
4134 current_capacity->IsRegister());
4135
4136 if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
4137 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4138 int32_t constant_capacity =
4139 ToInteger32(LConstantOperand::cast(current_capacity));
4140 if (constant_key >= constant_capacity) {
4141 // Deferred case.
4142 __ jmp(deferred->entry());
4143 }
4144 } else if (key->IsConstantOperand()) {
4145 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4146 __ cmp(ToOperand(current_capacity), Immediate(constant_key));
4147 __ j(less_equal, deferred->entry());
4148 } else if (current_capacity->IsConstantOperand()) {
4149 int32_t constant_capacity =
4150 ToInteger32(LConstantOperand::cast(current_capacity));
4151 __ cmp(ToRegister(key), Immediate(constant_capacity));
4152 __ j(greater_equal, deferred->entry());
4153 } else {
4154 __ cmp(ToRegister(key), ToRegister(current_capacity));
4155 __ j(greater_equal, deferred->entry());
4156 }
4157
4158 __ mov(result, ToOperand(instr->elements()));
4159 __ bind(deferred->exit());
4160 }
4161
4162
DoDeferredMaybeGrowElements(LMaybeGrowElements * instr)4163 void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
4164 // TODO(3095996): Get rid of this. For now, we need to make the
4165 // result register contain a valid pointer because it is already
4166 // contained in the register pointer map.
4167 Register result = eax;
4168 __ Move(result, Immediate(0));
4169
4170 // We have to call a stub.
4171 {
4172 PushSafepointRegistersScope scope(this);
4173 if (instr->object()->IsRegister()) {
4174 __ Move(result, ToRegister(instr->object()));
4175 } else {
4176 __ mov(result, ToOperand(instr->object()));
4177 }
4178
4179 LOperand* key = instr->key();
4180 if (key->IsConstantOperand()) {
4181 LConstantOperand* constant_key = LConstantOperand::cast(key);
4182 int32_t int_key = ToInteger32(constant_key);
4183 if (Smi::IsValid(int_key)) {
4184 __ mov(ebx, Immediate(Smi::FromInt(int_key)));
4185 } else {
4186 // We should never get here at runtime because there is a smi check on
4187 // the key before this point.
4188 __ int3();
4189 }
4190 } else {
4191 __ Move(ebx, ToRegister(key));
4192 __ SmiTag(ebx);
4193 }
4194
4195 GrowArrayElementsStub stub(isolate(), instr->hydrogen()->kind());
4196 __ CallStub(&stub);
4197 RecordSafepointWithLazyDeopt(
4198 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4199 __ StoreToSafepointRegisterSlot(result, result);
4200 }
4201
4202 // Deopt on smi, which means the elements array changed to dictionary mode.
4203 __ test(result, Immediate(kSmiTagMask));
4204 DeoptimizeIf(equal, instr, DeoptimizeReason::kSmi);
4205 }
4206
4207
DoTransitionElementsKind(LTransitionElementsKind * instr)4208 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
4209 Register object_reg = ToRegister(instr->object());
4210
4211 Handle<Map> from_map = instr->original_map();
4212 Handle<Map> to_map = instr->transitioned_map();
4213 ElementsKind from_kind = instr->from_kind();
4214 ElementsKind to_kind = instr->to_kind();
4215
4216 Label not_applicable;
4217 bool is_simple_map_transition =
4218 IsSimpleMapChangeTransition(from_kind, to_kind);
4219 Label::Distance branch_distance =
4220 is_simple_map_transition ? Label::kNear : Label::kFar;
4221 __ cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map);
4222 __ j(not_equal, ¬_applicable, branch_distance);
4223 if (is_simple_map_transition) {
4224 Register new_map_reg = ToRegister(instr->new_map_temp());
4225 __ mov(FieldOperand(object_reg, HeapObject::kMapOffset),
4226 Immediate(to_map));
4227 // Write barrier.
4228 DCHECK_NOT_NULL(instr->temp());
4229 __ RecordWriteForMap(object_reg, to_map, new_map_reg,
4230 ToRegister(instr->temp()), kDontSaveFPRegs);
4231 } else {
4232 DCHECK(ToRegister(instr->context()).is(esi));
4233 DCHECK(object_reg.is(eax));
4234 PushSafepointRegistersScope scope(this);
4235 __ mov(ebx, to_map);
4236 TransitionElementsKindStub stub(isolate(), from_kind, to_kind);
4237 __ CallStub(&stub);
4238 RecordSafepointWithLazyDeopt(instr,
4239 RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4240 }
4241 __ bind(¬_applicable);
4242 }
4243
4244
DoStringCharCodeAt(LStringCharCodeAt * instr)4245 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
4246 class DeferredStringCharCodeAt final : public LDeferredCode {
4247 public:
4248 DeferredStringCharCodeAt(LCodeGen* codegen,
4249 LStringCharCodeAt* instr,
4250 const X87Stack& x87_stack)
4251 : LDeferredCode(codegen, x87_stack), instr_(instr) { }
4252 void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
4253 LInstruction* instr() override { return instr_; }
4254
4255 private:
4256 LStringCharCodeAt* instr_;
4257 };
4258
4259 DeferredStringCharCodeAt* deferred =
4260 new(zone()) DeferredStringCharCodeAt(this, instr, x87_stack_);
4261
4262 StringCharLoadGenerator::Generate(masm(),
4263 factory(),
4264 ToRegister(instr->string()),
4265 ToRegister(instr->index()),
4266 ToRegister(instr->result()),
4267 deferred->entry());
4268 __ bind(deferred->exit());
4269 }
4270
4271
DoDeferredStringCharCodeAt(LStringCharCodeAt * instr)4272 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
4273 Register string = ToRegister(instr->string());
4274 Register result = ToRegister(instr->result());
4275
4276 // TODO(3095996): Get rid of this. For now, we need to make the
4277 // result register contain a valid pointer because it is already
4278 // contained in the register pointer map.
4279 __ Move(result, Immediate(0));
4280
4281 PushSafepointRegistersScope scope(this);
4282 __ push(string);
4283 // Push the index as a smi. This is safe because of the checks in
4284 // DoStringCharCodeAt above.
4285 STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
4286 if (instr->index()->IsConstantOperand()) {
4287 Immediate immediate = ToImmediate(LConstantOperand::cast(instr->index()),
4288 Representation::Smi());
4289 __ push(immediate);
4290 } else {
4291 Register index = ToRegister(instr->index());
4292 __ SmiTag(index);
4293 __ push(index);
4294 }
4295 CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2,
4296 instr, instr->context());
4297 __ AssertSmi(eax);
4298 __ SmiUntag(eax);
4299 __ StoreToSafepointRegisterSlot(result, eax);
4300 }
4301
4302
DoStringCharFromCode(LStringCharFromCode * instr)4303 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
4304 class DeferredStringCharFromCode final : public LDeferredCode {
4305 public:
4306 DeferredStringCharFromCode(LCodeGen* codegen,
4307 LStringCharFromCode* instr,
4308 const X87Stack& x87_stack)
4309 : LDeferredCode(codegen, x87_stack), instr_(instr) { }
4310 void Generate() override {
4311 codegen()->DoDeferredStringCharFromCode(instr_);
4312 }
4313 LInstruction* instr() override { return instr_; }
4314
4315 private:
4316 LStringCharFromCode* instr_;
4317 };
4318
4319 DeferredStringCharFromCode* deferred =
4320 new(zone()) DeferredStringCharFromCode(this, instr, x87_stack_);
4321
4322 DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
4323 Register char_code = ToRegister(instr->char_code());
4324 Register result = ToRegister(instr->result());
4325 DCHECK(!char_code.is(result));
4326
4327 __ cmp(char_code, String::kMaxOneByteCharCode);
4328 __ j(above, deferred->entry());
4329 __ Move(result, Immediate(factory()->single_character_string_cache()));
4330 __ mov(result, FieldOperand(result,
4331 char_code, times_pointer_size,
4332 FixedArray::kHeaderSize));
4333 __ cmp(result, factory()->undefined_value());
4334 __ j(equal, deferred->entry());
4335 __ bind(deferred->exit());
4336 }
4337
4338
DoDeferredStringCharFromCode(LStringCharFromCode * instr)4339 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
4340 Register char_code = ToRegister(instr->char_code());
4341 Register result = ToRegister(instr->result());
4342
4343 // TODO(3095996): Get rid of this. For now, we need to make the
4344 // result register contain a valid pointer because it is already
4345 // contained in the register pointer map.
