1 /*
2  * Licensed to the Apache Software Foundation (ASF) under one or more
3  * contributor license agreements.  See the NOTICE file distributed with
4  * this work for additional information regarding copyright ownership.
5  * The ASF licenses this file to You under the Apache License, Version 2.0
6  * (the "License"); you may not use this file except in compliance with
7  * the License.  You may obtain a copy of the License at
8  *
9  *      http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17 
18 package org.apache.commons.math.linear;
19 
20 import org.apache.commons.math.MathRuntimeException;
21 import org.apache.commons.math.MaxIterationsExceededException;
22 import org.apache.commons.math.exception.util.LocalizedFormats;
23 import org.apache.commons.math.util.MathUtils;
24 import org.apache.commons.math.util.FastMath;
25 
26 /**
27  * Calculates the eigen decomposition of a real <strong>symmetric</strong>
28  * matrix.
29  * <p>
30  * The eigen decomposition of matrix A is a set of two matrices: V and D such
31  * that A = V D V<sup>T</sup>. A, V and D are all m &times; m matrices.
32  * </p>
33  * <p>
34  * As of 2.0, this class supports only <strong>symmetric</strong> matrices, and
35  * hence computes only real realEigenvalues. This implies the D matrix returned
36  * by {@link #getD()} is always diagonal and the imaginary values returned
37  * {@link #getImagEigenvalue(int)} and {@link #getImagEigenvalues()} are always
38  * null.
39  * </p>
40  * <p>
41  * When called with a {@link RealMatrix} argument, this implementation only uses
42  * the upper part of the matrix, the part below the diagonal is not accessed at
43  * all.
44  * </p>
45  * <p>
46  * This implementation is based on the paper by A. Drubrulle, R.S. Martin and
47  * J.H. Wilkinson 'The Implicit QL Algorithm' in Wilksinson and Reinsch (1971)
48  * Handbook for automatic computation, vol. 2, Linear algebra, Springer-Verlag,
49  * New-York
50  * </p>
51  * @version $Revision: 1002040 $ $Date: 2010-09-28 09:18:31 +0200 (mar. 28 sept. 2010) $
52  * @since 2.0
53  */
54 public class EigenDecompositionImpl implements EigenDecomposition {
55 
56     /** Maximum number of iterations accepted in the implicit QL transformation */
57     private byte maxIter = 30;
58 
59     /** Main diagonal of the tridiagonal matrix. */
60     private double[] main;
61 
62     /** Secondary diagonal of the tridiagonal matrix. */
63     private double[] secondary;
64 
65     /**
66      * Transformer to tridiagonal (may be null if matrix is already
67      * tridiagonal).
68      */
69     private TriDiagonalTransformer transformer;
70 
71     /** Real part of the realEigenvalues. */
72     private double[] realEigenvalues;
73 
74     /** Imaginary part of the realEigenvalues. */
75     private double[] imagEigenvalues;
76 
77     /** Eigenvectors. */
78     private ArrayRealVector[] eigenvectors;
79 
80     /** Cached value of V. */
81     private RealMatrix cachedV;
82 
83     /** Cached value of D. */
84     private RealMatrix cachedD;
85 
86     /** Cached value of Vt. */
87     private RealMatrix cachedVt;
88 
89     /**
90      * Calculates the eigen decomposition of the given symmetric matrix.
91      * @param matrix The <strong>symmetric</strong> matrix to decompose.
92      * @param splitTolerance dummy parameter, present for backward compatibility only.
