1 // Copyright 2016 Google Inc. All rights reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 package com.google.archivepatcher.applier.bsdiff;
16 
17 import com.google.archivepatcher.applier.PatchFormatException;
18 
19 import java.io.BufferedInputStream;
20 import java.io.BufferedOutputStream;
21 import java.io.IOException;
22 import java.io.InputStream;
23 import java.io.OutputStream;
24 import java.io.RandomAccessFile;
25 
26 /**
27  * A Java implementation of the "bspatch" algorithm based on the BSD-2 licensed source code
28  * available here: https://github.com/mendsley/bsdiff. This implementation supports a maximum file
29  * size of 2GB for all binaries involved (old, new and patch binaries).
30  */
31 public class BsPatch {
32   /**
33    * Standard header found at the start of every patch.
34    */
35   private static final String SIGNATURE = "ENDSLEY/BSDIFF43";
36 
37   /**
38    * Default buffer size is 50 kibibytes, a reasonable tradeoff between size and speed.
39    */
40   private static final int PATCH_BUFFER_SIZE = 1024 * 50;
41 
42   /**
43    * Masks the upper bit of a long, used to determine if a long is positive or negative.
44    */
45   private static final long NEGATIVE_LONG_SIGN_MASK = 1L << 63;
46 
47   /**
48    * The patch is typically compressed and the input stream is decompressing on-the-fly. A small
49    * buffer greatly improves efficiency on complicated patches with lots of short directives.
50    */
51   private static final int PATCH_STREAM_BUFFER_SIZE = 4 * 1024;
52 
53   /**
54    * Complicated patches with lots of short directives result in many calls to write small amounts
55    * of data. A buffer greatly improves efficiency for these patches.
56    */
57   private static final int OUTPUT_STREAM_BUFFER_SIZE = 16 * 1024;
58 
59   /**
60    * Applies a patch from |patchData| to the data in |oldData|, writing the result to |newData|.
61    *
62    * @param oldData data to which the patch should be applied
63    * @param newData stream to write the new artifact to
64    * @param patchData stream to read patch instructions from
65    * @throws PatchFormatException if the patch stream is invalid
66    * @throws IOException if unable to read or write any of the data
67    */
applyPatch( RandomAccessFile oldData, OutputStream newData, InputStream patchData)68   public static void applyPatch(
69       RandomAccessFile oldData, OutputStream newData, InputStream patchData)
70       throws PatchFormatException, IOException {
71     patchData = new BufferedInputStream(patchData, PATCH_STREAM_BUFFER_SIZE);
72     newData = new BufferedOutputStream(newData, OUTPUT_STREAM_BUFFER_SIZE);
73     try {
74       applyPatchInternal(oldData, newData, patchData);
75     } finally {
76       newData.flush();
77     }
78   }
79 
80   /**
81    * Does the work of the public applyPatch method.
82    */
applyPatchInternal( final RandomAccessFile oldData, final OutputStream newData, final InputStream patchData)83   private static void applyPatchInternal(
84       final RandomAccessFile oldData,
85       final OutputStream newData,
86       final InputStream patchData)
87       throws PatchFormatException, IOException {
88     final byte[] signatureBuffer = new byte[SIGNATURE.length()];
89     try {
90       readFully(patchData, signatureBuffer, 0, signatureBuffer.length);
91     } catch (IOException e) {
92       throw new PatchFormatException("truncated signature");
93     }
94 
95     String signature = new String(signatureBuffer, 0, signatureBuffer.length, "US-ASCII");
96     if (!SIGNATURE.equals(signature)) {
97       throw new PatchFormatException("bad signature");
98     }
99 
100     // Sanity-check: ensure a-priori knowledge matches patch expectations
101     final long oldSize = oldData.length();
102     if (oldSize > Integer.MAX_VALUE) {
103       throw new PatchFormatException("bad oldSize");
104     }
105     final long newSize = readBsdiffLong(patchData);
106     if (newSize < 0 || newSize > Integer.MAX_VALUE) {
107       throw new PatchFormatException("bad newSize");
108     }
109 
110     // These buffers are used for performing transformations and copies. They are not stateful.
111     final byte[] buffer1 = new byte[PATCH_BUFFER_SIZE];
112     final byte[] buffer2 = new byte[PATCH_BUFFER_SIZE];
113 
114     // Offsets into |oldData| and |newData|.