4346 __ Move(result, Immediate(0));
4347
4348 PushSafepointRegistersScope scope(this);
4349 __ SmiTag(char_code);
4350 __ push(char_code);
4351 CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
4352 instr->context());
4353 __ StoreToSafepointRegisterSlot(result, eax);
4354 }
4355
4356
DoStringAdd(LStringAdd * instr)4357 void LCodeGen::DoStringAdd(LStringAdd* instr) {
4358 DCHECK(ToRegister(instr->context()).is(esi));
4359 DCHECK(ToRegister(instr->left()).is(edx));
4360 DCHECK(ToRegister(instr->right()).is(eax));
4361 StringAddStub stub(isolate(),
4362 instr->hydrogen()->flags(),
4363 instr->hydrogen()->pretenure_flag());
4364 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4365 }
4366
4367
DoInteger32ToDouble(LInteger32ToDouble * instr)4368 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
4369 LOperand* input = instr->value();
4370 LOperand* output = instr->result();
4371 DCHECK(input->IsRegister() || input->IsStackSlot());
4372 DCHECK(output->IsDoubleRegister());
4373 if (input->IsRegister()) {
4374 Register input_reg = ToRegister(input);
4375 __ push(input_reg);
4376 X87Mov(ToX87Register(output), Operand(esp, 0), kX87IntOperand);
4377 __ pop(input_reg);
4378 } else {
4379 X87Mov(ToX87Register(output), ToOperand(input), kX87IntOperand);
4380 }
4381 }
4382
4383
DoUint32ToDouble(LUint32ToDouble * instr)4384 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
4385 LOperand* input = instr->value();
4386 LOperand* output = instr->result();
4387 X87Register res = ToX87Register(output);
4388 X87PrepareToWrite(res);
4389 __ LoadUint32NoSSE2(ToRegister(input));
4390 X87CommitWrite(res);
4391 }
4392
4393
DoNumberTagI(LNumberTagI * instr)4394 void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
4395 class DeferredNumberTagI final : public LDeferredCode {
4396 public:
4397 DeferredNumberTagI(LCodeGen* codegen,
4398 LNumberTagI* instr,
4399 const X87Stack& x87_stack)
4400 : LDeferredCode(codegen, x87_stack), instr_(instr) { }
4401 void Generate() override {
4402 codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp(),
4403 SIGNED_INT32);
4404 }
4405 LInstruction* instr() override { return instr_; }
4406
4407 private:
4408 LNumberTagI* instr_;
4409 };
4410
4411 LOperand* input = instr->value();
4412 DCHECK(input->IsRegister() && input->Equals(instr->result()));
4413 Register reg = ToRegister(input);
4414
4415 DeferredNumberTagI* deferred =
4416 new(zone()) DeferredNumberTagI(this, instr, x87_stack_);
4417 __ SmiTag(reg);
4418 __ j(overflow, deferred->entry());
4419 __ bind(deferred->exit());
4420 }
4421
4422
DoNumberTagU(LNumberTagU * instr)4423 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4424 class DeferredNumberTagU final : public LDeferredCode {
4425 public:
4426 DeferredNumberTagU(LCodeGen* codegen,
4427 LNumberTagU* instr,
4428 const X87Stack& x87_stack)
4429 : LDeferredCode(codegen, x87_stack), instr_(instr) { }
4430 void Generate() override {
4431 codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp(),
4432 UNSIGNED_INT32);
4433 }
4434 LInstruction* instr() override { return instr_; }
4435
4436 private:
4437 LNumberTagU* instr_;
4438 };
4439
4440 LOperand* input = instr->value();
4441 DCHECK(input->IsRegister() && input->Equals(instr->result()));
4442 Register reg = ToRegister(input);
4443
4444 DeferredNumberTagU* deferred =
4445 new(zone()) DeferredNumberTagU(this, instr, x87_stack_);
4446 __ cmp(reg, Immediate(Smi::kMaxValue));
4447 __ j(above, deferred->entry());
4448 __ SmiTag(reg);
4449 __ bind(deferred->exit());
4450 }
4451
4452
DoDeferredNumberTagIU(LInstruction * instr,LOperand * value,LOperand * temp,IntegerSignedness signedness)4453 void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
4454 LOperand* value,
4455 LOperand* temp,
4456 IntegerSignedness signedness) {
4457 Label done, slow;
4458 Register reg = ToRegister(value);
4459 Register tmp = ToRegister(temp);
4460
4461 if (signedness == SIGNED_INT32) {
4462 // There was overflow, so bits 30 and 31 of the original integer
4463 // disagree. Try to allocate a heap number in new space and store
4464 // the value in there. If that fails, call the runtime system.
4465 __ SmiUntag(reg);
4466 __ xor_(reg, 0x80000000);
4467 __ push(reg);
4468 __ fild_s(Operand(esp, 0));
4469 __ pop(reg);
4470 } else {
4471 // There's no fild variant for unsigned values, so zero-extend to a 64-bit
4472 // int manually.
4473 __ push(Immediate(0));
4474 __ push(reg);
4475 __ fild_d(Operand(esp, 0));
4476 __ pop(reg);
4477 __ pop(reg);
4478 }
4479
4480 if (FLAG_inline_new) {
4481 __ AllocateHeapNumber(reg, tmp, no_reg, &slow);
4482 __ jmp(&done, Label::kNear);
4483 }
4484
4485 // Slow case: Call the runtime system to do the number allocation.
4486 __ bind(&slow);
4487 {
4488 // TODO(3095996): Put a valid pointer value in the stack slot where the
4489 // result register is stored, as this register is in the pointer map, but
4490 // contains an integer value.
4491 __ Move(reg, Immediate(0));
4492
4493 // Preserve the value of all registers.
4494 PushSafepointRegistersScope scope(this);
4495 // Reset the context register.
4496 if (!reg.is(esi)) {
4497 __ Move(esi, Immediate(0));
4498 }
4499 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4500 RecordSafepointWithRegisters(
4501 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4502 __ StoreToSafepointRegisterSlot(reg, eax);
4503 }
4504
4505 __ bind(&done);
4506 __ fstp_d(FieldOperand(reg, HeapNumber::kValueOffset));
4507 }
4508
4509
DoNumberTagD(LNumberTagD * instr)4510 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4511 class DeferredNumberTagD final : public LDeferredCode {
4512 public:
4513 DeferredNumberTagD(LCodeGen* codegen,
4514 LNumberTagD* instr,
4515 const X87Stack& x87_stack)
4516 : LDeferredCode(codegen, x87_stack), instr_(instr) { }
4517 void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
4518 LInstruction* instr() override { return instr_; }
4519
4520 private:
4521 LNumberTagD* instr_;
4522 };
4523
4524 Register reg = ToRegister(instr->result());
4525
4526 // Put the value to the top of stack
4527 X87Register src = ToX87Register(instr->value());
4528 // Don't use X87LoadForUsage here, which is only used by Instruction which
4529 // clobbers fp registers.