93      * @exception InvalidMatrixException (wrapping a
94      * {@link org.apache.commons.math.ConvergenceException} if algorithm
95      * fails to converge
96      */
EigenDecompositionImpl(final RealMatrix matrix,final double splitTolerance)97     public EigenDecompositionImpl(final RealMatrix matrix,final double splitTolerance)
98             throws InvalidMatrixException {
99         if (isSymmetric(matrix)) {
100             transformToTridiagonal(matrix);
101             findEigenVectors(transformer.getQ().getData());
102         } else {
103             // as of 2.0, non-symmetric matrices (i.e. complex eigenvalues) are
104             // NOT supported
105             // see issue https://issues.apache.org/jira/browse/MATH-235
106             throw new InvalidMatrixException(
107                     LocalizedFormats.ASSYMETRIC_EIGEN_NOT_SUPPORTED);
108         }
109     }
110 
111     /**
112      * Calculates the eigen decomposition of the symmetric tridiagonal
113      * matrix.  The Householder matrix is assumed to be the identity matrix.
114      * @param main Main diagonal of the symmetric triadiagonal form
115      * @param secondary Secondary of the tridiagonal form
116      * @param splitTolerance dummy parameter, present for backward compatibility only.
117      * @exception InvalidMatrixException (wrapping a
118      * {@link org.apache.commons.math.ConvergenceException} if algorithm
119      * fails to converge
120      */
EigenDecompositionImpl(final double[] main,final double[] secondary, final double splitTolerance)121     public EigenDecompositionImpl(final double[] main,final double[] secondary,
122             final double splitTolerance)
123             throws InvalidMatrixException {
124         this.main      = main.clone();
125         this.secondary = secondary.clone();
126         transformer    = null;
127         final int size=main.length;
128         double[][] z = new double[size][size];
129         for (int i=0;i<size;i++) {
130             z[i][i]=1.0;
131         }
132         findEigenVectors(z);
133     }
134 
135     /**
136      * Check if a matrix is symmetric.
137      * @param matrix
138      *            matrix to check
139      * @return true if matrix is symmetric
140      */
isSymmetric(final RealMatrix matrix)141     private boolean isSymmetric(final RealMatrix matrix) {
142         final int rows = matrix.getRowDimension();
143         final int columns = matrix.getColumnDimension();
144         final double eps = 10 * rows * columns * MathUtils.EPSILON;
145         for (int i = 0; i < rows; ++i) {
146             for (int j = i + 1; j < columns; ++j) {
147                 final double mij = matrix.getEntry(i, j);
148                 final double mji = matrix.getEntry(j, i);
149                 if (FastMath.abs(mij - mji) >
150                     (FastMath.max(FastMath.abs(mij), FastMath.abs(mji)) * eps)) {
151                     return false;
152                 }
153             }
154         }
155         return true;
156     }
157 
158     /** {@inheritDoc} */
getV()159     public RealMatrix getV() throws InvalidMatrixException {
160 
161         if (cachedV == null) {
162             final int m = eigenvectors.length;
163             cachedV = MatrixUtils.createRealMatrix(m, m);
164             for (int k = 0; k < m; ++k) {
165                 cachedV.setColumnVector(k, eigenvectors[k]);
166             }
167         }
168         // return the cached matrix
169         return cachedV;
170 
171     }
172 
173     /** {@inheritDoc} */
getD()174     public RealMatrix getD() throws InvalidMatrixException {
175         if (cachedD == null) {
176             // cache the matrix for subsequent calls
177             cachedD = MatrixUtils.createRealDiagonalMatrix(realEigenvalues);
178         }
179         return cachedD;
180     }
181 
182     /** {@inheritDoc} */
getVT()183     public RealMatrix getVT() throws InvalidMatrixException {
184 
185         if (cachedVt == null) {
186             final int m = eigenvectors.length;
187             cachedVt = MatrixUtils.createRealMatrix(m, m);
188             for (int k = 0; k < m; ++k) {
189                 cachedVt.setRowVector(k, eigenvectors[k]);
190             }
191 
192         }
193 
194         // return the cached matrix
195         return cachedVt;
196     }
197 
198     /** {@inheritDoc} */
getRealEigenvalues()199     public double[] getRealEigenvalues() throws InvalidMatrixException {
200         return realEigenvalues.clone();
201     }
202 