115     long oldDataOffset = 0; // strobes |oldData| in order specified by the patch file
116     long newDataBytesWritten = 0; // monotonically increases from 0 .. |expectedNewSize|
117 
118     while (newDataBytesWritten < newSize) {
119       // Read "control data" for the operation. There are three values here:
120       // 1. |diffSegmentLength| defines a number of "similar" bytes that can be transformed
121       //    from |oldData| to |newData| by applying byte-by-byte addends. The addend bytes are
122       //    read from |patchData|. If zero, no "similar" bytes are transformed in this
123       //    operation.
124       final long diffSegmentLength = readBsdiffLong(patchData);
125 
126       // 2. |copySegmentLength| defines a number of identical bytes that can be copied from
127       //    |oldData| to |newData|. If zero, no identical bytes are copied in this operation.
128       final long copySegmentLength = readBsdiffLong(patchData);
129 
130       // 3. |offsetToNextInput| defines a relative offset to the next position in |oldData| to
131       //    jump do after the current operation completes. Strangely, this compensates for
132       //    |diffSegmentLength| but not for |copySegmentLength|, so |diffSegmentLength| must
133       //    be accumulated into |oldDataOffset| while |copySegmentLength| must NOT be.
134       final long offsetToNextInput = readBsdiffLong(patchData);
135 
136       // Sanity-checks
137       if (diffSegmentLength < 0 || diffSegmentLength > Integer.MAX_VALUE) {
138         throw new PatchFormatException("bad diffSegmentLength");
139       }
140       if (copySegmentLength < 0 || copySegmentLength > Integer.MAX_VALUE) {
141         throw new PatchFormatException("bad copySegmentLength");
142       }
143       if (offsetToNextInput < Integer.MIN_VALUE || offsetToNextInput > Integer.MAX_VALUE) {
144         throw new PatchFormatException("bad offsetToNextInput");
145       }
146 
147       final long expectedFinalNewDataBytesWritten =
148           newDataBytesWritten + diffSegmentLength + copySegmentLength;
149       if (expectedFinalNewDataBytesWritten > newSize) {
150         throw new PatchFormatException("expectedFinalNewDataBytesWritten too large");
151       }
152 
153       final long expectedFinalOldDataOffset = oldDataOffset + diffSegmentLength + offsetToNextInput;
154       if (expectedFinalOldDataOffset > oldSize) {
155         throw new PatchFormatException("expectedFinalOldDataOffset too large");
156       }
157       if (expectedFinalOldDataOffset < 0) {
158         throw new PatchFormatException("expectedFinalOldDataOffset is negative");
159       }
160 
161       // At this point everything is known to be sane, and the operations should all succeed.
162       oldData.seek(oldDataOffset);
163       if (diffSegmentLength > 0) {
164         transformBytes((int) diffSegmentLength, patchData, oldData, newData, buffer1, buffer2);
165       }
166       if (copySegmentLength > 0) {
167         pipe(patchData, newData, buffer1, (int) copySegmentLength);
168       }
169       newDataBytesWritten = expectedFinalNewDataBytesWritten;
170       oldDataOffset = expectedFinalOldDataOffset;
171     }
172   }
173 
174   /**
175    * Transforms bytes from |oldData| into |newData| by applying byte-for-byte addends from
176    * |patchData|. The number of bytes consumed from |oldData| and |patchData|, as well as the
177    * number of bytes written to |newData|, is |diffLength|. The contents of the buffers are
178    * ignored and overwritten, and no guarantee is made as to their contents when this method
179    * returns. This is the core of the bsdiff patching algorithm. |buffer1.length| must equal
180    * |buffer2.length|, and |buffer1| and |buffer2| must be distinct objects.
181    *
182    * @param diffLength the length of the BsDiff entry (how many bytes to read and apply).
183    * @param patchData the input stream from the BsDiff patch containing diff bytes. This stream
184    *                  must be positioned so that the first byte read is the first addend to be
185    *                  applied to the first byte of data to be read from |oldData|.
186    * @param oldData the old file, for the diff bytes to be applied to. This input source must be
187    *                positioned so that the first byte read is the first byte of data to which the
188    *                first byte of addends from |patchData| should be applied.