4530 x87_stack_.Fxch(src);
4531
4532 DeferredNumberTagD* deferred =
4533 new(zone()) DeferredNumberTagD(this, instr, x87_stack_);
4534 if (FLAG_inline_new) {
4535 Register tmp = ToRegister(instr->temp());
4536 __ AllocateHeapNumber(reg, tmp, no_reg, deferred->entry());
4537 } else {
4538 __ jmp(deferred->entry());
4539 }
4540 __ bind(deferred->exit());
4541 __ fst_d(FieldOperand(reg, HeapNumber::kValueOffset));
4542 }
4543
4544
DoDeferredNumberTagD(LNumberTagD * instr)4545 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4546 // TODO(3095996): Get rid of this. For now, we need to make the
4547 // result register contain a valid pointer because it is already
4548 // contained in the register pointer map.
4549 Register reg = ToRegister(instr->result());
4550 __ Move(reg, Immediate(0));
4551
4552 PushSafepointRegistersScope scope(this);
4553 // Reset the context register.
4554 if (!reg.is(esi)) {
4555 __ Move(esi, Immediate(0));
4556 }
4557 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4558 RecordSafepointWithRegisters(
4559 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4560 __ StoreToSafepointRegisterSlot(reg, eax);
4561 }
4562
4563
DoSmiTag(LSmiTag * instr)4564 void LCodeGen::DoSmiTag(LSmiTag* instr) {
4565 HChange* hchange = instr->hydrogen();
4566 Register input = ToRegister(instr->value());
4567 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4568 hchange->value()->CheckFlag(HValue::kUint32)) {
4569 __ test(input, Immediate(0xc0000000));
4570 DeoptimizeIf(not_zero, instr, DeoptimizeReason::kOverflow);
4571 }
4572 __ SmiTag(input);
4573 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4574 !hchange->value()->CheckFlag(HValue::kUint32)) {
4575 DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
4576 }
4577 }
4578
4579
DoSmiUntag(LSmiUntag * instr)4580 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4581 LOperand* input = instr->value();
4582 Register result = ToRegister(input);
4583 DCHECK(input->IsRegister() && input->Equals(instr->result()));
4584 if (instr->needs_check()) {
4585 __ test(result, Immediate(kSmiTagMask));
4586 DeoptimizeIf(not_zero, instr, DeoptimizeReason::kNotASmi);
4587 } else {
4588 __ AssertSmi(result);
4589 }
4590 __ SmiUntag(result);
4591 }
4592
4593
EmitNumberUntagDNoSSE2(LNumberUntagD * instr,Register input_reg,Register temp_reg,X87Register res_reg,NumberUntagDMode mode)4594 void LCodeGen::EmitNumberUntagDNoSSE2(LNumberUntagD* instr, Register input_reg,
4595 Register temp_reg, X87Register res_reg,
4596 NumberUntagDMode mode) {
4597 bool can_convert_undefined_to_nan = instr->truncating();
4598 bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
4599
4600 Label load_smi, done;
4601
4602 X87PrepareToWrite(res_reg);
4603 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4604 // Smi check.
4605 __ JumpIfSmi(input_reg, &load_smi);
4606
4607 // Heap number map check.
4608 __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
4609 factory()->heap_number_map());
4610 if (!can_convert_undefined_to_nan) {
4611 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumber);
4612 } else {
4613 Label heap_number, convert;
4614 __ j(equal, &heap_number);
4615
4616 // Convert undefined (or hole) to NaN.
4617 __ cmp(input_reg, factory()->undefined_value());
4618 DeoptimizeIf(not_equal, instr,
4619 DeoptimizeReason::kNotAHeapNumberUndefined);
4620
4621 __ bind(&convert);
4622 __ push(Immediate(0xfff80000));
4623 __ push(Immediate(0x00000000));
4624 __ fld_d(MemOperand(esp, 0));
4625 __ lea(esp, Operand(esp, kDoubleSize));
4626 __ jmp(&done, Label::kNear);
4627
4628 __ bind(&heap_number);
4629 }
4630 // Heap number to x87 conversion.
4631 __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
4632 if (deoptimize_on_minus_zero) {
4633 __ fldz();
4634 __ FCmp();
4635 __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
4636 __ j(not_zero, &done, Label::kNear);
4637
4638 // Use general purpose registers to check if we have -0.0
4639 __ mov(temp_reg, FieldOperand(input_reg, HeapNumber::kExponentOffset));
4640 __ test(temp_reg, Immediate(HeapNumber::kSignMask));
4641 __ j(zero, &done, Label::kNear);
4642
4643 // Pop FPU stack before deoptimizing.
4644 __ fstp(0);
4645 DeoptimizeIf(not_zero, instr, DeoptimizeReason::kMinusZero);
4646 }
4647 __ jmp(&done, Label::kNear);
4648 } else {
4649 DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
4650 }
4651
4652 __ bind(&load_smi);
4653 // Clobbering a temp is faster than re-tagging the
4654 // input register since we avoid dependencies.
4655 __ mov(temp_reg, input_reg);
4656 __ SmiUntag(temp_reg); // Untag smi before converting to float.
4657 __ push(temp_reg);
4658 __ fild_s(Operand(esp, 0));
4659 __ add(esp, Immediate(kPointerSize));
4660 __ bind(&done);
4661 X87CommitWrite(res_reg);
4662 }
4663
4664
DoDeferredTaggedToI(LTaggedToI * instr,Label * done)4665 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, Label* done) {
4666 Register input_reg = ToRegister(instr->value());
4667
4668 // The input was optimistically untagged; revert it.
4669 STATIC_ASSERT(kSmiTagSize == 1);
4670 __ lea(input_reg, Operand(input_reg, times_2, kHeapObjectTag));
4671
4672 if (instr->truncating()) {
4673 Label truncate;
4674 Label::Distance truncate_distance =
4675 DeoptEveryNTimes() ? Label::kFar : Label::kNear;
4676 __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
4677 factory()->heap_number_map());
4678 __ j(equal, &truncate, truncate_distance);
4679 __ push(input_reg);
4680 __ CmpObjectType(input_reg, ODDBALL_TYPE, input_reg);
4681 __ pop(input_reg);
4682 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotANumberOrOddball);
4683 __ bind(&truncate);
4684 __ TruncateHeapNumberToI(input_reg, input_reg);
4685 } else {
4686 // TODO(olivf) Converting a number on the fpu is actually quite slow. We
4687 // should first try a fast conversion and then bailout to this slow case.
4688 __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
4689 isolate()->factory()->heap_number_map());
4690 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumber);
4691
4692 __ sub(esp, Immediate(kPointerSize));
4693 __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
4694
4695 if (instr->hydrogen()->GetMinusZeroMode() == FAIL_ON_MINUS_ZERO) {
4696 Label no_precision_lost, not_nan, zero_check;
4697 __ fld(0);
4698
4699 __ fist_s(MemOperand(esp, 0));
4700 __ fild_s(MemOperand(esp, 0));
4701 __ FCmp();
4702 __ pop(input_reg);
4703
4704 __ j(equal, &no_precision_lost, Label::kNear);
4705 __ fstp(0);
4706 DeoptimizeIf(no_condition, instr, DeoptimizeReason::kLostPrecision);
4707 __ bind(&no_precision_lost);
4708
4709 __ j(parity_odd, ¬_nan);
4710 __ fstp(0);
4711 DeoptimizeIf(no_condition, instr, DeoptimizeReason::kNaN);
4712 __ bind(¬_nan);
4713
4714 __ test(input_reg, Operand(input_reg));
4715 __ j(zero, &zero_check, Label::kNear);
4716 __ fstp(0);
4717 __ jmp(done);
4718
4719 __ bind(&zero_check);
4720 // To check for minus zero, we load the value again as float, and check
4721 // if that is still 0.