203     /** {@inheritDoc} */
getRealEigenvalue(final int i)204     public double getRealEigenvalue(final int i) throws InvalidMatrixException,
205             ArrayIndexOutOfBoundsException {
206         return realEigenvalues[i];
207     }
208 
209     /** {@inheritDoc} */
getImagEigenvalues()210     public double[] getImagEigenvalues() throws InvalidMatrixException {
211         return imagEigenvalues.clone();
212     }
213 
214     /** {@inheritDoc} */
getImagEigenvalue(final int i)215     public double getImagEigenvalue(final int i) throws InvalidMatrixException,
216             ArrayIndexOutOfBoundsException {
217         return imagEigenvalues[i];
218     }
219 
220     /** {@inheritDoc} */
getEigenvector(final int i)221     public RealVector getEigenvector(final int i)
222             throws InvalidMatrixException, ArrayIndexOutOfBoundsException {
223         return eigenvectors[i].copy();
224     }
225 
226     /**
227      * Return the determinant of the matrix
228      * @return determinant of the matrix
229      */
getDeterminant()230     public double getDeterminant() {
231         double determinant = 1;
232         for (double lambda : realEigenvalues) {
233             determinant *= lambda;
234         }
235         return determinant;
236     }
237 
238     /** {@inheritDoc} */
getSolver()239     public DecompositionSolver getSolver() {
240         return new Solver(realEigenvalues, imagEigenvalues, eigenvectors);
241     }
242 
243     /** Specialized solver. */
244     private static class Solver implements DecompositionSolver {
245 
246         /** Real part of the realEigenvalues. */
247         private double[] realEigenvalues;
248 
249         /** Imaginary part of the realEigenvalues. */
250         private double[] imagEigenvalues;
251 
252         /** Eigenvectors. */
253         private final ArrayRealVector[] eigenvectors;
254 
255         /**
256          * Build a solver from decomposed matrix.
257          * @param realEigenvalues
258          *            real parts of the eigenvalues
259          * @param imagEigenvalues
260          *            imaginary parts of the eigenvalues
261          * @param eigenvectors
262          *            eigenvectors
263          */
Solver(final double[] realEigenvalues, final double[] imagEigenvalues, final ArrayRealVector[] eigenvectors)264         private Solver(final double[] realEigenvalues,
265                 final double[] imagEigenvalues,
266                 final ArrayRealVector[] eigenvectors) {
267             this.realEigenvalues = realEigenvalues;
268             this.imagEigenvalues = imagEigenvalues;
269             this.eigenvectors = eigenvectors;
270         }
271 
272         /**
273          * Solve the linear equation A &times; X = B for symmetric matrices A.
274          * <p>
275          * This method only find exact linear solutions, i.e. solutions for
276          * which ||A &times; X - B|| is exactly 0.
277          * </p>
278          * @param b
279          *            right-hand side of the equation A &times; X = B
280          * @return a vector X that minimizes the two norm of A &times; X - B
281          * @exception IllegalArgumentException
282          *                if matrices dimensions don't match
283          * @exception InvalidMatrixException
284          *                if decomposed matrix is singular
285          */
solve(final double[] b)286         public double[] solve(final double[] b)
287                 throws IllegalArgumentException, InvalidMatrixException {
288 
289             if (!isNonSingular()) {
290                 throw new SingularMatrixException();
291             }
292 
293             final int m = realEigenvalues.length;
294             if (b.length != m) {
295                 throw MathRuntimeException.createIllegalArgumentException(
296                         LocalizedFormats.VECTOR_LENGTH_MISMATCH,
297                         b.length, m);
298             }
299 
300             final double[] bp = new double[m];
301             for (int i = 0; i < m; ++i) {
302                 final ArrayRealVector v = eigenvectors[i];
303                 final double[] vData = v.getDataRef();
304                 final double s = v.dotProduct(b) / realEigenvalues[i];
305                 for (int j = 0; j < m; ++j) {
306                     bp[j] += s * vData[j];
307                 }
308             }
309 
310             return bp;
311 
312         }
313 
314         /**
315          * Solve the linear equation A &times; X = B for symmetric matrices A.