189    * @param newData the stream to write the resulting data to.
190    * @param buffer1 temporary buffer to use for data transformation; contents are ignored, may be
191    *                overwritten, and are undefined when this method returns.
192    * @param buffer2 temporary buffer to use for data transformation; contents are ignored, may be
193    *                overwritten, and are undefined when this method returns.
194    */
195   // Visible for testing only
transformBytes( final int diffLength, final InputStream patchData, final RandomAccessFile oldData, final OutputStream newData, final byte[] buffer1, final byte[] buffer2)196   static void transformBytes(
197       final int diffLength,
198       final InputStream patchData,
199       final RandomAccessFile oldData,
200       final OutputStream newData,
201       final byte[] buffer1,
202       final byte[] buffer2)
203       throws IOException {
204     int numBytesLeft = diffLength;
205     while (numBytesLeft > 0) {
206       final int numBytesThisRound = Math.min(numBytesLeft, buffer1.length);
207       oldData.readFully(buffer1, 0, numBytesThisRound);
208       readFully(patchData, buffer2, 0, numBytesThisRound);
209       for (int i = 0; i < numBytesThisRound; i++) {
210         buffer1[i] += buffer2[i];
211       }
212       newData.write(buffer1, 0, numBytesThisRound);
213       numBytesLeft -= numBytesThisRound;
214     }
215   }
216 
217   /**
218    * Reads a long value in little-endian, signed-magnitude format (the format used by the C++
219    * bsdiff implementation).
220    *
221    * @param in the stream to read from
222    * @return the long value
223    * @throws PatchFormatException if the value is negative zero (unsupported)
224    * @throws IOException if unable to read all 8 bytes from the stream
225    */
226   // Visible for testing only
readBsdiffLong(InputStream in)227   static final long readBsdiffLong(InputStream in) throws PatchFormatException, IOException {
228     long result = 0;
229     for (int bitshift = 0; bitshift < 64; bitshift += 8) {
230       result |= ((long) in.read()) << bitshift;
231     }
232 
233     if (result == NEGATIVE_LONG_SIGN_MASK) {
234       // "Negative zero", which is valid in signed-magnitude format.
235       // NB: No sane patch generator should ever produce such a value.
236       throw new PatchFormatException("read negative zero");
237     }
238 
239     if ((result & NEGATIVE_LONG_SIGN_MASK) != 0) {
240       result = -(result & ~NEGATIVE_LONG_SIGN_MASK);
241     }
242 
243     return result;
244   }
245 
246   /**
247    * Read exactly the specified number of bytes into the specified buffer.
248    *
249    * @param in the input stream to read from
250    * @param destination where to write the bytes to
251    * @param startAt the offset at which to start writing bytes in the destination buffer
252    * @param numBytes the number of bytes to read
253    * @throws IOException if reading from the stream fails
254    */
255   // Visible for testing only
readFully( final InputStream in, final byte[] destination, final int startAt, final int numBytes)256   static void readFully(
257       final InputStream in, final byte[] destination, final int startAt, final int numBytes)
258       throws IOException {
259     int numRead = 0;
260     while (numRead < numBytes) {
261       int readNow = in.read(destination, startAt + numRead, numBytes - numRead);
262       if (readNow == -1) {
263         throw new IOException("truncated input stream");
264       }
265       numRead += readNow;
266     }
267   }
268 
269   /**
270    * Use an intermediate buffer to pipe bytes from an InputStream directly to an OutputStream. The
271    * buffer's contents may be destroyed by this operation.
272    *
273    * @param in the stream to read bytes from.
274    * @param out the stream to write bytes to.
275    * @param buffer the buffer to use for copying bytes; must have length > 0
276    * @param copyLength the number of bytes to copy from the input stream to the output stream
277    */
278   // Visible for testing only
pipe( final InputStream in, final OutputStream out, final byte[] buffer, int copyLength)279   static void pipe(
280       final InputStream in, final OutputStream out, final byte[] buffer, int copyLength)
281       throws IOException {
282     while (copyLength > 0) {
283       int maxCopy = Math.min(buffer.length, copyLength);
284       readFully(in, buffer, 0, maxCopy);
285       out.write(buffer, 0, maxCopy);
286       copyLength -= maxCopy;
287     }
288   }
289 }
290