4722 __ sub(esp, Immediate(kPointerSize));
4723 __ fstp_s(Operand(esp, 0));
4724 __ pop(input_reg);
4725 __ test(input_reg, Operand(input_reg));
4726 DeoptimizeIf(not_zero, instr, DeoptimizeReason::kMinusZero);
4727 } else {
4728 __ fist_s(MemOperand(esp, 0));
4729 __ fild_s(MemOperand(esp, 0));
4730 __ FCmp();
4731 __ pop(input_reg);
4732 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kLostPrecision);
4733 DeoptimizeIf(parity_even, instr, DeoptimizeReason::kNaN);
4734 }
4735 }
4736 }
4737
4738
DoTaggedToI(LTaggedToI * instr)4739 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
4740 class DeferredTaggedToI final : public LDeferredCode {
4741 public:
4742 DeferredTaggedToI(LCodeGen* codegen,
4743 LTaggedToI* instr,
4744 const X87Stack& x87_stack)
4745 : LDeferredCode(codegen, x87_stack), instr_(instr) { }
4746 void Generate() override { codegen()->DoDeferredTaggedToI(instr_, done()); }
4747 LInstruction* instr() override { return instr_; }
4748
4749 private:
4750 LTaggedToI* instr_;
4751 };
4752
4753 LOperand* input = instr->value();
4754 DCHECK(input->IsRegister());
4755 Register input_reg = ToRegister(input);
4756 DCHECK(input_reg.is(ToRegister(instr->result())));
4757
4758 if (instr->hydrogen()->value()->representation().IsSmi()) {
4759 __ SmiUntag(input_reg);
4760 } else {
4761 DeferredTaggedToI* deferred =
4762 new(zone()) DeferredTaggedToI(this, instr, x87_stack_);
4763 // Optimistically untag the input.
4764 // If the input is a HeapObject, SmiUntag will set the carry flag.
4765 STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
4766 __ SmiUntag(input_reg);
4767 // Branch to deferred code if the input was tagged.
4768 // The deferred code will take care of restoring the tag.
4769 __ j(carry, deferred->entry());
4770 __ bind(deferred->exit());
4771 }
4772 }
4773
4774
DoNumberUntagD(LNumberUntagD * instr)4775 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4776 LOperand* input = instr->value();
4777 DCHECK(input->IsRegister());
4778 LOperand* temp = instr->temp();
4779 DCHECK(temp->IsRegister());
4780 LOperand* result = instr->result();
4781 DCHECK(result->IsDoubleRegister());
4782
4783 Register input_reg = ToRegister(input);
4784 Register temp_reg = ToRegister(temp);
4785
4786 HValue* value = instr->hydrogen()->value();
4787 NumberUntagDMode mode = value->representation().IsSmi()
4788 ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
4789
4790 EmitNumberUntagDNoSSE2(instr, input_reg, temp_reg, ToX87Register(result),
4791 mode);
4792 }
4793
4794
DoDoubleToI(LDoubleToI * instr)4795 void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
4796 LOperand* input = instr->value();
4797 DCHECK(input->IsDoubleRegister());
4798 LOperand* result = instr->result();
4799 DCHECK(result->IsRegister());
4800 Register result_reg = ToRegister(result);
4801
4802 if (instr->truncating()) {
4803 X87Register input_reg = ToX87Register(input);
4804 X87Fxch(input_reg);
4805 __ TruncateX87TOSToI(result_reg);
4806 } else {
4807 Label lost_precision, is_nan, minus_zero, done;
4808 X87Register input_reg = ToX87Register(input);
4809 X87Fxch(input_reg);
4810 __ X87TOSToI(result_reg, instr->hydrogen()->GetMinusZeroMode(),
4811 &lost_precision, &is_nan, &minus_zero);
4812 __ jmp(&done);
4813 __ bind(&lost_precision);
4814 DeoptimizeIf(no_condition, instr, DeoptimizeReason::kLostPrecision);
4815 __ bind(&is_nan);
4816 DeoptimizeIf(no_condition, instr, DeoptimizeReason::kNaN);
4817 __ bind(&minus_zero);
4818 DeoptimizeIf(no_condition, instr, DeoptimizeReason::kMinusZero);
4819 __ bind(&done);
4820 }
4821 }
4822
4823
DoDoubleToSmi(LDoubleToSmi * instr)4824 void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
4825 LOperand* input = instr->value();
4826 DCHECK(input->IsDoubleRegister());
4827 LOperand* result = instr->result();
4828 DCHECK(result->IsRegister());
4829 Register result_reg = ToRegister(result);
4830
4831 Label lost_precision, is_nan, minus_zero, done;
4832 X87Register input_reg = ToX87Register(input);
4833 X87Fxch(input_reg);
4834 __ X87TOSToI(result_reg, instr->hydrogen()->GetMinusZeroMode(),
4835 &lost_precision, &is_nan, &minus_zero);
4836 __ jmp(&done);
4837 __ bind(&lost_precision);
4838 DeoptimizeIf(no_condition, instr, DeoptimizeReason::kLostPrecision);
4839 __ bind(&is_nan);
4840 DeoptimizeIf(no_condition, instr, DeoptimizeReason::kNaN);
4841 __ bind(&minus_zero);
4842 DeoptimizeIf(no_condition, instr, DeoptimizeReason::kMinusZero);
4843 __ bind(&done);
4844 __ SmiTag(result_reg);
4845 DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
4846 }
4847
4848
DoCheckSmi(LCheckSmi * instr)4849 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
4850 LOperand* input = instr->value();
4851 __ test(ToOperand(input), Immediate(kSmiTagMask));
4852 DeoptimizeIf(not_zero, instr, DeoptimizeReason::kNotASmi);
4853 }
4854
4855
DoCheckNonSmi(LCheckNonSmi * instr)4856 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
4857 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
4858 LOperand* input = instr->value();
4859 __ test(ToOperand(input), Immediate(kSmiTagMask));
4860 DeoptimizeIf(zero, instr, DeoptimizeReason::kSmi);
4861 }
4862 }
4863
4864
DoCheckArrayBufferNotNeutered(LCheckArrayBufferNotNeutered * instr)4865 void LCodeGen::DoCheckArrayBufferNotNeutered(
4866 LCheckArrayBufferNotNeutered* instr) {
4867 Register view = ToRegister(instr->view());
4868 Register scratch = ToRegister(instr->scratch());
4869
4870 __ mov(scratch, FieldOperand(view, JSArrayBufferView::kBufferOffset));
4871 __ test_b(FieldOperand(scratch, JSArrayBuffer::kBitFieldOffset),
4872 Immediate(1 << JSArrayBuffer::WasNeutered::kShift));
4873 DeoptimizeIf(not_zero, instr, DeoptimizeReason::kOutOfBounds);
4874 }
4875
4876
DoCheckInstanceType(LCheckInstanceType * instr)4877 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
4878 Register input = ToRegister(instr->value());
4879 Register temp = ToRegister(instr->temp());
4880
4881 __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
4882
4883 if (instr->hydrogen()->is_interval_check()) {
4884 InstanceType first;
4885 InstanceType last;
4886 instr->hydrogen()->GetCheckInterval(&first, &last);
4887
4888 __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset), Immediate(first));
4889
4890 // If there is only one type in the interval check for equality.
4891 if (first == last) {
4892 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kWrongInstanceType);
4893 } else {
4894 DeoptimizeIf(below, instr, DeoptimizeReason::kWrongInstanceType);
4895 // Omit check for the last type.