316          * <p>
317          * This method only find exact linear solutions, i.e. solutions for
318          * which ||A &times; X - B|| is exactly 0.
319          * </p>
320          * @param b
321          *            right-hand side of the equation A &times; X = B
322          * @return a vector X that minimizes the two norm of A &times; X - B
323          * @exception IllegalArgumentException
324          *                if matrices dimensions don't match
325          * @exception InvalidMatrixException
326          *                if decomposed matrix is singular
327          */
solve(final RealVector b)328         public RealVector solve(final RealVector b)
329                 throws IllegalArgumentException, InvalidMatrixException {
330 
331             if (!isNonSingular()) {
332                 throw new SingularMatrixException();
333             }
334 
335             final int m = realEigenvalues.length;
336             if (b.getDimension() != m) {
337                 throw MathRuntimeException.createIllegalArgumentException(
338                         LocalizedFormats.VECTOR_LENGTH_MISMATCH, b
339                                 .getDimension(), m);
340             }
341 
342             final double[] bp = new double[m];
343             for (int i = 0; i < m; ++i) {
344                 final ArrayRealVector v = eigenvectors[i];
345                 final double[] vData = v.getDataRef();
346                 final double s = v.dotProduct(b) / realEigenvalues[i];
347                 for (int j = 0; j < m; ++j) {
348                     bp[j] += s * vData[j];
349                 }
350             }
351 
352             return new ArrayRealVector(bp, false);
353 
354         }
355 
356         /**
357          * Solve the linear equation A &times; X = B for symmetric matrices A.
358          * <p>
359          * This method only find exact linear solutions, i.e. solutions for
360          * which ||A &times; X - B|| is exactly 0.
361          * </p>
362          * @param b
363          *            right-hand side of the equation A &times; X = B
364          * @return a matrix X that minimizes the two norm of A &times; X - B
365          * @exception IllegalArgumentException
366          *                if matrices dimensions don't match
367          * @exception InvalidMatrixException
368          *                if decomposed matrix is singular
369          */
solve(final RealMatrix b)370         public RealMatrix solve(final RealMatrix b)
371                 throws IllegalArgumentException, InvalidMatrixException {
372 
373             if (!isNonSingular()) {
374                 throw new SingularMatrixException();
375             }
376 
377             final int m = realEigenvalues.length;
378             if (b.getRowDimension() != m) {
379                 throw MathRuntimeException
380                         .createIllegalArgumentException(
381                                 LocalizedFormats.DIMENSIONS_MISMATCH_2x2,
382                                 b.getRowDimension(), b.getColumnDimension(), m,
383                                 "n");
384             }
385 
386             final int nColB = b.getColumnDimension();
387             final double[][] bp = new double[m][nColB];
388             for (int k = 0; k < nColB; ++k) {
389                 for (int i = 0; i < m; ++i) {
390                     final ArrayRealVector v = eigenvectors[i];
391                     final double[] vData = v.getDataRef();
392                     double s = 0;
393                     for (int j = 0; j < m; ++j) {
394                         s += v.getEntry(j) * b.getEntry(j, k);
395                     }
396                     s /= realEigenvalues[i];
397                     for (int j = 0; j < m; ++j) {
398                         bp[j][k] += s * vData[j];
399                     }
400                 }
401             }
402 
403             return MatrixUtils.createRealMatrix(bp);
404 
405         }
406 
407         /**
408          * Check if the decomposed matrix is non-singular.