4896 if (last != LAST_TYPE) {
4897 __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset), Immediate(last));
4898 DeoptimizeIf(above, instr, DeoptimizeReason::kWrongInstanceType);
4899 }
4900 }
4901 } else {
4902 uint8_t mask;
4903 uint8_t tag;
4904 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
4905
4906 if (base::bits::IsPowerOfTwo32(mask)) {
4907 DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
4908 __ test_b(FieldOperand(temp, Map::kInstanceTypeOffset), Immediate(mask));
4909 DeoptimizeIf(tag == 0 ? not_zero : zero, instr,
4910 DeoptimizeReason::kWrongInstanceType);
4911 } else {
4912 __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
4913 __ and_(temp, mask);
4914 __ cmp(temp, tag);
4915 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kWrongInstanceType);
4916 }
4917 }
4918 }
4919
4920
DoCheckValue(LCheckValue * instr)4921 void LCodeGen::DoCheckValue(LCheckValue* instr) {
4922 Handle<HeapObject> object = instr->hydrogen()->object().handle();
4923 if (instr->hydrogen()->object_in_new_space()) {
4924 Register reg = ToRegister(instr->value());
4925 Handle<Cell> cell = isolate()->factory()->NewCell(object);
4926 __ cmp(reg, Operand::ForCell(cell));
4927 } else {
4928 Operand operand = ToOperand(instr->value());
4929 __ cmp(operand, object);
4930 }
4931 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kValueMismatch);
4932 }
4933
4934
DoDeferredInstanceMigration(LCheckMaps * instr,Register object)4935 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
4936 {
4937 PushSafepointRegistersScope scope(this);
4938 __ push(object);
4939 __ xor_(esi, esi);
4940 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
4941 RecordSafepointWithRegisters(
4942 instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
4943
4944 __ test(eax, Immediate(kSmiTagMask));
4945 }
4946 DeoptimizeIf(zero, instr, DeoptimizeReason::kInstanceMigrationFailed);
4947 }
4948
4949
DoCheckMaps(LCheckMaps * instr)4950 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
4951 class DeferredCheckMaps final : public LDeferredCode {
4952 public:
4953 DeferredCheckMaps(LCodeGen* codegen,
4954 LCheckMaps* instr,
4955 Register object,
4956 const X87Stack& x87_stack)
4957 : LDeferredCode(codegen, x87_stack), instr_(instr), object_(object) {
4958 SetExit(check_maps());
4959 }
4960 void Generate() override {
4961 codegen()->DoDeferredInstanceMigration(instr_, object_);
4962 }
4963 Label* check_maps() { return &check_maps_; }
4964 LInstruction* instr() override { return instr_; }
4965
4966 private:
4967 LCheckMaps* instr_;
4968 Label check_maps_;
4969 Register object_;
4970 };
4971
4972 if (instr->hydrogen()->IsStabilityCheck()) {
4973 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
4974 for (int i = 0; i < maps->size(); ++i) {
4975 AddStabilityDependency(maps->at(i).handle());
4976 }
4977 return;
4978 }
4979
4980 LOperand* input = instr->value();
4981 DCHECK(input->IsRegister());
4982 Register reg = ToRegister(input);
4983
4984 DeferredCheckMaps* deferred = NULL;
4985 if (instr->hydrogen()->HasMigrationTarget()) {
4986 deferred = new(zone()) DeferredCheckMaps(this, instr, reg, x87_stack_);
4987 __ bind(deferred->check_maps());
4988 }
4989
4990 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
4991 Label success;
4992 for (int i = 0; i < maps->size() - 1; i++) {
4993 Handle<Map> map = maps->at(i).handle();
4994 __ CompareMap(reg, map);
4995 __ j(equal, &success, Label::kNear);
4996 }
4997
4998 Handle<Map> map = maps->at(maps->size() - 1).handle();
4999 __ CompareMap(reg, map);
5000 if (instr->hydrogen()->HasMigrationTarget()) {
5001 __ j(not_equal, deferred->entry());
5002 } else {
5003 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kWrongMap);
5004 }
5005
5006 __ bind(&success);
5007 }
5008
5009
DoClampDToUint8(LClampDToUint8 * instr)5010 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
5011 X87Register value_reg = ToX87Register(instr->unclamped());
5012 Register result_reg = ToRegister(instr->result());
5013 X87Fxch(value_reg);
5014 __ ClampTOSToUint8(result_reg);
5015 }
5016
5017
DoClampIToUint8(LClampIToUint8 * instr)5018 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
5019 DCHECK(instr->unclamped()->Equals(instr->result()));
5020 Register value_reg = ToRegister(instr->result());
5021 __ ClampUint8(value_reg);
5022 }
5023
5024
DoClampTToUint8NoSSE2(LClampTToUint8NoSSE2 * instr)5025 void LCodeGen::DoClampTToUint8NoSSE2(LClampTToUint8NoSSE2* instr) {
5026 Register input_reg = ToRegister(instr->unclamped());
5027 Register result_reg = ToRegister(instr->result());
5028 Register scratch = ToRegister(instr->scratch());
5029 Register scratch2 = ToRegister(instr->scratch2());
5030 Register scratch3 = ToRegister(instr->scratch3());
5031 Label is_smi, done, heap_number, valid_exponent,
5032 largest_value, zero_result, maybe_nan_or_infinity;
5033
5034 __ JumpIfSmi(input_reg, &is_smi);
5035
5036 // Check for heap number
5037 __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
5038 factory()->heap_number_map());
5039 __ j(equal, &heap_number, Label::kNear);
5040
5041 // Check for undefined. Undefined is converted to zero for clamping
5042 // conversions.
5043 __ cmp(input_reg, factory()->undefined_value());
5044 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumberUndefined);
5045 __ jmp(&zero_result, Label::kNear);
5046
5047 // Heap number
5048 __ bind(&heap_number);
5049
5050 // Surprisingly, all of the hand-crafted bit-manipulations below are much
5051 // faster than the x86 FPU built-in instruction, especially since "banker's
5052 // rounding" would be additionally very expensive
5053
5054 // Get exponent word.
5055 __ mov(scratch, FieldOperand(input_reg, HeapNumber::kExponentOffset));
5056 __ mov(scratch3, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
5057
5058 // Test for negative values --> clamp to zero
5059 __ test(scratch, scratch);
5060 __ j(negative, &zero_result, Label::kNear);
5061
5062 // Get exponent alone in scratch2.
5063 __ mov(scratch2, scratch);
5064 __ and_(scratch2, HeapNumber::kExponentMask);
5065 __ shr(scratch2, HeapNumber::kExponentShift);
5066 __ j(zero, &zero_result, Label::kNear);
5067 __ sub(scratch2, Immediate(HeapNumber::kExponentBias - 1));
5068 __ j(negative, &zero_result, Label::kNear);
5069
5070 const uint32_t non_int8_exponent = 7;
5071 __ cmp(scratch2, Immediate(non_int8_exponent + 1));
5072 // If the exponent is too big, check for special values.
5073 __ j(greater, &maybe_nan_or_infinity, Label::kNear);
5074
5075 __ bind(&valid_exponent);
5076 // Exponent word in scratch, exponent in scratch2. We know that 0 <= exponent
5077 // < 7. The shift bias is the number of bits to shift the mantissa such that
5078 // with an exponent of 7 such the that top-most one is in bit 30, allowing
5079 // detection the rounding overflow of a 255.5 to 256 (bit 31 goes from 0 to
5080 // 1).
5081 int shift_bias = (30 - HeapNumber::kExponentShift) - 7 - 1;
5082 __ lea(result_reg, MemOperand(scratch2, shift_bias));
5083 // Here result_reg (ecx) is the shift, scratch is the exponent word. Get the
5084 // top bits of the mantissa.
5085 __ and_(scratch, HeapNumber::kMantissaMask);
5086 // Put back the implicit 1 of the mantissa
5087 __ or_(scratch, 1 << HeapNumber::kExponentShift);
5088 // Shift up to round
5089 __ shl_cl(scratch);
5090 // Use "banker's rounding" to spec: If fractional part of number is 0.5, then
5091 // use the bit in the "ones" place and add it to the "halves" place, which has
5092 // the effect of rounding to even.
5093 __ mov(scratch2, scratch);
5094 const uint32_t one_half_bit_shift = 30 - sizeof(uint8_t) * 8;
5095 const uint32_t one_bit_shift = one_half_bit_shift + 1;
5096 __ and_(scratch2, Immediate((1 << one_bit_shift) - 1));
5097 __ cmp(scratch2, Immediate(1 << one_half_bit_shift));
5098 Label no_round;
5099 __ j(less, &no_round, Label::kNear);
5100 Label round_up;
5101 __ mov(scratch2, Immediate(1 << one_half_bit_shift));
5102 __ j(greater, &round_up, Label::kNear);
5103 __ test(scratch3, scratch3);
5104 __ j(not_zero, &round_up, Label::kNear);
5105 __ mov(scratch2, scratch);
5106 __ and_(scratch2, Immediate(1 << one_bit_shift));
5107 __ shr(scratch2, 1);
5108 __ bind(&round_up);
5109 __ add(scratch, scratch2);
5110 __ j(overflow, &largest_value, Label::kNear);
5111 __ bind(&no_round);
5112 __ shr(scratch, 23);
5113 __ mov(result_reg, scratch);
5114 __ jmp(&done, Label::kNear);
5115
5116 __ bind(&maybe_nan_or_infinity);
5117 // Check for NaN/Infinity, all other values map to 255
5118 __ cmp(scratch2, Immediate(HeapNumber::kInfinityOrNanExponent + 1));
5119 __ j(not_equal, &largest_value, Label::kNear);
5120
5121 // Check for NaN, which differs from Infinity in that at least one mantissa
5122 // bit is set.
5123 __ and_(scratch, HeapNumber::kMantissaMask);
5124 __ or_(scratch, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
5125 __ j(not_zero, &zero_result, Label::kNear); // M!=0 --> NaN
5126 // Infinity -> Fall through to map to 255.
5127
5128 __ bind(&largest_value);
5129 __ mov(result_reg, Immediate(255));
5130 __ jmp(&done, Label::kNear);
5131
5132 __ bind(&zero_result);
5133 __ xor_(result_reg, result_reg);
5134 __ jmp(&done, Label::kNear);
5135
5136 // smi
5137 __ bind(&is_smi);
5138 if (!input_reg.is(result_reg)) {
5139 __ mov(result_reg, input_reg);
5140 }
5141 __ SmiUntag(result_reg);
5142 __ ClampUint8(result_reg);
5143 __ bind(&done);
5144 }
5145
5146
DoAllocate(LAllocate * instr)5147 void LCodeGen::DoAllocate(LAllocate* instr) {
5148 class DeferredAllocate final : public LDeferredCode {
5149 public:
5150 DeferredAllocate(LCodeGen* codegen,
5151 LAllocate* instr,
5152 const X87Stack& x87_stack)
5153 : LDeferredCode(codegen, x87_stack), instr_(instr) { }
5154 void Generate() override { codegen()->DoDeferredAllocate(instr_); }
5155 LInstruction* instr() override { return instr_; }
5156
5157 private:
5158 LAllocate* instr_;
5159 };
5160
5161 DeferredAllocate* deferred =
5162 new(zone()) DeferredAllocate(this, instr, x87_stack_);
5163
5164 Register result = ToRegister(instr->result());
5165 Register temp = ToRegister(instr->temp());
5166
5167 // Allocate memory for the object.
5168 AllocationFlags flags = NO_ALLOCATION_FLAGS;
5169 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
5170 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
5171 }
5172 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5173 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5174 flags = static_cast<AllocationFlags>(flags | PRETENURE);
5175 }
5176
5177 if (instr->hydrogen()->IsAllocationFoldingDominator()) {
5178 flags = static_cast<AllocationFlags>(flags | ALLOCATION_FOLDING_DOMINATOR);
5179 }
5180 DCHECK(!instr->hydrogen()->IsAllocationFolded());
5181
5182 if (instr->size()->IsConstantOperand()) {
5183 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5184 CHECK(size <= kMaxRegularHeapObjectSize);
5185 __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
5186 } else {
5187 Register size = ToRegister(instr->size());
5188 __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
5189 }
5190
5191 __ bind(deferred->exit());
5192
5193 if (instr->hydrogen()->MustPrefillWithFiller()) {
5194 if (instr->size()->IsConstantOperand()) {
5195 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5196 __ mov(temp, (size / kPointerSize) - 1);
5197 } else {
5198 temp = ToRegister(instr->size());
5199 __ shr(temp, kPointerSizeLog2);
5200 __ dec(temp);
5201 }
5202 Label loop;
5203 __ bind(&loop);
5204 __ mov(FieldOperand(result, temp, times_pointer_size, 0),
5205 isolate()->factory()->one_pointer_filler_map());
5206 __ dec(temp);
5207 __ j(not_zero, &loop);
5208 }
5209 }
5210
DoFastAllocate(LFastAllocate * instr)5211 void LCodeGen::DoFastAllocate(LFastAllocate* instr) {
5212 DCHECK(instr->hydrogen()->IsAllocationFolded());
5213 DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator());
5214 Register result = ToRegister(instr->result());
5215 Register temp = ToRegister(instr->temp());
5216
5217 AllocationFlags flags = ALLOCATION_FOLDED;
5218 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
5219 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
5220 }
5221 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5222 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5223 flags = static_cast<AllocationFlags>(flags | PRETENURE);
5224 }
5225 if (instr->size()->IsConstantOperand()) {
5226 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5227 CHECK(size <= kMaxRegularHeapObjectSize);
5228 __ FastAllocate(size, result, temp, flags);
5229 } else {
5230 Register size = ToRegister(instr->size());
5231 __ FastAllocate(size, result, temp, flags);
5232 }
5233 }
5234
DoDeferredAllocate(LAllocate * instr)5235 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
5236 Register result = ToRegister(instr->result());
5237
5238 // TODO(3095996): Get rid of this. For now, we need to make the
5239 // result register contain a valid pointer because it is already
5240 // contained in the register pointer map.
5241 __ Move(result, Immediate(Smi::kZero));
5242
5243 PushSafepointRegistersScope scope(this);
5244 if (instr->size()->IsRegister()) {
5245 Register size = ToRegister(instr->size());
5246 DCHECK(!size.is(result));
5247 __ SmiTag(ToRegister(instr->size()));
5248 __ push(size);
5249 } else {
5250 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5251 if (size >= 0 && size <= Smi::kMaxValue) {
5252 __ push(Immediate(Smi::FromInt(size)));
5253 } else {
5254 // We should never get here at runtime => abort
5255 __ int3();
5256 return;
5257 }
5258 }
5259
5260 int flags = AllocateDoubleAlignFlag::encode(
5261 instr->hydrogen()->MustAllocateDoubleAligned());
5262 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5263 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5264 flags = AllocateTargetSpace::update(flags, OLD_SPACE);
5265 } else {
5266 flags = AllocateTargetSpace::update(flags, NEW_SPACE);
5267 }
5268 __ push(Immediate(Smi::FromInt(flags)));
5269
5270 CallRuntimeFromDeferred(
5271 Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
5272 __ StoreToSafepointRegisterSlot(result, eax);
5273
5274 if (instr->hydrogen()->IsAllocationFoldingDominator()) {
5275 AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS;
5276 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5277 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5278 allocation_flags = static_cast<AllocationFlags>(flags | PRETENURE);
5279 }
5280 // If the allocation folding dominator allocate triggered a GC, allocation
5281 // happend in the runtime. We have to reset the top pointer to virtually
5282 // undo the allocation.