409          * @return true if the decomposed matrix is non-singular
410          */
isNonSingular()411         public boolean isNonSingular() {
412             for (int i = 0; i < realEigenvalues.length; ++i) {
413                 if ((realEigenvalues[i] == 0) && (imagEigenvalues[i] == 0)) {
414                     return false;
415                 }
416             }
417             return true;
418         }
419 
420         /**
421          * Get the inverse of the decomposed matrix.
422          * @return inverse matrix
423          * @throws InvalidMatrixException
424          *             if decomposed matrix is singular
425          */
getInverse()426         public RealMatrix getInverse() throws InvalidMatrixException {
427 
428             if (!isNonSingular()) {
429                 throw new SingularMatrixException();
430             }
431 
432             final int m = realEigenvalues.length;
433             final double[][] invData = new double[m][m];
434 
435             for (int i = 0; i < m; ++i) {
436                 final double[] invI = invData[i];
437                 for (int j = 0; j < m; ++j) {
438                     double invIJ = 0;
439                     for (int k = 0; k < m; ++k) {
440                         final double[] vK = eigenvectors[k].getDataRef();
441                         invIJ += vK[i] * vK[j] / realEigenvalues[k];
442                     }
443                     invI[j] = invIJ;
444                 }
445             }
446             return MatrixUtils.createRealMatrix(invData);
447 
448         }
449 
450     }
451 
452     /**
453      * Transform matrix to tridiagonal.
454      * @param matrix
455      *            matrix to transform
456      */
transformToTridiagonal(final RealMatrix matrix)457     private void transformToTridiagonal(final RealMatrix matrix) {
458 
459         // transform the matrix to tridiagonal
460         transformer = new TriDiagonalTransformer(matrix);
461         main = transformer.getMainDiagonalRef();
462         secondary = transformer.getSecondaryDiagonalRef();
463 
464     }
465 
466     /**
467      * Find eigenvalues and eigenvectors (Dubrulle et al., 1971)
468      * @param householderMatrix Householder matrix of the transformation
469      *  to tri-diagonal form.
470      */
findEigenVectors(double[][] householderMatrix)471     private void findEigenVectors(double[][] householderMatrix) {
472 
473         double[][]z = householderMatrix.clone();
474         final int n = main.length;
475         realEigenvalues = new double[n];
476         imagEigenvalues = new double[n];
477         double[] e = new double[n];
478         for (int i = 0; i < n - 1; i++) {
479             realEigenvalues[i] = main[i];
480             e[i] = secondary[i];
481         }
482         realEigenvalues[n - 1] = main[n - 1];
483         e[n - 1] = 0.0;
484 
485         // Determine the largest main and secondary value in absolute term.
486         double maxAbsoluteValue=0.0;
487         for (int i = 0; i < n; i++) {
488             if (FastMath.abs(realEigenvalues[i])>maxAbsoluteValue) {
489                 maxAbsoluteValue=FastMath.abs(realEigenvalues[i]);
490             }
491             if (FastMath.abs(e[i])>maxAbsoluteValue) {
492                 maxAbsoluteValue=FastMath.abs(e[i]);
493             }
494         }
495         // Make null any main and secondary value too small to be significant
496         if (maxAbsoluteValue!=0.0) {
497             for (int i=0; i < n; i++) {
498                 if (FastMath.abs(realEigenvalues[i])<=MathUtils.EPSILON*maxAbsoluteValue) {
499                     realEigenvalues[i]=0.0;
500                 }
501                 if (FastMath.abs(e[i])<=MathUtils.EPSILON*maxAbsoluteValue) {
502                     e[i]=0.0;
503                 }
504             }
505         }
506 
507         for (int j = 0; j < n; j++) {
508             int its = 0;
509             int m;
510             do {
511                 for (m = j; m < n - 1; m++) {
512                     double delta = FastMath.abs(realEigenvalues[m]) + FastMath.abs(realEigenvalues[m + 1]);
513                     if (FastMath.abs(e[m]) + delta == delta) {
514                         break;
515                     }
516                 }
517                 if (m != j) {
518                     if (its == maxIter)