5283 ExternalReference allocation_top =
5284 AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags);
5285 __ sub(eax, Immediate(kHeapObjectTag));
5286 __ mov(Operand::StaticVariable(allocation_top), eax);
5287 __ add(eax, Immediate(kHeapObjectTag));
5288 }
5289 }
5290
5291
DoTypeof(LTypeof * instr)5292 void LCodeGen::DoTypeof(LTypeof* instr) {
5293 DCHECK(ToRegister(instr->context()).is(esi));
5294 DCHECK(ToRegister(instr->value()).is(ebx));
5295 Label end, do_call;
5296 Register value_register = ToRegister(instr->value());
5297 __ JumpIfNotSmi(value_register, &do_call);
5298 __ mov(eax, Immediate(isolate()->factory()->number_string()));
5299 __ jmp(&end);
5300 __ bind(&do_call);
5301 Callable callable = CodeFactory::Typeof(isolate());
5302 CallCode(callable.code(), RelocInfo::CODE_TARGET, instr);
5303 __ bind(&end);
5304 }
5305
5306
DoTypeofIsAndBranch(LTypeofIsAndBranch * instr)5307 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5308 Register input = ToRegister(instr->value());
5309 Condition final_branch_condition = EmitTypeofIs(instr, input);
5310 if (final_branch_condition != no_condition) {
5311 EmitBranch(instr, final_branch_condition);
5312 }
5313 }
5314
5315
EmitTypeofIs(LTypeofIsAndBranch * instr,Register input)5316 Condition LCodeGen::EmitTypeofIs(LTypeofIsAndBranch* instr, Register input) {
5317 Label* true_label = instr->TrueLabel(chunk_);
5318 Label* false_label = instr->FalseLabel(chunk_);
5319 Handle<String> type_name = instr->type_literal();
5320 int left_block = instr->TrueDestination(chunk_);
5321 int right_block = instr->FalseDestination(chunk_);
5322 int next_block = GetNextEmittedBlock();
5323
5324 Label::Distance true_distance = left_block == next_block ? Label::kNear
5325 : Label::kFar;
5326 Label::Distance false_distance = right_block == next_block ? Label::kNear
5327 : Label::kFar;
5328 Condition final_branch_condition = no_condition;
5329 if (String::Equals(type_name, factory()->number_string())) {
5330 __ JumpIfSmi(input, true_label, true_distance);
5331 __ cmp(FieldOperand(input, HeapObject::kMapOffset),
5332 factory()->heap_number_map());
5333 final_branch_condition = equal;
5334
5335 } else if (String::Equals(type_name, factory()->string_string())) {
5336 __ JumpIfSmi(input, false_label, false_distance);
5337 __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input);
5338 final_branch_condition = below;
5339
5340 } else if (String::Equals(type_name, factory()->symbol_string())) {
5341 __ JumpIfSmi(input, false_label, false_distance);
5342 __ CmpObjectType(input, SYMBOL_TYPE, input);
5343 final_branch_condition = equal;
5344
5345 } else if (String::Equals(type_name, factory()->boolean_string())) {
5346 __ cmp(input, factory()->true_value());
5347 __ j(equal, true_label, true_distance);
5348 __ cmp(input, factory()->false_value());
5349 final_branch_condition = equal;
5350
5351 } else if (String::Equals(type_name, factory()->undefined_string())) {
5352 __ cmp(input, factory()->null_value());
5353 __ j(equal, false_label, false_distance);
5354 __ JumpIfSmi(input, false_label, false_distance);
5355 // Check for undetectable objects => true.
5356 __ mov(input, FieldOperand(input, HeapObject::kMapOffset));
5357 __ test_b(FieldOperand(input, Map::kBitFieldOffset),
5358 Immediate(1 << Map::kIsUndetectable));
5359 final_branch_condition = not_zero;
5360
5361 } else if (String::Equals(type_name, factory()->function_string())) {
5362 __ JumpIfSmi(input, false_label, false_distance);
5363 // Check for callable and not undetectable objects => true.
5364 __ mov(input, FieldOperand(input, HeapObject::kMapOffset));
5365 __ movzx_b(input, FieldOperand(input, Map::kBitFieldOffset));
5366 __ and_(input, (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
5367 __ cmp(input, 1 << Map::kIsCallable);
5368 final_branch_condition = equal;
5369
5370 } else if (String::Equals(type_name, factory()->object_string())) {
5371 __ JumpIfSmi(input, false_label, false_distance);
5372 __ cmp(input, factory()->null_value());
5373 __ j(equal, true_label, true_distance);
5374 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
5375 __ CmpObjectType(input, FIRST_JS_RECEIVER_TYPE, input);
5376 __ j(below, false_label, false_distance);
5377 // Check for callable or undetectable objects => false.
5378 __ test_b(FieldOperand(input, Map::kBitFieldOffset),
5379 Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5380 final_branch_condition = zero;
5381
5382 // clang-format off
5383 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
5384 } else if (String::Equals(type_name, factory()->type##_string())) { \
5385 __ JumpIfSmi(input, false_label, false_distance); \
5386 __ cmp(FieldOperand(input, HeapObject::kMapOffset), \
5387 factory()->type##_map()); \
5388 final_branch_condition = equal;
5389 SIMD128_TYPES(SIMD128_TYPE)
5390 #undef SIMD128_TYPE
5391 // clang-format on
5392
5393 } else {
5394 __ jmp(false_label, false_distance);
5395 }
5396 return final_branch_condition;
5397 }
5398
5399
EnsureSpaceForLazyDeopt(int space_needed)5400 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
5401 if (info()->ShouldEnsureSpaceForLazyDeopt()) {
5402 // Ensure that we have enough space after the previous lazy-bailout
5403 // instruction for patching the code here.
5404 int current_pc = masm()->pc_offset();
5405 if (current_pc < last_lazy_deopt_pc_ + space_needed) {
5406 int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
5407 __ Nop(padding_size);
5408 }
5409 }
5410 last_lazy_deopt_pc_ = masm()->pc_offset();
5411 }
5412
5413
DoLazyBailout(LLazyBailout * instr)5414 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
5415 last_lazy_deopt_pc_ = masm()->pc_offset();
5416 DCHECK(instr->HasEnvironment());
5417 LEnvironment* env = instr->environment();
5418 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5419 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5420 }
5421
5422
DoDeoptimize(LDeoptimize * instr)5423 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
5424 Deoptimizer::BailoutType type = instr->hydrogen()->type();
5425 // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
5426 // needed return address), even though the implementation of LAZY and EAGER is
5427 // now identical. When LAZY is eventually completely folded into EAGER, remove
5428 // the special case below.
5429 if (info()->IsStub() && type == Deoptimizer::EAGER) {
5430 type = Deoptimizer::LAZY;
5431 }
5432 DeoptimizeIf(no_condition, instr, instr->hydrogen()->reason(), type);
5433 }
5434
5435
DoDummy(LDummy * instr)5436 void LCodeGen::DoDummy(LDummy* instr) {
5437 // Nothing to see here, move on!
5438 }
5439
5440
DoDummyUse(LDummyUse * instr)5441 void LCodeGen::DoDummyUse(LDummyUse* instr) {
5442 // Nothing to see here, move on!