519                         throw new InvalidMatrixException(
520                                 new MaxIterationsExceededException(maxIter));
521                     its++;
522                     double q = (realEigenvalues[j + 1] - realEigenvalues[j]) / (2 * e[j]);
523                     double t = FastMath.sqrt(1 + q * q);
524                     if (q < 0.0) {
525                         q = realEigenvalues[m] - realEigenvalues[j] + e[j] / (q - t);
526                     } else {
527                         q = realEigenvalues[m] - realEigenvalues[j] + e[j] / (q + t);
528                     }
529                     double u = 0.0;
530                     double s = 1.0;
531                     double c = 1.0;
532                     int i;
533                     for (i = m - 1; i >= j; i--) {
534                         double p = s * e[i];
535                         double h = c * e[i];
536                         if (FastMath.abs(p) >= FastMath.abs(q)) {
537                             c = q / p;
538                             t = FastMath.sqrt(c * c + 1.0);
539                             e[i + 1] = p * t;
540                             s = 1.0 / t;
541                             c = c * s;
542                         } else {
543                             s = p / q;
544                             t = FastMath.sqrt(s * s + 1.0);
545                             e[i + 1] = q * t;
546                             c = 1.0 / t;
547                             s = s * c;
548                         }
549                         if (e[i + 1] == 0.0) {
550                             realEigenvalues[i + 1] -= u;
551                             e[m] = 0.0;
552                             break;
553                         }
554                         q = realEigenvalues[i + 1] - u;
555                         t = (realEigenvalues[i] - q) * s + 2.0 * c * h;
556                         u = s * t;
557                         realEigenvalues[i + 1] = q + u;
558                         q = c * t - h;
559                         for (int ia = 0; ia < n; ia++) {
560                             p = z[ia][i + 1];
561                             z[ia][i + 1] = s * z[ia][i] + c * p;
562                             z[ia][i] = c * z[ia][i] - s * p;
563                         }
564                     }
565                     if (t == 0.0 && i >= j)
566                         continue;
567                     realEigenvalues[j] -= u;
568                     e[j] = q;
569                     e[m] = 0.0;
570                 }
571             } while (m != j);
572         }
573 
574         //Sort the eigen values (and vectors) in increase order
575         for (int i = 0; i < n; i++) {
576             int k = i;
577             double p = realEigenvalues[i];
578             for (int j = i + 1; j < n; j++) {
579                 if (realEigenvalues[j] > p) {
580                     k = j;
581                     p = realEigenvalues[j];
582                 }
583             }
584             if (k != i) {
585                 realEigenvalues[k] = realEigenvalues[i];
586                 realEigenvalues[i] = p;
587                 for (int j = 0; j < n; j++) {
588                     p = z[j][i];
589                     z[j][i] = z[j][k];
590                     z[j][k] = p;
591                 }
592             }
593         }
594 
595         // Determine the largest eigen value in absolute term.
596         maxAbsoluteValue=0.0;
597         for (int i = 0; i < n; i++) {
598             if (FastMath.abs(realEigenvalues[i])>maxAbsoluteValue) {
599                 maxAbsoluteValue=FastMath.abs(realEigenvalues[i]);
600             }
601         }
602         // Make null any eigen value too small to be significant
603         if (maxAbsoluteValue!=0.0) {
604             for (int i=0; i < n; i++) {
605                 if (FastMath.abs(realEigenvalues[i])<MathUtils.EPSILON*maxAbsoluteValue) {
606                     realEigenvalues[i]=0.0;
607                 }
608             }
609         }
610         eigenvectors = new ArrayRealVector[n];
611         double[] tmp = new double[n];
612         for (int i = 0; i < n; i++) {
613             for (int j = 0; j < n; j++) {
614                 tmp[j] = z[j][i];
615             }
616             eigenvectors[i] = new ArrayRealVector(tmp);
617         }
618     }
619 }
620