5443 }
5444
5445
DoDeferredStackCheck(LStackCheck * instr)5446 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
5447 PushSafepointRegistersScope scope(this);
5448 __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
5449 __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
5450 RecordSafepointWithLazyDeopt(
5451 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
5452 DCHECK(instr->HasEnvironment());
5453 LEnvironment* env = instr->environment();
5454 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5455 }
5456
5457
DoStackCheck(LStackCheck * instr)5458 void LCodeGen::DoStackCheck(LStackCheck* instr) {
5459 class DeferredStackCheck final : public LDeferredCode {
5460 public:
5461 DeferredStackCheck(LCodeGen* codegen,
5462 LStackCheck* instr,
5463 const X87Stack& x87_stack)
5464 : LDeferredCode(codegen, x87_stack), instr_(instr) { }
5465 void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
5466 LInstruction* instr() override { return instr_; }
5467
5468 private:
5469 LStackCheck* instr_;
5470 };
5471
5472 DCHECK(instr->HasEnvironment());
5473 LEnvironment* env = instr->environment();
5474 // There is no LLazyBailout instruction for stack-checks. We have to
5475 // prepare for lazy deoptimization explicitly here.
5476 if (instr->hydrogen()->is_function_entry()) {
5477 // Perform stack overflow check.
5478 Label done;
5479 ExternalReference stack_limit =
5480 ExternalReference::address_of_stack_limit(isolate());
5481 __ cmp(esp, Operand::StaticVariable(stack_limit));
5482 __ j(above_equal, &done, Label::kNear);
5483
5484 DCHECK(instr->context()->IsRegister());
5485 DCHECK(ToRegister(instr->context()).is(esi));
5486 CallCode(isolate()->builtins()->StackCheck(),
5487 RelocInfo::CODE_TARGET,
5488 instr);
5489 __ bind(&done);
5490 } else {
5491 DCHECK(instr->hydrogen()->is_backwards_branch());
5492 // Perform stack overflow check if this goto needs it before jumping.
5493 DeferredStackCheck* deferred_stack_check =
5494 new(zone()) DeferredStackCheck(this, instr, x87_stack_);
5495 ExternalReference stack_limit =
5496 ExternalReference::address_of_stack_limit(isolate());
5497 __ cmp(esp, Operand::StaticVariable(stack_limit));
5498 __ j(below, deferred_stack_check->entry());
5499 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
5500 __ bind(instr->done_label());
5501 deferred_stack_check->SetExit(instr->done_label());
5502 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5503 // Don't record a deoptimization index for the safepoint here.
5504 // This will be done explicitly when emitting call and the safepoint in
5505 // the deferred code.
5506 }
5507 }
5508
5509
DoOsrEntry(LOsrEntry * instr)5510 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
5511 // This is a pseudo-instruction that ensures that the environment here is
5512 // properly registered for deoptimization and records the assembler's PC
5513 // offset.
5514 LEnvironment* environment = instr->environment();
5515
5516 // If the environment were already registered, we would have no way of
5517 // backpatching it with the spill slot operands.
5518 DCHECK(!environment->HasBeenRegistered());
5519 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
5520
5521 GenerateOsrPrologue();
5522 }
5523
5524
DoForInPrepareMap(LForInPrepareMap * instr)5525 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
5526 DCHECK(ToRegister(instr->context()).is(esi));
5527
5528 Label use_cache, call_runtime;
5529 __ CheckEnumCache(&call_runtime);
5530
5531 __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset));
5532 __ jmp(&use_cache, Label::kNear);
5533
5534 // Get the set of properties to enumerate.
5535 __ bind(&call_runtime);
5536 __ push(eax);
5537 CallRuntime(Runtime::kForInEnumerate, instr);
5538 __ bind(&use_cache);
5539 }
5540
5541
DoForInCacheArray(LForInCacheArray * instr)5542 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
5543 Register map = ToRegister(instr->map());
5544 Register result = ToRegister(instr->result());
5545 Label load_cache, done;
5546 __ EnumLength(result, map);
5547 __ cmp(result, Immediate(Smi::kZero));
5548 __ j(not_equal, &load_cache, Label::kNear);
5549 __ mov(result, isolate()->factory()->empty_fixed_array());
5550 __ jmp(&done, Label::kNear);
5551
5552 __ bind(&load_cache);
5553 __ LoadInstanceDescriptors(map, result);
5554 __ mov(result,
5555 FieldOperand(result, DescriptorArray::kEnumCacheOffset));
5556 __ mov(result,
5557 FieldOperand(result, FixedArray::SizeFor(instr->idx())));
5558 __ bind(&done);
5559 __ test(result, result);
5560 DeoptimizeIf(equal, instr, DeoptimizeReason::kNoCache);
5561 }
5562
5563
DoCheckMapValue(LCheckMapValue * instr)5564 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5565 Register object = ToRegister(instr->value());
5566 __ cmp(ToRegister(instr->map()),
5567 FieldOperand(object, HeapObject::kMapOffset));
5568 DeoptimizeIf(not_equal, instr, DeoptimizeReason::kWrongMap);
5569 }
5570
5571
DoDeferredLoadMutableDouble(LLoadFieldByIndex * instr,Register object,Register index)5572 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5573 Register object,
5574 Register index) {
5575 PushSafepointRegistersScope scope(this);
5576 __ push(object);
5577 __ push(index);
5578 __ xor_(esi, esi);
5579 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
5580 RecordSafepointWithRegisters(
5581 instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
5582 __ StoreToSafepointRegisterSlot(object, eax);
5583 }
5584
5585
DoLoadFieldByIndex(LLoadFieldByIndex * instr)5586 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5587 class DeferredLoadMutableDouble final : public LDeferredCode {
5588 public:
5589 DeferredLoadMutableDouble(LCodeGen* codegen,
5590 LLoadFieldByIndex* instr,
5591 Register object,
5592 Register index,
5593 const X87Stack& x87_stack)
5594 : LDeferredCode(codegen, x87_stack),
5595 instr_(instr),
5596 object_(object),
5597 index_(index) {
5598 }
5599 void Generate() override {
5600 codegen()->DoDeferredLoadMutableDouble(instr_, object_, index_);
5601 }
5602 LInstruction* instr() override { return instr_; }
5603
5604 private:
5605 LLoadFieldByIndex* instr_;
5606 Register object_;
5607 Register index_;
5608 };
5609
5610 Register object = ToRegister(instr->object());
5611 Register index = ToRegister(instr->index());
5612
5613 DeferredLoadMutableDouble* deferred;
5614 deferred = new(zone()) DeferredLoadMutableDouble(
5615 this, instr, object, index, x87_stack_);
5616
5617 Label out_of_object, done;
5618 __ test(index, Immediate(Smi::FromInt(1)));
5619 __ j(not_zero, deferred->entry());
5620
5621 __ sar(index, 1);
5622
5623 __ cmp(index, Immediate(0));
5624 __ j(less, &out_of_object, Label::kNear);
5625 __ mov(object, FieldOperand(object,
5626 index,
5627 times_half_pointer_size,
5628 JSObject::kHeaderSize));
5629 __ jmp(&done, Label::kNear);
5630
5631 __ bind(&out_of_object);
5632 __ mov(object, FieldOperand(object, JSObject::kPropertiesOffset));
5633 __ neg(index);
5634 // Index is now equal to out of object property index plus 1.
5635 __ mov(object, FieldOperand(object,
5636 index,
5637 times_half_pointer_size,
5638 FixedArray::kHeaderSize - kPointerSize));
5639 __ bind(deferred->exit());
5640 __ bind(&done);
5641 }
5642
5643 #undef __
5644
5645 } // namespace internal
5646 } // namespace v8
5647
5648 #endif // V8_TARGET_ARCH_X87
5649